Merge remote-tracking branches 'asoc/fix/fsl-ssi', 'asoc/fix/intel', 'asoc/fix/intel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/dmi.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
34 #include <drm/drm_edid.h>
35 #include <drm/drmP.h>
36 #include "intel_drv.h"
37 #include <drm/i915_drm.h>
38 #include "i915_drv.h"
39 #include "i915_trace.h"
40 #include <drm/drm_atomic.h>
41 #include <drm/drm_atomic_helper.h>
42 #include <drm/drm_dp_helper.h>
43 #include <drm/drm_crtc_helper.h>
44 #include <drm/drm_plane_helper.h>
45 #include <drm/drm_rect.h>
46 #include <linux/dma_remapping.h>
47
48 /* Primary plane formats for gen <= 3 */
49 static const uint32_t i8xx_primary_formats[] = {
50         DRM_FORMAT_C8,
51         DRM_FORMAT_RGB565,
52         DRM_FORMAT_XRGB1555,
53         DRM_FORMAT_XRGB8888,
54 };
55
56 /* Primary plane formats for gen >= 4 */
57 static const uint32_t i965_primary_formats[] = {
58         DRM_FORMAT_C8,
59         DRM_FORMAT_RGB565,
60         DRM_FORMAT_XRGB8888,
61         DRM_FORMAT_XBGR8888,
62         DRM_FORMAT_XRGB2101010,
63         DRM_FORMAT_XBGR2101010,
64 };
65
66 static const uint32_t skl_primary_formats[] = {
67         DRM_FORMAT_C8,
68         DRM_FORMAT_RGB565,
69         DRM_FORMAT_XRGB8888,
70         DRM_FORMAT_XBGR8888,
71         DRM_FORMAT_ARGB8888,
72         DRM_FORMAT_ABGR8888,
73         DRM_FORMAT_XRGB2101010,
74         DRM_FORMAT_XBGR2101010,
75 };
76
77 /* Cursor formats */
78 static const uint32_t intel_cursor_formats[] = {
79         DRM_FORMAT_ARGB8888,
80 };
81
82 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
83
84 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
85                                 struct intel_crtc_state *pipe_config);
86 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
87                                    struct intel_crtc_state *pipe_config);
88
89 static int intel_set_mode(struct drm_crtc *crtc,
90                           struct drm_atomic_state *state,
91                           bool force_restore);
92 static int intel_framebuffer_init(struct drm_device *dev,
93                                   struct intel_framebuffer *ifb,
94                                   struct drm_mode_fb_cmd2 *mode_cmd,
95                                   struct drm_i915_gem_object *obj);
96 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
97 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
98 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
99                                          struct intel_link_m_n *m_n,
100                                          struct intel_link_m_n *m2_n2);
101 static void ironlake_set_pipeconf(struct drm_crtc *crtc);
102 static void haswell_set_pipeconf(struct drm_crtc *crtc);
103 static void intel_set_pipe_csc(struct drm_crtc *crtc);
104 static void vlv_prepare_pll(struct intel_crtc *crtc,
105                             const struct intel_crtc_state *pipe_config);
106 static void chv_prepare_pll(struct intel_crtc *crtc,
107                             const struct intel_crtc_state *pipe_config);
108 static void intel_begin_crtc_commit(struct drm_crtc *crtc);
109 static void intel_finish_crtc_commit(struct drm_crtc *crtc);
110 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
111         struct intel_crtc_state *crtc_state);
112 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
113                            int num_connectors);
114 static void intel_crtc_enable_planes(struct drm_crtc *crtc);
115 static void intel_crtc_disable_planes(struct drm_crtc *crtc);
116
117 static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
118 {
119         if (!connector->mst_port)
120                 return connector->encoder;
121         else
122                 return &connector->mst_port->mst_encoders[pipe]->base;
123 }
124
125 typedef struct {
126         int     min, max;
127 } intel_range_t;
128
129 typedef struct {
130         int     dot_limit;
131         int     p2_slow, p2_fast;
132 } intel_p2_t;
133
134 typedef struct intel_limit intel_limit_t;
135 struct intel_limit {
136         intel_range_t   dot, vco, n, m, m1, m2, p, p1;
137         intel_p2_t          p2;
138 };
139
140 int
141 intel_pch_rawclk(struct drm_device *dev)
142 {
143         struct drm_i915_private *dev_priv = dev->dev_private;
144
145         WARN_ON(!HAS_PCH_SPLIT(dev));
146
147         return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
148 }
149
150 static inline u32 /* units of 100MHz */
151 intel_fdi_link_freq(struct drm_device *dev)
152 {
153         if (IS_GEN5(dev)) {
154                 struct drm_i915_private *dev_priv = dev->dev_private;
155                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
156         } else
157                 return 27;
158 }
159
160 static const intel_limit_t intel_limits_i8xx_dac = {
161         .dot = { .min = 25000, .max = 350000 },
162         .vco = { .min = 908000, .max = 1512000 },
163         .n = { .min = 2, .max = 16 },
164         .m = { .min = 96, .max = 140 },
165         .m1 = { .min = 18, .max = 26 },
166         .m2 = { .min = 6, .max = 16 },
167         .p = { .min = 4, .max = 128 },
168         .p1 = { .min = 2, .max = 33 },
169         .p2 = { .dot_limit = 165000,
170                 .p2_slow = 4, .p2_fast = 2 },
171 };
172
173 static const intel_limit_t intel_limits_i8xx_dvo = {
174         .dot = { .min = 25000, .max = 350000 },
175         .vco = { .min = 908000, .max = 1512000 },
176         .n = { .min = 2, .max = 16 },
177         .m = { .min = 96, .max = 140 },
178         .m1 = { .min = 18, .max = 26 },
179         .m2 = { .min = 6, .max = 16 },
180         .p = { .min = 4, .max = 128 },
181         .p1 = { .min = 2, .max = 33 },
182         .p2 = { .dot_limit = 165000,
183                 .p2_slow = 4, .p2_fast = 4 },
184 };
185
186 static const intel_limit_t intel_limits_i8xx_lvds = {
187         .dot = { .min = 25000, .max = 350000 },
188         .vco = { .min = 908000, .max = 1512000 },
189         .n = { .min = 2, .max = 16 },
190         .m = { .min = 96, .max = 140 },
191         .m1 = { .min = 18, .max = 26 },
192         .m2 = { .min = 6, .max = 16 },
193         .p = { .min = 4, .max = 128 },
194         .p1 = { .min = 1, .max = 6 },
195         .p2 = { .dot_limit = 165000,
196                 .p2_slow = 14, .p2_fast = 7 },
197 };
198
199 static const intel_limit_t intel_limits_i9xx_sdvo = {
200         .dot = { .min = 20000, .max = 400000 },
201         .vco = { .min = 1400000, .max = 2800000 },
202         .n = { .min = 1, .max = 6 },
203         .m = { .min = 70, .max = 120 },
204         .m1 = { .min = 8, .max = 18 },
205         .m2 = { .min = 3, .max = 7 },
206         .p = { .min = 5, .max = 80 },
207         .p1 = { .min = 1, .max = 8 },
208         .p2 = { .dot_limit = 200000,
209                 .p2_slow = 10, .p2_fast = 5 },
210 };
211
212 static const intel_limit_t intel_limits_i9xx_lvds = {
213         .dot = { .min = 20000, .max = 400000 },
214         .vco = { .min = 1400000, .max = 2800000 },
215         .n = { .min = 1, .max = 6 },
216         .m = { .min = 70, .max = 120 },
217         .m1 = { .min = 8, .max = 18 },
218         .m2 = { .min = 3, .max = 7 },
219         .p = { .min = 7, .max = 98 },
220         .p1 = { .min = 1, .max = 8 },
221         .p2 = { .dot_limit = 112000,
222                 .p2_slow = 14, .p2_fast = 7 },
223 };
224
225
226 static const intel_limit_t intel_limits_g4x_sdvo = {
227         .dot = { .min = 25000, .max = 270000 },
228         .vco = { .min = 1750000, .max = 3500000},
229         .n = { .min = 1, .max = 4 },
230         .m = { .min = 104, .max = 138 },
231         .m1 = { .min = 17, .max = 23 },
232         .m2 = { .min = 5, .max = 11 },
233         .p = { .min = 10, .max = 30 },
234         .p1 = { .min = 1, .max = 3},
235         .p2 = { .dot_limit = 270000,
236                 .p2_slow = 10,
237                 .p2_fast = 10
238         },
239 };
240
241 static const intel_limit_t intel_limits_g4x_hdmi = {
242         .dot = { .min = 22000, .max = 400000 },
243         .vco = { .min = 1750000, .max = 3500000},
244         .n = { .min = 1, .max = 4 },
245         .m = { .min = 104, .max = 138 },
246         .m1 = { .min = 16, .max = 23 },
247         .m2 = { .min = 5, .max = 11 },
248         .p = { .min = 5, .max = 80 },
249         .p1 = { .min = 1, .max = 8},
250         .p2 = { .dot_limit = 165000,
251                 .p2_slow = 10, .p2_fast = 5 },
252 };
253
254 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
255         .dot = { .min = 20000, .max = 115000 },
256         .vco = { .min = 1750000, .max = 3500000 },
257         .n = { .min = 1, .max = 3 },
258         .m = { .min = 104, .max = 138 },
259         .m1 = { .min = 17, .max = 23 },
260         .m2 = { .min = 5, .max = 11 },
261         .p = { .min = 28, .max = 112 },
262         .p1 = { .min = 2, .max = 8 },
263         .p2 = { .dot_limit = 0,
264                 .p2_slow = 14, .p2_fast = 14
265         },
266 };
267
268 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
269         .dot = { .min = 80000, .max = 224000 },
270         .vco = { .min = 1750000, .max = 3500000 },
271         .n = { .min = 1, .max = 3 },
272         .m = { .min = 104, .max = 138 },
273         .m1 = { .min = 17, .max = 23 },
274         .m2 = { .min = 5, .max = 11 },
275         .p = { .min = 14, .max = 42 },
276         .p1 = { .min = 2, .max = 6 },
277         .p2 = { .dot_limit = 0,
278                 .p2_slow = 7, .p2_fast = 7
279         },
280 };
281
282 static const intel_limit_t intel_limits_pineview_sdvo = {
283         .dot = { .min = 20000, .max = 400000},
284         .vco = { .min = 1700000, .max = 3500000 },
285         /* Pineview's Ncounter is a ring counter */
286         .n = { .min = 3, .max = 6 },
287         .m = { .min = 2, .max = 256 },
288         /* Pineview only has one combined m divider, which we treat as m2. */
289         .m1 = { .min = 0, .max = 0 },
290         .m2 = { .min = 0, .max = 254 },
291         .p = { .min = 5, .max = 80 },
292         .p1 = { .min = 1, .max = 8 },
293         .p2 = { .dot_limit = 200000,
294                 .p2_slow = 10, .p2_fast = 5 },
295 };
296
297 static const intel_limit_t intel_limits_pineview_lvds = {
298         .dot = { .min = 20000, .max = 400000 },
299         .vco = { .min = 1700000, .max = 3500000 },
300         .n = { .min = 3, .max = 6 },
301         .m = { .min = 2, .max = 256 },
302         .m1 = { .min = 0, .max = 0 },
303         .m2 = { .min = 0, .max = 254 },
304         .p = { .min = 7, .max = 112 },
305         .p1 = { .min = 1, .max = 8 },
306         .p2 = { .dot_limit = 112000,
307                 .p2_slow = 14, .p2_fast = 14 },
308 };
309
310 /* Ironlake / Sandybridge
311  *
312  * We calculate clock using (register_value + 2) for N/M1/M2, so here
313  * the range value for them is (actual_value - 2).
314  */
315 static const intel_limit_t intel_limits_ironlake_dac = {
316         .dot = { .min = 25000, .max = 350000 },
317         .vco = { .min = 1760000, .max = 3510000 },
318         .n = { .min = 1, .max = 5 },
319         .m = { .min = 79, .max = 127 },
320         .m1 = { .min = 12, .max = 22 },
321         .m2 = { .min = 5, .max = 9 },
322         .p = { .min = 5, .max = 80 },
323         .p1 = { .min = 1, .max = 8 },
324         .p2 = { .dot_limit = 225000,
325                 .p2_slow = 10, .p2_fast = 5 },
326 };
327
328 static const intel_limit_t intel_limits_ironlake_single_lvds = {
329         .dot = { .min = 25000, .max = 350000 },
330         .vco = { .min = 1760000, .max = 3510000 },
331         .n = { .min = 1, .max = 3 },
332         .m = { .min = 79, .max = 118 },
333         .m1 = { .min = 12, .max = 22 },
334         .m2 = { .min = 5, .max = 9 },
335         .p = { .min = 28, .max = 112 },
336         .p1 = { .min = 2, .max = 8 },
337         .p2 = { .dot_limit = 225000,
338                 .p2_slow = 14, .p2_fast = 14 },
339 };
340
341 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
342         .dot = { .min = 25000, .max = 350000 },
343         .vco = { .min = 1760000, .max = 3510000 },
344         .n = { .min = 1, .max = 3 },
345         .m = { .min = 79, .max = 127 },
346         .m1 = { .min = 12, .max = 22 },
347         .m2 = { .min = 5, .max = 9 },
348         .p = { .min = 14, .max = 56 },
349         .p1 = { .min = 2, .max = 8 },
350         .p2 = { .dot_limit = 225000,
351                 .p2_slow = 7, .p2_fast = 7 },
352 };
353
354 /* LVDS 100mhz refclk limits. */
355 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
356         .dot = { .min = 25000, .max = 350000 },
357         .vco = { .min = 1760000, .max = 3510000 },
358         .n = { .min = 1, .max = 2 },
359         .m = { .min = 79, .max = 126 },
360         .m1 = { .min = 12, .max = 22 },
361         .m2 = { .min = 5, .max = 9 },
362         .p = { .min = 28, .max = 112 },
363         .p1 = { .min = 2, .max = 8 },
364         .p2 = { .dot_limit = 225000,
365                 .p2_slow = 14, .p2_fast = 14 },
366 };
367
368 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
369         .dot = { .min = 25000, .max = 350000 },
370         .vco = { .min = 1760000, .max = 3510000 },
371         .n = { .min = 1, .max = 3 },
372         .m = { .min = 79, .max = 126 },
373         .m1 = { .min = 12, .max = 22 },
374         .m2 = { .min = 5, .max = 9 },
375         .p = { .min = 14, .max = 42 },
376         .p1 = { .min = 2, .max = 6 },
377         .p2 = { .dot_limit = 225000,
378                 .p2_slow = 7, .p2_fast = 7 },
379 };
380
381 static const intel_limit_t intel_limits_vlv = {
382          /*
383           * These are the data rate limits (measured in fast clocks)
384           * since those are the strictest limits we have. The fast
385           * clock and actual rate limits are more relaxed, so checking
386           * them would make no difference.
387           */
388         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
389         .vco = { .min = 4000000, .max = 6000000 },
390         .n = { .min = 1, .max = 7 },
391         .m1 = { .min = 2, .max = 3 },
392         .m2 = { .min = 11, .max = 156 },
393         .p1 = { .min = 2, .max = 3 },
394         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
395 };
396
397 static const intel_limit_t intel_limits_chv = {
398         /*
399          * These are the data rate limits (measured in fast clocks)
400          * since those are the strictest limits we have.  The fast
401          * clock and actual rate limits are more relaxed, so checking
402          * them would make no difference.
403          */
404         .dot = { .min = 25000 * 5, .max = 540000 * 5},
405         .vco = { .min = 4800000, .max = 6480000 },
406         .n = { .min = 1, .max = 1 },
407         .m1 = { .min = 2, .max = 2 },
408         .m2 = { .min = 24 << 22, .max = 175 << 22 },
409         .p1 = { .min = 2, .max = 4 },
410         .p2 = { .p2_slow = 1, .p2_fast = 14 },
411 };
412
413 static const intel_limit_t intel_limits_bxt = {
414         /* FIXME: find real dot limits */
415         .dot = { .min = 0, .max = INT_MAX },
416         .vco = { .min = 4800000, .max = 6480000 },
417         .n = { .min = 1, .max = 1 },
418         .m1 = { .min = 2, .max = 2 },
419         /* FIXME: find real m2 limits */
420         .m2 = { .min = 2 << 22, .max = 255 << 22 },
421         .p1 = { .min = 2, .max = 4 },
422         .p2 = { .p2_slow = 1, .p2_fast = 20 },
423 };
424
425 static void vlv_clock(int refclk, intel_clock_t *clock)
426 {
427         clock->m = clock->m1 * clock->m2;
428         clock->p = clock->p1 * clock->p2;
429         if (WARN_ON(clock->n == 0 || clock->p == 0))
430                 return;
431         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
432         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
433 }
434
435 /**
436  * Returns whether any output on the specified pipe is of the specified type
437  */
438 bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
439 {
440         struct drm_device *dev = crtc->base.dev;
441         struct intel_encoder *encoder;
442
443         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
444                 if (encoder->type == type)
445                         return true;
446
447         return false;
448 }
449
450 /**
451  * Returns whether any output on the specified pipe will have the specified
452  * type after a staged modeset is complete, i.e., the same as
453  * intel_pipe_has_type() but looking at encoder->new_crtc instead of
454  * encoder->crtc.
455  */
456 static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
457                                       int type)
458 {
459         struct drm_atomic_state *state = crtc_state->base.state;
460         struct drm_connector *connector;
461         struct drm_connector_state *connector_state;
462         struct intel_encoder *encoder;
463         int i, num_connectors = 0;
464
465         for_each_connector_in_state(state, connector, connector_state, i) {
466                 if (connector_state->crtc != crtc_state->base.crtc)
467                         continue;
468
469                 num_connectors++;
470
471                 encoder = to_intel_encoder(connector_state->best_encoder);
472                 if (encoder->type == type)
473                         return true;
474         }
475
476         WARN_ON(num_connectors == 0);
477
478         return false;
479 }
480
481 static const intel_limit_t *
482 intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
483 {
484         struct drm_device *dev = crtc_state->base.crtc->dev;
485         const intel_limit_t *limit;
486
487         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
488                 if (intel_is_dual_link_lvds(dev)) {
489                         if (refclk == 100000)
490                                 limit = &intel_limits_ironlake_dual_lvds_100m;
491                         else
492                                 limit = &intel_limits_ironlake_dual_lvds;
493                 } else {
494                         if (refclk == 100000)
495                                 limit = &intel_limits_ironlake_single_lvds_100m;
496                         else
497                                 limit = &intel_limits_ironlake_single_lvds;
498                 }
499         } else
500                 limit = &intel_limits_ironlake_dac;
501
502         return limit;
503 }
504
505 static const intel_limit_t *
506 intel_g4x_limit(struct intel_crtc_state *crtc_state)
507 {
508         struct drm_device *dev = crtc_state->base.crtc->dev;
509         const intel_limit_t *limit;
510
511         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
512                 if (intel_is_dual_link_lvds(dev))
513                         limit = &intel_limits_g4x_dual_channel_lvds;
514                 else
515                         limit = &intel_limits_g4x_single_channel_lvds;
516         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
517                    intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
518                 limit = &intel_limits_g4x_hdmi;
519         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
520                 limit = &intel_limits_g4x_sdvo;
521         } else /* The option is for other outputs */
522                 limit = &intel_limits_i9xx_sdvo;
523
524         return limit;
525 }
526
527 static const intel_limit_t *
528 intel_limit(struct intel_crtc_state *crtc_state, int refclk)
529 {
530         struct drm_device *dev = crtc_state->base.crtc->dev;
531         const intel_limit_t *limit;
532
533         if (IS_BROXTON(dev))
534                 limit = &intel_limits_bxt;
535         else if (HAS_PCH_SPLIT(dev))
536                 limit = intel_ironlake_limit(crtc_state, refclk);
537         else if (IS_G4X(dev)) {
538                 limit = intel_g4x_limit(crtc_state);
539         } else if (IS_PINEVIEW(dev)) {
540                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
541                         limit = &intel_limits_pineview_lvds;
542                 else
543                         limit = &intel_limits_pineview_sdvo;
544         } else if (IS_CHERRYVIEW(dev)) {
545                 limit = &intel_limits_chv;
546         } else if (IS_VALLEYVIEW(dev)) {
547                 limit = &intel_limits_vlv;
548         } else if (!IS_GEN2(dev)) {
549                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
550                         limit = &intel_limits_i9xx_lvds;
551                 else
552                         limit = &intel_limits_i9xx_sdvo;
553         } else {
554                 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
555                         limit = &intel_limits_i8xx_lvds;
556                 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
557                         limit = &intel_limits_i8xx_dvo;
558                 else
559                         limit = &intel_limits_i8xx_dac;
560         }
561         return limit;
562 }
563
564 /* m1 is reserved as 0 in Pineview, n is a ring counter */
565 static void pineview_clock(int refclk, intel_clock_t *clock)
566 {
567         clock->m = clock->m2 + 2;
568         clock->p = clock->p1 * clock->p2;
569         if (WARN_ON(clock->n == 0 || clock->p == 0))
570                 return;
571         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
572         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
573 }
574
575 static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
576 {
577         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
578 }
579
580 static void i9xx_clock(int refclk, intel_clock_t *clock)
581 {
582         clock->m = i9xx_dpll_compute_m(clock);
583         clock->p = clock->p1 * clock->p2;
584         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
585                 return;
586         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
587         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
588 }
589
590 static void chv_clock(int refclk, intel_clock_t *clock)
591 {
592         clock->m = clock->m1 * clock->m2;
593         clock->p = clock->p1 * clock->p2;
594         if (WARN_ON(clock->n == 0 || clock->p == 0))
595                 return;
596         clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
597                         clock->n << 22);
598         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
599 }
600
601 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
602 /**
603  * Returns whether the given set of divisors are valid for a given refclk with
604  * the given connectors.
