Merge tag 'v4.4-rc2' into drm-intel-next-queued
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75         DRM_FORMAT_YUYV,
76         DRM_FORMAT_YVYU,
77         DRM_FORMAT_UYVY,
78         DRM_FORMAT_VYUY,
79 };
80
81 /* Cursor formats */
82 static const uint32_t intel_cursor_formats[] = {
83         DRM_FORMAT_ARGB8888,
84 };
85
86 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
87
88 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
89                                 struct intel_crtc_state *pipe_config);
90 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
91                                    struct intel_crtc_state *pipe_config);
92
93 static int intel_framebuffer_init(struct drm_device *dev,
94                                   struct intel_framebuffer *ifb,
95                                   struct drm_mode_fb_cmd2 *mode_cmd,
96                                   struct drm_i915_gem_object *obj);
97 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
98 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
99 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
100                                          struct intel_link_m_n *m_n,
101                                          struct intel_link_m_n *m2_n2);
102 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
103 static void haswell_set_pipeconf(struct drm_crtc *crtc);
104 static void intel_set_pipe_csc(struct drm_crtc *crtc);
105 static void vlv_prepare_pll(struct intel_crtc *crtc,
106                             const struct intel_crtc_state *pipe_config);
107 static void chv_prepare_pll(struct intel_crtc *crtc,
108                             const struct intel_crtc_state *pipe_config);
109 static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
110 static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
111 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
112         struct intel_crtc_state *crtc_state);
113 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
114                            int num_connectors);
115 static void skylake_pfit_enable(struct intel_crtc *crtc);
116 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117 static void ironlake_pfit_enable(struct intel_crtc *crtc);
118 static void intel_modeset_setup_hw_state(struct drm_device *dev);
119
120 typedef struct {
121         int     min, max;
122 } intel_range_t;
123
124 typedef struct {
125         int     dot_limit;
126         int     p2_slow, p2_fast;
127 } intel_p2_t;
128
129 typedef struct intel_limit intel_limit_t;
130 struct intel_limit {
131         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
132         intel_p2_t          p2;
133 };
134
135 /* returns HPLL frequency in kHz */
136 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
137 {
138         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
139
140         /* Obtain SKU information */
141         mutex_lock(&dev_priv->sb_lock);
142         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
143                 CCK_FUSE_HPLL_FREQ_MASK;
144         mutex_unlock(&dev_priv->sb_lock);
145
146         return vco_freq[hpll_freq] * 1000;
147 }
148
149 static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
150                                   const char *name, u32 reg)
151 {
152         u32 val;
153         int divider;
154
155         if (dev_priv->hpll_freq == 0)
156                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
157
158         mutex_lock(&dev_priv->sb_lock);
159         val = vlv_cck_read(dev_priv, reg);
160         mutex_unlock(&dev_priv->sb_lock);
161
162         divider = val & CCK_FREQUENCY_VALUES;
163
164         WARN((val & CCK_FREQUENCY_STATUS) !=
165              (divider << CCK_FREQUENCY_STATUS_SHIFT),
166              "%s change in progress\n", name);
167
168         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
169 }
170
171 int
172 intel_pch_rawclk(struct drm_device *dev)
173 {
174         struct drm_i915_private *dev_priv = dev->dev_private;
175
176         WARN_ON(!HAS_PCH_SPLIT(dev));
177
178         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
179 }
180
181 /* hrawclock is 1/4 the FSB frequency */
182 int intel_hrawclk(struct drm_device *dev)
183 {
184         struct drm_i915_private *dev_priv = dev->dev_private;
185         uint32_t clkcfg;
186
187         /* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
188         if (IS_VALLEYVIEW(dev))
189                 return 200;
190
191         clkcfg = I915_READ(CLKCFG);
192         switch (clkcfg & CLKCFG_FSB_MASK) {
193         case CLKCFG_FSB_400:
194                 return 100;
195         case CLKCFG_FSB_533:
196                 return 133;
197         case CLKCFG_FSB_667:
198                 return 166;
199         case CLKCFG_FSB_800:
200                 return 200;
201         case CLKCFG_FSB_1067:
202                 return 266;
203         case CLKCFG_FSB_1333:
204                 return 333;
205         /* these two are just a guess; one of them might be right */
206         case CLKCFG_FSB_1600:
207         case CLKCFG_FSB_1600_ALT:
208                 return 400;
209         default:
210                 return 133;
211         }
212 }
213
214 static void intel_update_czclk(struct drm_i915_private *dev_priv)
215 {
216         if (!IS_VALLEYVIEW(dev_priv))
217                 return;
218
219         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
220                                                       CCK_CZ_CLOCK_CONTROL);
221
222         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
223 }
224
225 static inline u32 /* units of 100MHz */
226 intel_fdi_link_freq(struct drm_device *dev)
227 {
228         if (IS_GEN5(dev)) {
229                 struct drm_i915_private *dev_priv = dev->dev_private;
230                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
231         } else
232                 return 27;
233 }
234
235 static const intel_limit_t intel_limits_i8xx_dac = {
236         .dot = { .min = 25000, .max = 350000 },
237         .vco = { .min = 908000, .max = 1512000 },
238         .n = { .min = 2, .max = 16 },
239         .m = { .min = 96, .max = 140 },
240         .m1 = { .min = 18, .max = 26 },
241         .m2 = { .min = 6, .max = 16 },
242         .p = { .min = 4, .max = 128 },
243         .p1 = { .min = 2, .max = 33 },
244         .p2 = { .dot_limit = 165000,
245                 .p2_slow = 4, .p2_fast = 2 },
246 };
247
248 static const intel_limit_t intel_limits_i8xx_dvo = {
249         .dot = { .min = 25000, .max = 350000 },
250         .vco = { .min = 908000, .max = 1512000 },
251         .n = { .min = 2, .max = 16 },
252         .m = { .min = 96, .max = 140 },
253         .m1 = { .min = 18, .max = 26 },
254         .m2 = { .min = 6, .max = 16 },
255         .p = { .min = 4, .max = 128 },
256         .p1 = { .min = 2, .max = 33 },
257         .p2 = { .dot_limit = 165000,
258                 .p2_slow = 4, .p2_fast = 4 },
259 };
260
261 static const intel_limit_t intel_limits_i8xx_lvds = {
262         .dot = { .min = 25000, .max = 350000 },
263         .vco = { .min = 908000, .max = 1512000 },
264         .n = { .min = 2, .max = 16 },
265         .m = { .min = 96, .max = 140 },
266         .m1 = { .min = 18, .max = 26 },
267         .m2 = { .min = 6, .max = 16 },
268         .p = { .min = 4, .max = 128 },
269         .p1 = { .min = 1, .max = 6 },
270         .p2 = { .dot_limit = 165000,
271                 .p2_slow = 14, .p2_fast = 7 },
272 };
273
274 static const intel_limit_t intel_limits_i9xx_sdvo = {
275         .dot = { .min = 20000, .max = 400000 },
276         .vco = { .min = 1400000, .max = 2800000 },
277         .n = { .min = 1, .max = 6 },
278         .m = { .min = 70, .max = 120 },
279         .m1 = { .min = 8, .max = 18 },
280         .m2 = { .min = 3, .max = 7 },
281         .p = { .min = 5, .max = 80 },
282         .p1 = { .min = 1, .max = 8 },
283         .p2 = { .dot_limit = 200000,
284                 .p2_slow = 10, .p2_fast = 5 },
285 };
286
287 static const intel_limit_t intel_limits_i9xx_lvds = {
288         .dot = { .min = 20000, .max = 400000 },
289         .vco = { .min = 1400000, .max = 2800000 },
290         .n = { .min = 1, .max = 6 },
291         .m = { .min = 70, .max = 120 },
292         .m1 = { .min = 8, .max = 18 },
293         .m2 = { .min = 3, .max = 7 },
294         .p = { .min = 7, .max = 98 },
295         .p1 = { .min = 1, .max = 8 },
296         .p2 = { .dot_limit = 112000,
297                 .p2_slow = 14, .p2_fast = 7 },
298 };
299
300
301 static const intel_limit_t intel_limits_g4x_sdvo = {
302         .dot = { .min = 25000, .max = 270000 },
303         .vco = { .min = 1750000, .max = 3500000},
304         .n = { .min = 1, .max = 4 },
305         .m = { .min = 104, .max = 138 },
306         .m1 = { .min = 17, .max = 23 },
307         .m2 = { .min = 5, .max = 11 },
308         .p = { .min = 10, .max = 30 },
309         .p1 = { .min = 1, .max = 3},
310         .p2 = { .dot_limit = 270000,
311                 .p2_slow = 10,
312                 .p2_fast = 10
313         },
314 };
315
316 static const intel_limit_t intel_limits_g4x_hdmi = {
317         .dot = { .min = 22000, .max = 400000 },
318         .vco = { .min = 1750000, .max = 3500000},
319         .n = { .min = 1, .max = 4 },
320         .m = { .min = 104, .max = 138 },
321         .m1 = { .min = 16, .max = 23 },
322         .m2 = { .min = 5, .max = 11 },
323         .p = { .min = 5, .max = 80 },
324         .p1 = { .min = 1, .max = 8},
325         .p2 = { .dot_limit = 165000,
326                 .p2_slow = 10, .p2_fast = 5 },
327 };
328
329 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
330         .dot = { .min = 20000, .max = 115000 },
331         .vco = { .min = 1750000, .max = 3500000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 104, .max = 138 },
334         .m1 = { .min = 17, .max = 23 },
335         .m2 = { .min = 5, .max = 11 },
336         .p = { .min = 28, .max = 112 },
337         .p1 = { .min = 2, .max = 8 },
338         .p2 = { .dot_limit = 0,
339                 .p2_slow = 14, .p2_fast = 14
340         },
341 };
342
343 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
344         .dot = { .min = 80000, .max = 224000 },
345         .vco = { .min = 1750000, .max = 3500000 },
346         .n = { .min = 1, .max = 3 },
347         .m = { .min = 104, .max = 138 },
348         .m1 = { .min = 17, .max = 23 },
349         .m2 = { .min = 5, .max = 11 },
350         .p = { .min = 14, .max = 42 },
351         .p1 = { .min = 2, .max = 6 },
352         .p2 = { .dot_limit = 0,
353                 .p2_slow = 7, .p2_fast = 7
354         },
355 };
356
357 static const intel_limit_t intel_limits_pineview_sdvo = {
358         .dot = { .min = 20000, .max = 400000},
359         .vco = { .min = 1700000, .max = 3500000 },
360         /* Pineview's Ncounter is a ring counter */
361         .n = { .min = 3, .max = 6 },
362         .m = { .min = 2, .max = 256 },
363         /* Pineview only has one combined m divider, which we treat as m2. */
364         .m1 = { .min = 0, .max = 0 },
365         .m2 = { .min = 0, .max = 254 },
366         .p = { .min = 5, .max = 80 },
367         .p1 = { .min = 1, .max = 8 },
368         .p2 = { .dot_limit = 200000,
369                 .p2_slow = 10, .p2_fast = 5 },
370 };
371
372 static const intel_limit_t intel_limits_pineview_lvds = {
373         .dot = { .min = 20000, .max = 400000 },
374         .vco = { .min = 1700000, .max = 3500000 },
375         .n = { .min = 3, .max = 6 },
376         .m = { .min = 2, .max = 256 },
377         .m1 = { .min = 0, .max = 0 },
378         .m2 = { .min = 0, .max = 254 },
379         .p = { .min = 7, .max = 112 },
380         .p1 = { .min = 1, .max = 8 },
381         .p2 = { .dot_limit = 112000,
382                 .p2_slow = 14, .p2_fast = 14 },
383 };
384
385 /* Ironlake / Sandybridge
386  *
387  * We calculate clock using (register_value + 2) for N/M1/M2, so here
388  * the range value for them is (actual_value - 2).
389  */
390 static const intel_limit_t intel_limits_ironlake_dac = {
391         .dot = { .min = 25000, .max = 350000 },
392         .vco = { .min = 1760000, .max = 3510000 },
393         .n = { .min = 1, .max = 5 },
394         .m = { .min = 79, .max = 127 },
395         .m1 = { .min = 12, .max = 22 },
396         .m2 = { .min = 5, .max = 9 },
397         .p = { .min = 5, .max = 80 },
398         .p1 = { .min = 1, .max = 8 },
399         .p2 = { .dot_limit = 225000,
400                 .p2_slow = 10, .p2_fast = 5 },
401 };
402
403 static const intel_limit_t intel_limits_ironlake_single_lvds = {
404         .dot = { .min = 25000, .max = 350000 },
405         .vco = { .min = 1760000, .max = 3510000 },
406         .n = { .min = 1, .max = 3 },
407         .m = { .min = 79, .max = 118 },
408         .m1 = { .min = 12, .max = 22 },
409         .m2 = { .min = 5, .max = 9 },
410         .p = { .min = 28, .max = 112 },
411         .p1 = { .min = 2, .max = 8 },
412         .p2 = { .dot_limit = 225000,
413                 .p2_slow = 14, .p2_fast = 14 },
414 };
415
416 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
417         .dot = { .min = 25000, .max = 350000 },
418         .vco = { .min = 1760000, .max = 3510000 },
419         .n = { .min = 1, .max = 3 },
420         .m = { .min = 79, .max = 127 },
421         .m1 = { .min = 12, .max = 22 },
422         .m2 = { .min = 5, .max = 9 },
423         .p = { .min = 14, .max = 56 },
424         .p1 = { .min = 2, .max = 8 },
425         .p2 = { .dot_limit = 225000,
426                 .p2_slow = 7, .p2_fast = 7 },
427 };
428
429 /* LVDS 100mhz refclk limits. */
430 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
431         .dot = { .min = 25000, .max = 350000 },
432         .vco = { .min = 1760000, .max = 3510000 },
433         .n = { .min = 1, .max = 2 },
434         .m = { .min = 79, .max = 126 },
435         .m1 = { .min = 12, .max = 22 },
436         .m2 = { .min = 5, .max = 9 },
437         .p = { .min = 28, .max = 112 },
438         .p1 = { .min = 2, .max = 8 },
439         .p2 = { .dot_limit = 225000,
440                 .p2_slow = 14, .p2_fast = 14 },
441 };
442
443 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
444         .dot = { .min = 25000, .max = 350000 },
445         .vco = { .min = 1760000, .max = 3510000 },
446         .n = { .min = 1, .max = 3 },
447         .m = { .min = 79, .max = 126 },
448         .m1 = { .min = 12, .max = 22 },
449         .m2 = { .min = 5, .max = 9 },
450         .p = { .min = 14, .max = 42 },
451         .p1 = { .min = 2, .max = 6 },
452         .p2 = { .dot_limit = 225000,
453                 .p2_slow = 7, .p2_fast = 7 },
454 };
455
456 static const intel_limit_t intel_limits_vlv = {
457          /*
458           * These are the data rate limits (measured in fast clocks)
459           * since those are the strictest limits we have. The fast
460           * clock and actual rate limits are more relaxed, so checking
461           * them would make no difference.
462           */
463         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
464         .vco = { .min = 4000000, .max = 6000000 },
465         .n = { .min = 1, .max = 7 },
466         .m1 = { .min = 2, .max = 3 },
467         .m2 = { .min = 11, .max = 156 },
468         .p1 = { .min = 2, .max = 3 },
469         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
470 };
471
472 static const intel_limit_t intel_limits_chv = {
473         /*
474          * These are the data rate limits (measured in fast clocks)
475          * since those are the strictest limits we have.  The fast
476          * clock and actual rate limits are more relaxed, so checking
477          * them would make no difference.
478          */
479         .dot = { .min = 25000 * 5, .max = 540000 * 5},
480         .vco = { .min = 4800000, .max = 6480000 },
481         .n = { .min = 1, .max = 1 },
482         .m1 = { .min = 2, .max = 2 },
483         .m2 = { .min = 24 << 22, .max = 175 << 22 },
484         .p1 = { .min = 2, .max = 4 },
485         .p2 = { .p2_slow = 1, .p2_fast = 14 },
486 };
487
488 static const intel_limit_t intel_limits_bxt = {
489         /* FIXME: find real dot limits */
490         .dot = { .min = 0, .max = INT_MAX },
491         .vco = { .min = 4800000, .max = 6700000 },
492         .n = { .min = 1, .max = 1 },
493         .m1 = { .min = 2, .max = 2 },
494         /* FIXME: find real m2 limits */
495         .m2 = { .min = 2 << 22, .max = 255 << 22 },
496         .p1 = { .min = 2, .max = 4 },
497         .p2 = { .p2_slow = 1, .p2_fast = 20 },
498 };
499
500 static bool
501 needs_modeset(struct drm_crtc_state *state)
502 {
503         return drm_atomic_crtc_needs_modeset(state);
504 }
505
506 /**
507  * Returns whether any output on the specified pipe is of the specified type
508  */
509 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
510 {
511         struct drm_device *dev = crtc->base.dev;
512         struct intel_encoder *encoder;
513
514         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
515                 if (encoder->type == type)
516                         return true;
517
518         return false;
519 }
520
521 /**
522  * Returns whether any output on the specified pipe will have the specified
523  * type after a staged modeset is complete, i.e., the same as
524  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
525  * encoder->crtc.
526  */
527 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
528                                       int type)
529 {
530         struct drm_atomic_state *state = crtc_state->base.state;
531         struct drm_connector *connector;
532         struct drm_connector_state *connector_state;
533         struct intel_encoder *encoder;
534         int i, num_connectors = 0;
535
536         for_each_connector_in_state(state, connector, connector_state, i) {
537                 if (connector_state->crtc != crtc_state->base.crtc)
538                         continue;
539
540                 num_connectors++;
541
542                 encoder = to_intel_encoder(connector_state->best_encoder);
543                 if (encoder->type == type)
544                         return true;
545         }
546
547         WARN_ON(num_connectors == 0);
548
549         return false;
550 }
551
552 static const intel_limit_t *
553 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
554 {
555         struct drm_device *dev = crtc_state->base.crtc->dev;
556         const intel_limit_t *limit;
557
558         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
559                 if (intel_is_dual_link_lvds(dev)) {
560                         if (refclk == 100000)
561                                 limit = &intel_limits_ironlake_dual_lvds_100m;
562                         else
563                                 limit = &intel_limits_ironlake_dual_lvds;
564                 } else {
565                         if (refclk == 100000)
566                                 limit = &intel_limits_ironlake_single_lvds_100m;
567                         else
568                                 limit = &intel_limits_ironlake_single_lvds;
569                 }
570         } else
571                 limit = &intel_limits_ironlake_dac;
572
573         return limit;
574 }
575
576 static const intel_limit_t *
577 intel_g4x_limit(struct intel_crtc_state *crtc_state)
578 {
579         struct drm_device *dev = crtc_state->base.crtc->dev;
580         const intel_limit_t *limit;
581
582         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
583                 if (intel_is_dual_link_lvds(dev))
584                         limit = &intel_limits_g4x_dual_channel_lvds;
585                 else
586                         limit = &intel_limits_g4x_single_channel_lvds;
587         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
588                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
589                 limit = &intel_limits_g4x_hdmi;
590         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
591                 limit = &intel_limits_g4x_sdvo;
592         } else /* The option is for other outputs */
593                 limit = &intel_limits_i9xx_sdvo;
594
595         return limit;
596 }
597
598 static const intel_limit_t *
599 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
600 {
601         struct drm_device *dev = crtc_state->base.crtc->dev;
602         const intel_limit_t *limit;
603
604         if (IS_BROXTON(dev))
605                 limit = &intel_limits_bxt;
606         else if (HAS_PCH_SPLIT(dev))
607                 limit = intel_ironlake_limit(crtc_state, refclk);
608         else if (IS_G4X(dev)) {
609                 limit = intel_g4x_limit(crtc_state);
610         } else if (IS_PINEVIEW(dev)) {
611                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
612                         limit = &intel_limits_pineview_lvds;
613                 else
614                         limit = &intel_limits_pineview_sdvo;
615         } else if (IS_CHERRYVIEW(dev)) {
616                 limit = &intel_limits_chv;
617         } else if (IS_VALLEYVIEW(dev)) {
618                 limit = &intel_limits_vlv;
619         } else if (!IS_GEN2(dev)) {
620                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
621                         limit = &intel_limits_i9xx_lvds;
622                 else
623                         limit = &intel_limits_i9xx_sdvo;
624         } else {
625                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
626                         limit = &intel_limits_i8xx_lvds;
627                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
628                         limit = &intel_limits_i8xx_dvo;
629                 else
630                         limit = &intel_limits_i8xx_dac;
631         }
632         return limit;
633 }
634
635 /*
636  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
637  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
638  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
639  * The helpers' return value is the rate of the clock that is fed to the
640  * display engine's pipe which can be the above fast dot clock rate or a
641  * divided-down version of it.
642  */
643 /* m1 is reserved as 0 in Pineview, n is a ring counter */
644 static int pnv_calc_dpll_params(int refclk, intel_clock_t *clock)
645 {
646         clock->m = clock->m2 + 2;
647         clock->p = clock->p1 * clock->p2;
648         if (WARN_ON(clock->n == 0 || clock->p == 0))
649                 return 0;
650         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
651         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
652
653         return clock->dot;
654 }
655
656 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
657 {
658         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
659 }
660
661 static int i9xx_calc_dpll_params(int refclk, intel_clock_t *clock)
662 {
663         clock->m = i9xx_dpll_compute_m(clock);
664         clock->p = clock->p1 * clock->p2;
665         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
666                 return 0;
667         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
668         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
669
670         return clock->dot;
671 }
672
673 static int vlv_calc_dpll_params(int refclk, intel_clock_t *clock)
674 {
675         clock->m = clock->m1 * clock->m2;
676         clock->p = clock->p1 * clock->p2;
677         if (WARN_ON(clock->n == 0 || clock->p == 0))
678                 return 0;
679         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
680         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
681
682         return clock->dot / 5;
683 }
684
685 int chv_calc_dpll_params(int refclk, intel_clock_t *clock)
686 {
687         clock->m = clock->m1 * clock->m2;
688         clock->p = clock->p1 * clock->p2;
689         if (WARN_ON(clock->n == 0 || clock->p == 0))
690                 return 0;
691         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
692                         clock->n << 22);
693         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
694
695         return clock->dot / 5;
696 }
697
698 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
699 /**
700  * Returns whether the given set of divisors are valid for a given refclk with
701  * the given connectors.
702  */
703
704 static bool intel_PLL_is_valid(struct drm_device *dev,
705                                const intel_limit_t *limit,
706                                const intel_clock_t *clock)
707 {
708         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
709                 INTELPllInvalid("n out of range\n");
710         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
711                 INTELPllInvalid("p1 out of range\n");
712         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
713                 INTELPllInvalid("m2 out of range\n");
714         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
715                 INTELPllInvalid("m1 out of range\n");
716
717         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
718                 if (clock->m1 <= clock->m2)
719                         INTELPllInvalid("m1 <= m2\n");
720
721         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
722                 if (clock->p < limit->p.min || limit->p.max < clock->p)
723                         INTELPllInvalid("p out of range\n");
724                 if (clock->m < limit->m.min || limit->m.max < clock->m)
725                         INTELPllInvalid("m out of range\n");
726         }
727
728         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
729                 INTELPllInvalid("vco out of range\n");
730         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
731          * connector, etc., rather than just a single range.
732          */
733         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
734                 INTELPllInvalid("dot out of range\n");
735
736         return true;
737 }
738
739 static int
740 i9xx_select_p2_div(const intel_limit_t *limit,
741                    const struct intel_crtc_state *crtc_state,
742                    int target)
743 {
744         struct drm_device *dev = crtc_state->base.crtc->dev;
745
746         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
747                 /*
748                  * For LVDS just rely on its current settings for dual-channel.
749                  * We haven't figured out how to reliably set up different
750                  * single/dual channel state, if we even can.
751                  */
752                 if (intel_is_dual_link_lvds(dev))
753                         return limit->p2.p2_fast;
754                 else
755                         return limit->p2.p2_slow;
756         } else {
757                 if (target < limit->p2.dot_limit)
758                         return limit->p2.p2_slow;
759                 else
760                         return limit->p2.p2_fast;
761         }
762 }
763
764 static bool
765 i9xx_find_best_dpll(const intel_limit_t *limit,
766                     struct intel_crtc_state *crtc_state,
767                     int target, int refclk, intel_clock_t *match_clock,
768                     intel_clock_t *best_clock)
769 {
770         struct drm_device *dev = crtc_state->base.crtc->dev;
771         intel_clock_t clock;
772         int err = target;
773
774         memset(best_clock, 0, sizeof(*best_clock));
775
776         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
777
778         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
779              clock.m1++) {
780                 for (clock.m2 = limit->m2.min;
781                      clock.m2 <= limit->m2.max; clock.m2++) {
782                         if (clock.m2 >= clock.m1)
783                                 break;
784                         for (clock.n = limit->n.min;
785                              clock.n <= limit->n.max; clock.n++) {
786                                 for (clock.p1 = limit->p1.min;
787                                         clock.p1 <= limit->p1.max; clock.p1++) {
788                                         int this_err;
789
790                                         i9xx_calc_dpll_params(refclk, &clock);
791                                         if (!intel_PLL_is_valid(dev, limit,
792                                                                 &clock))
793                                                 continue;
794                                         if (match_clock &&
795                                             clock.p != match_clock->p)
796                                                 continue;
797
798                                         this_err = abs(clock.dot - target);
799                                         if (this_err < err) {
800                                                 *best_clock = clock;
801                                                 err = this_err;
802                                         }
803                                 }
804                         }
805                 }
806         }
807
808         return (err != target);
809 }
810
811 static bool
812 pnv_find_best_dpll(const intel_limit_t *limit,
813                    struct intel_crtc_state *crtc_state,
814                    int target, int refclk, intel_clock_t *match_clock,
815                    intel_clock_t *best_clock)
816 {
817         struct drm_device *dev = crtc_state->base.crtc->dev;
818         intel_clock_t clock;
819         int err = target;
820
821         memset(best_clock, 0, sizeof(*best_clock));
822
823         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
824
825         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
826              clock.m1++) {
827                 for (clock.m2 = limit->m2.min;
828                      clock.m2 <= limit->m2.max; clock.m2++) {
829                         for (clock.n = limit->n.min;
830                              clock.n <= limit->n.max; clock.n++) {
831                                 for (clock.p1 = limit->p1.min;
832                                         clock.p1 <= limit->p1.max; clock.p1++) {
833                                         int this_err;
834
835                                         pnv_calc_dpll_params(refclk, &clock);
836                                         if (!intel_PLL_is_valid(dev, limit,
837                                                                 &clock))
838                                                 continue;
839                                         if (match_clock &&
840                                             clock.p != match_clock->p)
841                                                 continue;
842
843                                         this_err = abs(clock.dot - target);
844                                         if (this_err < err) {
845                                                 *best_clock = clock;
846                                                 err = this_err;
847                                         }
848                                 }
849                         }
850                 }
851         }
852
853         return (err != target);
854 }
855
856 static bool
857 g4x_find_best_dpll(const intel_limit_t *limit,
858                    struct intel_crtc_state *crtc_state,
859                    int target, int refclk, intel_clock_t *match_clock,
860                    intel_clock_t *best_clock)
861 {
862         struct drm_device *dev = crtc_state->base.crtc->dev;
863         intel_clock_t clock;
864         int max_n;
865         bool found = false;
866         /* approximately equals target * 0.00585 */
867         int err_most = (target >> 8) + (target >> 9);
868
869         memset(best_clock, 0, sizeof(*best_clock));
870
871         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
872
873         max_n = limit->n.max;
874         /* based on hardware requirement, prefer smaller n to precision */
875         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
876                 /* based on hardware requirement, prefere larger m1,m2 */
877                 for (clock.m1 = limit->m1.max;
878                      clock.m1 >= limit->m1.min; clock.m1--) {
879                         for (clock.m2 = limit->m2.max;
880                              clock.m2 >= limit->m2.min; clock.m2--) {
881                                 for (clock.p1 = limit->p1.max;
882                                      clock.p1 >= limit->p1.min; clock.p1--) {
883                                         int this_err;
884
885                                         i9xx_calc_dpll_params(refclk, &clock);
886                                         if (!intel_PLL_is_valid(dev, limit,
887                                                                 &clock))
888                                                 continue;
889
890                                         this_err = abs(clock.dot - target);
891                                         if (this_err < err_most) {
892                                                 *best_clock = clock;
893                                                 err_most = this_err;
894                                                 max_n = clock.n;
895                                                 found = true;
896                                         }
897                                 }
898                         }
899                 }
900         }
901         return found;
902 }
903
904 /*
905  * Check if the calculated PLL configuration is more optimal compared to the
906  * best configuration and error found so far. Return the calculated error.
907  */
908 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
909                                const intel_clock_t *calculated_clock,
910                                const intel_clock_t *best_clock,
911                                unsigned int best_error_ppm,
912                                unsigned int *error_ppm)
913 {
914         /*
915          * For CHV ignore the error and consider only the P value.
916          * Prefer a bigger P value based on HW requirements.
917          */
918         if (IS_CHERRYVIEW(dev)) {
919                 *error_ppm = 0;
920
921                 return calculated_clock->p > best_clock->p;
922         }
923
924         if (WARN_ON_ONCE(!target_freq))
925                 return false;
926
927         *error_ppm = div_u64(1000000ULL *
928                                 abs(target_freq - calculated_clock->dot),
929                              target_freq);
930         /*
931          * Prefer a better P value over a better (smaller) error if the error
932          * is small. Ensure this preference for future configurations too by
933          * setting the error to 0.
934          */
935         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
936                 *error_ppm = 0;
937
938                 return true;
939         }
940
941         return *error_ppm + 10 < best_error_ppm;
942 }
943
944 static bool
945 vlv_find_best_dpll(const intel_limit_t *limit,
946                    struct intel_crtc_state *crtc_state,
947                    int target, int refclk, intel_clock_t *match_clock,
948                    intel_clock_t *best_clock)
949 {
950         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
951         struct drm_device *dev = crtc->base.dev;
952         intel_clock_t clock;
953         unsigned int bestppm = 1000000;
954         /* min update 19.2 MHz */
955         int max_n = min(limit->n.max, refclk / 19200);
956         bool found = false;
957
958         target *= 5; /* fast clock */
959
960         memset(best_clock, 0, sizeof(*best_clock));
961
962         /* based on hardware requirement, prefer smaller n to precision */
963         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
964                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
965                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
966                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
967                                 clock.p = clock.p1 * clock.p2;
968                                 /* based on hardware requirement, prefer bigger m1,m2 values */
969                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
970                                         unsigned int ppm;
971
972                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
973                                                                      refclk * clock.m1);
974
975                                         vlv_calc_dpll_params(refclk, &clock);
976
977                                         if (!intel_PLL_is_valid(dev, limit,
978                                                                 &clock))
979                                                 continue;
980
981                                         if (!vlv_PLL_is_optimal(dev, target,
982                                                                 &clock,
983                                                                 best_clock,
984                                                                 bestppm, &ppm))
985                                                 continue;
986
987                                         *best_clock = clock;
988                                         bestppm = ppm;
989                                         found = true;
990                                 }
991                         }
992                 }
993         }
994
995         return found;
996 }
997
998 static bool
999 chv_find_best_dpll(const intel_limit_t *limit,
1000                    struct intel_crtc_state *crtc_state,
1001                    int target, int refclk, intel_clock_t *match_clock,
1002                    intel_clock_t *best_clock)
1003 {
1004         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1005         struct drm_device *dev = crtc->base.dev;
1006         unsigned int best_error_ppm;
1007         intel_clock_t clock;
1008         uint64_t m2;
1009         int found = false;
1010
1011         memset(best_clock, 0, sizeof(*best_clock));
1012         best_error_ppm = 1000000;
1013
1014         /*
1015          * Based on hardware doc, the n always set to 1, and m1 always
1016          * set to 2.  If requires to support 200Mhz refclk, we need to
1017          * revisit this because n may not 1 anymore.
1018          */
1019         clock.n = 1, clock.m1 = 2;
1020         target *= 5;    /* fast clock */
1021
1022         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1023                 for (clock.p2 = limit->p2.p2_fast;
1024                                 clock.p2 >= limit->p2.p2_slow;
1025                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
1026                         unsigned int error_ppm;
1027
1028                         clock.p = clock.p1 * clock.p2;
1029
1030                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1031                                         clock.n) << 22, refclk * clock.m1);
1032
1033                         if (m2 > INT_MAX/clock.m1)
1034                                 continue;
1035
1036                         clock.m2 = m2;
1037
1038                         chv_calc_dpll_params(refclk, &clock);
1039
1040                         if (!intel_PLL_is_valid(dev, limit, &clock))
1041                                 continue;
1042
1043                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1044                                                 best_error_ppm, &error_ppm))
1045                                 continue;
1046
1047                         *best_clock = clock;
1048                         best_error_ppm = error_ppm;
1049                         found = true;
1050                 }
1051         }
1052
1053         return found;
1054 }
1055
1056 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
1057                         intel_clock_t *best_clock)
1058 {
1059         int refclk = i9xx_get_refclk(crtc_state, 0);
1060
1061         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
1062                                   target_clock, refclk, NULL, best_clock);
1063 }
1064
1065 bool intel_crtc_active(struct drm_crtc *crtc)
1066 {
1067         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1068
1069         /* Be paranoid as we can arrive here with only partial
1070          * state retrieved from the hardware during setup.
1071          *
1072          * We can ditch the adjusted_mode.crtc_clock check as soon
1073          * as Haswell has gained clock readout/fastboot support.
1074          *
1075          * We can ditch the crtc->primary->fb check as soon as we can
1076          * properly reconstruct framebuffers.
1077          *
1078          * FIXME: The intel_crtc->active here should be switched to
1079          * crtc->state->active once we have proper CRTC states wired up
1080          * for atomic.
1081          */
1082         return intel_crtc->active && crtc->primary->state->fb &&
1083                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1084 }
1085
1086 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1087                                              enum pipe pipe)
1088 {
1089         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1090         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1091
1092         return intel_crtc->config->cpu_transcoder;
1093 }
1094
1095 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1096 {
1097         struct drm_i915_private *dev_priv = dev->dev_private;
1098         i915_reg_t reg = PIPEDSL(pipe);
1099         u32 line1, line2;
1100         u32 line_mask;
1101
1102         if (IS_GEN2(dev))
1103                 line_mask = DSL_LINEMASK_GEN2;
1104         else
1105                 line_mask = DSL_LINEMASK_GEN3;
1106
1107         line1 = I915_READ(reg) & line_mask;
1108         msleep(5);
1109         line2 = I915_READ(reg) & line_mask;
1110
1111         return line1 == line2;
1112 }
1113
1114 /*
1115  * intel_wait_for_pipe_off - wait for pipe to turn off
1116  * @crtc: crtc whose pipe to wait for
1117  *
1118  * After disabling a pipe, we can't wait for vblank in the usual way,
1119  * spinning on the vblank interrupt status bit, since we won't actually
1120  * see an interrupt when the pipe is disabled.
1121  *
1122  * On Gen4 and above:
1123  *   wait for the pipe register state bit to turn off
1124  *
1125  * Otherwise:
1126  *   wait for the display line value to settle (it usually
1127  *   ends up stopping at the start of the next frame).
1128  *
1129  */
1130 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1131 {
1132         struct drm_device *dev = crtc->base.dev;
1133         struct drm_i915_private *dev_priv = dev->dev_private;
1134         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1135         enum pipe pipe = crtc->pipe;
1136
1137         if (INTEL_INFO(dev)->gen >= 4) {
1138                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1139
1140                 /* Wait for the Pipe State to go off */
1141                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1142                              100))
1143                         WARN(1, "pipe_off wait timed out\n");
1144         } else {
1145                 /* Wait for the display line to settle */
1146                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1147                         WARN(1, "pipe_off wait timed out\n");
1148         }
1149 }
1150
1151 static const char *state_string(bool enabled)
1152 {
1153         return enabled ? "on" : "off";
1154 }
1155
1156 /* Only for pre-ILK configs */
1157 void assert_pll(struct drm_i915_private *dev_priv,
1158                 enum pipe pipe, bool state)
1159 {
1160         u32 val;
1161         bool cur_state;
1162
1163         val = I915_READ(DPLL(pipe));
1164         cur_state = !!(val & DPLL_VCO_ENABLE);
1165         I915_STATE_WARN(cur_state != state,
1166              "PLL state assertion failure (expected %s, current %s)\n",
1167              state_string(state), state_string(cur_state));
1168 }
1169
1170 /* XXX: the dsi pll is shared between MIPI DSI ports */
1171 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1172 {
1173         u32 val;
1174         bool cur_state;
1175
1176         mutex_lock(&dev_priv->sb_lock);
1177         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1178         mutex_unlock(&dev_priv->sb_lock);
1179
1180         cur_state = val & DSI_PLL_VCO_EN;
1181         I915_STATE_WARN(cur_state != state,
1182              "DSI PLL state assertion failure (expected %s, current %s)\n",
1183              state_string(state), state_string(cur_state));
1184 }
1185 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1186 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1187
1188 struct intel_shared_dpll *
1189 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1190 {
1191         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1192
1193         if (crtc->config->shared_dpll < 0)
1194                 return NULL;
1195
1196         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1197 }
1198
1199 /* For ILK+ */
1200 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1201                         struct intel_shared_dpll *pll,
1202                         bool state)
1203 {
1204         bool cur_state;
1205         struct intel_dpll_hw_state hw_state;
1206
1207         if (WARN (!pll,
1208                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1209                 return;
1210
1211         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1212         I915_STATE_WARN(cur_state != state,
1213              "%s assertion failure (expected %s, current %s)\n",
1214              pll->name, state_string(state), state_string(cur_state));
1215 }
1216
1217 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1218                           enum pipe pipe, bool state)
1219 {
1220         bool cur_state;
1221         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1222                                                                       pipe);
1223
1224         if (HAS_DDI(dev_priv->dev)) {
1225                 /* DDI does not have a specific FDI_TX register */
1226                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1227                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1228         } else {
1229                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1230                 cur_state = !!(val & FDI_TX_ENABLE);
1231         }
1232         I915_STATE_WARN(cur_state != state,
1233              "FDI TX state assertion failure (expected %s, current %s)\n",
1234              state_string(state), state_string(cur_state));
1235 }
1236 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1237 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1238
1239 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1240                           enum pipe pipe, bool state)
1241 {
1242         u32 val;
1243         bool cur_state;
1244
1245         val = I915_READ(FDI_RX_CTL(pipe));
1246         cur_state = !!(val & FDI_RX_ENABLE);
1247         I915_STATE_WARN(cur_state != state,
1248              "FDI RX state assertion failure (expected %s, current %s)\n",
1249              state_string(state), state_string(cur_state));
1250 }
1251 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1252 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1253
1254 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1255                                       enum pipe pipe)
1256 {
1257         u32 val;
1258
1259         /* ILK FDI PLL is always enabled */
1260         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1261                 return;
1262
1263         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1264         if (HAS_DDI(dev_priv->dev))
1265                 return;
1266
1267         val = I915_READ(FDI_TX_CTL(pipe));
1268         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1269 }
1270
1271 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1272                        enum pipe pipe, bool state)
1273 {
1274         u32 val;
1275         bool cur_state;
1276
1277         val = I915_READ(FDI_RX_CTL(pipe));
1278         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1279         I915_STATE_WARN(cur_state != state,
1280              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1281              state_string(state), state_string(cur_state));
1282 }
1283
1284 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1285                            enum pipe pipe)
1286 {
1287         struct drm_device *dev = dev_priv->dev;
1288         i915_reg_t pp_reg;
1289         u32 val;
1290         enum pipe panel_pipe = PIPE_A;
1291         bool locked = true;
1292
1293         if (WARN_ON(HAS_DDI(dev)))
1294                 return;
1295
1296         if (HAS_PCH_SPLIT(dev)) {
1297                 u32 port_sel;
1298
1299                 pp_reg = PCH_PP_CONTROL;
1300                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1301
1302                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1303                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1304                         panel_pipe = PIPE_B;
1305                 /* XXX: else fix for eDP */
1306         } else if (IS_VALLEYVIEW(dev)) {
1307                 /* presumably write lock depends on pipe, not port select */
1308                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1309                 panel_pipe = pipe;
1310         } else {
1311                 pp_reg = PP_CONTROL;
1312                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1313                         panel_pipe = PIPE_B;
1314         }
1315
1316         val = I915_READ(pp_reg);
1317         if (!(val & PANEL_POWER_ON) ||
1318             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1319                 locked = false;
1320
1321         I915_STATE_WARN(panel_pipe == pipe && locked,
1322              "panel assertion failure, pipe %c regs locked\n",
1323              pipe_name(pipe));
1324 }
1325
1326 static void assert_cursor(struct drm_i915_private *dev_priv,
1327                           enum pipe pipe, bool state)
1328 {
1329         struct drm_device *dev = dev_priv->dev;
1330         bool cur_state;
1331
1332         if (IS_845G(dev) || IS_I865G(dev))
1333                 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
1334         else
1335                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1336
1337         I915_STATE_WARN(cur_state != state,
1338              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1339              pipe_name(pipe), state_string(state), state_string(cur_state));
1340 }
1341 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1342 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1343
1344 void assert_pipe(struct drm_i915_private *dev_priv,
1345                  enum pipe pipe, bool state)
1346 {
1347         bool cur_state;
1348         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1349                                                                       pipe);
1350
1351         /* if we need the pipe quirk it must be always on */
1352         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1353             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1354                 state = true;
1355
1356         if (!intel_display_power_is_enabled(dev_priv,
1357                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1358                 cur_state = false;
1359         } else {
1360                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1361                 cur_state = !!(val & PIPECONF_ENABLE);
1362         }
1363
1364         I915_STATE_WARN(cur_state != state,
1365              "pipe %c assertion failure (expected %s, current %s)\n",
1366              pipe_name(pipe), state_string(state), state_string(cur_state));
1367 }
1368
1369 static void assert_plane(struct drm_i915_private *dev_priv,
1370                          enum plane plane, bool state)
1371 {
1372         u32 val;
1373         bool cur_state;
1374
1375         val = I915_READ(DSPCNTR(plane));
1376         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1377         I915_STATE_WARN(cur_state != state,
1378              "plane %c assertion failure (expected %s, current %s)\n",
1379              plane_name(plane), state_string(state), state_string(cur_state));
1380 }
1381
1382 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1383 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1384
1385 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1386                                    enum pipe pipe)
1387 {
1388         struct drm_device *dev = dev_priv->dev;
1389         int i;
1390
1391         /* Primary planes are fixed to pipes on gen4+ */
1392         if (INTEL_INFO(dev)->gen >= 4) {
1393                 u32 val = I915_READ(DSPCNTR(pipe));
1394                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1395                      "plane %c assertion failure, should be disabled but not\n",
1396                      plane_name(pipe));
1397                 return;
1398         }
1399
1400         /* Need to check both planes against the pipe */
1401         for_each_pipe(dev_priv, i) {
1402                 u32 val = I915_READ(DSPCNTR(i));
1403                 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1404                         DISPPLANE_SEL_PIPE_SHIFT;
1405                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1406                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1407                      plane_name(i), pipe_name(pipe));
1408         }
1409 }
1410
1411 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1412                                     enum pipe pipe)
1413 {
1414         struct drm_device *dev = dev_priv->dev;
1415         int sprite;
1416
1417         if (INTEL_INFO(dev)->gen >= 9) {
1418                 for_each_sprite(dev_priv, pipe, sprite) {
1419                         u32 val = I915_READ(PLANE_CTL(pipe, sprite));
1420                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1421                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1422                              sprite, pipe_name(pipe));
1423                 }
1424         } else if (IS_VALLEYVIEW(dev)) {
1425                 for_each_sprite(dev_priv, pipe, sprite) {
1426                         u32 val = I915_READ(SPCNTR(pipe, sprite));
1427                         I915_STATE_WARN(val & SP_ENABLE,
1428                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1429                              sprite_name(pipe, sprite), pipe_name(pipe));
1430                 }
1431         } else if (INTEL_INFO(dev)->gen >= 7) {
1432                 u32 val = I915_READ(SPRCTL(pipe));
1433                 I915_STATE_WARN(val & SPRITE_ENABLE,
1434                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1435                      plane_name(pipe), pipe_name(pipe));
1436         } else if (INTEL_INFO(dev)->gen >= 5) {
1437                 u32 val = I915_READ(DVSCNTR(pipe));
1438                 I915_STATE_WARN(val & DVS_ENABLE,
1439                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1440                      plane_name(pipe), pipe_name(pipe));
1441         }
1442 }
1443
1444 static void assert_vblank_disabled(struct drm_crtc *crtc)
1445 {
1446         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1447                 drm_crtc_vblank_put(crtc);
1448 }
1449
1450 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1451 {
1452         u32 val;
1453         bool enabled;
1454
1455         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1456
1457         val = I915_READ(PCH_DREF_CONTROL);
1458         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1459                             DREF_SUPERSPREAD_SOURCE_MASK));
1460         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1461 }
1462
1463 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1464                                            enum pipe pipe)
1465 {
1466         u32 val;
1467         bool enabled;
1468
1469         val = I915_READ(PCH_TRANSCONF(pipe));
1470         enabled = !!(val & TRANS_ENABLE);
1471         I915_STATE_WARN(enabled,
1472              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1473              pipe_name(pipe));
1474 }
1475
1476 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1477                             enum pipe pipe, u32 port_sel, u32 val)
1478 {
1479         if ((val & DP_PORT_EN) == 0)
1480                 return false;
1481
1482         if (HAS_PCH_CPT(dev_priv->dev)) {
1483                 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
1484                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1485                         return false;
1486         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1487                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1488                         return false;
1489         } else {
1490                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1491                         return false;
1492         }
1493         return true;
1494 }
1495
1496 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1497                               enum pipe pipe, u32 val)
1498 {
1499         if ((val & SDVO_ENABLE) == 0)
1500                 return false;
1501
1502         if (HAS_PCH_CPT(dev_priv->dev)) {
1503                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1504                         return false;
1505         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1506                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1507                         return false;
1508         } else {
1509                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1510                         return false;
1511         }
1512         return true;
1513 }
1514
1515 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1516                               enum pipe pipe, u32 val)
1517 {
1518         if ((val & LVDS_PORT_EN) == 0)
1519                 return false;
1520
1521         if (HAS_PCH_CPT(dev_priv->dev)) {
1522                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1523                         return false;
1524         } else {
1525                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1526                         return false;
1527         }
1528         return true;
1529 }
1530
1531 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1532                               enum pipe pipe, u32 val)
1533 {
1534         if ((val & ADPA_DAC_ENABLE) == 0)
1535                 return false;
1536         if (HAS_PCH_CPT(dev_priv->dev)) {
1537                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1538                         return false;
1539         } else {
1540                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1541                         return false;
1542         }
1543         return true;
1544 }
1545
1546 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1547                                    enum pipe pipe, i915_reg_t reg,
1548                                    u32 port_sel)
1549 {
1550         u32 val = I915_READ(reg);
1551         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1552              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1553              i915_mmio_reg_offset(reg), pipe_name(pipe));
1554
1555         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1556              && (val & DP_PIPEB_SELECT),
1557              "IBX PCH dp port still using transcoder B\n");
1558 }
1559
1560 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1561                                      enum pipe pipe, i915_reg_t reg)
1562 {
1563         u32 val = I915_READ(reg);
1564         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1565              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1566              i915_mmio_reg_offset(reg), pipe_name(pipe));
1567
1568         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1569              && (val & SDVO_PIPE_B_SELECT),
1570              "IBX PCH hdmi port still using transcoder B\n");
1571 }
1572
1573 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1574                                       enum pipe pipe)
1575 {
1576         u32 val;
1577
1578         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1579         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1580         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1581
1582         val = I915_READ(PCH_ADPA);
1583         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1584              "PCH VGA enabled on transcoder %c, should be disabled\n",
1585              pipe_name(pipe));
1586
1587         val = I915_READ(PCH_LVDS);
1588         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1589              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1590              pipe_name(pipe));
1591
1592         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1593         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1594         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1595 }
1596
1597 static void vlv_enable_pll(struct intel_crtc *crtc,
1598                            const struct intel_crtc_state *pipe_config)
1599 {
1600         struct drm_device *dev = crtc->base.dev;
1601         struct drm_i915_private *dev_priv = dev->dev_private;
1602         i915_reg_t reg = DPLL(crtc->pipe);
1603         u32 dpll = pipe_config->dpll_hw_state.dpll;
1604
1605         assert_pipe_disabled(dev_priv, crtc->pipe);
1606
1607         /* No really, not for ILK+ */
1608         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1609
1610         /* PLL is protected by panel, make sure we can write it */
1611         if (IS_MOBILE(dev_priv->dev))
1612                 assert_panel_unlocked(dev_priv, crtc->pipe);
1613
1614         I915_WRITE(reg, dpll);
1615         POSTING_READ(reg);
1616         udelay(150);
1617
1618         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1619                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1620
1621         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1622         POSTING_READ(DPLL_MD(crtc->pipe));
1623
1624         /* We do this three times for luck */
1625         I915_WRITE(reg, dpll);
1626         POSTING_READ(reg);
1627         udelay(150); /* wait for warmup */
1628         I915_WRITE(reg, dpll);
1629         POSTING_READ(reg);
1630         udelay(150); /* wait for warmup */
1631         I915_WRITE(reg, dpll);
1632         POSTING_READ(reg);
1633         udelay(150); /* wait for warmup */
1634 }
1635
1636 static void chv_enable_pll(struct intel_crtc *crtc,
1637                            const struct intel_crtc_state *pipe_config)
1638 {
1639         struct drm_device *dev = crtc->base.dev;
1640         struct drm_i915_private *dev_priv = dev->dev_private;
1641         int pipe = crtc->pipe;
1642         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1643         u32 tmp;
1644
1645         assert_pipe_disabled(dev_priv, crtc->pipe);
1646
1647         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1648
1649         mutex_lock(&dev_priv->sb_lock);
1650
1651         /* Enable back the 10bit clock to display controller */
1652         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1653         tmp |= DPIO_DCLKP_EN;
1654         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1655
1656         mutex_unlock(&dev_priv->sb_lock);
1657
1658         /*
1659          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1660          */
1661         udelay(1);
1662
1663         /* Enable PLL */
1664         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1665
1666         /* Check PLL is locked */
1667         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1668                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1669
1670         /* not sure when this should be written */
1671         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1672         POSTING_READ(DPLL_MD(pipe));
1673 }
1674
1675 static int intel_num_dvo_pipes(struct drm_device *dev)
1676 {
1677         struct intel_crtc *crtc;
1678         int count = 0;
1679
1680         for_each_intel_crtc(dev, crtc)
1681                 count += crtc->base.state->active &&
1682                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1683
1684         return count;
1685 }
1686
1687 static void i9xx_enable_pll(struct intel_crtc *crtc)
1688 {
1689         struct drm_device *dev = crtc->base.dev;
1690         struct drm_i915_private *dev_priv = dev->dev_private;
1691         i915_reg_t reg = DPLL(crtc->pipe);
1692         u32 dpll = crtc->config->dpll_hw_state.dpll;
1693
1694         assert_pipe_disabled(dev_priv, crtc->pipe);
1695
1696         /* No really, not for ILK+ */
1697         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1698
1699         /* PLL is protected by panel, make sure we can write it */
1700         if (IS_MOBILE(dev) && !IS_I830(dev))
1701                 assert_panel_unlocked(dev_priv, crtc->pipe);
1702
1703         /* Enable DVO 2x clock on both PLLs if necessary */
1704         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1705                 /*
1706                  * It appears to be important that we don't enable this
1707                  * for the current pipe before otherwise configuring the
1708                  * PLL. No idea how this should be handled if multiple
1709                  * DVO outputs are enabled simultaneosly.
1710                  */
1711                 dpll |= DPLL_DVO_2X_MODE;
1712                 I915_WRITE(DPLL(!crtc->pipe),
1713                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1714         }
1715
1716         /*
1717          * Apparently we need to have VGA mode enabled prior to changing
1718          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1719          * dividers, even though the register value does change.
1720          */
1721         I915_WRITE(reg, 0);
1722
1723         I915_WRITE(reg, dpll);
1724
1725         /* Wait for the clocks to stabilize. */
1726         POSTING_READ(reg);
1727         udelay(150);
1728
1729         if (INTEL_INFO(dev)->gen >= 4) {
1730                 I915_WRITE(DPLL_MD(crtc->pipe),
1731                            crtc->config->dpll_hw_state.dpll_md);
1732         } else {
1733                 /* The pixel multiplier can only be updated once the
1734                  * DPLL is enabled and the clocks are stable.
1735                  *
1736                  * So write it again.
1737                  */
1738                 I915_WRITE(reg, dpll);
1739         }
1740
1741         /* We do this three times for luck */
1742         I915_WRITE(reg, dpll);
1743         POSTING_READ(reg);
1744         udelay(150); /* wait for warmup */
1745         I915_WRITE(reg, dpll);
1746         POSTING_READ(reg);
1747         udelay(150); /* wait for warmup */
1748         I915_WRITE(reg, dpll);
1749         POSTING_READ(reg);
1750         udelay(150); /* wait for warmup */
1751 }
1752
1753 /**
1754  * i9xx_disable_pll - disable a PLL
1755  * @dev_priv: i915 private structure
1756  * @pipe: pipe PLL to disable
1757  *
1758  * Disable the PLL for @pipe, making sure the pipe is off first.
1759  *
1760  * Note!  This is for pre-ILK only.
1761  */
1762 static void i9xx_disable_pll(struct intel_crtc *crtc)
1763 {
1764         struct drm_device *dev = crtc->base.dev;
1765         struct drm_i915_private *dev_priv = dev->dev_private;
1766         enum pipe pipe = crtc->pipe;
1767
1768         /* Disable DVO 2x clock on both PLLs if necessary */
1769         if (IS_I830(dev) &&
1770             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1771             !intel_num_dvo_pipes(dev)) {
1772                 I915_WRITE(DPLL(PIPE_B),
1773                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1774                 I915_WRITE(DPLL(PIPE_A),
1775                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1776         }
1777
1778         /* Don't disable pipe or pipe PLLs if needed */
1779         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1780             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1781                 return;
1782
1783         /* Make sure the pipe isn't still relying on us */
1784         assert_pipe_disabled(dev_priv, pipe);
1785
1786         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1787         POSTING_READ(DPLL(pipe));
1788 }
1789
1790 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1791 {
1792         u32 val;
1793
1794         /* Make sure the pipe isn't still relying on us */
1795         assert_pipe_disabled(dev_priv, pipe);
1796
1797         /*
1798          * Leave integrated clock source and reference clock enabled for pipe B.
1799          * The latter is needed for VGA hotplug / manual detection.
1800          */
1801         val = DPLL_VGA_MODE_DIS;
1802         if (pipe == PIPE_B)
1803                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REF_CLK_ENABLE_VLV;
1804         I915_WRITE(DPLL(pipe), val);
1805         POSTING_READ(DPLL(pipe));
1806
1807 }
1808
1809 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1810 {
1811         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1812         u32 val;
1813
1814         /* Make sure the pipe isn't still relying on us */
1815         assert_pipe_disabled(dev_priv, pipe);
1816
1817         /* Set PLL en = 0 */
1818         val = DPLL_SSC_REF_CLK_CHV |
1819                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1820         if (pipe != PIPE_A)
1821                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1822         I915_WRITE(DPLL(pipe), val);
1823         POSTING_READ(DPLL(pipe));
1824
1825         mutex_lock(&dev_priv->sb_lock);
1826
1827         /* Disable 10bit clock to display controller */
1828         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1829         val &= ~DPIO_DCLKP_EN;
1830         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1831
1832         mutex_unlock(&dev_priv->sb_lock);
1833 }
1834
1835 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1836                          struct intel_digital_port *dport,
1837                          unsigned int expected_mask)
1838 {
1839         u32 port_mask;
1840         i915_reg_t dpll_reg;
1841
1842         switch (dport->port) {
1843         case PORT_B:
1844                 port_mask = DPLL_PORTB_READY_MASK;
1845                 dpll_reg = DPLL(0);
1846                 break;
1847         case PORT_C:
1848                 port_mask = DPLL_PORTC_READY_MASK;
1849                 dpll_reg = DPLL(0);
1850                 expected_mask <<= 4;
1851                 break;
1852         case PORT_D:
1853                 port_mask = DPLL_PORTD_READY_MASK;
1854                 dpll_reg = DPIO_PHY_STATUS;
1855                 break;
1856         default:
1857                 BUG();
1858         }
1859
1860         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1861                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1862                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1863 }
1864
1865 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1866 {
1867         struct drm_device *dev = crtc->base.dev;
1868         struct drm_i915_private *dev_priv = dev->dev_private;
1869         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1870
1871         if (WARN_ON(pll == NULL))
1872                 return;
1873
1874         WARN_ON(!pll->config.crtc_mask);
1875         if (pll->active == 0) {
1876                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1877                 WARN_ON(pll->on);
1878                 assert_shared_dpll_disabled(dev_priv, pll);
1879
1880                 pll->mode_set(dev_priv, pll);
1881         }
1882 }
1883
1884 /**
1885  * intel_enable_shared_dpll - enable PCH PLL
1886  * @dev_priv: i915 private structure
1887  * @pipe: pipe PLL to enable
1888  *
1889  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1890  * drives the transcoder clock.
1891  */
1892 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1893 {
1894         struct drm_device *dev = crtc->base.dev;
1895         struct drm_i915_private *dev_priv = dev->dev_private;
1896         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1897
1898         if (WARN_ON(pll == NULL))
1899                 return;
1900
1901         if (WARN_ON(pll->config.crtc_mask == 0))
1902                 return;
1903
1904         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1905                       pll->name, pll->active, pll->on,
1906                       crtc->base.base.id);
1907
1908         if (pll->active++) {
1909                 WARN_ON(!pll->on);
1910                 assert_shared_dpll_enabled(dev_priv, pll);
1911                 return;
1912         }
1913         WARN_ON(pll->on);
1914
1915         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1916
1917         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1918         pll->enable(dev_priv, pll);
1919         pll->on = true;
1920 }
1921
1922 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1923 {
1924         struct drm_device *dev = crtc->base.dev;
1925         struct drm_i915_private *dev_priv = dev->dev_private;
1926         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1927
1928         /* PCH only available on ILK+ */
1929         if (INTEL_INFO(dev)->gen < 5)
1930                 return;
1931
1932         if (pll == NULL)
1933                 return;
1934
1935         if (WARN_ON(!(pll->config.crtc_mask & (1 << drm_crtc_index(&crtc->base)))))
1936                 return;
1937
1938         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1939                       pll->name, pll->active, pll->on,
1940                       crtc->base.base.id);
1941
1942         if (WARN_ON(pll->active == 0)) {
1943                 assert_shared_dpll_disabled(dev_priv, pll);
1944                 return;
1945         }
1946
1947         assert_shared_dpll_enabled(dev_priv, pll);
1948         WARN_ON(!pll->on);
1949         if (--pll->active)
1950                 return;
1951
1952         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1953         pll->disable(dev_priv, pll);
1954         pll->on = false;
1955
1956         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1957 }
1958
1959 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1960                                            enum pipe pipe)
1961 {
1962         struct drm_device *dev = dev_priv->dev;
1963         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1964         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1965         i915_reg_t reg;
1966         uint32_t val, pipeconf_val;
1967
1968         /* PCH only available on ILK+ */
1969         BUG_ON(!HAS_PCH_SPLIT(dev));
1970
1971         /* Make sure PCH DPLL is enabled */
1972         assert_shared_dpll_enabled(dev_priv,
1973                                    intel_crtc_to_shared_dpll(intel_crtc));
1974
1975         /* FDI must be feeding us bits for PCH ports */
1976         assert_fdi_tx_enabled(dev_priv, pipe);
1977         assert_fdi_rx_enabled(dev_priv, pipe);
1978
1979         if (HAS_PCH_CPT(dev)) {
1980                 /* Workaround: Set the timing override bit before enabling the
1981                  * pch transcoder. */
1982                 reg = TRANS_CHICKEN2(pipe);
1983                 val = I915_READ(reg);
1984                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1985                 I915_WRITE(reg, val);
1986         }
1987
1988         reg = PCH_TRANSCONF(pipe);
1989         val = I915_READ(reg);
1990         pipeconf_val = I915_READ(PIPECONF(pipe));
1991
1992         if (HAS_PCH_IBX(dev_priv->dev)) {
1993                 /*
1994                  * Make the BPC in transcoder be consistent with
1995                  * that in pipeconf reg. For HDMI we must use 8bpc
1996                  * here for both 8bpc and 12bpc.