605  */
606
607 static bool intel_PLL_is_valid(struct drm_device *dev,
608                                const intel_limit_t *limit,
609                                const intel_clock_t *clock)
610 {
611         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
612                 INTELPllInvalid("n out of range\n");
613         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
614                 INTELPllInvalid("p1 out of range\n");
615         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
616                 INTELPllInvalid("m2 out of range\n");
617         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
618                 INTELPllInvalid("m1 out of range\n");
619
620         if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
621                 if (clock->m1 <= clock->m2)
622                         INTELPllInvalid("m1 <= m2\n");
623
624         if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
625                 if (clock->p < limit->p.min || limit->p.max < clock->p)
626                         INTELPllInvalid("p out of range\n");
627                 if (clock->m < limit->m.min || limit->m.max < clock->m)
628                         INTELPllInvalid("m out of range\n");
629         }
630
631         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
632                 INTELPllInvalid("vco out of range\n");
633         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
634          * connector, etc., rather than just a single range.
635          */
636         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
637                 INTELPllInvalid("dot out of range\n");
638
639         return true;
640 }
641
642 static bool
643 i9xx_find_best_dpll(const intel_limit_t *limit,
644                     struct intel_crtc_state *crtc_state,
645                     int target, int refclk, intel_clock_t *match_clock,
646                     intel_clock_t *best_clock)
647 {
648         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
649         struct drm_device *dev = crtc->base.dev;
650         intel_clock_t clock;
651         int err = target;
652
653         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
654                 /*
655                  * For LVDS just rely on its current settings for dual-channel.
656                  * We haven't figured out how to reliably set up different
657                  * single/dual channel state, if we even can.
658                  */
659                 if (intel_is_dual_link_lvds(dev))
660                         clock.p2 = limit->p2.p2_fast;
661                 else
662                         clock.p2 = limit->p2.p2_slow;
663         } else {
664                 if (target < limit->p2.dot_limit)
665                         clock.p2 = limit->p2.p2_slow;
666                 else
667                         clock.p2 = limit->p2.p2_fast;
668         }
669
670         memset(best_clock, 0, sizeof(*best_clock));
671
672         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
673              clock.m1++) {
674                 for (clock.m2 = limit->m2.min;
675                      clock.m2 <= limit->m2.max; clock.m2++) {
676                         if (clock.m2 >= clock.m1)
677                                 break;
678                         for (clock.n = limit->n.min;
679                              clock.n <= limit->n.max; clock.n++) {
680                                 for (clock.p1 = limit->p1.min;
681                                         clock.p1 <= limit->p1.max; clock.p1++) {
682                                         int this_err;
683
684                                         i9xx_clock(refclk, &clock);
685                                         if (!intel_PLL_is_valid(dev, limit,
686                                                                 &clock))
687                                                 continue;
688                                         if (match_clock &&
689                                             clock.p != match_clock->p)
690                                                 continue;
691
692                                         this_err = abs(clock.dot - target);
693                                         if (this_err < err) {
694                                                 *best_clock = clock;
695                                                 err = this_err;
696                                         }
697                                 }
698                         }
699                 }
700         }
701
702         return (err != target);
703 }
704
705 static bool
706 pnv_find_best_dpll(const intel_limit_t *limit,
707                    struct intel_crtc_state *crtc_state,
708                    int target, int refclk, intel_clock_t *match_clock,
709                    intel_clock_t *best_clock)
710 {
711         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
712         struct drm_device *dev = crtc->base.dev;
713         intel_clock_t clock;
714         int err = target;
715
716         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
717                 /*
718                  * For LVDS just rely on its current settings for dual-channel.
719                  * We haven't figured out how to reliably set up different
720                  * single/dual channel state, if we even can.
721                  */
722                 if (intel_is_dual_link_lvds(dev))
723                         clock.p2 = limit->p2.p2_fast;
724                 else
725                         clock.p2 = limit->p2.p2_slow;
726         } else {
727                 if (target < limit->p2.dot_limit)
728                         clock.p2 = limit->p2.p2_slow;
729                 else
730                         clock.p2 = limit->p2.p2_fast;
731         }
732
733         memset(best_clock, 0, sizeof(*best_clock));
734
735         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
736              clock.m1++) {
737                 for (clock.m2 = limit->m2.min;
738                      clock.m2 <= limit->m2.max; clock.m2++) {
739                         for (clock.n = limit->n.min;
740                              clock.n <= limit->n.max; clock.n++) {
741                                 for (clock.p1 = limit->p1.min;
742                                         clock.p1 <= limit->p1.max; clock.p1++) {
743                                         int this_err;
744
745                                         pineview_clock(refclk, &clock);
746                                         if (!intel_PLL_is_valid(dev, limit,
747                                                                 &clock))
748                                                 continue;
749                                         if (match_clock &&
750                                             clock.p != match_clock->p)
751                                                 continue;
752
753                                         this_err = abs(clock.dot - target);
754                                         if (this_err < err) {
755                                                 *best_clock = clock;
756                                                 err = this_err;
757                                         }
758                                 }
759                         }
760                 }
761         }
762
763         return (err != target);
764 }
765
766 static bool
767 g4x_find_best_dpll(const intel_limit_t *limit,
768                    struct intel_crtc_state *crtc_state,
769                    int target, int refclk, intel_clock_t *match_clock,
770                    intel_clock_t *best_clock)
771 {
772         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
773         struct drm_device *dev = crtc->base.dev;
774         intel_clock_t clock;
775         int max_n;
776         bool found;
777         /* approximately equals target * 0.00585 */
778         int err_most = (target >> 8) + (target >> 9);
779         found = false;
780
781         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
782                 if (intel_is_dual_link_lvds(dev))
783                         clock.p2 = limit->p2.p2_fast;
784                 else
785                         clock.p2 = limit->p2.p2_slow;
786         } else {
787                 if (target < limit->p2.dot_limit)
788                         clock.p2 = limit->p2.p2_slow;
789                 else
790                         clock.p2 = limit->p2.p2_fast;
791         }
792
793         memset(best_clock, 0, sizeof(*best_clock));
794         max_n = limit->n.max;
795         /* based on hardware requirement, prefer smaller n to precision */
796         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
797                 /* based on hardware requirement, prefere larger m1,m2 */
798                 for (clock.m1 = limit->m1.max;
799                      clock.m1 >= limit->m1.min; clock.m1--) {
800                         for (clock.m2 = limit->m2.max;
801                              clock.m2 >= limit->m2.min; clock.m2--) {
802                                 for (clock.p1 = limit->p1.max;
803                                      clock.p1 >= limit->p1.min; clock.p1--) {
804                                         int this_err;
805
806                                         i9xx_clock(refclk, &clock);
807                                         if (!intel_PLL_is_valid(dev, limit,
808                                                                 &clock))
809                                                 continue;
810
811                                         this_err = abs(clock.dot - target);
812                                         if (this_err < err_most) {
813                                                 *best_clock = clock;
814                                                 err_most = this_err;
815                                                 max_n = clock.n;
816                                                 found = true;
817                                         }
818                                 }
819                         }
820                 }
821         }
822         return found;
823 }
824
825 /*
826  * Check if the calculated PLL configuration is more optimal compared to the
827  * best configuration and error found so far. Return the calculated error.
828  */
829 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
830                                const intel_clock_t *calculated_clock,
831                                const intel_clock_t *best_clock,
832                                unsigned int best_error_ppm,
833                                unsigned int *error_ppm)
834 {
835         /*
836          * For CHV ignore the error and consider only the P value.
837          * Prefer a bigger P value based on HW requirements.
838          */
839         if (IS_CHERRYVIEW(dev)) {
840                 *error_ppm = 0;
841
842                 return calculated_clock->p > best_clock->p;
843         }
844
845         if (WARN_ON_ONCE(!target_freq))
846                 return false;
847
848         *error_ppm = div_u64(1000000ULL *
849                                 abs(target_freq - calculated_clock->dot),
850                              target_freq);
851         /*
852          * Prefer a better P value over a better (smaller) error if the error
853          * is small. Ensure this preference for future configurations too by
854          * setting the error to 0.
855          */
856         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
857                 *error_ppm = 0;
858
859                 return true;
860         }
861
862         return *error_ppm + 10 < best_error_ppm;
863 }
864
865 static bool
866 vlv_find_best_dpll(const intel_limit_t *limit,
867                    struct intel_crtc_state *crtc_state,
868                    int target, int refclk, intel_clock_t *match_clock,
869                    intel_clock_t *best_clock)
870 {
871         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
872         struct drm_device *dev = crtc->base.dev;
873         intel_clock_t clock;
874         unsigned int bestppm = 1000000;
875         /* min update 19.2 MHz */
876         int max_n = min(limit->n.max, refclk / 19200);
877         bool found = false;
878
879         target *= 5; /* fast clock */
880
881         memset(best_clock, 0, sizeof(*best_clock));
882
883         /* based on hardware requirement, prefer smaller n to precision */
884         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
885                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
886                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
887                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
888                                 clock.p = clock.p1 * clock.p2;
889                                 /* based on hardware requirement, prefer bigger m1,m2 values */
890                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
891                                         unsigned int ppm;
892
893                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
894                                                                      refclk * clock.m1);
895
896                                         vlv_clock(refclk, &clock);
897
898                                         if (!intel_PLL_is_valid(dev, limit,
899                                                                 &clock))
900                                                 continue;
901
902                                         if (!vlv_PLL_is_optimal(dev, target,
903                                                                 &clock,
904                                                                 best_clock,
905                                                                 bestppm, &ppm))
906                                                 continue;
907
908                                         *best_clock = clock;
909                                         bestppm = ppm;
910                                         found = true;
911                                 }
912                         }
913                 }
914         }
915
916         return found;
917 }
918
919 static bool
920 chv_find_best_dpll(const intel_limit_t *limit,
921                    struct intel_crtc_state *crtc_state,
922                    int target, int refclk, intel_clock_t *match_clock,
923                    intel_clock_t *best_clock)
924 {
925         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
926         struct drm_device *dev = crtc->base.dev;
927         unsigned int best_error_ppm;
928         intel_clock_t clock;
929         uint64_t m2;
930         int found = false;
931
932         memset(best_clock, 0, sizeof(*best_clock));
933         best_error_ppm = 1000000;
934
935         /*
936          * Based on hardware doc, the n always set to 1, and m1 always
937          * set to 2.  If requires to support 200Mhz refclk, we need to
938          * revisit this because n may not 1 anymore.
939          */
940         clock.n = 1, clock.m1 = 2;
941         target *= 5;    /* fast clock */
942
943         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
944                 for (clock.p2 = limit->p2.p2_fast;
945                                 clock.p2 >= limit->p2.p2_slow;
946                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
947                         unsigned int error_ppm;
948
949                         clock.p = clock.p1 * clock.p2;
950
951                         m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
952                                         clock.n) << 22, refclk * clock.m1);
953
954                         if (m2 > INT_MAX/clock.m1)
955                                 continue;
956
957                         clock.m2 = m2;
958
959                         chv_clock(refclk, &clock);
960
961                         if (!intel_PLL_is_valid(dev, limit, &clock))
962                                 continue;
963
964                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
965                                                 best_error_ppm, &error_ppm))
966                                 continue;
967
968                         *best_clock = clock;
969                         best_error_ppm = error_ppm;
970                         found = true;
971                 }
972         }
973
974         return found;
975 }
976
977 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
978                         intel_clock_t *best_clock)
979 {
980         int refclk = i9xx_get_refclk(crtc_state, 0);
981
982         return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
983                                   target_clock, refclk, NULL, best_clock);
984 }
985
986 bool intel_crtc_active(struct drm_crtc *crtc)
987 {
988         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
989
990         /* Be paranoid as we can arrive here with only partial
991          * state retrieved from the hardware during setup.
992          *
993          * We can ditch the adjusted_mode.crtc_clock check as soon
994          * as Haswell has gained clock readout/fastboot support.
995          *
996          * We can ditch the crtc->primary->fb check as soon as we can
997          * properly reconstruct framebuffers.
998          *
999          * FIXME: The intel_crtc->active here should be switched to
1000          * crtc->state->active once we have proper CRTC states wired up
1001          * for atomic.
1002          */
1003         return intel_crtc->active && crtc->primary->state->fb &&
1004                 intel_crtc->config->base.adjusted_mode.crtc_clock;
1005 }
1006
1007 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1008                                              enum pipe pipe)
1009 {
1010         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1011         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1012
1013         return intel_crtc->config->cpu_transcoder;
1014 }
1015
1016 static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1017 {
1018         struct drm_i915_private *dev_priv = dev->dev_private;
1019         u32 reg = PIPEDSL(pipe);
1020         u32 line1, line2;
1021         u32 line_mask;
1022
1023         if (IS_GEN2(dev))
1024                 line_mask = DSL_LINEMASK_GEN2;
1025         else
1026                 line_mask = DSL_LINEMASK_GEN3;
1027
1028         line1 = I915_READ(reg) & line_mask;
1029         mdelay(5);
1030         line2 = I915_READ(reg) & line_mask;
1031
1032         return line1 == line2;
1033 }
1034
1035 /*
1036  * intel_wait_for_pipe_off - wait for pipe to turn off
1037  * @crtc: crtc whose pipe to wait for
1038  *
1039  * After disabling a pipe, we can't wait for vblank in the usual way,
1040  * spinning on the vblank interrupt status bit, since we won't actually
1041  * see an interrupt when the pipe is disabled.
1042  *
1043  * On Gen4 and above:
1044  *   wait for the pipe register state bit to turn off
1045  *
1046  * Otherwise:
1047  *   wait for the display line value to settle (it usually
1048  *   ends up stopping at the start of the next frame).
1049  *
1050  */
1051 static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1052 {
1053         struct drm_device *dev = crtc->base.dev;
1054         struct drm_i915_private *dev_priv = dev->dev_private;
1055         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1056         enum pipe pipe = crtc->pipe;
1057
1058         if (INTEL_INFO(dev)->gen >= 4) {
1059                 int reg = PIPECONF(cpu_transcoder);
1060
1061                 /* Wait for the Pipe State to go off */
1062                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1063                              100))
1064                         WARN(1, "pipe_off wait timed out\n");
1065         } else {
1066                 /* Wait for the display line to settle */
1067                 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1068                         WARN(1, "pipe_off wait timed out\n");
1069         }
1070 }
1071
1072 /*
1073  * ibx_digital_port_connected - is the specified port connected?
1074  * @dev_priv: i915 private structure
1075  * @port: the port to test
1076  *
1077  * Returns true if @port is connected, false otherwise.
1078  */
1079 bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1080                                 struct intel_digital_port *port)
1081 {
1082         u32 bit;
1083
1084         if (HAS_PCH_IBX(dev_priv->dev)) {
1085                 switch (port->port) {
1086                 case PORT_B:
1087                         bit = SDE_PORTB_HOTPLUG;
1088                         break;
1089                 case PORT_C:
1090                         bit = SDE_PORTC_HOTPLUG;
1091                         break;
1092                 case PORT_D:
1093                         bit = SDE_PORTD_HOTPLUG;
1094                         break;
1095                 default:
1096                         return true;
1097                 }
1098         } else {
1099                 switch (port->port) {
1100                 case PORT_B:
1101                         bit = SDE_PORTB_HOTPLUG_CPT;
1102                         break;
1103                 case PORT_C:
1104                         bit = SDE_PORTC_HOTPLUG_CPT;
1105                         break;
1106                 case PORT_D:
1107                         bit = SDE_PORTD_HOTPLUG_CPT;
1108                         break;
1109                 default:
1110                         return true;
1111                 }
1112         }
1113
1114         return I915_READ(SDEISR) & bit;
1115 }
1116
1117 static const char *state_string(bool enabled)
1118 {
1119         return enabled ? "on" : "off";
1120 }
1121
1122 /* Only for pre-ILK configs */
1123 void assert_pll(struct drm_i915_private *dev_priv,
1124                 enum pipe pipe, bool state)
1125 {
1126         int reg;
1127         u32 val;
1128         bool cur_state;
1129
1130         reg = DPLL(pipe);
1131         val = I915_READ(reg);
1132         cur_state = !!(val & DPLL_VCO_ENABLE);
1133         I915_STATE_WARN(cur_state != state,
1134              "PLL state assertion failure (expected %s, current %s)\n",
1135              state_string(state), state_string(cur_state));
1136 }
1137
1138 /* XXX: the dsi pll is shared between MIPI DSI ports */
1139 static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1140 {
1141         u32 val;
1142         bool cur_state;
1143
1144         mutex_lock(&dev_priv->sb_lock);
1145         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1146         mutex_unlock(&dev_priv->sb_lock);
1147
1148         cur_state = val & DSI_PLL_VCO_EN;
1149         I915_STATE_WARN(cur_state != state,
1150              "DSI PLL state assertion failure (expected %s, current %s)\n",
1151              state_string(state), state_string(cur_state));
1152 }
1153 #define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1154 #define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1155
1156 struct intel_shared_dpll *
1157 intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1158 {
1159         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1160
1161         if (crtc->config->shared_dpll < 0)
1162                 return NULL;
1163
1164         return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1165 }
1166
1167 /* For ILK+ */
1168 void assert_shared_dpll(struct drm_i915_private *dev_priv,
1169                         struct intel_shared_dpll *pll,
1170                         bool state)
1171 {
1172         bool cur_state;
1173         struct intel_dpll_hw_state hw_state;
1174
1175         if (WARN (!pll,
1176                   "asserting DPLL %s with no DPLL\n", state_string(state)))
1177                 return;
1178
1179         cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1180         I915_STATE_WARN(cur_state != state,
1181              "%s assertion failure (expected %s, current %s)\n",
1182              pll->name, state_string(state), state_string(cur_state));
1183 }
1184
1185 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1186                           enum pipe pipe, bool state)
1187 {
1188         int reg;
1189         u32 val;
1190         bool cur_state;
1191         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1192                                                                       pipe);
1193
1194         if (HAS_DDI(dev_priv->dev)) {
1195                 /* DDI does not have a specific FDI_TX register */
1196                 reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1197                 val = I915_READ(reg);
1198                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1199         } else {
1200                 reg = FDI_TX_CTL(pipe);
1201                 val = I915_READ(reg);
1202                 cur_state = !!(val & FDI_TX_ENABLE);
1203         }
1204         I915_STATE_WARN(cur_state != state,
1205              "FDI TX state assertion failure (expected %s, current %s)\n",
1206              state_string(state), state_string(cur_state));
1207 }
1208 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1209 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1210
1211 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1212                           enum pipe pipe, bool state)
1213 {
1214         int reg;
1215         u32 val;
1216         bool cur_state;
1217
1218         reg = FDI_RX_CTL(pipe);
1219         val = I915_READ(reg);
1220         cur_state = !!(val & FDI_RX_ENABLE);
1221         I915_STATE_WARN(cur_state != state,
1222              "FDI RX state assertion failure (expected %s, current %s)\n",
1223              state_string(state), state_string(cur_state));
1224 }
1225 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1226 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1227
1228 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1229                                       enum pipe pipe)
1230 {
1231         int reg;
1232         u32 val;
1233
1234         /* ILK FDI PLL is always enabled */
1235         if (INTEL_INFO(dev_priv->dev)->gen == 5)
1236                 return;
1237
1238         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1239         if (HAS_DDI(dev_priv->dev))
1240                 return;
1241
1242         reg = FDI_TX_CTL(pipe);
1243         val = I915_READ(reg);
1244         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1245 }
1246
1247 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1248                        enum pipe pipe, bool state)
1249 {
1250         int reg;
1251         u32 val;
1252         bool cur_state;
1253
1254         reg = FDI_RX_CTL(pipe);
1255         val = I915_READ(reg);
1256         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1257         I915_STATE_WARN(cur_state != state,
1258              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1259              state_string(state), state_string(cur_state));
1260 }
1261
1262 void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1263                            enum pipe pipe)
1264 {
1265         struct drm_device *dev = dev_priv->dev;
1266         int pp_reg;
1267         u32 val;
1268         enum pipe panel_pipe = PIPE_A;
1269         bool locked = true;
1270
1271         if (WARN_ON(HAS_DDI(dev)))
1272                 return;
1273
1274         if (HAS_PCH_SPLIT(dev)) {
1275                 u32 port_sel;
1276
1277                 pp_reg = PCH_PP_CONTROL;
1278                 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1279
1280                 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1281                     I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1282                         panel_pipe = PIPE_B;
1283                 /* XXX: else fix for eDP */
1284         } else if (IS_VALLEYVIEW(dev)) {
1285                 /* presumably write lock depends on pipe, not port select */
1286                 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1287                 panel_pipe = pipe;
1288         } else {
1289                 pp_reg = PP_CONTROL;
1290                 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1291                         panel_pipe = PIPE_B;
1292         }
1293
1294         val = I915_READ(pp_reg);
1295         if (!(val & PANEL_POWER_ON) ||
1296             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1297                 locked = false;
1298
1299         I915_STATE_WARN(panel_pipe == pipe && locked,
1300              "panel assertion failure, pipe %c regs locked\n",
1301              pipe_name(pipe));
1302 }
1303
1304 static void assert_cursor(struct drm_i915_private *dev_priv,
1305                           enum pipe pipe, bool state)
1306 {
1307         struct drm_device *dev = dev_priv->dev;
1308         bool cur_state;
1309
1310         if (IS_845G(dev) || IS_I865G(dev))
1311                 cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1312         else
1313                 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1314
1315         I915_STATE_WARN(cur_state != state,
1316              "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1317              pipe_name(pipe), state_string(state), state_string(cur_state));
1318 }
1319 #define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1320 #define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1321
1322 void assert_pipe(struct drm_i915_private *dev_priv,
1323                  enum pipe pipe, bool state)
1324 {
1325         int reg;
1326         u32 val;
1327         bool cur_state;
1328         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1329                                                                       pipe);
1330
1331         /* if we need the pipe quirk it must be always on */
1332         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1333             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1334                 state = true;
1335
1336         if (!intel_display_power_is_enabled(dev_priv,
1337                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1338                 cur_state = false;
1339         } else {
1340                 reg = PIPECONF(cpu_transcoder);
1341                 val = I915_READ(reg);
1342                 cur_state = !!(val & PIPECONF_ENABLE);
1343         }
1344
1345         I915_STATE_WARN(cur_state != state,
1346              "pipe %c assertion failure (expected %s, current %s)\n",
1347              pipe_name(pipe), state_string(state), state_string(cur_state));
1348 }
1349
1350 static void assert_plane(struct drm_i915_private *dev_priv,
1351                          enum plane plane, bool state)
1352 {
1353         int reg;
1354         u32 val;
1355         bool cur_state;
1356
1357         reg = DSPCNTR(plane);
1358         val = I915_READ(reg);
1359         cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1360         I915_STATE_WARN(cur_state != state,
1361              "plane %c assertion failure (expected %s, current %s)\n",
1362              plane_name(plane), state_string(state), state_string(cur_state));
1363 }
1364
1365 #define assert_plane_enabled(d, p) assert_plane(d, p, true)
1366 #define assert_plane_disabled(d, p) assert_plane(d, p, false)
1367
1368 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1369                                    enum pipe pipe)
1370 {
1371         struct drm_device *dev = dev_priv->dev;
1372         int reg, i;
1373         u32 val;
1374         int cur_pipe;
1375
1376         /* Primary planes are fixed to pipes on gen4+ */
1377         if (INTEL_INFO(dev)->gen >= 4) {
1378                 reg = DSPCNTR(pipe);
1379                 val = I915_READ(reg);
1380                 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1381                      "plane %c assertion failure, should be disabled but not\n",
1382                      plane_name(pipe));
1383                 return;
1384         }
1385
1386         /* Need to check both planes against the pipe */
1387         for_each_pipe(dev_priv, i) {
1388                 reg = DSPCNTR(i);
1389                 val = I915_READ(reg);
1390                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1391                         DISPPLANE_SEL_PIPE_SHIFT;
1392                 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1393                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
1394                      plane_name(i), pipe_name(pipe));
1395         }
1396 }
1397
1398 static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1399                                     enum pipe pipe)
1400 {
1401         struct drm_device *dev = dev_priv->dev;
1402         int reg, sprite;
1403         u32 val;
1404
1405         if (INTEL_INFO(dev)->gen >= 9) {
1406                 for_each_sprite(dev_priv, pipe, sprite) {
1407                         val = I915_READ(PLANE_CTL(pipe, sprite));
1408                         I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1409                              "plane %d assertion failure, should be off on pipe %c but is still active\n",
1410                              sprite, pipe_name(pipe));
1411                 }
1412         } else if (IS_VALLEYVIEW(dev)) {
1413                 for_each_sprite(dev_priv, pipe, sprite) {
1414                         reg = SPCNTR(pipe, sprite);
1415                         val = I915_READ(reg);
1416                         I915_STATE_WARN(val & SP_ENABLE,
1417                              "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1418                              sprite_name(pipe, sprite), pipe_name(pipe));
1419                 }
1420         } else if (INTEL_INFO(dev)->gen >= 7) {
1421                 reg = SPRCTL(pipe);
1422                 val = I915_READ(reg);
1423                 I915_STATE_WARN(val & SPRITE_ENABLE,
1424                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1425                      plane_name(pipe), pipe_name(pipe));
1426         } else if (INTEL_INFO(dev)->gen >= 5) {
1427                 reg = DVSCNTR(pipe);
1428                 val = I915_READ(reg);
1429                 I915_STATE_WARN(val & DVS_ENABLE,
1430                      "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1431                      plane_name(pipe), pipe_name(pipe));
1432         }
1433 }
1434
1435 static void assert_vblank_disabled(struct drm_crtc *crtc)
1436 {
1437         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1438                 drm_crtc_vblank_put(crtc);
1439 }
1440
1441 static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1442 {
1443         u32 val;
1444         bool enabled;
1445
1446         I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1447
1448         val = I915_READ(PCH_DREF_CONTROL);
1449         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1450                             DREF_SUPERSPREAD_SOURCE_MASK));
1451         I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1452 }
1453
1454 static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1455                                            enum pipe pipe)
1456 {
1457         int reg;
1458         u32 val;
1459         bool enabled;
1460
1461         reg = PCH_TRANSCONF(pipe);
1462         val = I915_READ(reg);
1463         enabled = !!(val & TRANS_ENABLE);
1464         I915_STATE_WARN(enabled,
1465              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1466              pipe_name(pipe));
1467 }
1468
1469 static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1470                             enum pipe pipe, u32 port_sel, u32 val)
1471 {
1472         if ((val & DP_PORT_EN) == 0)
1473                 return false;
1474
1475         if (HAS_PCH_CPT(dev_priv->dev)) {
1476                 u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1477                 u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1478                 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1479                         return false;
1480         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1481                 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1482                         return false;
1483         } else {
1484                 if ((val & DP_PIPE_MASK) != (pipe << 30))
1485                         return false;
1486         }
1487         return true;
1488 }
1489
1490 static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1491                               enum pipe pipe, u32 val)
1492 {
1493         if ((val & SDVO_ENABLE) == 0)
1494                 return false;
1495
1496         if (HAS_PCH_CPT(dev_priv->dev)) {
1497                 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1498                         return false;
1499         } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1500                 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1501                         return false;
1502         } else {
1503                 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1504                         return false;
1505         }
1506         return true;
1507 }
1508
1509 static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1510                               enum pipe pipe, u32 val)
1511 {
1512         if ((val & LVDS_PORT_EN) == 0)
1513                 return false;
1514
1515         if (HAS_PCH_CPT(dev_priv->dev)) {
1516                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1517                         return false;
1518         } else {
1519                 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1520                         return false;
1521         }
1522         return true;
1523 }
1524
1525 static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1526                               enum pipe pipe, u32 val)
1527 {
1528         if ((val & ADPA_DAC_ENABLE) == 0)
1529                 return false;
1530         if (HAS_PCH_CPT(dev_priv->dev)) {
1531                 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1532                         return false;
1533         } else {
1534                 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1535                         return false;
1536         }
1537         return true;
1538 }
1539
1540 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1541                                    enum pipe pipe, int reg, u32 port_sel)
1542 {
1543         u32 val = I915_READ(reg);
1544         I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1545              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1546              reg, pipe_name(pipe));
1547
1548         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1549              && (val & DP_PIPEB_SELECT),
1550              "IBX PCH dp port still using transcoder B\n");
1551 }
1552
1553 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1554                                      enum pipe pipe, int reg)
1555 {
1556         u32 val = I915_READ(reg);
1557         I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1558              "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1559              reg, pipe_name(pipe));
1560
1561         I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1562              && (val & SDVO_PIPE_B_SELECT),
1563              "IBX PCH hdmi port still using transcoder B\n");
1564 }
1565
1566 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1567                                       enum pipe pipe)
1568 {
1569         int reg;
1570         u32 val;
1571
1572         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1573         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1574         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1575
1576         reg = PCH_ADPA;
1577         val = I915_READ(reg);
1578         I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1579              "PCH VGA enabled on transcoder %c, should be disabled\n",
1580              pipe_name(pipe));
1581
1582         reg = PCH_LVDS;
1583         val = I915_READ(reg);
1584         I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1585              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1586              pipe_name(pipe));
1587
1588         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1589         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1590         assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1591 }
1592
1593 static void intel_init_dpio(struct drm_device *dev)
1594 {
1595         struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597         if (!IS_VALLEYVIEW(dev))
1598                 return;
1599
1600         /*
1601          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1602          * CHV x1 PHY (DP/HDMI D)
1603          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1604          */
1605         if (IS_CHERRYVIEW(dev)) {
1606                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1607                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1608         } else {
1609                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1610         }
1611 }
1612
1613 static void vlv_enable_pll(struct intel_crtc *crtc,
1614                            const struct intel_crtc_state *pipe_config)
1615 {
1616         struct drm_device *dev = crtc->base.dev;
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         int reg = DPLL(crtc->pipe);
1619         u32 dpll = pipe_config->dpll_hw_state.dpll;
1620
1621         assert_pipe_disabled(dev_priv, crtc->pipe);
1622
1623         /* No really, not for ILK+ */
1624         BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1625
1626         /* PLL is protected by panel, make sure we can write it */
1627         if (IS_MOBILE(dev_priv->dev))
1628                 assert_panel_unlocked(dev_priv, crtc->pipe);
1629
1630         I915_WRITE(reg, dpll);
1631         POSTING_READ(reg);
1632         udelay(150);
1633
1634         if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1635                 DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1636
1637         I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1638         POSTING_READ(DPLL_MD(crtc->pipe));
1639
1640         /* We do this three times for luck */
1641         I915_WRITE(reg, dpll);
1642         POSTING_READ(reg);
1643         udelay(150); /* wait for warmup */
1644         I915_WRITE(reg, dpll);
1645         POSTING_READ(reg);
1646         udelay(150); /* wait for warmup */
1647         I915_WRITE(reg, dpll);
1648         POSTING_READ(reg);
1649         udelay(150); /* wait for warmup */
1650 }
1651
1652 static void chv_enable_pll(struct intel_crtc *crtc,
1653                            const struct intel_crtc_state *pipe_config)
1654 {
1655         struct drm_device *dev = crtc->base.dev;
1656         struct drm_i915_private *dev_priv = dev->dev_private;
1657         int pipe = crtc->pipe;
1658         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1659         u32 tmp;
1660
1661         assert_pipe_disabled(dev_priv, crtc->pipe);
1662
1663         BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1664
1665         mutex_lock(&dev_priv->sb_lock);
1666
1667         /* Enable back the 10bit clock to display controller */
1668         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1669         tmp |= DPIO_DCLKP_EN;
1670         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1671
1672         mutex_unlock(&dev_priv->sb_lock);
1673
1674         /*
1675          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1676          */
1677         udelay(1);
1678
1679         /* Enable PLL */
1680         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1681
1682         /* Check PLL is locked */
1683         if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1684                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1685
1686         /* not sure when this should be written */
1687         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1688         POSTING_READ(DPLL_MD(pipe));
1689 }
1690
1691 static int intel_num_dvo_pipes(struct drm_device *dev)
1692 {
1693         struct intel_crtc *crtc;
1694         int count = 0;
1695
1696         for_each_intel_crtc(dev, crtc)
1697                 count += crtc->active &&
1698                         intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1699
1700         return count;
1701 }
1702
1703 static void i9xx_enable_pll(struct intel_crtc *crtc)
1704 {
1705         struct drm_device *dev = crtc->base.dev;
1706         struct drm_i915_private *dev_priv = dev->dev_private;
1707         int reg = DPLL(crtc->pipe);
1708         u32 dpll = crtc->config->dpll_hw_state.dpll;
1709
1710         assert_pipe_disabled(dev_priv, crtc->pipe);
1711
1712         /* No really, not for ILK+ */
1713         BUG_ON(INTEL_INFO(dev)->gen >= 5);
1714
1715         /* PLL is protected by panel, make sure we can write it */
1716         if (IS_MOBILE(dev) && !IS_I830(dev))
1717                 assert_panel_unlocked(dev_priv, crtc->pipe);
1718
1719         /* Enable DVO 2x clock on both PLLs if necessary */
1720         if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1721                 /*
1722                  * It appears to be important that we don't enable this
1723                  * for the current pipe before otherwise configuring the
1724                  * PLL. No idea how this should be handled if multiple
1725                  * DVO outputs are enabled simultaneosly.
1726                  */
1727                 dpll |= DPLL_DVO_2X_MODE;
1728                 I915_WRITE(DPLL(!crtc->pipe),
1729                            I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1730         }
1731
1732         /* Wait for the clocks to stabilize. */
1733         POSTING_READ(reg);
1734         udelay(150);
1735
1736         if (INTEL_INFO(dev)->gen >= 4) {
1737                 I915_WRITE(DPLL_MD(crtc->pipe),
1738                            crtc->config->dpll_hw_state.dpll_md);
1739         } else {
1740                 /* The pixel multiplier can only be updated once the
1741                  * DPLL is enabled and the clocks are stable.
1742                  *
1743                  * So write it again.
1744                  */
1745                 I915_WRITE(reg, dpll);
1746         }
1747
1748         /* We do this three times for luck */
1749         I915_WRITE(reg, dpll);
1750         POSTING_READ(reg);
1751         udelay(150); /* wait for warmup */
1752         I915_WRITE(reg, dpll);
1753         POSTING_READ(reg);
1754         udelay(150); /* wait for warmup */
1755         I915_WRITE(reg, dpll);
1756         POSTING_READ(reg);
1757         udelay(150); /* wait for warmup */
1758 }
1759
1760 /**
1761  * i9xx_disable_pll - disable a PLL
1762  * @dev_priv: i915 private structure
1763  * @pipe: pipe PLL to disable
1764  *
1765  * Disable the PLL for @pipe, making sure the pipe is off first.
1766  *
1767  * Note!  This is for pre-ILK only.
1768  */
1769 static void i9xx_disable_pll(struct intel_crtc *crtc)
1770 {
1771         struct drm_device *dev = crtc->base.dev;
1772         struct drm_i915_private *dev_priv = dev->dev_private;
1773         enum pipe pipe = crtc->pipe;
1774
1775         /* Disable DVO 2x clock on both PLLs if necessary */
1776         if (IS_I830(dev) &&
1777             intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1778             intel_num_dvo_pipes(dev) == 1) {
1779                 I915_WRITE(DPLL(PIPE_B),
1780                            I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1781                 I915_WRITE(DPLL(PIPE_A),
1782                            I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1783         }
1784
1785         /* Don't disable pipe or pipe PLLs if needed */
1786         if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1787             (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1788                 return;
1789
1790         /* Make sure the pipe isn't still relying on us */
1791         assert_pipe_disabled(dev_priv, pipe);
1792
1793         I915_WRITE(DPLL(pipe), 0);
1794         POSTING_READ(DPLL(pipe));
1795 }
1796
1797 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1798 {
1799         u32 val = 0;
1800
1801         /* Make sure the pipe isn't still relying on us */
1802         assert_pipe_disabled(dev_priv, pipe);
1803
1804         /*
1805          * Leave integrated clock source and reference clock enabled for pipe B.
1806          * The latter is needed for VGA hotplug / manual detection.
1807          */
1808         if (pipe == PIPE_B)
1809                 val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1810         I915_WRITE(DPLL(pipe), val);
1811         POSTING_READ(DPLL(pipe));
1812
1813 }
1814
1815 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1816 {
1817         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1818         u32 val;
1819
1820         /* Make sure the pipe isn't still relying on us */
1821         assert_pipe_disabled(dev_priv, pipe);
1822
1823         /* Set PLL en = 0 */
1824         val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1825         if (pipe != PIPE_A)
1826                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1827         I915_WRITE(DPLL(pipe), val);
1828         POSTING_READ(DPLL(pipe));
1829
1830         mutex_lock(&dev_priv->sb_lock);
1831
1832         /* Disable 10bit clock to display controller */
1833         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1834         val &= ~DPIO_DCLKP_EN;
1835         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1836
1837         /* disable left/right clock distribution */
1838         if (pipe != PIPE_B) {
1839                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1840                 val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1841                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1842         } else {
1843                 val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1844                 val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1845                 vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1846         }
1847
1848         mutex_unlock(&dev_priv->sb_lock);
1849 }
1850
1851 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1852                          struct intel_digital_port *dport,
1853                          unsigned int expected_mask)
1854 {
1855         u32 port_mask;
1856         int dpll_reg;
1857
1858         switch (dport->port) {
1859         case PORT_B:
1860                 port_mask = DPLL_PORTB_READY_MASK;
1861                 dpll_reg = DPLL(0);
1862                 break;
1863         case PORT_C:
1864                 port_mask = DPLL_PORTC_READY_MASK;
1865                 dpll_reg = DPLL(0);
1866                 expected_mask <<= 4;
1867                 break;
1868         case PORT_D:
1869                 port_mask = DPLL_PORTD_READY_MASK;
1870                 dpll_reg = DPIO_PHY_STATUS;
1871                 break;
1872         default:
1873                 BUG();
1874         }
1875
1876         if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1877                 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1878                      port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1879 }
1880
1881 static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1882 {
1883         struct drm_device *dev = crtc->base.dev;
1884         struct drm_i915_private *dev_priv = dev->dev_private;
1885         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1886
1887         if (WARN_ON(pll == NULL))
1888                 return;
1889
1890         WARN_ON(!pll->config.crtc_mask);
1891         if (pll->active == 0) {
1892                 DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1893                 WARN_ON(pll->on);
1894                 assert_shared_dpll_disabled(dev_priv, pll);
1895
1896                 pll->mode_set(dev_priv, pll);
1897         }
1898 }
1899
1900 /**
1901  * intel_enable_shared_dpll - enable PCH PLL
1902  * @dev_priv: i915 private structure
1903  * @pipe: pipe PLL to enable
1904  *
1905  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1906  * drives the transcoder clock.
1907  */
1908 static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1909 {
1910         struct drm_device *dev = crtc->base.dev;
1911         struct drm_i915_private *dev_priv = dev->dev_private;
1912         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1913
1914         if (WARN_ON(pll == NULL))
1915                 return;
1916
1917         if (WARN_ON(pll->config.crtc_mask == 0))
1918                 return;
1919
1920         DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1921                       pll->name, pll->active, pll->on,
1922                       crtc->base.base.id);
1923
1924         if (pll->active++) {
1925                 WARN_ON(!pll->on);
1926                 assert_shared_dpll_enabled(dev_priv, pll);
1927                 return;
1928         }
1929         WARN_ON(pll->on);
1930
1931         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1932
1933         DRM_DEBUG_KMS("enabling %s\n", pll->name);
1934         pll->enable(dev_priv, pll);
1935         pll->on = true;
1936 }
1937
1938 static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1939 {
1940         struct drm_device *dev = crtc->base.dev;
1941         struct drm_i915_private *dev_priv = dev->dev_private;
1942         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1943
1944         /* PCH only available on ILK+ */
1945         BUG_ON(INTEL_INFO(dev)->gen < 5);
1946         if (WARN_ON(pll == NULL))
1947                return;
1948
1949         if (WARN_ON(pll->config.crtc_mask == 0))
1950                 return;
1951
1952         DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1953                       pll->name, pll->active, pll->on,
1954                       crtc->base.base.id);
1955
1956         if (WARN_ON(pll->active == 0)) {
1957                 assert_shared_dpll_disabled(dev_priv, pll);
1958                 return;
1959         }
1960
1961         assert_shared_dpll_enabled(dev_priv, pll);
1962         WARN_ON(!pll->on);
1963         if (--pll->active)
1964                 return;
1965
1966         DRM_DEBUG_KMS("disabling %s\n", pll->name);
1967         pll->disable(dev_priv, pll);
1968         pll->on = false;
1969
1970         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1971 }
1972
1973 static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1974                                            enum pipe pipe)
1975 {
1976         struct drm_device *dev = dev_priv->dev;
1977         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1978         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1979         uint32_t reg, val, pipeconf_val;
1980
1981         /* PCH only available on ILK+ */
1982         BUG_ON(!HAS_PCH_SPLIT(dev));
1983
1984         /* Make sure PCH DPLL is enabled */
1985         assert_shared_dpll_enabled(dev_priv,
1986                                    intel_crtc_to_shared_dpll(intel_crtc));
1987
1988         /* FDI must be feeding us bits for PCH ports */
1989         assert_fdi_tx_enabled(dev_priv, pipe);
1990         assert_fdi_rx_enabled(dev_priv, pipe);
1991
1992         if (HAS_PCH_CPT(dev)) {
1993                 /* Workaround: Set the timing override bit before enabling the
1994                  * pch transcoder. */
1995                 reg = TRANS_CHICKEN2(pipe);
1996                 val = I915_READ(reg);
1997                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1998                 I915_WRITE(reg, val);
1999         }
2000
2001         reg = PCH_TRANSCONF(pipe);
2002         val = I915_READ(reg);
2003         pipeconf_val = I915_READ(PIPECONF(pipe));
2004
2005         if (HAS_PCH_IBX(dev_priv->dev)) {
2006                 /*
2007                  * make the BPC in transcoder be consistent with
2008                  * that in pipeconf reg.