1997                  */
1998                 val &= ~PIPECONF_BPC_MASK;
1999                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
2000                         val |= PIPECONF_8BPC;
2001                 else
2002                         val |= pipeconf_val & PIPECONF_BPC_MASK;
2003         }
2004
2005         val &= ~TRANS_INTERLACE_MASK;
2006         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2007                 if (HAS_PCH_IBX(dev_priv->dev) &&
2008                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2009                         val |= TRANS_LEGACY_INTERLACED_ILK;
2010                 else
2011                         val |= TRANS_INTERLACED;
2012         else
2013                 val |= TRANS_PROGRESSIVE;
2014
2015         I915_WRITE(reg, val | TRANS_ENABLE);
2016         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2017                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2018 }
2019
2020 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2021                                       enum transcoder cpu_transcoder)
2022 {
2023         u32 val, pipeconf_val;
2024
2025         /* PCH only available on ILK+ */
2026         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2027
2028         /* FDI must be feeding us bits for PCH ports */
2029         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2030         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2031
2032         /* Workaround: set timing override bit. */
2033         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2034         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2035         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2036
2037         val = TRANS_ENABLE;
2038         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2039
2040         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2041             PIPECONF_INTERLACED_ILK)
2042                 val |= TRANS_INTERLACED;
2043         else
2044                 val |= TRANS_PROGRESSIVE;
2045
2046         I915_WRITE(LPT_TRANSCONF, val);
2047         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2048                 DRM_ERROR("Failed to enable PCH transcoder\n");
2049 }
2050
2051 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2052                                             enum pipe pipe)
2053 {
2054         struct drm_device *dev = dev_priv->dev;
2055         i915_reg_t reg;
2056         uint32_t val;
2057
2058         /* FDI relies on the transcoder */
2059         assert_fdi_tx_disabled(dev_priv, pipe);
2060         assert_fdi_rx_disabled(dev_priv, pipe);
2061
2062         /* Ports must be off as well */
2063         assert_pch_ports_disabled(dev_priv, pipe);
2064
2065         reg = PCH_TRANSCONF(pipe);
2066         val = I915_READ(reg);
2067         val &= ~TRANS_ENABLE;
2068         I915_WRITE(reg, val);
2069         /* wait for PCH transcoder off, transcoder state */
2070         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2071                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2072
2073         if (HAS_PCH_CPT(dev)) {
2074                 /* Workaround: Clear the timing override chicken bit again. */
2075                 reg = TRANS_CHICKEN2(pipe);
2076                 val = I915_READ(reg);
2077                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2078                 I915_WRITE(reg, val);
2079         }
2080 }
2081
2082 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2083 {
2084         u32 val;
2085
2086         val = I915_READ(LPT_TRANSCONF);
2087         val &= ~TRANS_ENABLE;
2088         I915_WRITE(LPT_TRANSCONF, val);
2089         /* wait for PCH transcoder off, transcoder state */
2090         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2091                 DRM_ERROR("Failed to disable PCH transcoder\n");
2092
2093         /* Workaround: clear timing override bit. */
2094         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
2095         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2096         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
2097 }
2098
2099 /**
2100  * intel_enable_pipe - enable a pipe, asserting requirements
2101  * @crtc: crtc responsible for the pipe
2102  *
2103  * Enable @crtc's pipe, making sure that various hardware specific requirements
2104  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2105  */
2106 static void intel_enable_pipe(struct intel_crtc *crtc)
2107 {
2108         struct drm_device *dev = crtc->base.dev;
2109         struct drm_i915_private *dev_priv = dev->dev_private;
2110         enum pipe pipe = crtc->pipe;
2111         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2112         enum pipe pch_transcoder;
2113         i915_reg_t reg;
2114         u32 val;
2115
2116         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
2117
2118         assert_planes_disabled(dev_priv, pipe);
2119         assert_cursor_disabled(dev_priv, pipe);
2120         assert_sprites_disabled(dev_priv, pipe);
2121
2122         if (HAS_PCH_LPT(dev_priv->dev))
2123                 pch_transcoder = TRANSCODER_A;
2124         else
2125                 pch_transcoder = pipe;
2126
2127         /*
2128          * A pipe without a PLL won't actually be able to drive bits from
2129          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2130          * need the check.
2131          */
2132         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2133                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2134                         assert_dsi_pll_enabled(dev_priv);
2135                 else
2136                         assert_pll_enabled(dev_priv, pipe);
2137         else {
2138                 if (crtc->config->has_pch_encoder) {
2139                         /* if driving the PCH, we need FDI enabled */
2140                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2141                         assert_fdi_tx_pll_enabled(dev_priv,
2142                                                   (enum pipe) cpu_transcoder);
2143                 }
2144                 /* FIXME: assert CPU port conditions for SNB+ */
2145         }
2146
2147         reg = PIPECONF(cpu_transcoder);
2148         val = I915_READ(reg);
2149         if (val & PIPECONF_ENABLE) {
2150                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2151                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2152                 return;
2153         }
2154
2155         I915_WRITE(reg, val | PIPECONF_ENABLE);
2156         POSTING_READ(reg);
2157 }
2158
2159 /**
2160  * intel_disable_pipe - disable a pipe, asserting requirements
2161  * @crtc: crtc whose pipes is to be disabled
2162  *
2163  * Disable the pipe of @crtc, making sure that various hardware
2164  * specific requirements are met, if applicable, e.g. plane
2165  * disabled, panel fitter off, etc.
2166  *
2167  * Will wait until the pipe has shut down before returning.
2168  */
2169 static void intel_disable_pipe(struct intel_crtc *crtc)
2170 {
2171         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2172         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2173         enum pipe pipe = crtc->pipe;
2174         i915_reg_t reg;
2175         u32 val;
2176
2177         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2178
2179         /*
2180          * Make sure planes won't keep trying to pump pixels to us,
2181          * or we might hang the display.
2182          */
2183         assert_planes_disabled(dev_priv, pipe);
2184         assert_cursor_disabled(dev_priv, pipe);
2185         assert_sprites_disabled(dev_priv, pipe);
2186
2187         reg = PIPECONF(cpu_transcoder);
2188         val = I915_READ(reg);
2189         if ((val & PIPECONF_ENABLE) == 0)
2190                 return;
2191
2192         /*
2193          * Double wide has implications for planes
2194          * so best keep it disabled when not needed.
2195          */
2196         if (crtc->config->double_wide)
2197                 val &= ~PIPECONF_DOUBLE_WIDE;
2198
2199         /* Don't disable pipe or pipe PLLs if needed */
2200         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2201             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2202                 val &= ~PIPECONF_ENABLE;
2203
2204         I915_WRITE(reg, val);
2205         if ((val & PIPECONF_ENABLE) == 0)
2206                 intel_wait_for_pipe_off(crtc);
2207 }
2208
2209 static bool need_vtd_wa(struct drm_device *dev)
2210 {
2211 #ifdef CONFIG_INTEL_IOMMU
2212         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2213                 return true;
2214 #endif
2215         return false;
2216 }
2217
2218 unsigned int
2219 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2220                   uint64_t fb_format_modifier, unsigned int plane)
2221 {
2222         unsigned int tile_height;
2223         uint32_t pixel_bytes;
2224
2225         switch (fb_format_modifier) {
2226         case DRM_FORMAT_MOD_NONE:
2227                 tile_height = 1;
2228                 break;
2229         case I915_FORMAT_MOD_X_TILED:
2230                 tile_height = IS_GEN2(dev) ? 16 : 8;
2231                 break;
2232         case I915_FORMAT_MOD_Y_TILED:
2233                 tile_height = 32;
2234                 break;
2235         case I915_FORMAT_MOD_Yf_TILED:
2236                 pixel_bytes = drm_format_plane_cpp(pixel_format, plane);
2237                 switch (pixel_bytes) {
2238                 default:
2239                 case 1:
2240                         tile_height = 64;
2241                         break;
2242                 case 2:
2243                 case 4:
2244                         tile_height = 32;
2245                         break;
2246                 case 8:
2247                         tile_height = 16;
2248                         break;
2249                 case 16:
2250                         WARN_ONCE(1,
2251                                   "128-bit pixels are not supported for display!");
2252                         tile_height = 16;
2253                         break;
2254                 }
2255                 break;
2256         default:
2257                 MISSING_CASE(fb_format_modifier);
2258                 tile_height = 1;
2259                 break;
2260         }
2261
2262         return tile_height;
2263 }
2264
2265 unsigned int
2266 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2267                       uint32_t pixel_format, uint64_t fb_format_modifier)
2268 {
2269         return ALIGN(height, intel_tile_height(dev, pixel_format,
2270                                                fb_format_modifier, 0));
2271 }
2272
2273 static void
2274 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2275                         const struct drm_plane_state *plane_state)
2276 {
2277         struct intel_rotation_info *info = &view->params.rotation_info;
2278         unsigned int tile_height, tile_pitch;
2279
2280         *view = i915_ggtt_view_normal;
2281
2282         if (!plane_state)
2283                 return;
2284
2285         if (!intel_rotation_90_or_270(plane_state->rotation))
2286                 return;
2287
2288         *view = i915_ggtt_view_rotated;
2289
2290         info->height = fb->height;
2291         info->pixel_format = fb->pixel_format;
2292         info->pitch = fb->pitches[0];
2293         info->uv_offset = fb->offsets[1];
2294         info->fb_modifier = fb->modifier[0];
2295
2296         tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2297                                         fb->modifier[0], 0);
2298         tile_pitch = PAGE_SIZE / tile_height;
2299         info->width_pages = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2300         info->height_pages = DIV_ROUND_UP(fb->height, tile_height);
2301         info->size = info->width_pages * info->height_pages * PAGE_SIZE;
2302
2303         if (info->pixel_format == DRM_FORMAT_NV12) {
2304                 tile_height = intel_tile_height(fb->dev, fb->pixel_format,
2305                                                 fb->modifier[0], 1);
2306                 tile_pitch = PAGE_SIZE / tile_height;
2307                 info->width_pages_uv = DIV_ROUND_UP(fb->pitches[0], tile_pitch);
2308                 info->height_pages_uv = DIV_ROUND_UP(fb->height / 2,
2309                                                      tile_height);
2310                 info->size_uv = info->width_pages_uv * info->height_pages_uv *
2311                                 PAGE_SIZE;
2312         }
2313 }
2314
2315 static unsigned int intel_linear_alignment(struct drm_i915_private *dev_priv)
2316 {
2317         if (INTEL_INFO(dev_priv)->gen >= 9)
2318                 return 256 * 1024;
2319         else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
2320                  IS_VALLEYVIEW(dev_priv))
2321                 return 128 * 1024;
2322         else if (INTEL_INFO(dev_priv)->gen >= 4)
2323                 return 4 * 1024;
2324         else
2325                 return 0;
2326 }
2327
2328 int
2329 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2330                            struct drm_framebuffer *fb,
2331                            const struct drm_plane_state *plane_state)
2332 {
2333         struct drm_device *dev = fb->dev;
2334         struct drm_i915_private *dev_priv = dev->dev_private;
2335         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2336         struct i915_ggtt_view view;
2337         u32 alignment;
2338         int ret;
2339
2340         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2341
2342         switch (fb->modifier[0]) {
2343         case DRM_FORMAT_MOD_NONE:
2344                 alignment = intel_linear_alignment(dev_priv);
2345                 break;
2346         case I915_FORMAT_MOD_X_TILED:
2347                 if (INTEL_INFO(dev)->gen >= 9)
2348                         alignment = 256 * 1024;
2349                 else {
2350                         /* pin() will align the object as required by fence */
2351                         alignment = 0;
2352                 }
2353                 break;
2354         case I915_FORMAT_MOD_Y_TILED:
2355         case I915_FORMAT_MOD_Yf_TILED:
2356                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2357                           "Y tiling bo slipped through, driver bug!\n"))
2358                         return -EINVAL;
2359                 alignment = 1 * 1024 * 1024;
2360                 break;
2361         default:
2362                 MISSING_CASE(fb->modifier[0]);
2363                 return -EINVAL;
2364         }
2365
2366         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2367
2368         /* Note that the w/a also requires 64 PTE of padding following the
2369          * bo. We currently fill all unused PTE with the shadow page and so
2370          * we should always have valid PTE following the scanout preventing
2371          * the VT-d warning.
2372          */
2373         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2374                 alignment = 256 * 1024;
2375
2376         /*
2377          * Global gtt pte registers are special registers which actually forward
2378          * writes to a chunk of system memory. Which means that there is no risk
2379          * that the register values disappear as soon as we call
2380          * intel_runtime_pm_put(), so it is correct to wrap only the
2381          * pin/unpin/fence and not more.
2382          */
2383         intel_runtime_pm_get(dev_priv);
2384
2385         ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2386                                                    &view);
2387         if (ret)
2388                 goto err_pm;
2389
2390         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2391          * fence, whereas 965+ only requires a fence if using
2392          * framebuffer compression.  For simplicity, we always install
2393          * a fence as the cost is not that onerous.
2394          */
2395         if (view.type == I915_GGTT_VIEW_NORMAL) {
2396                 ret = i915_gem_object_get_fence(obj);
2397                 if (ret == -EDEADLK) {
2398                         /*
2399                          * -EDEADLK means there are no free fences
2400                          * no pending flips.
2401                          *
2402                          * This is propagated to atomic, but it uses
2403                          * -EDEADLK to force a locking recovery, so
2404                          * change the returned error to -EBUSY.
2405                          */
2406                         ret = -EBUSY;
2407                         goto err_unpin;
2408                 } else if (ret)
2409                         goto err_unpin;
2410
2411                 i915_gem_object_pin_fence(obj);
2412         }
2413
2414         intel_runtime_pm_put(dev_priv);
2415         return 0;
2416
2417 err_unpin:
2418         i915_gem_object_unpin_from_display_plane(obj, &view);
2419 err_pm:
2420         intel_runtime_pm_put(dev_priv);
2421         return ret;
2422 }
2423
2424 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2425                                const struct drm_plane_state *plane_state)
2426 {
2427         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2428         struct i915_ggtt_view view;
2429
2430         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2431
2432         intel_fill_fb_ggtt_view(&view, fb, plane_state);
2433
2434         if (view.type == I915_GGTT_VIEW_NORMAL)
2435                 i915_gem_object_unpin_fence(obj);
2436
2437         i915_gem_object_unpin_from_display_plane(obj, &view);
2438 }
2439
2440 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2441  * is assumed to be a power-of-two. */
2442 unsigned long intel_gen4_compute_page_offset(struct drm_i915_private *dev_priv,
2443                                              int *x, int *y,
2444                                              unsigned int tiling_mode,
2445                                              unsigned int cpp,
2446                                              unsigned int pitch)
2447 {
2448         if (tiling_mode != I915_TILING_NONE) {
2449                 unsigned int tile_rows, tiles;
2450
2451                 tile_rows = *y / 8;
2452                 *y %= 8;
2453
2454                 tiles = *x / (512/cpp);
2455                 *x %= 512/cpp;
2456
2457                 return tile_rows * pitch * 8 + tiles * 4096;
2458         } else {
2459                 unsigned int alignment = intel_linear_alignment(dev_priv) - 1;
2460                 unsigned int offset;
2461
2462                 offset = *y * pitch + *x * cpp;
2463                 *y = (offset & alignment) / pitch;
2464                 *x = ((offset & alignment) - *y * pitch) / cpp;
2465                 return offset & ~alignment;
2466         }
2467 }
2468
2469 static int i9xx_format_to_fourcc(int format)
2470 {
2471         switch (format) {
2472         case DISPPLANE_8BPP:
2473                 return DRM_FORMAT_C8;
2474         case DISPPLANE_BGRX555:
2475                 return DRM_FORMAT_XRGB1555;
2476         case DISPPLANE_BGRX565:
2477                 return DRM_FORMAT_RGB565;
2478         default:
2479         case DISPPLANE_BGRX888:
2480                 return DRM_FORMAT_XRGB8888;
2481         case DISPPLANE_RGBX888:
2482                 return DRM_FORMAT_XBGR8888;
2483         case DISPPLANE_BGRX101010:
2484                 return DRM_FORMAT_XRGB2101010;
2485         case DISPPLANE_RGBX101010:
2486                 return DRM_FORMAT_XBGR2101010;
2487         }
2488 }
2489
2490 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2491 {
2492         switch (format) {
2493         case PLANE_CTL_FORMAT_RGB_565:
2494                 return DRM_FORMAT_RGB565;
2495         default:
2496         case PLANE_CTL_FORMAT_XRGB_8888:
2497                 if (rgb_order) {
2498                         if (alpha)
2499                                 return DRM_FORMAT_ABGR8888;
2500                         else
2501                                 return DRM_FORMAT_XBGR8888;
2502                 } else {
2503                         if (alpha)
2504                                 return DRM_FORMAT_ARGB8888;
2505                         else
2506                                 return DRM_FORMAT_XRGB8888;
2507                 }
2508         case PLANE_CTL_FORMAT_XRGB_2101010:
2509                 if (rgb_order)
2510                         return DRM_FORMAT_XBGR2101010;
2511                 else
2512                         return DRM_FORMAT_XRGB2101010;
2513         }
2514 }
2515
2516 static bool
2517 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2518                               struct intel_initial_plane_config *plane_config)
2519 {
2520         struct drm_device *dev = crtc->base.dev;
2521         struct drm_i915_private *dev_priv = to_i915(dev);
2522         struct drm_i915_gem_object *obj = NULL;
2523         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2524         struct drm_framebuffer *fb = &plane_config->fb->base;
2525         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2526         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2527                                     PAGE_SIZE);
2528
2529         size_aligned -= base_aligned;
2530
2531         if (plane_config->size == 0)
2532                 return false;
2533
2534         /* If the FB is too big, just don't use it since fbdev is not very
2535          * important and we should probably use that space with FBC or other
2536          * features. */
2537         if (size_aligned * 2 > dev_priv->gtt.stolen_usable_size)
2538                 return false;
2539
2540         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2541                                                              base_aligned,
2542                                                              base_aligned,
2543                                                              size_aligned);
2544         if (!obj)
2545                 return false;
2546
2547         obj->tiling_mode = plane_config->tiling;
2548         if (obj->tiling_mode == I915_TILING_X)
2549                 obj->stride = fb->pitches[0];
2550
2551         mode_cmd.pixel_format = fb->pixel_format;
2552         mode_cmd.width = fb->width;
2553         mode_cmd.height = fb->height;
2554         mode_cmd.pitches[0] = fb->pitches[0];
2555         mode_cmd.modifier[0] = fb->modifier[0];
2556         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2557
2558         mutex_lock(&dev->struct_mutex);
2559         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2560                                    &mode_cmd, obj)) {
2561                 DRM_DEBUG_KMS("intel fb init failed\n");
2562                 goto out_unref_obj;
2563         }
2564         mutex_unlock(&dev->struct_mutex);
2565
2566         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2567         return true;
2568
2569 out_unref_obj:
2570         drm_gem_object_unreference(&obj->base);
2571         mutex_unlock(&dev->struct_mutex);
2572         return false;
2573 }
2574
2575 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2576 static void
2577 update_state_fb(struct drm_plane *plane)
2578 {
2579         if (plane->fb == plane->state->fb)
2580                 return;
2581
2582         if (plane->state->fb)
2583                 drm_framebuffer_unreference(plane->state->fb);
2584         plane->state->fb = plane->fb;
2585         if (plane->state->fb)
2586                 drm_framebuffer_reference(plane->state->fb);
2587 }
2588
2589 static void
2590 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2591                              struct intel_initial_plane_config *plane_config)
2592 {
2593         struct drm_device *dev = intel_crtc->base.dev;
2594         struct drm_i915_private *dev_priv = dev->dev_private;
2595         struct drm_crtc *c;
2596         struct intel_crtc *i;
2597         struct drm_i915_gem_object *obj;
2598         struct drm_plane *primary = intel_crtc->base.primary;
2599         struct drm_plane_state *plane_state = primary->state;
2600         struct drm_framebuffer *fb;
2601
2602         if (!plane_config->fb)
2603                 return;
2604
2605         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2606                 fb = &plane_config->fb->base;
2607                 goto valid_fb;
2608         }
2609
2610         kfree(plane_config->fb);
2611
2612         /*
2613          * Failed to alloc the obj, check to see if we should share
2614          * an fb with another CRTC instead
2615          */
2616         for_each_crtc(dev, c) {
2617                 i = to_intel_crtc(c);
2618
2619                 if (c == &intel_crtc->base)
2620                         continue;
2621
2622                 if (!i->active)
2623                         continue;
2624
2625                 fb = c->primary->fb;
2626                 if (!fb)
2627                         continue;
2628
2629                 obj = intel_fb_obj(fb);
2630                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2631                         drm_framebuffer_reference(fb);
2632                         goto valid_fb;
2633                 }
2634         }
2635
2636         return;
2637
2638 valid_fb:
2639         plane_state->src_x = 0;
2640         plane_state->src_y = 0;
2641         plane_state->src_w = fb->width << 16;
2642         plane_state->src_h = fb->height << 16;
2643
2644         plane_state->crtc_x = 0;
2645         plane_state->crtc_y = 0;
2646         plane_state->crtc_w = fb->width;
2647         plane_state->crtc_h = fb->height;
2648
2649         obj = intel_fb_obj(fb);
2650         if (obj->tiling_mode != I915_TILING_NONE)
2651                 dev_priv->preserve_bios_swizzle = true;
2652
2653         drm_framebuffer_reference(fb);
2654         primary->fb = primary->state->fb = fb;
2655         primary->crtc = primary->state->crtc = &intel_crtc->base;
2656         intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
2657         obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
2658 }
2659
2660 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2661                                       struct drm_framebuffer *fb,
2662                                       int x, int y)
2663 {
2664         struct drm_device *dev = crtc->dev;
2665         struct drm_i915_private *dev_priv = dev->dev_private;
2666         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2667         struct drm_plane *primary = crtc->primary;
2668         bool visible = to_intel_plane_state(primary->state)->visible;
2669         struct drm_i915_gem_object *obj;
2670         int plane = intel_crtc->plane;
2671         unsigned long linear_offset;
2672         u32 dspcntr;
2673         i915_reg_t reg = DSPCNTR(plane);
2674         int pixel_size;
2675
2676         if (!visible || !fb) {
2677                 I915_WRITE(reg, 0);
2678                 if (INTEL_INFO(dev)->gen >= 4)
2679                         I915_WRITE(DSPSURF(plane), 0);
2680                 else
2681                         I915_WRITE(DSPADDR(plane), 0);
2682                 POSTING_READ(reg);
2683                 return;
2684         }
2685
2686         obj = intel_fb_obj(fb);
2687         if (WARN_ON(obj == NULL))
2688                 return;
2689
2690         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2691
2692         dspcntr = DISPPLANE_GAMMA_ENABLE;
2693
2694         dspcntr |= DISPLAY_PLANE_ENABLE;
2695
2696         if (INTEL_INFO(dev)->gen < 4) {
2697                 if (intel_crtc->pipe == PIPE_B)
2698                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2699
2700                 /* pipesrc and dspsize control the size that is scaled from,
2701                  * which should always be the user's requested size.
2702                  */
2703                 I915_WRITE(DSPSIZE(plane),
2704                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2705                            (intel_crtc->config->pipe_src_w - 1));
2706                 I915_WRITE(DSPPOS(plane), 0);
2707         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2708                 I915_WRITE(PRIMSIZE(plane),
2709                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2710                            (intel_crtc->config->pipe_src_w - 1));
2711                 I915_WRITE(PRIMPOS(plane), 0);
2712                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2713         }
2714
2715         switch (fb->pixel_format) {
2716         case DRM_FORMAT_C8:
2717                 dspcntr |= DISPPLANE_8BPP;
2718                 break;
2719         case DRM_FORMAT_XRGB1555:
2720                 dspcntr |= DISPPLANE_BGRX555;
2721                 break;
2722         case DRM_FORMAT_RGB565:
2723                 dspcntr |= DISPPLANE_BGRX565;
2724                 break;
2725         case DRM_FORMAT_XRGB8888:
2726                 dspcntr |= DISPPLANE_BGRX888;
2727                 break;
2728         case DRM_FORMAT_XBGR8888:
2729                 dspcntr |= DISPPLANE_RGBX888;
2730                 break;
2731         case DRM_FORMAT_XRGB2101010:
2732                 dspcntr |= DISPPLANE_BGRX101010;
2733                 break;
2734         case DRM_FORMAT_XBGR2101010:
2735                 dspcntr |= DISPPLANE_RGBX101010;
2736                 break;
2737         default:
2738                 BUG();
2739         }
2740
2741         if (INTEL_INFO(dev)->gen >= 4 &&
2742             obj->tiling_mode != I915_TILING_NONE)
2743                 dspcntr |= DISPPLANE_TILED;
2744
2745         if (IS_G4X(dev))
2746                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2747
2748         linear_offset = y * fb->pitches[0] + x * pixel_size;
2749
2750         if (INTEL_INFO(dev)->gen >= 4) {
2751                 intel_crtc->dspaddr_offset =
2752                         intel_gen4_compute_page_offset(dev_priv,
2753                                                        &x, &y, obj->tiling_mode,
2754                                                        pixel_size,
2755                                                        fb->pitches[0]);
2756                 linear_offset -= intel_crtc->dspaddr_offset;
2757         } else {
2758                 intel_crtc->dspaddr_offset = linear_offset;
2759         }
2760
2761         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2762                 dspcntr |= DISPPLANE_ROTATE_180;
2763
2764                 x += (intel_crtc->config->pipe_src_w - 1);
2765                 y += (intel_crtc->config->pipe_src_h - 1);
2766
2767                 /* Finding the last pixel of the last line of the display
2768                 data and adding to linear_offset*/
2769                 linear_offset +=
2770                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2771                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2772         }
2773
2774         intel_crtc->adjusted_x = x;
2775         intel_crtc->adjusted_y = y;
2776
2777         I915_WRITE(reg, dspcntr);
2778
2779         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2780         if (INTEL_INFO(dev)->gen >= 4) {
2781                 I915_WRITE(DSPSURF(plane),
2782                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2783                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2784                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2785         } else
2786                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2787         POSTING_READ(reg);
2788 }
2789
2790 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2791                                           struct drm_framebuffer *fb,
2792                                           int x, int y)
2793 {
2794         struct drm_device *dev = crtc->dev;
2795         struct drm_i915_private *dev_priv = dev->dev_private;
2796         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2797         struct drm_plane *primary = crtc->primary;
2798         bool visible = to_intel_plane_state(primary->state)->visible;
2799         struct drm_i915_gem_object *obj;
2800         int plane = intel_crtc->plane;
2801         unsigned long linear_offset;
2802         u32 dspcntr;
2803         i915_reg_t reg = DSPCNTR(plane);
2804         int pixel_size;
2805
2806         if (!visible || !fb) {
2807                 I915_WRITE(reg, 0);
2808                 I915_WRITE(DSPSURF(plane), 0);
2809                 POSTING_READ(reg);
2810                 return;
2811         }
2812
2813         obj = intel_fb_obj(fb);
2814         if (WARN_ON(obj == NULL))
2815                 return;
2816
2817         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2818
2819         dspcntr = DISPPLANE_GAMMA_ENABLE;
2820
2821         dspcntr |= DISPLAY_PLANE_ENABLE;
2822
2823         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2824                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2825
2826         switch (fb->pixel_format) {
2827         case DRM_FORMAT_C8:
2828                 dspcntr |= DISPPLANE_8BPP;
2829                 break;
2830         case DRM_FORMAT_RGB565:
2831                 dspcntr |= DISPPLANE_BGRX565;
2832                 break;
2833         case DRM_FORMAT_XRGB8888:
2834                 dspcntr |= DISPPLANE_BGRX888;
2835                 break;
2836         case DRM_FORMAT_XBGR8888:
2837                 dspcntr |= DISPPLANE_RGBX888;
2838                 break;
2839         case DRM_FORMAT_XRGB2101010:
2840                 dspcntr |= DISPPLANE_BGRX101010;
2841                 break;
2842         case DRM_FORMAT_XBGR2101010:
2843                 dspcntr |= DISPPLANE_RGBX101010;
2844                 break;
2845         default:
2846                 BUG();
2847         }
2848
2849         if (obj->tiling_mode != I915_TILING_NONE)
2850                 dspcntr |= DISPPLANE_TILED;
2851
2852         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2853                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2854
2855         linear_offset = y * fb->pitches[0] + x * pixel_size;
2856         intel_crtc->dspaddr_offset =
2857                 intel_gen4_compute_page_offset(dev_priv,
2858                                                &x, &y, obj->tiling_mode,
2859                                                pixel_size,
2860                                                fb->pitches[0]);
2861         linear_offset -= intel_crtc->dspaddr_offset;
2862         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2863                 dspcntr |= DISPPLANE_ROTATE_180;
2864
2865                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2866                         x += (intel_crtc->config->pipe_src_w - 1);
2867                         y += (intel_crtc->config->pipe_src_h - 1);
2868
2869                         /* Finding the last pixel of the last line of the display
2870                         data and adding to linear_offset*/
2871                         linear_offset +=
2872                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2873                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2874                 }
2875         }
2876
2877         intel_crtc->adjusted_x = x;
2878         intel_crtc->adjusted_y = y;
2879
2880         I915_WRITE(reg, dspcntr);
2881
2882         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2883         I915_WRITE(DSPSURF(plane),
2884                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2885         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2886                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2887         } else {
2888                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2889                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2890         }
2891         POSTING_READ(reg);
2892 }
2893
2894 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2895                               uint32_t pixel_format)
2896 {
2897         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2898
2899         /*
2900          * The stride is either expressed as a multiple of 64 bytes
2901          * chunks for linear buffers or in number of tiles for tiled
2902          * buffers.
2903          */
2904         switch (fb_modifier) {
2905         case DRM_FORMAT_MOD_NONE:
2906                 return 64;
2907         case I915_FORMAT_MOD_X_TILED:
2908                 if (INTEL_INFO(dev)->gen == 2)
2909                         return 128;
2910                 return 512;
2911         case I915_FORMAT_MOD_Y_TILED:
2912                 /* No need to check for old gens and Y tiling since this is
2913                  * about the display engine and those will be blocked before
2914                  * we get here.
2915                  */
2916                 return 128;
2917         case I915_FORMAT_MOD_Yf_TILED:
2918                 if (bits_per_pixel == 8)
2919                         return 64;
2920                 else
2921                         return 128;
2922         default:
2923                 MISSING_CASE(fb_modifier);
2924                 return 64;
2925         }
2926 }
2927
2928 u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2929                            struct drm_i915_gem_object *obj,
2930                            unsigned int plane)
2931 {
2932         struct i915_ggtt_view view;
2933         struct i915_vma *vma;
2934         u64 offset;
2935
2936         intel_fill_fb_ggtt_view(&view, intel_plane->base.fb,
2937                                 intel_plane->base.state);
2938
2939         vma = i915_gem_obj_to_ggtt_view(obj, &view);
2940         if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
2941                 view.type))
2942                 return -1;
2943
2944         offset = vma->node.start;
2945
2946         if (plane == 1) {
2947                 offset += vma->ggtt_view.params.rotation_info.uv_start_page *
2948                           PAGE_SIZE;
2949         }
2950
2951         WARN_ON(upper_32_bits(offset));
2952
2953         return lower_32_bits(offset);
2954 }
2955
2956 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2957 {
2958         struct drm_device *dev = intel_crtc->base.dev;
2959         struct drm_i915_private *dev_priv = dev->dev_private;
2960
2961         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2962         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2963         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
2964 }
2965
2966 /*
2967  * This function detaches (aka. unbinds) unused scalers in hardware
2968  */
2969 static void skl_detach_scalers(struct intel_crtc *intel_crtc)
2970 {
2971         struct intel_crtc_scaler_state *scaler_state;
2972         int i;
2973
2974         scaler_state = &intel_crtc->config->scaler_state;
2975
2976         /* loop through and disable scalers that aren't in use */
2977         for (i = 0; i < intel_crtc->num_scalers; i++) {
2978                 if (!scaler_state->scalers[i].in_use)
2979                         skl_detach_scaler(intel_crtc, i);
2980         }
2981 }
2982
2983 u32 skl_plane_ctl_format(uint32_t pixel_format)
2984 {
2985         switch (pixel_format) {
2986         case DRM_FORMAT_C8:
2987                 return PLANE_CTL_FORMAT_INDEXED;
2988         case DRM_FORMAT_RGB565:
2989                 return PLANE_CTL_FORMAT_RGB_565;
2990         case DRM_FORMAT_XBGR8888:
2991                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2992         case DRM_FORMAT_XRGB8888:
2993                 return PLANE_CTL_FORMAT_XRGB_8888;
2994         /*
2995          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2996          * to be already pre-multiplied. We need to add a knob (or a different
2997          * DRM_FORMAT) for user-space to configure that.
2998          */
2999         case DRM_FORMAT_ABGR8888:
3000                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
3001                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3002         case DRM_FORMAT_ARGB8888:
3003                 return PLANE_CTL_FORMAT_XRGB_8888 |
3004                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
3005         case DRM_FORMAT_XRGB2101010:
3006                 return PLANE_CTL_FORMAT_XRGB_2101010;
3007         case DRM_FORMAT_XBGR2101010:
3008                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
3009         case DRM_FORMAT_YUYV:
3010                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
3011         case DRM_FORMAT_YVYU:
3012                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
3013         case DRM_FORMAT_UYVY:
3014                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
3015         case DRM_FORMAT_VYUY:
3016                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
3017         default:
3018                 MISSING_CASE(pixel_format);
3019         }
3020
3021         return 0;
3022 }
3023
3024 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
3025 {
3026         switch (fb_modifier) {
3027         case DRM_FORMAT_MOD_NONE:
3028                 break;
3029         case I915_FORMAT_MOD_X_TILED:
3030                 return PLANE_CTL_TILED_X;
3031         case I915_FORMAT_MOD_Y_TILED:
3032                 return PLANE_CTL_TILED_Y;
3033         case I915_FORMAT_MOD_Yf_TILED:
3034                 return PLANE_CTL_TILED_YF;
3035         default:
3036                 MISSING_CASE(fb_modifier);
3037         }
3038
3039         return 0;
3040 }
3041
3042 u32 skl_plane_ctl_rotation(unsigned int rotation)
3043 {
3044         switch (rotation) {
3045         case BIT(DRM_ROTATE_0):
3046                 break;
3047         /*
3048          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3049          * while i915 HW rotation is clockwise, thats why this swapping.
3050          */
3051         case BIT(DRM_ROTATE_90):
3052                 return PLANE_CTL_ROTATE_270;
3053         case BIT(DRM_ROTATE_180):
3054                 return PLANE_CTL_ROTATE_180;
3055         case BIT(DRM_ROTATE_270):
3056                 return PLANE_CTL_ROTATE_90;
3057         default:
3058                 MISSING_CASE(rotation);
3059         }
3060
3061         return 0;
3062 }
3063
3064 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3065                                          struct drm_framebuffer *fb,
3066                                          int x, int y)
3067 {
3068         struct drm_device *dev = crtc->dev;
3069         struct drm_i915_private *dev_priv = dev->dev_private;
3070         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3071         struct drm_plane *plane = crtc->primary;
3072         bool visible = to_intel_plane_state(plane->state)->visible;
3073         struct drm_i915_gem_object *obj;
3074         int pipe = intel_crtc->pipe;
3075         u32 plane_ctl, stride_div, stride;
3076         u32 tile_height, plane_offset, plane_size;
3077         unsigned int rotation;
3078         int x_offset, y_offset;
3079         u32 surf_addr;
3080         struct intel_crtc_state *crtc_state = intel_crtc->config;
3081         struct intel_plane_state *plane_state;
3082         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3083         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3084         int scaler_id = -1;
3085
3086         plane_state = to_intel_plane_state(plane->state);
3087
3088         if (!visible || !fb) {
3089                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3090                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3091                 POSTING_READ(PLANE_CTL(pipe, 0));
3092                 return;
3093         }
3094
3095         plane_ctl = PLANE_CTL_ENABLE |
3096                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3097                     PLANE_CTL_PIPE_CSC_ENABLE;
3098
3099         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3100         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3101         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3102
3103         rotation = plane->state->rotation;
3104         plane_ctl |= skl_plane_ctl_rotation(rotation);
3105
3106         obj = intel_fb_obj(fb);
3107         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3108                                                fb->pixel_format);
3109         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3110
3111         WARN_ON(drm_rect_width(&plane_state->src) == 0);
3112
3113         scaler_id = plane_state->scaler_id;
3114         src_x = plane_state->src.x1 >> 16;
3115         src_y = plane_state->src.y1 >> 16;
3116         src_w = drm_rect_width(&plane_state->src) >> 16;
3117         src_h = drm_rect_height(&plane_state->src) >> 16;
3118         dst_x = plane_state->dst.x1;
3119         dst_y = plane_state->dst.y1;
3120         dst_w = drm_rect_width(&plane_state->dst);
3121         dst_h = drm_rect_height(&plane_state->dst);
3122
3123         WARN_ON(x != src_x || y != src_y);
3124
3125         if (intel_rotation_90_or_270(rotation)) {
3126                 /* stride = Surface height in tiles */
3127                 tile_height = intel_tile_height(dev, fb->pixel_format,
3128                                                 fb->modifier[0], 0);
3129                 stride = DIV_ROUND_UP(fb->height, tile_height);
3130                 x_offset = stride * tile_height - y - src_h;
3131                 y_offset = x;
3132                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3133         } else {
3134                 stride = fb->pitches[0] / stride_div;
3135                 x_offset = x;
3136                 y_offset = y;
3137                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3138         }
3139         plane_offset = y_offset << 16 | x_offset;
3140
3141         intel_crtc->adjusted_x = x_offset;
3142         intel_crtc->adjusted_y = y_offset;
3143
3144         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3145         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3146         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3147         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3148
3149         if (scaler_id >= 0) {
3150                 uint32_t ps_ctrl = 0;
3151
3152                 WARN_ON(!dst_w || !dst_h);
3153                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3154                         crtc_state->scaler_state.scalers[scaler_id].mode;
3155                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3156                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3157                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3158                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3159                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3160         } else {
3161                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3162         }
3163
3164         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3165
3166         POSTING_READ(PLANE_SURF(pipe, 0));
3167 }
3168
3169 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3170 static int
3171 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3172                            int x, int y, enum mode_set_atomic state)
3173 {
3174         struct drm_device *dev = crtc->dev;
3175         struct drm_i915_private *dev_priv = dev->dev_private;
3176
3177         if (dev_priv->fbc.disable_fbc)
3178                 dev_priv->fbc.disable_fbc(dev_priv);
3179
3180         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3181
3182         return 0;
3183 }
3184
3185 static void intel_complete_page_flips(struct drm_device *dev)
3186 {
3187         struct drm_crtc *crtc;
3188
3189         for_each_crtc(dev, crtc) {
3190                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3191                 enum plane plane = intel_crtc->plane;
3192
3193                 intel_prepare_page_flip(dev, plane);
3194                 intel_finish_page_flip_plane(dev, plane);
3195         }
3196 }
3197
3198 static void intel_update_primary_planes(struct drm_device *dev)
3199 {
3200         struct drm_crtc *crtc;
3201
3202         for_each_crtc(dev, crtc) {
3203                 struct intel_plane *plane = to_intel_plane(crtc->primary);
3204                 struct intel_plane_state *plane_state;
3205
3206                 drm_modeset_lock_crtc(crtc, &plane->base);
3207                 plane_state = to_intel_plane_state(plane->base.state);
3208
3209                 if (crtc->state->active && plane_state->base.fb)
3210                         plane->commit_plane(&plane->base, plane_state);
3211
3212                 drm_modeset_unlock_crtc(crtc);
3213         }
3214 }
3215
3216 void intel_prepare_reset(struct drm_device *dev)
3217 {
3218         /* no reset support for gen2 */
3219         if (IS_GEN2(dev))
3220                 return;
3221
3222         /* reset doesn't touch the display */
3223         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3224                 return;
3225
3226         drm_modeset_lock_all(dev);
3227         /*
3228          * Disabling the crtcs gracefully seems nicer. Also the
3229          * g33 docs say we should at least disable all the planes.
3230          */
3231         intel_display_suspend(dev);
3232 }
3233
3234 void intel_finish_reset(struct drm_device *dev)
3235 {
3236         struct drm_i915_private *dev_priv = to_i915(dev);
3237
3238         /*
3239          * Flips in the rings will be nuked by the reset,
3240          * so complete all pending flips so that user space
3241          * will get its events and not get stuck.
3242          */
3243         intel_complete_page_flips(dev);
3244
3245         /* no reset support for gen2 */
3246         if (IS_GEN2(dev))
3247                 return;
3248
3249         /* reset doesn't touch the display */
3250         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3251                 /*
3252                  * Flips in the rings have been nuked by the reset,
3253                  * so update the base address of all primary
3254                  * planes to the the last fb to make sure we're
3255                  * showing the correct fb after a reset.
3256                  *
3257                  * FIXME: Atomic will make this obsolete since we won't schedule
3258                  * CS-based flips (which might get lost in gpu resets) any more.
3259                  */
3260                 intel_update_primary_planes(dev);
3261                 return;
3262         }
3263
3264         /*
3265          * The display has been reset as well,
3266          * so need a full re-initialization.
3267          */
3268         intel_runtime_pm_disable_interrupts(dev_priv);
3269         intel_runtime_pm_enable_interrupts(dev_priv);
3270
3271         intel_modeset_init_hw(dev);
3272
3273         spin_lock_irq(&dev_priv->irq_lock);
3274         if (dev_priv->display.hpd_irq_setup)
3275                 dev_priv->display.hpd_irq_setup(dev);
3276         spin_unlock_irq(&dev_priv->irq_lock);
3277
3278         intel_display_resume(dev);
3279
3280         intel_hpd_init(dev_priv);
3281
3282         drm_modeset_unlock_all(dev);
3283 }
3284
3285 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3286 {
3287         struct drm_device *dev = crtc->dev;
3288         struct drm_i915_private *dev_priv = dev->dev_private;
3289         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3290         bool pending;
3291
3292         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3293             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3294                 return false;
3295
3296         spin_lock_irq(&dev->event_lock);
3297         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3298         spin_unlock_irq(&dev->event_lock);
3299
3300         return pending;
3301 }
3302
3303 static void intel_update_pipe_config(struct intel_crtc *crtc,
3304                                      struct intel_crtc_state *old_crtc_state)
3305 {
3306         struct drm_device *dev = crtc->base.dev;
3307         struct drm_i915_private *dev_priv = dev->dev_private;
3308         struct intel_crtc_state *pipe_config =
3309                 to_intel_crtc_state(crtc->base.state);
3310
3311         /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3312         crtc->base.mode = crtc->base.state->mode;
3313
3314         DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3315                       old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3316                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
3317
3318         if (HAS_DDI(dev))
3319                 intel_set_pipe_csc(&crtc->base);
3320
3321         /*
3322          * Update pipe size and adjust fitter if needed: the reason for this is
3323          * that in compute_mode_changes we check the native mode (not the pfit
3324          * mode) to see if we can flip rather than do a full mode set. In the
3325          * fastboot case, we'll flip, but if we don't update the pipesrc and
3326          * pfit state, we'll end up with a big fb scanned out into the wrong
3327          * sized surface.
3328          */
3329
3330         I915_WRITE(PIPESRC(crtc->pipe),
3331                    ((pipe_config->pipe_src_w - 1) << 16) |
3332                    (pipe_config->pipe_src_h - 1));
3333
3334         /* on skylake this is done by detaching scalers */
3335         if (INTEL_INFO(dev)->gen >= 9) {
3336                 skl_detach_scalers(crtc);
3337
3338                 if (pipe_config->pch_pfit.enabled)
3339                         skylake_pfit_enable(crtc);
3340         } else if (HAS_PCH_SPLIT(dev)) {
3341                 if (pipe_config->pch_pfit.enabled)
3342                         ironlake_pfit_enable(crtc);
3343                 else if (old_crtc_state->pch_pfit.enabled)
3344                         ironlake_pfit_disable(crtc, true);
3345         }
3346 }
3347
3348 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3349 {
3350         struct drm_device *dev = crtc->dev;
3351         struct drm_i915_private *dev_priv = dev->dev_private;
3352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3353         int pipe = intel_crtc->pipe;
3354         i915_reg_t reg;
3355         u32 temp;
3356
3357         /* enable normal train */
3358         reg = FDI_TX_CTL(pipe);
3359         temp = I915_READ(reg);
3360         if (IS_IVYBRIDGE(dev)) {
3361                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3362                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3363         } else {
3364                 temp &= ~FDI_LINK_TRAIN_NONE;
3365                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3366         }
3367         I915_WRITE(reg, temp);
3368
3369         reg = FDI_RX_CTL(pipe);
3370         temp = I915_READ(reg);
3371         if (HAS_PCH_CPT(dev)) {
3372                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3373                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3374         } else {
3375                 temp &= ~FDI_LINK_TRAIN_NONE;
3376                 temp |= FDI_LINK_TRAIN_NONE;
3377         }
3378         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3379
3380         /* wait one idle pattern time */
3381         POSTING_READ(reg);
3382         udelay(1000);
3383
3384         /* IVB wants error correction enabled */
3385         if (IS_IVYBRIDGE(dev))
3386                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3387                            FDI_FE_ERRC_ENABLE);
3388 }
3389
3390 /* The FDI link training functions for ILK/Ibexpeak. */
3391 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3392 {
3393         struct drm_device *dev = crtc->dev;
3394         struct drm_i915_private *dev_priv = dev->dev_private;
3395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3396         int pipe = intel_crtc->pipe;
3397         i915_reg_t reg;
3398         u32 temp, tries;
3399
3400         /* FDI needs bits from pipe first */
3401         assert_pipe_enabled(dev_priv, pipe);
3402
3403         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3404            for train result */
3405         reg = FDI_RX_IMR(pipe);
3406         temp = I915_READ(reg);
3407         temp &= ~FDI_RX_SYMBOL_LOCK;
3408         temp &= ~FDI_RX_BIT_LOCK;
3409         I915_WRITE(reg, temp);
3410         I915_READ(reg);
3411         udelay(150);
3412
3413         /* enable CPU FDI TX and PCH FDI RX */
3414         reg = FDI_TX_CTL(pipe);
3415         temp = I915_READ(reg);
3416         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3417         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3418         temp &= ~FDI_LINK_TRAIN_NONE;
3419         temp |= FDI_LINK_TRAIN_PATTERN_1;
3420         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3421
3422         reg = FDI_RX_CTL(pipe);
3423         temp = I915_READ(reg);
3424         temp &= ~FDI_LINK_TRAIN_NONE;
3425         temp |= FDI_LINK_TRAIN_PATTERN_1;
3426         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3427
3428         POSTING_READ(reg);
3429         udelay(150);
3430
3431         /* Ironlake workaround, enable clock pointer after FDI enable*/
3432         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3433         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3434                    FDI_RX_PHASE_SYNC_POINTER_EN);
3435
3436         reg = FDI_RX_IIR(pipe);
3437         for (tries = 0; tries < 5; tries++) {
3438                 temp = I915_READ(reg);
3439                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3440
3441                 if ((temp & FDI_RX_BIT_LOCK)) {
3442                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3443                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3444                         break;
3445                 }
3446         }
3447         if (tries == 5)
3448                 DRM_ERROR("FDI train 1 fail!\n");
3449
3450         /* Train 2 */
3451         reg = FDI_TX_CTL(pipe);
3452         temp = I915_READ(reg);
3453         temp &= ~FDI_LINK_TRAIN_NONE;
3454         temp |= FDI_LINK_TRAIN_PATTERN_2;
3455         I915_WRITE(reg, temp);
3456
3457         reg = FDI_RX_CTL(pipe);
3458         temp = I915_READ(reg);
3459         temp &= ~FDI_LINK_TRAIN_NONE;
3460         temp |= FDI_LINK_TRAIN_PATTERN_2;
3461         I915_WRITE(reg, temp);
3462
3463         POSTING_READ(reg);
3464         udelay(150);
3465
3466         reg = FDI_RX_IIR(pipe);
3467         for (tries = 0; tries < 5; tries++) {
3468                 temp = I915_READ(reg);
3469                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3470
3471                 if (temp & FDI_RX_SYMBOL_LOCK) {
3472                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3473                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3474                         break;
3475                 }
3476         }
3477         if (tries == 5)
3478                 DRM_ERROR("FDI train 2 fail!\n");
3479
3480         DRM_DEBUG_KMS("FDI train done\n");
3481
3482 }
3483
3484 static const int snb_b_fdi_train_param[] = {
3485         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3486         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3487         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3488         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3489 };
3490
3491 /* The FDI link training functions for SNB/Cougarpoint. */
3492 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3493 {
3494         struct drm_device *dev = crtc->dev;
3495         struct drm_i915_private *dev_priv = dev->dev_private;
3496         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497         int pipe = intel_crtc->pipe;
3498         i915_reg_t reg;
3499         u32 temp, i, retry;
3500
3501         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3502            for train result */
3503         reg = FDI_RX_IMR(pipe);
3504         temp = I915_READ(reg);
3505         temp &= ~FDI_RX_SYMBOL_LOCK;
3506         temp &= ~FDI_RX_BIT_LOCK;
3507         I915_WRITE(reg, temp);
3508
3509         POSTING_READ(reg);
3510         udelay(150);
3511
3512         /* enable CPU FDI TX and PCH FDI RX */
3513         reg = FDI_TX_CTL(pipe);
3514         temp = I915_READ(reg);
3515         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3516         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3517         temp &= ~FDI_LINK_TRAIN_NONE;
3518         temp |= FDI_LINK_TRAIN_PATTERN_1;
3519         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3520         /* SNB-B */
3521         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3522         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3523
3524         I915_WRITE(FDI_RX_MISC(pipe),
3525                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3526
3527         reg = FDI_RX_CTL(pipe);
3528         temp = I915_READ(reg);
3529         if (HAS_PCH_CPT(dev)) {
3530                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3531                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3532         } else {
3533                 temp &= ~FDI_LINK_TRAIN_NONE;
3534                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3535         }
3536         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3537
3538         POSTING_READ(reg);
3539         udelay(150);
3540
3541         for (i = 0; i < 4; i++) {
3542                 reg = FDI_TX_CTL(pipe);
3543                 temp = I915_READ(reg);
3544                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3545                 temp |= snb_b_fdi_train_param[i];
3546                 I915_WRITE(reg, temp);
3547
3548                 POSTING_READ(reg);
3549                 udelay(500);
3550
3551                 for (retry = 0; retry < 5; retry++) {
3552                         reg = FDI_RX_IIR(pipe);
3553                         temp = I915_READ(reg);
3554                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3555                         if (temp & FDI_RX_BIT_LOCK) {
3556                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3557                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3558                                 break;
3559                         }
3560                         udelay(50);
3561                 }
3562                 if (retry < 5)
3563                         break;
3564         }
3565         if (i == 4)
3566                 DRM_ERROR("FDI train 1 fail!\n");
3567
3568         /* Train 2 */
3569         reg = FDI_TX_CTL(pipe);
3570         temp = I915_READ(reg);
3571         temp &= ~FDI_LINK_TRAIN_NONE;
3572         temp |= FDI_LINK_TRAIN_PATTERN_2;
3573         if (IS_GEN6(dev)) {
3574                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3575                 /* SNB-B */
3576                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3577         }
3578         I915_WRITE(reg, temp);
3579
3580         reg = FDI_RX_CTL(pipe);
3581         temp = I915_READ(reg);
3582         if (HAS_PCH_CPT(dev)) {
3583                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3584                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3585         } else {
3586                 temp &= ~FDI_LINK_TRAIN_NONE;
3587                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3588         }
3589         I915_WRITE(reg, temp);
3590
3591         POSTING_READ(reg);
3592         udelay(150);
3593
3594         for (i = 0; i < 4; i++) {
3595                 reg = FDI_TX_CTL(pipe);
3596                 temp = I915_READ(reg);
3597                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3598                 temp |= snb_b_fdi_train_param[i];
3599                 I915_WRITE(reg, temp);
3600
3601                 POSTING_READ(reg);
3602                 udelay(500);
3603
3604                 for (retry = 0; retry < 5; retry++) {
3605                         reg = FDI_RX_IIR(pipe);
3606                         temp = I915_READ(reg);
3607                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3608                         if (temp & FDI_RX_SYMBOL_LOCK) {
3609                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3610                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3611                                 break;
3612                         }
3613                         udelay(50);
3614                 }
3615                 if (retry < 5)
3616                         break;
3617         }
3618         if (i == 4)
3619                 DRM_ERROR("FDI train 2 fail!\n");
3620
3621         DRM_DEBUG_KMS("FDI train done.\n");
3622 }
3623
3624 /* Manual link training for Ivy Bridge A0 parts */
3625 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3626 {
3627         struct drm_device *dev = crtc->dev;
3628         struct drm_i915_private *dev_priv = dev->dev_private;
3629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3630         int pipe = intel_crtc->pipe;
3631         i915_reg_t reg;
3632         u32 temp, i, j;
3633
3634         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3635            for train result */
3636         reg = FDI_RX_IMR(pipe);
3637         temp = I915_READ(reg);
3638         temp &= ~FDI_RX_SYMBOL_LOCK;
3639         temp &= ~FDI_RX_BIT_LOCK;
3640         I915_WRITE(reg, temp);
3641
3642         POSTING_READ(reg);
3643         udelay(150);
3644
3645         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3646                       I915_READ(FDI_RX_IIR(pipe)));
3647
3648         /* Try each vswing and preemphasis setting twice before moving on */
3649         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3650                 /* disable first in case we need to retry */
3651                 reg = FDI_TX_CTL(pipe);
3652                 temp = I915_READ(reg);
3653                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3654                 temp &= ~FDI_TX_ENABLE;
3655                 I915_WRITE(reg, temp);
3656
3657                 reg = FDI_RX_CTL(pipe);
3658                 temp = I915_READ(reg);
3659                 temp &= ~FDI_LINK_TRAIN_AUTO;
3660                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3661                 temp &= ~FDI_RX_ENABLE;
3662                 I915_WRITE(reg, temp);
3663
3664                 /* enable CPU FDI TX and PCH FDI RX */
3665                 reg = FDI_TX_CTL(pipe);
3666                 temp = I915_READ(reg);
3667                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3668                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3669                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3670                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3671                 temp |= snb_b_fdi_train_param[j/2];
3672                 temp |= FDI_COMPOSITE_SYNC;
3673                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3674
3675                 I915_WRITE(FDI_RX_MISC(pipe),
3676                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3677
3678                 reg = FDI_RX_CTL(pipe);
3679                 temp = I915_READ(reg);
3680                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3681                 temp |= FDI_COMPOSITE_SYNC;
3682                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3683
3684                 POSTING_READ(reg);
3685                 udelay(1); /* should be 0.5us */
3686
3687                 for (i = 0; i < 4; i++) {
3688                         reg = FDI_RX_IIR(pipe);
3689                         temp = I915_READ(reg);
3690                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3691
3692                         if (temp & FDI_RX_BIT_LOCK ||
3693                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3694                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3695                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3696                                               i);
3697                                 break;
3698                         }
3699                         udelay(1); /* should be 0.5us */
3700                 }
3701                 if (i == 4) {
3702                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3703                         continue;
3704                 }
3705
3706                 /* Train 2 */
3707                 reg = FDI_TX_CTL(pipe);
3708                 temp = I915_READ(reg);
3709                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3710                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3711                 I915_WRITE(reg, temp);
3712
3713                 reg = FDI_RX_CTL(pipe);
3714                 temp = I915_READ(reg);
3715                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3716                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3717                 I915_WRITE(reg, temp);
3718
3719                 POSTING_READ(reg);
3720                 udelay(2); /* should be 1.5us */
3721
3722                 for (i = 0; i < 4; i++) {
3723                         reg = FDI_RX_IIR(pipe);
3724                         temp = I915_READ(reg);
3725                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3726
3727                         if (temp & FDI_RX_SYMBOL_LOCK ||
3728                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3729                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3730                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3731                                               i);
3732                                 goto train_done;
3733                         }
3734                         udelay(2); /* should be 1.5us */
3735                 }
3736                 if (i == 4)
3737                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3738         }
3739
3740 train_done:
3741         DRM_DEBUG_KMS("FDI train done.\n");
3742 }
3743
3744 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3745 {
3746         struct drm_device *dev = intel_crtc->base.dev;
3747         struct drm_i915_private *dev_priv = dev->dev_private;
3748         int pipe = intel_crtc->pipe;
3749         i915_reg_t reg;
3750         u32 temp;
3751
3752         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3753         reg = FDI_RX_CTL(pipe);
3754         temp = I915_READ(reg);
3755         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3756         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3757         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3758         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3759
3760         POSTING_READ(reg);
3761         udelay(200);
3762
3763         /* Switch from Rawclk to PCDclk */
3764         temp = I915_READ(reg);
3765         I915_WRITE(reg, temp | FDI_PCDCLK);
3766
3767         POSTING_READ(reg);
3768         udelay(200);
3769
3770         /* Enable CPU FDI TX PLL, always on for Ironlake */
3771         reg = FDI_TX_CTL(pipe);
3772         temp = I915_READ(reg);
3773         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3774                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3775
3776                 POSTING_READ(reg);
3777                 udelay(100);
3778         }
3779 }
3780
3781 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3782 {
3783         struct drm_device *dev = intel_crtc->base.dev;
3784         struct drm_i915_private *dev_priv = dev->dev_private;
3785         int pipe = intel_crtc->pipe;
3786         i915_reg_t reg;
3787         u32 temp;
3788
3789         /* Switch from PCDclk to Rawclk */
3790         reg = FDI_RX_CTL(pipe);
3791         temp = I915_READ(reg);
3792         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3793
3794         /* Disable CPU FDI TX PLL */
3795         reg = FDI_TX_CTL(pipe);
3796         temp = I915_READ(reg);
3797         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3798
3799         POSTING_READ(reg);
3800         udelay(100);
3801
3802         reg = FDI_RX_CTL(pipe);
3803         temp = I915_READ(reg);
3804         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3805
3806         /* Wait for the clocks to turn off. */
3807         POSTING_READ(reg);
3808         udelay(100);
3809 }
3810
3811 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3812 {
3813         struct drm_device *dev = crtc->dev;
3814         struct drm_i915_private *dev_priv = dev->dev_private;
3815         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3816         int pipe = intel_crtc->pipe;
3817         i915_reg_t reg;
3818         u32 temp;
3819
3820         /* disable CPU FDI tx and PCH FDI rx */
3821         reg = FDI_TX_CTL(pipe);
3822         temp = I915_READ(reg);
3823         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3824         POSTING_READ(reg);
3825
3826         reg = FDI_RX_CTL(pipe);
3827         temp = I915_READ(reg);
3828         temp &= ~(0x7 << 16);
3829         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3830         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3831
3832         POSTING_READ(reg);
3833         udelay(100);
3834
3835         /* Ironlake workaround, disable clock pointer after downing FDI */
3836         if (HAS_PCH_IBX(dev))
3837                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3838
3839         /* still set train pattern 1 */
3840         reg = FDI_TX_CTL(pipe);
3841         temp = I915_READ(reg);
3842         temp &= ~FDI_LINK_TRAIN_NONE;
3843         temp |= FDI_LINK_TRAIN_PATTERN_1;
3844         I915_WRITE(reg, temp);
3845
3846         reg = FDI_RX_CTL(pipe);
3847         temp = I915_READ(reg);
3848         if (HAS_PCH_CPT(dev)) {
3849                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3850                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3851         } else {
3852                 temp &= ~FDI_LINK_TRAIN_NONE;
3853                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3854         }
3855         /* BPC in FDI rx is consistent with that in PIPECONF */
3856         temp &= ~(0x07 << 16);
3857         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3858         I915_WRITE(reg, temp);
3859
3860         POSTING_READ(reg);
3861         udelay(100);
3862 }
3863
3864 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3865 {
3866         struct intel_crtc *crtc;
3867
3868         /* Note that we don't need to be called with mode_config.lock here
3869          * as our list of CRTC objects is static for the lifetime of the
3870          * device and so cannot disappear as we iterate. Similarly, we can
3871          * happily treat the predicates as racy, atomic checks as userspace
3872          * cannot claim and pin a new fb without at least acquring the
3873          * struct_mutex and so serialising with us.
3874          */
3875         for_each_intel_crtc(dev, crtc) {
3876                 if (atomic_read(&crtc->unpin_work_count) == 0)
3877                         continue;
3878
3879                 if (crtc->unpin_work)
3880                         intel_wait_for_vblank(dev, crtc->pipe);
3881
3882                 return true;
3883         }
3884
3885         return false;
3886 }
3887
3888 static void page_flip_completed(struct intel_crtc *intel_crtc)
3889 {
3890         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3891         struct intel_unpin_work *work = intel_crtc->unpin_work;
3892
3893         /* ensure that the unpin work is consistent wrt ->pending. */
3894         smp_rmb();
3895         intel_crtc->unpin_work = NULL;
3896
3897         if (work->event)
3898                 drm_send_vblank_event(intel_crtc->base.dev,
3899                                       intel_crtc->pipe,
3900                                       work->event);
3901
3902         drm_crtc_vblank_put(&intel_crtc->base);
3903
3904         wake_up_all(&dev_priv->pending_flip_queue);
3905         queue_work(dev_priv->wq, &work->work);
3906
3907         trace_i915_flip_complete(intel_crtc->plane,
3908                                  work->pending_flip_obj);
3909 }
3910
3911 static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3912 {
3913         struct drm_device *dev = crtc->dev;
3914         struct drm_i915_private *dev_priv = dev->dev_private;
3915         long ret;
3916
3917         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3918
3919         ret = wait_event_interruptible_timeout(
3920                                         dev_priv->pending_flip_queue,
3921                                         !intel_crtc_has_pending_flip(crtc),
3922                                         60*HZ);
3923
3924         if (ret < 0)
3925                 return ret;
3926
3927         if (ret == 0) {
3928                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3929
3930                 spin_lock_irq(&dev->event_lock);
3931                 if (intel_crtc->unpin_work) {
3932                         WARN_ONCE(1, "Removing stuck page flip\n");
3933                         page_flip_completed(intel_crtc);
3934                 }
3935                 spin_unlock_irq(&dev->event_lock);
3936         }
3937
3938         return 0;
3939 }
3940
3941 /* Program iCLKIP clock to the desired frequency */
3942 static void lpt_program_iclkip(struct drm_crtc *crtc)
3943 {
3944         struct drm_device *dev = crtc->dev;
3945         struct drm_i915_private *dev_priv = dev->dev_private;
3946         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3947         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3948         u32 temp;
3949
3950         mutex_lock(&dev_priv->sb_lock);
3951
3952         /* It is necessary to ungate the pixclk gate prior to programming
3953          * the divisors, and gate it back when it is done.