2009                  */
2010                 val &= ~PIPECONF_BPC_MASK;
2011                 val |= pipeconf_val & PIPECONF_BPC_MASK;
2012         }
2013
2014         val &= ~TRANS_INTERLACE_MASK;
2015         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2016                 if (HAS_PCH_IBX(dev_priv->dev) &&
2017                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2018                         val |= TRANS_LEGACY_INTERLACED_ILK;
2019                 else
2020                         val |= TRANS_INTERLACED;
2021         else
2022                 val |= TRANS_PROGRESSIVE;
2023
2024         I915_WRITE(reg, val | TRANS_ENABLE);
2025         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2026                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2027 }
2028
2029 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2030                                       enum transcoder cpu_transcoder)
2031 {
2032         u32 val, pipeconf_val;
2033
2034         /* PCH only available on ILK+ */
2035         BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2036
2037         /* FDI must be feeding us bits for PCH ports */
2038         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2039         assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2040
2041         /* Workaround: set timing override bit. */
2042         val = I915_READ(_TRANSA_CHICKEN2);
2043         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2044         I915_WRITE(_TRANSA_CHICKEN2, val);
2045
2046         val = TRANS_ENABLE;
2047         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2048
2049         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2050             PIPECONF_INTERLACED_ILK)
2051                 val |= TRANS_INTERLACED;
2052         else
2053                 val |= TRANS_PROGRESSIVE;
2054
2055         I915_WRITE(LPT_TRANSCONF, val);
2056         if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2057                 DRM_ERROR("Failed to enable PCH transcoder\n");
2058 }
2059
2060 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2061                                             enum pipe pipe)
2062 {
2063         struct drm_device *dev = dev_priv->dev;
2064         uint32_t reg, val;
2065
2066         /* FDI relies on the transcoder */
2067         assert_fdi_tx_disabled(dev_priv, pipe);
2068         assert_fdi_rx_disabled(dev_priv, pipe);
2069
2070         /* Ports must be off as well */
2071         assert_pch_ports_disabled(dev_priv, pipe);
2072
2073         reg = PCH_TRANSCONF(pipe);
2074         val = I915_READ(reg);
2075         val &= ~TRANS_ENABLE;
2076         I915_WRITE(reg, val);
2077         /* wait for PCH transcoder off, transcoder state */
2078         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2079                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2080
2081         if (!HAS_PCH_IBX(dev)) {
2082                 /* Workaround: Clear the timing override chicken bit again. */
2083                 reg = TRANS_CHICKEN2(pipe);
2084                 val = I915_READ(reg);
2085                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2086                 I915_WRITE(reg, val);
2087         }
2088 }
2089
2090 static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2091 {
2092         u32 val;
2093
2094         val = I915_READ(LPT_TRANSCONF);
2095         val &= ~TRANS_ENABLE;
2096         I915_WRITE(LPT_TRANSCONF, val);
2097         /* wait for PCH transcoder off, transcoder state */
2098         if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2099                 DRM_ERROR("Failed to disable PCH transcoder\n");
2100
2101         /* Workaround: clear timing override bit. */
2102         val = I915_READ(_TRANSA_CHICKEN2);
2103         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2104         I915_WRITE(_TRANSA_CHICKEN2, val);
2105 }
2106
2107 /**
2108  * intel_enable_pipe - enable a pipe, asserting requirements
2109  * @crtc: crtc responsible for the pipe
2110  *
2111  * Enable @crtc's pipe, making sure that various hardware specific requirements
2112  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2113  */
2114 static void intel_enable_pipe(struct intel_crtc *crtc)
2115 {
2116         struct drm_device *dev = crtc->base.dev;
2117         struct drm_i915_private *dev_priv = dev->dev_private;
2118         enum pipe pipe = crtc->pipe;
2119         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2120                                                                       pipe);
2121         enum pipe pch_transcoder;
2122         int reg;
2123         u32 val;
2124
2125         assert_planes_disabled(dev_priv, pipe);
2126         assert_cursor_disabled(dev_priv, pipe);
2127         assert_sprites_disabled(dev_priv, pipe);
2128
2129         if (HAS_PCH_LPT(dev_priv->dev))
2130                 pch_transcoder = TRANSCODER_A;
2131         else
2132                 pch_transcoder = pipe;
2133
2134         /*
2135          * A pipe without a PLL won't actually be able to drive bits from
2136          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2137          * need the check.
2138          */
2139         if (HAS_GMCH_DISPLAY(dev_priv->dev))
2140                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2141                         assert_dsi_pll_enabled(dev_priv);
2142                 else
2143                         assert_pll_enabled(dev_priv, pipe);
2144         else {
2145                 if (crtc->config->has_pch_encoder) {
2146                         /* if driving the PCH, we need FDI enabled */
2147                         assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2148                         assert_fdi_tx_pll_enabled(dev_priv,
2149                                                   (enum pipe) cpu_transcoder);
2150                 }
2151                 /* FIXME: assert CPU port conditions for SNB+ */
2152         }
2153
2154         reg = PIPECONF(cpu_transcoder);
2155         val = I915_READ(reg);
2156         if (val & PIPECONF_ENABLE) {
2157                 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2158                           (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2159                 return;
2160         }
2161
2162         I915_WRITE(reg, val | PIPECONF_ENABLE);
2163         POSTING_READ(reg);
2164 }
2165
2166 /**
2167  * intel_disable_pipe - disable a pipe, asserting requirements
2168  * @crtc: crtc whose pipes is to be disabled
2169  *
2170  * Disable the pipe of @crtc, making sure that various hardware
2171  * specific requirements are met, if applicable, e.g. plane
2172  * disabled, panel fitter off, etc.
2173  *
2174  * Will wait until the pipe has shut down before returning.
2175  */
2176 static void intel_disable_pipe(struct intel_crtc *crtc)
2177 {
2178         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2179         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2180         enum pipe pipe = crtc->pipe;
2181         int reg;
2182         u32 val;
2183
2184         /*
2185          * Make sure planes won't keep trying to pump pixels to us,
2186          * or we might hang the display.
2187          */
2188         assert_planes_disabled(dev_priv, pipe);
2189         assert_cursor_disabled(dev_priv, pipe);
2190         assert_sprites_disabled(dev_priv, pipe);
2191
2192         reg = PIPECONF(cpu_transcoder);
2193         val = I915_READ(reg);
2194         if ((val & PIPECONF_ENABLE) == 0)
2195                 return;
2196
2197         /*
2198          * Double wide has implications for planes
2199          * so best keep it disabled when not needed.
2200          */
2201         if (crtc->config->double_wide)
2202                 val &= ~PIPECONF_DOUBLE_WIDE;
2203
2204         /* Don't disable pipe or pipe PLLs if needed */
2205         if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2206             !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2207                 val &= ~PIPECONF_ENABLE;
2208
2209         I915_WRITE(reg, val);
2210         if ((val & PIPECONF_ENABLE) == 0)
2211                 intel_wait_for_pipe_off(crtc);
2212 }
2213
2214 /**
2215  * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2216  * @plane:  plane to be enabled
2217  * @crtc: crtc for the plane
2218  *
2219  * Enable @plane on @crtc, making sure that the pipe is running first.
2220  */
2221 static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2222                                           struct drm_crtc *crtc)
2223 {
2224         struct drm_device *dev = plane->dev;
2225         struct drm_i915_private *dev_priv = dev->dev_private;
2226         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2227
2228         /* If the pipe isn't enabled, we can't pump pixels and may hang */
2229         assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2230         to_intel_plane_state(plane->state)->visible = true;
2231
2232         dev_priv->display.update_primary_plane(crtc, plane->fb,
2233                                                crtc->x, crtc->y);
2234 }
2235
2236 static bool need_vtd_wa(struct drm_device *dev)
2237 {
2238 #ifdef CONFIG_INTEL_IOMMU
2239         if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2240                 return true;
2241 #endif
2242         return false;
2243 }
2244
2245 unsigned int
2246 intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2247                   uint64_t fb_format_modifier)
2248 {
2249         unsigned int tile_height;
2250         uint32_t pixel_bytes;
2251
2252         switch (fb_format_modifier) {
2253         case DRM_FORMAT_MOD_NONE:
2254                 tile_height = 1;
2255                 break;
2256         case I915_FORMAT_MOD_X_TILED:
2257                 tile_height = IS_GEN2(dev) ? 16 : 8;
2258                 break;
2259         case I915_FORMAT_MOD_Y_TILED:
2260                 tile_height = 32;
2261                 break;
2262         case I915_FORMAT_MOD_Yf_TILED:
2263                 pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2264                 switch (pixel_bytes) {
2265                 default:
2266                 case 1:
2267                         tile_height = 64;
2268                         break;
2269                 case 2:
2270                 case 4:
2271                         tile_height = 32;
2272                         break;
2273                 case 8:
2274                         tile_height = 16;
2275                         break;
2276                 case 16:
2277                         WARN_ONCE(1,
2278                                   "128-bit pixels are not supported for display!");
2279                         tile_height = 16;
2280                         break;
2281                 }
2282                 break;
2283         default:
2284                 MISSING_CASE(fb_format_modifier);
2285                 tile_height = 1;
2286                 break;
2287         }
2288
2289         return tile_height;
2290 }
2291
2292 unsigned int
2293 intel_fb_align_height(struct drm_device *dev, unsigned int height,
2294                       uint32_t pixel_format, uint64_t fb_format_modifier)
2295 {
2296         return ALIGN(height, intel_tile_height(dev, pixel_format,
2297                                                fb_format_modifier));
2298 }
2299
2300 static int
2301 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2302                         const struct drm_plane_state *plane_state)
2303 {
2304         struct intel_rotation_info *info = &view->rotation_info;
2305
2306         *view = i915_ggtt_view_normal;
2307
2308         if (!plane_state)
2309                 return 0;
2310
2311         if (!intel_rotation_90_or_270(plane_state->rotation))
2312                 return 0;
2313
2314         *view = i915_ggtt_view_rotated;
2315
2316         info->height = fb->height;
2317         info->pixel_format = fb->pixel_format;
2318         info->pitch = fb->pitches[0];
2319         info->fb_modifier = fb->modifier[0];
2320
2321         return 0;
2322 }
2323
2324 int
2325 intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2326                            struct drm_framebuffer *fb,
2327                            const struct drm_plane_state *plane_state,
2328                            struct intel_engine_cs *pipelined)
2329 {
2330         struct drm_device *dev = fb->dev;
2331         struct drm_i915_private *dev_priv = dev->dev_private;
2332         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2333         struct i915_ggtt_view view;
2334         u32 alignment;
2335         int ret;
2336
2337         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2338
2339         switch (fb->modifier[0]) {
2340         case DRM_FORMAT_MOD_NONE:
2341                 if (INTEL_INFO(dev)->gen >= 9)
2342                         alignment = 256 * 1024;
2343                 else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2344                         alignment = 128 * 1024;
2345                 else if (INTEL_INFO(dev)->gen >= 4)
2346                         alignment = 4 * 1024;
2347                 else
2348                         alignment = 64 * 1024;
2349                 break;
2350         case I915_FORMAT_MOD_X_TILED:
2351                 if (INTEL_INFO(dev)->gen >= 9)
2352                         alignment = 256 * 1024;
2353                 else {
2354                         /* pin() will align the object as required by fence */
2355                         alignment = 0;
2356                 }
2357                 break;
2358         case I915_FORMAT_MOD_Y_TILED:
2359         case I915_FORMAT_MOD_Yf_TILED:
2360                 if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361                           "Y tiling bo slipped through, driver bug!\n"))
2362                         return -EINVAL;
2363                 alignment = 1 * 1024 * 1024;
2364                 break;
2365         default:
2366                 MISSING_CASE(fb->modifier[0]);
2367                 return -EINVAL;
2368         }
2369
2370         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371         if (ret)
2372                 return ret;
2373
2374         /* Note that the w/a also requires 64 PTE of padding following the
2375          * bo. We currently fill all unused PTE with the shadow page and so
2376          * we should always have valid PTE following the scanout preventing
2377          * the VT-d warning.
2378          */
2379         if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380                 alignment = 256 * 1024;
2381
2382         /*
2383          * Global gtt pte registers are special registers which actually forward
2384          * writes to a chunk of system memory. Which means that there is no risk
2385          * that the register values disappear as soon as we call
2386          * intel_runtime_pm_put(), so it is correct to wrap only the
2387          * pin/unpin/fence and not more.
2388          */
2389         intel_runtime_pm_get(dev_priv);
2390
2391         dev_priv->mm.interruptible = false;
2392         ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393                                                    &view);
2394         if (ret)
2395                 goto err_interruptible;
2396
2397         /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398          * fence, whereas 965+ only requires a fence if using
2399          * framebuffer compression.  For simplicity, we always install
2400          * a fence as the cost is not that onerous.
2401          */
2402         ret = i915_gem_object_get_fence(obj);
2403         if (ret)
2404                 goto err_unpin;
2405
2406         i915_gem_object_pin_fence(obj);
2407
2408         dev_priv->mm.interruptible = true;
2409         intel_runtime_pm_put(dev_priv);
2410         return 0;
2411
2412 err_unpin:
2413         i915_gem_object_unpin_from_display_plane(obj, &view);
2414 err_interruptible:
2415         dev_priv->mm.interruptible = true;
2416         intel_runtime_pm_put(dev_priv);
2417         return ret;
2418 }
2419
2420 static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2421                                const struct drm_plane_state *plane_state)
2422 {
2423         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2424         struct i915_ggtt_view view;
2425         int ret;
2426
2427         WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2428
2429         ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2430         WARN_ONCE(ret, "Couldn't get view from plane state!");
2431
2432         i915_gem_object_unpin_fence(obj);
2433         i915_gem_object_unpin_from_display_plane(obj, &view);
2434 }
2435
2436 /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2437  * is assumed to be a power-of-two. */
2438 unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2439                                              unsigned int tiling_mode,
2440                                              unsigned int cpp,
2441                                              unsigned int pitch)
2442 {
2443         if (tiling_mode != I915_TILING_NONE) {
2444                 unsigned int tile_rows, tiles;
2445
2446                 tile_rows = *y / 8;
2447                 *y %= 8;
2448
2449                 tiles = *x / (512/cpp);
2450                 *x %= 512/cpp;
2451
2452                 return tile_rows * pitch * 8 + tiles * 4096;
2453         } else {
2454                 unsigned int offset;
2455
2456                 offset = *y * pitch + *x * cpp;
2457                 *y = 0;
2458                 *x = (offset & 4095) / cpp;
2459                 return offset & -4096;
2460         }
2461 }
2462
2463 static int i9xx_format_to_fourcc(int format)
2464 {
2465         switch (format) {
2466         case DISPPLANE_8BPP:
2467                 return DRM_FORMAT_C8;
2468         case DISPPLANE_BGRX555:
2469                 return DRM_FORMAT_XRGB1555;
2470         case DISPPLANE_BGRX565:
2471                 return DRM_FORMAT_RGB565;
2472         default:
2473         case DISPPLANE_BGRX888:
2474                 return DRM_FORMAT_XRGB8888;
2475         case DISPPLANE_RGBX888:
2476                 return DRM_FORMAT_XBGR8888;
2477         case DISPPLANE_BGRX101010:
2478                 return DRM_FORMAT_XRGB2101010;
2479         case DISPPLANE_RGBX101010:
2480                 return DRM_FORMAT_XBGR2101010;
2481         }
2482 }
2483
2484 static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2485 {
2486         switch (format) {
2487         case PLANE_CTL_FORMAT_RGB_565:
2488                 return DRM_FORMAT_RGB565;
2489         default:
2490         case PLANE_CTL_FORMAT_XRGB_8888:
2491                 if (rgb_order) {
2492                         if (alpha)
2493                                 return DRM_FORMAT_ABGR8888;
2494                         else
2495                                 return DRM_FORMAT_XBGR8888;
2496                 } else {
2497                         if (alpha)
2498                                 return DRM_FORMAT_ARGB8888;
2499                         else
2500                                 return DRM_FORMAT_XRGB8888;
2501                 }
2502         case PLANE_CTL_FORMAT_XRGB_2101010:
2503                 if (rgb_order)
2504                         return DRM_FORMAT_XBGR2101010;
2505                 else
2506                         return DRM_FORMAT_XRGB2101010;
2507         }
2508 }
2509
2510 static bool
2511 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2512                               struct intel_initial_plane_config *plane_config)
2513 {
2514         struct drm_device *dev = crtc->base.dev;
2515         struct drm_i915_gem_object *obj = NULL;
2516         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2517         struct drm_framebuffer *fb = &plane_config->fb->base;
2518         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2519         u32 size_aligned = round_up(plane_config->base + plane_config->size,
2520                                     PAGE_SIZE);
2521
2522         size_aligned -= base_aligned;
2523
2524         if (plane_config->size == 0)
2525                 return false;
2526
2527         obj = i915_gem_object_create_stolen_for_preallocated(dev,
2528                                                              base_aligned,
2529                                                              base_aligned,
2530                                                              size_aligned);
2531         if (!obj)
2532                 return false;
2533
2534         obj->tiling_mode = plane_config->tiling;
2535         if (obj->tiling_mode == I915_TILING_X)
2536                 obj->stride = fb->pitches[0];
2537
2538         mode_cmd.pixel_format = fb->pixel_format;
2539         mode_cmd.width = fb->width;
2540         mode_cmd.height = fb->height;
2541         mode_cmd.pitches[0] = fb->pitches[0];
2542         mode_cmd.modifier[0] = fb->modifier[0];
2543         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2544
2545         mutex_lock(&dev->struct_mutex);
2546         if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2547                                    &mode_cmd, obj)) {
2548                 DRM_DEBUG_KMS("intel fb init failed\n");
2549                 goto out_unref_obj;
2550         }
2551         mutex_unlock(&dev->struct_mutex);
2552
2553         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2554         return true;
2555
2556 out_unref_obj:
2557         drm_gem_object_unreference(&obj->base);
2558         mutex_unlock(&dev->struct_mutex);
2559         return false;
2560 }
2561
2562 /* Update plane->state->fb to match plane->fb after driver-internal updates */
2563 static void
2564 update_state_fb(struct drm_plane *plane)
2565 {
2566         if (plane->fb == plane->state->fb)
2567                 return;
2568
2569         if (plane->state->fb)
2570                 drm_framebuffer_unreference(plane->state->fb);
2571         plane->state->fb = plane->fb;
2572         if (plane->state->fb)
2573                 drm_framebuffer_reference(plane->state->fb);
2574 }
2575
2576 static void
2577 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2578                              struct intel_initial_plane_config *plane_config)
2579 {
2580         struct drm_device *dev = intel_crtc->base.dev;
2581         struct drm_i915_private *dev_priv = dev->dev_private;
2582         struct drm_crtc *c;
2583         struct intel_crtc *i;
2584         struct drm_i915_gem_object *obj;
2585         struct drm_plane *primary = intel_crtc->base.primary;
2586         struct drm_framebuffer *fb;
2587
2588         if (!plane_config->fb)
2589                 return;
2590
2591         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2592                 fb = &plane_config->fb->base;
2593                 goto valid_fb;
2594         }
2595
2596         kfree(plane_config->fb);
2597
2598         /*
2599          * Failed to alloc the obj, check to see if we should share
2600          * an fb with another CRTC instead
2601          */
2602         for_each_crtc(dev, c) {
2603                 i = to_intel_crtc(c);
2604
2605                 if (c == &intel_crtc->base)
2606                         continue;
2607
2608                 if (!i->active)
2609                         continue;
2610
2611                 fb = c->primary->fb;
2612                 if (!fb)
2613                         continue;
2614
2615                 obj = intel_fb_obj(fb);
2616                 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2617                         drm_framebuffer_reference(fb);
2618                         goto valid_fb;
2619                 }
2620         }
2621
2622         return;
2623
2624 valid_fb:
2625         obj = intel_fb_obj(fb);
2626         if (obj->tiling_mode != I915_TILING_NONE)
2627                 dev_priv->preserve_bios_swizzle = true;
2628
2629         primary->fb = fb;
2630         primary->state->crtc = &intel_crtc->base;
2631         primary->crtc = &intel_crtc->base;
2632         update_state_fb(primary);
2633         obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2634 }
2635
2636 static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2637                                       struct drm_framebuffer *fb,
2638                                       int x, int y)
2639 {
2640         struct drm_device *dev = crtc->dev;
2641         struct drm_i915_private *dev_priv = dev->dev_private;
2642         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643         struct drm_plane *primary = crtc->primary;
2644         bool visible = to_intel_plane_state(primary->state)->visible;
2645         struct drm_i915_gem_object *obj;
2646         int plane = intel_crtc->plane;
2647         unsigned long linear_offset;
2648         u32 dspcntr;
2649         u32 reg = DSPCNTR(plane);
2650         int pixel_size;
2651
2652         if (!visible || !fb) {
2653                 I915_WRITE(reg, 0);
2654                 if (INTEL_INFO(dev)->gen >= 4)
2655                         I915_WRITE(DSPSURF(plane), 0);
2656                 else
2657                         I915_WRITE(DSPADDR(plane), 0);
2658                 POSTING_READ(reg);
2659                 return;
2660         }
2661
2662         obj = intel_fb_obj(fb);
2663         if (WARN_ON(obj == NULL))
2664                 return;
2665
2666         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2667
2668         dspcntr = DISPPLANE_GAMMA_ENABLE;
2669
2670         dspcntr |= DISPLAY_PLANE_ENABLE;
2671
2672         if (INTEL_INFO(dev)->gen < 4) {
2673                 if (intel_crtc->pipe == PIPE_B)
2674                         dspcntr |= DISPPLANE_SEL_PIPE_B;
2675
2676                 /* pipesrc and dspsize control the size that is scaled from,
2677                  * which should always be the user's requested size.
2678                  */
2679                 I915_WRITE(DSPSIZE(plane),
2680                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2681                            (intel_crtc->config->pipe_src_w - 1));
2682                 I915_WRITE(DSPPOS(plane), 0);
2683         } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2684                 I915_WRITE(PRIMSIZE(plane),
2685                            ((intel_crtc->config->pipe_src_h - 1) << 16) |
2686                            (intel_crtc->config->pipe_src_w - 1));
2687                 I915_WRITE(PRIMPOS(plane), 0);
2688                 I915_WRITE(PRIMCNSTALPHA(plane), 0);
2689         }
2690
2691         switch (fb->pixel_format) {
2692         case DRM_FORMAT_C8:
2693                 dspcntr |= DISPPLANE_8BPP;
2694                 break;
2695         case DRM_FORMAT_XRGB1555:
2696                 dspcntr |= DISPPLANE_BGRX555;
2697                 break;
2698         case DRM_FORMAT_RGB565:
2699                 dspcntr |= DISPPLANE_BGRX565;
2700                 break;
2701         case DRM_FORMAT_XRGB8888:
2702                 dspcntr |= DISPPLANE_BGRX888;
2703                 break;
2704         case DRM_FORMAT_XBGR8888:
2705                 dspcntr |= DISPPLANE_RGBX888;
2706                 break;
2707         case DRM_FORMAT_XRGB2101010:
2708                 dspcntr |= DISPPLANE_BGRX101010;
2709                 break;
2710         case DRM_FORMAT_XBGR2101010:
2711                 dspcntr |= DISPPLANE_RGBX101010;
2712                 break;
2713         default:
2714                 BUG();
2715         }
2716
2717         if (INTEL_INFO(dev)->gen >= 4 &&
2718             obj->tiling_mode != I915_TILING_NONE)
2719                 dspcntr |= DISPPLANE_TILED;
2720
2721         if (IS_G4X(dev))
2722                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2723
2724         linear_offset = y * fb->pitches[0] + x * pixel_size;
2725
2726         if (INTEL_INFO(dev)->gen >= 4) {
2727                 intel_crtc->dspaddr_offset =
2728                         intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2729                                                        pixel_size,
2730                                                        fb->pitches[0]);
2731                 linear_offset -= intel_crtc->dspaddr_offset;
2732         } else {
2733                 intel_crtc->dspaddr_offset = linear_offset;
2734         }
2735
2736         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2737                 dspcntr |= DISPPLANE_ROTATE_180;
2738
2739                 x += (intel_crtc->config->pipe_src_w - 1);
2740                 y += (intel_crtc->config->pipe_src_h - 1);
2741
2742                 /* Finding the last pixel of the last line of the display
2743                 data and adding to linear_offset*/
2744                 linear_offset +=
2745                         (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2746                         (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2747         }
2748
2749         I915_WRITE(reg, dspcntr);
2750
2751         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2752         if (INTEL_INFO(dev)->gen >= 4) {
2753                 I915_WRITE(DSPSURF(plane),
2754                            i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2755                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2756                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2757         } else
2758                 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2759         POSTING_READ(reg);
2760 }
2761
2762 static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2763                                           struct drm_framebuffer *fb,
2764                                           int x, int y)
2765 {
2766         struct drm_device *dev = crtc->dev;
2767         struct drm_i915_private *dev_priv = dev->dev_private;
2768         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2769         struct drm_plane *primary = crtc->primary;
2770         bool visible = to_intel_plane_state(primary->state)->visible;
2771         struct drm_i915_gem_object *obj;
2772         int plane = intel_crtc->plane;
2773         unsigned long linear_offset;
2774         u32 dspcntr;
2775         u32 reg = DSPCNTR(plane);
2776         int pixel_size;
2777
2778         if (!visible || !fb) {
2779                 I915_WRITE(reg, 0);
2780                 I915_WRITE(DSPSURF(plane), 0);
2781                 POSTING_READ(reg);
2782                 return;
2783         }
2784
2785         obj = intel_fb_obj(fb);
2786         if (WARN_ON(obj == NULL))
2787                 return;
2788
2789         pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2790
2791         dspcntr = DISPPLANE_GAMMA_ENABLE;
2792
2793         dspcntr |= DISPLAY_PLANE_ENABLE;
2794
2795         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2796                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2797
2798         switch (fb->pixel_format) {
2799         case DRM_FORMAT_C8:
2800                 dspcntr |= DISPPLANE_8BPP;
2801                 break;
2802         case DRM_FORMAT_RGB565:
2803                 dspcntr |= DISPPLANE_BGRX565;
2804                 break;
2805         case DRM_FORMAT_XRGB8888:
2806                 dspcntr |= DISPPLANE_BGRX888;
2807                 break;
2808         case DRM_FORMAT_XBGR8888:
2809                 dspcntr |= DISPPLANE_RGBX888;
2810                 break;
2811         case DRM_FORMAT_XRGB2101010:
2812                 dspcntr |= DISPPLANE_BGRX101010;
2813                 break;
2814         case DRM_FORMAT_XBGR2101010:
2815                 dspcntr |= DISPPLANE_RGBX101010;
2816                 break;
2817         default:
2818                 BUG();
2819         }
2820
2821         if (obj->tiling_mode != I915_TILING_NONE)
2822                 dspcntr |= DISPPLANE_TILED;
2823
2824         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2825                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2826
2827         linear_offset = y * fb->pitches[0] + x * pixel_size;
2828         intel_crtc->dspaddr_offset =
2829                 intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2830                                                pixel_size,
2831                                                fb->pitches[0]);
2832         linear_offset -= intel_crtc->dspaddr_offset;
2833         if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2834                 dspcntr |= DISPPLANE_ROTATE_180;
2835
2836                 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2837                         x += (intel_crtc->config->pipe_src_w - 1);
2838                         y += (intel_crtc->config->pipe_src_h - 1);
2839
2840                         /* Finding the last pixel of the last line of the display
2841                         data and adding to linear_offset*/
2842                         linear_offset +=
2843                                 (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2844                                 (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2845                 }
2846         }
2847
2848         I915_WRITE(reg, dspcntr);
2849
2850         I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2851         I915_WRITE(DSPSURF(plane),
2852                    i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2853         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2854                 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2855         } else {
2856                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2857                 I915_WRITE(DSPLINOFF(plane), linear_offset);
2858         }
2859         POSTING_READ(reg);
2860 }
2861
2862 u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2863                               uint32_t pixel_format)
2864 {
2865         u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2866
2867         /*
2868          * The stride is either expressed as a multiple of 64 bytes
2869          * chunks for linear buffers or in number of tiles for tiled
2870          * buffers.
2871          */
2872         switch (fb_modifier) {
2873         case DRM_FORMAT_MOD_NONE:
2874                 return 64;
2875         case I915_FORMAT_MOD_X_TILED:
2876                 if (INTEL_INFO(dev)->gen == 2)
2877                         return 128;
2878                 return 512;
2879         case I915_FORMAT_MOD_Y_TILED:
2880                 /* No need to check for old gens and Y tiling since this is
2881                  * about the display engine and those will be blocked before
2882                  * we get here.
2883                  */
2884                 return 128;
2885         case I915_FORMAT_MOD_Yf_TILED:
2886                 if (bits_per_pixel == 8)
2887                         return 64;
2888                 else
2889                         return 128;
2890         default:
2891                 MISSING_CASE(fb_modifier);
2892                 return 64;
2893         }
2894 }
2895
2896 unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2897                                      struct drm_i915_gem_object *obj)
2898 {
2899         const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2900
2901         if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2902                 view = &i915_ggtt_view_rotated;
2903
2904         return i915_gem_obj_ggtt_offset_view(obj, view);
2905 }
2906
2907 /*
2908  * This function detaches (aka. unbinds) unused scalers in hardware
2909  */
2910 void skl_detach_scalers(struct intel_crtc *intel_crtc)
2911 {
2912         struct drm_device *dev;
2913         struct drm_i915_private *dev_priv;
2914         struct intel_crtc_scaler_state *scaler_state;
2915         int i;
2916
2917         if (!intel_crtc || !intel_crtc->config)
2918                 return;
2919
2920         dev = intel_crtc->base.dev;
2921         dev_priv = dev->dev_private;
2922         scaler_state = &intel_crtc->config->scaler_state;
2923
2924         /* loop through and disable scalers that aren't in use */
2925         for (i = 0; i < intel_crtc->num_scalers; i++) {
2926                 if (!scaler_state->scalers[i].in_use) {
2927                         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2928                         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2929                         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2930                         DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2931                                 intel_crtc->base.base.id, intel_crtc->pipe, i);
2932                 }
2933         }
2934 }
2935
2936 u32 skl_plane_ctl_format(uint32_t pixel_format)
2937 {
2938         switch (pixel_format) {
2939         case DRM_FORMAT_C8:
2940                 return PLANE_CTL_FORMAT_INDEXED;
2941         case DRM_FORMAT_RGB565:
2942                 return PLANE_CTL_FORMAT_RGB_565;
2943         case DRM_FORMAT_XBGR8888:
2944                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2945         case DRM_FORMAT_XRGB8888:
2946                 return PLANE_CTL_FORMAT_XRGB_8888;
2947         /*
2948          * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2949          * to be already pre-multiplied. We need to add a knob (or a different
2950          * DRM_FORMAT) for user-space to configure that.
2951          */
2952         case DRM_FORMAT_ABGR8888:
2953                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2954                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2955         case DRM_FORMAT_ARGB8888:
2956                 return PLANE_CTL_FORMAT_XRGB_8888 |
2957                         PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2958         case DRM_FORMAT_XRGB2101010:
2959                 return PLANE_CTL_FORMAT_XRGB_2101010;
2960         case DRM_FORMAT_XBGR2101010:
2961                 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2962         case DRM_FORMAT_YUYV:
2963                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2964         case DRM_FORMAT_YVYU:
2965                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2966         case DRM_FORMAT_UYVY:
2967                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2968         case DRM_FORMAT_VYUY:
2969                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2970         default:
2971                 MISSING_CASE(pixel_format);
2972         }
2973
2974         return 0;
2975 }
2976
2977 u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2978 {
2979         switch (fb_modifier) {
2980         case DRM_FORMAT_MOD_NONE:
2981                 break;
2982         case I915_FORMAT_MOD_X_TILED:
2983                 return PLANE_CTL_TILED_X;
2984         case I915_FORMAT_MOD_Y_TILED:
2985                 return PLANE_CTL_TILED_Y;
2986         case I915_FORMAT_MOD_Yf_TILED:
2987                 return PLANE_CTL_TILED_YF;
2988         default:
2989                 MISSING_CASE(fb_modifier);
2990         }
2991
2992         return 0;
2993 }
2994
2995 u32 skl_plane_ctl_rotation(unsigned int rotation)
2996 {
2997         switch (rotation) {
2998         case BIT(DRM_ROTATE_0):
2999                 break;
3000         /*
3001          * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3002          * while i915 HW rotation is clockwise, thats why this swapping.
3003          */
3004         case BIT(DRM_ROTATE_90):
3005                 return PLANE_CTL_ROTATE_270;
3006         case BIT(DRM_ROTATE_180):
3007                 return PLANE_CTL_ROTATE_180;
3008         case BIT(DRM_ROTATE_270):
3009                 return PLANE_CTL_ROTATE_90;
3010         default:
3011                 MISSING_CASE(rotation);
3012         }
3013
3014         return 0;
3015 }
3016
3017 static void skylake_update_primary_plane(struct drm_crtc *crtc,
3018                                          struct drm_framebuffer *fb,
3019                                          int x, int y)
3020 {
3021         struct drm_device *dev = crtc->dev;
3022         struct drm_i915_private *dev_priv = dev->dev_private;
3023         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3024         struct drm_plane *plane = crtc->primary;
3025         bool visible = to_intel_plane_state(plane->state)->visible;
3026         struct drm_i915_gem_object *obj;
3027         int pipe = intel_crtc->pipe;
3028         u32 plane_ctl, stride_div, stride;
3029         u32 tile_height, plane_offset, plane_size;
3030         unsigned int rotation;
3031         int x_offset, y_offset;
3032         unsigned long surf_addr;
3033         struct intel_crtc_state *crtc_state = intel_crtc->config;
3034         struct intel_plane_state *plane_state;
3035         int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3036         int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3037         int scaler_id = -1;
3038
3039         plane_state = to_intel_plane_state(plane->state);
3040
3041         if (!visible || !fb) {
3042                 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3043                 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3044                 POSTING_READ(PLANE_CTL(pipe, 0));
3045                 return;
3046         }
3047
3048         plane_ctl = PLANE_CTL_ENABLE |
3049                     PLANE_CTL_PIPE_GAMMA_ENABLE |
3050                     PLANE_CTL_PIPE_CSC_ENABLE;
3051
3052         plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3053         plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3054         plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3055
3056         rotation = plane->state->rotation;
3057         plane_ctl |= skl_plane_ctl_rotation(rotation);
3058
3059         obj = intel_fb_obj(fb);
3060         stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3061                                                fb->pixel_format);
3062         surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3063
3064         /*
3065          * FIXME: intel_plane_state->src, dst aren't set when transitional
3066          * update_plane helpers are called from legacy paths.
3067          * Once full atomic crtc is available, below check can be avoided.
3068          */
3069         if (drm_rect_width(&plane_state->src)) {
3070                 scaler_id = plane_state->scaler_id;
3071                 src_x = plane_state->src.x1 >> 16;
3072                 src_y = plane_state->src.y1 >> 16;
3073                 src_w = drm_rect_width(&plane_state->src) >> 16;
3074                 src_h = drm_rect_height(&plane_state->src) >> 16;
3075                 dst_x = plane_state->dst.x1;
3076                 dst_y = plane_state->dst.y1;
3077                 dst_w = drm_rect_width(&plane_state->dst);
3078                 dst_h = drm_rect_height(&plane_state->dst);
3079
3080                 WARN_ON(x != src_x || y != src_y);
3081         } else {
3082                 src_w = intel_crtc->config->pipe_src_w;
3083                 src_h = intel_crtc->config->pipe_src_h;
3084         }
3085
3086         if (intel_rotation_90_or_270(rotation)) {
3087                 /* stride = Surface height in tiles */
3088                 tile_height = intel_tile_height(dev, fb->pixel_format,
3089                                                 fb->modifier[0]);
3090                 stride = DIV_ROUND_UP(fb->height, tile_height);
3091                 x_offset = stride * tile_height - y - src_h;
3092                 y_offset = x;
3093                 plane_size = (src_w - 1) << 16 | (src_h - 1);
3094         } else {
3095                 stride = fb->pitches[0] / stride_div;
3096                 x_offset = x;
3097                 y_offset = y;
3098                 plane_size = (src_h - 1) << 16 | (src_w - 1);
3099         }
3100         plane_offset = y_offset << 16 | x_offset;
3101
3102         I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3103         I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3104         I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3105         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3106
3107         if (scaler_id >= 0) {
3108                 uint32_t ps_ctrl = 0;
3109
3110                 WARN_ON(!dst_w || !dst_h);
3111                 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3112                         crtc_state->scaler_state.scalers[scaler_id].mode;
3113                 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3114                 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3115                 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3116                 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3117                 I915_WRITE(PLANE_POS(pipe, 0), 0);
3118         } else {
3119                 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3120         }
3121
3122         I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3123
3124         POSTING_READ(PLANE_SURF(pipe, 0));
3125 }
3126
3127 /* Assume fb object is pinned & idle & fenced and just update base pointers */
3128 static int
3129 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3130                            int x, int y, enum mode_set_atomic state)
3131 {
3132         struct drm_device *dev = crtc->dev;
3133         struct drm_i915_private *dev_priv = dev->dev_private;
3134
3135         if (dev_priv->display.disable_fbc)
3136                 dev_priv->display.disable_fbc(dev);
3137
3138         dev_priv->display.update_primary_plane(crtc, fb, x, y);
3139
3140         return 0;
3141 }
3142
3143 static void intel_complete_page_flips(struct drm_device *dev)
3144 {
3145         struct drm_crtc *crtc;
3146
3147         for_each_crtc(dev, crtc) {
3148                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3149                 enum plane plane = intel_crtc->plane;
3150
3151                 intel_prepare_page_flip(dev, plane);
3152                 intel_finish_page_flip_plane(dev, plane);
3153         }
3154 }
3155
3156 static void intel_update_primary_planes(struct drm_device *dev)
3157 {
3158         struct drm_i915_private *dev_priv = dev->dev_private;
3159         struct drm_crtc *crtc;
3160
3161         for_each_crtc(dev, crtc) {
3162                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3163
3164                 drm_modeset_lock(&crtc->mutex, NULL);
3165                 /*
3166                  * FIXME: Once we have proper support for primary planes (and
3167                  * disabling them without disabling the entire crtc) allow again
3168                  * a NULL crtc->primary->fb.
3169                  */
3170                 if (intel_crtc->active && crtc->primary->fb)
3171                         dev_priv->display.update_primary_plane(crtc,
3172                                                                crtc->primary->fb,
3173                                                                crtc->x,
3174                                                                crtc->y);
3175                 drm_modeset_unlock(&crtc->mutex);
3176         }
3177 }
3178
3179 void intel_crtc_reset(struct intel_crtc *crtc)
3180 {
3181         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3182
3183         if (!crtc->active)
3184                 return;
3185
3186         intel_crtc_disable_planes(&crtc->base);
3187         dev_priv->display.crtc_disable(&crtc->base);
3188         dev_priv->display.crtc_enable(&crtc->base);
3189         intel_crtc_enable_planes(&crtc->base);
3190 }
3191
3192 void intel_prepare_reset(struct drm_device *dev)
3193 {
3194         struct drm_i915_private *dev_priv = to_i915(dev);
3195         struct intel_crtc *crtc;
3196
3197         /* no reset support for gen2 */
3198         if (IS_GEN2(dev))
3199                 return;
3200
3201         /* reset doesn't touch the display */
3202         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3203                 return;
3204
3205         drm_modeset_lock_all(dev);
3206
3207         /*
3208          * Disabling the crtcs gracefully seems nicer. Also the
3209          * g33 docs say we should at least disable all the planes.
3210          */
3211         for_each_intel_crtc(dev, crtc) {
3212                 if (!crtc->active)
3213                         continue;
3214
3215                 intel_crtc_disable_planes(&crtc->base);
3216                 dev_priv->display.crtc_disable(&crtc->base);
3217         }
3218 }
3219
3220 void intel_finish_reset(struct drm_device *dev)
3221 {
3222         struct drm_i915_private *dev_priv = to_i915(dev);
3223
3224         /*
3225          * Flips in the rings will be nuked by the reset,
3226          * so complete all pending flips so that user space
3227          * will get its events and not get stuck.
3228          */
3229         intel_complete_page_flips(dev);
3230
3231         /* no reset support for gen2 */
3232         if (IS_GEN2(dev))
3233                 return;
3234
3235         /* reset doesn't touch the display */
3236         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3237                 /*
3238                  * Flips in the rings have been nuked by the reset,
3239                  * so update the base address of all primary
3240                  * planes to the the last fb to make sure we're
3241                  * showing the correct fb after a reset.
3242                  */
3243                 intel_update_primary_planes(dev);
3244                 return;
3245         }
3246
3247         /*
3248          * The display has been reset as well,
3249          * so need a full re-initialization.
3250          */
3251         intel_runtime_pm_disable_interrupts(dev_priv);
3252         intel_runtime_pm_enable_interrupts(dev_priv);
3253
3254         intel_modeset_init_hw(dev);
3255
3256         spin_lock_irq(&dev_priv->irq_lock);
3257         if (dev_priv->display.hpd_irq_setup)
3258                 dev_priv->display.hpd_irq_setup(dev);
3259         spin_unlock_irq(&dev_priv->irq_lock);
3260
3261         intel_modeset_setup_hw_state(dev, true);
3262
3263         intel_hpd_init(dev_priv);
3264
3265         drm_modeset_unlock_all(dev);
3266 }
3267
3268 static void
3269 intel_finish_fb(struct drm_framebuffer *old_fb)
3270 {
3271         struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3272         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3273         bool was_interruptible = dev_priv->mm.interruptible;
3274         int ret;
3275
3276         /* Big Hammer, we also need to ensure that any pending
3277          * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3278          * current scanout is retired before unpinning the old
3279          * framebuffer. Note that we rely on userspace rendering
3280          * into the buffer attached to the pipe they are waiting
3281          * on. If not, userspace generates a GPU hang with IPEHR
3282          * point to the MI_WAIT_FOR_EVENT.
3283          *
3284          * This should only fail upon a hung GPU, in which case we
3285          * can safely continue.
3286          */
3287         dev_priv->mm.interruptible = false;
3288         ret = i915_gem_object_wait_rendering(obj, true);
3289         dev_priv->mm.interruptible = was_interruptible;
3290
3291         WARN_ON(ret);
3292 }
3293
3294 static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3295 {
3296         struct drm_device *dev = crtc->dev;
3297         struct drm_i915_private *dev_priv = dev->dev_private;
3298         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3299         bool pending;
3300
3301         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3302             intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3303                 return false;
3304
3305         spin_lock_irq(&dev->event_lock);
3306         pending = to_intel_crtc(crtc)->unpin_work != NULL;
3307         spin_unlock_irq(&dev->event_lock);
3308
3309         return pending;
3310 }
3311
3312 static void intel_update_pipe_size(struct intel_crtc *crtc)
3313 {
3314         struct drm_device *dev = crtc->base.dev;
3315         struct drm_i915_private *dev_priv = dev->dev_private;
3316         const struct drm_display_mode *adjusted_mode;
3317
3318         if (!i915.fastboot)
3319                 return;
3320
3321         /*
3322          * Update pipe size and adjust fitter if needed: the reason for this is
3323          * that in compute_mode_changes we check the native mode (not the pfit
3324          * mode) to see if we can flip rather than do a full mode set. In the
3325          * fastboot case, we'll flip, but if we don't update the pipesrc and
3326          * pfit state, we'll end up with a big fb scanned out into the wrong
3327          * sized surface.