3954          */
3955         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3956
3957         /* Disable SSCCTL */
3958         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3959                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3960                                 SBI_SSCCTL_DISABLE,
3961                         SBI_ICLK);
3962
3963         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3964         if (clock == 20000) {
3965                 auxdiv = 1;
3966                 divsel = 0x41;
3967                 phaseinc = 0x20;
3968         } else {
3969                 /* The iCLK virtual clock root frequency is in MHz,
3970                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3971                  * divisors, it is necessary to divide one by another, so we
3972                  * convert the virtual clock precision to KHz here for higher
3973                  * precision.
3974                  */
3975                 u32 iclk_virtual_root_freq = 172800 * 1000;
3976                 u32 iclk_pi_range = 64;
3977                 u32 desired_divisor, msb_divisor_value, pi_value;
3978
3979                 desired_divisor = (iclk_virtual_root_freq / clock);
3980                 msb_divisor_value = desired_divisor / iclk_pi_range;
3981                 pi_value = desired_divisor % iclk_pi_range;
3982
3983                 auxdiv = 0;
3984                 divsel = msb_divisor_value - 2;
3985                 phaseinc = pi_value;
3986         }
3987
3988         /* This should not happen with any sane values */
3989         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3990                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3991         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3992                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3993
3994         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3995                         clock,
3996                         auxdiv,
3997                         divsel,
3998                         phasedir,
3999                         phaseinc);
4000
4001         /* Program SSCDIVINTPHASE6 */
4002         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
4003         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
4004         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
4005         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
4006         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4007         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4008         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4009         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4010
4011         /* Program SSCAUXDIV */
4012         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4013         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4014         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4015         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4016
4017         /* Enable modulator and associated divider */
4018         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4019         temp &= ~SBI_SSCCTL_DISABLE;
4020         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4021
4022         /* Wait for initialization time */
4023         udelay(24);
4024
4025         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4026
4027         mutex_unlock(&dev_priv->sb_lock);
4028 }
4029
4030 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4031                                                 enum pipe pch_transcoder)
4032 {
4033         struct drm_device *dev = crtc->base.dev;
4034         struct drm_i915_private *dev_priv = dev->dev_private;
4035         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4036
4037         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4038                    I915_READ(HTOTAL(cpu_transcoder)));
4039         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4040                    I915_READ(HBLANK(cpu_transcoder)));
4041         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4042                    I915_READ(HSYNC(cpu_transcoder)));
4043
4044         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4045                    I915_READ(VTOTAL(cpu_transcoder)));
4046         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4047                    I915_READ(VBLANK(cpu_transcoder)));
4048         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4049                    I915_READ(VSYNC(cpu_transcoder)));
4050         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4051                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4052 }
4053
4054 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4055 {
4056         struct drm_i915_private *dev_priv = dev->dev_private;
4057         uint32_t temp;
4058
4059         temp = I915_READ(SOUTH_CHICKEN1);
4060         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4061                 return;
4062
4063         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4064         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4065
4066         temp &= ~FDI_BC_BIFURCATION_SELECT;
4067         if (enable)
4068                 temp |= FDI_BC_BIFURCATION_SELECT;
4069
4070         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4071         I915_WRITE(SOUTH_CHICKEN1, temp);
4072         POSTING_READ(SOUTH_CHICKEN1);
4073 }
4074
4075 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4076 {
4077         struct drm_device *dev = intel_crtc->base.dev;
4078
4079         switch (intel_crtc->pipe) {
4080         case PIPE_A:
4081                 break;
4082         case PIPE_B:
4083                 if (intel_crtc->config->fdi_lanes > 2)
4084                         cpt_set_fdi_bc_bifurcation(dev, false);
4085                 else
4086                         cpt_set_fdi_bc_bifurcation(dev, true);
4087
4088                 break;
4089         case PIPE_C:
4090                 cpt_set_fdi_bc_bifurcation(dev, true);
4091
4092                 break;
4093         default:
4094                 BUG();
4095         }
4096 }
4097
4098 /* Return which DP Port should be selected for Transcoder DP control */
4099 static enum port
4100 intel_trans_dp_port_sel(struct drm_crtc *crtc)
4101 {
4102         struct drm_device *dev = crtc->dev;
4103         struct intel_encoder *encoder;
4104
4105         for_each_encoder_on_crtc(dev, crtc, encoder) {
4106                 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4107                     encoder->type == INTEL_OUTPUT_EDP)
4108                         return enc_to_dig_port(&encoder->base)->port;
4109         }
4110
4111         return -1;
4112 }
4113
4114 /*
4115  * Enable PCH resources required for PCH ports:
4116  *   - PCH PLLs
4117  *   - FDI training & RX/TX
4118  *   - update transcoder timings
4119  *   - DP transcoding bits
4120  *   - transcoder
4121  */
4122 static void ironlake_pch_enable(struct drm_crtc *crtc)
4123 {
4124         struct drm_device *dev = crtc->dev;
4125         struct drm_i915_private *dev_priv = dev->dev_private;
4126         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4127         int pipe = intel_crtc->pipe;
4128         u32 temp;
4129
4130         assert_pch_transcoder_disabled(dev_priv, pipe);
4131
4132         if (IS_IVYBRIDGE(dev))
4133                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4134
4135         /* Write the TU size bits before fdi link training, so that error
4136          * detection works. */
4137         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4138                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4139
4140         /* For PCH output, training FDI link */
4141         dev_priv->display.fdi_link_train(crtc);
4142
4143         /* We need to program the right clock selection before writing the pixel
4144          * mutliplier into the DPLL. */
4145         if (HAS_PCH_CPT(dev)) {
4146                 u32 sel;
4147
4148                 temp = I915_READ(PCH_DPLL_SEL);
4149                 temp |= TRANS_DPLL_ENABLE(pipe);
4150                 sel = TRANS_DPLLB_SEL(pipe);
4151                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4152                         temp |= sel;
4153                 else
4154                         temp &= ~sel;
4155                 I915_WRITE(PCH_DPLL_SEL, temp);
4156         }
4157
4158         /* XXX: pch pll's can be enabled any time before we enable the PCH
4159          * transcoder, and we actually should do this to not upset any PCH
4160          * transcoder that already use the clock when we share it.
4161          *
4162          * Note that enable_shared_dpll tries to do the right thing, but
4163          * get_shared_dpll unconditionally resets the pll - we need that to have
4164          * the right LVDS enable sequence. */
4165         intel_enable_shared_dpll(intel_crtc);
4166
4167         /* set transcoder timing, panel must allow it */
4168         assert_panel_unlocked(dev_priv, pipe);
4169         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4170
4171         intel_fdi_normal_train(crtc);
4172
4173         /* For PCH DP, enable TRANS_DP_CTL */
4174         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4175                 const struct drm_display_mode *adjusted_mode =
4176                         &intel_crtc->config->base.adjusted_mode;
4177                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4178                 i915_reg_t reg = TRANS_DP_CTL(pipe);
4179                 temp = I915_READ(reg);
4180                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4181                           TRANS_DP_SYNC_MASK |
4182                           TRANS_DP_BPC_MASK);
4183                 temp |= TRANS_DP_OUTPUT_ENABLE;
4184                 temp |= bpc << 9; /* same format but at 11:9 */
4185
4186                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
4187                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4188                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
4189                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4190
4191                 switch (intel_trans_dp_port_sel(crtc)) {
4192                 case PORT_B:
4193                         temp |= TRANS_DP_PORT_SEL_B;
4194                         break;
4195                 case PORT_C:
4196                         temp |= TRANS_DP_PORT_SEL_C;
4197                         break;
4198                 case PORT_D:
4199                         temp |= TRANS_DP_PORT_SEL_D;
4200                         break;
4201                 default:
4202                         BUG();
4203                 }
4204
4205                 I915_WRITE(reg, temp);
4206         }
4207
4208         ironlake_enable_pch_transcoder(dev_priv, pipe);
4209 }
4210
4211 static void lpt_pch_enable(struct drm_crtc *crtc)
4212 {
4213         struct drm_device *dev = crtc->dev;
4214         struct drm_i915_private *dev_priv = dev->dev_private;
4215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4216         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4217
4218         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4219
4220         lpt_program_iclkip(crtc);
4221
4222         /* Set transcoder timing. */
4223         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4224
4225         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4226 }
4227
4228 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4229                                                 struct intel_crtc_state *crtc_state)
4230 {
4231         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4232         struct intel_shared_dpll *pll;
4233         struct intel_shared_dpll_config *shared_dpll;
4234         enum intel_dpll_id i;
4235         int max = dev_priv->num_shared_dpll;
4236
4237         shared_dpll = intel_atomic_get_shared_dpll_state(crtc_state->base.state);
4238
4239         if (HAS_PCH_IBX(dev_priv->dev)) {
4240                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4241                 i = (enum intel_dpll_id) crtc->pipe;
4242                 pll = &dev_priv->shared_dplls[i];
4243
4244                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4245                               crtc->base.base.id, pll->name);
4246
4247                 WARN_ON(shared_dpll[i].crtc_mask);
4248
4249                 goto found;
4250         }
4251
4252         if (IS_BROXTON(dev_priv->dev)) {
4253                 /* PLL is attached to port in bxt */
4254                 struct intel_encoder *encoder;
4255                 struct intel_digital_port *intel_dig_port;
4256
4257                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4258                 if (WARN_ON(!encoder))
4259                         return NULL;
4260
4261                 intel_dig_port = enc_to_dig_port(&encoder->base);
4262                 /* 1:1 mapping between ports and PLLs */
4263                 i = (enum intel_dpll_id)intel_dig_port->port;
4264                 pll = &dev_priv->shared_dplls[i];
4265                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4266                         crtc->base.base.id, pll->name);
4267                 WARN_ON(shared_dpll[i].crtc_mask);
4268
4269                 goto found;
4270         } else if (INTEL_INFO(dev_priv)->gen < 9 && HAS_DDI(dev_priv))
4271                 /* Do not consider SPLL */
4272                 max = 2;
4273
4274         for (i = 0; i < max; i++) {
4275                 pll = &dev_priv->shared_dplls[i];
4276
4277                 /* Only want to check enabled timings first */
4278                 if (shared_dpll[i].crtc_mask == 0)
4279                         continue;
4280
4281                 if (memcmp(&crtc_state->dpll_hw_state,
4282                            &shared_dpll[i].hw_state,
4283                            sizeof(crtc_state->dpll_hw_state)) == 0) {
4284                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4285                                       crtc->base.base.id, pll->name,
4286                                       shared_dpll[i].crtc_mask,
4287                                       pll->active);
4288                         goto found;
4289                 }
4290         }
4291
4292         /* Ok no matching timings, maybe there's a free one? */
4293         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4294                 pll = &dev_priv->shared_dplls[i];
4295                 if (shared_dpll[i].crtc_mask == 0) {
4296                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4297                                       crtc->base.base.id, pll->name);
4298                         goto found;
4299                 }
4300         }
4301
4302         return NULL;
4303
4304 found:
4305         if (shared_dpll[i].crtc_mask == 0)
4306                 shared_dpll[i].hw_state =
4307                         crtc_state->dpll_hw_state;
4308
4309         crtc_state->shared_dpll = i;
4310         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4311                          pipe_name(crtc->pipe));
4312
4313         shared_dpll[i].crtc_mask |= 1 << crtc->pipe;
4314
4315         return pll;
4316 }
4317
4318 static void intel_shared_dpll_commit(struct drm_atomic_state *state)
4319 {
4320         struct drm_i915_private *dev_priv = to_i915(state->dev);
4321         struct intel_shared_dpll_config *shared_dpll;
4322         struct intel_shared_dpll *pll;
4323         enum intel_dpll_id i;
4324
4325         if (!to_intel_atomic_state(state)->dpll_set)
4326                 return;
4327
4328         shared_dpll = to_intel_atomic_state(state)->shared_dpll;
4329         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4330                 pll = &dev_priv->shared_dplls[i];
4331                 pll->config = shared_dpll[i];
4332         }
4333 }
4334
4335 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4336 {
4337         struct drm_i915_private *dev_priv = dev->dev_private;
4338         i915_reg_t dslreg = PIPEDSL(pipe);
4339         u32 temp;
4340
4341         temp = I915_READ(dslreg);
4342         udelay(500);
4343         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4344                 if (wait_for(I915_READ(dslreg) != temp, 5))
4345                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4346         }
4347 }
4348
4349 static int
4350 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4351                   unsigned scaler_user, int *scaler_id, unsigned int rotation,
4352                   int src_w, int src_h, int dst_w, int dst_h)
4353 {
4354         struct intel_crtc_scaler_state *scaler_state =
4355                 &crtc_state->scaler_state;
4356         struct intel_crtc *intel_crtc =
4357                 to_intel_crtc(crtc_state->base.crtc);
4358         int need_scaling;
4359
4360         need_scaling = intel_rotation_90_or_270(rotation) ?
4361                 (src_h != dst_w || src_w != dst_h):
4362                 (src_w != dst_w || src_h != dst_h);
4363
4364         /*
4365          * if plane is being disabled or scaler is no more required or force detach
4366          *  - free scaler binded to this plane/crtc
4367          *  - in order to do this, update crtc->scaler_usage
4368          *
4369          * Here scaler state in crtc_state is set free so that
4370          * scaler can be assigned to other user. Actual register
4371          * update to free the scaler is done in plane/panel-fit programming.
4372          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4373          */
4374         if (force_detach || !need_scaling) {
4375                 if (*scaler_id >= 0) {
4376                         scaler_state->scaler_users &= ~(1 << scaler_user);
4377                         scaler_state->scalers[*scaler_id].in_use = 0;
4378
4379                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4380                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4381                                 intel_crtc->pipe, scaler_user, *scaler_id,
4382                                 scaler_state->scaler_users);
4383                         *scaler_id = -1;
4384                 }
4385                 return 0;
4386         }
4387
4388         /* range checks */
4389         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4390                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4391
4392                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4393                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4394                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
4395                         "size is out of scaler range\n",
4396                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
4397                 return -EINVAL;
4398         }
4399
4400         /* mark this plane as a scaler user in crtc_state */
4401         scaler_state->scaler_users |= (1 << scaler_user);
4402         DRM_DEBUG_KMS("scaler_user index %u.%u: "
4403                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4404                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4405                 scaler_state->scaler_users);
4406
4407         return 0;
4408 }
4409
4410 /**
4411  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4412  *
4413  * @state: crtc's scaler state
4414  *
4415  * Return
4416  *     0 - scaler_usage updated successfully
4417  *    error - requested scaling cannot be supported or other error condition
4418  */
4419 int skl_update_scaler_crtc(struct intel_crtc_state *state)
4420 {
4421         struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
4422         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
4423
4424         DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4425                       intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4426
4427         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
4428                 &state->scaler_state.scaler_id, DRM_ROTATE_0,
4429                 state->pipe_src_w, state->pipe_src_h,
4430                 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
4431 }
4432
4433 /**
4434  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4435  *
4436  * @state: crtc's scaler state
4437  * @plane_state: atomic plane state to update
4438  *
4439  * Return
4440  *     0 - scaler_usage updated successfully
4441  *    error - requested scaling cannot be supported or other error condition
4442  */
4443 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4444                                    struct intel_plane_state *plane_state)
4445 {
4446
4447         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4448         struct intel_plane *intel_plane =
4449                 to_intel_plane(plane_state->base.plane);
4450         struct drm_framebuffer *fb = plane_state->base.fb;
4451         int ret;
4452
4453         bool force_detach = !fb || !plane_state->visible;
4454
4455         DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4456                       intel_plane->base.base.id, intel_crtc->pipe,
4457                       drm_plane_index(&intel_plane->base));
4458
4459         ret = skl_update_scaler(crtc_state, force_detach,
4460                                 drm_plane_index(&intel_plane->base),
4461                                 &plane_state->scaler_id,
4462                                 plane_state->base.rotation,
4463                                 drm_rect_width(&plane_state->src) >> 16,
4464                                 drm_rect_height(&plane_state->src) >> 16,
4465                                 drm_rect_width(&plane_state->dst),
4466                                 drm_rect_height(&plane_state->dst));
4467
4468         if (ret || plane_state->scaler_id < 0)
4469                 return ret;
4470
4471         /* check colorkey */
4472         if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
4473                 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
4474                               intel_plane->base.base.id);
4475                 return -EINVAL;
4476         }
4477
4478         /* Check src format */
4479         switch (fb->pixel_format) {
4480         case DRM_FORMAT_RGB565:
4481         case DRM_FORMAT_XBGR8888:
4482         case DRM_FORMAT_XRGB8888:
4483         case DRM_FORMAT_ABGR8888:
4484         case DRM_FORMAT_ARGB8888:
4485         case DRM_FORMAT_XRGB2101010:
4486         case DRM_FORMAT_XBGR2101010:
4487         case DRM_FORMAT_YUYV:
4488         case DRM_FORMAT_YVYU:
4489         case DRM_FORMAT_UYVY:
4490         case DRM_FORMAT_VYUY:
4491                 break;
4492         default:
4493                 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4494                         intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4495                 return -EINVAL;
4496         }
4497
4498         return 0;
4499 }
4500
4501 static void skylake_scaler_disable(struct intel_crtc *crtc)
4502 {
4503         int i;
4504
4505         for (i = 0; i < crtc->num_scalers; i++)
4506                 skl_detach_scaler(crtc, i);
4507 }
4508
4509 static void skylake_pfit_enable(struct intel_crtc *crtc)
4510 {
4511         struct drm_device *dev = crtc->base.dev;
4512         struct drm_i915_private *dev_priv = dev->dev_private;
4513         int pipe = crtc->pipe;
4514         struct intel_crtc_scaler_state *scaler_state =
4515                 &crtc->config->scaler_state;
4516
4517         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4518
4519         if (crtc->config->pch_pfit.enabled) {
4520                 int id;
4521
4522                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4523                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4524                         return;
4525                 }
4526
4527                 id = scaler_state->scaler_id;
4528                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4529                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4530                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4531                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4532
4533                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4534         }
4535 }
4536
4537 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4538 {
4539         struct drm_device *dev = crtc->base.dev;
4540         struct drm_i915_private *dev_priv = dev->dev_private;
4541         int pipe = crtc->pipe;
4542
4543         if (crtc->config->pch_pfit.enabled) {
4544                 /* Force use of hard-coded filter coefficients
4545                  * as some pre-programmed values are broken,
4546                  * e.g. x201.
4547                  */
4548                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4549                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4550                                                  PF_PIPE_SEL_IVB(pipe));
4551                 else
4552                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4553                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4554                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4555         }
4556 }
4557
4558 void hsw_enable_ips(struct intel_crtc *crtc)
4559 {
4560         struct drm_device *dev = crtc->base.dev;
4561         struct drm_i915_private *dev_priv = dev->dev_private;
4562
4563         if (!crtc->config->ips_enabled)
4564                 return;
4565
4566         /* We can only enable IPS after we enable a plane and wait for a vblank */
4567         intel_wait_for_vblank(dev, crtc->pipe);
4568
4569         assert_plane_enabled(dev_priv, crtc->plane);
4570         if (IS_BROADWELL(dev)) {
4571                 mutex_lock(&dev_priv->rps.hw_lock);
4572                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4573                 mutex_unlock(&dev_priv->rps.hw_lock);
4574                 /* Quoting Art Runyan: "its not safe to expect any particular
4575                  * value in IPS_CTL bit 31 after enabling IPS through the
4576                  * mailbox." Moreover, the mailbox may return a bogus state,
4577                  * so we need to just enable it and continue on.
4578                  */
4579         } else {
4580                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4581                 /* The bit only becomes 1 in the next vblank, so this wait here
4582                  * is essentially intel_wait_for_vblank. If we don't have this
4583                  * and don't wait for vblanks until the end of crtc_enable, then
4584                  * the HW state readout code will complain that the expected
4585                  * IPS_CTL value is not the one we read. */
4586                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4587                         DRM_ERROR("Timed out waiting for IPS enable\n");
4588         }
4589 }
4590
4591 void hsw_disable_ips(struct intel_crtc *crtc)
4592 {
4593         struct drm_device *dev = crtc->base.dev;
4594         struct drm_i915_private *dev_priv = dev->dev_private;
4595
4596         if (!crtc->config->ips_enabled)
4597                 return;
4598
4599         assert_plane_enabled(dev_priv, crtc->plane);
4600         if (IS_BROADWELL(dev)) {
4601                 mutex_lock(&dev_priv->rps.hw_lock);
4602                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4603                 mutex_unlock(&dev_priv->rps.hw_lock);
4604                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4605                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4606                         DRM_ERROR("Timed out waiting for IPS disable\n");
4607         } else {
4608                 I915_WRITE(IPS_CTL, 0);
4609                 POSTING_READ(IPS_CTL);
4610         }
4611
4612         /* We need to wait for a vblank before we can disable the plane. */
4613         intel_wait_for_vblank(dev, crtc->pipe);
4614 }
4615
4616 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4617 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4618 {
4619         struct drm_device *dev = crtc->dev;
4620         struct drm_i915_private *dev_priv = dev->dev_private;
4621         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4622         enum pipe pipe = intel_crtc->pipe;
4623         int i;
4624         bool reenable_ips = false;
4625
4626         /* The clocks have to be on to load the palette. */
4627         if (!crtc->state->active)
4628                 return;
4629
4630         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4631                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4632                         assert_dsi_pll_enabled(dev_priv);
4633                 else
4634                         assert_pll_enabled(dev_priv, pipe);
4635         }
4636
4637         /* Workaround : Do not read or write the pipe palette/gamma data while
4638          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4639          */
4640         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4641             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4642              GAMMA_MODE_MODE_SPLIT)) {
4643                 hsw_disable_ips(intel_crtc);
4644                 reenable_ips = true;
4645         }
4646
4647         for (i = 0; i < 256; i++) {
4648                 i915_reg_t palreg;
4649
4650                 if (HAS_GMCH_DISPLAY(dev))
4651                         palreg = PALETTE(pipe, i);
4652                 else
4653                         palreg = LGC_PALETTE(pipe, i);
4654
4655                 I915_WRITE(palreg,
4656                            (intel_crtc->lut_r[i] << 16) |
4657                            (intel_crtc->lut_g[i] << 8) |
4658                            intel_crtc->lut_b[i]);
4659         }
4660
4661         if (reenable_ips)
4662                 hsw_enable_ips(intel_crtc);
4663 }
4664
4665 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4666 {
4667         if (intel_crtc->overlay) {
4668                 struct drm_device *dev = intel_crtc->base.dev;
4669                 struct drm_i915_private *dev_priv = dev->dev_private;
4670
4671                 mutex_lock(&dev->struct_mutex);
4672                 dev_priv->mm.interruptible = false;
4673                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4674                 dev_priv->mm.interruptible = true;
4675                 mutex_unlock(&dev->struct_mutex);
4676         }
4677
4678         /* Let userspace switch the overlay on again. In most cases userspace
4679          * has to recompute where to put it anyway.
4680          */
4681 }
4682
4683 /**
4684  * intel_post_enable_primary - Perform operations after enabling primary plane
4685  * @crtc: the CRTC whose primary plane was just enabled
4686  *
4687  * Performs potentially sleeping operations that must be done after the primary
4688  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4689  * called due to an explicit primary plane update, or due to an implicit
4690  * re-enable that is caused when a sprite plane is updated to no longer
4691  * completely hide the primary plane.
4692  */
4693 static void
4694 intel_post_enable_primary(struct drm_crtc *crtc)
4695 {
4696         struct drm_device *dev = crtc->dev;
4697         struct drm_i915_private *dev_priv = dev->dev_private;
4698         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4699         int pipe = intel_crtc->pipe;
4700
4701         /*
4702          * BDW signals flip done immediately if the plane
4703          * is disabled, even if the plane enable is already
4704          * armed to occur at the next vblank :(
4705          */
4706         if (IS_BROADWELL(dev))
4707                 intel_wait_for_vblank(dev, pipe);
4708
4709         /*
4710          * FIXME IPS should be fine as long as one plane is
4711          * enabled, but in practice it seems to have problems
4712          * when going from primary only to sprite only and vice
4713          * versa.
4714          */
4715         hsw_enable_ips(intel_crtc);
4716
4717         /*
4718          * Gen2 reports pipe underruns whenever all planes are disabled.
4719          * So don't enable underrun reporting before at least some planes
4720          * are enabled.
4721          * FIXME: Need to fix the logic to work when we turn off all planes
4722          * but leave the pipe running.
4723          */
4724         if (IS_GEN2(dev))
4725                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4726
4727         /* Underruns don't always raise interrupts, so check manually. */
4728         intel_check_cpu_fifo_underruns(dev_priv);
4729         intel_check_pch_fifo_underruns(dev_priv);
4730 }
4731
4732 /**
4733  * intel_pre_disable_primary - Perform operations before disabling primary plane
4734  * @crtc: the CRTC whose primary plane is to be disabled
4735  *
4736  * Performs potentially sleeping operations that must be done before the
4737  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4738  * be called due to an explicit primary plane update, or due to an implicit
4739  * disable that is caused when a sprite plane completely hides the primary
4740  * plane.
4741  */
4742 static void
4743 intel_pre_disable_primary(struct drm_crtc *crtc)
4744 {
4745         struct drm_device *dev = crtc->dev;
4746         struct drm_i915_private *dev_priv = dev->dev_private;
4747         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4748         int pipe = intel_crtc->pipe;
4749
4750         /*
4751          * Gen2 reports pipe underruns whenever all planes are disabled.
4752          * So diasble underrun reporting before all the planes get disabled.
4753          * FIXME: Need to fix the logic to work when we turn off all planes
4754          * but leave the pipe running.
4755          */
4756         if (IS_GEN2(dev))
4757                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4758
4759         /*
4760          * Vblank time updates from the shadow to live plane control register
4761          * are blocked if the memory self-refresh mode is active at that
4762          * moment. So to make sure the plane gets truly disabled, disable
4763          * first the self-refresh mode. The self-refresh enable bit in turn
4764          * will be checked/applied by the HW only at the next frame start
4765          * event which is after the vblank start event, so we need to have a
4766          * wait-for-vblank between disabling the plane and the pipe.
4767          */
4768         if (HAS_GMCH_DISPLAY(dev)) {
4769                 intel_set_memory_cxsr(dev_priv, false);
4770                 dev_priv->wm.vlv.cxsr = false;
4771                 intel_wait_for_vblank(dev, pipe);
4772         }
4773
4774         /*
4775          * FIXME IPS should be fine as long as one plane is
4776          * enabled, but in practice it seems to have problems
4777          * when going from primary only to sprite only and vice
4778          * versa.
4779          */
4780         hsw_disable_ips(intel_crtc);
4781 }
4782
4783 static void intel_post_plane_update(struct intel_crtc *crtc)
4784 {
4785         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4786         struct drm_device *dev = crtc->base.dev;
4787         struct drm_i915_private *dev_priv = dev->dev_private;
4788
4789         if (atomic->wait_vblank)
4790                 intel_wait_for_vblank(dev, crtc->pipe);
4791
4792         intel_frontbuffer_flip(dev, atomic->fb_bits);
4793
4794         if (atomic->disable_cxsr)
4795                 crtc->wm.cxsr_allowed = true;
4796
4797         if (crtc->atomic.update_wm_post)
4798                 intel_update_watermarks(&crtc->base);
4799
4800         if (atomic->update_fbc)
4801                 intel_fbc_update(dev_priv);
4802
4803         if (atomic->post_enable_primary)
4804                 intel_post_enable_primary(&crtc->base);
4805
4806         memset(atomic, 0, sizeof(*atomic));
4807 }
4808
4809 static void intel_pre_plane_update(struct intel_crtc *crtc)
4810 {
4811         struct drm_device *dev = crtc->base.dev;
4812         struct drm_i915_private *dev_priv = dev->dev_private;
4813         struct intel_crtc_atomic_commit *atomic = &crtc->atomic;
4814
4815         if (atomic->disable_fbc)
4816                 intel_fbc_disable_crtc(crtc);
4817
4818         if (crtc->atomic.disable_ips)
4819                 hsw_disable_ips(crtc);
4820
4821         if (atomic->pre_disable_primary)
4822                 intel_pre_disable_primary(&crtc->base);
4823
4824         if (atomic->disable_cxsr) {
4825                 crtc->wm.cxsr_allowed = false;
4826                 intel_set_memory_cxsr(dev_priv, false);
4827         }
4828 }
4829
4830 static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
4831 {
4832         struct drm_device *dev = crtc->dev;
4833         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4834         struct drm_plane *p;
4835         int pipe = intel_crtc->pipe;
4836
4837         intel_crtc_dpms_overlay_disable(intel_crtc);
4838
4839         drm_for_each_plane_mask(p, dev, plane_mask)
4840                 to_intel_plane(p)->disable_plane(p, crtc);
4841
4842         /*
4843          * FIXME: Once we grow proper nuclear flip support out of this we need
4844          * to compute the mask of flip planes precisely. For the time being
4845          * consider this a flip to a NULL plane.
4846          */
4847         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4848 }
4849
4850 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4851 {
4852         struct drm_device *dev = crtc->dev;
4853         struct drm_i915_private *dev_priv = dev->dev_private;
4854         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4855         struct intel_encoder *encoder;
4856         int pipe = intel_crtc->pipe;
4857
4858         if (WARN_ON(intel_crtc->active))
4859                 return;
4860
4861         if (intel_crtc->config->has_pch_encoder)
4862                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4863
4864         if (intel_crtc->config->has_pch_encoder)
4865                 intel_prepare_shared_dpll(intel_crtc);
4866
4867         if (intel_crtc->config->has_dp_encoder)
4868                 intel_dp_set_m_n(intel_crtc, M1_N1);
4869
4870         intel_set_pipe_timings(intel_crtc);
4871
4872         if (intel_crtc->config->has_pch_encoder) {
4873                 intel_cpu_transcoder_set_m_n(intel_crtc,
4874                                      &intel_crtc->config->fdi_m_n, NULL);
4875         }
4876
4877         ironlake_set_pipeconf(crtc);
4878
4879         intel_crtc->active = true;
4880
4881         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4882
4883         for_each_encoder_on_crtc(dev, crtc, encoder)
4884                 if (encoder->pre_enable)
4885                         encoder->pre_enable(encoder);
4886
4887         if (intel_crtc->config->has_pch_encoder) {
4888                 /* Note: FDI PLL enabling _must_ be done before we enable the
4889                  * cpu pipes, hence this is separate from all the other fdi/pch
4890                  * enabling. */
4891                 ironlake_fdi_pll_enable(intel_crtc);
4892         } else {
4893                 assert_fdi_tx_disabled(dev_priv, pipe);
4894                 assert_fdi_rx_disabled(dev_priv, pipe);
4895         }
4896
4897         ironlake_pfit_enable(intel_crtc);
4898
4899         /*
4900          * On ILK+ LUT must be loaded before the pipe is running but with
4901          * clocks enabled
4902          */
4903         intel_crtc_load_lut(crtc);
4904
4905         intel_update_watermarks(crtc);
4906         intel_enable_pipe(intel_crtc);
4907
4908         if (intel_crtc->config->has_pch_encoder)
4909                 ironlake_pch_enable(crtc);
4910
4911         assert_vblank_disabled(crtc);
4912         drm_crtc_vblank_on(crtc);
4913
4914         for_each_encoder_on_crtc(dev, crtc, encoder)
4915                 encoder->enable(encoder);
4916
4917         if (HAS_PCH_CPT(dev))
4918                 cpt_verify_modeset(dev, intel_crtc->pipe);
4919
4920         /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4921         if (intel_crtc->config->has_pch_encoder)
4922                 intel_wait_for_vblank(dev, pipe);
4923         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4924 }
4925
4926 /* IPS only exists on ULT machines and is tied to pipe A. */
4927 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4928 {
4929         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4930 }
4931
4932 static void haswell_crtc_enable(struct drm_crtc *crtc)
4933 {
4934         struct drm_device *dev = crtc->dev;
4935         struct drm_i915_private *dev_priv = dev->dev_private;
4936         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4937         struct intel_encoder *encoder;
4938         int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4939         struct intel_crtc_state *pipe_config =
4940                 to_intel_crtc_state(crtc->state);
4941         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
4942
4943         if (WARN_ON(intel_crtc->active))
4944                 return;
4945
4946         if (intel_crtc->config->has_pch_encoder)
4947                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4948                                                       false);
4949
4950         if (intel_crtc_to_shared_dpll(intel_crtc))
4951                 intel_enable_shared_dpll(intel_crtc);
4952
4953         if (intel_crtc->config->has_dp_encoder)
4954                 intel_dp_set_m_n(intel_crtc, M1_N1);
4955
4956         intel_set_pipe_timings(intel_crtc);
4957
4958         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
4959                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
4960                            intel_crtc->config->pixel_multiplier - 1);
4961         }
4962
4963         if (intel_crtc->config->has_pch_encoder) {
4964                 intel_cpu_transcoder_set_m_n(intel_crtc,
4965                                      &intel_crtc->config->fdi_m_n, NULL);
4966         }
4967
4968         haswell_set_pipeconf(crtc);
4969
4970         intel_set_pipe_csc(crtc);
4971
4972         intel_crtc->active = true;
4973
4974         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4975         for_each_encoder_on_crtc(dev, crtc, encoder) {
4976                 if (encoder->pre_pll_enable)
4977                         encoder->pre_pll_enable(encoder);
4978                 if (encoder->pre_enable)
4979                         encoder->pre_enable(encoder);
4980         }
4981
4982         if (intel_crtc->config->has_pch_encoder)
4983                 dev_priv->display.fdi_link_train(crtc);
4984
4985         if (!is_dsi)
4986                 intel_ddi_enable_pipe_clock(intel_crtc);
4987
4988         if (INTEL_INFO(dev)->gen >= 9)
4989                 skylake_pfit_enable(intel_crtc);
4990         else
4991                 ironlake_pfit_enable(intel_crtc);
4992
4993         /*
4994          * On ILK+ LUT must be loaded before the pipe is running but with
4995          * clocks enabled
4996          */
4997         intel_crtc_load_lut(crtc);
4998
4999         intel_ddi_set_pipe_settings(crtc);
5000         if (!is_dsi)
5001                 intel_ddi_enable_transcoder_func(crtc);
5002
5003         intel_update_watermarks(crtc);
5004         intel_enable_pipe(intel_crtc);
5005
5006         if (intel_crtc->config->has_pch_encoder)
5007                 lpt_pch_enable(crtc);
5008
5009         if (intel_crtc->config->dp_encoder_is_mst && !is_dsi)
5010                 intel_ddi_set_vc_payload_alloc(crtc, true);
5011
5012         assert_vblank_disabled(crtc);
5013         drm_crtc_vblank_on(crtc);
5014
5015         for_each_encoder_on_crtc(dev, crtc, encoder) {
5016                 encoder->enable(encoder);
5017                 intel_opregion_notify_encoder(encoder, true);
5018         }
5019
5020         if (intel_crtc->config->has_pch_encoder)
5021                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5022                                                       true);
5023
5024         /* If we change the relative order between pipe/planes enabling, we need
5025          * to change the workaround. */
5026         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
5027         if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
5028                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5029                 intel_wait_for_vblank(dev, hsw_workaround_pipe);
5030         }
5031 }
5032
5033 static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
5034 {
5035         struct drm_device *dev = crtc->base.dev;
5036         struct drm_i915_private *dev_priv = dev->dev_private;
5037         int pipe = crtc->pipe;
5038
5039         /* To avoid upsetting the power well on haswell only disable the pfit if
5040          * it's in use. The hw state code will make sure we get this right. */
5041         if (force || crtc->config->pch_pfit.enabled) {
5042                 I915_WRITE(PF_CTL(pipe), 0);
5043                 I915_WRITE(PF_WIN_POS(pipe), 0);
5044                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5045         }
5046 }
5047
5048 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5049 {
5050         struct drm_device *dev = crtc->dev;
5051         struct drm_i915_private *dev_priv = dev->dev_private;
5052         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5053         struct intel_encoder *encoder;
5054         int pipe = intel_crtc->pipe;
5055
5056         if (intel_crtc->config->has_pch_encoder)
5057                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5058
5059         for_each_encoder_on_crtc(dev, crtc, encoder)
5060                 encoder->disable(encoder);
5061
5062         drm_crtc_vblank_off(crtc);
5063         assert_vblank_disabled(crtc);
5064
5065         intel_disable_pipe(intel_crtc);
5066
5067         ironlake_pfit_disable(intel_crtc, false);
5068
5069         if (intel_crtc->config->has_pch_encoder)
5070                 ironlake_fdi_disable(crtc);
5071
5072         for_each_encoder_on_crtc(dev, crtc, encoder)
5073                 if (encoder->post_disable)
5074                         encoder->post_disable(encoder);
5075
5076         if (intel_crtc->config->has_pch_encoder) {
5077                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5078
5079                 if (HAS_PCH_CPT(dev)) {
5080                         i915_reg_t reg;
5081                         u32 temp;
5082
5083                         /* disable TRANS_DP_CTL */
5084                         reg = TRANS_DP_CTL(pipe);
5085                         temp = I915_READ(reg);
5086                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5087                                   TRANS_DP_PORT_SEL_MASK);
5088                         temp |= TRANS_DP_PORT_SEL_NONE;
5089                         I915_WRITE(reg, temp);
5090
5091                         /* disable DPLL_SEL */
5092                         temp = I915_READ(PCH_DPLL_SEL);
5093                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5094                         I915_WRITE(PCH_DPLL_SEL, temp);
5095                 }
5096
5097                 ironlake_fdi_pll_disable(intel_crtc);
5098         }
5099
5100         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
5101 }
5102
5103 static void haswell_crtc_disable(struct drm_crtc *crtc)
5104 {
5105         struct drm_device *dev = crtc->dev;
5106         struct drm_i915_private *dev_priv = dev->dev_private;
5107         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5108         struct intel_encoder *encoder;
5109         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5110         bool is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
5111
5112         if (intel_crtc->config->has_pch_encoder)
5113                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5114                                                       false);
5115
5116         for_each_encoder_on_crtc(dev, crtc, encoder) {
5117                 intel_opregion_notify_encoder(encoder, false);
5118                 encoder->disable(encoder);
5119         }
5120
5121         drm_crtc_vblank_off(crtc);
5122         assert_vblank_disabled(crtc);
5123
5124         intel_disable_pipe(intel_crtc);
5125
5126         if (intel_crtc->config->dp_encoder_is_mst)
5127                 intel_ddi_set_vc_payload_alloc(crtc, false);
5128
5129         if (!is_dsi)
5130                 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5131
5132         if (INTEL_INFO(dev)->gen >= 9)
5133                 skylake_scaler_disable(intel_crtc);
5134         else
5135                 ironlake_pfit_disable(intel_crtc, false);
5136
5137         if (!is_dsi)
5138                 intel_ddi_disable_pipe_clock(intel_crtc);
5139
5140         if (intel_crtc->config->has_pch_encoder) {
5141                 lpt_disable_pch_transcoder(dev_priv);
5142                 intel_ddi_fdi_disable(crtc);
5143         }
5144
5145         for_each_encoder_on_crtc(dev, crtc, encoder)
5146                 if (encoder->post_disable)
5147                         encoder->post_disable(encoder);
5148
5149         if (intel_crtc->config->has_pch_encoder)
5150                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5151                                                       true);
5152 }
5153
5154 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5155 {
5156         struct drm_device *dev = crtc->base.dev;
5157         struct drm_i915_private *dev_priv = dev->dev_private;
5158         struct intel_crtc_state *pipe_config = crtc->config;
5159
5160         if (!pipe_config->gmch_pfit.control)
5161                 return;
5162
5163         /*
5164          * The panel fitter should only be adjusted whilst the pipe is disabled,
5165          * according to register description and PRM.
5166          */
5167         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5168         assert_pipe_disabled(dev_priv, crtc->pipe);
5169
5170         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5171         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5172
5173         /* Border color in case we don't scale up to the full screen. Black by
5174          * default, change to something else for debugging. */
5175         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5176 }
5177
5178 static enum intel_display_power_domain port_to_power_domain(enum port port)
5179 {
5180         switch (port) {
5181         case PORT_A:
5182                 return POWER_DOMAIN_PORT_DDI_A_LANES;
5183         case PORT_B:
5184                 return POWER_DOMAIN_PORT_DDI_B_LANES;
5185         case PORT_C:
5186                 return POWER_DOMAIN_PORT_DDI_C_LANES;
5187         case PORT_D:
5188                 return POWER_DOMAIN_PORT_DDI_D_LANES;
5189         case PORT_E:
5190                 return POWER_DOMAIN_PORT_DDI_E_LANES;
5191         default:
5192                 MISSING_CASE(port);
5193                 return POWER_DOMAIN_PORT_OTHER;
5194         }
5195 }
5196
5197 static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5198 {
5199         switch (port) {
5200         case PORT_A:
5201                 return POWER_DOMAIN_AUX_A;
5202         case PORT_B:
5203                 return POWER_DOMAIN_AUX_B;
5204         case PORT_C:
5205                 return POWER_DOMAIN_AUX_C;
5206         case PORT_D:
5207                 return POWER_DOMAIN_AUX_D;
5208         case PORT_E:
5209                 /* FIXME: Check VBT for actual wiring of PORT E */
5210                 return POWER_DOMAIN_AUX_D;
5211         default:
5212                 MISSING_CASE(port);
5213                 return POWER_DOMAIN_AUX_A;
5214         }
5215 }
5216
5217 #define for_each_power_domain(domain, mask)                             \
5218         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5219                 if ((1 << (domain)) & (mask))
5220
5221 enum intel_display_power_domain
5222 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5223 {
5224         struct drm_device *dev = intel_encoder->base.dev;
5225         struct intel_digital_port *intel_dig_port;
5226
5227         switch (intel_encoder->type) {
5228         case INTEL_OUTPUT_UNKNOWN:
5229                 /* Only DDI platforms should ever use this output type */
5230                 WARN_ON_ONCE(!HAS_DDI(dev));
5231         case INTEL_OUTPUT_DISPLAYPORT:
5232         case INTEL_OUTPUT_HDMI:
5233         case INTEL_OUTPUT_EDP:
5234                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5235                 return port_to_power_domain(intel_dig_port->port);
5236         case INTEL_OUTPUT_DP_MST:
5237                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5238                 return port_to_power_domain(intel_dig_port->port);
5239         case INTEL_OUTPUT_ANALOG:
5240                 return POWER_DOMAIN_PORT_CRT;
5241         case INTEL_OUTPUT_DSI:
5242                 return POWER_DOMAIN_PORT_DSI;
5243         default:
5244                 return POWER_DOMAIN_PORT_OTHER;
5245         }
5246 }
5247
5248 enum intel_display_power_domain
5249 intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5250 {
5251         struct drm_device *dev = intel_encoder->base.dev;
5252         struct intel_digital_port *intel_dig_port;
5253
5254         switch (intel_encoder->type) {
5255         case INTEL_OUTPUT_UNKNOWN:
5256         case INTEL_OUTPUT_HDMI:
5257                 /*
5258                  * Only DDI platforms should ever use these output types.
5259                  * We can get here after the HDMI detect code has already set
5260                  * the type of the shared encoder. Since we can't be sure
5261                  * what's the status of the given connectors, play safe and
5262                  * run the DP detection too.
5263                  */
5264                 WARN_ON_ONCE(!HAS_DDI(dev));
5265         case INTEL_OUTPUT_DISPLAYPORT:
5266         case INTEL_OUTPUT_EDP:
5267                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5268                 return port_to_aux_power_domain(intel_dig_port->port);
5269         case INTEL_OUTPUT_DP_MST:
5270                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5271                 return port_to_aux_power_domain(intel_dig_port->port);
5272         default:
5273                 MISSING_CASE(intel_encoder->type);
5274                 return POWER_DOMAIN_AUX_A;
5275         }
5276 }
5277
5278 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5279 {
5280         struct drm_device *dev = crtc->dev;
5281         struct intel_encoder *intel_encoder;
5282         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5283         enum pipe pipe = intel_crtc->pipe;
5284         unsigned long mask;
5285         enum transcoder transcoder = intel_crtc->config->cpu_transcoder;
5286
5287         if (!crtc->state->active)
5288                 return 0;
5289
5290         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5291         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5292         if (intel_crtc->config->pch_pfit.enabled ||
5293             intel_crtc->config->pch_pfit.force_thru)
5294                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5295
5296         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5297                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5298
5299         return mask;
5300 }
5301
5302 static unsigned long modeset_get_crtc_power_domains(struct drm_crtc *crtc)
5303 {
5304         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5305         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5306         enum intel_display_power_domain domain;
5307         unsigned long domains, new_domains, old_domains;
5308
5309         old_domains = intel_crtc->enabled_power_domains;
5310         intel_crtc->enabled_power_domains = new_domains = get_crtc_power_domains(crtc);
5311
5312         domains = new_domains & ~old_domains;
5313
5314         for_each_power_domain(domain, domains)
5315                 intel_display_power_get(dev_priv, domain);
5316
5317         return old_domains & ~new_domains;
5318 }
5319
5320 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5321                                       unsigned long domains)
5322 {
5323         enum intel_display_power_domain domain;
5324
5325         for_each_power_domain(domain, domains)
5326                 intel_display_power_put(dev_priv, domain);
5327 }
5328
5329 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5330 {
5331         struct drm_device *dev = state->dev;
5332         struct drm_i915_private *dev_priv = dev->dev_private;
5333         unsigned long put_domains[I915_MAX_PIPES] = {};
5334         struct drm_crtc_state *crtc_state;
5335         struct drm_crtc *crtc;
5336         int i;
5337
5338         for_each_crtc_in_state(state, crtc, crtc_state, i) {
5339                 if (needs_modeset(crtc->state))
5340                         put_domains[to_intel_crtc(crtc)->pipe] =
5341                                 modeset_get_crtc_power_domains(crtc);
5342         }
5343
5344         if (dev_priv->display.modeset_commit_cdclk) {
5345                 unsigned int cdclk = to_intel_atomic_state(state)->cdclk;
5346
5347                 if (cdclk != dev_priv->cdclk_freq &&
5348                     !WARN_ON(!state->allow_modeset))
5349                         dev_priv->display.modeset_commit_cdclk(state);
5350         }
5351
5352         for (i = 0; i < I915_MAX_PIPES; i++)
5353                 if (put_domains[i])
5354                         modeset_put_power_domains(dev_priv, put_domains[i]);
5355 }
5356
5357 static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5358 {
5359         int max_cdclk_freq = dev_priv->max_cdclk_freq;
5360
5361         if (INTEL_INFO(dev_priv)->gen >= 9 ||
5362             IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5363                 return max_cdclk_freq;
5364         else if (IS_CHERRYVIEW(dev_priv))
5365                 return max_cdclk_freq*95/100;
5366         else if (INTEL_INFO(dev_priv)->gen < 4)
5367                 return 2*max_cdclk_freq*90/100;
5368         else
5369                 return max_cdclk_freq*90/100;
5370 }
5371
5372 static void intel_update_max_cdclk(struct drm_device *dev)
5373 {
5374         struct drm_i915_private *dev_priv = dev->dev_private;
5375
5376         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
5377                 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5378
5379                 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5380                         dev_priv->max_cdclk_freq = 675000;
5381                 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5382                         dev_priv->max_cdclk_freq = 540000;
5383                 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5384                         dev_priv->max_cdclk_freq = 450000;
5385                 else
5386                         dev_priv->max_cdclk_freq = 337500;
5387         } else if (IS_BROADWELL(dev))  {
5388                 /*
5389                  * FIXME with extra cooling we can allow
5390                  * 540 MHz for ULX and 675 Mhz for ULT.
5391                  * How can we know if extra cooling is
5392                  * available? PCI ID, VTB, something else?
5393                  */
5394                 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5395                         dev_priv->max_cdclk_freq = 450000;
5396                 else if (IS_BDW_ULX(dev))
5397                         dev_priv->max_cdclk_freq = 450000;
5398                 else if (IS_BDW_ULT(dev))
5399                         dev_priv->max_cdclk_freq = 540000;
5400                 else
5401                         dev_priv->max_cdclk_freq = 675000;
5402         } else if (IS_CHERRYVIEW(dev)) {
5403                 dev_priv->max_cdclk_freq = 320000;
5404         } else if (IS_VALLEYVIEW(dev)) {
5405                 dev_priv->max_cdclk_freq = 400000;
5406         } else {
5407                 /* otherwise assume cdclk is fixed */
5408                 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5409         }
5410
5411         dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5412
5413         DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5414                          dev_priv->max_cdclk_freq);
5415
5416         DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5417                          dev_priv->max_dotclk_freq);
5418 }
5419
5420 static void intel_update_cdclk(struct drm_device *dev)
5421 {
5422         struct drm_i915_private *dev_priv = dev->dev_private;
5423
5424         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5425         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5426                          dev_priv->cdclk_freq);
5427
5428         /*
5429          * Program the gmbus_freq based on the cdclk frequency.
5430          * BSpec erroneously claims we should aim for 4MHz, but
5431          * in fact 1MHz is the correct frequency.
5432          */
5433         if (IS_VALLEYVIEW(dev)) {
5434                 /*
5435                  * Program the gmbus_freq based on the cdclk frequency.
5436                  * BSpec erroneously claims we should aim for 4MHz, but
5437                  * in fact 1MHz is the correct frequency.
5438                  */
5439                 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5440         }
5441
5442         if (dev_priv->max_cdclk_freq == 0)
5443                 intel_update_max_cdclk(dev);
5444 }
5445
5446 static void broxton_set_cdclk(struct drm_device *dev, int frequency)
5447 {
5448         struct drm_i915_private *dev_priv = dev->dev_private;
5449         uint32_t divider;
5450         uint32_t ratio;
5451         uint32_t current_freq;
5452         int ret;
5453
5454         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5455         switch (frequency) {
5456         case 144000:
5457                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5458                 ratio = BXT_DE_PLL_RATIO(60);
5459                 break;
5460         case 288000:
5461                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5462                 ratio = BXT_DE_PLL_RATIO(60);
5463                 break;
5464         case 384000:
5465                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5466                 ratio = BXT_DE_PLL_RATIO(60);
5467                 break;
5468         case 576000:
5469                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5470                 ratio = BXT_DE_PLL_RATIO(60);
5471                 break;
5472         case 624000:
5473                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5474                 ratio = BXT_DE_PLL_RATIO(65);
5475                 break;
5476         case 19200:
5477                 /*
5478                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5479                  * to suppress GCC warning.
5480                  */
5481                 ratio = 0;
5482                 divider = 0;
5483                 break;
5484         default:
5485                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5486
5487                 return;
5488         }
5489
5490         mutex_lock(&dev_priv->rps.hw_lock);
5491         /* Inform power controller of upcoming frequency change */
5492         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5493                                       0x80000000);
5494         mutex_unlock(&dev_priv->rps.hw_lock);
5495
5496         if (ret) {
5497                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5498                           ret, frequency);
5499                 return;
5500         }
5501
5502         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5503         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5504         current_freq = current_freq * 500 + 1000;
5505
5506         /*
5507          * DE PLL has to be disabled when
5508          * - setting to 19.2MHz (bypass, PLL isn't used)
5509          * - before setting to 624MHz (PLL needs toggling)
5510          * - before setting to any frequency from 624MHz (PLL needs toggling)
5511          */
5512         if (frequency == 19200 || frequency == 624000 ||
5513             current_freq == 624000) {
5514                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5515                 /* Timeout 200us */
5516                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5517                              1))
5518                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5519         }
5520
5521         if (frequency != 19200) {
5522                 uint32_t val;
5523
5524                 val = I915_READ(BXT_DE_PLL_CTL);
5525                 val &= ~BXT_DE_PLL_RATIO_MASK;
5526                 val |= ratio;
5527                 I915_WRITE(BXT_DE_PLL_CTL, val);
5528
5529                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5530                 /* Timeout 200us */
5531                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5532                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5533
5534                 val = I915_READ(CDCLK_CTL);
5535                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5536                 val |= divider;
5537                 /*
5538                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5539                  * enable otherwise.
5540                  */
5541                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5542                 if (frequency >= 500000)
5543                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5544
5545                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5546                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5547                 val |= (frequency - 1000) / 500;
5548                 I915_WRITE(CDCLK_CTL, val);
5549         }
5550
5551         mutex_lock(&dev_priv->rps.hw_lock);
5552         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5553                                       DIV_ROUND_UP(frequency, 25000));
5554         mutex_unlock(&dev_priv->rps.hw_lock);
5555
5556         if (ret) {
5557                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5558                           ret, frequency);
5559                 return;
5560         }
5561
5562         intel_update_cdclk(dev);
5563 }
5564
5565 void broxton_init_cdclk(struct drm_device *dev)
5566 {
5567         struct drm_i915_private *dev_priv = dev->dev_private;
5568         uint32_t val;
5569
5570         /*
5571          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5572          * or else the reset will hang because there is no PCH to respond.
5573          * Move the handshake programming to initialization sequence.
5574          * Previously was left up to BIOS.
5575          */
5576         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5577         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5578         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5579
5580         /* Enable PG1 for cdclk */
5581         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5582
5583         /* check if cd clock is enabled */
5584         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5585                 DRM_DEBUG_KMS("Display already initialized\n");
5586                 return;
5587         }
5588
5589         /*
5590          * FIXME:
5591          * - The initial CDCLK needs to be read from VBT.
5592          *   Need to make this change after VBT has changes for BXT.
5593          * - check if setting the max (or any) cdclk freq is really necessary
5594          *   here, it belongs to modeset time
5595          */
5596         broxton_set_cdclk(dev, 624000);
5597
5598         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5599         POSTING_READ(DBUF_CTL);
5600
5601         udelay(10);
5602
5603         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5604                 DRM_ERROR("DBuf power enable timeout!\n");
5605 }
5606
5607 void broxton_uninit_cdclk(struct drm_device *dev)
5608 {
5609         struct drm_i915_private *dev_priv = dev->dev_private;
5610
5611         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5612         POSTING_READ(DBUF_CTL);
5613
5614         udelay(10);
5615
5616         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5617                 DRM_ERROR("DBuf power disable timeout!\n");
5618
5619         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5620         broxton_set_cdclk(dev, 19200);
5621
5622         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5623 }
5624
5625 static const struct skl_cdclk_entry {
5626         unsigned int freq;
5627         unsigned int vco;
5628 } skl_cdclk_frequencies[] = {
5629         { .freq = 308570, .vco = 8640 },
5630         { .freq = 337500, .vco = 8100 },
5631         { .freq = 432000, .vco = 8640 },
5632         { .freq = 450000, .vco = 8100 },
5633         { .freq = 540000, .vco = 8100 },
5634         { .freq = 617140, .vco = 8640 },
5635         { .freq = 675000, .vco = 8100 },
5636 };
5637
5638 static unsigned int skl_cdclk_decimal(unsigned int freq)
5639 {
5640         return (freq - 1000) / 500;
5641 }
5642
5643 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5644 {
5645         unsigned int i;
5646
5647         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5648                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5649
5650                 if (e->freq == freq)
5651                         return e->vco;
5652         }
5653
5654         return 8100;
5655 }
5656
5657 static void
5658 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5659 {
5660         unsigned int min_freq;
5661         u32 val;
5662
5663         /* select the minimum CDCLK before enabling DPLL 0 */
5664         val = I915_READ(CDCLK_CTL);
5665         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5666         val |= CDCLK_FREQ_337_308;
5667
5668         if (required_vco == 8640)
5669                 min_freq = 308570;
5670         else
5671                 min_freq = 337500;
5672
5673         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5674
5675         I915_WRITE(CDCLK_CTL, val);
5676         POSTING_READ(CDCLK_CTL);
5677
5678         /*
5679          * We always enable DPLL0 with the lowest link rate possible, but still
5680          * taking into account the VCO required to operate the eDP panel at the
5681          * desired frequency. The usual DP link rates operate with a VCO of
5682          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5683          * The modeset code is responsible for the selection of the exact link
5684          * rate later on, with the constraint of choosing a frequency that
5685          * works with required_vco.
5686          */
5687         val = I915_READ(DPLL_CTRL1);
5688
5689         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5690                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5691         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5692         if (required_vco == 8640)
5693                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5694                                             SKL_DPLL0);
5695         else
5696                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5697                                             SKL_DPLL0);
5698
5699         I915_WRITE(DPLL_CTRL1, val);
5700         POSTING_READ(DPLL_CTRL1);
5701
5702         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5703
5704         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5705                 DRM_ERROR("DPLL0 not locked\n");
5706 }
5707
5708 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5709 {
5710         int ret;
5711         u32 val;
5712
5713         /* inform PCU we want to change CDCLK */
5714         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5715         mutex_lock(&dev_priv->rps.hw_lock);
5716         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5717         mutex_unlock(&dev_priv->rps.hw_lock);
5718
5719         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5720 }
5721
5722 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5723 {
5724         unsigned int i;
5725
5726         for (i = 0; i < 15; i++) {
5727                 if (skl_cdclk_pcu_ready(dev_priv))
5728                         return true;
5729                 udelay(10);
5730         }
5731
5732         return false;
5733 }
5734
5735 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5736 {
5737         struct drm_device *dev = dev_priv->dev;
5738         u32 freq_select, pcu_ack;
5739
5740         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5741
5742         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5743                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5744                 return;
5745         }
5746
5747         /* set CDCLK_CTL */
5748         switch(freq) {
5749         case 450000:
5750         case 432000:
5751                 freq_select = CDCLK_FREQ_450_432;
5752                 pcu_ack = 1;
5753                 break;
5754         case 540000:
5755                 freq_select = CDCLK_FREQ_540;
5756                 pcu_ack = 2;
5757                 break;
5758         case 308570:
5759         case 337500:
5760         default:
5761                 freq_select = CDCLK_FREQ_337_308;
5762                 pcu_ack = 0;
5763                 break;
5764         case 617140:
5765         case 675000:
5766                 freq_select = CDCLK_FREQ_675_617;
5767                 pcu_ack = 3;
5768                 break;
5769         }
5770
5771         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5772         POSTING_READ(CDCLK_CTL);
5773
5774         /* inform PCU of the change */
5775         mutex_lock(&dev_priv->rps.hw_lock);
5776         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5777         mutex_unlock(&dev_priv->rps.hw_lock);
5778
5779         intel_update_cdclk(dev);
5780 }
5781
5782 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5783 {
5784         /* disable DBUF power */
5785         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5786         POSTING_READ(DBUF_CTL);
5787
5788         udelay(10);
5789
5790         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5791                 DRM_ERROR("DBuf power disable timeout\n");
5792
5793         /* disable DPLL0 */
5794         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5795         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5796                 DRM_ERROR("Couldn't disable DPLL0\n");
5797 }
5798
5799 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5800 {
5801         unsigned int required_vco;
5802
5803         /* DPLL0 not enabled (happens on early BIOS versions) */
5804         if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5805                 /* enable DPLL0 */
5806                 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5807                 skl_dpll0_enable(dev_priv, required_vco);
5808         }
5809
5810         /* set CDCLK to the frequency the BIOS chose */
5811         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5812
5813         /* enable DBUF power */
5814         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5815         POSTING_READ(DBUF_CTL);
5816
5817         udelay(10);
5818
5819         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5820                 DRM_ERROR("DBuf power enable timeout\n");
5821 }
5822
5823 int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5824 {
5825         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5826         uint32_t cdctl = I915_READ(CDCLK_CTL);
5827         int freq = dev_priv->skl_boot_cdclk;
5828
5829         /*
5830          * check if the pre-os intialized the display
5831          * There is SWF18 scratchpad register defined which is set by the
5832          * pre-os which can be used by the OS drivers to check the status
5833          */
5834         if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5835                 goto sanitize;
5836
5837         /* Is PLL enabled and locked ? */
5838         if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5839                 goto sanitize;
5840
5841         /* DPLL okay; verify the cdclock
5842          *
5843          * Noticed in some instances that the freq selection is correct but
5844          * decimal part is programmed wrong from BIOS where pre-os does not
5845          * enable display. Verify the same as well.
5846          */
5847         if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5848                 /* All well; nothing to sanitize */
5849                 return false;
5850 sanitize:
5851         /*
5852          * As of now initialize with max cdclk till
5853          * we get dynamic cdclk support
5854          * */
5855         dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5856         skl_init_cdclk(dev_priv);
5857
5858         /* we did have to sanitize */
5859         return true;
5860 }
5861
5862 /* Adjust CDclk dividers to allow high res or save power if possible */
5863 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5864 {
5865         struct drm_i915_private *dev_priv = dev->dev_private;
5866         u32 val, cmd;
5867
5868         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5869                                         != dev_priv->cdclk_freq);
5870
5871         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5872                 cmd = 2;
5873         else if (cdclk == 266667)
5874                 cmd = 1;
5875         else
5876                 cmd = 0;
5877
5878         mutex_lock(&dev_priv->rps.hw_lock);
5879         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5880         val &= ~DSPFREQGUAR_MASK;
5881         val |= (cmd << DSPFREQGUAR_SHIFT);
5882         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5883         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5884                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5885                      50)) {
5886                 DRM_ERROR("timed out waiting for CDclk change\n");
5887         }
5888         mutex_unlock(&dev_priv->rps.hw_lock);
5889
5890         mutex_lock(&dev_priv->sb_lock);
5891
5892         if (cdclk == 400000) {
5893                 u32 divider;
5894
5895                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5896
5897                 /* adjust cdclk divider */
5898                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5899                 val &= ~CCK_FREQUENCY_VALUES;
5900                 val |= divider;
5901                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5902
5903                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5904                               CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
5905                              50))
5906                         DRM_ERROR("timed out waiting for CDclk change\n");
5907         }
5908
5909         /* adjust self-refresh exit latency value */
5910         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5911         val &= ~0x7f;
5912
5913         /*
5914          * For high bandwidth configs, we set a higher latency in the bunit
5915          * so that the core display fetch happens in time to avoid underruns.
5916          */
5917         if (cdclk == 400000)
5918                 val |= 4500 / 250; /* 4.5 usec */
5919         else
5920                 val |= 3000 / 250; /* 3.0 usec */
5921         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5922
5923         mutex_unlock(&dev_priv->sb_lock);
5924
5925         intel_update_cdclk(dev);
5926 }
5927
5928 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5929 {
5930         struct drm_i915_private *dev_priv = dev->dev_private;
5931         u32 val, cmd;
5932
5933         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5934                                                 != dev_priv->cdclk_freq);
5935
5936         switch (cdclk) {
5937         case 333333:
5938         case 320000:
5939         case 266667:
5940         case 200000:
5941                 break;
5942         default:
5943                 MISSING_CASE(cdclk);
5944                 return;
5945         }
5946
5947         /*
5948          * Specs are full of misinformation, but testing on actual
5949          * hardware has shown that we just need to write the desired
5950          * CCK divider into the Punit register.
5951          */
5952         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5953
5954         mutex_lock(&dev_priv->rps.hw_lock);
5955         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5956         val &= ~DSPFREQGUAR_MASK_CHV;
5957         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5958         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5959         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5960                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5961                      50)) {
5962                 DRM_ERROR("timed out waiting for CDclk change\n");
5963         }
5964         mutex_unlock(&dev_priv->rps.hw_lock);
5965
5966         intel_update_cdclk(dev);
5967 }
5968
5969 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5970                                  int max_pixclk)
5971 {
5972         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5973         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5974
5975         /*
5976          * Really only a few cases to deal with, as only 4 CDclks are supported:
5977          *   200MHz
5978          *   267MHz
5979          *   320/333MHz (depends on HPLL freq)
5980          *   400MHz (VLV only)
5981          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5982          * of the lower bin and adjust if needed.
5983          *
5984          * We seem to get an unstable or solid color picture at 200MHz.
5985          * Not sure what's wrong. For now use 200MHz only when all pipes
5986          * are off.
5987          */
5988         if (!IS_CHERRYVIEW(dev_priv) &&
5989             max_pixclk > freq_320*limit/100)
5990                 return 400000;
5991         else if (max_pixclk > 266667*limit/100)
5992                 return freq_320;
5993         else if (max_pixclk > 0)
5994                 return 266667;
5995         else
5996                 return 200000;
5997 }
5998
5999 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
6000                               int max_pixclk)
6001 {
6002         /*
6003          * FIXME:
6004          * - remove the guardband, it's not needed on BXT
6005          * - set 19.2MHz bypass frequency if there are no active pipes
6006          */
6007         if (max_pixclk > 576000*9/10)
6008                 return 624000;
6009         else if (max_pixclk > 384000*9/10)
6010                 return 576000;
6011         else if (max_pixclk > 288000*9/10)
6012                 return 384000;
6013         else if (max_pixclk > 144000*9/10)
6014                 return 288000;
6015         else
6016                 return 144000;
6017 }
6018
6019 /* Compute the max pixel clock for new configuration. Uses atomic state if
6020  * that's non-NULL, look at current state otherwise. */
6021 static int intel_mode_max_pixclk(struct drm_device *dev,
6022                                  struct drm_atomic_state *state)
6023 {
6024         struct intel_crtc *intel_crtc;
6025         struct intel_crtc_state *crtc_state;
6026         int max_pixclk = 0;
6027
6028         for_each_intel_crtc(dev, intel_crtc) {
6029                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
6030                 if (IS_ERR(crtc_state))
6031                         return PTR_ERR(crtc_state);
6032
6033                 if (!crtc_state->base.enable)
6034                         continue;
6035
6036                 max_pixclk = max(max_pixclk,
6037                                  crtc_state->base.adjusted_mode.crtc_clock);
6038         }
6039
6040         return max_pixclk;
6041 }
6042
6043 static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
6044 {
6045         struct drm_device *dev = state->dev;
6046         struct drm_i915_private *dev_priv = dev->dev_private;
6047         int max_pixclk = intel_mode_max_pixclk(dev, state);
6048
6049         if (max_pixclk < 0)
6050                 return max_pixclk;
6051
6052         to_intel_atomic_state(state)->cdclk =
6053                 valleyview_calc_cdclk(dev_priv, max_pixclk);
6054
6055         return 0;
6056 }
6057
6058 static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
6059 {
6060         struct drm_device *dev = state->dev;
6061         struct drm_i915_private *dev_priv = dev->dev_private;
6062         int max_pixclk = intel_mode_max_pixclk(dev, state);
6063
6064         if (max_pixclk < 0)
6065                 return max_pixclk;
6066
6067         to_intel_atomic_state(state)->cdclk =
6068                 broxton_calc_cdclk(dev_priv, max_pixclk);
6069
6070         return 0;
6071 }
6072
6073 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
6074 {
6075         unsigned int credits, default_credits;
6076
6077         if (IS_CHERRYVIEW(dev_priv))
6078                 default_credits = PFI_CREDIT(12);
6079         else
6080                 default_credits = PFI_CREDIT(8);
6081
6082         if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
6083                 /* CHV suggested value is 31 or 63 */
6084                 if (IS_CHERRYVIEW(dev_priv))
6085                         credits = PFI_CREDIT_63;
6086                 else
6087                         credits = PFI_CREDIT(15);
6088         } else {
6089                 credits = default_credits;
6090         }
6091
6092         /*
6093          * WA - write default credits before re-programming
6094          * FIXME: should we also set the resend bit here?
6095          */
6096         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6097                    default_credits);
6098
6099         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6100                    credits | PFI_CREDIT_RESEND);
6101
6102         /*
6103          * FIXME is this guaranteed to clear
6104          * immediately or should we poll for it?
6105          */
6106         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6107 }
6108
6109 static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
6110 {
6111         struct drm_device *dev = old_state->dev;
6112         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
6113         struct drm_i915_private *dev_priv = dev->dev_private;
6114
6115         /*
6116          * FIXME: We can end up here with all power domains off, yet
6117          * with a CDCLK frequency other than the minimum. To account
6118          * for this take the PIPE-A power domain, which covers the HW
6119          * blocks needed for the following programming. This can be
6120          * removed once it's guaranteed that we get here either with
6121          * the minimum CDCLK set, or the required power domains
6122          * enabled.
6123          */
6124         intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6125
6126         if (IS_CHERRYVIEW(dev))
6127                 cherryview_set_cdclk(dev, req_cdclk);
6128         else
6129                 valleyview_set_cdclk(dev, req_cdclk);
6130
6131         vlv_program_pfi_credits(dev_priv);
6132
6133         intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6134 }
6135
6136 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6137 {
6138         struct drm_device *dev = crtc->dev;
6139         struct drm_i915_private *dev_priv = to_i915(dev);
6140         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6141         struct intel_encoder *encoder;
6142         int pipe = intel_crtc->pipe;
6143         bool is_dsi;
6144
6145         if (WARN_ON(intel_crtc->active))
6146                 return;
6147
6148         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6149
6150         if (intel_crtc->config->has_dp_encoder)
6151                 intel_dp_set_m_n(intel_crtc, M1_N1);
6152
6153         intel_set_pipe_timings(intel_crtc);
6154
6155         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6156                 struct drm_i915_private *dev_priv = dev->dev_private;
6157
6158                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6159                 I915_WRITE(CHV_CANVAS(pipe), 0);
6160         }
6161
6162         i9xx_set_pipeconf(intel_crtc);
6163
6164         intel_crtc->active = true;
6165
6166         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6167
6168         for_each_encoder_on_crtc(dev, crtc, encoder)
6169                 if (encoder->pre_pll_enable)
6170                         encoder->pre_pll_enable(encoder);
6171
6172         if (!is_dsi) {
6173                 if (IS_CHERRYVIEW(dev)) {
6174                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6175                         chv_enable_pll(intel_crtc, intel_crtc->config);
6176                 } else {
6177                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6178                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6179                 }
6180         }
6181
6182         for_each_encoder_on_crtc(dev, crtc, encoder)
6183                 if (encoder->pre_enable)
6184                         encoder->pre_enable(encoder);
6185
6186         i9xx_pfit_enable(intel_crtc);
6187
6188         intel_crtc_load_lut(crtc);
6189
6190         intel_enable_pipe(intel_crtc);
6191
6192         assert_vblank_disabled(crtc);
6193         drm_crtc_vblank_on(crtc);
6194
6195         for_each_encoder_on_crtc(dev, crtc, encoder)
6196                 encoder->enable(encoder);
6197 }
6198
6199 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6200 {
6201         struct drm_device *dev = crtc->base.dev;
6202         struct drm_i915_private *dev_priv = dev->dev_private;
6203
6204         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6205         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6206 }
6207
6208 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6209 {
6210         struct drm_device *dev = crtc->dev;
6211         struct drm_i915_private *dev_priv = to_i915(dev);
6212         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6213         struct intel_encoder *encoder;
6214         int pipe = intel_crtc->pipe;
6215
6216         if (WARN_ON(intel_crtc->active))
6217                 return;
6218
6219         i9xx_set_pll_dividers(intel_crtc);
6220
6221         if (intel_crtc->config->has_dp_encoder)
6222                 intel_dp_set_m_n(intel_crtc, M1_N1);
6223
6224         intel_set_pipe_timings(intel_crtc);
6225
6226         i9xx_set_pipeconf(intel_crtc);
6227
6228         intel_crtc->active = true;
6229
6230         if (!IS_GEN2(dev))
6231                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6232
6233         for_each_encoder_on_crtc(dev, crtc, encoder)
6234                 if (encoder->pre_enable)
6235                         encoder->pre_enable(encoder);
6236
6237         i9xx_enable_pll(intel_crtc);
6238
6239         i9xx_pfit_enable(intel_crtc);
6240
6241         intel_crtc_load_lut(crtc);
6242
6243         intel_update_watermarks(crtc);
6244         intel_enable_pipe(intel_crtc);
6245
6246         assert_vblank_disabled(crtc);
6247         drm_crtc_vblank_on(crtc);
6248
6249         for_each_encoder_on_crtc(dev, crtc, encoder)
6250                 encoder->enable(encoder);
6251 }
6252
6253 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6254 {
6255         struct drm_device *dev = crtc->base.dev;
6256         struct drm_i915_private *dev_priv = dev->dev_private;
6257
6258         if (!crtc->config->gmch_pfit.control)
6259                 return;
6260
6261         assert_pipe_disabled(dev_priv, crtc->pipe);
6262
6263         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6264                          I915_READ(PFIT_CONTROL));
6265         I915_WRITE(PFIT_CONTROL, 0);
6266 }
6267
6268 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6269 {
6270         struct drm_device *dev = crtc->dev;
6271         struct drm_i915_private *dev_priv = dev->dev_private;
6272         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6273         struct intel_encoder *encoder;
6274         int pipe = intel_crtc->pipe;
6275
6276         /*
6277          * On gen2 planes are double buffered but the pipe isn't, so we must
6278          * wait for planes to fully turn off before disabling the pipe.
6279          * We also need to wait on all gmch platforms because of the
6280          * self-refresh mode constraint explained above.
6281          */
6282         intel_wait_for_vblank(dev, pipe);
6283
6284         for_each_encoder_on_crtc(dev, crtc, encoder)
6285                 encoder->disable(encoder);
6286
6287         drm_crtc_vblank_off(crtc);
6288         assert_vblank_disabled(crtc);
6289
6290         intel_disable_pipe(intel_crtc);
6291
6292         i9xx_pfit_disable(intel_crtc);
6293
6294         for_each_encoder_on_crtc(dev, crtc, encoder)
6295                 if (encoder->post_disable)
6296                         encoder->post_disable(encoder);
6297
6298         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6299                 if (IS_CHERRYVIEW(dev))
6300                         chv_disable_pll(dev_priv, pipe);
6301                 else if (IS_VALLEYVIEW(dev))
6302                         vlv_disable_pll(dev_priv, pipe);
6303                 else
6304                         i9xx_disable_pll(intel_crtc);
6305         }
6306
6307         for_each_encoder_on_crtc(dev, crtc, encoder)
6308                 if (encoder->post_pll_disable)
6309                         encoder->post_pll_disable(encoder);
6310
6311         if (!IS_GEN2(dev))
6312                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6313 }
6314
6315 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6316 {
6317         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6318         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6319         enum intel_display_power_domain domain;
6320         unsigned long domains;
6321
6322         if (!intel_crtc->active)
6323                 return;
6324
6325         if (to_intel_plane_state(crtc->primary->state)->visible) {
6326                 WARN_ON(intel_crtc->unpin_work);
6327
6328                 intel_pre_disable_primary(crtc);
6329         }
6330
6331         intel_crtc_disable_planes(crtc, crtc->state->plane_mask);
6332         dev_priv->display.crtc_disable(crtc);
6333         intel_crtc->active = false;
6334         intel_update_watermarks(crtc);
6335         intel_disable_shared_dpll(intel_crtc);
6336
6337         domains = intel_crtc->enabled_power_domains;
6338         for_each_power_domain(domain, domains)
6339                 intel_display_power_put(dev_priv, domain);
6340         intel_crtc->enabled_power_domains = 0;
6341 }
6342
6343 /*
6344  * turn all crtc's off, but do not adjust state
6345  * This has to be paired with a call to intel_modeset_setup_hw_state.
6346  */
6347 int intel_display_suspend(struct drm_device *dev)
6348 {
6349         struct drm_mode_config *config = &dev->mode_config;
6350         struct drm_modeset_acquire_ctx *ctx = config->acquire_ctx;
6351         struct drm_atomic_state *state;
6352         struct drm_crtc *crtc;
6353         unsigned crtc_mask = 0;
6354         int ret = 0;
6355
6356         if (WARN_ON(!ctx))
6357                 return 0;
6358
6359         lockdep_assert_held(&ctx->ww_ctx);
6360         state = drm_atomic_state_alloc(dev);
6361         if (WARN_ON(!state))
6362                 return -ENOMEM;
6363
6364         state->acquire_ctx = ctx;
6365         state->allow_modeset = true;
6366
6367         for_each_crtc(dev, crtc) {
6368                 struct drm_crtc_state *crtc_state =
6369                         drm_atomic_get_crtc_state(state, crtc);
6370
6371                 ret = PTR_ERR_OR_ZERO(crtc_state);
6372                 if (ret)
6373                         goto free;
6374
6375                 if (!crtc_state->active)
6376                         continue;
6377
6378                 crtc_state->active = false;
6379                 crtc_mask |= 1 << drm_crtc_index(crtc);
6380         }
6381
6382         if (crtc_mask) {
6383                 ret = drm_atomic_commit(state);
6384
6385                 if (!ret) {
6386                         for_each_crtc(dev, crtc)
6387                                 if (crtc_mask & (1 << drm_crtc_index(crtc)))
6388                                         crtc->state->active = true;
6389
6390                         return ret;
6391                 }
6392         }
6393
6394 free:
6395         if (ret)
6396                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
6397         drm_atomic_state_free(state);
6398         return ret;
6399 }
6400
6401 void intel_encoder_destroy(struct drm_encoder *encoder)
6402 {
6403         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6404
6405         drm_encoder_cleanup(encoder);
6406         kfree(intel_encoder);
6407 }
6408
6409 /* Cross check the actual hw state with our own modeset state tracking (and it's
6410  * internal consistency). */
6411 static void intel_connector_check_state(struct intel_connector *connector)
6412 {
6413         struct drm_crtc *crtc = connector->base.state->crtc;
6414
6415         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6416                       connector->base.base.id,
6417                       connector->base.name);
6418
6419         if (connector->get_hw_state(connector)) {
6420                 struct intel_encoder *encoder = connector->encoder;
6421                 struct drm_connector_state *conn_state = connector->base.state;
6422
6423                 I915_STATE_WARN(!crtc,
6424                          "connector enabled without attached crtc\n");
6425
6426                 if (!crtc)
6427                         return;
6428
6429                 I915_STATE_WARN(!crtc->state->active,
6430                       "connector is active, but attached crtc isn't\n");
6431
6432                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
6433                         return;
6434
6435                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
6436                         "atomic encoder doesn't match attached encoder\n");
6437
6438                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
6439                         "attached encoder crtc differs from connector crtc\n");
6440         } else {
6441                 I915_STATE_WARN(crtc && crtc->state->active,
6442                         "attached crtc is active, but connector isn't\n");
6443                 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6444                         "best encoder set without crtc!\n");
6445         }
6446 }
6447
6448 int intel_connector_init(struct intel_connector *connector)
6449 {
6450         struct drm_connector_state *connector_state;
6451
6452         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6453         if (!connector_state)
6454                 return -ENOMEM;
6455
6456         connector->base.state = connector_state;
6457         return 0;
6458 }
6459
6460 struct intel_connector *intel_connector_alloc(void)
6461 {
6462         struct intel_connector *connector;
6463
6464         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6465         if (!connector)
6466                 return NULL;
6467
6468         if (intel_connector_init(connector) < 0) {
6469                 kfree(connector);
6470                 return NULL;
6471         }
6472
6473         return connector;
6474 }
6475
6476 /* Simple connector->get_hw_state implementation for encoders that support only
6477  * one connector and no cloning and hence the encoder state determines the state
6478  * of the connector. */
6479 bool intel_connector_get_hw_state(struct intel_connector *connector)
6480 {
6481         enum pipe pipe = 0;
6482         struct intel_encoder *encoder = connector->encoder;
6483
6484         return encoder->get_hw_state(encoder, &pipe);
6485 }
6486
6487 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6488 {
6489         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6490                 return crtc_state->fdi_lanes;
6491
6492         return 0;
6493 }
6494
6495 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6496                                      struct intel_crtc_state *pipe_config)
6497 {
6498         struct drm_atomic_state *state = pipe_config->base.state;
6499         struct intel_crtc *other_crtc;
6500         struct intel_crtc_state *other_crtc_state;
6501
6502         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6503                       pipe_name(pipe), pipe_config->fdi_lanes);
6504         if (pipe_config->fdi_lanes > 4) {
6505                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6506                               pipe_name(pipe), pipe_config->fdi_lanes);
6507                 return -EINVAL;
6508         }
6509
6510         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6511                 if (pipe_config->fdi_lanes > 2) {
6512                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6513                                       pipe_config->fdi_lanes);
6514                         return -EINVAL;
6515                 } else {
6516                         return 0;
6517                 }
6518         }
6519
6520         if (INTEL_INFO(dev)->num_pipes == 2)
6521                 return 0;
6522
6523         /* Ivybridge 3 pipe is really complicated */
6524         switch (pipe) {
6525         case PIPE_A:
6526                 return 0;
6527         case PIPE_B:
6528                 if (pipe_config->fdi_lanes <= 2)
6529                         return 0;
6530
6531                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6532                 other_crtc_state =
6533                         intel_atomic_get_crtc_state(state, other_crtc);
6534                 if (IS_ERR(other_crtc_state))
6535                         return PTR_ERR(other_crtc_state);
6536
6537                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6538                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6539                                       pipe_name(pipe), pipe_config->fdi_lanes);
6540                         return -EINVAL;
6541                 }
6542                 return 0;
6543         case PIPE_C:
6544                 if (pipe_config->fdi_lanes > 2) {
6545                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6546                                       pipe_name(pipe), pipe_config->fdi_lanes);
6547                         return -EINVAL;
6548                 }
6549
6550                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6551                 other_crtc_state =
6552                         intel_atomic_get_crtc_state(state, other_crtc);
6553                 if (IS_ERR(other_crtc_state))
6554                         return PTR_ERR(other_crtc_state);
6555
6556                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6557                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6558                         return -EINVAL;
6559                 }
6560                 return 0;
6561         default:
6562                 BUG();
6563         }
6564 }
6565
6566 #define RETRY 1
6567 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6568                                        struct intel_crtc_state *pipe_config)
6569 {
6570         struct drm_device *dev = intel_crtc->base.dev;
6571         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6572         int lane, link_bw, fdi_dotclock, ret;
6573         bool needs_recompute = false;
6574
6575 retry:
6576         /* FDI is a binary signal running at ~2.7GHz, encoding
6577          * each output octet as 10 bits. The actual frequency
6578          * is stored as a divider into a 100MHz clock, and the
6579          * mode pixel clock is stored in units of 1KHz.
6580          * Hence the bw of each lane in terms of the mode signal
6581          * is:
6582          */
6583         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6584
6585         fdi_dotclock = adjusted_mode->crtc_clock;
6586
6587         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6588                                            pipe_config->pipe_bpp);
6589
6590         pipe_config->fdi_lanes = lane;
6591
6592         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6593                                link_bw, &pipe_config->fdi_m_n);
6594
6595         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6596                                        intel_crtc->pipe, pipe_config);
6597         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6598                 pipe_config->pipe_bpp -= 2*3;
6599                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6600                               pipe_config->pipe_bpp);
6601                 needs_recompute = true;
6602                 pipe_config->bw_constrained = true;
6603
6604                 goto retry;
6605         }
6606
6607         if (needs_recompute)
6608                 return RETRY;
6609
6610         return ret;
6611 }
6612
6613 static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6614                                      struct intel_crtc_state *pipe_config)
6615 {
6616         if (pipe_config->pipe_bpp > 24)
6617                 return false;
6618
6619         /* HSW can handle pixel rate up to cdclk? */
6620         if (IS_HASWELL(dev_priv->dev))
6621                 return true;
6622
6623         /*
6624          * We compare against max which means we must take
6625          * the increased cdclk requirement into account when
6626          * calculating the new cdclk.
6627          *
6628          * Should measure whether using a lower cdclk w/o IPS
6629          */
6630         return ilk_pipe_pixel_rate(pipe_config) <=
6631                 dev_priv->max_cdclk_freq * 95 / 100;
6632 }
6633
6634 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6635                                    struct intel_crtc_state *pipe_config)
6636 {
6637         struct drm_device *dev = crtc->base.dev;
6638         struct drm_i915_private *dev_priv = dev->dev_private;
6639
6640         pipe_config->ips_enabled = i915.enable_ips &&
6641                 hsw_crtc_supports_ips(crtc) &&
6642                 pipe_config_supports_ips(dev_priv, pipe_config);
6643 }
6644
6645 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6646 {
6647         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6648
6649         /* GDG double wide on either pipe, otherwise pipe A only */
6650         return INTEL_INFO(dev_priv)->gen < 4 &&
6651                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6652 }
6653
6654 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6655                                      struct intel_crtc_state *pipe_config)
6656 {
6657         struct drm_device *dev = crtc->base.dev;
6658         struct drm_i915_private *dev_priv = dev->dev_private;
6659         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6660
6661         /* FIXME should check pixel clock limits on all platforms */
6662         if (INTEL_INFO(dev)->gen < 4) {
6663                 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
6664
6665                 /*
6666                  * Enable double wide mode when the dot clock
6667                  * is > 90% of the (display) core speed.
6668                  */
6669                 if (intel_crtc_supports_double_wide(crtc) &&
6670                     adjusted_mode->crtc_clock > clock_limit) {
6671                         clock_limit *= 2;
6672                         pipe_config->double_wide = true;
6673                 }
6674
6675                 if (adjusted_mode->crtc_clock > clock_limit) {
6676                         DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6677                                       adjusted_mode->crtc_clock, clock_limit,
6678                                       yesno(pipe_config->double_wide));
6679                         return -EINVAL;
6680                 }
6681         }
6682
6683         /*
6684          * Pipe horizontal size must be even in:
6685          * - DVO ganged mode
6686          * - LVDS dual channel mode
6687          * - Double wide pipe
6688          */
6689         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6690              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6691                 pipe_config->pipe_src_w &= ~1;
6692
6693         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6694          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6695          */
6696         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6697                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
6698                 return -EINVAL;
6699
6700         if (HAS_IPS(dev))
6701                 hsw_compute_ips_config(crtc, pipe_config);
6702
6703         if (pipe_config->has_pch_encoder)
6704                 return ironlake_fdi_compute_config(crtc, pipe_config);
6705
6706         return 0;
6707 }
6708
6709 static int skylake_get_display_clock_speed(struct drm_device *dev)
6710 {
6711         struct drm_i915_private *dev_priv = to_i915(dev);
6712         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6713         uint32_t cdctl = I915_READ(CDCLK_CTL);
6714         uint32_t linkrate;
6715
6716         if (!(lcpll1 & LCPLL_PLL_ENABLE))
6717                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6718
6719         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6720                 return 540000;
6721
6722         linkrate = (I915_READ(DPLL_CTRL1) &
6723                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6724
6725         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6726             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6727                 /* vco 8640 */
6728                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6729                 case CDCLK_FREQ_450_432:
6730                         return 432000;
6731                 case CDCLK_FREQ_337_308:
6732                         return 308570;
6733                 case CDCLK_FREQ_675_617:
6734                         return 617140;
6735                 default:
6736                         WARN(1, "Unknown cd freq selection\n");
6737                 }
6738         } else {
6739                 /* vco 8100 */
6740                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6741                 case CDCLK_FREQ_450_432:
6742                         return 450000;
6743                 case CDCLK_FREQ_337_308:
6744                         return 337500;
6745                 case CDCLK_FREQ_675_617:
6746                         return 675000;
6747                 default:
6748                         WARN(1, "Unknown cd freq selection\n");
6749                 }
6750         }
6751
6752         /* error case, do as if DPLL0 isn't enabled */
6753         return 24000;
6754 }
6755
6756 static int broxton_get_display_clock_speed(struct drm_device *dev)
6757 {
6758         struct drm_i915_private *dev_priv = to_i915(dev);
6759         uint32_t cdctl = I915_READ(CDCLK_CTL);
6760         uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6761         uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6762         int cdclk;
6763
6764         if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6765                 return 19200;
6766
6767         cdclk = 19200 * pll_ratio / 2;
6768
6769         switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6770         case BXT_CDCLK_CD2X_DIV_SEL_1:
6771                 return cdclk;  /* 576MHz or 624MHz */
6772         case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6773                 return cdclk * 2 / 3; /* 384MHz */
6774         case BXT_CDCLK_CD2X_DIV_SEL_2:
6775                 return cdclk / 2; /* 288MHz */
6776         case BXT_CDCLK_CD2X_DIV_SEL_4:
6777                 return cdclk / 4; /* 144MHz */
6778         }
6779
6780         /* error case, do as if DE PLL isn't enabled */
6781         return 19200;
6782 }
6783
6784 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6785 {
6786         struct drm_i915_private *dev_priv = dev->dev_private;
6787         uint32_t lcpll = I915_READ(LCPLL_CTL);
6788         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6789
6790         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6791                 return 800000;
6792         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6793                 return 450000;
6794         else if (freq == LCPLL_CLK_FREQ_450)
6795                 return 450000;
6796         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6797                 return 540000;
6798         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6799                 return 337500;
6800         else
6801                 return 675000;
6802 }
6803
6804 static int haswell_get_display_clock_speed(struct drm_device *dev)
6805 {
6806         struct drm_i915_private *dev_priv = dev->dev_private;
6807         uint32_t lcpll = I915_READ(LCPLL_CTL);
6808         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6809
6810         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6811                 return 800000;
6812         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6813                 return 450000;
6814         else if (freq == LCPLL_CLK_FREQ_450)
6815                 return 450000;
6816         else if (IS_HSW_ULT(dev))
6817                 return 337500;
6818         else
6819                 return 540000;
6820 }
6821
6822 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6823 {
6824         return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6825                                       CCK_DISPLAY_CLOCK_CONTROL);
6826 }
6827
6828 static int ilk_get_display_clock_speed(struct drm_device *dev)
6829 {
6830         return 450000;
6831 }
6832
6833 static int i945_get_display_clock_speed(struct drm_device *dev)
6834 {
6835         return 400000;
6836 }
6837
6838 static int i915_get_display_clock_speed(struct drm_device *dev)
6839 {
6840         return 333333;
6841 }
6842
6843 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6844 {
6845         return 200000;
6846 }
6847
6848 static int pnv_get_display_clock_speed(struct drm_device *dev)
6849 {
6850         u16 gcfgc = 0;
6851
6852         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6853
6854         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6855         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6856                 return 266667;
6857         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6858                 return 333333;
6859         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6860                 return 444444;
6861         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6862                 return 200000;
6863         default:
6864                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6865         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6866                 return 133333;
6867         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6868                 return 166667;
6869         }
6870 }
6871
6872 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6873 {
6874         u16 gcfgc = 0;
6875
6876         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6877
6878         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6879                 return 133333;
6880         else {
6881                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6882                 case GC_DISPLAY_CLOCK_333_MHZ:
6883                         return 333333;
6884                 default:
6885                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6886                         return 190000;
6887                 }
6888         }
6889 }
6890
6891 static int i865_get_display_clock_speed(struct drm_device *dev)
6892 {
6893         return 266667;
6894 }
6895
6896 static int i85x_get_display_clock_speed(struct drm_device *dev)
6897 {
6898         u16 hpllcc = 0;
6899
6900         /*
6901          * 852GM/852GMV only supports 133 MHz and the HPLLCC
6902          * encoding is different :(
6903          * FIXME is this the right way to detect 852GM/852GMV?
6904          */
6905         if (dev->pdev->revision == 0x1)
6906                 return 133333;
6907
6908         pci_bus_read_config_word(dev->pdev->bus,
6909                                  PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6910
6911         /* Assume that the hardware is in the high speed state.  This
6912          * should be the default.
6913          */
6914         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6915         case GC_CLOCK_133_200:
6916         case GC_CLOCK_133_200_2:
6917         case GC_CLOCK_100_200:
6918                 return 200000;
6919         case GC_CLOCK_166_250:
6920                 return 250000;
6921         case GC_CLOCK_100_133:
6922                 return 133333;
6923         case GC_CLOCK_133_266:
6924         case GC_CLOCK_133_266_2:
6925         case GC_CLOCK_166_266:
6926                 return 266667;
6927         }
6928
6929         /* Shouldn't happen */
6930         return 0;
6931 }
6932
6933 static int i830_get_display_clock_speed(struct drm_device *dev)
6934 {
6935         return 133333;
6936 }
6937
6938 static unsigned int intel_hpll_vco(struct drm_device *dev)
6939 {
6940         struct drm_i915_private *dev_priv = dev->dev_private;
6941         static const unsigned int blb_vco[8] = {
6942                 [0] = 3200000,
6943                 [1] = 4000000,
6944                 [2] = 5333333,
6945                 [3] = 4800000,
6946                 [4] = 6400000,
6947         };
6948         static const unsigned int pnv_vco[8] = {
6949                 [0] = 3200000,
6950                 [1] = 4000000,
6951                 [2] = 5333333,
6952                 [3] = 4800000,
6953                 [4] = 2666667,
6954         };
6955         static const unsigned int cl_vco[8] = {
6956                 [0] = 3200000,
6957                 [1] = 4000000,
6958                 [2] = 5333333,
6959                 [3] = 6400000,
6960                 [4] = 3333333,
6961                 [5] = 3566667,
6962                 [6] = 4266667,
6963         };
6964         static const unsigned int elk_vco[8] = {
6965                 [0] = 3200000,
6966                 [1] = 4000000,
6967                 [2] = 5333333,
6968                 [3] = 4800000,
6969         };
6970         static const unsigned int ctg_vco[8] = {
6971                 [0] = 3200000,
6972                 [1] = 4000000,
6973                 [2] = 5333333,
6974                 [3] = 6400000,
6975                 [4] = 2666667,
6976                 [5] = 4266667,
6977         };
6978         const unsigned int *vco_table;
6979         unsigned int vco;
6980         uint8_t tmp = 0;
6981
6982         /* FIXME other chipsets? */
6983         if (IS_GM45(dev))
6984                 vco_table = ctg_vco;
6985         else if (IS_G4X(dev))
6986                 vco_table = elk_vco;
6987         else if (IS_CRESTLINE(dev))
6988                 vco_table = cl_vco;
6989         else if (IS_PINEVIEW(dev))
6990                 vco_table = pnv_vco;
6991         else if (IS_G33(dev))
6992                 vco_table = blb_vco;
6993         else
6994                 return 0;
6995
6996         tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6997
6998         vco = vco_table[tmp & 0x7];
6999         if (vco == 0)
7000                 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
7001         else
7002                 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
7003
7004         return vco;
7005 }
7006
7007 static int gm45_get_display_clock_speed(struct drm_device *dev)
7008 {
7009         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7010         uint16_t tmp = 0;
7011
7012         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7013
7014         cdclk_sel = (tmp >> 12) & 0x1;
7015
7016         switch (vco) {
7017         case 2666667:
7018         case 4000000:
7019         case 5333333:
7020                 return cdclk_sel ? 333333 : 222222;
7021         case 3200000:
7022                 return cdclk_sel ? 320000 : 228571;
7023         default:
7024                 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
7025                 return 222222;
7026         }
7027 }
7028
7029 static int i965gm_get_display_clock_speed(struct drm_device *dev)
7030 {
7031         static const uint8_t div_3200[] = { 16, 10,  8 };
7032         static const uint8_t div_4000[] = { 20, 12, 10 };
7033         static const uint8_t div_5333[] = { 24, 16, 14 };
7034         const uint8_t *div_table;
7035         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7036         uint16_t tmp = 0;
7037
7038         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7039
7040         cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
7041
7042         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7043                 goto fail;
7044
7045         switch (vco) {
7046         case 3200000:
7047                 div_table = div_3200;
7048                 break;
7049         case 4000000:
7050                 div_table = div_4000;
7051                 break;
7052         case 5333333:
7053                 div_table = div_5333;
7054                 break;
7055         default:
7056                 goto fail;
7057         }
7058
7059         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7060
7061 fail:
7062         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
7063         return 200000;
7064 }
7065
7066 static int g33_get_display_clock_speed(struct drm_device *dev)
7067 {
7068         static const uint8_t div_3200[] = { 12, 10,  8,  7, 5, 16 };
7069         static const uint8_t div_4000[] = { 14, 12, 10,  8, 6, 20 };
7070         static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
7071         static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
7072         const uint8_t *div_table;
7073         unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
7074         uint16_t tmp = 0;
7075
7076         pci_read_config_word(dev->pdev, GCFGC, &tmp);
7077
7078         cdclk_sel = (tmp >> 4) & 0x7;
7079
7080         if (cdclk_sel >= ARRAY_SIZE(div_3200))
7081                 goto fail;
7082
7083         switch (vco) {
7084         case 3200000:
7085                 div_table = div_3200;
7086                 break;
7087         case 4000000:
7088                 div_table = div_4000;
7089                 break;
7090         case 4800000:
7091                 div_table = div_4800;
7092                 break;
7093         case 5333333:
7094                 div_table = div_5333;
7095                 break;
7096         default:
7097                 goto fail;
7098         }
7099
7100         return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
7101
7102 fail:
7103         DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
7104         return 190476;
7105 }
7106
7107 static void
7108 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
7109 {
7110         while (*num > DATA_LINK_M_N_MASK ||
7111                *den > DATA_LINK_M_N_MASK) {
7112                 *num >>= 1;
7113                 *den >>= 1;
7114         }
7115 }
7116
7117 static void compute_m_n(unsigned int m, unsigned int n,
7118                         uint32_t *ret_m, uint32_t *ret_n)
7119 {
7120         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7121         *ret_m = div_u64((uint64_t) m * *ret_n, n);
7122         intel_reduce_m_n_ratio(ret_m, ret_n);
7123 }
7124
7125 void
7126 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7127                        int pixel_clock, int link_clock,
7128                        struct intel_link_m_n *m_n)
7129 {
7130         m_n->tu = 64;
7131
7132         compute_m_n(bits_per_pixel * pixel_clock,
7133                     link_clock * nlanes * 8,
7134                     &m_n->gmch_m, &m_n->gmch_n);
7135
7136         compute_m_n(pixel_clock, link_clock,
7137                     &m_n->link_m, &m_n->link_n);
7138 }
7139
7140 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7141 {
7142         if (i915.panel_use_ssc >= 0)
7143                 return i915.panel_use_ssc != 0;
7144         return dev_priv->vbt.lvds_use_ssc
7145                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7146 }
7147
7148 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
7149                            int num_connectors)
7150 {
7151         struct drm_device *dev = crtc_state->base.crtc->dev;
7152         struct drm_i915_private *dev_priv = dev->dev_private;
7153         int refclk;
7154
7155         WARN_ON(!crtc_state->base.state);
7156
7157         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
7158                 refclk = 100000;
7159         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7160             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
7161                 refclk = dev_priv->vbt.lvds_ssc_freq;
7162                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7163         } else if (!IS_GEN2(dev)) {
7164                 refclk = 96000;
7165         } else {
7166                 refclk = 48000;
7167         }
7168
7169         return refclk;
7170 }
7171
7172 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
7173 {
7174         return (1 << dpll->n) << 16 | dpll->m2;
7175 }
7176
7177 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7178 {
7179         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7180 }
7181
7182 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7183                                      struct intel_crtc_state *crtc_state,
7184                                      intel_clock_t *reduced_clock)
7185 {
7186         struct drm_device *dev = crtc->base.dev;
7187         u32 fp, fp2 = 0;
7188
7189         if (IS_PINEVIEW(dev)) {
7190                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7191                 if (reduced_clock)
7192                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7193         } else {
7194                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7195                 if (reduced_clock)
7196                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7197         }
7198
7199         crtc_state->dpll_hw_state.fp0 = fp;
7200
7201         crtc->lowfreq_avail = false;
7202         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7203             reduced_clock) {
7204                 crtc_state->dpll_hw_state.fp1 = fp2;
7205                 crtc->lowfreq_avail = true;
7206         } else {
7207                 crtc_state->dpll_hw_state.fp1 = fp;
7208         }
7209 }
7210
7211 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7212                 pipe)
7213 {
7214         u32 reg_val;
7215
7216         /*
7217          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7218          * and set it to a reasonable value instead.
7219          */
7220         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7221         reg_val &= 0xffffff00;
7222         reg_val |= 0x00000030;
7223         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7224
7225         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7226         reg_val &= 0x8cffffff;
7227         reg_val = 0x8c000000;
7228         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7229
7230         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7231         reg_val &= 0xffffff00;
7232         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7233
7234         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7235         reg_val &= 0x00ffffff;
7236         reg_val |= 0xb0000000;
7237         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7238 }
7239
7240 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7241                                          struct intel_link_m_n *m_n)
7242 {
7243         struct drm_device *dev = crtc->base.dev;
7244         struct drm_i915_private *dev_priv = dev->dev_private;
7245         int pipe = crtc->pipe;
7246
7247         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7248         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7249         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7250         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7251 }
7252
7253 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7254                                          struct intel_link_m_n *m_n,
7255                                          struct intel_link_m_n *m2_n2)
7256 {
7257         struct drm_device *dev = crtc->base.dev;
7258         struct drm_i915_private *dev_priv = dev->dev_private;
7259         int pipe = crtc->pipe;
7260         enum transcoder transcoder = crtc->config->cpu_transcoder;
7261
7262         if (INTEL_INFO(dev)->gen >= 5) {
7263                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7264                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7265                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7266                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7267                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7268                  * for gen < 8) and if DRRS is supported (to make sure the
7269                  * registers are not unnecessarily accessed).
7270                  */
7271                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7272                         crtc->config->has_drrs) {
7273                         I915_WRITE(PIPE_DATA_M2(transcoder),
7274                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7275                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7276                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7277                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7278                 }
7279         } else {
7280                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7281                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7282                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7283                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7284         }
7285 }
7286
7287 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7288 {
7289         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7290
7291         if (m_n == M1_N1) {
7292                 dp_m_n = &crtc->config->dp_m_n;
7293                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7294         } else if (m_n == M2_N2) {
7295
7296                 /*
7297                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7298                  * needs to be programmed into M1_N1.
7299                  */
7300                 dp_m_n = &crtc->config->dp_m2_n2;
7301         } else {
7302                 DRM_ERROR("Unsupported divider value\n");
7303                 return;
7304         }
7305
7306         if (crtc->config->has_pch_encoder)
7307                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7308         else
7309                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7310 }
7311
7312 static void vlv_compute_dpll(struct intel_crtc *crtc,
7313                              struct intel_crtc_state *pipe_config)
7314 {
7315         u32 dpll, dpll_md;
7316
7317         /*
7318          * Enable DPIO clock input. We should never disable the reference
7319          * clock for pipe B, since VGA hotplug / manual detection depends
7320          * on it.
7321          */
7322         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REF_CLK_ENABLE_VLV |
7323                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_REF_CLK_VLV;
7324         /* We should never disable this, set it here for state tracking */
7325         if (crtc->pipe == PIPE_B)
7326                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7327         dpll |= DPLL_VCO_ENABLE;
7328         pipe_config->dpll_hw_state.dpll = dpll;
7329
7330         dpll_md = (pipe_config->pixel_multiplier - 1)
7331                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7332         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7333 }
7334
7335 static void vlv_prepare_pll(struct intel_crtc *crtc,
7336                             const struct intel_crtc_state *pipe_config)
7337 {
7338         struct drm_device *dev = crtc->base.dev;
7339         struct drm_i915_private *dev_priv = dev->dev_private;
7340         int pipe = crtc->pipe;
7341         u32 mdiv;
7342         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7343         u32 coreclk, reg_val;
7344
7345         mutex_lock(&dev_priv->sb_lock);
7346
7347         bestn = pipe_config->dpll.n;
7348         bestm1 = pipe_config->dpll.m1;
7349         bestm2 = pipe_config->dpll.m2;
7350         bestp1 = pipe_config->dpll.p1;
7351         bestp2 = pipe_config->dpll.p2;
7352
7353         /* See eDP HDMI DPIO driver vbios notes doc */
7354
7355         /* PLL B needs special handling */
7356         if (pipe == PIPE_B)
7357                 vlv_pllb_recal_opamp(dev_priv, pipe);
7358
7359         /* Set up Tx target for periodic Rcomp update */
7360         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7361
7362         /* Disable target IRef on PLL */
7363         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7364         reg_val &= 0x00ffffff;
7365         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7366
7367         /* Disable fast lock */
7368         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7369
7370         /* Set idtafcrecal before PLL is enabled */
7371         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7372         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7373         mdiv |= ((bestn << DPIO_N_SHIFT));
7374         mdiv |= (1 << DPIO_K_SHIFT);
7375
7376         /*
7377          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7378          * but we don't support that).
7379          * Note: don't use the DAC post divider as it seems unstable.
7380          */
7381         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7382         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7383
7384         mdiv |= DPIO_ENABLE_CALIBRATION;
7385         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7386
7387         /* Set HBR and RBR LPF coefficients */
7388         if (pipe_config->port_clock == 162000 ||
7389             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7390             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7391                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7392                                  0x009f0003);
7393         else
7394                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7395                                  0x00d0000f);
7396
7397         if (pipe_config->has_dp_encoder) {
7398                 /* Use SSC source */
7399                 if (pipe == PIPE_A)
7400                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7401                                          0x0df40000);
7402                 else
7403                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7404                                          0x0df70000);
7405         } else { /* HDMI or VGA */
7406                 /* Use bend source */
7407                 if (pipe == PIPE_A)
7408                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7409                                          0x0df70000);
7410                 else
7411                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7412                                          0x0df40000);
7413         }
7414
7415         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7416         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7417         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7418             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7419                 coreclk |= 0x01000000;
7420         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7421
7422         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7423         mutex_unlock(&dev_priv->sb_lock);
7424 }
7425
7426 static void chv_compute_dpll(struct intel_crtc *crtc,
7427                              struct intel_crtc_state *pipe_config)
7428 {
7429         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7430                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7431                 DPLL_VCO_ENABLE;
7432         if (crtc->pipe != PIPE_A)
7433                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7434
7435         pipe_config->dpll_hw_state.dpll_md =
7436                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7437 }
7438
7439 static void chv_prepare_pll(struct intel_crtc *crtc,
7440                             const struct intel_crtc_state *pipe_config)
7441 {
7442         struct drm_device *dev = crtc->base.dev;
7443         struct drm_i915_private *dev_priv = dev->dev_private;
7444         int pipe = crtc->pipe;
7445         i915_reg_t dpll_reg = DPLL(crtc->pipe);
7446         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7447         u32 loopfilter, tribuf_calcntr;
7448         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7449         u32 dpio_val;
7450         int vco;
7451
7452         bestn = pipe_config->dpll.n;
7453         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7454         bestm1 = pipe_config->dpll.m1;
7455         bestm2 = pipe_config->dpll.m2 >> 22;
7456         bestp1 = pipe_config->dpll.p1;
7457         bestp2 = pipe_config->dpll.p2;
7458         vco = pipe_config->dpll.vco;
7459         dpio_val = 0;
7460         loopfilter = 0;
7461
7462         /*
7463          * Enable Refclk and SSC
7464          */
7465         I915_WRITE(dpll_reg,
7466                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7467
7468         mutex_lock(&dev_priv->sb_lock);
7469
7470         /* p1 and p2 divider */
7471         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7472                         5 << DPIO_CHV_S1_DIV_SHIFT |
7473                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7474                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7475                         1 << DPIO_CHV_K_DIV_SHIFT);
7476
7477         /* Feedback post-divider - m2 */
7478         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7479
7480         /* Feedback refclk divider - n and m1 */
7481         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7482                         DPIO_CHV_M1_DIV_BY_2 |
7483                         1 << DPIO_CHV_N_DIV_SHIFT);
7484
7485         /* M2 fraction division */
7486         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7487
7488         /* M2 fraction division enable */
7489         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7490         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7491         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7492         if (bestm2_frac)
7493                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7494         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7495
7496         /* Program digital lock detect threshold */
7497         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7498         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7499                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7500         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7501         if (!bestm2_frac)
7502                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7503         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7504
7505         /* Loop filter */
7506         if (vco == 5400000) {
7507                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7508                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7509                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7510                 tribuf_calcntr = 0x9;
7511         } else if (vco <= 6200000) {
7512                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7513                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7514                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7515                 tribuf_calcntr = 0x9;
7516         } else if (vco <= 6480000) {
7517                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7518                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7519                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7520                 tribuf_calcntr = 0x8;
7521         } else {
7522                 /* Not supported. Apply the same limits as in the max case */
7523                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7524                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7525                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7526                 tribuf_calcntr = 0;
7527         }
7528         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7529
7530         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7531         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7532         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7533         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7534
7535         /* AFC Recal */
7536         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7537                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7538                         DPIO_AFC_RECAL);
7539
7540         mutex_unlock(&dev_priv->sb_lock);
7541 }
7542
7543 /**
7544  * vlv_force_pll_on - forcibly enable just the PLL
7545  * @dev_priv: i915 private structure
7546  * @pipe: pipe PLL to enable
7547  * @dpll: PLL configuration
7548  *
7549  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7550  * in cases where we need the PLL enabled even when @pipe is not going to
7551  * be enabled.
7552  */
7553 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7554                       const struct dpll *dpll)
7555 {
7556         struct intel_crtc *crtc =
7557                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7558         struct intel_crtc_state pipe_config = {
7559                 .base.crtc = &crtc->base,
7560                 .pixel_multiplier = 1,
7561                 .dpll = *dpll,
7562         };
7563
7564         if (IS_CHERRYVIEW(dev)) {
7565                 chv_compute_dpll(crtc, &pipe_config);
7566                 chv_prepare_pll(crtc, &pipe_config);
7567                 chv_enable_pll(crtc, &pipe_config);
7568         } else {
7569                 vlv_compute_dpll(crtc, &pipe_config);
7570                 vlv_prepare_pll(crtc, &pipe_config);
7571                 vlv_enable_pll(crtc, &pipe_config);
7572         }
7573 }
7574
7575 /**
7576  * vlv_force_pll_off - forcibly disable just the PLL
7577  * @dev_priv: i915 private structure
7578  * @pipe: pipe PLL to disable
7579  *
7580  * Disable the PLL for @pipe. To be used in cases where we need
7581  * the PLL enabled even when @pipe is not going to be enabled.
7582  */
7583 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7584 {
7585         if (IS_CHERRYVIEW(dev))
7586                 chv_disable_pll(to_i915(dev), pipe);
7587         else
7588                 vlv_disable_pll(to_i915(dev), pipe);
7589 }
7590
7591 static void i9xx_compute_dpll(struct intel_crtc *crtc,
7592                               struct intel_crtc_state *crtc_state,
7593                               intel_clock_t *reduced_clock,
7594                               int num_connectors)
7595 {
7596         struct drm_device *dev = crtc->base.dev;
7597         struct drm_i915_private *dev_priv = dev->dev_private;
7598         u32 dpll;
7599         bool is_sdvo;
7600         struct dpll *clock = &crtc_state->dpll;
7601
7602         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7603
7604         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7605                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7606
7607         dpll = DPLL_VGA_MODE_DIS;
7608
7609         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7610                 dpll |= DPLLB_MODE_LVDS;
7611         else
7612                 dpll |= DPLLB_MODE_DAC_SERIAL;
7613
7614         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7615                 dpll |= (crtc_state->pixel_multiplier - 1)
7616                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7617         }
7618
7619         if (is_sdvo)
7620                 dpll |= DPLL_SDVO_HIGH_SPEED;
7621
7622         if (crtc_state->has_dp_encoder)
7623                 dpll |= DPLL_SDVO_HIGH_SPEED;
7624
7625         /* compute bitmask from p1 value */
7626         if (IS_PINEVIEW(dev))
7627                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7628         else {
7629                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7630                 if (IS_G4X(dev) && reduced_clock)
7631                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7632         }
7633         switch (clock->p2) {
7634         case 5:
7635                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7636                 break;
7637         case 7:
7638                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7639                 break;
7640         case 10:
7641                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7642                 break;
7643         case 14:
7644                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7645                 break;
7646         }
7647         if (INTEL_INFO(dev)->gen >= 4)
7648                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7649
7650         if (crtc_state->sdvo_tv_clock)
7651                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7652         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7653                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7654                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7655         else
7656                 dpll |= PLL_REF_INPUT_DREFCLK;
7657
7658         dpll |= DPLL_VCO_ENABLE;
7659         crtc_state->dpll_hw_state.dpll = dpll;
7660
7661         if (INTEL_INFO(dev)->gen >= 4) {
7662                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7663                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7664                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7665         }
7666 }
7667
7668 static void i8xx_compute_dpll(struct intel_crtc *crtc,
7669                               struct intel_crtc_state *crtc_state,
7670                               intel_clock_t *reduced_clock,
7671                               int num_connectors)
7672 {
7673         struct drm_device *dev = crtc->base.dev;
7674         struct drm_i915_private *dev_priv = dev->dev_private;
7675         u32 dpll;
7676         struct dpll *clock = &crtc_state->dpll;
7677
7678         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7679
7680         dpll = DPLL_VGA_MODE_DIS;
7681
7682         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7683                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7684         } else {
7685                 if (clock->p1 == 2)
7686                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7687                 else
7688                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7689                 if (clock->p2 == 4)
7690                         dpll |= PLL_P2_DIVIDE_BY_4;
7691         }
7692
7693         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7694                 dpll |= DPLL_DVO_2X_MODE;
7695
7696         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7697                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7698                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7699         else
7700                 dpll |= PLL_REF_INPUT_DREFCLK;
7701
7702         dpll |= DPLL_VCO_ENABLE;
7703         crtc_state->dpll_hw_state.dpll = dpll;
7704 }
7705
7706 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7707 {
7708         struct drm_device *dev = intel_crtc->base.dev;
7709         struct drm_i915_private *dev_priv = dev->dev_private;
7710         enum pipe pipe = intel_crtc->pipe;
7711         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7712         const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
7713         uint32_t crtc_vtotal, crtc_vblank_end;
7714         int vsyncshift = 0;
7715
7716         /* We need to be careful not to changed the adjusted mode, for otherwise
7717          * the hw state checker will get angry at the mismatch. */
7718         crtc_vtotal = adjusted_mode->crtc_vtotal;
7719         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7720
7721         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7722                 /* the chip adds 2 halflines automatically */
7723                 crtc_vtotal -= 1;
7724                 crtc_vblank_end -= 1;
7725
7726                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7727                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7728                 else
7729                         vsyncshift = adjusted_mode->crtc_hsync_start -
7730                                 adjusted_mode->crtc_htotal / 2;
7731                 if (vsyncshift < 0)
7732                         vsyncshift += adjusted_mode->crtc_htotal;
7733         }
7734
7735         if (INTEL_INFO(dev)->gen > 3)
7736                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7737
7738         I915_WRITE(HTOTAL(cpu_transcoder),
7739                    (adjusted_mode->crtc_hdisplay - 1) |
7740                    ((adjusted_mode->crtc_htotal - 1) << 16));
7741         I915_WRITE(HBLANK(cpu_transcoder),
7742                    (adjusted_mode->crtc_hblank_start - 1) |
7743                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7744         I915_WRITE(HSYNC(cpu_transcoder),
7745                    (adjusted_mode->crtc_hsync_start - 1) |
7746                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7747
7748         I915_WRITE(VTOTAL(cpu_transcoder),
7749                    (adjusted_mode->crtc_vdisplay - 1) |
7750                    ((crtc_vtotal - 1) << 16));
7751         I915_WRITE(VBLANK(cpu_transcoder),
7752                    (adjusted_mode->crtc_vblank_start - 1) |
7753                    ((crtc_vblank_end - 1) << 16));
7754         I915_WRITE(VSYNC(cpu_transcoder),
7755                    (adjusted_mode->crtc_vsync_start - 1) |
7756                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7757
7758         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7759          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7760          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7761          * bits. */
7762         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7763             (pipe == PIPE_B || pipe == PIPE_C))
7764                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7765
7766         /* pipesrc controls the size that is scaled from, which should
7767          * always be the user's requested size.
7768          */
7769         I915_WRITE(PIPESRC(pipe),
7770                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7771                    (intel_crtc->config->pipe_src_h - 1));
7772 }
7773
7774 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7775                                    struct intel_crtc_state *pipe_config)
7776 {
7777         struct drm_device *dev = crtc->base.dev;
7778         struct drm_i915_private *dev_priv = dev->dev_private;
7779         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7780         uint32_t tmp;
7781
7782         tmp = I915_READ(HTOTAL(cpu_transcoder));
7783         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7784         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7785         tmp = I915_READ(HBLANK(cpu_transcoder));
7786         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7787         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7788         tmp = I915_READ(HSYNC(cpu_transcoder));
7789         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7790         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7791
7792         tmp = I915_READ(VTOTAL(cpu_transcoder));
7793         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7794         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7795         tmp = I915_READ(VBLANK(cpu_transcoder));
7796         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7797         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7798         tmp = I915_READ(VSYNC(cpu_transcoder));
7799         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7800         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7801
7802         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7803                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7804                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7805                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7806         }
7807
7808         tmp = I915_READ(PIPESRC(crtc->pipe));
7809         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7810         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7811
7812         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7813         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7814 }
7815
7816 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7817                                  struct intel_crtc_state *pipe_config)
7818 {
7819         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7820         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7821         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7822         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7823
7824         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7825         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7826         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7827         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7828
7829         mode->flags = pipe_config->base.adjusted_mode.flags;
7830         mode->type = DRM_MODE_TYPE_DRIVER;
7831
7832         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7833         mode->flags |= pipe_config->base.adjusted_mode.flags;
7834
7835         mode->hsync = drm_mode_hsync(mode);
7836         mode->vrefresh = drm_mode_vrefresh(mode);
7837         drm_mode_set_name(mode);
7838 }
7839
7840 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7841 {
7842         struct drm_device *dev = intel_crtc->base.dev;
7843         struct drm_i915_private *dev_priv = dev->dev_private;
7844         uint32_t pipeconf;
7845
7846         pipeconf = 0;
7847
7848         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7849             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7850                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7851
7852         if (intel_crtc->config->double_wide)
7853                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7854
7855         /* only g4x and later have fancy bpc/dither controls */
7856         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7857                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7858                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7859                         pipeconf |= PIPECONF_DITHER_EN |
7860                                     PIPECONF_DITHER_TYPE_SP;
7861
7862                 switch (intel_crtc->config->pipe_bpp) {
7863                 case 18:
7864                         pipeconf |= PIPECONF_6BPC;
7865                         break;
7866                 case 24:
7867                         pipeconf |= PIPECONF_8BPC;
7868                         break;
7869                 case 30:
7870                         pipeconf |= PIPECONF_10BPC;
7871                         break;
7872                 default:
7873                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7874                         BUG();
7875                 }
7876         }
7877
7878         if (HAS_PIPE_CXSR(dev)) {
7879                 if (intel_crtc->lowfreq_avail) {
7880                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7881                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7882                 } else {
7883                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7884                 }
7885         }
7886
7887         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7888                 if (INTEL_INFO(dev)->gen < 4 ||
7889                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7890                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7891                 else
7892                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7893         } else
7894                 pipeconf |= PIPECONF_PROGRESSIVE;
7895
7896         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7897                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7898
7899         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7900         POSTING_READ(PIPECONF(intel_crtc->pipe));
7901 }
7902
7903 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7904                                    struct intel_crtc_state *crtc_state)
7905 {
7906         struct drm_device *dev = crtc->base.dev;
7907         struct drm_i915_private *dev_priv = dev->dev_private;
7908         int refclk, num_connectors = 0;
7909         intel_clock_t clock;
7910         bool ok;
7911         bool is_dsi = false;
7912         struct intel_encoder *encoder;
7913         const intel_limit_t *limit;
7914         struct drm_atomic_state *state = crtc_state->base.state;
7915         struct drm_connector *connector;
7916         struct drm_connector_state *connector_state;
7917         int i;
7918
7919         memset(&crtc_state->dpll_hw_state, 0,
7920                sizeof(crtc_state->dpll_hw_state));
7921
7922         for_each_connector_in_state(state, connector, connector_state, i) {
7923                 if (connector_state->crtc != &crtc->base)
7924                         continue;
7925
7926                 encoder = to_intel_encoder(connector_state->best_encoder);
7927
7928                 switch (encoder->type) {
7929                 case INTEL_OUTPUT_DSI:
7930                         is_dsi = true;
7931                         break;
7932                 default:
7933                         break;
7934                 }
7935
7936                 num_connectors++;
7937         }
7938
7939         if (is_dsi)
7940                 return 0;
7941
7942         if (!crtc_state->clock_set) {
7943                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7944
7945                 /*
7946                  * Returns a set of divisors for the desired target clock with
7947                  * the given refclk, or FALSE.  The returned values represent
7948                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7949                  * 2) / p1 / p2.