3328          *
3329          * To fix this properly, we need to hoist the checks up into
3330          * compute_mode_changes (or above), check the actual pfit state and
3331          * whether the platform allows pfit disable with pipe active, and only
3332          * then update the pipesrc and pfit state, even on the flip path.
3333          */
3334
3335         adjusted_mode = &crtc->config->base.adjusted_mode;
3336
3337         I915_WRITE(PIPESRC(crtc->pipe),
3338                    ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3339                    (adjusted_mode->crtc_vdisplay - 1));
3340         if (!crtc->config->pch_pfit.enabled &&
3341             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3342              intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3343                 I915_WRITE(PF_CTL(crtc->pipe), 0);
3344                 I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3345                 I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3346         }
3347         crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3348         crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3349 }
3350
3351 static void intel_fdi_normal_train(struct drm_crtc *crtc)
3352 {
3353         struct drm_device *dev = crtc->dev;
3354         struct drm_i915_private *dev_priv = dev->dev_private;
3355         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3356         int pipe = intel_crtc->pipe;
3357         u32 reg, temp;
3358
3359         /* enable normal train */
3360         reg = FDI_TX_CTL(pipe);
3361         temp = I915_READ(reg);
3362         if (IS_IVYBRIDGE(dev)) {
3363                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3364                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3365         } else {
3366                 temp &= ~FDI_LINK_TRAIN_NONE;
3367                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3368         }
3369         I915_WRITE(reg, temp);
3370
3371         reg = FDI_RX_CTL(pipe);
3372         temp = I915_READ(reg);
3373         if (HAS_PCH_CPT(dev)) {
3374                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3375                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3376         } else {
3377                 temp &= ~FDI_LINK_TRAIN_NONE;
3378                 temp |= FDI_LINK_TRAIN_NONE;
3379         }
3380         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3381
3382         /* wait one idle pattern time */
3383         POSTING_READ(reg);
3384         udelay(1000);
3385
3386         /* IVB wants error correction enabled */
3387         if (IS_IVYBRIDGE(dev))
3388                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3389                            FDI_FE_ERRC_ENABLE);
3390 }
3391
3392 /* The FDI link training functions for ILK/Ibexpeak. */
3393 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3394 {
3395         struct drm_device *dev = crtc->dev;
3396         struct drm_i915_private *dev_priv = dev->dev_private;
3397         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3398         int pipe = intel_crtc->pipe;
3399         u32 reg, temp, tries;
3400
3401         /* FDI needs bits from pipe first */
3402         assert_pipe_enabled(dev_priv, pipe);
3403
3404         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3405            for train result */
3406         reg = FDI_RX_IMR(pipe);
3407         temp = I915_READ(reg);
3408         temp &= ~FDI_RX_SYMBOL_LOCK;
3409         temp &= ~FDI_RX_BIT_LOCK;
3410         I915_WRITE(reg, temp);
3411         I915_READ(reg);
3412         udelay(150);
3413
3414         /* enable CPU FDI TX and PCH FDI RX */
3415         reg = FDI_TX_CTL(pipe);
3416         temp = I915_READ(reg);
3417         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3418         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3419         temp &= ~FDI_LINK_TRAIN_NONE;
3420         temp |= FDI_LINK_TRAIN_PATTERN_1;
3421         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3422
3423         reg = FDI_RX_CTL(pipe);
3424         temp = I915_READ(reg);
3425         temp &= ~FDI_LINK_TRAIN_NONE;
3426         temp |= FDI_LINK_TRAIN_PATTERN_1;
3427         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3428
3429         POSTING_READ(reg);
3430         udelay(150);
3431
3432         /* Ironlake workaround, enable clock pointer after FDI enable*/
3433         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3434         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3435                    FDI_RX_PHASE_SYNC_POINTER_EN);
3436
3437         reg = FDI_RX_IIR(pipe);
3438         for (tries = 0; tries < 5; tries++) {
3439                 temp = I915_READ(reg);
3440                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3441
3442                 if ((temp & FDI_RX_BIT_LOCK)) {
3443                         DRM_DEBUG_KMS("FDI train 1 done.\n");
3444                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3445                         break;
3446                 }
3447         }
3448         if (tries == 5)
3449                 DRM_ERROR("FDI train 1 fail!\n");
3450
3451         /* Train 2 */
3452         reg = FDI_TX_CTL(pipe);
3453         temp = I915_READ(reg);
3454         temp &= ~FDI_LINK_TRAIN_NONE;
3455         temp |= FDI_LINK_TRAIN_PATTERN_2;
3456         I915_WRITE(reg, temp);
3457
3458         reg = FDI_RX_CTL(pipe);
3459         temp = I915_READ(reg);
3460         temp &= ~FDI_LINK_TRAIN_NONE;
3461         temp |= FDI_LINK_TRAIN_PATTERN_2;
3462         I915_WRITE(reg, temp);
3463
3464         POSTING_READ(reg);
3465         udelay(150);
3466
3467         reg = FDI_RX_IIR(pipe);
3468         for (tries = 0; tries < 5; tries++) {
3469                 temp = I915_READ(reg);
3470                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3471
3472                 if (temp & FDI_RX_SYMBOL_LOCK) {
3473                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3474                         DRM_DEBUG_KMS("FDI train 2 done.\n");
3475                         break;
3476                 }
3477         }
3478         if (tries == 5)
3479                 DRM_ERROR("FDI train 2 fail!\n");
3480
3481         DRM_DEBUG_KMS("FDI train done\n");
3482
3483 }
3484
3485 static const int snb_b_fdi_train_param[] = {
3486         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3487         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3488         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3489         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3490 };
3491
3492 /* The FDI link training functions for SNB/Cougarpoint. */
3493 static void gen6_fdi_link_train(struct drm_crtc *crtc)
3494 {
3495         struct drm_device *dev = crtc->dev;
3496         struct drm_i915_private *dev_priv = dev->dev_private;
3497         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3498         int pipe = intel_crtc->pipe;
3499         u32 reg, temp, i, retry;
3500
3501         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3502            for train result */
3503         reg = FDI_RX_IMR(pipe);
3504         temp = I915_READ(reg);
3505         temp &= ~FDI_RX_SYMBOL_LOCK;
3506         temp &= ~FDI_RX_BIT_LOCK;
3507         I915_WRITE(reg, temp);
3508
3509         POSTING_READ(reg);
3510         udelay(150);
3511
3512         /* enable CPU FDI TX and PCH FDI RX */
3513         reg = FDI_TX_CTL(pipe);
3514         temp = I915_READ(reg);
3515         temp &= ~FDI_DP_PORT_WIDTH_MASK;
3516         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3517         temp &= ~FDI_LINK_TRAIN_NONE;
3518         temp |= FDI_LINK_TRAIN_PATTERN_1;
3519         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3520         /* SNB-B */
3521         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3522         I915_WRITE(reg, temp | FDI_TX_ENABLE);
3523
3524         I915_WRITE(FDI_RX_MISC(pipe),
3525                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3526
3527         reg = FDI_RX_CTL(pipe);
3528         temp = I915_READ(reg);
3529         if (HAS_PCH_CPT(dev)) {
3530                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3531                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3532         } else {
3533                 temp &= ~FDI_LINK_TRAIN_NONE;
3534                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3535         }
3536         I915_WRITE(reg, temp | FDI_RX_ENABLE);
3537
3538         POSTING_READ(reg);
3539         udelay(150);
3540
3541         for (i = 0; i < 4; i++) {
3542                 reg = FDI_TX_CTL(pipe);
3543                 temp = I915_READ(reg);
3544                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3545                 temp |= snb_b_fdi_train_param[i];
3546                 I915_WRITE(reg, temp);
3547
3548                 POSTING_READ(reg);
3549                 udelay(500);
3550
3551                 for (retry = 0; retry < 5; retry++) {
3552                         reg = FDI_RX_IIR(pipe);
3553                         temp = I915_READ(reg);
3554                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3555                         if (temp & FDI_RX_BIT_LOCK) {
3556                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3557                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
3558                                 break;
3559                         }
3560                         udelay(50);
3561                 }
3562                 if (retry < 5)
3563                         break;
3564         }
3565         if (i == 4)
3566                 DRM_ERROR("FDI train 1 fail!\n");
3567
3568         /* Train 2 */
3569         reg = FDI_TX_CTL(pipe);
3570         temp = I915_READ(reg);
3571         temp &= ~FDI_LINK_TRAIN_NONE;
3572         temp |= FDI_LINK_TRAIN_PATTERN_2;
3573         if (IS_GEN6(dev)) {
3574                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3575                 /* SNB-B */
3576                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3577         }
3578         I915_WRITE(reg, temp);
3579
3580         reg = FDI_RX_CTL(pipe);
3581         temp = I915_READ(reg);
3582         if (HAS_PCH_CPT(dev)) {
3583                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3584                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3585         } else {
3586                 temp &= ~FDI_LINK_TRAIN_NONE;
3587                 temp |= FDI_LINK_TRAIN_PATTERN_2;
3588         }
3589         I915_WRITE(reg, temp);
3590
3591         POSTING_READ(reg);
3592         udelay(150);
3593
3594         for (i = 0; i < 4; i++) {
3595                 reg = FDI_TX_CTL(pipe);
3596                 temp = I915_READ(reg);
3597                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3598                 temp |= snb_b_fdi_train_param[i];
3599                 I915_WRITE(reg, temp);
3600
3601                 POSTING_READ(reg);
3602                 udelay(500);
3603
3604                 for (retry = 0; retry < 5; retry++) {
3605                         reg = FDI_RX_IIR(pipe);
3606                         temp = I915_READ(reg);
3607                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3608                         if (temp & FDI_RX_SYMBOL_LOCK) {
3609                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3610                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
3611                                 break;
3612                         }
3613                         udelay(50);
3614                 }
3615                 if (retry < 5)
3616                         break;
3617         }
3618         if (i == 4)
3619                 DRM_ERROR("FDI train 2 fail!\n");
3620
3621         DRM_DEBUG_KMS("FDI train done.\n");
3622 }
3623
3624 /* Manual link training for Ivy Bridge A0 parts */
3625 static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3626 {
3627         struct drm_device *dev = crtc->dev;
3628         struct drm_i915_private *dev_priv = dev->dev_private;
3629         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3630         int pipe = intel_crtc->pipe;
3631         u32 reg, temp, i, j;
3632
3633         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3634            for train result */
3635         reg = FDI_RX_IMR(pipe);
3636         temp = I915_READ(reg);
3637         temp &= ~FDI_RX_SYMBOL_LOCK;
3638         temp &= ~FDI_RX_BIT_LOCK;
3639         I915_WRITE(reg, temp);
3640
3641         POSTING_READ(reg);
3642         udelay(150);
3643
3644         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3645                       I915_READ(FDI_RX_IIR(pipe)));
3646
3647         /* Try each vswing and preemphasis setting twice before moving on */
3648         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3649                 /* disable first in case we need to retry */
3650                 reg = FDI_TX_CTL(pipe);
3651                 temp = I915_READ(reg);
3652                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3653                 temp &= ~FDI_TX_ENABLE;
3654                 I915_WRITE(reg, temp);
3655
3656                 reg = FDI_RX_CTL(pipe);
3657                 temp = I915_READ(reg);
3658                 temp &= ~FDI_LINK_TRAIN_AUTO;
3659                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3660                 temp &= ~FDI_RX_ENABLE;
3661                 I915_WRITE(reg, temp);
3662
3663                 /* enable CPU FDI TX and PCH FDI RX */
3664                 reg = FDI_TX_CTL(pipe);
3665                 temp = I915_READ(reg);
3666                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
3667                 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3668                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3669                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3670                 temp |= snb_b_fdi_train_param[j/2];
3671                 temp |= FDI_COMPOSITE_SYNC;
3672                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
3673
3674                 I915_WRITE(FDI_RX_MISC(pipe),
3675                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3676
3677                 reg = FDI_RX_CTL(pipe);
3678                 temp = I915_READ(reg);
3679                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3680                 temp |= FDI_COMPOSITE_SYNC;
3681                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3682
3683                 POSTING_READ(reg);
3684                 udelay(1); /* should be 0.5us */
3685
3686                 for (i = 0; i < 4; i++) {
3687                         reg = FDI_RX_IIR(pipe);
3688                         temp = I915_READ(reg);
3689                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3690
3691                         if (temp & FDI_RX_BIT_LOCK ||
3692                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3693                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3694                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3695                                               i);
3696                                 break;
3697                         }
3698                         udelay(1); /* should be 0.5us */
3699                 }
3700                 if (i == 4) {
3701                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3702                         continue;
3703                 }
3704
3705                 /* Train 2 */
3706                 reg = FDI_TX_CTL(pipe);
3707                 temp = I915_READ(reg);
3708                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3709                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3710                 I915_WRITE(reg, temp);
3711
3712                 reg = FDI_RX_CTL(pipe);
3713                 temp = I915_READ(reg);
3714                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3715                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3716                 I915_WRITE(reg, temp);
3717
3718                 POSTING_READ(reg);
3719                 udelay(2); /* should be 1.5us */
3720
3721                 for (i = 0; i < 4; i++) {
3722                         reg = FDI_RX_IIR(pipe);
3723                         temp = I915_READ(reg);
3724                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3725
3726                         if (temp & FDI_RX_SYMBOL_LOCK ||
3727                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3728                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3729                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3730                                               i);
3731                                 goto train_done;
3732                         }
3733                         udelay(2); /* should be 1.5us */
3734                 }
3735                 if (i == 4)
3736                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3737         }
3738
3739 train_done:
3740         DRM_DEBUG_KMS("FDI train done.\n");
3741 }
3742
3743 static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3744 {
3745         struct drm_device *dev = intel_crtc->base.dev;
3746         struct drm_i915_private *dev_priv = dev->dev_private;
3747         int pipe = intel_crtc->pipe;
3748         u32 reg, temp;
3749
3750
3751         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3752         reg = FDI_RX_CTL(pipe);
3753         temp = I915_READ(reg);
3754         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3755         temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3756         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3757         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3758
3759         POSTING_READ(reg);
3760         udelay(200);
3761
3762         /* Switch from Rawclk to PCDclk */
3763         temp = I915_READ(reg);
3764         I915_WRITE(reg, temp | FDI_PCDCLK);
3765
3766         POSTING_READ(reg);
3767         udelay(200);
3768
3769         /* Enable CPU FDI TX PLL, always on for Ironlake */
3770         reg = FDI_TX_CTL(pipe);
3771         temp = I915_READ(reg);
3772         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3773                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3774
3775                 POSTING_READ(reg);
3776                 udelay(100);
3777         }
3778 }
3779
3780 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3781 {
3782         struct drm_device *dev = intel_crtc->base.dev;
3783         struct drm_i915_private *dev_priv = dev->dev_private;
3784         int pipe = intel_crtc->pipe;
3785         u32 reg, temp;
3786
3787         /* Switch from PCDclk to Rawclk */
3788         reg = FDI_RX_CTL(pipe);
3789         temp = I915_READ(reg);
3790         I915_WRITE(reg, temp & ~FDI_PCDCLK);
3791
3792         /* Disable CPU FDI TX PLL */
3793         reg = FDI_TX_CTL(pipe);
3794         temp = I915_READ(reg);
3795         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3796
3797         POSTING_READ(reg);
3798         udelay(100);
3799
3800         reg = FDI_RX_CTL(pipe);
3801         temp = I915_READ(reg);
3802         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3803
3804         /* Wait for the clocks to turn off. */
3805         POSTING_READ(reg);
3806         udelay(100);
3807 }
3808
3809 static void ironlake_fdi_disable(struct drm_crtc *crtc)
3810 {
3811         struct drm_device *dev = crtc->dev;
3812         struct drm_i915_private *dev_priv = dev->dev_private;
3813         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814         int pipe = intel_crtc->pipe;
3815         u32 reg, temp;
3816
3817         /* disable CPU FDI tx and PCH FDI rx */
3818         reg = FDI_TX_CTL(pipe);
3819         temp = I915_READ(reg);
3820         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3821         POSTING_READ(reg);
3822
3823         reg = FDI_RX_CTL(pipe);
3824         temp = I915_READ(reg);
3825         temp &= ~(0x7 << 16);
3826         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3827         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3828
3829         POSTING_READ(reg);
3830         udelay(100);
3831
3832         /* Ironlake workaround, disable clock pointer after downing FDI */
3833         if (HAS_PCH_IBX(dev))
3834                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3835
3836         /* still set train pattern 1 */
3837         reg = FDI_TX_CTL(pipe);
3838         temp = I915_READ(reg);
3839         temp &= ~FDI_LINK_TRAIN_NONE;
3840         temp |= FDI_LINK_TRAIN_PATTERN_1;
3841         I915_WRITE(reg, temp);
3842
3843         reg = FDI_RX_CTL(pipe);
3844         temp = I915_READ(reg);
3845         if (HAS_PCH_CPT(dev)) {
3846                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3847                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3848         } else {
3849                 temp &= ~FDI_LINK_TRAIN_NONE;
3850                 temp |= FDI_LINK_TRAIN_PATTERN_1;
3851         }
3852         /* BPC in FDI rx is consistent with that in PIPECONF */
3853         temp &= ~(0x07 << 16);
3854         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3855         I915_WRITE(reg, temp);
3856
3857         POSTING_READ(reg);
3858         udelay(100);
3859 }
3860
3861 bool intel_has_pending_fb_unpin(struct drm_device *dev)
3862 {
3863         struct intel_crtc *crtc;
3864
3865         /* Note that we don't need to be called with mode_config.lock here
3866          * as our list of CRTC objects is static for the lifetime of the
3867          * device and so cannot disappear as we iterate. Similarly, we can
3868          * happily treat the predicates as racy, atomic checks as userspace
3869          * cannot claim and pin a new fb without at least acquring the
3870          * struct_mutex and so serialising with us.
3871          */
3872         for_each_intel_crtc(dev, crtc) {
3873                 if (atomic_read(&crtc->unpin_work_count) == 0)
3874                         continue;
3875
3876                 if (crtc->unpin_work)
3877                         intel_wait_for_vblank(dev, crtc->pipe);
3878
3879                 return true;
3880         }
3881
3882         return false;
3883 }
3884
3885 static void page_flip_completed(struct intel_crtc *intel_crtc)
3886 {
3887         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3888         struct intel_unpin_work *work = intel_crtc->unpin_work;
3889
3890         /* ensure that the unpin work is consistent wrt ->pending. */
3891         smp_rmb();
3892         intel_crtc->unpin_work = NULL;
3893
3894         if (work->event)
3895                 drm_send_vblank_event(intel_crtc->base.dev,
3896                                       intel_crtc->pipe,
3897                                       work->event);
3898
3899         drm_crtc_vblank_put(&intel_crtc->base);
3900
3901         wake_up_all(&dev_priv->pending_flip_queue);
3902         queue_work(dev_priv->wq, &work->work);
3903
3904         trace_i915_flip_complete(intel_crtc->plane,
3905                                  work->pending_flip_obj);
3906 }
3907
3908 void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3909 {
3910         struct drm_device *dev = crtc->dev;
3911         struct drm_i915_private *dev_priv = dev->dev_private;
3912
3913         WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3914         if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3915                                        !intel_crtc_has_pending_flip(crtc),
3916                                        60*HZ) == 0)) {
3917                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3918
3919                 spin_lock_irq(&dev->event_lock);
3920                 if (intel_crtc->unpin_work) {
3921                         WARN_ONCE(1, "Removing stuck page flip\n");
3922                         page_flip_completed(intel_crtc);
3923                 }
3924                 spin_unlock_irq(&dev->event_lock);
3925         }
3926
3927         if (crtc->primary->fb) {
3928                 mutex_lock(&dev->struct_mutex);
3929                 intel_finish_fb(crtc->primary->fb);
3930                 mutex_unlock(&dev->struct_mutex);
3931         }
3932 }
3933
3934 /* Program iCLKIP clock to the desired frequency */
3935 static void lpt_program_iclkip(struct drm_crtc *crtc)
3936 {
3937         struct drm_device *dev = crtc->dev;
3938         struct drm_i915_private *dev_priv = dev->dev_private;
3939         int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3940         u32 divsel, phaseinc, auxdiv, phasedir = 0;
3941         u32 temp;
3942
3943         mutex_lock(&dev_priv->sb_lock);
3944
3945         /* It is necessary to ungate the pixclk gate prior to programming
3946          * the divisors, and gate it back when it is done.
3947          */
3948         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3949
3950         /* Disable SSCCTL */
3951         intel_sbi_write(dev_priv, SBI_SSCCTL6,
3952                         intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3953                                 SBI_SSCCTL_DISABLE,
3954                         SBI_ICLK);
3955
3956         /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3957         if (clock == 20000) {
3958                 auxdiv = 1;
3959                 divsel = 0x41;
3960                 phaseinc = 0x20;
3961         } else {
3962                 /* The iCLK virtual clock root frequency is in MHz,
3963                  * but the adjusted_mode->crtc_clock in in KHz. To get the
3964                  * divisors, it is necessary to divide one by another, so we
3965                  * convert the virtual clock precision to KHz here for higher
3966                  * precision.