7950                  */
7951                 limit = intel_limit(crtc_state, refclk);
7952                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7953                                                  crtc_state->port_clock,
7954                                                  refclk, NULL, &clock);
7955                 if (!ok) {
7956                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7957                         return -EINVAL;
7958                 }
7959
7960                 /* Compat-code for transition, will disappear. */
7961                 crtc_state->dpll.n = clock.n;
7962                 crtc_state->dpll.m1 = clock.m1;
7963                 crtc_state->dpll.m2 = clock.m2;
7964                 crtc_state->dpll.p1 = clock.p1;
7965                 crtc_state->dpll.p2 = clock.p2;
7966         }
7967
7968         if (IS_GEN2(dev)) {
7969                 i8xx_compute_dpll(crtc, crtc_state, NULL,
7970                                   num_connectors);
7971         } else if (IS_CHERRYVIEW(dev)) {
7972                 chv_compute_dpll(crtc, crtc_state);
7973         } else if (IS_VALLEYVIEW(dev)) {
7974                 vlv_compute_dpll(crtc, crtc_state);
7975         } else {
7976                 i9xx_compute_dpll(crtc, crtc_state, NULL,
7977                                   num_connectors);
7978         }
7979
7980         return 0;
7981 }
7982
7983 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7984                                  struct intel_crtc_state *pipe_config)
7985 {
7986         struct drm_device *dev = crtc->base.dev;
7987         struct drm_i915_private *dev_priv = dev->dev_private;
7988         uint32_t tmp;
7989
7990         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7991                 return;
7992
7993         tmp = I915_READ(PFIT_CONTROL);
7994         if (!(tmp & PFIT_ENABLE))
7995                 return;
7996
7997         /* Check whether the pfit is attached to our pipe. */
7998         if (INTEL_INFO(dev)->gen < 4) {
7999                 if (crtc->pipe != PIPE_B)
8000                         return;
8001         } else {
8002                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8003                         return;
8004         }
8005
8006         pipe_config->gmch_pfit.control = tmp;
8007         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8008         if (INTEL_INFO(dev)->gen < 5)
8009                 pipe_config->gmch_pfit.lvds_border_bits =
8010                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
8011 }
8012
8013 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8014                                struct intel_crtc_state *pipe_config)
8015 {
8016         struct drm_device *dev = crtc->base.dev;
8017         struct drm_i915_private *dev_priv = dev->dev_private;
8018         int pipe = pipe_config->cpu_transcoder;
8019         intel_clock_t clock;
8020         u32 mdiv;
8021         int refclk = 100000;
8022
8023         /* In case of MIPI DPLL will not even be used */
8024         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
8025                 return;
8026
8027         mutex_lock(&dev_priv->sb_lock);
8028         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8029         mutex_unlock(&dev_priv->sb_lock);
8030
8031         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8032         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8033         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8034         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8035         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8036
8037         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8038 }
8039
8040 static void
8041 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8042                               struct intel_initial_plane_config *plane_config)
8043 {
8044         struct drm_device *dev = crtc->base.dev;
8045         struct drm_i915_private *dev_priv = dev->dev_private;
8046         u32 val, base, offset;
8047         int pipe = crtc->pipe, plane = crtc->plane;
8048         int fourcc, pixel_format;
8049         unsigned int aligned_height;
8050         struct drm_framebuffer *fb;
8051         struct intel_framebuffer *intel_fb;
8052
8053         val = I915_READ(DSPCNTR(plane));
8054         if (!(val & DISPLAY_PLANE_ENABLE))
8055                 return;
8056
8057         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8058         if (!intel_fb) {
8059                 DRM_DEBUG_KMS("failed to alloc fb\n");
8060                 return;
8061         }
8062
8063         fb = &intel_fb->base;
8064
8065         if (INTEL_INFO(dev)->gen >= 4) {
8066                 if (val & DISPPLANE_TILED) {
8067                         plane_config->tiling = I915_TILING_X;
8068                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8069                 }
8070         }
8071
8072         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8073         fourcc = i9xx_format_to_fourcc(pixel_format);
8074         fb->pixel_format = fourcc;
8075         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8076
8077         if (INTEL_INFO(dev)->gen >= 4) {
8078                 if (plane_config->tiling)
8079                         offset = I915_READ(DSPTILEOFF(plane));
8080                 else
8081                         offset = I915_READ(DSPLINOFF(plane));
8082                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8083         } else {
8084                 base = I915_READ(DSPADDR(plane));
8085         }
8086         plane_config->base = base;
8087
8088         val = I915_READ(PIPESRC(pipe));
8089         fb->width = ((val >> 16) & 0xfff) + 1;
8090         fb->height = ((val >> 0) & 0xfff) + 1;
8091
8092         val = I915_READ(DSPSTRIDE(pipe));
8093         fb->pitches[0] = val & 0xffffffc0;
8094
8095         aligned_height = intel_fb_align_height(dev, fb->height,
8096                                                fb->pixel_format,
8097                                                fb->modifier[0]);
8098
8099         plane_config->size = fb->pitches[0] * aligned_height;
8100
8101         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8102                       pipe_name(pipe), plane, fb->width, fb->height,
8103                       fb->bits_per_pixel, base, fb->pitches[0],
8104                       plane_config->size);
8105
8106         plane_config->fb = intel_fb;
8107 }
8108
8109 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8110                                struct intel_crtc_state *pipe_config)
8111 {
8112         struct drm_device *dev = crtc->base.dev;
8113         struct drm_i915_private *dev_priv = dev->dev_private;
8114         int pipe = pipe_config->cpu_transcoder;
8115         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8116         intel_clock_t clock;
8117         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8118         int refclk = 100000;
8119
8120         mutex_lock(&dev_priv->sb_lock);
8121         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8122         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8123         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8124         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8125         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8126         mutex_unlock(&dev_priv->sb_lock);
8127
8128         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8129         clock.m2 = (pll_dw0 & 0xff) << 22;
8130         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8131                 clock.m2 |= pll_dw2 & 0x3fffff;
8132         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8133         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8134         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8135
8136         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8137 }
8138
8139 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8140                                  struct intel_crtc_state *pipe_config)
8141 {
8142         struct drm_device *dev = crtc->base.dev;
8143         struct drm_i915_private *dev_priv = dev->dev_private;
8144         uint32_t tmp;
8145
8146         if (!intel_display_power_is_enabled(dev_priv,
8147                                             POWER_DOMAIN_PIPE(crtc->pipe)))
8148                 return false;
8149
8150         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8151         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
8152
8153         tmp = I915_READ(PIPECONF(crtc->pipe));
8154         if (!(tmp & PIPECONF_ENABLE))
8155                 return false;
8156
8157         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
8158                 switch (tmp & PIPECONF_BPC_MASK) {
8159                 case PIPECONF_6BPC:
8160                         pipe_config->pipe_bpp = 18;
8161                         break;
8162                 case PIPECONF_8BPC:
8163                         pipe_config->pipe_bpp = 24;
8164                         break;
8165                 case PIPECONF_10BPC:
8166                         pipe_config->pipe_bpp = 30;
8167                         break;
8168                 default:
8169                         break;
8170                 }
8171         }
8172
8173         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
8174                 pipe_config->limited_color_range = true;
8175
8176         if (INTEL_INFO(dev)->gen < 4)
8177                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8178
8179         intel_get_pipe_timings(crtc, pipe_config);
8180
8181         i9xx_get_pfit_config(crtc, pipe_config);
8182
8183         if (INTEL_INFO(dev)->gen >= 4) {
8184                 tmp = I915_READ(DPLL_MD(crtc->pipe));
8185                 pipe_config->pixel_multiplier =
8186                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8187                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8188                 pipe_config->dpll_hw_state.dpll_md = tmp;
8189         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8190                 tmp = I915_READ(DPLL(crtc->pipe));
8191                 pipe_config->pixel_multiplier =
8192                         ((tmp & SDVO_MULTIPLIER_MASK)
8193                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8194         } else {
8195                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8196                  * port and will be fixed up in the encoder->get_config
8197                  * function. */
8198                 pipe_config->pixel_multiplier = 1;
8199         }
8200         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8201         if (!IS_VALLEYVIEW(dev)) {
8202                 /*
8203                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8204                  * on 830. Filter it out here so that we don't
8205                  * report errors due to that.
8206                  */
8207                 if (IS_I830(dev))
8208                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8209
8210                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8211                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8212         } else {
8213                 /* Mask out read-only status bits. */
8214                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8215                                                      DPLL_PORTC_READY_MASK |
8216                                                      DPLL_PORTB_READY_MASK);
8217         }
8218
8219         if (IS_CHERRYVIEW(dev))
8220                 chv_crtc_clock_get(crtc, pipe_config);
8221         else if (IS_VALLEYVIEW(dev))
8222                 vlv_crtc_clock_get(crtc, pipe_config);
8223         else
8224                 i9xx_crtc_clock_get(crtc, pipe_config);
8225
8226         /*
8227          * Normally the dotclock is filled in by the encoder .get_config()
8228          * but in case the pipe is enabled w/o any ports we need a sane
8229          * default.
8230          */
8231         pipe_config->base.adjusted_mode.crtc_clock =
8232                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8233
8234         return true;
8235 }
8236
8237 static void ironlake_init_pch_refclk(struct drm_device *dev)
8238 {
8239         struct drm_i915_private *dev_priv = dev->dev_private;
8240         struct intel_encoder *encoder;
8241         u32 val, final;
8242         bool has_lvds = false;
8243         bool has_cpu_edp = false;
8244         bool has_panel = false;
8245         bool has_ck505 = false;
8246         bool can_ssc = false;
8247
8248         /* We need to take the global config into account */
8249         for_each_intel_encoder(dev, encoder) {
8250                 switch (encoder->type) {
8251                 case INTEL_OUTPUT_LVDS:
8252                         has_panel = true;
8253                         has_lvds = true;
8254                         break;
8255                 case INTEL_OUTPUT_EDP:
8256                         has_panel = true;
8257                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8258                                 has_cpu_edp = true;
8259                         break;
8260                 default:
8261                         break;
8262                 }
8263         }
8264
8265         if (HAS_PCH_IBX(dev)) {
8266                 has_ck505 = dev_priv->vbt.display_clock_mode;
8267                 can_ssc = has_ck505;
8268         } else {
8269                 has_ck505 = false;
8270                 can_ssc = true;
8271         }
8272
8273         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8274                       has_panel, has_lvds, has_ck505);
8275
8276         /* Ironlake: try to setup display ref clock before DPLL
8277          * enabling. This is only under driver's control after
8278          * PCH B stepping, previous chipset stepping should be
8279          * ignoring this setting.
8280          */
8281         val = I915_READ(PCH_DREF_CONTROL);
8282
8283         /* As we must carefully and slowly disable/enable each source in turn,
8284          * compute the final state we want first and check if we need to
8285          * make any changes at all.
8286          */
8287         final = val;
8288         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8289         if (has_ck505)
8290                 final |= DREF_NONSPREAD_CK505_ENABLE;
8291         else
8292                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8293
8294         final &= ~DREF_SSC_SOURCE_MASK;
8295         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8296         final &= ~DREF_SSC1_ENABLE;
8297
8298         if (has_panel) {
8299                 final |= DREF_SSC_SOURCE_ENABLE;
8300
8301                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8302                         final |= DREF_SSC1_ENABLE;
8303
8304                 if (has_cpu_edp) {
8305                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8306                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8307                         else
8308                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8309                 } else
8310                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8311         } else {
8312                 final |= DREF_SSC_SOURCE_DISABLE;
8313                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8314         }
8315
8316         if (final == val)
8317                 return;
8318
8319         /* Always enable nonspread source */
8320         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8321
8322         if (has_ck505)
8323                 val |= DREF_NONSPREAD_CK505_ENABLE;
8324         else
8325                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8326
8327         if (has_panel) {
8328                 val &= ~DREF_SSC_SOURCE_MASK;
8329                 val |= DREF_SSC_SOURCE_ENABLE;
8330
8331                 /* SSC must be turned on before enabling the CPU output  */
8332                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8333                         DRM_DEBUG_KMS("Using SSC on panel\n");
8334                         val |= DREF_SSC1_ENABLE;
8335                 } else
8336                         val &= ~DREF_SSC1_ENABLE;
8337
8338                 /* Get SSC going before enabling the outputs */
8339                 I915_WRITE(PCH_DREF_CONTROL, val);
8340                 POSTING_READ(PCH_DREF_CONTROL);
8341                 udelay(200);
8342
8343                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8344
8345                 /* Enable CPU source on CPU attached eDP */
8346                 if (has_cpu_edp) {
8347                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8348                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8349                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8350                         } else
8351                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8352                 } else
8353                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8354
8355                 I915_WRITE(PCH_DREF_CONTROL, val);
8356                 POSTING_READ(PCH_DREF_CONTROL);
8357                 udelay(200);
8358         } else {
8359                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8360
8361                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8362
8363                 /* Turn off CPU output */
8364                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8365
8366                 I915_WRITE(PCH_DREF_CONTROL, val);
8367                 POSTING_READ(PCH_DREF_CONTROL);
8368                 udelay(200);
8369
8370                 /* Turn off the SSC source */
8371                 val &= ~DREF_SSC_SOURCE_MASK;
8372                 val |= DREF_SSC_SOURCE_DISABLE;
8373
8374                 /* Turn off SSC1 */
8375                 val &= ~DREF_SSC1_ENABLE;
8376
8377                 I915_WRITE(PCH_DREF_CONTROL, val);
8378                 POSTING_READ(PCH_DREF_CONTROL);
8379                 udelay(200);
8380         }
8381
8382         BUG_ON(val != final);
8383 }
8384
8385 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8386 {
8387         uint32_t tmp;
8388
8389         tmp = I915_READ(SOUTH_CHICKEN2);
8390         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8391         I915_WRITE(SOUTH_CHICKEN2, tmp);
8392
8393         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8394                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8395                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8396
8397         tmp = I915_READ(SOUTH_CHICKEN2);
8398         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8399         I915_WRITE(SOUTH_CHICKEN2, tmp);
8400
8401         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8402                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8403                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8404 }
8405
8406 /* WaMPhyProgramming:hsw */
8407 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8408 {
8409         uint32_t tmp;
8410
8411         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8412         tmp &= ~(0xFF << 24);
8413         tmp |= (0x12 << 24);
8414         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8415
8416         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8417         tmp |= (1 << 11);
8418         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8419
8420         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8421         tmp |= (1 << 11);
8422         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8423
8424         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8425         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8426         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8427
8428         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8429         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8430         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8431
8432         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8433         tmp &= ~(7 << 13);
8434         tmp |= (5 << 13);
8435         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8436
8437         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8438         tmp &= ~(7 << 13);
8439         tmp |= (5 << 13);
8440         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8441
8442         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8443         tmp &= ~0xFF;
8444         tmp |= 0x1C;
8445         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8446
8447         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8448         tmp &= ~0xFF;
8449         tmp |= 0x1C;
8450         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8451
8452         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8453         tmp &= ~(0xFF << 16);
8454         tmp |= (0x1C << 16);
8455         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8456
8457         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8458         tmp &= ~(0xFF << 16);
8459         tmp |= (0x1C << 16);
8460         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8461
8462         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8463         tmp |= (1 << 27);
8464         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8465
8466         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8467         tmp |= (1 << 27);
8468         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8469
8470         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8471         tmp &= ~(0xF << 28);
8472         tmp |= (4 << 28);
8473         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8474
8475         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8476         tmp &= ~(0xF << 28);
8477         tmp |= (4 << 28);
8478         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8479 }
8480
8481 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8482  * Programming" based on the parameters passed:
8483  * - Sequence to enable CLKOUT_DP
8484  * - Sequence to enable CLKOUT_DP without spread
8485  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8486  */
8487 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8488                                  bool with_fdi)
8489 {
8490         struct drm_i915_private *dev_priv = dev->dev_private;
8491         uint32_t reg, tmp;
8492
8493         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8494                 with_spread = true;
8495         if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
8496                 with_fdi = false;
8497
8498         mutex_lock(&dev_priv->sb_lock);
8499
8500         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8501         tmp &= ~SBI_SSCCTL_DISABLE;
8502         tmp |= SBI_SSCCTL_PATHALT;
8503         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8504
8505         udelay(24);
8506
8507         if (with_spread) {
8508                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8509                 tmp &= ~SBI_SSCCTL_PATHALT;
8510                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8511
8512                 if (with_fdi) {
8513                         lpt_reset_fdi_mphy(dev_priv);
8514                         lpt_program_fdi_mphy(dev_priv);
8515                 }
8516         }
8517
8518         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8519         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8520         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8521         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8522
8523         mutex_unlock(&dev_priv->sb_lock);
8524 }
8525
8526 /* Sequence to disable CLKOUT_DP */
8527 static void lpt_disable_clkout_dp(struct drm_device *dev)
8528 {
8529         struct drm_i915_private *dev_priv = dev->dev_private;
8530         uint32_t reg, tmp;
8531
8532         mutex_lock(&dev_priv->sb_lock);
8533
8534         reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
8535         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8536         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8537         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8538
8539         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8540         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8541                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8542                         tmp |= SBI_SSCCTL_PATHALT;
8543                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8544                         udelay(32);
8545                 }
8546                 tmp |= SBI_SSCCTL_DISABLE;
8547                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8548         }
8549
8550         mutex_unlock(&dev_priv->sb_lock);
8551 }
8552
8553 static void lpt_init_pch_refclk(struct drm_device *dev)
8554 {
8555         struct intel_encoder *encoder;
8556         bool has_vga = false;
8557
8558         for_each_intel_encoder(dev, encoder) {
8559                 switch (encoder->type) {
8560                 case INTEL_OUTPUT_ANALOG:
8561                         has_vga = true;
8562                         break;
8563                 default:
8564                         break;
8565                 }
8566         }
8567
8568         if (has_vga)
8569                 lpt_enable_clkout_dp(dev, true, true);
8570         else
8571                 lpt_disable_clkout_dp(dev);
8572 }
8573
8574 /*
8575  * Initialize reference clocks when the driver loads
8576  */
8577 void intel_init_pch_refclk(struct drm_device *dev)
8578 {
8579         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8580                 ironlake_init_pch_refclk(dev);
8581         else if (HAS_PCH_LPT(dev))
8582                 lpt_init_pch_refclk(dev);
8583 }
8584
8585 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8586 {
8587         struct drm_device *dev = crtc_state->base.crtc->dev;
8588         struct drm_i915_private *dev_priv = dev->dev_private;
8589         struct drm_atomic_state *state = crtc_state->base.state;
8590         struct drm_connector *connector;
8591         struct drm_connector_state *connector_state;
8592         struct intel_encoder *encoder;
8593         int num_connectors = 0, i;
8594         bool is_lvds = false;
8595
8596         for_each_connector_in_state(state, connector, connector_state, i) {
8597                 if (connector_state->crtc != crtc_state->base.crtc)
8598                         continue;
8599
8600                 encoder = to_intel_encoder(connector_state->best_encoder);
8601
8602                 switch (encoder->type) {
8603                 case INTEL_OUTPUT_LVDS:
8604                         is_lvds = true;
8605                         break;
8606                 default:
8607                         break;
8608                 }
8609                 num_connectors++;
8610         }
8611
8612         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8613                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8614                               dev_priv->vbt.lvds_ssc_freq);
8615                 return dev_priv->vbt.lvds_ssc_freq;
8616         }
8617
8618         return 120000;
8619 }
8620
8621 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8622 {
8623         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8624         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8625         int pipe = intel_crtc->pipe;
8626         uint32_t val;
8627
8628         val = 0;
8629
8630         switch (intel_crtc->config->pipe_bpp) {
8631         case 18:
8632                 val |= PIPECONF_6BPC;
8633                 break;
8634         case 24:
8635                 val |= PIPECONF_8BPC;
8636                 break;
8637         case 30:
8638                 val |= PIPECONF_10BPC;
8639                 break;
8640         case 36:
8641                 val |= PIPECONF_12BPC;
8642                 break;
8643         default:
8644                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8645                 BUG();
8646         }
8647
8648         if (intel_crtc->config->dither)
8649                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8650
8651         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8652                 val |= PIPECONF_INTERLACED_ILK;
8653         else
8654                 val |= PIPECONF_PROGRESSIVE;
8655
8656         if (intel_crtc->config->limited_color_range)
8657                 val |= PIPECONF_COLOR_RANGE_SELECT;
8658
8659         I915_WRITE(PIPECONF(pipe), val);
8660         POSTING_READ(PIPECONF(pipe));
8661 }
8662
8663 /*
8664  * Set up the pipe CSC unit.
8665  *
8666  * Currently only full range RGB to limited range RGB conversion
8667  * is supported, but eventually this should handle various
8668  * RGB<->YCbCr scenarios as well.
8669  */
8670 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8671 {
8672         struct drm_device *dev = crtc->dev;
8673         struct drm_i915_private *dev_priv = dev->dev_private;
8674         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8675         int pipe = intel_crtc->pipe;
8676         uint16_t coeff = 0x7800; /* 1.0 */
8677
8678         /*
8679          * TODO: Check what kind of values actually come out of the pipe
8680          * with these coeff/postoff values and adjust to get the best
8681          * accuracy. Perhaps we even need to take the bpc value into
8682          * consideration.
8683          */
8684
8685         if (intel_crtc->config->limited_color_range)
8686                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8687
8688         /*
8689          * GY/GU and RY/RU should be the other way around according
8690          * to BSpec, but reality doesn't agree. Just set them up in
8691          * a way that results in the correct picture.
8692          */
8693         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8694         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8695
8696         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8697         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8698
8699         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8700         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8701
8702         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8703         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8704         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8705
8706         if (INTEL_INFO(dev)->gen > 6) {
8707                 uint16_t postoff = 0;
8708
8709                 if (intel_crtc->config->limited_color_range)
8710                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8711
8712                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8713                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8714                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8715
8716                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8717         } else {
8718                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8719
8720                 if (intel_crtc->config->limited_color_range)
8721                         mode |= CSC_BLACK_SCREEN_OFFSET;
8722
8723                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8724         }
8725 }
8726
8727 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8728 {
8729         struct drm_device *dev = crtc->dev;
8730         struct drm_i915_private *dev_priv = dev->dev_private;
8731         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8732         enum pipe pipe = intel_crtc->pipe;
8733         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8734         uint32_t val;
8735
8736         val = 0;
8737
8738         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8739                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8740
8741         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8742                 val |= PIPECONF_INTERLACED_ILK;
8743         else
8744                 val |= PIPECONF_PROGRESSIVE;
8745
8746         I915_WRITE(PIPECONF(cpu_transcoder), val);
8747         POSTING_READ(PIPECONF(cpu_transcoder));
8748
8749         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8750         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8751
8752         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8753                 val = 0;
8754
8755                 switch (intel_crtc->config->pipe_bpp) {
8756                 case 18:
8757                         val |= PIPEMISC_DITHER_6_BPC;
8758                         break;
8759                 case 24:
8760                         val |= PIPEMISC_DITHER_8_BPC;
8761                         break;
8762                 case 30:
8763                         val |= PIPEMISC_DITHER_10_BPC;
8764                         break;
8765                 case 36:
8766                         val |= PIPEMISC_DITHER_12_BPC;
8767                         break;
8768                 default:
8769                         /* Case prevented by pipe_config_set_bpp. */
8770                         BUG();
8771                 }
8772
8773                 if (intel_crtc->config->dither)
8774                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8775
8776                 I915_WRITE(PIPEMISC(pipe), val);
8777         }
8778 }
8779
8780 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8781                                     struct intel_crtc_state *crtc_state,
8782                                     intel_clock_t *clock,
8783                                     bool *has_reduced_clock,
8784                                     intel_clock_t *reduced_clock)
8785 {
8786         struct drm_device *dev = crtc->dev;
8787         struct drm_i915_private *dev_priv = dev->dev_private;
8788         int refclk;
8789         const intel_limit_t *limit;
8790         bool ret;
8791
8792         refclk = ironlake_get_refclk(crtc_state);
8793
8794         /*
8795          * Returns a set of divisors for the desired target clock with the given
8796          * refclk, or FALSE.  The returned values represent the clock equation:
8797          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8798          */
8799         limit = intel_limit(crtc_state, refclk);
8800         ret = dev_priv->display.find_dpll(limit, crtc_state,
8801                                           crtc_state->port_clock,
8802                                           refclk, NULL, clock);
8803         if (!ret)
8804                 return false;
8805
8806         return true;
8807 }
8808
8809 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8810 {
8811         /*
8812          * Account for spread spectrum to avoid
8813          * oversubscribing the link. Max center spread
8814          * is 2.5%; use 5% for safety's sake.
8815          */
8816         u32 bps = target_clock * bpp * 21 / 20;
8817         return DIV_ROUND_UP(bps, link_bw * 8);
8818 }
8819
8820 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8821 {
8822         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8823 }
8824
8825 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8826                                       struct intel_crtc_state *crtc_state,
8827                                       u32 *fp,
8828                                       intel_clock_t *reduced_clock, u32 *fp2)
8829 {
8830         struct drm_crtc *crtc = &intel_crtc->base;
8831         struct drm_device *dev = crtc->dev;
8832         struct drm_i915_private *dev_priv = dev->dev_private;
8833         struct drm_atomic_state *state = crtc_state->base.state;
8834         struct drm_connector *connector;
8835         struct drm_connector_state *connector_state;
8836         struct intel_encoder *encoder;
8837         uint32_t dpll;
8838         int factor, num_connectors = 0, i;
8839         bool is_lvds = false, is_sdvo = false;
8840
8841         for_each_connector_in_state(state, connector, connector_state, i) {
8842                 if (connector_state->crtc != crtc_state->base.crtc)
8843                         continue;
8844
8845                 encoder = to_intel_encoder(connector_state->best_encoder);
8846
8847                 switch (encoder->type) {
8848                 case INTEL_OUTPUT_LVDS:
8849                         is_lvds = true;
8850                         break;
8851                 case INTEL_OUTPUT_SDVO:
8852                 case INTEL_OUTPUT_HDMI:
8853                         is_sdvo = true;
8854                         break;
8855                 default:
8856                         break;
8857                 }
8858
8859                 num_connectors++;
8860         }
8861
8862         /* Enable autotuning of the PLL clock (if permissible) */
8863         factor = 21;
8864         if (is_lvds) {
8865                 if ((intel_panel_use_ssc(dev_priv) &&
8866                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8867                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8868                         factor = 25;
8869         } else if (crtc_state->sdvo_tv_clock)
8870                 factor = 20;
8871
8872         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8873                 *fp |= FP_CB_TUNE;
8874
8875         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8876                 *fp2 |= FP_CB_TUNE;
8877
8878         dpll = 0;
8879
8880         if (is_lvds)
8881                 dpll |= DPLLB_MODE_LVDS;
8882         else
8883                 dpll |= DPLLB_MODE_DAC_SERIAL;
8884
8885         dpll |= (crtc_state->pixel_multiplier - 1)
8886                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8887
8888         if (is_sdvo)
8889                 dpll |= DPLL_SDVO_HIGH_SPEED;
8890         if (crtc_state->has_dp_encoder)
8891                 dpll |= DPLL_SDVO_HIGH_SPEED;
8892
8893         /* compute bitmask from p1 value */
8894         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8895         /* also FPA1 */
8896         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8897
8898         switch (crtc_state->dpll.p2) {
8899         case 5:
8900                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8901                 break;
8902         case 7:
8903                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8904                 break;
8905         case 10:
8906                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8907                 break;
8908         case 14:
8909                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8910                 break;
8911         }
8912
8913         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8914                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8915         else
8916                 dpll |= PLL_REF_INPUT_DREFCLK;
8917
8918         return dpll | DPLL_VCO_ENABLE;
8919 }
8920
8921 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8922                                        struct intel_crtc_state *crtc_state)
8923 {
8924         struct drm_device *dev = crtc->base.dev;
8925         intel_clock_t clock, reduced_clock;
8926         u32 dpll = 0, fp = 0, fp2 = 0;
8927         bool ok, has_reduced_clock = false;
8928         bool is_lvds = false;
8929         struct intel_shared_dpll *pll;
8930
8931         memset(&crtc_state->dpll_hw_state, 0,
8932                sizeof(crtc_state->dpll_hw_state));
8933
8934         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8935
8936         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8937              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8938
8939         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8940                                      &has_reduced_clock, &reduced_clock);
8941         if (!ok && !crtc_state->clock_set) {
8942                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8943                 return -EINVAL;
8944         }
8945         /* Compat-code for transition, will disappear. */
8946         if (!crtc_state->clock_set) {
8947                 crtc_state->dpll.n = clock.n;
8948                 crtc_state->dpll.m1 = clock.m1;
8949                 crtc_state->dpll.m2 = clock.m2;
8950                 crtc_state->dpll.p1 = clock.p1;
8951                 crtc_state->dpll.p2 = clock.p2;
8952         }
8953
8954         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8955         if (crtc_state->has_pch_encoder) {
8956                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8957                 if (has_reduced_clock)
8958                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8959
8960                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8961                                              &fp, &reduced_clock,
8962                                              has_reduced_clock ? &fp2 : NULL);
8963
8964                 crtc_state->dpll_hw_state.dpll = dpll;
8965                 crtc_state->dpll_hw_state.fp0 = fp;
8966                 if (has_reduced_clock)
8967                         crtc_state->dpll_hw_state.fp1 = fp2;
8968                 else
8969                         crtc_state->dpll_hw_state.fp1 = fp;
8970
8971                 pll = intel_get_shared_dpll(crtc, crtc_state);
8972                 if (pll == NULL) {
8973                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8974                                          pipe_name(crtc->pipe));
8975                         return -EINVAL;
8976                 }
8977         }
8978
8979         if (is_lvds && has_reduced_clock)
8980                 crtc->lowfreq_avail = true;
8981         else
8982                 crtc->lowfreq_avail = false;
8983
8984         return 0;
8985 }
8986
8987 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8988                                          struct intel_link_m_n *m_n)
8989 {
8990         struct drm_device *dev = crtc->base.dev;
8991         struct drm_i915_private *dev_priv = dev->dev_private;
8992         enum pipe pipe = crtc->pipe;
8993
8994         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8995         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8996         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8997                 & ~TU_SIZE_MASK;
8998         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8999         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9000                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9001 }
9002
9003 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9004                                          enum transcoder transcoder,
9005                                          struct intel_link_m_n *m_n,
9006                                          struct intel_link_m_n *m2_n2)
9007 {
9008         struct drm_device *dev = crtc->base.dev;
9009         struct drm_i915_private *dev_priv = dev->dev_private;
9010         enum pipe pipe = crtc->pipe;
9011
9012         if (INTEL_INFO(dev)->gen >= 5) {
9013                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9014                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9015                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9016                         & ~TU_SIZE_MASK;
9017                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9018                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9019                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9020                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
9021                  * gen < 8) and if DRRS is supported (to make sure the
9022                  * registers are not unnecessarily read).
9023                  */
9024                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
9025                         crtc->config->has_drrs) {
9026                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9027                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9028                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9029                                         & ~TU_SIZE_MASK;
9030                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9031                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9032                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9033                 }
9034         } else {
9035                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9036                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9037                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9038                         & ~TU_SIZE_MASK;
9039                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9040                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9041                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9042         }
9043 }
9044
9045 void intel_dp_get_m_n(struct intel_crtc *crtc,
9046                       struct intel_crtc_state *pipe_config)
9047 {
9048         if (pipe_config->has_pch_encoder)
9049                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9050         else
9051                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9052                                              &pipe_config->dp_m_n,
9053                                              &pipe_config->dp_m2_n2);
9054 }
9055
9056 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9057                                         struct intel_crtc_state *pipe_config)
9058 {
9059         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9060                                      &pipe_config->fdi_m_n, NULL);
9061 }
9062
9063 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9064                                     struct intel_crtc_state *pipe_config)
9065 {
9066         struct drm_device *dev = crtc->base.dev;
9067         struct drm_i915_private *dev_priv = dev->dev_private;
9068         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9069         uint32_t ps_ctrl = 0;
9070         int id = -1;
9071         int i;
9072
9073         /* find scaler attached to this pipe */
9074         for (i = 0; i < crtc->num_scalers; i++) {
9075                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9076                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9077                         id = i;
9078                         pipe_config->pch_pfit.enabled = true;
9079                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9080                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9081                         break;
9082                 }
9083         }
9084
9085         scaler_state->scaler_id = id;
9086         if (id >= 0) {
9087                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9088         } else {
9089                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9090         }
9091 }
9092
9093 static void
9094 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9095                                  struct intel_initial_plane_config *plane_config)
9096 {
9097         struct drm_device *dev = crtc->base.dev;
9098         struct drm_i915_private *dev_priv = dev->dev_private;
9099         u32 val, base, offset, stride_mult, tiling;
9100         int pipe = crtc->pipe;
9101         int fourcc, pixel_format;
9102         unsigned int aligned_height;
9103         struct drm_framebuffer *fb;
9104         struct intel_framebuffer *intel_fb;
9105
9106         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9107         if (!intel_fb) {
9108                 DRM_DEBUG_KMS("failed to alloc fb\n");
9109                 return;
9110         }
9111
9112         fb = &intel_fb->base;
9113
9114         val = I915_READ(PLANE_CTL(pipe, 0));
9115         if (!(val & PLANE_CTL_ENABLE))
9116                 goto error;
9117
9118         pixel_format = val & PLANE_CTL_FORMAT_MASK;
9119         fourcc = skl_format_to_fourcc(pixel_format,
9120                                       val & PLANE_CTL_ORDER_RGBX,
9121                                       val & PLANE_CTL_ALPHA_MASK);
9122         fb->pixel_format = fourcc;
9123         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9124
9125         tiling = val & PLANE_CTL_TILED_MASK;
9126         switch (tiling) {
9127         case PLANE_CTL_TILED_LINEAR:
9128                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9129                 break;
9130         case PLANE_CTL_TILED_X:
9131                 plane_config->tiling = I915_TILING_X;
9132                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9133                 break;
9134         case PLANE_CTL_TILED_Y:
9135                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9136                 break;
9137         case PLANE_CTL_TILED_YF:
9138                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9139                 break;
9140         default:
9141                 MISSING_CASE(tiling);
9142                 goto error;
9143         }
9144
9145         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9146         plane_config->base = base;
9147
9148         offset = I915_READ(PLANE_OFFSET(pipe, 0));
9149
9150         val = I915_READ(PLANE_SIZE(pipe, 0));
9151         fb->height = ((val >> 16) & 0xfff) + 1;
9152         fb->width = ((val >> 0) & 0x1fff) + 1;
9153
9154         val = I915_READ(PLANE_STRIDE(pipe, 0));
9155         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
9156                                                 fb->pixel_format);
9157         fb->pitches[0] = (val & 0x3ff) * stride_mult;
9158
9159         aligned_height = intel_fb_align_height(dev, fb->height,
9160                                                fb->pixel_format,
9161                                                fb->modifier[0]);
9162
9163         plane_config->size = fb->pitches[0] * aligned_height;
9164
9165         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9166                       pipe_name(pipe), fb->width, fb->height,
9167                       fb->bits_per_pixel, base, fb->pitches[0],
9168                       plane_config->size);
9169
9170         plane_config->fb = intel_fb;
9171         return;
9172
9173 error:
9174         kfree(fb);
9175 }
9176
9177 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
9178                                      struct intel_crtc_state *pipe_config)
9179 {
9180         struct drm_device *dev = crtc->base.dev;
9181         struct drm_i915_private *dev_priv = dev->dev_private;
9182         uint32_t tmp;
9183
9184         tmp = I915_READ(PF_CTL(crtc->pipe));
9185
9186         if (tmp & PF_ENABLE) {
9187                 pipe_config->pch_pfit.enabled = true;
9188                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9189                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
9190
9191                 /* We currently do not free assignements of panel fitters on
9192                  * ivb/hsw (since we don't use the higher upscaling modes which
9193                  * differentiates them) so just WARN about this case for now. */
9194                 if (IS_GEN7(dev)) {
9195                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9196                                 PF_PIPE_SEL_IVB(crtc->pipe));
9197                 }
9198         }
9199 }
9200
9201 static void
9202 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9203                                   struct intel_initial_plane_config *plane_config)
9204 {
9205         struct drm_device *dev = crtc->base.dev;
9206         struct drm_i915_private *dev_priv = dev->dev_private;
9207         u32 val, base, offset;
9208         int pipe = crtc->pipe;
9209         int fourcc, pixel_format;
9210         unsigned int aligned_height;
9211         struct drm_framebuffer *fb;
9212         struct intel_framebuffer *intel_fb;
9213
9214         val = I915_READ(DSPCNTR(pipe));
9215         if (!(val & DISPLAY_PLANE_ENABLE))
9216                 return;
9217
9218         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9219         if (!intel_fb) {
9220                 DRM_DEBUG_KMS("failed to alloc fb\n");
9221                 return;
9222         }
9223
9224         fb = &intel_fb->base;
9225
9226         if (INTEL_INFO(dev)->gen >= 4) {
9227                 if (val & DISPPLANE_TILED) {
9228                         plane_config->tiling = I915_TILING_X;
9229                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9230                 }
9231         }
9232
9233         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9234         fourcc = i9xx_format_to_fourcc(pixel_format);
9235         fb->pixel_format = fourcc;
9236         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9237
9238         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9239         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9240                 offset = I915_READ(DSPOFFSET(pipe));
9241         } else {
9242                 if (plane_config->tiling)
9243                         offset = I915_READ(DSPTILEOFF(pipe));
9244                 else
9245                         offset = I915_READ(DSPLINOFF(pipe));
9246         }
9247         plane_config->base = base;
9248
9249         val = I915_READ(PIPESRC(pipe));
9250         fb->width = ((val >> 16) & 0xfff) + 1;
9251         fb->height = ((val >> 0) & 0xfff) + 1;
9252
9253         val = I915_READ(DSPSTRIDE(pipe));
9254         fb->pitches[0] = val & 0xffffffc0;
9255
9256         aligned_height = intel_fb_align_height(dev, fb->height,
9257                                                fb->pixel_format,
9258                                                fb->modifier[0]);
9259
9260         plane_config->size = fb->pitches[0] * aligned_height;
9261
9262         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9263                       pipe_name(pipe), fb->width, fb->height,
9264                       fb->bits_per_pixel, base, fb->pitches[0],
9265                       plane_config->size);
9266
9267         plane_config->fb = intel_fb;
9268 }
9269
9270 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9271                                      struct intel_crtc_state *pipe_config)
9272 {
9273         struct drm_device *dev = crtc->base.dev;
9274         struct drm_i915_private *dev_priv = dev->dev_private;
9275         uint32_t tmp;
9276
9277         if (!intel_display_power_is_enabled(dev_priv,
9278                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9279                 return false;
9280
9281         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9282         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9283
9284         tmp = I915_READ(PIPECONF(crtc->pipe));
9285         if (!(tmp & PIPECONF_ENABLE))
9286                 return false;
9287
9288         switch (tmp & PIPECONF_BPC_MASK) {
9289         case PIPECONF_6BPC:
9290                 pipe_config->pipe_bpp = 18;
9291                 break;
9292         case PIPECONF_8BPC:
9293                 pipe_config->pipe_bpp = 24;
9294                 break;
9295         case PIPECONF_10BPC:
9296                 pipe_config->pipe_bpp = 30;
9297                 break;
9298         case PIPECONF_12BPC:
9299                 pipe_config->pipe_bpp = 36;
9300                 break;
9301         default:
9302                 break;
9303         }
9304
9305         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9306                 pipe_config->limited_color_range = true;
9307
9308         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9309                 struct intel_shared_dpll *pll;
9310
9311                 pipe_config->has_pch_encoder = true;
9312
9313                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9314                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9315                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9316
9317                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9318
9319                 if (HAS_PCH_IBX(dev_priv->dev)) {
9320                         pipe_config->shared_dpll =
9321                                 (enum intel_dpll_id) crtc->pipe;
9322                 } else {
9323                         tmp = I915_READ(PCH_DPLL_SEL);
9324                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9325                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9326                         else
9327                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9328                 }
9329
9330                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9331
9332                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9333                                            &pipe_config->dpll_hw_state));
9334
9335                 tmp = pipe_config->dpll_hw_state.dpll;
9336                 pipe_config->pixel_multiplier =
9337                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9338                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9339
9340                 ironlake_pch_clock_get(crtc, pipe_config);
9341         } else {
9342                 pipe_config->pixel_multiplier = 1;
9343         }
9344
9345         intel_get_pipe_timings(crtc, pipe_config);
9346
9347         ironlake_get_pfit_config(crtc, pipe_config);
9348
9349         return true;
9350 }
9351
9352 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9353 {
9354         struct drm_device *dev = dev_priv->dev;
9355         struct intel_crtc *crtc;
9356
9357         for_each_intel_crtc(dev, crtc)
9358                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9359                      pipe_name(crtc->pipe));
9360
9361         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9362         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9363         I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9364         I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9365         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9366         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9367              "CPU PWM1 enabled\n");
9368         if (IS_HASWELL(dev))
9369                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9370                      "CPU PWM2 enabled\n");
9371         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9372              "PCH PWM1 enabled\n");
9373         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9374              "Utility pin enabled\n");
9375         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9376
9377         /*
9378          * In theory we can still leave IRQs enabled, as long as only the HPD
9379          * interrupts remain enabled. We used to check for that, but since it's
9380          * gen-specific and since we only disable LCPLL after we fully disable
9381          * the interrupts, the check below should be enough.
9382          */
9383         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9384 }
9385
9386 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9387 {
9388         struct drm_device *dev = dev_priv->dev;
9389
9390         if (IS_HASWELL(dev))
9391                 return I915_READ(D_COMP_HSW);
9392         else
9393                 return I915_READ(D_COMP_BDW);
9394 }
9395
9396 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9397 {
9398         struct drm_device *dev = dev_priv->dev;
9399
9400         if (IS_HASWELL(dev)) {
9401                 mutex_lock(&dev_priv->rps.hw_lock);
9402                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9403                                             val))
9404                         DRM_ERROR("Failed to write to D_COMP\n");
9405                 mutex_unlock(&dev_priv->rps.hw_lock);
9406         } else {
9407                 I915_WRITE(D_COMP_BDW, val);
9408                 POSTING_READ(D_COMP_BDW);
9409         }
9410 }
9411
9412 /*
9413  * This function implements pieces of two sequences from BSpec:
9414  * - Sequence for display software to disable LCPLL
9415  * - Sequence for display software to allow package C8+
9416  * The steps implemented here are just the steps that actually touch the LCPLL
9417  * register. Callers should take care of disabling all the display engine
9418  * functions, doing the mode unset, fixing interrupts, etc.
9419  */
9420 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9421                               bool switch_to_fclk, bool allow_power_down)
9422 {
9423         uint32_t val;
9424
9425         assert_can_disable_lcpll(dev_priv);
9426
9427         val = I915_READ(LCPLL_CTL);
9428
9429         if (switch_to_fclk) {
9430                 val |= LCPLL_CD_SOURCE_FCLK;
9431                 I915_WRITE(LCPLL_CTL, val);
9432
9433                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9434                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9435                         DRM_ERROR("Switching to FCLK failed\n");
9436
9437                 val = I915_READ(LCPLL_CTL);
9438         }
9439
9440         val |= LCPLL_PLL_DISABLE;
9441         I915_WRITE(LCPLL_CTL, val);
9442         POSTING_READ(LCPLL_CTL);
9443
9444         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9445                 DRM_ERROR("LCPLL still locked\n");
9446
9447         val = hsw_read_dcomp(dev_priv);
9448         val |= D_COMP_COMP_DISABLE;
9449         hsw_write_dcomp(dev_priv, val);
9450         ndelay(100);
9451
9452         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9453                      1))
9454                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9455
9456         if (allow_power_down) {
9457                 val = I915_READ(LCPLL_CTL);
9458                 val |= LCPLL_POWER_DOWN_ALLOW;
9459                 I915_WRITE(LCPLL_CTL, val);
9460                 POSTING_READ(LCPLL_CTL);
9461         }
9462 }
9463
9464 /*
9465  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9466  * source.
9467  */
9468 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9469 {
9470         uint32_t val;
9471
9472         val = I915_READ(LCPLL_CTL);
9473
9474         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9475                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9476                 return;
9477
9478         /*
9479          * Make sure we're not on PC8 state before disabling PC8, otherwise
9480          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9481          */
9482         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9483
9484         if (val & LCPLL_POWER_DOWN_ALLOW) {
9485                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9486                 I915_WRITE(LCPLL_CTL, val);
9487                 POSTING_READ(LCPLL_CTL);
9488         }
9489
9490         val = hsw_read_dcomp(dev_priv);
9491         val |= D_COMP_COMP_FORCE;
9492         val &= ~D_COMP_COMP_DISABLE;
9493         hsw_write_dcomp(dev_priv, val);
9494
9495         val = I915_READ(LCPLL_CTL);
9496         val &= ~LCPLL_PLL_DISABLE;
9497         I915_WRITE(LCPLL_CTL, val);
9498
9499         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9500                 DRM_ERROR("LCPLL not locked yet\n");
9501
9502         if (val & LCPLL_CD_SOURCE_FCLK) {
9503                 val = I915_READ(LCPLL_CTL);
9504                 val &= ~LCPLL_CD_SOURCE_FCLK;
9505                 I915_WRITE(LCPLL_CTL, val);
9506
9507                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9508                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9509                         DRM_ERROR("Switching back to LCPLL failed\n");
9510         }
9511
9512         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9513         intel_update_cdclk(dev_priv->dev);
9514 }
9515
9516 /*
9517  * Package states C8 and deeper are really deep PC states that can only be
9518  * reached when all the devices on the system allow it, so even if the graphics
9519  * device allows PC8+, it doesn't mean the system will actually get to these
9520  * states. Our driver only allows PC8+ when going into runtime PM.
9521  *
9522  * The requirements for PC8+ are that all the outputs are disabled, the power
9523  * well is disabled and most interrupts are disabled, and these are also
9524  * requirements for runtime PM. When these conditions are met, we manually do
9525  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9526  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9527  * hang the machine.
9528  *
9529  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9530  * the state of some registers, so when we come back from PC8+ we need to
9531  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9532  * need to take care of the registers kept by RC6. Notice that this happens even
9533  * if we don't put the device in PCI D3 state (which is what currently happens
9534  * because of the runtime PM support).
9535  *
9536  * For more, read "Display Sequences for Package C8" on the hardware
9537  * documentation.
9538  */
9539 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9540 {
9541         struct drm_device *dev = dev_priv->dev;
9542         uint32_t val;
9543
9544         DRM_DEBUG_KMS("Enabling package C8+\n");
9545
9546         if (HAS_PCH_LPT_LP(dev)) {
9547                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9548                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9549                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9550         }
9551
9552         lpt_disable_clkout_dp(dev);
9553         hsw_disable_lcpll(dev_priv, true, true);
9554 }
9555
9556 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9557 {
9558         struct drm_device *dev = dev_priv->dev;
9559         uint32_t val;
9560
9561         DRM_DEBUG_KMS("Disabling package C8+\n");
9562
9563         hsw_restore_lcpll(dev_priv);
9564         lpt_init_pch_refclk(dev);
9565
9566         if (HAS_PCH_LPT_LP(dev)) {
9567                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9568                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9569                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9570         }
9571
9572         intel_prepare_ddi(dev);
9573 }
9574
9575 static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9576 {
9577         struct drm_device *dev = old_state->dev;
9578         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9579
9580         broxton_set_cdclk(dev, req_cdclk);
9581 }
9582
9583 /* compute the max rate for new configuration */
9584 static int ilk_max_pixel_rate(struct drm_atomic_state *state)
9585 {
9586         struct intel_crtc *intel_crtc;
9587         struct intel_crtc_state *crtc_state;
9588         int max_pixel_rate = 0;
9589
9590         for_each_intel_crtc(state->dev, intel_crtc) {
9591                 int pixel_rate;
9592
9593                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
9594                 if (IS_ERR(crtc_state))
9595                         return PTR_ERR(crtc_state);
9596
9597                 if (!crtc_state->base.enable)
9598                         continue;
9599
9600                 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
9601
9602                 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
9603                 if (IS_BROADWELL(state->dev) && crtc_state->ips_enabled)
9604                         pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9605
9606                 max_pixel_rate = max(max_pixel_rate, pixel_rate);
9607         }
9608
9609         return max_pixel_rate;
9610 }
9611
9612 static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9613 {
9614         struct drm_i915_private *dev_priv = dev->dev_private;
9615         uint32_t val, data;
9616         int ret;
9617
9618         if (WARN((I915_READ(LCPLL_CTL) &
9619                   (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9620                    LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9621                    LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9622                    LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9623                  "trying to change cdclk frequency with cdclk not enabled\n"))
9624                 return;
9625
9626         mutex_lock(&dev_priv->rps.hw_lock);
9627         ret = sandybridge_pcode_write(dev_priv,
9628                                       BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9629         mutex_unlock(&dev_priv->rps.hw_lock);
9630         if (ret) {
9631                 DRM_ERROR("failed to inform pcode about cdclk change\n");
9632                 return;
9633         }
9634
9635         val = I915_READ(LCPLL_CTL);
9636         val |= LCPLL_CD_SOURCE_FCLK;
9637         I915_WRITE(LCPLL_CTL, val);
9638
9639         if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9640                                LCPLL_CD_SOURCE_FCLK_DONE, 1))
9641                 DRM_ERROR("Switching to FCLK failed\n");
9642
9643         val = I915_READ(LCPLL_CTL);
9644         val &= ~LCPLL_CLK_FREQ_MASK;
9645
9646         switch (cdclk) {
9647         case 450000:
9648                 val |= LCPLL_CLK_FREQ_450;
9649                 data = 0;
9650                 break;
9651         case 540000:
9652                 val |= LCPLL_CLK_FREQ_54O_BDW;
9653                 data = 1;
9654                 break;
9655         case 337500:
9656                 val |= LCPLL_CLK_FREQ_337_5_BDW;
9657                 data = 2;
9658                 break;
9659         case 675000:
9660                 val |= LCPLL_CLK_FREQ_675_BDW;
9661                 data = 3;
9662                 break;
9663         default:
9664                 WARN(1, "invalid cdclk frequency\n");
9665                 return;
9666         }
9667
9668         I915_WRITE(LCPLL_CTL, val);
9669
9670         val = I915_READ(LCPLL_CTL);
9671         val &= ~LCPLL_CD_SOURCE_FCLK;
9672         I915_WRITE(LCPLL_CTL, val);
9673
9674         if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9675                                 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9676                 DRM_ERROR("Switching back to LCPLL failed\n");
9677
9678         mutex_lock(&dev_priv->rps.hw_lock);
9679         sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9680         mutex_unlock(&dev_priv->rps.hw_lock);
9681
9682         intel_update_cdclk(dev);
9683
9684         WARN(cdclk != dev_priv->cdclk_freq,
9685              "cdclk requested %d kHz but got %d kHz\n",
9686              cdclk, dev_priv->cdclk_freq);
9687 }
9688
9689 static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
9690 {
9691         struct drm_i915_private *dev_priv = to_i915(state->dev);
9692         int max_pixclk = ilk_max_pixel_rate(state);
9693         int cdclk;
9694
9695         /*
9696          * FIXME should also account for plane ratio
9697          * once 64bpp pixel formats are supported.
9698          */
9699         if (max_pixclk > 540000)
9700                 cdclk = 675000;
9701         else if (max_pixclk > 450000)
9702                 cdclk = 540000;
9703         else if (max_pixclk > 337500)
9704                 cdclk = 450000;
9705         else
9706                 cdclk = 337500;
9707
9708         /*
9709          * FIXME move the cdclk caclulation to
9710          * compute_config() so we can fail gracegully.
9711          */
9712         if (cdclk > dev_priv->max_cdclk_freq) {
9713                 DRM_ERROR("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9714                           cdclk, dev_priv->max_cdclk_freq);
9715                 cdclk = dev_priv->max_cdclk_freq;
9716         }
9717
9718         to_intel_atomic_state(state)->cdclk = cdclk;
9719
9720         return 0;
9721 }
9722
9723 static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
9724 {
9725         struct drm_device *dev = old_state->dev;
9726         unsigned int req_cdclk = to_intel_atomic_state(old_state)->cdclk;
9727
9728         broadwell_set_cdclk(dev, req_cdclk);
9729 }
9730
9731 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9732                                       struct intel_crtc_state *crtc_state)
9733 {
9734         if (!intel_ddi_pll_select(crtc, crtc_state))
9735                 return -EINVAL;
9736
9737         crtc->lowfreq_avail = false;
9738
9739         return 0;
9740 }
9741
9742 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9743                                 enum port port,
9744                                 struct intel_crtc_state *pipe_config)
9745 {
9746         switch (port) {
9747         case PORT_A:
9748                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9749                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9750                 break;
9751         case PORT_B:
9752                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9753                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9754                 break;
9755         case PORT_C:
9756                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9757                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9758                 break;
9759         default:
9760                 DRM_ERROR("Incorrect port type\n");
9761         }
9762 }
9763
9764 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9765                                 enum port port,
9766                                 struct intel_crtc_state *pipe_config)
9767 {
9768         u32 temp, dpll_ctl1;
9769
9770         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9771         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9772
9773         switch (pipe_config->ddi_pll_sel) {
9774         case SKL_DPLL0:
9775                 /*
9776                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9777                  * of the shared DPLL framework and thus needs to be read out
9778                  * separately
9779                  */
9780                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9781                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9782                 break;
9783         case SKL_DPLL1:
9784                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9785                 break;
9786         case SKL_DPLL2:
9787                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9788                 break;
9789         case SKL_DPLL3:
9790                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9791                 break;
9792         }
9793 }
9794
9795 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9796                                 enum port port,
9797                                 struct intel_crtc_state *pipe_config)
9798 {
9799         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9800
9801         switch (pipe_config->ddi_pll_sel) {
9802         case PORT_CLK_SEL_WRPLL1:
9803                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9804                 break;
9805         case PORT_CLK_SEL_WRPLL2:
9806                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9807                 break;
9808         case PORT_CLK_SEL_SPLL:
9809                 pipe_config->shared_dpll = DPLL_ID_SPLL;
9810         }
9811 }
9812
9813 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9814                                        struct intel_crtc_state *pipe_config)
9815 {
9816         struct drm_device *dev = crtc->base.dev;
9817         struct drm_i915_private *dev_priv = dev->dev_private;
9818         struct intel_shared_dpll *pll;
9819         enum port port;
9820         uint32_t tmp;
9821
9822         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9823
9824         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9825
9826         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
9827                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9828         else if (IS_BROXTON(dev))
9829                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9830         else
9831                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9832
9833         if (pipe_config->shared_dpll >= 0) {
9834                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9835
9836                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9837                                            &pipe_config->dpll_hw_state));
9838         }
9839
9840         /*
9841          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9842          * DDI E. So just check whether this pipe is wired to DDI E and whether
9843          * the PCH transcoder is on.
9844          */
9845         if (INTEL_INFO(dev)->gen < 9 &&
9846             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9847                 pipe_config->has_pch_encoder = true;
9848
9849                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9850                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9851                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9852
9853                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9854         }
9855 }
9856
9857 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9858                                     struct intel_crtc_state *pipe_config)
9859 {
9860         struct drm_device *dev = crtc->base.dev;
9861         struct drm_i915_private *dev_priv = dev->dev_private;
9862         enum intel_display_power_domain pfit_domain;
9863         uint32_t tmp;
9864
9865         if (!intel_display_power_is_enabled(dev_priv,
9866                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9867                 return false;
9868
9869         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9870         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9871
9872         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9873         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9874                 enum pipe trans_edp_pipe;
9875                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9876                 default:
9877                         WARN(1, "unknown pipe linked to edp transcoder\n");
9878                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9879                 case TRANS_DDI_EDP_INPUT_A_ON:
9880                         trans_edp_pipe = PIPE_A;
9881                         break;
9882                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9883                         trans_edp_pipe = PIPE_B;
9884                         break;
9885                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9886                         trans_edp_pipe = PIPE_C;
9887                         break;
9888                 }
9889
9890                 if (trans_edp_pipe == crtc->pipe)
9891                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9892         }
9893
9894         if (!intel_display_power_is_enabled(dev_priv,
9895                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9896                 return false;
9897
9898         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9899         if (!(tmp & PIPECONF_ENABLE))
9900                 return false;
9901
9902         haswell_get_ddi_port_state(crtc, pipe_config);
9903
9904         intel_get_pipe_timings(crtc, pipe_config);
9905
9906         if (INTEL_INFO(dev)->gen >= 9) {
9907                 skl_init_scalers(dev, crtc, pipe_config);
9908         }
9909
9910         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9911
9912         if (INTEL_INFO(dev)->gen >= 9) {
9913                 pipe_config->scaler_state.scaler_id = -1;
9914                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9915         }
9916
9917         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9918                 if (INTEL_INFO(dev)->gen >= 9)
9919                         skylake_get_pfit_config(crtc, pipe_config);
9920                 else
9921                         ironlake_get_pfit_config(crtc, pipe_config);
9922         }
9923
9924         if (IS_HASWELL(dev))
9925                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9926                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9927
9928         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9929                 pipe_config->pixel_multiplier =
9930                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9931         } else {
9932                 pipe_config->pixel_multiplier = 1;
9933         }
9934
9935         return true;
9936 }
9937
9938 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9939 {
9940         struct drm_device *dev = crtc->dev;
9941         struct drm_i915_private *dev_priv = dev->dev_private;
9942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9943         uint32_t cntl = 0, size = 0;
9944
9945         if (base) {
9946                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9947                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9948                 unsigned int stride = roundup_pow_of_two(width) * 4;
9949
9950                 switch (stride) {
9951                 default:
9952                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9953                                   width, stride);
9954                         stride = 256;
9955                         /* fallthrough */
9956                 case 256:
9957                 case 512:
9958                 case 1024:
9959                 case 2048:
9960                         break;
9961                 }
9962
9963                 cntl |= CURSOR_ENABLE |
9964                         CURSOR_GAMMA_ENABLE |
9965                         CURSOR_FORMAT_ARGB |
9966                         CURSOR_STRIDE(stride);
9967
9968                 size = (height << 12) | width;
9969         }
9970
9971         if (intel_crtc->cursor_cntl != 0 &&
9972             (intel_crtc->cursor_base != base ||
9973              intel_crtc->cursor_size != size ||
9974              intel_crtc->cursor_cntl != cntl)) {
9975                 /* On these chipsets we can only modify the base/size/stride
9976                  * whilst the cursor is disabled.
9977                  */
9978                 I915_WRITE(CURCNTR(PIPE_A), 0);
9979                 POSTING_READ(CURCNTR(PIPE_A));
9980                 intel_crtc->cursor_cntl = 0;
9981         }
9982
9983         if (intel_crtc->cursor_base != base) {
9984                 I915_WRITE(CURBASE(PIPE_A), base);
9985                 intel_crtc->cursor_base = base;
9986         }
9987
9988         if (intel_crtc->cursor_size != size) {
9989                 I915_WRITE(CURSIZE, size);
9990                 intel_crtc->cursor_size = size;
9991         }
9992
9993         if (intel_crtc->cursor_cntl != cntl) {
9994                 I915_WRITE(CURCNTR(PIPE_A), cntl);
9995                 POSTING_READ(CURCNTR(PIPE_A));
9996                 intel_crtc->cursor_cntl = cntl;
9997         }
9998 }
9999
10000 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
10001 {
10002         struct drm_device *dev = crtc->dev;
10003         struct drm_i915_private *dev_priv = dev->dev_private;
10004         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10005         int pipe = intel_crtc->pipe;
10006         uint32_t cntl;
10007
10008         cntl = 0;
10009         if (base) {
10010                 cntl = MCURSOR_GAMMA_ENABLE;
10011                 switch (intel_crtc->base.cursor->state->crtc_w) {
10012                         case 64:
10013                                 cntl |= CURSOR_MODE_64_ARGB_AX;
10014                                 break;
10015                         case 128:
10016                                 cntl |= CURSOR_MODE_128_ARGB_AX;
10017                                 break;
10018                         case 256:
10019                                 cntl |= CURSOR_MODE_256_ARGB_AX;
10020                                 break;
10021                         default:
10022                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
10023                                 return;
10024                 }
10025                 cntl |= pipe << 28; /* Connect to correct pipe */
10026
10027                 if (HAS_DDI(dev))
10028                         cntl |= CURSOR_PIPE_CSC_ENABLE;
10029         }
10030
10031         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
10032                 cntl |= CURSOR_ROTATE_180;
10033
10034         if (intel_crtc->cursor_cntl != cntl) {
10035                 I915_WRITE(CURCNTR(pipe), cntl);
10036                 POSTING_READ(CURCNTR(pipe));
10037                 intel_crtc->cursor_cntl = cntl;
10038         }
10039
10040         /* and commit changes on next vblank */
10041         I915_WRITE(CURBASE(pipe), base);
10042         POSTING_READ(CURBASE(pipe));
10043
10044         intel_crtc->cursor_base = base;
10045 }
10046
10047 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
10048 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
10049                                      bool on)
10050 {
10051         struct drm_device *dev = crtc->dev;
10052         struct drm_i915_private *dev_priv = dev->dev_private;
10053         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10054         int pipe = intel_crtc->pipe;
10055         struct drm_plane_state *cursor_state = crtc->cursor->state;
10056         int x = cursor_state->crtc_x;
10057         int y = cursor_state->crtc_y;
10058         u32 base = 0, pos = 0;
10059
10060         if (on)
10061                 base = intel_crtc->cursor_addr;
10062
10063         if (x >= intel_crtc->config->pipe_src_w)
10064                 base = 0;
10065
10066         if (y >= intel_crtc->config->pipe_src_h)
10067                 base = 0;
10068
10069         if (x < 0) {
10070                 if (x + cursor_state->crtc_w <= 0)
10071                         base = 0;
10072
10073                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10074                 x = -x;
10075         }
10076         pos |= x << CURSOR_X_SHIFT;
10077
10078         if (y < 0) {
10079                 if (y + cursor_state->crtc_h <= 0)
10080                         base = 0;
10081
10082                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10083                 y = -y;
10084         }
10085         pos |= y << CURSOR_Y_SHIFT;
10086
10087         if (base == 0 && intel_crtc->cursor_base == 0)
10088                 return;
10089
10090         I915_WRITE(CURPOS(pipe), pos);
10091
10092         /* ILK+ do this automagically */
10093         if (HAS_GMCH_DISPLAY(dev) &&
10094             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
10095                 base += (cursor_state->crtc_h *
10096                          cursor_state->crtc_w - 1) * 4;
10097         }
10098
10099         if (IS_845G(dev) || IS_I865G(dev))
10100                 i845_update_cursor(crtc, base);
10101         else
10102                 i9xx_update_cursor(crtc, base);
10103 }
10104
10105 static bool cursor_size_ok(struct drm_device *dev,
10106                            uint32_t width, uint32_t height)
10107 {
10108         if (width == 0 || height == 0)
10109                 return false;
10110
10111         /*
10112          * 845g/865g are special in that they are only limited by
10113          * the width of their cursors, the height is arbitrary up to
10114          * the precision of the register. Everything else requires
10115          * square cursors, limited to a few power-of-two sizes.