3967                  */
3968                 u32 iclk_virtual_root_freq = 172800 * 1000;
3969                 u32 iclk_pi_range = 64;
3970                 u32 desired_divisor, msb_divisor_value, pi_value;
3971
3972                 desired_divisor = (iclk_virtual_root_freq / clock);
3973                 msb_divisor_value = desired_divisor / iclk_pi_range;
3974                 pi_value = desired_divisor % iclk_pi_range;
3975
3976                 auxdiv = 0;
3977                 divsel = msb_divisor_value - 2;
3978                 phaseinc = pi_value;
3979         }
3980
3981         /* This should not happen with any sane values */
3982         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3983                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3984         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3985                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3986
3987         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3988                         clock,
3989                         auxdiv,
3990                         divsel,
3991                         phasedir,
3992                         phaseinc);
3993
3994         /* Program SSCDIVINTPHASE6 */
3995         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3996         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3997         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3998         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3999         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4000         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4001         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4002         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4003
4004         /* Program SSCAUXDIV */
4005         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4006         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4007         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4008         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4009
4010         /* Enable modulator and associated divider */
4011         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4012         temp &= ~SBI_SSCCTL_DISABLE;
4013         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4014
4015         /* Wait for initialization time */
4016         udelay(24);
4017
4018         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4019
4020         mutex_unlock(&dev_priv->sb_lock);
4021 }
4022
4023 static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4024                                                 enum pipe pch_transcoder)
4025 {
4026         struct drm_device *dev = crtc->base.dev;
4027         struct drm_i915_private *dev_priv = dev->dev_private;
4028         enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4029
4030         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4031                    I915_READ(HTOTAL(cpu_transcoder)));
4032         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4033                    I915_READ(HBLANK(cpu_transcoder)));
4034         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4035                    I915_READ(HSYNC(cpu_transcoder)));
4036
4037         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4038                    I915_READ(VTOTAL(cpu_transcoder)));
4039         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4040                    I915_READ(VBLANK(cpu_transcoder)));
4041         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4042                    I915_READ(VSYNC(cpu_transcoder)));
4043         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4044                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
4045 }
4046
4047 static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4048 {
4049         struct drm_i915_private *dev_priv = dev->dev_private;
4050         uint32_t temp;
4051
4052         temp = I915_READ(SOUTH_CHICKEN1);
4053         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4054                 return;
4055
4056         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4057         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4058
4059         temp &= ~FDI_BC_BIFURCATION_SELECT;
4060         if (enable)
4061                 temp |= FDI_BC_BIFURCATION_SELECT;
4062
4063         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4064         I915_WRITE(SOUTH_CHICKEN1, temp);
4065         POSTING_READ(SOUTH_CHICKEN1);
4066 }
4067
4068 static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4069 {
4070         struct drm_device *dev = intel_crtc->base.dev;
4071
4072         switch (intel_crtc->pipe) {
4073         case PIPE_A:
4074                 break;
4075         case PIPE_B:
4076                 if (intel_crtc->config->fdi_lanes > 2)
4077                         cpt_set_fdi_bc_bifurcation(dev, false);
4078                 else
4079                         cpt_set_fdi_bc_bifurcation(dev, true);
4080
4081                 break;
4082         case PIPE_C:
4083                 cpt_set_fdi_bc_bifurcation(dev, true);
4084
4085                 break;
4086         default:
4087                 BUG();
4088         }
4089 }
4090
4091 /*
4092  * Enable PCH resources required for PCH ports:
4093  *   - PCH PLLs
4094  *   - FDI training & RX/TX
4095  *   - update transcoder timings
4096  *   - DP transcoding bits
4097  *   - transcoder
4098  */
4099 static void ironlake_pch_enable(struct drm_crtc *crtc)
4100 {
4101         struct drm_device *dev = crtc->dev;
4102         struct drm_i915_private *dev_priv = dev->dev_private;
4103         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104         int pipe = intel_crtc->pipe;
4105         u32 reg, temp;
4106
4107         assert_pch_transcoder_disabled(dev_priv, pipe);
4108
4109         if (IS_IVYBRIDGE(dev))
4110                 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4111
4112         /* Write the TU size bits before fdi link training, so that error
4113          * detection works. */
4114         I915_WRITE(FDI_RX_TUSIZE1(pipe),
4115                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4116
4117         /* For PCH output, training FDI link */
4118         dev_priv->display.fdi_link_train(crtc);
4119
4120         /* We need to program the right clock selection before writing the pixel
4121          * mutliplier into the DPLL. */
4122         if (HAS_PCH_CPT(dev)) {
4123                 u32 sel;
4124
4125                 temp = I915_READ(PCH_DPLL_SEL);
4126                 temp |= TRANS_DPLL_ENABLE(pipe);
4127                 sel = TRANS_DPLLB_SEL(pipe);
4128                 if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4129                         temp |= sel;
4130                 else
4131                         temp &= ~sel;
4132                 I915_WRITE(PCH_DPLL_SEL, temp);
4133         }
4134
4135         /* XXX: pch pll's can be enabled any time before we enable the PCH
4136          * transcoder, and we actually should do this to not upset any PCH
4137          * transcoder that already use the clock when we share it.
4138          *
4139          * Note that enable_shared_dpll tries to do the right thing, but
4140          * get_shared_dpll unconditionally resets the pll - we need that to have
4141          * the right LVDS enable sequence. */
4142         intel_enable_shared_dpll(intel_crtc);
4143
4144         /* set transcoder timing, panel must allow it */
4145         assert_panel_unlocked(dev_priv, pipe);
4146         ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4147
4148         intel_fdi_normal_train(crtc);
4149
4150         /* For PCH DP, enable TRANS_DP_CTL */
4151         if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4152                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4153                 reg = TRANS_DP_CTL(pipe);
4154                 temp = I915_READ(reg);
4155                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
4156                           TRANS_DP_SYNC_MASK |
4157                           TRANS_DP_BPC_MASK);
4158                 temp |= TRANS_DP_OUTPUT_ENABLE;
4159                 temp |= bpc << 9; /* same format but at 11:9 */
4160
4161                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4162                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4163                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4164                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4165
4166                 switch (intel_trans_dp_port_sel(crtc)) {
4167                 case PCH_DP_B:
4168                         temp |= TRANS_DP_PORT_SEL_B;
4169                         break;
4170                 case PCH_DP_C:
4171                         temp |= TRANS_DP_PORT_SEL_C;
4172                         break;
4173                 case PCH_DP_D:
4174                         temp |= TRANS_DP_PORT_SEL_D;
4175                         break;
4176                 default:
4177                         BUG();
4178                 }
4179
4180                 I915_WRITE(reg, temp);
4181         }
4182
4183         ironlake_enable_pch_transcoder(dev_priv, pipe);
4184 }
4185
4186 static void lpt_pch_enable(struct drm_crtc *crtc)
4187 {
4188         struct drm_device *dev = crtc->dev;
4189         struct drm_i915_private *dev_priv = dev->dev_private;
4190         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4191         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4192
4193         assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4194
4195         lpt_program_iclkip(crtc);
4196
4197         /* Set transcoder timing. */
4198         ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4199
4200         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4201 }
4202
4203 void intel_put_shared_dpll(struct intel_crtc *crtc)
4204 {
4205         struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4206
4207         if (pll == NULL)
4208                 return;
4209
4210         if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4211                 WARN(1, "bad %s crtc mask\n", pll->name);
4212                 return;
4213         }
4214
4215         pll->config.crtc_mask &= ~(1 << crtc->pipe);
4216         if (pll->config.crtc_mask == 0) {
4217                 WARN_ON(pll->on);
4218                 WARN_ON(pll->active);
4219         }
4220
4221         crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4222 }
4223
4224 struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4225                                                 struct intel_crtc_state *crtc_state)
4226 {
4227         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4228         struct intel_shared_dpll *pll;
4229         enum intel_dpll_id i;
4230
4231         if (HAS_PCH_IBX(dev_priv->dev)) {
4232                 /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4233                 i = (enum intel_dpll_id) crtc->pipe;
4234                 pll = &dev_priv->shared_dplls[i];
4235
4236                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4237                               crtc->base.base.id, pll->name);
4238
4239                 WARN_ON(pll->new_config->crtc_mask);
4240
4241                 goto found;
4242         }
4243
4244         if (IS_BROXTON(dev_priv->dev)) {
4245                 /* PLL is attached to port in bxt */
4246                 struct intel_encoder *encoder;
4247                 struct intel_digital_port *intel_dig_port;
4248
4249                 encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4250                 if (WARN_ON(!encoder))
4251                         return NULL;
4252
4253                 intel_dig_port = enc_to_dig_port(&encoder->base);
4254                 /* 1:1 mapping between ports and PLLs */
4255                 i = (enum intel_dpll_id)intel_dig_port->port;
4256                 pll = &dev_priv->shared_dplls[i];
4257                 DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4258                         crtc->base.base.id, pll->name);
4259                 WARN_ON(pll->new_config->crtc_mask);
4260
4261                 goto found;
4262         }
4263
4264         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4265                 pll = &dev_priv->shared_dplls[i];
4266
4267                 /* Only want to check enabled timings first */
4268                 if (pll->new_config->crtc_mask == 0)
4269                         continue;
4270
4271                 if (memcmp(&crtc_state->dpll_hw_state,
4272                            &pll->new_config->hw_state,
4273                            sizeof(pll->new_config->hw_state)) == 0) {
4274                         DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4275                                       crtc->base.base.id, pll->name,
4276                                       pll->new_config->crtc_mask,
4277                                       pll->active);
4278                         goto found;
4279                 }
4280         }
4281
4282         /* Ok no matching timings, maybe there's a free one? */
4283         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4284                 pll = &dev_priv->shared_dplls[i];
4285                 if (pll->new_config->crtc_mask == 0) {
4286                         DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4287                                       crtc->base.base.id, pll->name);
4288                         goto found;
4289                 }
4290         }
4291
4292         return NULL;
4293
4294 found:
4295         if (pll->new_config->crtc_mask == 0)
4296                 pll->new_config->hw_state = crtc_state->dpll_hw_state;
4297
4298         crtc_state->shared_dpll = i;
4299         DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4300                          pipe_name(crtc->pipe));
4301
4302         pll->new_config->crtc_mask |= 1 << crtc->pipe;
4303
4304         return pll;
4305 }
4306
4307 /**
4308  * intel_shared_dpll_start_config - start a new PLL staged config
4309  * @dev_priv: DRM device
4310  * @clear_pipes: mask of pipes that will have their PLLs freed
4311  *
4312  * Starts a new PLL staged config, copying the current config but
4313  * releasing the references of pipes specified in clear_pipes.
4314  */
4315 static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4316                                           unsigned clear_pipes)
4317 {
4318         struct intel_shared_dpll *pll;
4319         enum intel_dpll_id i;
4320
4321         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4322                 pll = &dev_priv->shared_dplls[i];
4323
4324                 pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4325                                           GFP_KERNEL);
4326                 if (!pll->new_config)
4327                         goto cleanup;
4328
4329                 pll->new_config->crtc_mask &= ~clear_pipes;
4330         }
4331
4332         return 0;
4333
4334 cleanup:
4335         while (--i >= 0) {
4336                 pll = &dev_priv->shared_dplls[i];
4337                 kfree(pll->new_config);
4338                 pll->new_config = NULL;
4339         }
4340
4341         return -ENOMEM;
4342 }
4343
4344 static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4345 {
4346         struct intel_shared_dpll *pll;
4347         enum intel_dpll_id i;
4348
4349         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4350                 pll = &dev_priv->shared_dplls[i];
4351
4352                 WARN_ON(pll->new_config == &pll->config);
4353
4354                 pll->config = *pll->new_config;
4355                 kfree(pll->new_config);
4356                 pll->new_config = NULL;
4357         }
4358 }
4359
4360 static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4361 {
4362         struct intel_shared_dpll *pll;
4363         enum intel_dpll_id i;
4364
4365         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4366                 pll = &dev_priv->shared_dplls[i];
4367
4368                 WARN_ON(pll->new_config == &pll->config);
4369
4370                 kfree(pll->new_config);
4371                 pll->new_config = NULL;
4372         }
4373 }
4374
4375 static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4376 {
4377         struct drm_i915_private *dev_priv = dev->dev_private;
4378         int dslreg = PIPEDSL(pipe);
4379         u32 temp;
4380
4381         temp = I915_READ(dslreg);
4382         udelay(500);
4383         if (wait_for(I915_READ(dslreg) != temp, 5)) {
4384                 if (wait_for(I915_READ(dslreg) != temp, 5))
4385                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4386         }
4387 }
4388
4389 /**
4390  * skl_update_scaler_users - Stages update to crtc's scaler state
4391  * @intel_crtc: crtc
4392  * @crtc_state: crtc_state
4393  * @plane: plane (NULL indicates crtc is requesting update)
4394  * @plane_state: plane's state
4395  * @force_detach: request unconditional detachment of scaler
4396  *
4397  * This function updates scaler state for requested plane or crtc.
4398  * To request scaler usage update for a plane, caller shall pass plane pointer.
4399  * To request scaler usage update for crtc, caller shall pass plane pointer
4400  * as NULL.
4401  *
4402  * Return
4403  *     0 - scaler_usage updated successfully
4404  *    error - requested scaling cannot be supported or other error condition
4405  */
4406 int
4407 skl_update_scaler_users(
4408         struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4409         struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4410         int force_detach)
4411 {
4412         int need_scaling;
4413         int idx;
4414         int src_w, src_h, dst_w, dst_h;
4415         int *scaler_id;
4416         struct drm_framebuffer *fb;
4417         struct intel_crtc_scaler_state *scaler_state;
4418         unsigned int rotation;
4419
4420         if (!intel_crtc || !crtc_state)
4421                 return 0;
4422
4423         scaler_state = &crtc_state->scaler_state;
4424
4425         idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4426         fb = intel_plane ? plane_state->base.fb : NULL;
4427
4428         if (intel_plane) {
4429                 src_w = drm_rect_width(&plane_state->src) >> 16;
4430                 src_h = drm_rect_height(&plane_state->src) >> 16;
4431                 dst_w = drm_rect_width(&plane_state->dst);
4432                 dst_h = drm_rect_height(&plane_state->dst);
4433                 scaler_id = &plane_state->scaler_id;
4434                 rotation = plane_state->base.rotation;
4435         } else {
4436                 struct drm_display_mode *adjusted_mode =
4437                         &crtc_state->base.adjusted_mode;
4438                 src_w = crtc_state->pipe_src_w;
4439                 src_h = crtc_state->pipe_src_h;
4440                 dst_w = adjusted_mode->hdisplay;
4441                 dst_h = adjusted_mode->vdisplay;
4442                 scaler_id = &scaler_state->scaler_id;
4443                 rotation = DRM_ROTATE_0;
4444         }
4445
4446         need_scaling = intel_rotation_90_or_270(rotation) ?
4447                 (src_h != dst_w || src_w != dst_h):
4448                 (src_w != dst_w || src_h != dst_h);
4449
4450         /*
4451          * if plane is being disabled or scaler is no more required or force detach
4452          *  - free scaler binded to this plane/crtc
4453          *  - in order to do this, update crtc->scaler_usage
4454          *
4455          * Here scaler state in crtc_state is set free so that
4456          * scaler can be assigned to other user. Actual register
4457          * update to free the scaler is done in plane/panel-fit programming.
4458          * For this purpose crtc/plane_state->scaler_id isn't reset here.
4459          */
4460         if (force_detach || !need_scaling || (intel_plane &&
4461                 (!fb || !plane_state->visible))) {
4462                 if (*scaler_id >= 0) {
4463                         scaler_state->scaler_users &= ~(1 << idx);
4464                         scaler_state->scalers[*scaler_id].in_use = 0;
4465
4466                         DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4467                                 "crtc_state = %p scaler_users = 0x%x\n",
4468                                 intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4469                                 intel_plane ? intel_plane->base.base.id :
4470                                 intel_crtc->base.base.id, crtc_state,
4471                                 scaler_state->scaler_users);
4472                         *scaler_id = -1;
4473                 }
4474                 return 0;
4475         }
4476
4477         /* range checks */
4478         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4479                 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4480
4481                 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4482                 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4483                 DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4484                         "size is out of scaler range\n",
4485                         intel_plane ? "PLANE" : "CRTC",
4486                         intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4487                         intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4488                 return -EINVAL;
4489         }
4490
4491         /* check colorkey */
4492         if (WARN_ON(intel_plane &&
4493                 intel_plane->ckey.flags != I915_SET_COLORKEY_NONE)) {
4494                 DRM_DEBUG_KMS("PLANE:%d scaling %ux%u->%ux%u not allowed with colorkey",
4495                         intel_plane->base.base.id, src_w, src_h, dst_w, dst_h);
4496                 return -EINVAL;
4497         }
4498
4499         /* Check src format */
4500         if (intel_plane) {
4501                 switch (fb->pixel_format) {
4502                 case DRM_FORMAT_RGB565:
4503                 case DRM_FORMAT_XBGR8888:
4504                 case DRM_FORMAT_XRGB8888:
4505                 case DRM_FORMAT_ABGR8888:
4506                 case DRM_FORMAT_ARGB8888:
4507                 case DRM_FORMAT_XRGB2101010:
4508                 case DRM_FORMAT_XBGR2101010:
4509                 case DRM_FORMAT_YUYV:
4510                 case DRM_FORMAT_YVYU:
4511                 case DRM_FORMAT_UYVY:
4512                 case DRM_FORMAT_VYUY:
4513                         break;
4514                 default:
4515                         DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4516                                 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4517                         return -EINVAL;
4518                 }
4519         }
4520
4521         /* mark this plane as a scaler user in crtc_state */
4522         scaler_state->scaler_users |= (1 << idx);
4523         DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4524                 "crtc_state = %p scaler_users = 0x%x\n",
4525                 intel_plane ? "PLANE" : "CRTC",
4526                 intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4527                 src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4528         return 0;
4529 }
4530
4531 static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4532 {
4533         struct drm_device *dev = crtc->base.dev;
4534         struct drm_i915_private *dev_priv = dev->dev_private;
4535         int pipe = crtc->pipe;
4536         struct intel_crtc_scaler_state *scaler_state =
4537                 &crtc->config->scaler_state;
4538
4539         DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4540
4541         /* To update pfit, first update scaler state */
4542         skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4543         intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4544         skl_detach_scalers(crtc);
4545         if (!enable)
4546                 return;
4547
4548         if (crtc->config->pch_pfit.enabled) {
4549                 int id;
4550
4551                 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4552                         DRM_ERROR("Requesting pfit without getting a scaler first\n");
4553                         return;
4554                 }
4555
4556                 id = scaler_state->scaler_id;
4557                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4558                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4559                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4560                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4561
4562                 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4563         }
4564 }
4565
4566 static void ironlake_pfit_enable(struct intel_crtc *crtc)
4567 {
4568         struct drm_device *dev = crtc->base.dev;
4569         struct drm_i915_private *dev_priv = dev->dev_private;
4570         int pipe = crtc->pipe;
4571
4572         if (crtc->config->pch_pfit.enabled) {
4573                 /* Force use of hard-coded filter coefficients
4574                  * as some pre-programmed values are broken,
4575                  * e.g. x201.
4576                  */
4577                 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4578                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4579                                                  PF_PIPE_SEL_IVB(pipe));
4580                 else
4581                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4582                 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4583                 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4584         }
4585 }
4586
4587 static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4588 {
4589         struct drm_device *dev = crtc->dev;
4590         enum pipe pipe = to_intel_crtc(crtc)->pipe;
4591         struct drm_plane *plane;
4592         struct intel_plane *intel_plane;
4593
4594         drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4595                 intel_plane = to_intel_plane(plane);
4596                 if (intel_plane->pipe == pipe)
4597                         intel_plane_restore(&intel_plane->base);
4598         }
4599 }
4600
4601 void hsw_enable_ips(struct intel_crtc *crtc)
4602 {
4603         struct drm_device *dev = crtc->base.dev;
4604         struct drm_i915_private *dev_priv = dev->dev_private;
4605
4606         if (!crtc->config->ips_enabled)
4607                 return;
4608
4609         /* We can only enable IPS after we enable a plane and wait for a vblank */
4610         intel_wait_for_vblank(dev, crtc->pipe);
4611
4612         assert_plane_enabled(dev_priv, crtc->plane);
4613         if (IS_BROADWELL(dev)) {
4614                 mutex_lock(&dev_priv->rps.hw_lock);
4615                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4616                 mutex_unlock(&dev_priv->rps.hw_lock);
4617                 /* Quoting Art Runyan: "its not safe to expect any particular
4618                  * value in IPS_CTL bit 31 after enabling IPS through the
4619                  * mailbox." Moreover, the mailbox may return a bogus state,
4620                  * so we need to just enable it and continue on.