10116          */
10117         if (IS_845G(dev) || IS_I865G(dev)) {
10118                 if ((width & 63) != 0)
10119                         return false;
10120
10121                 if (width > (IS_845G(dev) ? 64 : 512))
10122                         return false;
10123
10124                 if (height > 1023)
10125                         return false;
10126         } else {
10127                 switch (width | height) {
10128                 case 256:
10129                 case 128:
10130                         if (IS_GEN2(dev))
10131                                 return false;
10132                 case 64:
10133                         break;
10134                 default:
10135                         return false;
10136                 }
10137         }
10138
10139         return true;
10140 }
10141
10142 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
10143                                  u16 *blue, uint32_t start, uint32_t size)
10144 {
10145         int end = (start + size > 256) ? 256 : start + size, i;
10146         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10147
10148         for (i = start; i < end; i++) {
10149                 intel_crtc->lut_r[i] = red[i] >> 8;
10150                 intel_crtc->lut_g[i] = green[i] >> 8;
10151                 intel_crtc->lut_b[i] = blue[i] >> 8;
10152         }
10153
10154         intel_crtc_load_lut(crtc);
10155 }
10156
10157 /* VESA 640x480x72Hz mode to set on the pipe */
10158 static struct drm_display_mode load_detect_mode = {
10159         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10160                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10161 };
10162
10163 struct drm_framebuffer *
10164 __intel_framebuffer_create(struct drm_device *dev,
10165                            struct drm_mode_fb_cmd2 *mode_cmd,
10166                            struct drm_i915_gem_object *obj)
10167 {
10168         struct intel_framebuffer *intel_fb;
10169         int ret;
10170
10171         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
10172         if (!intel_fb)
10173                 return ERR_PTR(-ENOMEM);
10174
10175         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
10176         if (ret)
10177                 goto err;
10178
10179         return &intel_fb->base;
10180
10181 err:
10182         kfree(intel_fb);
10183         return ERR_PTR(ret);
10184 }
10185
10186 static struct drm_framebuffer *
10187 intel_framebuffer_create(struct drm_device *dev,
10188                          struct drm_mode_fb_cmd2 *mode_cmd,
10189                          struct drm_i915_gem_object *obj)
10190 {
10191         struct drm_framebuffer *fb;
10192         int ret;
10193
10194         ret = i915_mutex_lock_interruptible(dev);
10195         if (ret)
10196                 return ERR_PTR(ret);
10197         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10198         mutex_unlock(&dev->struct_mutex);
10199
10200         return fb;
10201 }
10202
10203 static u32
10204 intel_framebuffer_pitch_for_width(int width, int bpp)
10205 {
10206         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10207         return ALIGN(pitch, 64);
10208 }
10209
10210 static u32
10211 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10212 {
10213         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
10214         return PAGE_ALIGN(pitch * mode->vdisplay);
10215 }
10216
10217 static struct drm_framebuffer *
10218 intel_framebuffer_create_for_mode(struct drm_device *dev,
10219                                   struct drm_display_mode *mode,
10220                                   int depth, int bpp)
10221 {
10222         struct drm_framebuffer *fb;
10223         struct drm_i915_gem_object *obj;
10224         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
10225
10226         obj = i915_gem_alloc_object(dev,
10227                                     intel_framebuffer_size_for_mode(mode, bpp));
10228         if (obj == NULL)
10229                 return ERR_PTR(-ENOMEM);
10230
10231         mode_cmd.width = mode->hdisplay;
10232         mode_cmd.height = mode->vdisplay;
10233         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10234                                                                 bpp);
10235         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
10236
10237         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10238         if (IS_ERR(fb))
10239                 drm_gem_object_unreference_unlocked(&obj->base);
10240
10241         return fb;
10242 }
10243
10244 static struct drm_framebuffer *
10245 mode_fits_in_fbdev(struct drm_device *dev,
10246                    struct drm_display_mode *mode)
10247 {
10248 #ifdef CONFIG_DRM_FBDEV_EMULATION
10249         struct drm_i915_private *dev_priv = dev->dev_private;
10250         struct drm_i915_gem_object *obj;
10251         struct drm_framebuffer *fb;
10252
10253         if (!dev_priv->fbdev)
10254                 return NULL;
10255
10256         if (!dev_priv->fbdev->fb)
10257                 return NULL;
10258
10259         obj = dev_priv->fbdev->fb->obj;
10260         BUG_ON(!obj);
10261
10262         fb = &dev_priv->fbdev->fb->base;
10263         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10264                                                                fb->bits_per_pixel))
10265                 return NULL;
10266
10267         if (obj->base.size < mode->vdisplay * fb->pitches[0])
10268                 return NULL;
10269
10270         return fb;
10271 #else
10272         return NULL;
10273 #endif
10274 }
10275
10276 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10277                                            struct drm_crtc *crtc,
10278                                            struct drm_display_mode *mode,
10279                                            struct drm_framebuffer *fb,
10280                                            int x, int y)
10281 {
10282         struct drm_plane_state *plane_state;
10283         int hdisplay, vdisplay;
10284         int ret;
10285
10286         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10287         if (IS_ERR(plane_state))
10288                 return PTR_ERR(plane_state);
10289
10290         if (mode)
10291                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10292         else
10293                 hdisplay = vdisplay = 0;
10294
10295         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10296         if (ret)
10297                 return ret;
10298         drm_atomic_set_fb_for_plane(plane_state, fb);
10299         plane_state->crtc_x = 0;
10300         plane_state->crtc_y = 0;
10301         plane_state->crtc_w = hdisplay;
10302         plane_state->crtc_h = vdisplay;
10303         plane_state->src_x = x << 16;
10304         plane_state->src_y = y << 16;
10305         plane_state->src_w = hdisplay << 16;
10306         plane_state->src_h = vdisplay << 16;
10307
10308         return 0;
10309 }
10310
10311 bool intel_get_load_detect_pipe(struct drm_connector *connector,
10312                                 struct drm_display_mode *mode,
10313                                 struct intel_load_detect_pipe *old,
10314                                 struct drm_modeset_acquire_ctx *ctx)
10315 {
10316         struct intel_crtc *intel_crtc;
10317         struct intel_encoder *intel_encoder =
10318                 intel_attached_encoder(connector);
10319         struct drm_crtc *possible_crtc;
10320         struct drm_encoder *encoder = &intel_encoder->base;
10321         struct drm_crtc *crtc = NULL;
10322         struct drm_device *dev = encoder->dev;
10323         struct drm_framebuffer *fb;
10324         struct drm_mode_config *config = &dev->mode_config;
10325         struct drm_atomic_state *state = NULL;
10326         struct drm_connector_state *connector_state;
10327         struct intel_crtc_state *crtc_state;
10328         int ret, i = -1;
10329
10330         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10331                       connector->base.id, connector->name,
10332                       encoder->base.id, encoder->name);
10333
10334 retry:
10335         ret = drm_modeset_lock(&config->connection_mutex, ctx);
10336         if (ret)
10337                 goto fail;
10338
10339         /*
10340          * Algorithm gets a little messy:
10341          *
10342          *   - if the connector already has an assigned crtc, use it (but make
10343          *     sure it's on first)
10344          *
10345          *   - try to find the first unused crtc that can drive this connector,
10346          *     and use that if we find one
10347          */
10348
10349         /* See if we already have a CRTC for this connector */
10350         if (encoder->crtc) {
10351                 crtc = encoder->crtc;
10352
10353                 ret = drm_modeset_lock(&crtc->mutex, ctx);
10354                 if (ret)
10355                         goto fail;
10356                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10357                 if (ret)
10358                         goto fail;
10359
10360                 old->dpms_mode = connector->dpms;
10361                 old->load_detect_temp = false;
10362
10363                 /* Make sure the crtc and connector are running */
10364                 if (connector->dpms != DRM_MODE_DPMS_ON)
10365                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10366
10367                 return true;
10368         }
10369
10370         /* Find an unused one (if possible) */
10371         for_each_crtc(dev, possible_crtc) {
10372                 i++;
10373                 if (!(encoder->possible_crtcs & (1 << i)))
10374                         continue;
10375                 if (possible_crtc->state->enable)
10376                         continue;
10377
10378                 crtc = possible_crtc;
10379                 break;
10380         }
10381
10382         /*
10383          * If we didn't find an unused CRTC, don't use any.
10384          */
10385         if (!crtc) {
10386                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10387                 goto fail;
10388         }
10389
10390         ret = drm_modeset_lock(&crtc->mutex, ctx);
10391         if (ret)
10392                 goto fail;
10393         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10394         if (ret)
10395                 goto fail;
10396
10397         intel_crtc = to_intel_crtc(crtc);
10398         old->dpms_mode = connector->dpms;
10399         old->load_detect_temp = true;
10400         old->release_fb = NULL;
10401
10402         state = drm_atomic_state_alloc(dev);
10403         if (!state)
10404                 return false;
10405
10406         state->acquire_ctx = ctx;
10407
10408         connector_state = drm_atomic_get_connector_state(state, connector);
10409         if (IS_ERR(connector_state)) {
10410                 ret = PTR_ERR(connector_state);
10411                 goto fail;
10412         }
10413
10414         connector_state->crtc = crtc;
10415         connector_state->best_encoder = &intel_encoder->base;
10416
10417         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10418         if (IS_ERR(crtc_state)) {
10419                 ret = PTR_ERR(crtc_state);
10420                 goto fail;
10421         }
10422
10423         crtc_state->base.active = crtc_state->base.enable = true;
10424
10425         if (!mode)
10426                 mode = &load_detect_mode;
10427
10428         /* We need a framebuffer large enough to accommodate all accesses
10429          * that the plane may generate whilst we perform load detection.
10430          * We can not rely on the fbcon either being present (we get called
10431          * during its initialisation to detect all boot displays, or it may
10432          * not even exist) or that it is large enough to satisfy the
10433          * requested mode.
10434          */
10435         fb = mode_fits_in_fbdev(dev, mode);
10436         if (fb == NULL) {
10437                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10438                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10439                 old->release_fb = fb;
10440         } else
10441                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10442         if (IS_ERR(fb)) {
10443                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10444                 goto fail;
10445         }
10446
10447         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10448         if (ret)
10449                 goto fail;
10450
10451         drm_mode_copy(&crtc_state->base.mode, mode);
10452
10453         if (drm_atomic_commit(state)) {
10454                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10455                 if (old->release_fb)
10456                         old->release_fb->funcs->destroy(old->release_fb);
10457                 goto fail;
10458         }
10459         crtc->primary->crtc = crtc;
10460
10461         /* let the connector get through one full cycle before testing */
10462         intel_wait_for_vblank(dev, intel_crtc->pipe);
10463         return true;
10464
10465 fail:
10466         drm_atomic_state_free(state);
10467         state = NULL;
10468
10469         if (ret == -EDEADLK) {
10470                 drm_modeset_backoff(ctx);
10471                 goto retry;
10472         }
10473
10474         return false;
10475 }
10476
10477 void intel_release_load_detect_pipe(struct drm_connector *connector,
10478                                     struct intel_load_detect_pipe *old,
10479                                     struct drm_modeset_acquire_ctx *ctx)
10480 {
10481         struct drm_device *dev = connector->dev;
10482         struct intel_encoder *intel_encoder =
10483                 intel_attached_encoder(connector);
10484         struct drm_encoder *encoder = &intel_encoder->base;
10485         struct drm_crtc *crtc = encoder->crtc;
10486         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10487         struct drm_atomic_state *state;
10488         struct drm_connector_state *connector_state;
10489         struct intel_crtc_state *crtc_state;
10490         int ret;
10491
10492         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10493                       connector->base.id, connector->name,
10494                       encoder->base.id, encoder->name);
10495
10496         if (old->load_detect_temp) {
10497                 state = drm_atomic_state_alloc(dev);
10498                 if (!state)
10499                         goto fail;
10500
10501                 state->acquire_ctx = ctx;
10502
10503                 connector_state = drm_atomic_get_connector_state(state, connector);
10504                 if (IS_ERR(connector_state))
10505                         goto fail;
10506
10507                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10508                 if (IS_ERR(crtc_state))
10509                         goto fail;
10510
10511                 connector_state->best_encoder = NULL;
10512                 connector_state->crtc = NULL;
10513
10514                 crtc_state->base.enable = crtc_state->base.active = false;
10515
10516                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10517                                                       0, 0);
10518                 if (ret)
10519                         goto fail;
10520
10521                 ret = drm_atomic_commit(state);
10522                 if (ret)
10523                         goto fail;
10524
10525                 if (old->release_fb) {
10526                         drm_framebuffer_unregister_private(old->release_fb);
10527                         drm_framebuffer_unreference(old->release_fb);
10528                 }
10529
10530                 return;
10531         }
10532
10533         /* Switch crtc and encoder back off if necessary */
10534         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10535                 connector->funcs->dpms(connector, old->dpms_mode);
10536
10537         return;
10538 fail:
10539         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10540         drm_atomic_state_free(state);
10541 }
10542
10543 static int i9xx_pll_refclk(struct drm_device *dev,
10544                            const struct intel_crtc_state *pipe_config)
10545 {
10546         struct drm_i915_private *dev_priv = dev->dev_private;
10547         u32 dpll = pipe_config->dpll_hw_state.dpll;
10548
10549         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10550                 return dev_priv->vbt.lvds_ssc_freq;
10551         else if (HAS_PCH_SPLIT(dev))
10552                 return 120000;
10553         else if (!IS_GEN2(dev))
10554                 return 96000;
10555         else
10556                 return 48000;
10557 }
10558
10559 /* Returns the clock of the currently programmed mode of the given pipe. */
10560 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10561                                 struct intel_crtc_state *pipe_config)
10562 {
10563         struct drm_device *dev = crtc->base.dev;
10564         struct drm_i915_private *dev_priv = dev->dev_private;
10565         int pipe = pipe_config->cpu_transcoder;
10566         u32 dpll = pipe_config->dpll_hw_state.dpll;
10567         u32 fp;
10568         intel_clock_t clock;
10569         int port_clock;
10570         int refclk = i9xx_pll_refclk(dev, pipe_config);
10571
10572         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10573                 fp = pipe_config->dpll_hw_state.fp0;
10574         else
10575                 fp = pipe_config->dpll_hw_state.fp1;
10576
10577         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10578         if (IS_PINEVIEW(dev)) {
10579                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10580                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10581         } else {
10582                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10583                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10584         }
10585
10586         if (!IS_GEN2(dev)) {
10587                 if (IS_PINEVIEW(dev))
10588                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10589                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10590                 else
10591                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10592                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10593
10594                 switch (dpll & DPLL_MODE_MASK) {
10595                 case DPLLB_MODE_DAC_SERIAL:
10596                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10597                                 5 : 10;
10598                         break;
10599                 case DPLLB_MODE_LVDS:
10600                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10601                                 7 : 14;
10602                         break;
10603                 default:
10604                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10605                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10606                         return;
10607                 }
10608
10609                 if (IS_PINEVIEW(dev))
10610                         port_clock = pnv_calc_dpll_params(refclk, &clock);
10611                 else
10612                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
10613         } else {
10614                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10615                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10616
10617                 if (is_lvds) {
10618                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10619                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10620
10621                         if (lvds & LVDS_CLKB_POWER_UP)
10622                                 clock.p2 = 7;
10623                         else
10624                                 clock.p2 = 14;
10625                 } else {
10626                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10627                                 clock.p1 = 2;
10628                         else {
10629                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10630                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10631                         }
10632                         if (dpll & PLL_P2_DIVIDE_BY_4)
10633                                 clock.p2 = 4;
10634                         else
10635                                 clock.p2 = 2;
10636                 }
10637
10638                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
10639         }
10640
10641         /*
10642          * This value includes pixel_multiplier. We will use
10643          * port_clock to compute adjusted_mode.crtc_clock in the
10644          * encoder's get_config() function.
10645          */
10646         pipe_config->port_clock = port_clock;
10647 }
10648
10649 int intel_dotclock_calculate(int link_freq,
10650                              const struct intel_link_m_n *m_n)
10651 {
10652         /*
10653          * The calculation for the data clock is:
10654          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10655          * But we want to avoid losing precison if possible, so:
10656          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10657          *
10658          * and the link clock is simpler:
10659          * link_clock = (m * link_clock) / n
10660          */
10661
10662         if (!m_n->link_n)
10663                 return 0;
10664
10665         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10666 }
10667
10668 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10669                                    struct intel_crtc_state *pipe_config)
10670 {
10671         struct drm_device *dev = crtc->base.dev;
10672
10673         /* read out port_clock from the DPLL */
10674         i9xx_crtc_clock_get(crtc, pipe_config);
10675
10676         /*
10677          * This value does not include pixel_multiplier.
10678          * We will check that port_clock and adjusted_mode.crtc_clock
10679          * agree once we know their relationship in the encoder's
10680          * get_config() function.
10681          */
10682         pipe_config->base.adjusted_mode.crtc_clock =
10683                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10684                                          &pipe_config->fdi_m_n);
10685 }
10686
10687 /** Returns the currently programmed mode of the given pipe. */
10688 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10689                                              struct drm_crtc *crtc)
10690 {
10691         struct drm_i915_private *dev_priv = dev->dev_private;
10692         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10693         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10694         struct drm_display_mode *mode;
10695         struct intel_crtc_state pipe_config;
10696         int htot = I915_READ(HTOTAL(cpu_transcoder));
10697         int hsync = I915_READ(HSYNC(cpu_transcoder));
10698         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10699         int vsync = I915_READ(VSYNC(cpu_transcoder));
10700         enum pipe pipe = intel_crtc->pipe;
10701
10702         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10703         if (!mode)
10704                 return NULL;
10705
10706         /*
10707          * Construct a pipe_config sufficient for getting the clock info
10708          * back out of crtc_clock_get.
10709          *
10710          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10711          * to use a real value here instead.
10712          */
10713         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10714         pipe_config.pixel_multiplier = 1;
10715         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10716         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10717         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10718         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10719
10720         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10721         mode->hdisplay = (htot & 0xffff) + 1;
10722         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10723         mode->hsync_start = (hsync & 0xffff) + 1;
10724         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10725         mode->vdisplay = (vtot & 0xffff) + 1;
10726         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10727         mode->vsync_start = (vsync & 0xffff) + 1;
10728         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10729
10730         drm_mode_set_name(mode);
10731
10732         return mode;
10733 }
10734
10735 void intel_mark_busy(struct drm_device *dev)
10736 {
10737         struct drm_i915_private *dev_priv = dev->dev_private;
10738
10739         if (dev_priv->mm.busy)
10740                 return;
10741
10742         intel_runtime_pm_get(dev_priv);
10743         i915_update_gfx_val(dev_priv);
10744         if (INTEL_INFO(dev)->gen >= 6)
10745                 gen6_rps_busy(dev_priv);
10746         dev_priv->mm.busy = true;
10747 }
10748
10749 void intel_mark_idle(struct drm_device *dev)
10750 {
10751         struct drm_i915_private *dev_priv = dev->dev_private;
10752
10753         if (!dev_priv->mm.busy)
10754                 return;
10755
10756         dev_priv->mm.busy = false;
10757
10758         if (INTEL_INFO(dev)->gen >= 6)
10759                 gen6_rps_idle(dev->dev_private);
10760
10761         intel_runtime_pm_put(dev_priv);
10762 }
10763
10764 static void intel_crtc_destroy(struct drm_crtc *crtc)
10765 {
10766         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10767         struct drm_device *dev = crtc->dev;
10768         struct intel_unpin_work *work;
10769
10770         spin_lock_irq(&dev->event_lock);
10771         work = intel_crtc->unpin_work;
10772         intel_crtc->unpin_work = NULL;
10773         spin_unlock_irq(&dev->event_lock);
10774
10775         if (work) {
10776                 cancel_work_sync(&work->work);
10777                 kfree(work);
10778         }
10779
10780         drm_crtc_cleanup(crtc);
10781
10782         kfree(intel_crtc);
10783 }
10784
10785 static void intel_unpin_work_fn(struct work_struct *__work)
10786 {
10787         struct intel_unpin_work *work =
10788                 container_of(__work, struct intel_unpin_work, work);
10789         struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10790         struct drm_device *dev = crtc->base.dev;
10791         struct drm_plane *primary = crtc->base.primary;
10792
10793         mutex_lock(&dev->struct_mutex);
10794         intel_unpin_fb_obj(work->old_fb, primary->state);
10795         drm_gem_object_unreference(&work->pending_flip_obj->base);
10796
10797         if (work->flip_queued_req)
10798                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10799         mutex_unlock(&dev->struct_mutex);
10800
10801         intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
10802         drm_framebuffer_unreference(work->old_fb);
10803
10804         BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10805         atomic_dec(&crtc->unpin_work_count);
10806
10807         kfree(work);
10808 }
10809
10810 static void do_intel_finish_page_flip(struct drm_device *dev,
10811                                       struct drm_crtc *crtc)
10812 {
10813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10814         struct intel_unpin_work *work;
10815         unsigned long flags;
10816
10817         /* Ignore early vblank irqs */
10818         if (intel_crtc == NULL)
10819                 return;
10820
10821         /*
10822          * This is called both by irq handlers and the reset code (to complete
10823          * lost pageflips) so needs the full irqsave spinlocks.
10824          */
10825         spin_lock_irqsave(&dev->event_lock, flags);
10826         work = intel_crtc->unpin_work;
10827
10828         /* Ensure we don't miss a work->pending update ... */
10829         smp_rmb();
10830
10831         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10832                 spin_unlock_irqrestore(&dev->event_lock, flags);
10833                 return;
10834         }
10835
10836         page_flip_completed(intel_crtc);
10837
10838         spin_unlock_irqrestore(&dev->event_lock, flags);
10839 }
10840
10841 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10842 {
10843         struct drm_i915_private *dev_priv = dev->dev_private;
10844         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10845
10846         do_intel_finish_page_flip(dev, crtc);
10847 }
10848
10849 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10850 {
10851         struct drm_i915_private *dev_priv = dev->dev_private;
10852         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10853
10854         do_intel_finish_page_flip(dev, crtc);
10855 }
10856
10857 /* Is 'a' after or equal to 'b'? */
10858 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10859 {
10860         return !((a - b) & 0x80000000);
10861 }
10862
10863 static bool page_flip_finished(struct intel_crtc *crtc)
10864 {
10865         struct drm_device *dev = crtc->base.dev;
10866         struct drm_i915_private *dev_priv = dev->dev_private;
10867
10868         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10869             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10870                 return true;
10871
10872         /*
10873          * The relevant registers doen't exist on pre-ctg.
10874          * As the flip done interrupt doesn't trigger for mmio
10875          * flips on gmch platforms, a flip count check isn't
10876          * really needed there. But since ctg has the registers,
10877          * include it in the check anyway.
10878          */
10879         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10880                 return true;
10881
10882         /*
10883          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10884          * used the same base address. In that case the mmio flip might
10885          * have completed, but the CS hasn't even executed the flip yet.
10886          *
10887          * A flip count check isn't enough as the CS might have updated
10888          * the base address just after start of vblank, but before we
10889          * managed to process the interrupt. This means we'd complete the
10890          * CS flip too soon.
10891          *
10892          * Combining both checks should get us a good enough result. It may
10893          * still happen that the CS flip has been executed, but has not
10894          * yet actually completed. But in case the base address is the same
10895          * anyway, we don't really care.
10896          */
10897         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10898                 crtc->unpin_work->gtt_offset &&
10899                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
10900                                     crtc->unpin_work->flip_count);
10901 }
10902
10903 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10904 {
10905         struct drm_i915_private *dev_priv = dev->dev_private;
10906         struct intel_crtc *intel_crtc =
10907                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10908         unsigned long flags;
10909
10910
10911         /*
10912          * This is called both by irq handlers and the reset code (to complete
10913          * lost pageflips) so needs the full irqsave spinlocks.
10914          *
10915          * NB: An MMIO update of the plane base pointer will also
10916          * generate a page-flip completion irq, i.e. every modeset
10917          * is also accompanied by a spurious intel_prepare_page_flip().
10918          */
10919         spin_lock_irqsave(&dev->event_lock, flags);
10920         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10921                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10922         spin_unlock_irqrestore(&dev->event_lock, flags);
10923 }
10924
10925 static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
10926 {
10927         /* Ensure that the work item is consistent when activating it ... */
10928         smp_wmb();
10929         atomic_set(&work->pending, INTEL_FLIP_PENDING);
10930         /* and that it is marked active as soon as the irq could fire. */
10931         smp_wmb();
10932 }
10933
10934 static int intel_gen2_queue_flip(struct drm_device *dev,
10935                                  struct drm_crtc *crtc,
10936                                  struct drm_framebuffer *fb,
10937                                  struct drm_i915_gem_object *obj,
10938                                  struct drm_i915_gem_request *req,
10939                                  uint32_t flags)
10940 {
10941         struct intel_engine_cs *ring = req->ring;
10942         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10943         u32 flip_mask;
10944         int ret;
10945
10946         ret = intel_ring_begin(req, 6);
10947         if (ret)
10948                 return ret;
10949
10950         /* Can't queue multiple flips, so wait for the previous
10951          * one to finish before executing the next.
10952          */
10953         if (intel_crtc->plane)
10954                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10955         else
10956                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10957         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10958         intel_ring_emit(ring, MI_NOOP);
10959         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10960                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10961         intel_ring_emit(ring, fb->pitches[0]);
10962         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10963         intel_ring_emit(ring, 0); /* aux display base address, unused */
10964
10965         intel_mark_page_flip_active(intel_crtc->unpin_work);
10966         return 0;
10967 }
10968
10969 static int intel_gen3_queue_flip(struct drm_device *dev,
10970                                  struct drm_crtc *crtc,
10971                                  struct drm_framebuffer *fb,
10972                                  struct drm_i915_gem_object *obj,
10973                                  struct drm_i915_gem_request *req,
10974                                  uint32_t flags)
10975 {
10976         struct intel_engine_cs *ring = req->ring;
10977         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10978         u32 flip_mask;
10979         int ret;
10980
10981         ret = intel_ring_begin(req, 6);
10982         if (ret)
10983                 return ret;
10984
10985         if (intel_crtc->plane)
10986                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10987         else
10988                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10989         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10990         intel_ring_emit(ring, MI_NOOP);
10991         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10992                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10993         intel_ring_emit(ring, fb->pitches[0]);
10994         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10995         intel_ring_emit(ring, MI_NOOP);
10996
10997         intel_mark_page_flip_active(intel_crtc->unpin_work);
10998         return 0;
10999 }
11000
11001 static int intel_gen4_queue_flip(struct drm_device *dev,
11002                                  struct drm_crtc *crtc,
11003                                  struct drm_framebuffer *fb,
11004                                  struct drm_i915_gem_object *obj,
11005                                  struct drm_i915_gem_request *req,
11006                                  uint32_t flags)
11007 {
11008         struct intel_engine_cs *ring = req->ring;
11009         struct drm_i915_private *dev_priv = dev->dev_private;
11010         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11011         uint32_t pf, pipesrc;
11012         int ret;
11013
11014         ret = intel_ring_begin(req, 4);
11015         if (ret)
11016                 return ret;
11017
11018         /* i965+ uses the linear or tiled offsets from the
11019          * Display Registers (which do not change across a page-flip)
11020          * so we need only reprogram the base address.
11021          */
11022         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11023                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11024         intel_ring_emit(ring, fb->pitches[0]);
11025         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
11026                         obj->tiling_mode);
11027
11028         /* XXX Enabling the panel-fitter across page-flip is so far
11029          * untested on non-native modes, so ignore it for now.
11030          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11031          */
11032         pf = 0;
11033         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11034         intel_ring_emit(ring, pf | pipesrc);
11035
11036         intel_mark_page_flip_active(intel_crtc->unpin_work);
11037         return 0;
11038 }
11039
11040 static int intel_gen6_queue_flip(struct drm_device *dev,
11041                                  struct drm_crtc *crtc,
11042                                  struct drm_framebuffer *fb,
11043                                  struct drm_i915_gem_object *obj,
11044                                  struct drm_i915_gem_request *req,
11045                                  uint32_t flags)
11046 {
11047         struct intel_engine_cs *ring = req->ring;
11048         struct drm_i915_private *dev_priv = dev->dev_private;
11049         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11050         uint32_t pf, pipesrc;
11051         int ret;
11052
11053         ret = intel_ring_begin(req, 4);
11054         if (ret)
11055                 return ret;
11056
11057         intel_ring_emit(ring, MI_DISPLAY_FLIP |
11058                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
11059         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
11060         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11061
11062         /* Contrary to the suggestions in the documentation,
11063          * "Enable Panel Fitter" does not seem to be required when page
11064          * flipping with a non-native mode, and worse causes a normal
11065          * modeset to fail.
11066          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11067          */
11068         pf = 0;
11069         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
11070         intel_ring_emit(ring, pf | pipesrc);
11071
11072         intel_mark_page_flip_active(intel_crtc->unpin_work);
11073         return 0;
11074 }
11075
11076 static int intel_gen7_queue_flip(struct drm_device *dev,
11077                                  struct drm_crtc *crtc,
11078                                  struct drm_framebuffer *fb,
11079                                  struct drm_i915_gem_object *obj,
11080                                  struct drm_i915_gem_request *req,
11081                                  uint32_t flags)
11082 {
11083         struct intel_engine_cs *ring = req->ring;
11084         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11085         uint32_t plane_bit = 0;
11086         int len, ret;
11087
11088         switch (intel_crtc->plane) {
11089         case PLANE_A:
11090                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11091                 break;
11092         case PLANE_B:
11093                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11094                 break;
11095         case PLANE_C:
11096                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11097                 break;
11098         default:
11099                 WARN_ONCE(1, "unknown plane in flip command\n");
11100                 return -ENODEV;
11101         }
11102
11103         len = 4;
11104         if (ring->id == RCS) {
11105                 len += 6;
11106                 /*
11107                  * On Gen 8, SRM is now taking an extra dword to accommodate
11108                  * 48bits addresses, and we need a NOOP for the batch size to
11109                  * stay even.
11110                  */
11111                 if (IS_GEN8(dev))
11112                         len += 2;
11113         }
11114
11115         /*
11116          * BSpec MI_DISPLAY_FLIP for IVB:
11117          * "The full packet must be contained within the same cache line."
11118          *
11119          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11120          * cacheline, if we ever start emitting more commands before
11121          * the MI_DISPLAY_FLIP we may need to first emit everything else,
11122          * then do the cacheline alignment, and finally emit the
11123          * MI_DISPLAY_FLIP.
11124          */
11125         ret = intel_ring_cacheline_align(req);
11126         if (ret)
11127                 return ret;
11128
11129         ret = intel_ring_begin(req, len);
11130         if (ret)
11131                 return ret;
11132
11133         /* Unmask the flip-done completion message. Note that the bspec says that
11134          * we should do this for both the BCS and RCS, and that we must not unmask
11135          * more than one flip event at any time (or ensure that one flip message
11136          * can be sent by waiting for flip-done prior to queueing new flips).
11137          * Experimentation says that BCS works despite DERRMR masking all
11138          * flip-done completion events and that unmasking all planes at once
11139          * for the RCS also doesn't appear to drop events. Setting the DERRMR
11140          * to zero does lead to lockups within MI_DISPLAY_FLIP.
11141          */
11142         if (ring->id == RCS) {
11143                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
11144                 intel_ring_emit_reg(ring, DERRMR);
11145                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11146                                         DERRMR_PIPEB_PRI_FLIP_DONE |
11147                                         DERRMR_PIPEC_PRI_FLIP_DONE));
11148                 if (IS_GEN8(dev))
11149                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8 |
11150                                               MI_SRM_LRM_GLOBAL_GTT);
11151                 else
11152                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM |
11153                                               MI_SRM_LRM_GLOBAL_GTT);
11154                 intel_ring_emit_reg(ring, DERRMR);
11155                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
11156                 if (IS_GEN8(dev)) {
11157                         intel_ring_emit(ring, 0);
11158                         intel_ring_emit(ring, MI_NOOP);
11159                 }
11160         }
11161
11162         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
11163         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
11164         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
11165         intel_ring_emit(ring, (MI_NOOP));
11166
11167         intel_mark_page_flip_active(intel_crtc->unpin_work);
11168         return 0;
11169 }
11170
11171 static bool use_mmio_flip(struct intel_engine_cs *ring,
11172                           struct drm_i915_gem_object *obj)
11173 {
11174         /*
11175          * This is not being used for older platforms, because
11176          * non-availability of flip done interrupt forces us to use
11177          * CS flips. Older platforms derive flip done using some clever
11178          * tricks involving the flip_pending status bits and vblank irqs.
11179          * So using MMIO flips there would disrupt this mechanism.
11180          */
11181
11182         if (ring == NULL)
11183                 return true;
11184
11185         if (INTEL_INFO(ring->dev)->gen < 5)
11186                 return false;
11187
11188         if (i915.use_mmio_flip < 0)
11189                 return false;
11190         else if (i915.use_mmio_flip > 0)
11191                 return true;
11192         else if (i915.enable_execlists)
11193                 return true;
11194         else
11195                 return ring != i915_gem_request_get_ring(obj->last_write_req);
11196 }
11197
11198 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
11199                              unsigned int rotation,
11200                              struct intel_unpin_work *work)
11201 {
11202         struct drm_device *dev = intel_crtc->base.dev;
11203         struct drm_i915_private *dev_priv = dev->dev_private;
11204         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
11205         const enum pipe pipe = intel_crtc->pipe;
11206         u32 ctl, stride, tile_height;
11207
11208         ctl = I915_READ(PLANE_CTL(pipe, 0));
11209         ctl &= ~PLANE_CTL_TILED_MASK;
11210         switch (fb->modifier[0]) {
11211         case DRM_FORMAT_MOD_NONE:
11212                 break;
11213         case I915_FORMAT_MOD_X_TILED:
11214                 ctl |= PLANE_CTL_TILED_X;
11215                 break;
11216         case I915_FORMAT_MOD_Y_TILED:
11217                 ctl |= PLANE_CTL_TILED_Y;
11218                 break;
11219         case I915_FORMAT_MOD_Yf_TILED:
11220                 ctl |= PLANE_CTL_TILED_YF;
11221                 break;
11222         default:
11223                 MISSING_CASE(fb->modifier[0]);
11224         }
11225
11226         /*
11227          * The stride is either expressed as a multiple of 64 bytes chunks for
11228          * linear buffers or in number of tiles for tiled buffers.
11229          */
11230         if (intel_rotation_90_or_270(rotation)) {
11231                 /* stride = Surface height in tiles */
11232                 tile_height = intel_tile_height(dev, fb->pixel_format,
11233                                                 fb->modifier[0], 0);
11234                 stride = DIV_ROUND_UP(fb->height, tile_height);
11235         } else {
11236                 stride = fb->pitches[0] /
11237                                 intel_fb_stride_alignment(dev, fb->modifier[0],
11238                                                           fb->pixel_format);
11239         }
11240
11241         /*
11242          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11243          * PLANE_SURF updates, the update is then guaranteed to be atomic.
11244          */
11245         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11246         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11247
11248         I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
11249         POSTING_READ(PLANE_SURF(pipe, 0));
11250 }
11251
11252 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11253                              struct intel_unpin_work *work)
11254 {
11255         struct drm_device *dev = intel_crtc->base.dev;
11256         struct drm_i915_private *dev_priv = dev->dev_private;
11257         struct intel_framebuffer *intel_fb =
11258                 to_intel_framebuffer(intel_crtc->base.primary->fb);
11259         struct drm_i915_gem_object *obj = intel_fb->obj;
11260         i915_reg_t reg = DSPCNTR(intel_crtc->plane);
11261         u32 dspcntr;
11262
11263         dspcntr = I915_READ(reg);
11264
11265         if (obj->tiling_mode != I915_TILING_NONE)
11266                 dspcntr |= DISPPLANE_TILED;
11267         else
11268                 dspcntr &= ~DISPPLANE_TILED;
11269
11270         I915_WRITE(reg, dspcntr);
11271
11272         I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
11273         POSTING_READ(DSPSURF(intel_crtc->plane));
11274 }
11275
11276 /*
11277  * XXX: This is the temporary way to update the plane registers until we get
11278  * around to using the usual plane update functions for MMIO flips
11279  */
11280 static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
11281 {
11282         struct intel_crtc *crtc = mmio_flip->crtc;
11283         struct intel_unpin_work *work;
11284
11285         spin_lock_irq(&crtc->base.dev->event_lock);
11286         work = crtc->unpin_work;
11287         spin_unlock_irq(&crtc->base.dev->event_lock);
11288         if (work == NULL)
11289                 return;
11290
11291         intel_mark_page_flip_active(work);
11292
11293         intel_pipe_update_start(crtc);
11294
11295         if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
11296                 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
11297         else
11298                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
11299                 ilk_do_mmio_flip(crtc, work);
11300
11301         intel_pipe_update_end(crtc);
11302 }
11303
11304 static void intel_mmio_flip_work_func(struct work_struct *work)
11305 {
11306         struct intel_mmio_flip *mmio_flip =
11307                 container_of(work, struct intel_mmio_flip, work);
11308
11309         if (mmio_flip->req) {
11310                 WARN_ON(__i915_wait_request(mmio_flip->req,
11311                                             mmio_flip->crtc->reset_counter,
11312                                             false, NULL,
11313                                             &mmio_flip->i915->rps.mmioflips));
11314                 i915_gem_request_unreference__unlocked(mmio_flip->req);
11315         }
11316
11317         intel_do_mmio_flip(mmio_flip);
11318         kfree(mmio_flip);
11319 }
11320
11321 static int intel_queue_mmio_flip(struct drm_device *dev,
11322                                  struct drm_crtc *crtc,
11323                                  struct drm_i915_gem_object *obj)
11324 {
11325         struct intel_mmio_flip *mmio_flip;
11326
11327         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11328         if (mmio_flip == NULL)
11329                 return -ENOMEM;
11330
11331         mmio_flip->i915 = to_i915(dev);
11332         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11333         mmio_flip->crtc = to_intel_crtc(crtc);
11334         mmio_flip->rotation = crtc->primary->state->rotation;
11335
11336         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11337         schedule_work(&mmio_flip->work);
11338
11339         return 0;
11340 }
11341
11342 static int intel_default_queue_flip(struct drm_device *dev,
11343                                     struct drm_crtc *crtc,
11344                                     struct drm_framebuffer *fb,
11345                                     struct drm_i915_gem_object *obj,
11346                                     struct drm_i915_gem_request *req,
11347                                     uint32_t flags)
11348 {
11349         return -ENODEV;
11350 }
11351
11352 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11353                                          struct drm_crtc *crtc)
11354 {
11355         struct drm_i915_private *dev_priv = dev->dev_private;
11356         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11357         struct intel_unpin_work *work = intel_crtc->unpin_work;
11358         u32 addr;
11359
11360         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11361                 return true;
11362
11363         if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11364                 return false;
11365
11366         if (!work->enable_stall_check)
11367                 return false;
11368
11369         if (work->flip_ready_vblank == 0) {
11370                 if (work->flip_queued_req &&
11371                     !i915_gem_request_completed(work->flip_queued_req, true))
11372                         return false;
11373
11374                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11375         }
11376
11377         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11378                 return false;
11379
11380         /* Potential stall - if we see that the flip has happened,
11381          * assume a missed interrupt. */
11382         if (INTEL_INFO(dev)->gen >= 4)
11383                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11384         else
11385                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11386
11387         /* There is a potential issue here with a false positive after a flip
11388          * to the same address. We could address this by checking for a
11389          * non-incrementing frame counter.
11390          */
11391         return addr == work->gtt_offset;
11392 }
11393
11394 void intel_check_page_flip(struct drm_device *dev, int pipe)
11395 {
11396         struct drm_i915_private *dev_priv = dev->dev_private;
11397         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11398         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11399         struct intel_unpin_work *work;
11400
11401         WARN_ON(!in_interrupt());
11402
11403         if (crtc == NULL)
11404                 return;
11405
11406         spin_lock(&dev->event_lock);
11407         work = intel_crtc->unpin_work;
11408         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11409                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11410                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11411                 page_flip_completed(intel_crtc);
11412                 work = NULL;
11413         }
11414         if (work != NULL &&
11415             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11416                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11417         spin_unlock(&dev->event_lock);
11418 }
11419
11420 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11421                                 struct drm_framebuffer *fb,
11422                                 struct drm_pending_vblank_event *event,
11423                                 uint32_t page_flip_flags)
11424 {
11425         struct drm_device *dev = crtc->dev;
11426         struct drm_i915_private *dev_priv = dev->dev_private;
11427         struct drm_framebuffer *old_fb = crtc->primary->fb;
11428         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11429         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11430         struct drm_plane *primary = crtc->primary;
11431         enum pipe pipe = intel_crtc->pipe;
11432         struct intel_unpin_work *work;
11433         struct intel_engine_cs *ring;
11434         bool mmio_flip;
11435         struct drm_i915_gem_request *request = NULL;
11436         int ret;
11437
11438         /*
11439          * drm_mode_page_flip_ioctl() should already catch this, but double
11440          * check to be safe.  In the future we may enable pageflipping from
11441          * a disabled primary plane.
11442          */
11443         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11444                 return -EBUSY;
11445
11446         /* Can't change pixel format via MI display flips. */
11447         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11448                 return -EINVAL;
11449
11450         /*
11451          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11452          * Note that pitch changes could also affect these register.
11453          */
11454         if (INTEL_INFO(dev)->gen > 3 &&
11455             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11456              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11457                 return -EINVAL;
11458
11459         if (i915_terminally_wedged(&dev_priv->gpu_error))
11460                 goto out_hang;
11461
11462         work = kzalloc(sizeof(*work), GFP_KERNEL);
11463         if (work == NULL)
11464                 return -ENOMEM;
11465
11466         work->event = event;
11467         work->crtc = crtc;
11468         work->old_fb = old_fb;
11469         INIT_WORK(&work->work, intel_unpin_work_fn);
11470
11471         ret = drm_crtc_vblank_get(crtc);
11472         if (ret)
11473                 goto free_work;
11474
11475         /* We borrow the event spin lock for protecting unpin_work */
11476         spin_lock_irq(&dev->event_lock);
11477         if (intel_crtc->unpin_work) {
11478                 /* Before declaring the flip queue wedged, check if
11479                  * the hardware completed the operation behind our backs.
11480                  */
11481                 if (__intel_pageflip_stall_check(dev, crtc)) {
11482                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11483                         page_flip_completed(intel_crtc);
11484                 } else {
11485                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11486                         spin_unlock_irq(&dev->event_lock);
11487
11488                         drm_crtc_vblank_put(crtc);
11489                         kfree(work);
11490                         return -EBUSY;
11491                 }
11492         }
11493         intel_crtc->unpin_work = work;
11494         spin_unlock_irq(&dev->event_lock);
11495
11496         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11497                 flush_workqueue(dev_priv->wq);
11498
11499         /* Reference the objects for the scheduled work. */
11500         drm_framebuffer_reference(work->old_fb);
11501         drm_gem_object_reference(&obj->base);
11502
11503         crtc->primary->fb = fb;
11504         update_state_fb(crtc->primary);
11505
11506         work->pending_flip_obj = obj;
11507
11508         ret = i915_mutex_lock_interruptible(dev);
11509         if (ret)
11510                 goto cleanup;
11511
11512         atomic_inc(&intel_crtc->unpin_work_count);
11513         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11514
11515         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11516                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
11517
11518         if (IS_VALLEYVIEW(dev)) {
11519                 ring = &dev_priv->ring[BCS];
11520                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11521                         /* vlv: DISPLAY_FLIP fails to change tiling */
11522                         ring = NULL;
11523         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11524                 ring = &dev_priv->ring[BCS];
11525         } else if (INTEL_INFO(dev)->gen >= 7) {
11526                 ring = i915_gem_request_get_ring(obj->last_write_req);
11527                 if (ring == NULL || ring->id != RCS)
11528                         ring = &dev_priv->ring[BCS];
11529         } else {
11530                 ring = &dev_priv->ring[RCS];
11531         }
11532
11533         mmio_flip = use_mmio_flip(ring, obj);
11534
11535         /* When using CS flips, we want to emit semaphores between rings.
11536          * However, when using mmio flips we will create a task to do the
11537          * synchronisation, so all we want here is to pin the framebuffer
11538          * into the display plane and skip any waits.
11539          */
11540         if (!mmio_flip) {
11541                 ret = i915_gem_object_sync(obj, ring, &request);
11542                 if (ret)
11543                         goto cleanup_pending;
11544         }
11545
11546         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11547                                          crtc->primary->state);
11548         if (ret)
11549                 goto cleanup_pending;
11550
11551         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11552                                                   obj, 0);
11553         work->gtt_offset += intel_crtc->dspaddr_offset;
11554
11555         if (mmio_flip) {
11556                 ret = intel_queue_mmio_flip(dev, crtc, obj);
11557                 if (ret)
11558                         goto cleanup_unpin;
11559
11560                 i915_gem_request_assign(&work->flip_queued_req,
11561                                         obj->last_write_req);
11562         } else {
11563                 if (!request) {
11564                         ret = i915_gem_request_alloc(ring, ring->default_context, &request);
11565                         if (ret)
11566                                 goto cleanup_unpin;
11567                 }
11568
11569                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
11570                                                    page_flip_flags);
11571                 if (ret)
11572                         goto cleanup_unpin;
11573
11574                 i915_gem_request_assign(&work->flip_queued_req, request);
11575         }
11576
11577         if (request)
11578                 i915_add_request_no_flush(request);
11579
11580         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11581         work->enable_stall_check = true;
11582
11583         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11584                           to_intel_plane(primary)->frontbuffer_bit);
11585         mutex_unlock(&dev->struct_mutex);
11586
11587         intel_fbc_disable_crtc(intel_crtc);
11588         intel_frontbuffer_flip_prepare(dev,
11589                                        to_intel_plane(primary)->frontbuffer_bit);
11590
11591         trace_i915_flip_request(intel_crtc->plane, obj);
11592
11593         return 0;
11594
11595 cleanup_unpin:
11596         intel_unpin_fb_obj(fb, crtc->primary->state);
11597 cleanup_pending:
11598         if (request)
11599                 i915_gem_request_cancel(request);
11600         atomic_dec(&intel_crtc->unpin_work_count);
11601         mutex_unlock(&dev->struct_mutex);
11602 cleanup:
11603         crtc->primary->fb = old_fb;
11604         update_state_fb(crtc->primary);
11605
11606         drm_gem_object_unreference_unlocked(&obj->base);
11607         drm_framebuffer_unreference(work->old_fb);
11608
11609         spin_lock_irq(&dev->event_lock);
11610         intel_crtc->unpin_work = NULL;
11611         spin_unlock_irq(&dev->event_lock);
11612
11613         drm_crtc_vblank_put(crtc);
11614 free_work:
11615         kfree(work);
11616
11617         if (ret == -EIO) {
11618                 struct drm_atomic_state *state;
11619                 struct drm_plane_state *plane_state;
11620
11621 out_hang:
11622                 state = drm_atomic_state_alloc(dev);
11623                 if (!state)
11624                         return -ENOMEM;
11625                 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11626
11627 retry:
11628                 plane_state = drm_atomic_get_plane_state(state, primary);
11629                 ret = PTR_ERR_OR_ZERO(plane_state);
11630                 if (!ret) {
11631                         drm_atomic_set_fb_for_plane(plane_state, fb);
11632
11633                         ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11634                         if (!ret)
11635                                 ret = drm_atomic_commit(state);
11636                 }
11637
11638                 if (ret == -EDEADLK) {
11639                         drm_modeset_backoff(state->acquire_ctx);
11640                         drm_atomic_state_clear(state);
11641                         goto retry;
11642                 }
11643
11644                 if (ret)
11645                         drm_atomic_state_free(state);
11646
11647                 if (ret == 0 && event) {
11648                         spin_lock_irq(&dev->event_lock);
11649                         drm_send_vblank_event(dev, pipe, event);
11650                         spin_unlock_irq(&dev->event_lock);
11651                 }
11652         }
11653         return ret;
11654 }
11655
11656
11657 /**
11658  * intel_wm_need_update - Check whether watermarks need updating
11659  * @plane: drm plane
11660  * @state: new plane state
11661  *
11662  * Check current plane state versus the new one to determine whether
11663  * watermarks need to be recalculated.
11664  *
11665  * Returns true or false.
11666  */
11667 static bool intel_wm_need_update(struct drm_plane *plane,
11668                                  struct drm_plane_state *state)
11669 {
11670         struct intel_plane_state *new = to_intel_plane_state(state);
11671         struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11672
11673         /* Update watermarks on tiling or size changes. */
11674         if (!plane->state->fb || !state->fb ||
11675             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
11676             plane->state->rotation != state->rotation ||
11677             drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11678             drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11679             drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11680             drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
11681                 return true;
11682
11683         return false;
11684 }
11685
11686 static bool needs_scaling(struct intel_plane_state *state)
11687 {
11688         int src_w = drm_rect_width(&state->src) >> 16;
11689         int src_h = drm_rect_height(&state->src) >> 16;
11690         int dst_w = drm_rect_width(&state->dst);
11691         int dst_h = drm_rect_height(&state->dst);
11692
11693         return (src_w != dst_w || src_h != dst_h);
11694 }
11695
11696 int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11697                                     struct drm_plane_state *plane_state)
11698 {
11699         struct drm_crtc *crtc = crtc_state->crtc;
11700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11701         struct drm_plane *plane = plane_state->plane;
11702         struct drm_device *dev = crtc->dev;
11703         struct drm_i915_private *dev_priv = dev->dev_private;
11704         struct intel_plane_state *old_plane_state =
11705                 to_intel_plane_state(plane->state);
11706         int idx = intel_crtc->base.base.id, ret;
11707         int i = drm_plane_index(plane);
11708         bool mode_changed = needs_modeset(crtc_state);
11709         bool was_crtc_enabled = crtc->state->active;
11710         bool is_crtc_enabled = crtc_state->active;
11711         bool turn_off, turn_on, visible, was_visible;
11712         struct drm_framebuffer *fb = plane_state->fb;
11713
11714         if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11715             plane->type != DRM_PLANE_TYPE_CURSOR) {
11716                 ret = skl_update_scaler_plane(
11717                         to_intel_crtc_state(crtc_state),
11718                         to_intel_plane_state(plane_state));
11719                 if (ret)
11720                         return ret;
11721         }
11722
11723         was_visible = old_plane_state->visible;
11724         visible = to_intel_plane_state(plane_state)->visible;
11725
11726         if (!was_crtc_enabled && WARN_ON(was_visible))
11727                 was_visible = false;
11728
11729         if (!is_crtc_enabled && WARN_ON(visible))
11730                 visible = false;
11731
11732         if (!was_visible && !visible)
11733                 return 0;
11734
11735         turn_off = was_visible && (!visible || mode_changed);
11736         turn_on = visible && (!was_visible || mode_changed);
11737
11738         DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11739                          plane->base.id, fb ? fb->base.id : -1);
11740
11741         DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11742                          plane->base.id, was_visible, visible,
11743                          turn_off, turn_on, mode_changed);
11744
11745         if (turn_on) {
11746                 intel_crtc->atomic.update_wm_pre = true;
11747                 /* must disable cxsr around plane enable/disable */
11748                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11749                         intel_crtc->atomic.disable_cxsr = true;
11750                         /* to potentially re-enable cxsr */
11751                         intel_crtc->atomic.wait_vblank = true;
11752                         intel_crtc->atomic.update_wm_post = true;
11753                 }
11754         } else if (turn_off) {
11755                 intel_crtc->atomic.update_wm_post = true;
11756                 /* must disable cxsr around plane enable/disable */
11757                 if (plane->type != DRM_PLANE_TYPE_CURSOR) {
11758                         if (is_crtc_enabled)
11759                                 intel_crtc->atomic.wait_vblank = true;
11760                         intel_crtc->atomic.disable_cxsr = true;
11761                 }
11762         } else if (intel_wm_need_update(plane, plane_state)) {
11763                 intel_crtc->atomic.update_wm_pre = true;
11764         }
11765
11766         if (visible || was_visible)
11767                 intel_crtc->atomic.fb_bits |=
11768                         to_intel_plane(plane)->frontbuffer_bit;
11769
11770         switch (plane->type) {
11771         case DRM_PLANE_TYPE_PRIMARY:
11772                 intel_crtc->atomic.pre_disable_primary = turn_off;
11773                 intel_crtc->atomic.post_enable_primary = turn_on;
11774
11775                 if (turn_off) {
11776                         /*
11777                          * FIXME: Actually if we will still have any other
11778                          * plane enabled on the pipe we could let IPS enabled
11779                          * still, but for now lets consider that when we make
11780                          * primary invisible by setting DSPCNTR to 0 on
11781                          * update_primary_plane function IPS needs to be
11782                          * disable.
11783                          */
11784                         intel_crtc->atomic.disable_ips = true;
11785
11786                         intel_crtc->atomic.disable_fbc = true;
11787                 }
11788
11789                 /*
11790                  * FBC does not work on some platforms for rotated
11791                  * planes, so disable it when rotation is not 0 and
11792                  * update it when rotation is set back to 0.
11793                  *
11794                  * FIXME: This is redundant with the fbc update done in
11795                  * the primary plane enable function except that that
11796                  * one is done too late. We eventually need to unify
11797                  * this.
11798                  */
11799
11800                 if (visible &&
11801                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
11802                     dev_priv->fbc.crtc == intel_crtc &&
11803                     plane_state->rotation != BIT(DRM_ROTATE_0))
11804                         intel_crtc->atomic.disable_fbc = true;
11805
11806                 /*
11807                  * BDW signals flip done immediately if the plane
11808                  * is disabled, even if the plane enable is already
11809                  * armed to occur at the next vblank :(
11810                  */
11811                 if (turn_on && IS_BROADWELL(dev))
11812                         intel_crtc->atomic.wait_vblank = true;
11813
11814                 intel_crtc->atomic.update_fbc |= visible || mode_changed;
11815                 break;
11816         case DRM_PLANE_TYPE_CURSOR:
11817                 break;
11818         case DRM_PLANE_TYPE_OVERLAY:
11819                 /*
11820                  * WaCxSRDisabledForSpriteScaling:ivb
11821                  *
11822                  * cstate->update_wm was already set above, so this flag will
11823                  * take effect when we commit and program watermarks.
11824                  */
11825                 if (IS_IVYBRIDGE(dev) &&
11826                     needs_scaling(to_intel_plane_state(plane_state)) &&
11827                     !needs_scaling(old_plane_state)) {
11828                         to_intel_crtc_state(crtc_state)->disable_lp_wm = true;
11829                 } else if (turn_off && !mode_changed) {
11830                         intel_crtc->atomic.wait_vblank = true;
11831                         intel_crtc->atomic.update_sprite_watermarks |=
11832                                 1 << i;
11833                 }
11834
11835                 break;
11836         }
11837         return 0;
11838 }
11839
11840 static bool encoders_cloneable(const struct intel_encoder *a,
11841                                const struct intel_encoder *b)
11842 {
11843         /* masks could be asymmetric, so check both ways */
11844         return a == b || (a->cloneable & (1 << b->type) &&
11845                           b->cloneable & (1 << a->type));
11846 }
11847
11848 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11849                                          struct intel_crtc *crtc,
11850                                          struct intel_encoder *encoder)
11851 {
11852         struct intel_encoder *source_encoder;
11853         struct drm_connector *connector;
11854         struct drm_connector_state *connector_state;
11855         int i;
11856
11857         for_each_connector_in_state(state, connector, connector_state, i) {
11858                 if (connector_state->crtc != &crtc->base)
11859                         continue;
11860
11861                 source_encoder =
11862                         to_intel_encoder(connector_state->best_encoder);
11863                 if (!encoders_cloneable(encoder, source_encoder))
11864                         return false;
11865         }
11866
11867         return true;
11868 }
11869
11870 static bool check_encoder_cloning(struct drm_atomic_state *state,
11871                                   struct intel_crtc *crtc)
11872 {
11873         struct intel_encoder *encoder;
11874         struct drm_connector *connector;
11875         struct drm_connector_state *connector_state;
11876         int i;
11877
11878         for_each_connector_in_state(state, connector, connector_state, i) {
11879                 if (connector_state->crtc != &crtc->base)
11880                         continue;
11881
11882                 encoder = to_intel_encoder(connector_state->best_encoder);
11883                 if (!check_single_encoder_cloning(state, crtc, encoder))
11884                         return false;
11885         }
11886
11887         return true;
11888 }
11889
11890 static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11891                                    struct drm_crtc_state *crtc_state)
11892 {
11893         struct drm_device *dev = crtc->dev;
11894         struct drm_i915_private *dev_priv = dev->dev_private;
11895         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11896         struct intel_crtc_state *pipe_config =
11897                 to_intel_crtc_state(crtc_state);
11898         struct drm_atomic_state *state = crtc_state->state;
11899         int ret;
11900         bool mode_changed = needs_modeset(crtc_state);
11901
11902         if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11903                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11904                 return -EINVAL;
11905         }
11906
11907         if (mode_changed && !crtc_state->active)
11908                 intel_crtc->atomic.update_wm_post = true;
11909
11910         if (mode_changed && crtc_state->enable &&
11911             dev_priv->display.crtc_compute_clock &&
11912             !WARN_ON(pipe_config->shared_dpll != DPLL_ID_PRIVATE)) {
11913                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11914                                                            pipe_config);
11915                 if (ret)
11916                         return ret;
11917         }
11918
11919         ret = 0;
11920         if (dev_priv->display.compute_pipe_wm) {
11921                 ret = dev_priv->display.compute_pipe_wm(intel_crtc, state);
11922                 if (ret)
11923                         return ret;
11924         }
11925
11926         if (INTEL_INFO(dev)->gen >= 9) {
11927                 if (mode_changed)
11928                         ret = skl_update_scaler_crtc(pipe_config);
11929
11930                 if (!ret)
11931                         ret = intel_atomic_setup_scalers(dev, intel_crtc,
11932                                                          pipe_config);
11933         }
11934
11935         return ret;
11936 }
11937
11938 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11939         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11940         .load_lut = intel_crtc_load_lut,
11941         .atomic_begin = intel_begin_crtc_commit,
11942         .atomic_flush = intel_finish_crtc_commit,
11943         .atomic_check = intel_crtc_atomic_check,
11944 };
11945
11946 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11947 {
11948         struct intel_connector *connector;
11949
11950         for_each_intel_connector(dev, connector) {
11951                 if (connector->base.encoder) {
11952                         connector->base.state->best_encoder =
11953                                 connector->base.encoder;
11954                         connector->base.state->crtc =
11955                                 connector->base.encoder->crtc;
11956                 } else {
11957                         connector->base.state->best_encoder = NULL;
11958                         connector->base.state->crtc = NULL;
11959                 }
11960         }
11961 }
11962
11963 static void
11964 connected_sink_compute_bpp(struct intel_connector *connector,
11965                            struct intel_crtc_state *pipe_config)
11966 {
11967         int bpp = pipe_config->pipe_bpp;
11968
11969         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11970                 connector->base.base.id,
11971                 connector->base.name);
11972
11973         /* Don't use an invalid EDID bpc value */
11974         if (connector->base.display_info.bpc &&
11975             connector->base.display_info.bpc * 3 < bpp) {
11976                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11977                               bpp, connector->base.display_info.bpc*3);
11978                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11979         }
11980
11981         /* Clamp bpp to 8 on screens without EDID 1.4 */
11982         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11983                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11984                               bpp);
11985                 pipe_config->pipe_bpp = 24;
11986         }
11987 }
11988
11989 static int
11990 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11991                           struct intel_crtc_state *pipe_config)
11992 {
11993         struct drm_device *dev = crtc->base.dev;
11994         struct drm_atomic_state *state;
11995         struct drm_connector *connector;
11996         struct drm_connector_state *connector_state;
11997         int bpp, i;
11998
11999         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
12000                 bpp = 10*3;
12001         else if (INTEL_INFO(dev)->gen >= 5)
12002                 bpp = 12*3;
12003         else
12004                 bpp = 8*3;
12005
12006
12007         pipe_config->pipe_bpp = bpp;
12008
12009         state = pipe_config->base.state;
12010
12011         /* Clamp display bpp to EDID value */
12012         for_each_connector_in_state(state, connector, connector_state, i) {
12013                 if (connector_state->crtc != &crtc->base)
12014                         continue;
12015
12016                 connected_sink_compute_bpp(to_intel_connector(connector),
12017                                            pipe_config);
12018         }
12019
12020         return bpp;
12021 }
12022
12023 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12024 {
12025         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12026                         "type: 0x%x flags: 0x%x\n",
12027                 mode->crtc_clock,
12028                 mode->crtc_hdisplay, mode->crtc_hsync_start,
12029                 mode->crtc_hsync_end, mode->crtc_htotal,
12030                 mode->crtc_vdisplay, mode->crtc_vsync_start,
12031                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12032 }
12033
12034 static void intel_dump_pipe_config(struct intel_crtc *crtc,
12035                                    struct intel_crtc_state *pipe_config,
12036                                    const char *context)
12037 {
12038         struct drm_device *dev = crtc->base.dev;
12039         struct drm_plane *plane;
12040         struct intel_plane *intel_plane;
12041         struct intel_plane_state *state;
12042         struct drm_framebuffer *fb;
12043
12044         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12045                       context, pipe_config, pipe_name(crtc->pipe));
12046
12047         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
12048         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12049                       pipe_config->pipe_bpp, pipe_config->dither);
12050         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12051                       pipe_config->has_pch_encoder,
12052                       pipe_config->fdi_lanes,
12053                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12054                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12055                       pipe_config->fdi_m_n.tu);
12056         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12057                       pipe_config->has_dp_encoder,
12058                       pipe_config->lane_count,
12059                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12060                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12061                       pipe_config->dp_m_n.tu);
12062
12063         DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
12064                       pipe_config->has_dp_encoder,
12065                       pipe_config->lane_count,
12066                       pipe_config->dp_m2_n2.gmch_m,
12067                       pipe_config->dp_m2_n2.gmch_n,
12068                       pipe_config->dp_m2_n2.link_m,
12069                       pipe_config->dp_m2_n2.link_n,
12070                       pipe_config->dp_m2_n2.tu);
12071
12072         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12073                       pipe_config->has_audio,
12074                       pipe_config->has_infoframe);
12075
12076         DRM_DEBUG_KMS("requested mode:\n");
12077         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12078         DRM_DEBUG_KMS("adjusted mode:\n");
12079         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12080         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12081         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
12082         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12083                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
12084         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12085                       crtc->num_scalers,
12086                       pipe_config->scaler_state.scaler_users,
12087                       pipe_config->scaler_state.scaler_id);
12088         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12089                       pipe_config->gmch_pfit.control,
12090                       pipe_config->gmch_pfit.pgm_ratios,
12091                       pipe_config->gmch_pfit.lvds_border_bits);
12092         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
12093                       pipe_config->pch_pfit.pos,
12094                       pipe_config->pch_pfit.size,
12095                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
12096         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
12097         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
12098
12099         if (IS_BROXTON(dev)) {
12100                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
12101                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
12102                               "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
12103                               pipe_config->ddi_pll_sel,
12104                               pipe_config->dpll_hw_state.ebb0,
12105                               pipe_config->dpll_hw_state.ebb4,
12106                               pipe_config->dpll_hw_state.pll0,
12107                               pipe_config->dpll_hw_state.pll1,
12108                               pipe_config->dpll_hw_state.pll2,
12109                               pipe_config->dpll_hw_state.pll3,
12110                               pipe_config->dpll_hw_state.pll6,
12111                               pipe_config->dpll_hw_state.pll8,
12112                               pipe_config->dpll_hw_state.pll9,
12113                               pipe_config->dpll_hw_state.pll10,
12114                               pipe_config->dpll_hw_state.pcsdw12);
12115         } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
12116                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12117                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12118                               pipe_config->ddi_pll_sel,
12119                               pipe_config->dpll_hw_state.ctrl1,
12120                               pipe_config->dpll_hw_state.cfgcr1,
12121                               pipe_config->dpll_hw_state.cfgcr2);
12122         } else if (HAS_DDI(dev)) {
12123                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
12124                               pipe_config->ddi_pll_sel,
12125                               pipe_config->dpll_hw_state.wrpll,
12126                               pipe_config->dpll_hw_state.spll);
12127         } else {
12128                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12129                               "fp0: 0x%x, fp1: 0x%x\n",
12130                               pipe_config->dpll_hw_state.dpll,
12131                               pipe_config->dpll_hw_state.dpll_md,
12132                               pipe_config->dpll_hw_state.fp0,
12133                               pipe_config->dpll_hw_state.fp1);
12134         }
12135
12136         DRM_DEBUG_KMS("planes on this crtc\n");
12137         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12138                 intel_plane = to_intel_plane(plane);
12139                 if (intel_plane->pipe != crtc->pipe)
12140                         continue;
12141
12142                 state = to_intel_plane_state(plane->state);
12143                 fb = state->base.fb;
12144                 if (!fb) {
12145                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12146                                 "disabled, scaler_id = %d\n",
12147                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12148                                 plane->base.id, intel_plane->pipe,
12149                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12150                                 drm_plane_index(plane), state->scaler_id);
12151                         continue;
12152                 }
12153
12154                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12155                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12156                         plane->base.id, intel_plane->pipe,
12157                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12158                         drm_plane_index(plane));
12159                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12160                         fb->base.id, fb->width, fb->height, fb->pixel_format);
12161                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12162                         state->scaler_id,
12163                         state->src.x1 >> 16, state->src.y1 >> 16,
12164                         drm_rect_width(&state->src) >> 16,
12165                         drm_rect_height(&state->src) >> 16,
12166                         state->dst.x1, state->dst.y1,
12167                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12168         }
12169 }
12170
12171 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
12172 {
12173         struct drm_device *dev = state->dev;
12174         struct intel_encoder *encoder;
12175         struct drm_connector *connector;
12176         struct drm_connector_state *connector_state;
12177         unsigned int used_ports = 0;
12178         int i;
12179
12180         /*
12181          * Walk the connector list instead of the encoder
12182          * list to detect the problem on ddi platforms
12183          * where there's just one encoder per digital port.
12184          */
12185         for_each_connector_in_state(state, connector, connector_state, i) {
12186                 if (!connector_state->best_encoder)
12187                         continue;
12188
12189                 encoder = to_intel_encoder(connector_state->best_encoder);
12190
12191                 WARN_ON(!connector_state->crtc);
12192
12193                 switch (encoder->type) {
12194                         unsigned int port_mask;
12195                 case INTEL_OUTPUT_UNKNOWN:
12196                         if (WARN_ON(!HAS_DDI(dev)))
12197                                 break;
12198                 case INTEL_OUTPUT_DISPLAYPORT:
12199                 case INTEL_OUTPUT_HDMI:
12200                 case INTEL_OUTPUT_EDP:
12201                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12202
12203                         /* the same port mustn't appear more than once */
12204                         if (used_ports & port_mask)
12205                                 return false;
12206
12207                         used_ports |= port_mask;
12208                 default:
12209                         break;
12210                 }
12211         }
12212
12213         return true;
12214 }
12215
12216 static void
12217 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12218 {
12219         struct drm_crtc_state tmp_state;
12220         struct intel_crtc_scaler_state scaler_state;
12221         struct intel_dpll_hw_state dpll_hw_state;
12222         enum intel_dpll_id shared_dpll;
12223         uint32_t ddi_pll_sel;
12224         bool force_thru;
12225
12226         /* FIXME: before the switch to atomic started, a new pipe_config was
12227          * kzalloc'd. Code that depends on any field being zero should be
12228          * fixed, so that the crtc_state can be safely duplicated. For now,
12229          * only fields that are know to not cause problems are preserved. */
12230
12231         tmp_state = crtc_state->base;
12232         scaler_state = crtc_state->scaler_state;
12233         shared_dpll = crtc_state->shared_dpll;
12234         dpll_hw_state = crtc_state->dpll_hw_state;
12235         ddi_pll_sel = crtc_state->ddi_pll_sel;
12236         force_thru = crtc_state->pch_pfit.force_thru;
12237
12238         memset(crtc_state, 0, sizeof *crtc_state);
12239
12240         crtc_state->base = tmp_state;
12241         crtc_state->scaler_state = scaler_state;
12242         crtc_state->shared_dpll = shared_dpll;
12243         crtc_state->dpll_hw_state = dpll_hw_state;
12244         crtc_state->ddi_pll_sel = ddi_pll_sel;
12245         crtc_state->pch_pfit.force_thru = force_thru;
12246 }
12247
12248 static int
12249 intel_modeset_pipe_config(struct drm_crtc *crtc,
12250                           struct intel_crtc_state *pipe_config)
12251 {
12252         struct drm_atomic_state *state = pipe_config->base.state;
12253         struct intel_encoder *encoder;
12254         struct drm_connector *connector;
12255         struct drm_connector_state *connector_state;
12256         int base_bpp, ret = -EINVAL;
12257         int i;
12258         bool retry = true;
12259
12260         clear_intel_crtc_state(pipe_config);
12261
12262         pipe_config->cpu_transcoder =
12263                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12264
12265         /*
12266          * Sanitize sync polarity flags based on requested ones. If neither
12267          * positive or negative polarity is requested, treat this as meaning
12268          * negative polarity.
12269          */
12270         if (!(pipe_config->base.adjusted_mode.flags &
12271               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12272                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12273
12274         if (!(pipe_config->base.adjusted_mode.flags &
12275               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12276                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12277
12278         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12279                                              pipe_config);
12280         if (base_bpp < 0)
12281                 goto fail;
12282
12283         /*
12284          * Determine the real pipe dimensions. Note that stereo modes can
12285          * increase the actual pipe size due to the frame doubling and
12286          * insertion of additional space for blanks between the frame. This
12287          * is stored in the crtc timings. We use the requested mode to do this
12288          * computation to clearly distinguish it from the adjusted mode, which
12289          * can be changed by the connectors in the below retry loop.
12290          */
12291         drm_crtc_get_hv_timing(&pipe_config->base.mode,
12292                                &pipe_config->pipe_src_w,
12293                                &pipe_config->pipe_src_h);
12294
12295 encoder_retry:
12296         /* Ensure the port clock defaults are reset when retrying. */
12297         pipe_config->port_clock = 0;
12298         pipe_config->pixel_multiplier = 1;
12299
12300         /* Fill in default crtc timings, allow encoders to overwrite them. */
12301         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12302                               CRTC_STEREO_DOUBLE);
12303
12304         /* Pass our mode to the connectors and the CRTC to give them a chance to
12305          * adjust it according to limitations or connector properties, and also
12306          * a chance to reject the mode entirely.
12307          */
12308         for_each_connector_in_state(state, connector, connector_state, i) {
12309                 if (connector_state->crtc != crtc)
12310                         continue;
12311
12312                 encoder = to_intel_encoder(connector_state->best_encoder);
12313
12314                 if (!(encoder->compute_config(encoder, pipe_config))) {
12315                         DRM_DEBUG_KMS("Encoder config failure\n");
12316                         goto fail;
12317                 }
12318         }
12319
12320         /* Set default port clock if not overwritten by the encoder. Needs to be
12321          * done afterwards in case the encoder adjusts the mode. */
12322         if (!pipe_config->port_clock)
12323                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12324                         * pipe_config->pixel_multiplier;
12325
12326         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12327         if (ret < 0) {
12328                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12329                 goto fail;
12330         }
12331
12332         if (ret == RETRY) {
12333                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12334                         ret = -EINVAL;
12335                         goto fail;
12336                 }
12337
12338                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12339                 retry = false;
12340                 goto encoder_retry;
12341         }
12342
12343         /* Dithering seems to not pass-through bits correctly when it should, so
12344          * only enable it on 6bpc panels. */
12345         pipe_config->dither = pipe_config->pipe_bpp == 6*3;
12346         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12347                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12348
12349 fail:
12350         return ret;
12351 }
12352
12353 static void
12354 intel_modeset_update_crtc_state(struct drm_atomic_state *state)
12355 {
12356         struct drm_crtc *crtc;
12357         struct drm_crtc_state *crtc_state;
12358         int i;
12359
12360         /* Double check state. */
12361         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12362                 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
12363
12364                 /* Update hwmode for vblank functions */
12365                 if (crtc->state->active)
12366                         crtc->hwmode = crtc->state->adjusted_mode;
12367                 else
12368                         crtc->hwmode.crtc_clock = 0;
12369
12370                 /*
12371                  * Update legacy state to satisfy fbc code. This can
12372                  * be removed when fbc uses the atomic state.
12373                  */
12374                 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12375                         struct drm_plane_state *plane_state = crtc->primary->state;
12376
12377                         crtc->primary->fb = plane_state->fb;
12378                         crtc->x = plane_state->src_x >> 16;
12379                         crtc->y = plane_state->src_y >> 16;
12380                 }
12381         }
12382 }
12383
12384 static bool intel_fuzzy_clock_check(int clock1, int clock2)
12385 {
12386         int diff;
12387
12388         if (clock1 == clock2)
12389                 return true;
12390
12391         if (!clock1 || !clock2)
12392                 return false;
12393
12394         diff = abs(clock1 - clock2);
12395
12396         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12397                 return true;
12398
12399         return false;
12400 }
12401
12402 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12403         list_for_each_entry((intel_crtc), \
12404                             &(dev)->mode_config.crtc_list, \
12405                             base.head) \
12406                 if (mask & (1 <<(intel_crtc)->pipe))
12407
12408 static bool
12409 intel_compare_m_n(unsigned int m, unsigned int n,
12410                   unsigned int m2, unsigned int n2,
12411                   bool exact)
12412 {
12413         if (m == m2 && n == n2)
12414                 return true;
12415
12416         if (exact || !m || !n || !m2 || !n2)
12417                 return false;
12418
12419         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12420
12421         if (m > m2) {
12422                 while (m > m2) {
12423                         m2 <<= 1;
12424                         n2 <<= 1;
12425                 }
12426         } else if (m < m2) {
12427                 while (m < m2) {
12428                         m <<= 1;
12429                         n <<= 1;
12430                 }
12431         }
12432
12433         return m == m2 && n == n2;
12434 }
12435
12436 static bool
12437 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12438                        struct intel_link_m_n *m2_n2,
12439                        bool adjust)
12440 {
12441         if (m_n->tu == m2_n2->tu &&
12442             intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12443                               m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12444             intel_compare_m_n(m_n->link_m, m_n->link_n,
12445                               m2_n2->link_m, m2_n2->link_n, !adjust)) {
12446                 if (adjust)
12447                         *m2_n2 = *m_n;
12448
12449                 return true;
12450         }
12451
12452         return false;
12453 }
12454
12455 static bool
12456 intel_pipe_config_compare(struct drm_device *dev,
12457                           struct intel_crtc_state *current_config,
12458                           struct intel_crtc_state *pipe_config,
12459                           bool adjust)
12460 {
12461         bool ret = true;
12462
12463 #define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12464         do { \
12465                 if (!adjust) \
12466                         DRM_ERROR(fmt, ##__VA_ARGS__); \
12467                 else \
12468                         DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12469         } while (0)
12470
12471 #define PIPE_CONF_CHECK_X(name) \
12472         if (current_config->name != pipe_config->name) { \
12473                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12474                           "(expected 0x%08x, found 0x%08x)\n", \
12475                           current_config->name, \
12476                           pipe_config->name); \
12477                 ret = false; \
12478         }
12479
12480 #define PIPE_CONF_CHECK_I(name) \
12481         if (current_config->name != pipe_config->name) { \
12482                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12483                           "(expected %i, found %i)\n", \
12484                           current_config->name, \
12485                           pipe_config->name); \
12486                 ret = false; \
12487         }
12488
12489 #define PIPE_CONF_CHECK_M_N(name) \
12490         if (!intel_compare_link_m_n(&current_config->name, \
12491                                     &pipe_config->name,\
12492                                     adjust)) { \
12493                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12494                           "(expected tu %i gmch %i/%i link %i/%i, " \
12495                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12496                           current_config->name.tu, \
12497                           current_config->name.gmch_m, \
12498                           current_config->name.gmch_n, \
12499                           current_config->name.link_m, \
12500                           current_config->name.link_n, \
12501                           pipe_config->name.tu, \
12502                           pipe_config->name.gmch_m, \
12503                           pipe_config->name.gmch_n, \
12504                           pipe_config->name.link_m, \
12505                           pipe_config->name.link_n); \
12506                 ret = false; \
12507         }
12508
12509 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12510         if (!intel_compare_link_m_n(&current_config->name, \
12511                                     &pipe_config->name, adjust) && \
12512             !intel_compare_link_m_n(&current_config->alt_name, \
12513                                     &pipe_config->name, adjust)) { \
12514                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12515                           "(expected tu %i gmch %i/%i link %i/%i, " \
12516                           "or tu %i gmch %i/%i link %i/%i, " \
12517                           "found tu %i, gmch %i/%i link %i/%i)\n", \
12518                           current_config->name.tu, \
12519                           current_config->name.gmch_m, \
12520                           current_config->name.gmch_n, \
12521                           current_config->name.link_m, \
12522                           current_config->name.link_n, \
12523                           current_config->alt_name.tu, \
12524                           current_config->alt_name.gmch_m, \
12525                           current_config->alt_name.gmch_n, \
12526                           current_config->alt_name.link_m, \
12527                           current_config->alt_name.link_n, \
12528                           pipe_config->name.tu, \
12529                           pipe_config->name.gmch_m, \
12530                           pipe_config->name.gmch_n, \
12531                           pipe_config->name.link_m, \
12532                           pipe_config->name.link_n); \
12533                 ret = false; \
12534         }
12535
12536 /* This is required for BDW+ where there is only one set of registers for
12537  * switching between high and low RR.
12538  * This macro can be used whenever a comparison has to be made between one
12539  * hw state and multiple sw state variables.
12540  */
12541 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
12542         if ((current_config->name != pipe_config->name) && \
12543                 (current_config->alt_name != pipe_config->name)) { \
12544                         INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12545                                   "(expected %i or %i, found %i)\n", \
12546                                   current_config->name, \
12547                                   current_config->alt_name, \
12548                                   pipe_config->name); \
12549                         ret = false; \
12550         }
12551
12552 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
12553         if ((current_config->name ^ pipe_config->name) & (mask)) { \
12554                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
12555                           "(expected %i, found %i)\n", \
12556                           current_config->name & (mask), \
12557                           pipe_config->name & (mask)); \
12558                 ret = false; \
12559         }
12560
12561 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12562         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
12563                 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12564                           "(expected %i, found %i)\n", \
12565                           current_config->name, \
12566                           pipe_config->name); \
12567                 ret = false; \
12568         }
12569
12570 #define PIPE_CONF_QUIRK(quirk)  \
12571         ((current_config->quirks | pipe_config->quirks) & (quirk))
12572
12573         PIPE_CONF_CHECK_I(cpu_transcoder);
12574
12575         PIPE_CONF_CHECK_I(has_pch_encoder);
12576         PIPE_CONF_CHECK_I(fdi_lanes);
12577         PIPE_CONF_CHECK_M_N(fdi_m_n);
12578
12579         PIPE_CONF_CHECK_I(has_dp_encoder);
12580         PIPE_CONF_CHECK_I(lane_count);
12581
12582         if (INTEL_INFO(dev)->gen < 8) {
12583                 PIPE_CONF_CHECK_M_N(dp_m_n);
12584
12585                 PIPE_CONF_CHECK_I(has_drrs);
12586                 if (current_config->has_drrs)
12587                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
12588         } else
12589                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
12590
12591         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12592         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12593         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12594         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12595         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12596         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12597
12598         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12599         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12600         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12601         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12602         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12603         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12604
12605         PIPE_CONF_CHECK_I(pixel_multiplier);
12606         PIPE_CONF_CHECK_I(has_hdmi_sink);
12607         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12608             IS_VALLEYVIEW(dev))
12609                 PIPE_CONF_CHECK_I(limited_color_range);
12610         PIPE_CONF_CHECK_I(has_infoframe);
12611
12612         PIPE_CONF_CHECK_I(has_audio);
12613
12614         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12615                               DRM_MODE_FLAG_INTERLACE);
12616
12617         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12618                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12619                                       DRM_MODE_FLAG_PHSYNC);
12620                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12621                                       DRM_MODE_FLAG_NHSYNC);
12622                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12623                                       DRM_MODE_FLAG_PVSYNC);
12624                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12625                                       DRM_MODE_FLAG_NVSYNC);
12626         }
12627
12628         PIPE_CONF_CHECK_X(gmch_pfit.control);
12629         /* pfit ratios are autocomputed by the hw on gen4+ */
12630         if (INTEL_INFO(dev)->gen < 4)
12631                 PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12632         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
12633
12634         if (!adjust) {
12635                 PIPE_CONF_CHECK_I(pipe_src_w);
12636                 PIPE_CONF_CHECK_I(pipe_src_h);
12637
12638                 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12639                 if (current_config->pch_pfit.enabled) {
12640                         PIPE_CONF_CHECK_X(pch_pfit.pos);
12641                         PIPE_CONF_CHECK_X(pch_pfit.size);
12642                 }
12643
12644                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12645         }
12646
12647         /* BDW+ don't expose a synchronous way to read the state */
12648         if (IS_HASWELL(dev))
12649                 PIPE_CONF_CHECK_I(ips_enabled);
12650
12651         PIPE_CONF_CHECK_I(double_wide);
12652
12653         PIPE_CONF_CHECK_X(ddi_pll_sel);
12654
12655         PIPE_CONF_CHECK_I(shared_dpll);
12656         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12657         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12658         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12659         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12660         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12661         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
12662         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12663         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12664         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12665
12666         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12667                 PIPE_CONF_CHECK_I(pipe_bpp);
12668
12669         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12670         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12671
12672 #undef PIPE_CONF_CHECK_X
12673 #undef PIPE_CONF_CHECK_I
12674 #undef PIPE_CONF_CHECK_I_ALT
12675 #undef PIPE_CONF_CHECK_FLAGS
12676 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12677 #undef PIPE_CONF_QUIRK
12678 #undef INTEL_ERR_OR_DBG_KMS
12679
12680         return ret;
12681 }
12682
12683 static void check_wm_state(struct drm_device *dev)
12684 {
12685         struct drm_i915_private *dev_priv = dev->dev_private;
12686         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12687         struct intel_crtc *intel_crtc;
12688         int plane;
12689
12690         if (INTEL_INFO(dev)->gen < 9)
12691                 return;
12692
12693         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12694         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12695
12696         for_each_intel_crtc(dev, intel_crtc) {
12697                 struct skl_ddb_entry *hw_entry, *sw_entry;
12698                 const enum pipe pipe = intel_crtc->pipe;
12699
12700                 if (!intel_crtc->active)
12701                         continue;
12702
12703                 /* planes */
12704                 for_each_plane(dev_priv, pipe, plane) {
12705                         hw_entry = &hw_ddb.plane[pipe][plane];
12706                         sw_entry = &sw_ddb->plane[pipe][plane];
12707
12708                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12709                                 continue;
12710
12711                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12712                                   "(expected (%u,%u), found (%u,%u))\n",
12713                                   pipe_name(pipe), plane + 1,
12714                                   sw_entry->start, sw_entry->end,
12715                                   hw_entry->start, hw_entry->end);
12716                 }
12717
12718                 /* cursor */
12719                 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12720                 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
12721
12722                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12723                         continue;
12724
12725                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12726                           "(expected (%u,%u), found (%u,%u))\n",
12727                           pipe_name(pipe),
12728                           sw_entry->start, sw_entry->end,
12729                           hw_entry->start, hw_entry->end);
12730         }
12731 }
12732
12733 static void
12734 check_connector_state(struct drm_device *dev,
12735                       struct drm_atomic_state *old_state)
12736 {
12737         struct drm_connector_state *old_conn_state;
12738         struct drm_connector *connector;
12739         int i;
12740
12741         for_each_connector_in_state(old_state, connector, old_conn_state, i) {
12742                 struct drm_encoder *encoder = connector->encoder;
12743                 struct drm_connector_state *state = connector->state;
12744
12745                 /* This also checks the encoder/connector hw state with the
12746                  * ->get_hw_state callbacks. */
12747                 intel_connector_check_state(to_intel_connector(connector));
12748
12749                 I915_STATE_WARN(state->best_encoder != encoder,
12750                      "connector's atomic encoder doesn't match legacy encoder\n");
12751         }
12752 }
12753
12754 static void
12755 check_encoder_state(struct drm_device *dev)
12756 {
12757         struct intel_encoder *encoder;
12758         struct intel_connector *connector;
12759
12760         for_each_intel_encoder(dev, encoder) {
12761                 bool enabled = false;
12762                 enum pipe pipe;
12763
12764                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12765                               encoder->base.base.id,
12766                               encoder->base.name);
12767
12768                 for_each_intel_connector(dev, connector) {
12769                         if (connector->base.state->best_encoder != &encoder->base)
12770                                 continue;
12771                         enabled = true;
12772
12773                         I915_STATE_WARN(connector->base.state->crtc !=
12774                                         encoder->base.crtc,
12775                              "connector's crtc doesn't match encoder crtc\n");
12776                 }
12777
12778                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12779                      "encoder's enabled state mismatch "
12780                      "(expected %i, found %i)\n",
12781                      !!encoder->base.crtc, enabled);
12782
12783                 if (!encoder->base.crtc) {
12784                         bool active;
12785
12786                         active = encoder->get_hw_state(encoder, &pipe);
12787                         I915_STATE_WARN(active,
12788                              "encoder detached but still enabled on pipe %c.\n",
12789                              pipe_name(pipe));
12790                 }
12791         }
12792 }
12793
12794 static void
12795 check_crtc_state(struct drm_device *dev, struct drm_atomic_state *old_state)
12796 {
12797         struct drm_i915_private *dev_priv = dev->dev_private;
12798         struct intel_encoder *encoder;
12799         struct drm_crtc_state *old_crtc_state;
12800         struct drm_crtc *crtc;
12801         int i;
12802
12803         for_each_crtc_in_state(old_state, crtc, old_crtc_state, i) {
12804                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12805                 struct intel_crtc_state *pipe_config, *sw_config;
12806                 bool active;
12807
12808                 if (!needs_modeset(crtc->state) &&
12809                     !to_intel_crtc_state(crtc->state)->update_pipe)
12810                         continue;
12811
12812                 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12813                 pipe_config = to_intel_crtc_state(old_crtc_state);
12814                 memset(pipe_config, 0, sizeof(*pipe_config));
12815                 pipe_config->base.crtc = crtc;
12816                 pipe_config->base.state = old_state;
12817
12818                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12819                               crtc->base.id);
12820
12821                 active = dev_priv->display.get_pipe_config(intel_crtc,
12822                                                            pipe_config);
12823
12824                 /* hw state is inconsistent with the pipe quirk */
12825                 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12826                     (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12827                         active = crtc->state->active;
12828
12829                 I915_STATE_WARN(crtc->state->active != active,
12830                      "crtc active state doesn't match with hw state "
12831                      "(expected %i, found %i)\n", crtc->state->active, active);
12832
12833                 I915_STATE_WARN(intel_crtc->active != crtc->state->active,
12834                      "transitional active state does not match atomic hw state "
12835                      "(expected %i, found %i)\n", crtc->state->active, intel_crtc->active);
12836
12837                 for_each_encoder_on_crtc(dev, crtc, encoder) {
12838                         enum pipe pipe;
12839
12840                         active = encoder->get_hw_state(encoder, &pipe);
12841                         I915_STATE_WARN(active != crtc->state->active,
12842                                 "[ENCODER:%i] active %i with crtc active %i\n",
12843                                 encoder->base.base.id, active, crtc->state->active);
12844
12845                         I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12846                                         "Encoder connected to wrong pipe %c\n",
12847                                         pipe_name(pipe));
12848
12849                         if (active)
12850                                 encoder->get_config(encoder, pipe_config);
12851                 }
12852
12853                 if (!crtc->state->active)
12854                         continue;
12855
12856                 sw_config = to_intel_crtc_state(crtc->state);
12857                 if (!intel_pipe_config_compare(dev, sw_config,
12858                                                pipe_config, false)) {
12859                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12860                         intel_dump_pipe_config(intel_crtc, pipe_config,
12861                                                "[hw state]");
12862                         intel_dump_pipe_config(intel_crtc, sw_config,
12863                                                "[sw state]");
12864                 }
12865         }
12866 }
12867
12868 static void
12869 check_shared_dpll_state(struct drm_device *dev)
12870 {
12871         struct drm_i915_private *dev_priv = dev->dev_private;
12872         struct intel_crtc *crtc;
12873         struct intel_dpll_hw_state dpll_hw_state;
12874         int i;
12875
12876         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12877                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12878                 int enabled_crtcs = 0, active_crtcs = 0;
12879                 bool active;
12880
12881                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12882
12883                 DRM_DEBUG_KMS("%s\n", pll->name);
12884
12885                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12886
12887                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12888                      "more active pll users than references: %i vs %i\n",
12889                      pll->active, hweight32(pll->config.crtc_mask));
12890                 I915_STATE_WARN(pll->active && !pll->on,
12891                      "pll in active use but not on in sw tracking\n");
12892                 I915_STATE_WARN(pll->on && !pll->active,
12893                      "pll in on but not on in use in sw tracking\n");
12894                 I915_STATE_WARN(pll->on != active,
12895                      "pll on state mismatch (expected %i, found %i)\n",
12896                      pll->on, active);
12897
12898                 for_each_intel_crtc(dev, crtc) {
12899                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12900                                 enabled_crtcs++;
12901                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12902                                 active_crtcs++;
12903                 }
12904                 I915_STATE_WARN(pll->active != active_crtcs,
12905                      "pll active crtcs mismatch (expected %i, found %i)\n",
12906                      pll->active, active_crtcs);
12907                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12908                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12909                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12910
12911                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12912                                        sizeof(dpll_hw_state)),
12913                      "pll hw state mismatch\n");
12914         }
12915 }
12916
12917 static void
12918 intel_modeset_check_state(struct drm_device *dev,
12919                           struct drm_atomic_state *old_state)
12920 {
12921         check_wm_state(dev);
12922         check_connector_state(dev, old_state);
12923         check_encoder_state(dev);
12924         check_crtc_state(dev, old_state);
12925         check_shared_dpll_state(dev);
12926 }
12927
12928 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12929                                      int dotclock)
12930 {
12931         /*
12932          * FDI already provided one idea for the dotclock.
12933          * Yell if the encoder disagrees.
12934          */
12935         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12936              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12937              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12938 }
12939
12940 static void update_scanline_offset(struct intel_crtc *crtc)
12941 {
12942         struct drm_device *dev = crtc->base.dev;
12943
12944         /*
12945          * The scanline counter increments at the leading edge of hsync.
12946          *
12947          * On most platforms it starts counting from vtotal-1 on the
12948          * first active line. That means the scanline counter value is
12949          * always one less than what we would expect. Ie. just after
12950          * start of vblank, which also occurs at start of hsync (on the
12951          * last active line), the scanline counter will read vblank_start-1.
12952          *
12953          * On gen2 the scanline counter starts counting from 1 instead
12954          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12955          * to keep the value positive), instead of adding one.
12956          *
12957          * On HSW+ the behaviour of the scanline counter depends on the output
12958          * type. For DP ports it behaves like most other platforms, but on HDMI
12959          * there's an extra 1 line difference. So we need to add two instead of
12960          * one to the value.
12961          */
12962         if (IS_GEN2(dev)) {
12963                 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
12964                 int vtotal;
12965
12966                 vtotal = adjusted_mode->crtc_vtotal;
12967                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
12968                         vtotal /= 2;
12969
12970                 crtc->scanline_offset = vtotal - 1;
12971         } else if (HAS_DDI(dev) &&
12972                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12973                 crtc->scanline_offset = 2;
12974         } else
12975                 crtc->scanline_offset = 1;
12976 }
12977
12978 static void intel_modeset_clear_plls(struct drm_atomic_state *state)
12979 {
12980         struct drm_device *dev = state->dev;
12981         struct drm_i915_private *dev_priv = to_i915(dev);
12982         struct intel_shared_dpll_config *shared_dpll = NULL;
12983         struct intel_crtc *intel_crtc;
12984         struct intel_crtc_state *intel_crtc_state;
12985         struct drm_crtc *crtc;
12986         struct drm_crtc_state *crtc_state;
12987         int i;
12988
12989         if (!dev_priv->display.crtc_compute_clock)
12990                 return;
12991
12992         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12993                 int dpll;
12994
12995                 intel_crtc = to_intel_crtc(crtc);
12996                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12997                 dpll = intel_crtc_state->shared_dpll;
12998
12999                 if (!needs_modeset(crtc_state) || dpll == DPLL_ID_PRIVATE)
13000                         continue;
13001
13002                 intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
13003
13004                 if (!shared_dpll)
13005                         shared_dpll = intel_atomic_get_shared_dpll_state(state);
13006
13007                 shared_dpll[dpll].crtc_mask &= ~(1 << intel_crtc->pipe);
13008         }
13009 }
13010
13011 /*
13012  * This implements the workaround described in the "notes" section of the mode
13013  * set sequence documentation. When going from no pipes or single pipe to
13014  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13015  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13016  */
13017 static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13018 {
13019         struct drm_crtc_state *crtc_state;
13020         struct intel_crtc *intel_crtc;
13021         struct drm_crtc *crtc;
13022         struct intel_crtc_state *first_crtc_state = NULL;
13023         struct intel_crtc_state *other_crtc_state = NULL;
13024         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13025         int i;
13026
13027         /* look at all crtc's that are going to be enabled in during modeset */
13028         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13029                 intel_crtc = to_intel_crtc(crtc);
13030
13031                 if (!crtc_state->active || !needs_modeset(crtc_state))
13032                         continue;
13033
13034                 if (first_crtc_state) {
13035                         other_crtc_state = to_intel_crtc_state(crtc_state);
13036                         break;
13037                 } else {
13038                         first_crtc_state = to_intel_crtc_state(crtc_state);
13039                         first_pipe = intel_crtc->pipe;
13040                 }
13041         }
13042
13043         /* No workaround needed? */
13044         if (!first_crtc_state)
13045                 return 0;
13046
13047         /* w/a possibly needed, check how many crtc's are already enabled. */
13048         for_each_intel_crtc(state->dev, intel_crtc) {
13049                 struct intel_crtc_state *pipe_config;
13050
13051                 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13052                 if (IS_ERR(pipe_config))
13053                         return PTR_ERR(pipe_config);
13054
13055                 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13056
13057                 if (!pipe_config->base.active ||
13058                     needs_modeset(&pipe_config->base))
13059                         continue;
13060
13061                 /* 2 or more enabled crtcs means no need for w/a */
13062                 if (enabled_pipe != INVALID_PIPE)
13063                         return 0;
13064
13065                 enabled_pipe = intel_crtc->pipe;
13066         }
13067
13068         if (enabled_pipe != INVALID_PIPE)
13069                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13070         else if (other_crtc_state)
13071                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13072
13073         return 0;
13074 }
13075
13076 static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13077 {
13078         struct drm_crtc *crtc;
13079         struct drm_crtc_state *crtc_state;
13080         int ret = 0;
13081
13082         /* add all active pipes to the state */
13083         for_each_crtc(state->dev, crtc) {
13084                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13085                 if (IS_ERR(crtc_state))
13086                         return PTR_ERR(crtc_state);
13087
13088                 if (!crtc_state->active || needs_modeset(crtc_state))
13089                         continue;
13090
13091                 crtc_state->mode_changed = true;
13092
13093                 ret = drm_atomic_add_affected_connectors(state, crtc);
13094                 if (ret)
13095                         break;
13096
13097                 ret = drm_atomic_add_affected_planes(state, crtc);
13098                 if (ret)
13099                         break;
13100         }
13101
13102         return ret;
13103 }
13104
13105 static int intel_modeset_checks(struct drm_atomic_state *state)
13106 {
13107         struct drm_device *dev = state->dev;
13108         struct drm_i915_private *dev_priv = dev->dev_private;
13109         int ret;
13110
13111         if (!check_digital_port_conflicts(state)) {
13112                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13113                 return -EINVAL;
13114         }
13115
13116         /*
13117          * See if the config requires any additional preparation, e.g.
13118          * to adjust global state with pipes off.  We need to do this
13119          * here so we can get the modeset_pipe updated config for the new
13120          * mode set on this crtc.  For other crtcs we need to use the
13121          * adjusted_mode bits in the crtc directly.
13122          */
13123         if (dev_priv->display.modeset_calc_cdclk) {
13124                 unsigned int cdclk;
13125
13126                 ret = dev_priv->display.modeset_calc_cdclk(state);
13127
13128                 cdclk = to_intel_atomic_state(state)->cdclk;
13129                 if (!ret && cdclk != dev_priv->cdclk_freq)
13130                         ret = intel_modeset_all_pipes(state);
13131
13132                 if (ret < 0)
13133                         return ret;
13134         } else
13135                 to_intel_atomic_state(state)->cdclk = dev_priv->cdclk_freq;
13136
13137         intel_modeset_clear_plls(state);
13138
13139         if (IS_HASWELL(dev))
13140                 return haswell_mode_set_planes_workaround(state);
13141
13142         return 0;
13143 }
13144
13145 /*
13146  * Handle calculation of various watermark data at the end of the atomic check
13147  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13148  * handlers to ensure that all derived state has been updated.
13149  */
13150 static void calc_watermark_data(struct drm_atomic_state *state)
13151 {
13152         struct drm_device *dev = state->dev;
13153         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13154         struct drm_crtc *crtc;
13155         struct drm_crtc_state *cstate;
13156         struct drm_plane *plane;
13157         struct drm_plane_state *pstate;
13158
13159         /*
13160          * Calculate watermark configuration details now that derived
13161          * plane/crtc state is all properly updated.
13162          */
13163         drm_for_each_crtc(crtc, dev) {
13164                 cstate = drm_atomic_get_existing_crtc_state(state, crtc) ?:
13165                         crtc->state;
13166
13167                 if (cstate->active)
13168                         intel_state->wm_config.num_pipes_active++;
13169         }
13170         drm_for_each_legacy_plane(plane, dev) {
13171                 pstate = drm_atomic_get_existing_plane_state(state, plane) ?:
13172                         plane->state;
13173
13174                 if (!to_intel_plane_state(pstate)->visible)
13175                         continue;
13176
13177                 intel_state->wm_config.sprites_enabled = true;
13178                 if (pstate->crtc_w != pstate->src_w >> 16 ||
13179                     pstate->crtc_h != pstate->src_h >> 16)
13180                         intel_state->wm_config.sprites_scaled = true;
13181         }
13182 }
13183
13184 /**
13185  * intel_atomic_check - validate state object
13186  * @dev: drm device
13187  * @state: state to validate
13188  */
13189 static int intel_atomic_check(struct drm_device *dev,
13190                               struct drm_atomic_state *state)
13191 {
13192         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13193         struct drm_crtc *crtc;
13194         struct drm_crtc_state *crtc_state;
13195         int ret, i;
13196         bool any_ms = false;
13197
13198         ret = drm_atomic_helper_check_modeset(dev, state);
13199         if (ret)
13200                 return ret;
13201
13202         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13203                 struct intel_crtc_state *pipe_config =
13204                         to_intel_crtc_state(crtc_state);
13205
13206                 memset(&to_intel_crtc(crtc)->atomic, 0,
13207                        sizeof(struct intel_crtc_atomic_commit));
13208
13209                 /* Catch I915_MODE_FLAG_INHERITED */
13210                 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13211                         crtc_state->mode_changed = true;
13212
13213                 if (!crtc_state->enable) {
13214                         if (needs_modeset(crtc_state))
13215                                 any_ms = true;
13216                         continue;
13217                 }
13218
13219                 if (!needs_modeset(crtc_state))
13220                         continue;
13221
13222                 /* FIXME: For only active_changed we shouldn't need to do any
13223                  * state recomputation at all. */
13224
13225                 ret = drm_atomic_add_affected_connectors(state, crtc);
13226                 if (ret)
13227                         return ret;
13228
13229                 ret = intel_modeset_pipe_config(crtc, pipe_config);
13230                 if (ret)
13231                         return ret;
13232
13233                 if (i915.fastboot &&
13234                     intel_pipe_config_compare(state->dev,
13235                                         to_intel_crtc_state(crtc->state),
13236                                         pipe_config, true)) {
13237                         crtc_state->mode_changed = false;
13238                         to_intel_crtc_state(crtc_state)->update_pipe = true;
13239                 }
13240
13241                 if (needs_modeset(crtc_state)) {
13242                         any_ms = true;
13243
13244                         ret = drm_atomic_add_affected_planes(state, crtc);
13245                         if (ret)
13246                                 return ret;
13247                 }
13248
13249                 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13250                                        needs_modeset(crtc_state) ?
13251                                        "[modeset]" : "[fastset]");
13252         }
13253
13254         if (any_ms) {
13255                 ret = intel_modeset_checks(state);
13256
13257                 if (ret)
13258                         return ret;
13259         } else
13260                 intel_state->cdclk = to_i915(state->dev)->cdclk_freq;
13261
13262         ret = drm_atomic_helper_check_planes(state->dev, state);
13263         if (ret)
13264                 return ret;
13265
13266         calc_watermark_data(state);
13267
13268         return 0;
13269 }
13270
13271 static int intel_atomic_prepare_commit(struct drm_device *dev,
13272                                        struct drm_atomic_state *state,
13273                                        bool async)
13274 {
13275         struct drm_i915_private *dev_priv = dev->dev_private;
13276         struct drm_plane_state *plane_state;
13277         struct drm_crtc_state *crtc_state;
13278         struct drm_plane *plane;
13279         struct drm_crtc *crtc;
13280         int i, ret;
13281
13282         if (async) {
13283                 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13284                 return -EINVAL;
13285         }
13286
13287         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13288                 ret = intel_crtc_wait_for_pending_flips(crtc);
13289                 if (ret)
13290                         return ret;
13291
13292                 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13293                         flush_workqueue(dev_priv->wq);
13294         }
13295
13296         ret = mutex_lock_interruptible(&dev->struct_mutex);
13297         if (ret)
13298                 return ret;
13299
13300         ret = drm_atomic_helper_prepare_planes(dev, state);
13301         if (!ret && !async && !i915_reset_in_progress(&dev_priv->gpu_error)) {
13302                 u32 reset_counter;
13303
13304                 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
13305                 mutex_unlock(&dev->struct_mutex);
13306
13307                 for_each_plane_in_state(state, plane, plane_state, i) {
13308                         struct intel_plane_state *intel_plane_state =
13309                                 to_intel_plane_state(plane_state);
13310
13311                         if (!intel_plane_state->wait_req)
13312                                 continue;
13313
13314                         ret = __i915_wait_request(intel_plane_state->wait_req,
13315                                                   reset_counter, true,
13316                                                   NULL, NULL);
13317
13318                         /* Swallow -EIO errors to allow updates during hw lockup. */
13319                         if (ret == -EIO)
13320                                 ret = 0;
13321
13322                         if (ret)
13323                                 break;
13324                 }
13325
13326                 if (!ret)
13327                         return 0;
13328
13329                 mutex_lock(&dev->struct_mutex);
13330                 drm_atomic_helper_cleanup_planes(dev, state);
13331         }
13332
13333         mutex_unlock(&dev->struct_mutex);
13334         return ret;
13335 }
13336
13337 /**
13338  * intel_atomic_commit - commit validated state object
13339  * @dev: DRM device
13340  * @state: the top-level driver state object
13341  * @async: asynchronous commit
13342  *
13343  * This function commits a top-level state object that has been validated
13344  * with drm_atomic_helper_check().
13345  *
13346  * FIXME:  Atomic modeset support for i915 is not yet complete.  At the moment
13347  * we can only handle plane-related operations and do not yet support
13348  * asynchronous commit.
13349  *
13350  * RETURNS
13351  * Zero for success or -errno.
13352  */
13353 static int intel_atomic_commit(struct drm_device *dev,
13354                                struct drm_atomic_state *state,
13355                                bool async)
13356 {
13357         struct drm_i915_private *dev_priv = dev->dev_private;
13358         struct drm_crtc_state *crtc_state;
13359         struct drm_crtc *crtc;
13360         int ret = 0;
13361         int i;
13362         bool any_ms = false;
13363
13364         ret = intel_atomic_prepare_commit(dev, state, async);
13365         if (ret) {
13366                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
13367                 return ret;
13368         }
13369
13370         drm_atomic_helper_swap_state(dev, state);
13371         dev_priv->wm.config = to_intel_atomic_state(state)->wm_config;
13372
13373         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13374                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13375
13376                 if (!needs_modeset(crtc->state))
13377                         continue;
13378
13379                 any_ms = true;
13380                 intel_pre_plane_update(intel_crtc);
13381
13382                 if (crtc_state->active) {
13383                         intel_crtc_disable_planes(crtc, crtc_state->plane_mask);
13384                         dev_priv->display.crtc_disable(crtc);
13385                         intel_crtc->active = false;
13386                         intel_disable_shared_dpll(intel_crtc);
13387                 }
13388         }
13389
13390         /* Only after disabling all output pipelines that will be changed can we
13391          * update the the output configuration. */
13392         intel_modeset_update_crtc_state(state);
13393
13394         if (any_ms) {
13395                 intel_shared_dpll_commit(state);
13396
13397                 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
13398                 modeset_update_crtc_power_domains(state);
13399         }
13400
13401         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
13402         for_each_crtc_in_state(state, crtc, crtc_state, i) {
13403                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13404                 bool modeset = needs_modeset(crtc->state);
13405                 bool update_pipe = !modeset &&
13406                         to_intel_crtc_state(crtc->state)->update_pipe;
13407                 unsigned long put_domains = 0;
13408
13409                 if (modeset)
13410                         intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
13411
13412                 if (modeset && crtc->state->active) {
13413                         update_scanline_offset(to_intel_crtc(crtc));
13414                         dev_priv->display.crtc_enable(crtc);
13415                 }
13416
13417                 if (update_pipe) {
13418                         put_domains = modeset_get_crtc_power_domains(crtc);
13419
13420                         /* make sure intel_modeset_check_state runs */
13421                         any_ms = true;
13422                 }
13423
13424                 if (!modeset)
13425                         intel_pre_plane_update(intel_crtc);
13426
13427                 if (crtc->state->active &&
13428                     (crtc->state->planes_changed || update_pipe))
13429                         drm_atomic_helper_commit_planes_on_crtc(crtc_state);
13430
13431                 if (put_domains)
13432                         modeset_put_power_domains(dev_priv, put_domains);
13433
13434                 intel_post_plane_update(intel_crtc);
13435
13436                 if (modeset)
13437                         intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13438         }
13439
13440         /* FIXME: add subpixel order */
13441
13442         drm_atomic_helper_wait_for_vblanks(dev, state);
13443
13444         mutex_lock(&dev->struct_mutex);
13445         drm_atomic_helper_cleanup_planes(dev, state);
13446         mutex_unlock(&dev->struct_mutex);
13447
13448         if (any_ms)
13449                 intel_modeset_check_state(dev, state);
13450
13451         drm_atomic_state_free(state);
13452
13453         return 0;
13454 }
13455
13456 void intel_crtc_restore_mode(struct drm_crtc *crtc)
13457 {
13458         struct drm_device *dev = crtc->dev;
13459         struct drm_atomic_state *state;
13460         struct drm_crtc_state *crtc_state;
13461         int ret;
13462
13463         state = drm_atomic_state_alloc(dev);
13464         if (!state) {
13465                 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
13466                               crtc->base.id);
13467                 return;
13468         }
13469
13470         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
13471
13472 retry:
13473         crtc_state = drm_atomic_get_crtc_state(state, crtc);
13474         ret = PTR_ERR_OR_ZERO(crtc_state);
13475         if (!ret) {
13476                 if (!crtc_state->active)
13477                         goto out;
13478
13479                 crtc_state->mode_changed = true;
13480                 ret = drm_atomic_commit(state);
13481         }
13482
13483         if (ret == -EDEADLK) {
13484                 drm_atomic_state_clear(state);
13485                 drm_modeset_backoff(state->acquire_ctx);
13486                 goto retry;
13487         }
13488
13489         if (ret)
13490 out:
13491                 drm_atomic_state_free(state);
13492 }
13493
13494 #undef for_each_intel_crtc_masked
13495
13496 static const struct drm_crtc_funcs intel_crtc_funcs = {
13497         .gamma_set = intel_crtc_gamma_set,
13498         .set_config = drm_atomic_helper_set_config,
13499         .destroy = intel_crtc_destroy,
13500         .page_flip = intel_crtc_page_flip,
13501         .atomic_duplicate_state = intel_crtc_duplicate_state,
13502         .atomic_destroy_state = intel_crtc_destroy_state,
13503 };
13504
13505 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
13506                                       struct intel_shared_dpll *pll,
13507                                       struct intel_dpll_hw_state *hw_state)
13508 {
13509         uint32_t val;
13510
13511         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13512                 return false;
13513
13514         val = I915_READ(PCH_DPLL(pll->id));
13515         hw_state->dpll = val;
13516         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13517         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13518
13519         return val & DPLL_VCO_ENABLE;
13520 }
13521
13522 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13523                                   struct intel_shared_dpll *pll)
13524 {
13525         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13526         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13527 }
13528
13529 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13530                                 struct intel_shared_dpll *pll)
13531 {
13532         /* PCH refclock must be enabled first */
13533         ibx_assert_pch_refclk_enabled(dev_priv);
13534
13535         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13536
13537         /* Wait for the clocks to stabilize. */
13538         POSTING_READ(PCH_DPLL(pll->id));
13539         udelay(150);
13540
13541         /* The pixel multiplier can only be updated once the
13542          * DPLL is enabled and the clocks are stable.
13543          *
13544          * So write it again.
13545          */
13546         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13547         POSTING_READ(PCH_DPLL(pll->id));
13548         udelay(200);
13549 }
13550
13551 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13552                                  struct intel_shared_dpll *pll)
13553 {
13554         struct drm_device *dev = dev_priv->dev;
13555         struct intel_crtc *crtc;
13556
13557         /* Make sure no transcoder isn't still depending on us. */
13558         for_each_intel_crtc(dev, crtc) {
13559                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13560                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13561         }
13562
13563         I915_WRITE(PCH_DPLL(pll->id), 0);
13564         POSTING_READ(PCH_DPLL(pll->id));
13565         udelay(200);
13566 }
13567
13568 static char *ibx_pch_dpll_names[] = {
13569         "PCH DPLL A",
13570         "PCH DPLL B",
13571 };
13572
13573 static void ibx_pch_dpll_init(struct drm_device *dev)
13574 {
13575         struct drm_i915_private *dev_priv = dev->dev_private;
13576         int i;
13577
13578         dev_priv->num_shared_dpll = 2;
13579
13580         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13581                 dev_priv->shared_dplls[i].id = i;
13582                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13583                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13584                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13585                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13586                 dev_priv->shared_dplls[i].get_hw_state =
13587                         ibx_pch_dpll_get_hw_state;
13588         }
13589 }
13590
13591 static void intel_shared_dpll_init(struct drm_device *dev)
13592 {
13593         struct drm_i915_private *dev_priv = dev->dev_private;
13594
13595         if (HAS_DDI(dev))
13596                 intel_ddi_pll_init(dev);
13597         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13598                 ibx_pch_dpll_init(dev);
13599         else
13600                 dev_priv->num_shared_dpll = 0;
13601
13602         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13603 }
13604
13605 /**
13606  * intel_prepare_plane_fb - Prepare fb for usage on plane
13607  * @plane: drm plane to prepare for
13608  * @fb: framebuffer to prepare for presentation
13609  *
13610  * Prepares a framebuffer for usage on a display plane.  Generally this
13611  * involves pinning the underlying object and updating the frontbuffer tracking
13612  * bits.  Some older platforms need special physical address handling for
13613  * cursor planes.
13614  *
13615  * Must be called with struct_mutex held.
13616  *
13617  * Returns 0 on success, negative error code on failure.
13618  */
13619 int
13620 intel_prepare_plane_fb(struct drm_plane *plane,
13621                        const struct drm_plane_state *new_state)
13622 {
13623         struct drm_device *dev = plane->dev;
13624         struct drm_framebuffer *fb = new_state->fb;
13625         struct intel_plane *intel_plane = to_intel_plane(plane);
13626         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13627         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
13628         int ret = 0;
13629
13630         if (!obj && !old_obj)
13631                 return 0;
13632
13633         if (old_obj) {
13634                 struct drm_crtc_state *crtc_state =
13635                         drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13636
13637                 /* Big Hammer, we also need to ensure that any pending
13638                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13639                  * current scanout is retired before unpinning the old
13640                  * framebuffer. Note that we rely on userspace rendering
13641                  * into the buffer attached to the pipe they are waiting
13642                  * on. If not, userspace generates a GPU hang with IPEHR
13643                  * point to the MI_WAIT_FOR_EVENT.
13644                  *
13645                  * This should only fail upon a hung GPU, in which case we
13646                  * can safely continue.
13647                  */
13648                 if (needs_modeset(crtc_state))
13649                         ret = i915_gem_object_wait_rendering(old_obj, true);
13650
13651                 /* Swallow -EIO errors to allow updates during hw lockup. */
13652                 if (ret && ret != -EIO)
13653                         return ret;
13654         }
13655
13656         if (!obj) {
13657                 ret = 0;
13658         } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13659             INTEL_INFO(dev)->cursor_needs_physical) {
13660                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13661                 ret = i915_gem_object_attach_phys(obj, align);
13662                 if (ret)
13663                         DRM_DEBUG_KMS("failed to attach phys object\n");
13664         } else {
13665                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state);
13666         }
13667
13668         if (ret == 0) {
13669                 if (obj) {
13670                         struct intel_plane_state *plane_state =
13671                                 to_intel_plane_state(new_state);
13672
13673                         i915_gem_request_assign(&plane_state->wait_req,
13674                                                 obj->last_write_req);
13675                 }
13676
13677                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13678         }
13679
13680         return ret;
13681 }
13682
13683 /**
13684  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13685  * @plane: drm plane to clean up for
13686  * @fb: old framebuffer that was on plane
13687  *
13688  * Cleans up a framebuffer that has just been removed from a plane.
13689  *
13690  * Must be called with struct_mutex held.
13691  */
13692 void
13693 intel_cleanup_plane_fb(struct drm_plane *plane,
13694                        const struct drm_plane_state *old_state)
13695 {
13696         struct drm_device *dev = plane->dev;
13697         struct intel_plane *intel_plane = to_intel_plane(plane);
13698         struct intel_plane_state *old_intel_state;
13699         struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13700         struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
13701
13702         old_intel_state = to_intel_plane_state(old_state);
13703
13704         if (!obj && !old_obj)
13705                 return;
13706
13707         if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13708             !INTEL_INFO(dev)->cursor_needs_physical))
13709                 intel_unpin_fb_obj(old_state->fb, old_state);
13710
13711         /* prepare_fb aborted? */
13712         if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13713             (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13714                 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
13715
13716         i915_gem_request_assign(&old_intel_state->wait_req, NULL);
13717
13718 }
13719
13720 int
13721 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13722 {
13723         int max_scale;
13724         struct drm_device *dev;
13725         struct drm_i915_private *dev_priv;
13726         int crtc_clock, cdclk;
13727
13728         if (!intel_crtc || !crtc_state)
13729                 return DRM_PLANE_HELPER_NO_SCALING;
13730
13731         dev = intel_crtc->base.dev;
13732         dev_priv = dev->dev_private;
13733         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13734         cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
13735
13736         if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
13737                 return DRM_PLANE_HELPER_NO_SCALING;
13738
13739         /*
13740          * skl max scale is lower of:
13741          *    close to 3 but not 3, -1 is for that purpose
13742          *            or
13743          *    cdclk/crtc_clock
13744          */
13745         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13746
13747         return max_scale;
13748 }
13749
13750 static int
13751 intel_check_primary_plane(struct drm_plane *plane,
13752                           struct intel_crtc_state *crtc_state,
13753                           struct intel_plane_state *state)
13754 {
13755         struct drm_crtc *crtc = state->base.crtc;
13756         struct drm_framebuffer *fb = state->base.fb;
13757         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13758         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13759         bool can_position = false;
13760
13761         /* use scaler when colorkey is not required */
13762         if (INTEL_INFO(plane->dev)->gen >= 9 &&
13763             state->ckey.flags == I915_SET_COLORKEY_NONE) {
13764                 min_scale = 1;
13765                 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13766                 can_position = true;
13767         }
13768
13769         return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13770                                              &state->dst, &state->clip,
13771                                              min_scale, max_scale,
13772                                              can_position, true,
13773                                              &state->visible);
13774 }
13775
13776 static void
13777 intel_commit_primary_plane(struct drm_plane *plane,
13778                            struct intel_plane_state *state)
13779 {
13780         struct drm_crtc *crtc = state->base.crtc;
13781         struct drm_framebuffer *fb = state->base.fb;
13782         struct drm_device *dev = plane->dev;
13783         struct drm_i915_private *dev_priv = dev->dev_private;
13784
13785         crtc = crtc ? crtc : plane->crtc;
13786
13787         dev_priv->display.update_primary_plane(crtc, fb,
13788                                                state->src.x1 >> 16,
13789                                                state->src.y1 >> 16);
13790 }
13791
13792 static void
13793 intel_disable_primary_plane(struct drm_plane *plane,
13794                             struct drm_crtc *crtc)
13795 {
13796         struct drm_device *dev = plane->dev;
13797         struct drm_i915_private *dev_priv = dev->dev_private;
13798
13799         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13800 }
13801
13802 static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13803                                     struct drm_crtc_state *old_crtc_state)
13804 {
13805         struct drm_device *dev = crtc->dev;
13806         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13807         struct intel_crtc_state *old_intel_state =
13808                 to_intel_crtc_state(old_crtc_state);
13809         bool modeset = needs_modeset(crtc->state);
13810
13811         if (intel_crtc->atomic.update_wm_pre)
13812                 intel_update_watermarks(crtc);
13813
13814         /* Perform vblank evasion around commit operation */
13815         intel_pipe_update_start(intel_crtc);
13816
13817         if (modeset)
13818                 return;
13819
13820         if (to_intel_crtc_state(crtc->state)->update_pipe)
13821                 intel_update_pipe_config(intel_crtc, old_intel_state);
13822         else if (INTEL_INFO(dev)->gen >= 9)
13823                 skl_detach_scalers(intel_crtc);
13824 }
13825
13826 static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13827                                      struct drm_crtc_state *old_crtc_state)
13828 {
13829         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13830
13831         intel_pipe_update_end(intel_crtc);
13832 }
13833
13834 /**
13835  * intel_plane_destroy - destroy a plane
13836  * @plane: plane to destroy
13837  *
13838  * Common destruction function for all types of planes (primary, cursor,
13839  * sprite).
13840  */
13841 void intel_plane_destroy(struct drm_plane *plane)
13842 {
13843         struct intel_plane *intel_plane = to_intel_plane(plane);
13844         drm_plane_cleanup(plane);
13845         kfree(intel_plane);
13846 }
13847
13848 const struct drm_plane_funcs intel_plane_funcs = {
13849         .update_plane = drm_atomic_helper_update_plane,
13850         .disable_plane = drm_atomic_helper_disable_plane,
13851         .destroy = intel_plane_destroy,
13852         .set_property = drm_atomic_helper_plane_set_property,
13853         .atomic_get_property = intel_plane_atomic_get_property,
13854         .atomic_set_property = intel_plane_atomic_set_property,
13855         .atomic_duplicate_state = intel_plane_duplicate_state,
13856         .atomic_destroy_state = intel_plane_destroy_state,
13857
13858 };
13859
13860 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13861                                                     int pipe)
13862 {
13863         struct intel_plane *primary;
13864         struct intel_plane_state *state;
13865         const uint32_t *intel_primary_formats;
13866         unsigned int num_formats;
13867
13868         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13869         if (primary == NULL)
13870                 return NULL;
13871
13872         state = intel_create_plane_state(&primary->base);
13873         if (!state) {
13874                 kfree(primary);
13875                 return NULL;
13876         }
13877         primary->base.state = &state->base;
13878
13879         primary->can_scale = false;
13880         primary->max_downscale = 1;
13881         if (INTEL_INFO(dev)->gen >= 9) {
13882                 primary->can_scale = true;
13883                 state->scaler_id = -1;
13884         }
13885         primary->pipe = pipe;
13886         primary->plane = pipe;
13887         primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
13888         primary->check_plane = intel_check_primary_plane;
13889         primary->commit_plane = intel_commit_primary_plane;
13890         primary->disable_plane = intel_disable_primary_plane;
13891         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13892                 primary->plane = !pipe;
13893
13894         if (INTEL_INFO(dev)->gen >= 9) {
13895                 intel_primary_formats = skl_primary_formats;
13896                 num_formats = ARRAY_SIZE(skl_primary_formats);
13897         } else if (INTEL_INFO(dev)->gen >= 4) {
13898                 intel_primary_formats = i965_primary_formats;
13899                 num_formats = ARRAY_SIZE(i965_primary_formats);
13900         } else {
13901                 intel_primary_formats = i8xx_primary_formats;
13902                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13903         }
13904
13905         drm_universal_plane_init(dev, &primary->base, 0,
13906                                  &intel_plane_funcs,
13907                                  intel_primary_formats, num_formats,
13908                                  DRM_PLANE_TYPE_PRIMARY);
13909
13910         if (INTEL_INFO(dev)->gen >= 4)
13911                 intel_create_rotation_property(dev, primary);
13912
13913         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13914
13915         return &primary->base;
13916 }
13917
13918 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13919 {
13920         if (!dev->mode_config.rotation_property) {
13921                 unsigned long flags = BIT(DRM_ROTATE_0) |
13922                         BIT(DRM_ROTATE_180);
13923
13924                 if (INTEL_INFO(dev)->gen >= 9)
13925                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13926
13927                 dev->mode_config.rotation_property =
13928                         drm_mode_create_rotation_property(dev, flags);
13929         }
13930         if (dev->mode_config.rotation_property)
13931                 drm_object_attach_property(&plane->base.base,
13932                                 dev->mode_config.rotation_property,
13933                                 plane->base.state->rotation);
13934 }
13935
13936 static int
13937 intel_check_cursor_plane(struct drm_plane *plane,
13938                          struct intel_crtc_state *crtc_state,
13939                          struct intel_plane_state *state)
13940 {
13941         struct drm_crtc *crtc = crtc_state->base.crtc;
13942         struct drm_framebuffer *fb = state->base.fb;
13943         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13944         unsigned stride;
13945         int ret;
13946
13947         ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13948                                             &state->dst, &state->clip,
13949                                             DRM_PLANE_HELPER_NO_SCALING,
13950                                             DRM_PLANE_HELPER_NO_SCALING,
13951                                             true, true, &state->visible);
13952         if (ret)
13953                 return ret;
13954
13955         /* if we want to turn off the cursor ignore width and height */
13956         if (!obj)
13957                 return 0;
13958
13959         /* Check for which cursor types we support */
13960         if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
13961                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13962                           state->base.crtc_w, state->base.crtc_h);
13963                 return -EINVAL;
13964         }
13965
13966         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13967         if (obj->base.size < stride * state->base.crtc_h) {
13968                 DRM_DEBUG_KMS("buffer is too small\n");
13969                 return -ENOMEM;
13970         }
13971
13972         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13973                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13974                 return -EINVAL;
13975         }
13976
13977         return 0;
13978 }
13979
13980 static void
13981 intel_disable_cursor_plane(struct drm_plane *plane,
13982                            struct drm_crtc *crtc)
13983 {
13984         intel_crtc_update_cursor(crtc, false);
13985 }
13986
13987 static void
13988 intel_commit_cursor_plane(struct drm_plane *plane,
13989                           struct intel_plane_state *state)
13990 {
13991         struct drm_crtc *crtc = state->base.crtc;
13992         struct drm_device *dev = plane->dev;
13993         struct intel_crtc *intel_crtc;
13994         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13995         uint32_t addr;
13996
13997         crtc = crtc ? crtc : plane->crtc;
13998         intel_crtc = to_intel_crtc(crtc);
13999
14000         if (intel_crtc->cursor_bo == obj)
14001                 goto update;
14002
14003         if (!obj)
14004                 addr = 0;
14005         else if (!INTEL_INFO(dev)->cursor_needs_physical)
14006                 addr = i915_gem_obj_ggtt_offset(obj);
14007         else
14008                 addr = obj->phys_handle->busaddr;
14009
14010         intel_crtc->cursor_addr = addr;
14011         intel_crtc->cursor_bo = obj;
14012
14013 update:
14014         intel_crtc_update_cursor(crtc, state->visible);
14015 }
14016
14017 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14018                                                    int pipe)
14019 {
14020         struct intel_plane *cursor;
14021         struct intel_plane_state *state;
14022
14023         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
14024         if (cursor == NULL)
14025                 return NULL;
14026
14027         state = intel_create_plane_state(&cursor->base);
14028         if (!state) {
14029                 kfree(cursor);
14030                 return NULL;
14031         }
14032         cursor->base.state = &state->base;
14033
14034         cursor->can_scale = false;
14035         cursor->max_downscale = 1;
14036         cursor->pipe = pipe;
14037         cursor->plane = pipe;
14038         cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
14039         cursor->check_plane = intel_check_cursor_plane;
14040         cursor->commit_plane = intel_commit_cursor_plane;
14041         cursor->disable_plane = intel_disable_cursor_plane;
14042
14043         drm_universal_plane_init(dev, &cursor->base, 0,
14044                                  &intel_plane_funcs,
14045                                  intel_cursor_formats,
14046                                  ARRAY_SIZE(intel_cursor_formats),
14047                                  DRM_PLANE_TYPE_CURSOR);
14048
14049         if (INTEL_INFO(dev)->gen >= 4) {
14050                 if (!dev->mode_config.rotation_property)
14051                         dev->mode_config.rotation_property =
14052                                 drm_mode_create_rotation_property(dev,
14053                                                         BIT(DRM_ROTATE_0) |
14054                                                         BIT(DRM_ROTATE_180));
14055                 if (dev->mode_config.rotation_property)
14056                         drm_object_attach_property(&cursor->base.base,
14057                                 dev->mode_config.rotation_property,
14058                                 state->base.rotation);
14059         }
14060
14061         if (INTEL_INFO(dev)->gen >=9)
14062                 state->scaler_id = -1;
14063
14064         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14065
14066         return &cursor->base;
14067 }
14068
14069 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14070         struct intel_crtc_state *crtc_state)
14071 {
14072         int i;
14073         struct intel_scaler *intel_scaler;
14074         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14075
14076         for (i = 0; i < intel_crtc->num_scalers; i++) {
14077                 intel_scaler = &scaler_state->scalers[i];
14078                 intel_scaler->in_use = 0;
14079                 intel_scaler->mode = PS_SCALER_MODE_DYN;
14080         }
14081
14082         scaler_state->scaler_id = -1;
14083 }
14084
14085 static void intel_crtc_init(struct drm_device *dev, int pipe)
14086 {
14087         struct drm_i915_private *dev_priv = dev->dev_private;
14088         struct intel_crtc *intel_crtc;
14089         struct intel_crtc_state *crtc_state = NULL;
14090         struct drm_plane *primary = NULL;
14091         struct drm_plane *cursor = NULL;
14092         int i, ret;
14093
14094         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
14095         if (intel_crtc == NULL)
14096                 return;
14097
14098         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14099         if (!crtc_state)
14100                 goto fail;
14101         intel_crtc->config = crtc_state;
14102         intel_crtc->base.state = &crtc_state->base;
14103         crtc_state->base.crtc = &intel_crtc->base;
14104
14105         /* initialize shared scalers */
14106         if (INTEL_INFO(dev)->gen >= 9) {
14107                 if (pipe == PIPE_C)
14108                         intel_crtc->num_scalers = 1;
14109                 else
14110                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
14111
14112                 skl_init_scalers(dev, intel_crtc, crtc_state);
14113         }
14114
14115         primary = intel_primary_plane_create(dev, pipe);
14116         if (!primary)
14117                 goto fail;
14118
14119         cursor = intel_cursor_plane_create(dev, pipe);
14120         if (!cursor)
14121                 goto fail;
14122
14123         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
14124                                         cursor, &intel_crtc_funcs);
14125         if (ret)
14126                 goto fail;
14127
14128         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
14129         for (i = 0; i < 256; i++) {
14130                 intel_crtc->lut_r[i] = i;
14131                 intel_crtc->lut_g[i] = i;
14132                 intel_crtc->lut_b[i] = i;
14133         }
14134
14135         /*
14136          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
14137          * is hooked to pipe B. Hence we want plane A feeding pipe B.
14138          */
14139         intel_crtc->pipe = pipe;
14140         intel_crtc->plane = pipe;
14141         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
14142                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
14143                 intel_crtc->plane = !pipe;
14144         }
14145
14146         intel_crtc->cursor_base = ~0;
14147         intel_crtc->cursor_cntl = ~0;
14148         intel_crtc->cursor_size = ~0;
14149
14150         intel_crtc->wm.cxsr_allowed = true;
14151
14152         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14153                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14154         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14155         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14156
14157         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
14158
14159         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
14160         return;
14161
14162 fail:
14163         if (primary)
14164                 drm_plane_cleanup(primary);
14165         if (cursor)
14166                 drm_plane_cleanup(cursor);
14167         kfree(crtc_state);
14168         kfree(intel_crtc);
14169 }
14170
14171 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14172 {
14173         struct drm_encoder *encoder = connector->base.encoder;
14174         struct drm_device *dev = connector->base.dev;
14175
14176         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
14177
14178         if (!encoder || WARN_ON(!encoder->crtc))
14179                 return INVALID_PIPE;
14180
14181         return to_intel_crtc(encoder->crtc)->pipe;
14182 }
14183
14184 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
14185                                 struct drm_file *file)
14186 {
14187         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
14188         struct drm_crtc *drmmode_crtc;
14189         struct intel_crtc *crtc;
14190
14191         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
14192
14193         if (!drmmode_crtc) {
14194                 DRM_ERROR("no such CRTC id\n");
14195                 return -ENOENT;
14196         }
14197
14198         crtc = to_intel_crtc(drmmode_crtc);
14199         pipe_from_crtc_id->pipe = crtc->pipe;
14200
14201         return 0;
14202 }
14203
14204 static int intel_encoder_clones(struct intel_encoder *encoder)
14205 {
14206         struct drm_device *dev = encoder->base.dev;
14207         struct intel_encoder *source_encoder;
14208         int index_mask = 0;
14209         int entry = 0;
14210
14211         for_each_intel_encoder(dev, source_encoder) {
14212                 if (encoders_cloneable(encoder, source_encoder))
14213                         index_mask |= (1 << entry);
14214
14215                 entry++;
14216         }
14217
14218         return index_mask;
14219 }
14220
14221 static bool has_edp_a(struct drm_device *dev)
14222 {
14223         struct drm_i915_private *dev_priv = dev->dev_private;
14224
14225         if (!IS_MOBILE(dev))
14226                 return false;
14227
14228         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14229                 return false;
14230
14231         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
14232                 return false;
14233
14234         return true;
14235 }
14236
14237 static bool intel_crt_present(struct drm_device *dev)
14238 {
14239         struct drm_i915_private *dev_priv = dev->dev_private;
14240
14241         if (INTEL_INFO(dev)->gen >= 9)
14242                 return false;
14243
14244         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
14245                 return false;
14246
14247         if (IS_CHERRYVIEW(dev))
14248                 return false;
14249
14250         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
14251                 return false;
14252
14253         return true;
14254 }
14255
14256 static void intel_setup_outputs(struct drm_device *dev)
14257 {
14258         struct drm_i915_private *dev_priv = dev->dev_private;
14259         struct intel_encoder *encoder;
14260         bool dpd_is_edp = false;
14261
14262         intel_lvds_init(dev);
14263
14264         if (intel_crt_present(dev))
14265                 intel_crt_init(dev);
14266
14267         if (IS_BROXTON(dev)) {
14268                 /*
14269                  * FIXME: Broxton doesn't support port detection via the
14270                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14271                  * detect the ports.
14272                  */
14273                 intel_ddi_init(dev, PORT_A);
14274                 intel_ddi_init(dev, PORT_B);
14275                 intel_ddi_init(dev, PORT_C);
14276         } else if (HAS_DDI(dev)) {
14277                 int found;
14278
14279                 /*
14280                  * Haswell uses DDI functions to detect digital outputs.
14281                  * On SKL pre-D0 the strap isn't connected, so we assume
14282                  * it's there.
14283                  */
14284                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
14285                 /* WaIgnoreDDIAStrap: skl */
14286                 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14287                         intel_ddi_init(dev, PORT_A);
14288
14289                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14290                  * register */
14291                 found = I915_READ(SFUSE_STRAP);
14292
14293                 if (found & SFUSE_STRAP_DDIB_DETECTED)
14294                         intel_ddi_init(dev, PORT_B);
14295                 if (found & SFUSE_STRAP_DDIC_DETECTED)
14296                         intel_ddi_init(dev, PORT_C);
14297                 if (found & SFUSE_STRAP_DDID_DETECTED)
14298                         intel_ddi_init(dev, PORT_D);
14299                 /*
14300                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14301                  */
14302                 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
14303                     (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14304                      dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14305                      dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14306                         intel_ddi_init(dev, PORT_E);
14307
14308         } else if (HAS_PCH_SPLIT(dev)) {
14309                 int found;
14310                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
14311
14312                 if (has_edp_a(dev))
14313                         intel_dp_init(dev, DP_A, PORT_A);
14314
14315                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
14316                         /* PCH SDVOB multiplex with HDMIB */
14317                         found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
14318                         if (!found)
14319                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
14320                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
14321                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
14322                 }
14323
14324                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
14325                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
14326
14327                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
14328                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
14329
14330                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
14331                         intel_dp_init(dev, PCH_DP_C, PORT_C);
14332
14333                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
14334                         intel_dp_init(dev, PCH_DP_D, PORT_D);
14335         } else if (IS_VALLEYVIEW(dev)) {
14336                 /*
14337                  * The DP_DETECTED bit is the latched state of the DDC
14338                  * SDA pin at boot. However since eDP doesn't require DDC
14339                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
14340                  * eDP ports may have been muxed to an alternate function.
14341                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14342                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14343                  * detect eDP ports.
14344                  */
14345                 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
14346                     !intel_dp_is_edp(dev, PORT_B))
14347                         intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14348                 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
14349                     intel_dp_is_edp(dev, PORT_B))
14350                         intel_dp_init(dev, VLV_DP_B, PORT_B);
14351
14352                 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
14353                     !intel_dp_is_edp(dev, PORT_C))
14354                         intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14355                 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
14356                     intel_dp_is_edp(dev, PORT_C))
14357                         intel_dp_init(dev, VLV_DP_C, PORT_C);
14358
14359                 if (IS_CHERRYVIEW(dev)) {
14360                         /* eDP not supported on port D, so don't check VBT */
14361                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14362                                 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14363                         if (I915_READ(CHV_DP_D) & DP_DETECTED)
14364                                 intel_dp_init(dev, CHV_DP_D, PORT_D);
14365                 }
14366
14367                 intel_dsi_init(dev);
14368         } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
14369                 bool found = false;
14370
14371                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14372                         DRM_DEBUG_KMS("probing SDVOB\n");
14373                         found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
14374                         if (!found && IS_G4X(dev)) {
14375                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14376                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14377                         }
14378
14379                         if (!found && IS_G4X(dev))
14380                                 intel_dp_init(dev, DP_B, PORT_B);
14381                 }
14382
14383                 /* Before G4X SDVOC doesn't have its own detect register */
14384
14385                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14386                         DRM_DEBUG_KMS("probing SDVOC\n");
14387                         found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
14388                 }
14389
14390                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14391
14392                         if (IS_G4X(dev)) {
14393                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14394                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14395                         }
14396                         if (IS_G4X(dev))
14397                                 intel_dp_init(dev, DP_C, PORT_C);
14398                 }
14399
14400                 if (IS_G4X(dev) &&
14401                     (I915_READ(DP_D) & DP_DETECTED))
14402                         intel_dp_init(dev, DP_D, PORT_D);
14403         } else if (IS_GEN2(dev))
14404                 intel_dvo_init(dev);
14405
14406         if (SUPPORTS_TV(dev))
14407                 intel_tv_init(dev);
14408
14409         intel_psr_init(dev);
14410
14411         for_each_intel_encoder(dev, encoder) {
14412                 encoder->base.possible_crtcs = encoder->crtc_mask;
14413                 encoder->base.possible_clones =
14414                         intel_encoder_clones(encoder);
14415         }
14416
14417         intel_init_pch_refclk(dev);
14418
14419         drm_helper_move_panel_connectors_to_head(dev);
14420 }
14421
14422 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14423 {
14424         struct drm_device *dev = fb->dev;
14425         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14426
14427         drm_framebuffer_cleanup(fb);
14428         mutex_lock(&dev->struct_mutex);
14429         WARN_ON(!intel_fb->obj->framebuffer_references--);
14430         drm_gem_object_unreference(&intel_fb->obj->base);
14431         mutex_unlock(&dev->struct_mutex);
14432         kfree(intel_fb);
14433 }
14434
14435 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14436                                                 struct drm_file *file,
14437                                                 unsigned int *handle)
14438 {
14439         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14440         struct drm_i915_gem_object *obj = intel_fb->obj;
14441
14442         if (obj->userptr.mm) {
14443                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14444                 return -EINVAL;
14445         }
14446
14447         return drm_gem_handle_create(file, &obj->base, handle);
14448 }
14449
14450 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14451                                         struct drm_file *file,
14452                                         unsigned flags, unsigned color,
14453                                         struct drm_clip_rect *clips,
14454                                         unsigned num_clips)
14455 {
14456         struct drm_device *dev = fb->dev;
14457         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14458         struct drm_i915_gem_object *obj = intel_fb->obj;
14459
14460         mutex_lock(&dev->struct_mutex);
14461         intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
14462         mutex_unlock(&dev->struct_mutex);
14463
14464         return 0;
14465 }
14466
14467 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14468         .destroy = intel_user_framebuffer_destroy,
14469         .create_handle = intel_user_framebuffer_create_handle,
14470         .dirty = intel_user_framebuffer_dirty,
14471 };
14472
14473 static
14474 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14475                          uint32_t pixel_format)
14476 {
14477         u32 gen = INTEL_INFO(dev)->gen;
14478
14479         if (gen >= 9) {
14480                 /* "The stride in bytes must not exceed the of the size of 8K
14481                  *  pixels and 32K bytes."
14482                  */
14483                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14484         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14485                 return 32*1024;
14486         } else if (gen >= 4) {
14487                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14488                         return 16*1024;
14489                 else
14490                         return 32*1024;
14491         } else if (gen >= 3) {
14492                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14493                         return 8*1024;
14494                 else
14495                         return 16*1024;
14496         } else {
14497                 /* XXX DSPC is limited to 4k tiled */
14498                 return 8*1024;
14499         }
14500 }
14501
14502 static int intel_framebuffer_init(struct drm_device *dev,
14503                                   struct intel_framebuffer *intel_fb,
14504                                   struct drm_mode_fb_cmd2 *mode_cmd,
14505                                   struct drm_i915_gem_object *obj)
14506 {
14507         unsigned int aligned_height;
14508         int ret;
14509         u32 pitch_limit, stride_alignment;
14510
14511         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14512
14513         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14514                 /* Enforce that fb modifier and tiling mode match, but only for
14515                  * X-tiled. This is needed for FBC. */
14516                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14517                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14518                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14519                         return -EINVAL;
14520                 }
14521         } else {
14522                 if (obj->tiling_mode == I915_TILING_X)
14523                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14524                 else if (obj->tiling_mode == I915_TILING_Y) {
14525                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14526                         return -EINVAL;
14527                 }
14528         }
14529
14530         /* Passed in modifier sanity checking. */
14531         switch (mode_cmd->modifier[0]) {
14532         case I915_FORMAT_MOD_Y_TILED:
14533         case I915_FORMAT_MOD_Yf_TILED:
14534                 if (INTEL_INFO(dev)->gen < 9) {
14535                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14536                                   mode_cmd->modifier[0]);
14537                         return -EINVAL;
14538                 }
14539         case DRM_FORMAT_MOD_NONE:
14540         case I915_FORMAT_MOD_X_TILED:
14541                 break;
14542         default:
14543                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14544                           mode_cmd->modifier[0]);
14545                 return -EINVAL;
14546         }
14547
14548         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14549                                                      mode_cmd->pixel_format);
14550         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14551                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14552                           mode_cmd->pitches[0], stride_alignment);
14553                 return -EINVAL;
14554         }
14555
14556         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14557                                            mode_cmd->pixel_format);
14558         if (mode_cmd->pitches[0] > pitch_limit) {
14559                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14560                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14561                           "tiled" : "linear",
14562                           mode_cmd->pitches[0], pitch_limit);
14563                 return -EINVAL;
14564         }
14565
14566         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14567             mode_cmd->pitches[0] != obj->stride) {
14568                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14569                           mode_cmd->pitches[0], obj->stride);
14570                 return -EINVAL;
14571         }
14572
14573         /* Reject formats not supported by any plane early. */
14574         switch (mode_cmd->pixel_format) {
14575         case DRM_FORMAT_C8:
14576         case DRM_FORMAT_RGB565:
14577         case DRM_FORMAT_XRGB8888:
14578         case DRM_FORMAT_ARGB8888:
14579                 break;
14580         case DRM_FORMAT_XRGB1555:
14581                 if (INTEL_INFO(dev)->gen > 3) {
14582                         DRM_DEBUG("unsupported pixel format: %s\n",
14583                                   drm_get_format_name(mode_cmd->pixel_format));
14584                         return -EINVAL;
14585                 }
14586                 break;
14587         case DRM_FORMAT_ABGR8888:
14588                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14589                         DRM_DEBUG("unsupported pixel format: %s\n",
14590                                   drm_get_format_name(mode_cmd->pixel_format));
14591                         return -EINVAL;
14592                 }
14593                 break;
14594         case DRM_FORMAT_XBGR8888:
14595         case DRM_FORMAT_XRGB2101010:
14596         case DRM_FORMAT_XBGR2101010:
14597                 if (INTEL_INFO(dev)->gen < 4) {
14598                         DRM_DEBUG("unsupported pixel format: %s\n",
14599                                   drm_get_format_name(mode_cmd->pixel_format));
14600                         return -EINVAL;
14601                 }
14602                 break;
14603         case DRM_FORMAT_ABGR2101010:
14604                 if (!IS_VALLEYVIEW(dev)) {
14605                         DRM_DEBUG("unsupported pixel format: %s\n",
14606                                   drm_get_format_name(mode_cmd->pixel_format));
14607                         return -EINVAL;
14608                 }
14609                 break;
14610         case DRM_FORMAT_YUYV:
14611         case DRM_FORMAT_UYVY:
14612         case DRM_FORMAT_YVYU:
14613         case DRM_FORMAT_VYUY:
14614                 if (INTEL_INFO(dev)->gen < 5) {
14615                         DRM_DEBUG("unsupported pixel format: %s\n",
14616                                   drm_get_format_name(mode_cmd->pixel_format));
14617                         return -EINVAL;
14618                 }
14619                 break;
14620         default:
14621                 DRM_DEBUG("unsupported pixel format: %s\n",
14622                           drm_get_format_name(mode_cmd->pixel_format));
14623                 return -EINVAL;
14624         }
14625
14626         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14627         if (mode_cmd->offsets[0] != 0)
14628                 return -EINVAL;
14629
14630         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14631                                                mode_cmd->pixel_format,
14632                                                mode_cmd->modifier[0]);
14633         /* FIXME drm helper for size checks (especially planar formats)? */
14634         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14635                 return -EINVAL;
14636
14637         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14638         intel_fb->obj = obj;
14639         intel_fb->obj->framebuffer_references++;
14640
14641         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14642         if (ret) {
14643                 DRM_ERROR("framebuffer init failed %d\n", ret);
14644                 return ret;
14645         }
14646
14647         return 0;
14648 }
14649
14650 static struct drm_framebuffer *
14651 intel_user_framebuffer_create(struct drm_device *dev,
14652                               struct drm_file *filp,
14653                               struct drm_mode_fb_cmd2 *user_mode_cmd)
14654 {
14655         struct drm_framebuffer *fb;
14656         struct drm_i915_gem_object *obj;
14657         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
14658
14659         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14660                                                 mode_cmd.handles[0]));
14661         if (&obj->base == NULL)
14662                 return ERR_PTR(-ENOENT);
14663
14664         fb = intel_framebuffer_create(dev, &mode_cmd, obj);
14665         if (IS_ERR(fb))
14666                 drm_gem_object_unreference_unlocked(&obj->base);
14667
14668         return fb;
14669 }
14670
14671 #ifndef CONFIG_DRM_FBDEV_EMULATION
14672 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14673 {
14674 }
14675 #endif
14676
14677 static const struct drm_mode_config_funcs intel_mode_funcs = {
14678         .fb_create = intel_user_framebuffer_create,
14679         .output_poll_changed = intel_fbdev_output_poll_changed,
14680         .atomic_check = intel_atomic_check,
14681         .atomic_commit = intel_atomic_commit,
14682         .atomic_state_alloc = intel_atomic_state_alloc,
14683         .atomic_state_clear = intel_atomic_state_clear,
14684 };
14685
14686 /* Set up chip specific display functions */
14687 static void intel_init_display(struct drm_device *dev)
14688 {
14689         struct drm_i915_private *dev_priv = dev->dev_private;
14690
14691         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14692                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14693         else if (IS_CHERRYVIEW(dev))
14694                 dev_priv->display.find_dpll = chv_find_best_dpll;
14695         else if (IS_VALLEYVIEW(dev))
14696                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14697         else if (IS_PINEVIEW(dev))
14698                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14699         else
14700                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14701
14702         if (INTEL_INFO(dev)->gen >= 9) {
14703                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14704                 dev_priv->display.get_initial_plane_config =
14705                         skylake_get_initial_plane_config;
14706                 dev_priv->display.crtc_compute_clock =
14707                         haswell_crtc_compute_clock;
14708                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14709                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14710                 dev_priv->display.update_primary_plane =
14711                         skylake_update_primary_plane;
14712         } else if (HAS_DDI(dev)) {
14713                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14714                 dev_priv->display.get_initial_plane_config =
14715                         ironlake_get_initial_plane_config;
14716                 dev_priv->display.crtc_compute_clock =
14717                         haswell_crtc_compute_clock;
14718                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14719                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14720                 dev_priv->display.update_primary_plane =
14721                         ironlake_update_primary_plane;
14722         } else if (HAS_PCH_SPLIT(dev)) {
14723                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14724                 dev_priv->display.get_initial_plane_config =
14725                         ironlake_get_initial_plane_config;
14726                 dev_priv->display.crtc_compute_clock =
14727                         ironlake_crtc_compute_clock;
14728                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14729                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14730                 dev_priv->display.update_primary_plane =
14731                         ironlake_update_primary_plane;
14732         } else if (IS_VALLEYVIEW(dev)) {
14733                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14734                 dev_priv->display.get_initial_plane_config =
14735                         i9xx_get_initial_plane_config;
14736                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14737                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14738                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14739                 dev_priv->display.update_primary_plane =
14740                         i9xx_update_primary_plane;
14741         } else {
14742                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14743                 dev_priv->display.get_initial_plane_config =
14744                         i9xx_get_initial_plane_config;
14745                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14746                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14747                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14748                 dev_priv->display.update_primary_plane =
14749                         i9xx_update_primary_plane;
14750         }
14751
14752         /* Returns the core display clock speed */
14753         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
14754                 dev_priv->display.get_display_clock_speed =
14755                         skylake_get_display_clock_speed;
14756         else if (IS_BROXTON(dev))
14757                 dev_priv->display.get_display_clock_speed =
14758                         broxton_get_display_clock_speed;
14759         else if (IS_BROADWELL(dev))
14760                 dev_priv->display.get_display_clock_speed =
14761                         broadwell_get_display_clock_speed;
14762         else if (IS_HASWELL(dev))
14763                 dev_priv->display.get_display_clock_speed =
14764                         haswell_get_display_clock_speed;
14765         else if (IS_VALLEYVIEW(dev))
14766                 dev_priv->display.get_display_clock_speed =
14767                         valleyview_get_display_clock_speed;
14768         else if (IS_GEN5(dev))
14769                 dev_priv->display.get_display_clock_speed =
14770                         ilk_get_display_clock_speed;
14771         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14772                  IS_GEN6(dev) || IS_IVYBRIDGE(dev))
14773                 dev_priv->display.get_display_clock_speed =
14774                         i945_get_display_clock_speed;
14775         else if (IS_GM45(dev))
14776                 dev_priv->display.get_display_clock_speed =
14777                         gm45_get_display_clock_speed;
14778         else if (IS_CRESTLINE(dev))
14779                 dev_priv->display.get_display_clock_speed =
14780                         i965gm_get_display_clock_speed;
14781         else if (IS_PINEVIEW(dev))
14782                 dev_priv->display.get_display_clock_speed =
14783                         pnv_get_display_clock_speed;
14784         else if (IS_G33(dev) || IS_G4X(dev))
14785                 dev_priv->display.get_display_clock_speed =
14786                         g33_get_display_clock_speed;
14787         else if (IS_I915G(dev))
14788                 dev_priv->display.get_display_clock_speed =
14789                         i915_get_display_clock_speed;
14790         else if (IS_I945GM(dev) || IS_845G(dev))
14791                 dev_priv->display.get_display_clock_speed =
14792                         i9xx_misc_get_display_clock_speed;
14793         else if (IS_PINEVIEW(dev))
14794                 dev_priv->display.get_display_clock_speed =
14795                         pnv_get_display_clock_speed;
14796         else if (IS_I915GM(dev))
14797                 dev_priv->display.get_display_clock_speed =
14798                         i915gm_get_display_clock_speed;
14799         else if (IS_I865G(dev))
14800                 dev_priv->display.get_display_clock_speed =
14801                         i865_get_display_clock_speed;
14802         else if (IS_I85X(dev))
14803                 dev_priv->display.get_display_clock_speed =
14804                         i85x_get_display_clock_speed;
14805         else { /* 830 */
14806                 WARN(!IS_I830(dev), "Unknown platform. Assuming 133 MHz CDCLK\n");
14807                 dev_priv->display.get_display_clock_speed =
14808                         i830_get_display_clock_speed;
14809         }
14810
14811         if (IS_GEN5(dev)) {
14812                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14813         } else if (IS_GEN6(dev)) {
14814                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14815         } else if (IS_IVYBRIDGE(dev)) {
14816                 /* FIXME: detect B0+ stepping and use auto training */
14817                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14818         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14819                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14820                 if (IS_BROADWELL(dev)) {
14821                         dev_priv->display.modeset_commit_cdclk =
14822                                 broadwell_modeset_commit_cdclk;
14823                         dev_priv->display.modeset_calc_cdclk =
14824                                 broadwell_modeset_calc_cdclk;
14825                 }
14826         } else if (IS_VALLEYVIEW(dev)) {
14827                 dev_priv->display.modeset_commit_cdclk =
14828                         valleyview_modeset_commit_cdclk;
14829                 dev_priv->display.modeset_calc_cdclk =
14830                         valleyview_modeset_calc_cdclk;
14831         } else if (IS_BROXTON(dev)) {
14832                 dev_priv->display.modeset_commit_cdclk =
14833                         broxton_modeset_commit_cdclk;
14834                 dev_priv->display.modeset_calc_cdclk =
14835                         broxton_modeset_calc_cdclk;
14836         }
14837
14838         switch (INTEL_INFO(dev)->gen) {
14839         case 2:
14840                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14841                 break;
14842
14843         case 3:
14844                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14845                 break;
14846
14847         case 4:
14848         case 5:
14849                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14850                 break;
14851
14852         case 6:
14853                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14854                 break;
14855         case 7:
14856         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14857                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14858                 break;
14859         case 9:
14860                 /* Drop through - unsupported since execlist only. */
14861         default:
14862                 /* Default just returns -ENODEV to indicate unsupported */
14863                 dev_priv->display.queue_flip = intel_default_queue_flip;
14864         }
14865
14866         mutex_init(&dev_priv->pps_mutex);
14867 }
14868
14869 /*
14870  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14871  * resume, or other times.  This quirk makes sure that's the case for
14872  * affected systems.
14873  */
14874 static void quirk_pipea_force(struct drm_device *dev)
14875 {
14876         struct drm_i915_private *dev_priv = dev->dev_private;
14877
14878         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14879         DRM_INFO("applying pipe a force quirk\n");
14880 }
14881
14882 static void quirk_pipeb_force(struct drm_device *dev)
14883 {
14884         struct drm_i915_private *dev_priv = dev->dev_private;
14885
14886         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14887         DRM_INFO("applying pipe b force quirk\n");
14888 }
14889
14890 /*
14891  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14892  */
14893 static void quirk_ssc_force_disable(struct drm_device *dev)
14894 {
14895         struct drm_i915_private *dev_priv = dev->dev_private;
14896         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14897         DRM_INFO("applying lvds SSC disable quirk\n");
14898 }
14899
14900 /*
14901  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14902  * brightness value
14903  */
14904 static void quirk_invert_brightness(struct drm_device *dev)
14905 {
14906         struct drm_i915_private *dev_priv = dev->dev_private;
14907         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14908         DRM_INFO("applying inverted panel brightness quirk\n");
14909 }
14910
14911 /* Some VBT's incorrectly indicate no backlight is present */
14912 static void quirk_backlight_present(struct drm_device *dev)
14913 {
14914         struct drm_i915_private *dev_priv = dev->dev_private;
14915         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14916         DRM_INFO("applying backlight present quirk\n");
14917 }
14918
14919 struct intel_quirk {
14920         int device;
14921         int subsystem_vendor;
14922         int subsystem_device;
14923         void (*hook)(struct drm_device *dev);
14924 };
14925
14926 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14927 struct intel_dmi_quirk {
14928         void (*hook)(struct drm_device *dev);
14929         const struct dmi_system_id (*dmi_id_list)[];
14930 };
14931
14932 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14933 {
14934         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14935         return 1;
14936 }
14937
14938 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14939         {
14940                 .dmi_id_list = &(const struct dmi_system_id[]) {
14941                         {
14942                                 .callback = intel_dmi_reverse_brightness,
14943                                 .ident = "NCR Corporation",
14944                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14945                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14946                                 },
14947                         },
14948                         { }  /* terminating entry */
14949                 },
14950                 .hook = quirk_invert_brightness,
14951         },
14952 };
14953
14954 static struct intel_quirk intel_quirks[] = {
14955         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14956         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14957
14958         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14959         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14960
14961         /* 830 needs to leave pipe A & dpll A up */
14962         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14963
14964         /* 830 needs to leave pipe B & dpll B up */
14965         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14966
14967         /* Lenovo U160 cannot use SSC on LVDS */
14968         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14969
14970         /* Sony Vaio Y cannot use SSC on LVDS */
14971         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14972
14973         /* Acer Aspire 5734Z must invert backlight brightness */
14974         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14975
14976         /* Acer/eMachines G725 */
14977         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14978
14979         /* Acer/eMachines e725 */
14980         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14981
14982         /* Acer/Packard Bell NCL20 */
14983         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14984
14985         /* Acer Aspire 4736Z */
14986         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14987
14988         /* Acer Aspire 5336 */
14989         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14990
14991         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14992         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14993
14994         /* Acer C720 Chromebook (Core i3 4005U) */
14995         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14996
14997         /* Apple Macbook 2,1 (Core 2 T7400) */
14998         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14999
15000         /* Apple Macbook 4,1 */
15001         { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15002
15003         /* Toshiba CB35 Chromebook (Celeron 2955U) */
15004         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
15005
15006         /* HP Chromebook 14 (Celeron 2955U) */
15007         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
15008
15009         /* Dell Chromebook 11 */
15010         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
15011
15012         /* Dell Chromebook 11 (2015 version) */
15013         { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
15014 };
15015
15016 static void intel_init_quirks(struct drm_device *dev)
15017 {
15018         struct pci_dev *d = dev->pdev;
15019         int i;
15020
15021         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15022                 struct intel_quirk *q = &intel_quirks[i];
15023
15024                 if (d->device == q->device &&
15025                     (d->subsystem_vendor == q->subsystem_vendor ||
15026                      q->subsystem_vendor == PCI_ANY_ID) &&
15027                     (d->subsystem_device == q->subsystem_device ||
15028                      q->subsystem_device == PCI_ANY_ID))
15029                         q->hook(dev);
15030         }
15031         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15032                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15033                         intel_dmi_quirks[i].hook(dev);
15034         }
15035 }
15036
15037 /* Disable the VGA plane that we never use */
15038 static void i915_disable_vga(struct drm_device *dev)
15039 {
15040         struct drm_i915_private *dev_priv = dev->dev_private;
15041         u8 sr1;
15042         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15043
15044         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
15045         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
15046         outb(SR01, VGA_SR_INDEX);
15047         sr1 = inb(VGA_SR_DATA);
15048         outb(sr1 | 1<<5, VGA_SR_DATA);
15049         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15050         udelay(300);
15051
15052         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
15053         POSTING_READ(vga_reg);
15054 }
15055
15056 void intel_modeset_init_hw(struct drm_device *dev)
15057 {
15058         intel_update_cdclk(dev);
15059         intel_prepare_ddi(dev);
15060         intel_init_clock_gating(dev);
15061         intel_enable_gt_powersave(dev);
15062 }
15063
15064 void intel_modeset_init(struct drm_device *dev)
15065 {
15066         struct drm_i915_private *dev_priv = dev->dev_private;
15067         int sprite, ret;
15068         enum pipe pipe;
15069         struct intel_crtc *crtc;
15070
15071         drm_mode_config_init(dev);
15072
15073         dev->mode_config.min_width = 0;
15074         dev->mode_config.min_height = 0;
15075
15076         dev->mode_config.preferred_depth = 24;
15077         dev->mode_config.prefer_shadow = 1;
15078
15079         dev->mode_config.allow_fb_modifiers = true;
15080
15081         dev->mode_config.funcs = &intel_mode_funcs;
15082
15083         intel_init_quirks(dev);
15084
15085         intel_init_pm(dev);
15086
15087         if (INTEL_INFO(dev)->num_pipes == 0)
15088                 return;
15089
15090         /*
15091          * There may be no VBT; and if the BIOS enabled SSC we can
15092          * just keep using it to avoid unnecessary flicker.  Whereas if the
15093          * BIOS isn't using it, don't assume it will work even if the VBT
15094          * indicates as much.
15095          */
15096         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15097                 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15098                                             DREF_SSC1_ENABLE);
15099
15100                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15101                         DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15102                                      bios_lvds_use_ssc ? "en" : "dis",
15103                                      dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15104                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15105                 }
15106         }
15107
15108         intel_init_display(dev);
15109         intel_init_audio(dev);
15110
15111         if (IS_GEN2(dev)) {
15112                 dev->mode_config.max_width = 2048;
15113                 dev->mode_config.max_height = 2048;
15114         } else if (IS_GEN3(dev)) {
15115                 dev->mode_config.max_width = 4096;
15116                 dev->mode_config.max_height = 4096;
15117         } else {
15118                 dev->mode_config.max_width = 8192;
15119                 dev->mode_config.max_height = 8192;
15120         }
15121
15122         if (IS_845G(dev) || IS_I865G(dev)) {
15123                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15124                 dev->mode_config.cursor_height = 1023;
15125         } else if (IS_GEN2(dev)) {
15126                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15127                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15128         } else {
15129                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15130                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15131         }
15132
15133         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
15134
15135         DRM_DEBUG_KMS("%d display pipe%s available.\n",
15136                       INTEL_INFO(dev)->num_pipes,
15137                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
15138
15139         for_each_pipe(dev_priv, pipe) {
15140                 intel_crtc_init(dev, pipe);
15141                 for_each_sprite(dev_priv, pipe, sprite) {
15142                         ret = intel_plane_init(dev, pipe, sprite);
15143                         if (ret)
15144                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
15145                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
15146                 }
15147         }
15148
15149         intel_update_czclk(dev_priv);
15150         intel_update_cdclk(dev);
15151
15152         intel_shared_dpll_init(dev);
15153
15154         /* Just disable it once at startup */
15155         i915_disable_vga(dev);
15156         intel_setup_outputs(dev);
15157
15158         drm_modeset_lock_all(dev);
15159         intel_modeset_setup_hw_state(dev);
15160         drm_modeset_unlock_all(dev);
15161
15162         for_each_intel_crtc(dev, crtc) {
15163                 struct intel_initial_plane_config plane_config = {};
15164
15165                 if (!crtc->active)
15166                         continue;
15167
15168                 /*
15169                  * Note that reserving the BIOS fb up front prevents us
15170                  * from stuffing other stolen allocations like the ring
15171                  * on top.  This prevents some ugliness at boot time, and
15172                  * can even allow for smooth boot transitions if the BIOS
15173                  * fb is large enough for the active pipe configuration.
15174                  */
15175                 dev_priv->display.get_initial_plane_config(crtc,
15176                                                            &plane_config);
15177
15178                 /*
15179                  * If the fb is shared between multiple heads, we'll
15180                  * just get the first one.
15181                  */
15182                 intel_find_initial_plane_obj(crtc, &plane_config);
15183         }
15184 }
15185
15186 static void intel_enable_pipe_a(struct drm_device *dev)
15187 {
15188         struct intel_connector *connector;
15189         struct drm_connector *crt = NULL;
15190         struct intel_load_detect_pipe load_detect_temp;
15191         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
15192
15193         /* We can't just switch on the pipe A, we need to set things up with a
15194          * proper mode and output configuration. As a gross hack, enable pipe A
15195          * by enabling the load detect pipe once. */
15196         for_each_intel_connector(dev, connector) {
15197                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15198                         crt = &connector->base;
15199                         break;
15200                 }
15201         }
15202
15203         if (!crt)
15204                 return;
15205
15206         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
15207                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
15208 }
15209
15210 static bool
15211 intel_check_plane_mapping(struct intel_crtc *crtc)
15212 {
15213         struct drm_device *dev = crtc->base.dev;
15214         struct drm_i915_private *dev_priv = dev->dev_private;
15215         u32 val;
15216
15217         if (INTEL_INFO(dev)->num_pipes == 1)
15218                 return true;
15219
15220         val = I915_READ(DSPCNTR(!crtc->plane));
15221
15222         if ((val & DISPLAY_PLANE_ENABLE) &&
15223             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15224                 return false;
15225
15226         return true;
15227 }
15228
15229 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15230 {
15231         struct drm_device *dev = crtc->base.dev;
15232         struct intel_encoder *encoder;
15233
15234         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15235                 return true;
15236
15237         return false;
15238 }
15239
15240 static void intel_sanitize_crtc(struct intel_crtc *crtc)
15241 {
15242         struct drm_device *dev = crtc->base.dev;
15243         struct drm_i915_private *dev_priv = dev->dev_private;
15244         i915_reg_t reg = PIPECONF(crtc->config->cpu_transcoder);
15245
15246         /* Clear any frame start delays used for debugging left by the BIOS */
15247         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15248
15249         /* restore vblank interrupts to correct state */
15250         drm_crtc_vblank_reset(&crtc->base);
15251         if (crtc->active) {
15252                 struct intel_plane *plane;
15253
15254                 drm_crtc_vblank_on(&crtc->base);
15255
15256                 /* Disable everything but the primary plane */
15257                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15258                         if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15259                                 continue;
15260
15261                         plane->disable_plane(&plane->base, &crtc->base);
15262                 }
15263         }
15264
15265         /* We need to sanitize the plane -> pipe mapping first because this will
15266          * disable the crtc (and hence change the state) if it is wrong. Note
15267          * that gen4+ has a fixed plane -> pipe mapping.  */
15268         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
15269                 bool plane;
15270
15271                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15272                               crtc->base.base.id);
15273
15274                 /* Pipe has the wrong plane attached and the plane is active.
15275                  * Temporarily change the plane mapping and disable everything
15276                  * ...  */
15277                 plane = crtc->plane;
15278                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
15279                 crtc->plane = !plane;
15280                 intel_crtc_disable_noatomic(&crtc->base);
15281                 crtc->plane = plane;
15282         }
15283
15284         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15285             crtc->pipe == PIPE_A && !crtc->active) {
15286                 /* BIOS forgot to enable pipe A, this mostly happens after
15287                  * resume. Force-enable the pipe to fix this, the update_dpms
15288                  * call below we restore the pipe to the right state, but leave
15289                  * the required bits on. */
15290                 intel_enable_pipe_a(dev);
15291         }
15292
15293         /* Adjust the state of the output pipe according to whether we
15294          * have active connectors/encoders. */
15295         if (!intel_crtc_has_encoders(crtc))
15296                 intel_crtc_disable_noatomic(&crtc->base);
15297
15298         if (crtc->active != crtc->base.state->active) {
15299                 struct intel_encoder *encoder;
15300
15301                 /* This can happen either due to bugs in the get_hw_state
15302                  * functions or because of calls to intel_crtc_disable_noatomic,
15303                  * or because the pipe is force-enabled due to the
15304                  * pipe A quirk. */
15305                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
15306                               crtc->base.base.id,
15307                               crtc->base.state->enable ? "enabled" : "disabled",
15308                               crtc->active ? "enabled" : "disabled");
15309
15310                 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, NULL) < 0);
15311                 crtc->base.state->active = crtc->active;
15312                 crtc->base.enabled = crtc->active;
15313
15314                 /* Because we only establish the connector -> encoder ->
15315                  * crtc links if something is active, this means the
15316                  * crtc is now deactivated. Break the links. connector
15317                  * -> encoder links are only establish when things are
15318                  *  actually up, hence no need to break them. */
15319                 WARN_ON(crtc->active);
15320
15321                 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15322                         encoder->base.crtc = NULL;
15323         }
15324
15325         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
15326                 /*
15327                  * We start out with underrun reporting disabled to avoid races.
15328                  * For correct bookkeeping mark this on active crtcs.
15329                  *
15330                  * Also on gmch platforms we dont have any hardware bits to
15331                  * disable the underrun reporting. Which means we need to start
15332                  * out with underrun reporting disabled also on inactive pipes,
15333                  * since otherwise we'll complain about the garbage we read when
15334                  * e.g. coming up after runtime pm.
15335                  *
15336                  * No protection against concurrent access is required - at
15337                  * worst a fifo underrun happens which also sets this to false.
15338                  */
15339                 crtc->cpu_fifo_underrun_disabled = true;
15340                 crtc->pch_fifo_underrun_disabled = true;
15341         }
15342 }
15343
15344 static void intel_sanitize_encoder(struct intel_encoder *encoder)
15345 {
15346         struct intel_connector *connector;
15347         struct drm_device *dev = encoder->base.dev;
15348         bool active = false;
15349
15350         /* We need to check both for a crtc link (meaning that the
15351          * encoder is active and trying to read from a pipe) and the
15352          * pipe itself being active. */
15353         bool has_active_crtc = encoder->base.crtc &&
15354                 to_intel_crtc(encoder->base.crtc)->active;
15355
15356         for_each_intel_connector(dev, connector) {
15357                 if (connector->base.encoder != &encoder->base)
15358                         continue;
15359
15360                 active = true;
15361                 break;
15362         }
15363
15364         if (active && !has_active_crtc) {
15365                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15366                               encoder->base.base.id,
15367                               encoder->base.name);
15368
15369                 /* Connector is active, but has no active pipe. This is
15370                  * fallout from our resume register restoring. Disable
15371                  * the encoder manually again. */
15372                 if (encoder->base.crtc) {
15373                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15374                                       encoder->base.base.id,
15375                                       encoder->base.name);
15376                         encoder->disable(encoder);
15377                         if (encoder->post_disable)
15378                                 encoder->post_disable(encoder);
15379                 }
15380                 encoder->base.crtc = NULL;
15381
15382                 /* Inconsistent output/port/pipe state happens presumably due to
15383                  * a bug in one of the get_hw_state functions. Or someplace else
15384                  * in our code, like the register restore mess on resume. Clamp
15385                  * things to off as a safer default. */
15386                 for_each_intel_connector(dev, connector) {
15387                         if (connector->encoder != encoder)
15388                                 continue;
15389                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15390                         connector->base.encoder = NULL;
15391                 }
15392         }
15393         /* Enabled encoders without active connectors will be fixed in
15394          * the crtc fixup. */
15395 }
15396
15397 void i915_redisable_vga_power_on(struct drm_device *dev)
15398 {
15399         struct drm_i915_private *dev_priv = dev->dev_private;
15400         i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
15401
15402         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15403                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15404                 i915_disable_vga(dev);
15405         }
15406 }
15407
15408 void i915_redisable_vga(struct drm_device *dev)
15409 {
15410         struct drm_i915_private *dev_priv = dev->dev_private;
15411
15412         /* This function can be called both from intel_modeset_setup_hw_state or
15413          * at a very early point in our resume sequence, where the power well
15414          * structures are not yet restored. Since this function is at a very
15415          * paranoid "someone might have enabled VGA while we were not looking"
15416          * level, just check if the power well is enabled instead of trying to
15417          * follow the "don't touch the power well if we don't need it" policy
15418          * the rest of the driver uses. */
15419         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15420                 return;
15421
15422         i915_redisable_vga_power_on(dev);
15423 }
15424
15425 static bool primary_get_hw_state(struct intel_plane *plane)
15426 {
15427         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
15428
15429         return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
15430 }
15431
15432 /* FIXME read out full plane state for all planes */
15433 static void readout_plane_state(struct intel_crtc *crtc)
15434 {
15435         struct drm_plane *primary = crtc->base.primary;
15436         struct intel_plane_state *plane_state =
15437                 to_intel_plane_state(primary->state);
15438
15439         plane_state->visible = crtc->active &&
15440                 primary_get_hw_state(to_intel_plane(primary));
15441
15442         if (plane_state->visible)
15443                 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
15444 }
15445
15446 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15447 {
15448         struct drm_i915_private *dev_priv = dev->dev_private;
15449         enum pipe pipe;
15450         struct intel_crtc *crtc;
15451         struct intel_encoder *encoder;
15452         struct intel_connector *connector;
15453         int i;
15454
15455         for_each_intel_crtc(dev, crtc) {
15456                 __drm_atomic_helper_crtc_destroy_state(&crtc->base, crtc->base.state);
15457                 memset(crtc->config, 0, sizeof(*crtc->config));
15458                 crtc->config->base.crtc = &crtc->base;
15459
15460                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15461                                                                  crtc->config);
15462
15463                 crtc->base.state->active = crtc->active;
15464                 crtc->base.enabled = crtc->active;
15465
15466                 readout_plane_state(crtc);
15467
15468                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15469                               crtc->base.base.id,
15470                               crtc->active ? "enabled" : "disabled");
15471         }
15472
15473         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15474                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15475
15476                 pll->on = pll->get_hw_state(dev_priv, pll,
15477                                             &pll->config.hw_state);
15478                 pll->active = 0;
15479                 pll->config.crtc_mask = 0;
15480                 for_each_intel_crtc(dev, crtc) {
15481                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15482                                 pll->active++;
15483                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15484                         }
15485                 }
15486
15487                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15488                               pll->name, pll->config.crtc_mask, pll->on);
15489
15490                 if (pll->config.crtc_mask)
15491                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15492         }
15493
15494         for_each_intel_encoder(dev, encoder) {
15495                 pipe = 0;
15496
15497                 if (encoder->get_hw_state(encoder, &pipe)) {
15498                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15499                         encoder->base.crtc = &crtc->base;
15500                         encoder->get_config(encoder, crtc->config);
15501                 } else {
15502                         encoder->base.crtc = NULL;
15503                 }
15504
15505                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15506                               encoder->base.base.id,
15507                               encoder->base.name,
15508                               encoder->base.crtc ? "enabled" : "disabled",
15509                               pipe_name(pipe));
15510         }
15511
15512         for_each_intel_connector(dev, connector) {
15513                 if (connector->get_hw_state(connector)) {
15514                         connector->base.dpms = DRM_MODE_DPMS_ON;
15515                         connector->base.encoder = &connector->encoder->base;
15516                 } else {
15517                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15518                         connector->base.encoder = NULL;
15519                 }
15520                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15521                               connector->base.base.id,
15522                               connector->base.name,
15523                               connector->base.encoder ? "enabled" : "disabled");
15524         }
15525
15526         for_each_intel_crtc(dev, crtc) {
15527                 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15528
15529                 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15530                 if (crtc->base.state->active) {
15531                         intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15532                         intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15533                         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15534
15535                         /*
15536                          * The initial mode needs to be set in order to keep
15537                          * the atomic core happy. It wants a valid mode if the
15538                          * crtc's enabled, so we do the above call.
15539                          *
15540                          * At this point some state updated by the connectors
15541                          * in their ->detect() callback has not run yet, so
15542                          * no recalculation can be done yet.
15543                          *
15544                          * Even if we could do a recalculation and modeset
15545                          * right now it would cause a double modeset if
15546                          * fbdev or userspace chooses a different initial mode.
15547                          *
15548                          * If that happens, someone indicated they wanted a
15549                          * mode change, which means it's safe to do a full
15550                          * recalculation.
15551                          */
15552                         crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
15553
15554                         drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15555                         update_scanline_offset(crtc);
15556                 }
15557         }
15558 }
15559
15560 /* Scan out the current hw modeset state,
15561  * and sanitizes it to the current state
15562  */
15563 static void
15564 intel_modeset_setup_hw_state(struct drm_device *dev)
15565 {
15566         struct drm_i915_private *dev_priv = dev->dev_private;
15567         enum pipe pipe;
15568         struct intel_crtc *crtc;
15569         struct intel_encoder *encoder;
15570         int i;
15571
15572         intel_modeset_readout_hw_state(dev);
15573
15574         /* HW state is read out, now we need to sanitize this mess. */
15575         for_each_intel_encoder(dev, encoder) {
15576                 intel_sanitize_encoder(encoder);
15577         }
15578
15579         for_each_pipe(dev_priv, pipe) {
15580                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15581                 intel_sanitize_crtc(crtc);
15582                 intel_dump_pipe_config(crtc, crtc->config,
15583                                        "[setup_hw_state]");
15584         }
15585
15586         intel_modeset_update_connector_atomic_state(dev);
15587
15588         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15589                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15590
15591                 if (!pll->on || pll->active)
15592                         continue;
15593
15594                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15595
15596                 pll->disable(dev_priv, pll);
15597                 pll->on = false;
15598         }
15599
15600         if (IS_VALLEYVIEW(dev))
15601                 vlv_wm_get_hw_state(dev);
15602         else if (IS_GEN9(dev))
15603                 skl_wm_get_hw_state(dev);
15604         else if (HAS_PCH_SPLIT(dev))
15605                 ilk_wm_get_hw_state(dev);
15606
15607         for_each_intel_crtc(dev, crtc) {
15608                 unsigned long put_domains;
15609
15610                 put_domains = modeset_get_crtc_power_domains(&crtc->base);
15611                 if (WARN_ON(put_domains))
15612                         modeset_put_power_domains(dev_priv, put_domains);
15613         }
15614         intel_display_set_init_power(dev_priv, false);
15615 }
15616
15617 void intel_display_resume(struct drm_device *dev)
15618 {
15619         struct drm_atomic_state *state = drm_atomic_state_alloc(dev);
15620         struct intel_connector *conn;
15621         struct intel_plane *plane;
15622         struct drm_crtc *crtc;
15623         int ret;
15624
15625         if (!state)
15626                 return;
15627
15628         state->acquire_ctx = dev->mode_config.acquire_ctx;
15629
15630         /* preserve complete old state, including dpll */
15631         intel_atomic_get_shared_dpll_state(state);
15632
15633         for_each_crtc(dev, crtc) {
15634                 struct drm_crtc_state *crtc_state =
15635                         drm_atomic_get_crtc_state(state, crtc);
15636
15637                 ret = PTR_ERR_OR_ZERO(crtc_state);
15638                 if (ret)
15639                         goto err;
15640
15641                 /* force a restore */
15642                 crtc_state->mode_changed = true;
15643         }
15644
15645         for_each_intel_plane(dev, plane) {
15646                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(state, &plane->base));
15647                 if (ret)
15648                         goto err;
15649         }
15650
15651         for_each_intel_connector(dev, conn) {
15652                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(state, &conn->base));
15653                 if (ret)
15654                         goto err;
15655         }
15656
15657         intel_modeset_setup_hw_state(dev);
15658
15659         i915_redisable_vga(dev);
15660         ret = drm_atomic_commit(state);
15661         if (!ret)
15662                 return;
15663
15664 err:
15665         DRM_ERROR("Restoring old state failed with %i\n", ret);
15666         drm_atomic_state_free(state);
15667 }
15668
15669 void intel_modeset_gem_init(struct drm_device *dev)
15670 {
15671         struct drm_crtc *c;
15672         struct drm_i915_gem_object *obj;
15673         int ret;
15674
15675         mutex_lock(&dev->struct_mutex);
15676         intel_init_gt_powersave(dev);
15677         mutex_unlock(&dev->struct_mutex);
15678
15679         intel_modeset_init_hw(dev);
15680
15681         intel_setup_overlay(dev);
15682
15683         /*
15684          * Make sure any fbs we allocated at startup are properly
15685          * pinned & fenced.  When we do the allocation it's too early
15686          * for this.
15687          */
15688         for_each_crtc(dev, c) {
15689                 obj = intel_fb_obj(c->primary->fb);
15690                 if (obj == NULL)
15691                         continue;
15692
15693                 mutex_lock(&dev->struct_mutex);
15694                 ret = intel_pin_and_fence_fb_obj(c->primary,
15695                                                  c->primary->fb,
15696                                                  c->primary->state);
15697                 mutex_unlock(&dev->struct_mutex);
15698                 if (ret) {
15699                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15700                                   to_intel_crtc(c)->pipe);
15701                         drm_framebuffer_unreference(c->primary->fb);
15702                         c->primary->fb = NULL;
15703                         c->primary->crtc = c->primary->state->crtc = NULL;
15704                         update_state_fb(c->primary);
15705                         c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
15706                 }
15707         }
15708
15709         intel_backlight_register(dev);
15710 }
15711
15712 void intel_connector_unregister(struct intel_connector *intel_connector)
15713 {
15714         struct drm_connector *connector = &intel_connector->base;
15715
15716         intel_panel_destroy_backlight(connector);
15717         drm_connector_unregister(connector);
15718 }
15719
15720 void intel_modeset_cleanup(struct drm_device *dev)
15721 {
15722         struct drm_i915_private *dev_priv = dev->dev_private;
15723         struct drm_connector *connector;
15724
15725         intel_disable_gt_powersave(dev);
15726
15727         intel_backlight_unregister(dev);
15728
15729         /*
15730          * Interrupts and polling as the first thing to avoid creating havoc.
15731          * Too much stuff here (turning of connectors, ...) would
15732          * experience fancy races otherwise.
15733          */
15734         intel_irq_uninstall(dev_priv);
15735
15736         /*
15737          * Due to the hpd irq storm handling the hotplug work can re-arm the
15738          * poll handlers. Hence disable polling after hpd handling is shut down.
15739          */
15740         drm_kms_helper_poll_fini(dev);
15741
15742         intel_unregister_dsm_handler();
15743
15744         intel_fbc_disable(dev_priv);
15745
15746         /* flush any delayed tasks or pending work */
15747         flush_scheduled_work();
15748
15749         /* destroy the backlight and sysfs files before encoders/connectors */
15750         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15751                 struct intel_connector *intel_connector;
15752
15753                 intel_connector = to_intel_connector(connector);
15754                 intel_connector->unregister(intel_connector);
15755         }
15756
15757         drm_mode_config_cleanup(dev);
15758
15759         intel_cleanup_overlay(dev);
15760
15761         mutex_lock(&dev->struct_mutex);
15762         intel_cleanup_gt_powersave(dev);
15763         mutex_unlock(&dev->struct_mutex);
15764 }
15765
15766 /*
15767  * Return which encoder is currently attached for connector.
15768  */
15769 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15770 {
15771         return &intel_attached_encoder(connector)->base;
15772 }
15773
15774 void intel_connector_attach_encoder(struct intel_connector *connector,
15775                                     struct intel_encoder *encoder)
15776 {
15777         connector->encoder = encoder;
15778         drm_mode_connector_attach_encoder(&connector->base,
15779                                           &encoder->base);
15780 }
15781
15782 /*
15783  * set vga decode state - true == enable VGA decode
15784  */
15785 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15786 {
15787         struct drm_i915_private *dev_priv = dev->dev_private;
15788         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15789         u16 gmch_ctrl;
15790
15791         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15792                 DRM_ERROR("failed to read control word\n");
15793                 return -EIO;
15794         }
15795
15796         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15797                 return 0;
15798
15799         if (state)
15800                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15801         else
15802                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15803
15804         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15805                 DRM_ERROR("failed to write control word\n");
15806                 return -EIO;
15807         }
15808
15809         return 0;
15810 }
15811
15812 struct intel_display_error_state {
15813
15814         u32 power_well_driver;
15815
15816         int num_transcoders;
15817
15818         struct intel_cursor_error_state {
15819                 u32 control;
15820                 u32 position;
15821                 u32 base;
15822                 u32 size;
15823         } cursor[I915_MAX_PIPES];
15824
15825         struct intel_pipe_error_state {
15826                 bool power_domain_on;
15827                 u32 source;
15828                 u32 stat;
15829         } pipe[I915_MAX_PIPES];
15830
15831         struct intel_plane_error_state {
15832                 u32 control;
15833                 u32 stride;
15834                 u32 size;
15835                 u32 pos;
15836                 u32 addr;
15837                 u32 surface;
15838                 u32 tile_offset;
15839         } plane[I915_MAX_PIPES];
15840
15841         struct intel_transcoder_error_state {
15842                 bool power_domain_on;
15843                 enum transcoder cpu_transcoder;
15844
15845                 u32 conf;
15846
15847                 u32 htotal;
15848                 u32 hblank;
15849                 u32 hsync;
15850                 u32 vtotal;
15851                 u32 vblank;
15852                 u32 vsync;
15853         } transcoder[4];
15854 };
15855
15856 struct intel_display_error_state *
15857 intel_display_capture_error_state(struct drm_device *dev)
15858 {
15859         struct drm_i915_private *dev_priv = dev->dev_private;
15860         struct intel_display_error_state *error;
15861         int transcoders[] = {
15862                 TRANSCODER_A,
15863                 TRANSCODER_B,
15864                 TRANSCODER_C,
15865                 TRANSCODER_EDP,
15866         };
15867         int i;
15868
15869         if (INTEL_INFO(dev)->num_pipes == 0)
15870                 return NULL;
15871
15872         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15873         if (error == NULL)
15874                 return NULL;
15875
15876         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15877                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15878
15879         for_each_pipe(dev_priv, i) {
15880                 error->pipe[i].power_domain_on =
15881                         __intel_display_power_is_enabled(dev_priv,
15882                                                          POWER_DOMAIN_PIPE(i));
15883                 if (!error->pipe[i].power_domain_on)
15884                         continue;
15885
15886                 error->cursor[i].control = I915_READ(CURCNTR(i));
15887                 error->cursor[i].position = I915_READ(CURPOS(i));
15888                 error->cursor[i].base = I915_READ(CURBASE(i));
15889
15890                 error->plane[i].control = I915_READ(DSPCNTR(i));
15891                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15892                 if (INTEL_INFO(dev)->gen <= 3) {
15893                         error->plane[i].size = I915_READ(DSPSIZE(i));
15894                         error->plane[i].pos = I915_READ(DSPPOS(i));
15895                 }
15896                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15897                         error->plane[i].addr = I915_READ(DSPADDR(i));
15898                 if (INTEL_INFO(dev)->gen >= 4) {
15899                         error->plane[i].surface = I915_READ(DSPSURF(i));
15900                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15901                 }
15902
15903                 error->pipe[i].source = I915_READ(PIPESRC(i));
15904
15905                 if (HAS_GMCH_DISPLAY(dev))
15906                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15907         }
15908
15909         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15910         if (HAS_DDI(dev_priv->dev))
15911                 error->num_transcoders++; /* Account for eDP. */
15912
15913         for (i = 0; i < error->num_transcoders; i++) {
15914                 enum transcoder cpu_transcoder = transcoders[i];
15915
15916                 error->transcoder[i].power_domain_on =
15917                         __intel_display_power_is_enabled(dev_priv,
15918                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15919                 if (!error->transcoder[i].power_domain_on)
15920                         continue;
15921
15922                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15923
15924                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15925                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15926                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15927                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15928                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15929                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15930                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15931         }
15932
15933         return error;
15934 }
15935
15936 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15937
15938 void
15939 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15940                                 struct drm_device *dev,
15941                                 struct intel_display_error_state *error)
15942 {
15943         struct drm_i915_private *dev_priv = dev->dev_private;
15944         int i;
15945
15946         if (!error)
15947                 return;
15948
15949         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15950         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15951                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15952                            error->power_well_driver);
15953         for_each_pipe(dev_priv, i) {
15954                 err_printf(m, "Pipe [%d]:\n", i);
15955                 err_printf(m, "  Power: %s\n",
15956                            error->pipe[i].power_domain_on ? "on" : "off");
15957                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15958                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15959
15960                 err_printf(m, "Plane [%d]:\n", i);
15961                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15962                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15963                 if (INTEL_INFO(dev)->gen <= 3) {
15964                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15965                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15966                 }
15967                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15968                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15969                 if (INTEL_INFO(dev)->gen >= 4) {
15970                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15971                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15972                 }
15973
15974                 err_printf(m, "Cursor [%d]:\n", i);
15975                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15976                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15977                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15978         }
15979
15980         for (i = 0; i < error->num_transcoders; i++) {
15981                 err_printf(m, "CPU transcoder: %c\n",
15982                            transcoder_name(error->transcoder[i].cpu_transcoder));
15983                 err_printf(m, "  Power: %s\n",
15984                            error->transcoder[i].power_domain_on ? "on" : "off");
15985                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15986                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15987                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15988                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15989                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15990                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15991                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15992         }
15993 }
15994
15995 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15996 {
15997         struct intel_crtc *crtc;
15998
15999         for_each_intel_crtc(dev, crtc) {
16000                 struct intel_unpin_work *work;
16001
16002                 spin_lock_irq(&dev->event_lock);
16003
16004                 work = crtc->unpin_work;
16005
16006                 if (work && work->event &&
16007                     work->event->base.file_priv == file) {
16008                         kfree(work->event);
16009                         work->event = NULL;
16010                 }
16011
16012                 spin_unlock_irq(&dev->event_lock);
16013         }
16014 }