4621                  */
4622         } else {
4623                 I915_WRITE(IPS_CTL, IPS_ENABLE);
4624                 /* The bit only becomes 1 in the next vblank, so this wait here
4625                  * is essentially intel_wait_for_vblank. If we don't have this
4626                  * and don't wait for vblanks until the end of crtc_enable, then
4627                  * the HW state readout code will complain that the expected
4628                  * IPS_CTL value is not the one we read. */
4629                 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4630                         DRM_ERROR("Timed out waiting for IPS enable\n");
4631         }
4632 }
4633
4634 void hsw_disable_ips(struct intel_crtc *crtc)
4635 {
4636         struct drm_device *dev = crtc->base.dev;
4637         struct drm_i915_private *dev_priv = dev->dev_private;
4638
4639         if (!crtc->config->ips_enabled)
4640                 return;
4641
4642         assert_plane_enabled(dev_priv, crtc->plane);
4643         if (IS_BROADWELL(dev)) {
4644                 mutex_lock(&dev_priv->rps.hw_lock);
4645                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4646                 mutex_unlock(&dev_priv->rps.hw_lock);
4647                 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4648                 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4649                         DRM_ERROR("Timed out waiting for IPS disable\n");
4650         } else {
4651                 I915_WRITE(IPS_CTL, 0);
4652                 POSTING_READ(IPS_CTL);
4653         }
4654
4655         /* We need to wait for a vblank before we can disable the plane. */
4656         intel_wait_for_vblank(dev, crtc->pipe);
4657 }
4658
4659 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4660 static void intel_crtc_load_lut(struct drm_crtc *crtc)
4661 {
4662         struct drm_device *dev = crtc->dev;
4663         struct drm_i915_private *dev_priv = dev->dev_private;
4664         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4665         enum pipe pipe = intel_crtc->pipe;
4666         int palreg = PALETTE(pipe);
4667         int i;
4668         bool reenable_ips = false;
4669
4670         /* The clocks have to be on to load the palette. */
4671         if (!crtc->state->enable || !intel_crtc->active)
4672                 return;
4673
4674         if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4675                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4676                         assert_dsi_pll_enabled(dev_priv);
4677                 else
4678                         assert_pll_enabled(dev_priv, pipe);
4679         }
4680
4681         /* use legacy palette for Ironlake */
4682         if (!HAS_GMCH_DISPLAY(dev))
4683                 palreg = LGC_PALETTE(pipe);
4684
4685         /* Workaround : Do not read or write the pipe palette/gamma data while
4686          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4687          */
4688         if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4689             ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4690              GAMMA_MODE_MODE_SPLIT)) {
4691                 hsw_disable_ips(intel_crtc);
4692                 reenable_ips = true;
4693         }
4694
4695         for (i = 0; i < 256; i++) {
4696                 I915_WRITE(palreg + 4 * i,
4697                            (intel_crtc->lut_r[i] << 16) |
4698                            (intel_crtc->lut_g[i] << 8) |
4699                            intel_crtc->lut_b[i]);
4700         }
4701
4702         if (reenable_ips)
4703                 hsw_enable_ips(intel_crtc);
4704 }
4705
4706 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4707 {
4708         if (intel_crtc->overlay) {
4709                 struct drm_device *dev = intel_crtc->base.dev;
4710                 struct drm_i915_private *dev_priv = dev->dev_private;
4711
4712                 mutex_lock(&dev->struct_mutex);
4713                 dev_priv->mm.interruptible = false;
4714                 (void) intel_overlay_switch_off(intel_crtc->overlay);
4715                 dev_priv->mm.interruptible = true;
4716                 mutex_unlock(&dev->struct_mutex);
4717         }
4718
4719         /* Let userspace switch the overlay on again. In most cases userspace
4720          * has to recompute where to put it anyway.
4721          */
4722 }
4723
4724 /**
4725  * intel_post_enable_primary - Perform operations after enabling primary plane
4726  * @crtc: the CRTC whose primary plane was just enabled
4727  *
4728  * Performs potentially sleeping operations that must be done after the primary
4729  * plane is enabled, such as updating FBC and IPS.  Note that this may be
4730  * called due to an explicit primary plane update, or due to an implicit
4731  * re-enable that is caused when a sprite plane is updated to no longer
4732  * completely hide the primary plane.
4733  */
4734 static void
4735 intel_post_enable_primary(struct drm_crtc *crtc)
4736 {
4737         struct drm_device *dev = crtc->dev;
4738         struct drm_i915_private *dev_priv = dev->dev_private;
4739         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4740         int pipe = intel_crtc->pipe;
4741
4742         /*
4743          * BDW signals flip done immediately if the plane
4744          * is disabled, even if the plane enable is already
4745          * armed to occur at the next vblank :(
4746          */
4747         if (IS_BROADWELL(dev))
4748                 intel_wait_for_vblank(dev, pipe);
4749
4750         /*
4751          * FIXME IPS should be fine as long as one plane is
4752          * enabled, but in practice it seems to have problems
4753          * when going from primary only to sprite only and vice
4754          * versa.
4755          */
4756         hsw_enable_ips(intel_crtc);
4757
4758         mutex_lock(&dev->struct_mutex);
4759         intel_fbc_update(dev);
4760         mutex_unlock(&dev->struct_mutex);
4761
4762         /*
4763          * Gen2 reports pipe underruns whenever all planes are disabled.
4764          * So don't enable underrun reporting before at least some planes
4765          * are enabled.
4766          * FIXME: Need to fix the logic to work when we turn off all planes
4767          * but leave the pipe running.
4768          */
4769         if (IS_GEN2(dev))
4770                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4771
4772         /* Underruns don't raise interrupts, so check manually. */
4773         if (HAS_GMCH_DISPLAY(dev))
4774                 i9xx_check_fifo_underruns(dev_priv);
4775 }
4776
4777 /**
4778  * intel_pre_disable_primary - Perform operations before disabling primary plane
4779  * @crtc: the CRTC whose primary plane is to be disabled
4780  *
4781  * Performs potentially sleeping operations that must be done before the
4782  * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4783  * be called due to an explicit primary plane update, or due to an implicit
4784  * disable that is caused when a sprite plane completely hides the primary
4785  * plane.
4786  */
4787 static void
4788 intel_pre_disable_primary(struct drm_crtc *crtc)
4789 {
4790         struct drm_device *dev = crtc->dev;
4791         struct drm_i915_private *dev_priv = dev->dev_private;
4792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4793         int pipe = intel_crtc->pipe;
4794
4795         /*
4796          * Gen2 reports pipe underruns whenever all planes are disabled.
4797          * So diasble underrun reporting before all the planes get disabled.
4798          * FIXME: Need to fix the logic to work when we turn off all planes
4799          * but leave the pipe running.
4800          */
4801         if (IS_GEN2(dev))
4802                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4803
4804         /*
4805          * Vblank time updates from the shadow to live plane control register
4806          * are blocked if the memory self-refresh mode is active at that
4807          * moment. So to make sure the plane gets truly disabled, disable
4808          * first the self-refresh mode. The self-refresh enable bit in turn
4809          * will be checked/applied by the HW only at the next frame start
4810          * event which is after the vblank start event, so we need to have a
4811          * wait-for-vblank between disabling the plane and the pipe.
4812          */
4813         if (HAS_GMCH_DISPLAY(dev))
4814                 intel_set_memory_cxsr(dev_priv, false);
4815
4816         mutex_lock(&dev->struct_mutex);
4817         if (dev_priv->fbc.crtc == intel_crtc)
4818                 intel_fbc_disable(dev);
4819         mutex_unlock(&dev->struct_mutex);
4820
4821         /*
4822          * FIXME IPS should be fine as long as one plane is
4823          * enabled, but in practice it seems to have problems
4824          * when going from primary only to sprite only and vice
4825          * versa.
4826          */
4827         hsw_disable_ips(intel_crtc);
4828 }
4829
4830 static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4831 {
4832         struct drm_device *dev = crtc->dev;
4833         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4834         int pipe = intel_crtc->pipe;
4835
4836         intel_enable_primary_hw_plane(crtc->primary, crtc);
4837         intel_enable_sprite_planes(crtc);
4838         intel_crtc_update_cursor(crtc, true);
4839
4840         intel_post_enable_primary(crtc);
4841
4842         /*
4843          * FIXME: Once we grow proper nuclear flip support out of this we need
4844          * to compute the mask of flip planes precisely. For the time being
4845          * consider this a flip to a NULL plane.
4846          */
4847         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4848 }
4849
4850 static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4851 {
4852         struct drm_device *dev = crtc->dev;
4853         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854         struct intel_plane *intel_plane;
4855         int pipe = intel_crtc->pipe;
4856
4857         if (!intel_crtc->active)
4858                 return;
4859
4860         intel_crtc_wait_for_pending_flips(crtc);
4861
4862         intel_pre_disable_primary(crtc);
4863
4864         intel_crtc_dpms_overlay_disable(intel_crtc);
4865         for_each_intel_plane(dev, intel_plane) {
4866                 if (intel_plane->pipe == pipe) {
4867                         struct drm_crtc *from = intel_plane->base.crtc;
4868
4869                         intel_plane->disable_plane(&intel_plane->base,
4870                                                    from ?: crtc, true);
4871                 }
4872         }
4873
4874         /*
4875          * FIXME: Once we grow proper nuclear flip support out of this we need
4876          * to compute the mask of flip planes precisely. For the time being
4877          * consider this a flip to a NULL plane.
4878          */
4879         intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4880 }
4881
4882 static void ironlake_crtc_enable(struct drm_crtc *crtc)
4883 {
4884         struct drm_device *dev = crtc->dev;
4885         struct drm_i915_private *dev_priv = dev->dev_private;
4886         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4887         struct intel_encoder *encoder;
4888         int pipe = intel_crtc->pipe;
4889
4890         WARN_ON(!crtc->state->enable);
4891
4892         if (intel_crtc->active)
4893                 return;
4894
4895         if (intel_crtc->config->has_pch_encoder)
4896                 intel_prepare_shared_dpll(intel_crtc);
4897
4898         if (intel_crtc->config->has_dp_encoder)
4899                 intel_dp_set_m_n(intel_crtc, M1_N1);
4900
4901         intel_set_pipe_timings(intel_crtc);
4902
4903         if (intel_crtc->config->has_pch_encoder) {
4904                 intel_cpu_transcoder_set_m_n(intel_crtc,
4905                                      &intel_crtc->config->fdi_m_n, NULL);
4906         }
4907
4908         ironlake_set_pipeconf(crtc);
4909
4910         intel_crtc->active = true;
4911
4912         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4913         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4914
4915         for_each_encoder_on_crtc(dev, crtc, encoder)
4916                 if (encoder->pre_enable)
4917                         encoder->pre_enable(encoder);
4918
4919         if (intel_crtc->config->has_pch_encoder) {
4920                 /* Note: FDI PLL enabling _must_ be done before we enable the
4921                  * cpu pipes, hence this is separate from all the other fdi/pch
4922                  * enabling. */
4923                 ironlake_fdi_pll_enable(intel_crtc);
4924         } else {
4925                 assert_fdi_tx_disabled(dev_priv, pipe);
4926                 assert_fdi_rx_disabled(dev_priv, pipe);
4927         }
4928
4929         ironlake_pfit_enable(intel_crtc);
4930
4931         /*
4932          * On ILK+ LUT must be loaded before the pipe is running but with
4933          * clocks enabled
4934          */
4935         intel_crtc_load_lut(crtc);
4936
4937         intel_update_watermarks(crtc);
4938         intel_enable_pipe(intel_crtc);
4939
4940         if (intel_crtc->config->has_pch_encoder)
4941                 ironlake_pch_enable(crtc);
4942
4943         assert_vblank_disabled(crtc);
4944         drm_crtc_vblank_on(crtc);
4945
4946         for_each_encoder_on_crtc(dev, crtc, encoder)
4947                 encoder->enable(encoder);
4948
4949         if (HAS_PCH_CPT(dev))
4950                 cpt_verify_modeset(dev, intel_crtc->pipe);
4951 }
4952
4953 /* IPS only exists on ULT machines and is tied to pipe A. */
4954 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4955 {
4956         return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4957 }
4958
4959 /*
4960  * This implements the workaround described in the "notes" section of the mode
4961  * set sequence documentation. When going from no pipes or single pipe to
4962  * multiple pipes, and planes are enabled after the pipe, we need to wait at
4963  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4964  */
4965 static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4966 {
4967         struct drm_device *dev = crtc->base.dev;
4968         struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4969
4970         /* We want to get the other_active_crtc only if there's only 1 other
4971          * active crtc. */
4972         for_each_intel_crtc(dev, crtc_it) {
4973                 if (!crtc_it->active || crtc_it == crtc)
4974                         continue;
4975
4976                 if (other_active_crtc)
4977                         return;
4978
4979                 other_active_crtc = crtc_it;
4980         }
4981         if (!other_active_crtc)
4982                 return;
4983
4984         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4985         intel_wait_for_vblank(dev, other_active_crtc->pipe);
4986 }
4987
4988 static void haswell_crtc_enable(struct drm_crtc *crtc)
4989 {
4990         struct drm_device *dev = crtc->dev;
4991         struct drm_i915_private *dev_priv = dev->dev_private;
4992         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4993         struct intel_encoder *encoder;
4994         int pipe = intel_crtc->pipe;
4995
4996         WARN_ON(!crtc->state->enable);
4997
4998         if (intel_crtc->active)
4999                 return;
5000
5001         if (intel_crtc_to_shared_dpll(intel_crtc))
5002                 intel_enable_shared_dpll(intel_crtc);
5003
5004         if (intel_crtc->config->has_dp_encoder)
5005                 intel_dp_set_m_n(intel_crtc, M1_N1);
5006
5007         intel_set_pipe_timings(intel_crtc);
5008
5009         if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
5010                 I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
5011                            intel_crtc->config->pixel_multiplier - 1);
5012         }
5013
5014         if (intel_crtc->config->has_pch_encoder) {
5015                 intel_cpu_transcoder_set_m_n(intel_crtc,
5016                                      &intel_crtc->config->fdi_m_n, NULL);
5017         }
5018
5019         haswell_set_pipeconf(crtc);
5020
5021         intel_set_pipe_csc(crtc);
5022
5023         intel_crtc->active = true;
5024
5025         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5026         for_each_encoder_on_crtc(dev, crtc, encoder)
5027                 if (encoder->pre_enable)
5028                         encoder->pre_enable(encoder);
5029
5030         if (intel_crtc->config->has_pch_encoder) {
5031                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5032                                                       true);
5033                 dev_priv->display.fdi_link_train(crtc);
5034         }
5035
5036         intel_ddi_enable_pipe_clock(intel_crtc);
5037
5038         if (INTEL_INFO(dev)->gen == 9)
5039                 skylake_pfit_update(intel_crtc, 1);
5040         else if (INTEL_INFO(dev)->gen < 9)
5041                 ironlake_pfit_enable(intel_crtc);
5042         else
5043                 MISSING_CASE(INTEL_INFO(dev)->gen);
5044
5045         /*
5046          * On ILK+ LUT must be loaded before the pipe is running but with
5047          * clocks enabled
5048          */
5049         intel_crtc_load_lut(crtc);
5050
5051         intel_ddi_set_pipe_settings(crtc);
5052         intel_ddi_enable_transcoder_func(crtc);
5053
5054         intel_update_watermarks(crtc);
5055         intel_enable_pipe(intel_crtc);
5056
5057         if (intel_crtc->config->has_pch_encoder)
5058                 lpt_pch_enable(crtc);
5059
5060         if (intel_crtc->config->dp_encoder_is_mst)
5061                 intel_ddi_set_vc_payload_alloc(crtc, true);
5062
5063         assert_vblank_disabled(crtc);
5064         drm_crtc_vblank_on(crtc);
5065
5066         for_each_encoder_on_crtc(dev, crtc, encoder) {
5067                 encoder->enable(encoder);
5068                 intel_opregion_notify_encoder(encoder, true);
5069         }
5070
5071         /* If we change the relative order between pipe/planes enabling, we need
5072          * to change the workaround. */
5073         haswell_mode_set_planes_workaround(intel_crtc);
5074 }
5075
5076 static void ironlake_pfit_disable(struct intel_crtc *crtc)
5077 {
5078         struct drm_device *dev = crtc->base.dev;
5079         struct drm_i915_private *dev_priv = dev->dev_private;
5080         int pipe = crtc->pipe;
5081
5082         /* To avoid upsetting the power well on haswell only disable the pfit if
5083          * it's in use. The hw state code will make sure we get this right. */
5084         if (crtc->config->pch_pfit.enabled) {
5085                 I915_WRITE(PF_CTL(pipe), 0);
5086                 I915_WRITE(PF_WIN_POS(pipe), 0);
5087                 I915_WRITE(PF_WIN_SZ(pipe), 0);
5088         }
5089 }
5090
5091 static void ironlake_crtc_disable(struct drm_crtc *crtc)
5092 {
5093         struct drm_device *dev = crtc->dev;
5094         struct drm_i915_private *dev_priv = dev->dev_private;
5095         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5096         struct intel_encoder *encoder;
5097         int pipe = intel_crtc->pipe;
5098         u32 reg, temp;
5099
5100         if (!intel_crtc->active)
5101                 return;
5102
5103         for_each_encoder_on_crtc(dev, crtc, encoder)
5104                 encoder->disable(encoder);
5105
5106         drm_crtc_vblank_off(crtc);
5107         assert_vblank_disabled(crtc);
5108
5109         if (intel_crtc->config->has_pch_encoder)
5110                 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5111
5112         intel_disable_pipe(intel_crtc);
5113
5114         ironlake_pfit_disable(intel_crtc);
5115
5116         if (intel_crtc->config->has_pch_encoder)
5117                 ironlake_fdi_disable(crtc);
5118
5119         for_each_encoder_on_crtc(dev, crtc, encoder)
5120                 if (encoder->post_disable)
5121                         encoder->post_disable(encoder);
5122
5123         if (intel_crtc->config->has_pch_encoder) {
5124                 ironlake_disable_pch_transcoder(dev_priv, pipe);
5125
5126                 if (HAS_PCH_CPT(dev)) {
5127                         /* disable TRANS_DP_CTL */
5128                         reg = TRANS_DP_CTL(pipe);
5129                         temp = I915_READ(reg);
5130                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5131                                   TRANS_DP_PORT_SEL_MASK);
5132                         temp |= TRANS_DP_PORT_SEL_NONE;
5133                         I915_WRITE(reg, temp);
5134
5135                         /* disable DPLL_SEL */
5136                         temp = I915_READ(PCH_DPLL_SEL);
5137                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5138                         I915_WRITE(PCH_DPLL_SEL, temp);
5139                 }
5140
5141                 /* disable PCH DPLL */
5142                 intel_disable_shared_dpll(intel_crtc);
5143
5144                 ironlake_fdi_pll_disable(intel_crtc);
5145         }
5146
5147         intel_crtc->active = false;
5148         intel_update_watermarks(crtc);
5149
5150         mutex_lock(&dev->struct_mutex);
5151         intel_fbc_update(dev);
5152         mutex_unlock(&dev->struct_mutex);
5153 }
5154
5155 static void haswell_crtc_disable(struct drm_crtc *crtc)
5156 {
5157         struct drm_device *dev = crtc->dev;
5158         struct drm_i915_private *dev_priv = dev->dev_private;
5159         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5160         struct intel_encoder *encoder;
5161         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5162
5163         if (!intel_crtc->active)
5164                 return;
5165
5166         for_each_encoder_on_crtc(dev, crtc, encoder) {
5167                 intel_opregion_notify_encoder(encoder, false);
5168                 encoder->disable(encoder);
5169         }
5170
5171         drm_crtc_vblank_off(crtc);
5172         assert_vblank_disabled(crtc);
5173
5174         if (intel_crtc->config->has_pch_encoder)
5175                 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5176                                                       false);
5177         intel_disable_pipe(intel_crtc);
5178
5179         if (intel_crtc->config->dp_encoder_is_mst)
5180                 intel_ddi_set_vc_payload_alloc(crtc, false);
5181
5182         intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5183
5184         if (INTEL_INFO(dev)->gen == 9)
5185                 skylake_pfit_update(intel_crtc, 0);
5186         else if (INTEL_INFO(dev)->gen < 9)
5187                 ironlake_pfit_disable(intel_crtc);
5188         else
5189                 MISSING_CASE(INTEL_INFO(dev)->gen);
5190
5191         intel_ddi_disable_pipe_clock(intel_crtc);
5192
5193         if (intel_crtc->config->has_pch_encoder) {
5194                 lpt_disable_pch_transcoder(dev_priv);
5195                 intel_ddi_fdi_disable(crtc);
5196         }
5197
5198         for_each_encoder_on_crtc(dev, crtc, encoder)
5199                 if (encoder->post_disable)
5200                         encoder->post_disable(encoder);
5201
5202         intel_crtc->active = false;
5203         intel_update_watermarks(crtc);
5204
5205         mutex_lock(&dev->struct_mutex);
5206         intel_fbc_update(dev);
5207         mutex_unlock(&dev->struct_mutex);
5208
5209         if (intel_crtc_to_shared_dpll(intel_crtc))
5210                 intel_disable_shared_dpll(intel_crtc);
5211 }
5212
5213 static void ironlake_crtc_off(struct drm_crtc *crtc)
5214 {
5215         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5216         intel_put_shared_dpll(intel_crtc);
5217 }
5218
5219
5220 static void i9xx_pfit_enable(struct intel_crtc *crtc)
5221 {
5222         struct drm_device *dev = crtc->base.dev;
5223         struct drm_i915_private *dev_priv = dev->dev_private;
5224         struct intel_crtc_state *pipe_config = crtc->config;
5225
5226         if (!pipe_config->gmch_pfit.control)
5227                 return;
5228
5229         /*
5230          * The panel fitter should only be adjusted whilst the pipe is disabled,
5231          * according to register description and PRM.
5232          */
5233         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5234         assert_pipe_disabled(dev_priv, crtc->pipe);
5235
5236         I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5237         I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5238
5239         /* Border color in case we don't scale up to the full screen. Black by
5240          * default, change to something else for debugging. */
5241         I915_WRITE(BCLRPAT(crtc->pipe), 0);
5242 }
5243
5244 static enum intel_display_power_domain port_to_power_domain(enum port port)
5245 {
5246         switch (port) {
5247         case PORT_A:
5248                 return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5249         case PORT_B:
5250                 return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5251         case PORT_C:
5252                 return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5253         case PORT_D:
5254                 return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5255         default:
5256                 WARN_ON_ONCE(1);
5257                 return POWER_DOMAIN_PORT_OTHER;
5258         }
5259 }
5260
5261 #define for_each_power_domain(domain, mask)                             \
5262         for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5263                 if ((1 << (domain)) & (mask))
5264
5265 enum intel_display_power_domain
5266 intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5267 {
5268         struct drm_device *dev = intel_encoder->base.dev;
5269         struct intel_digital_port *intel_dig_port;
5270
5271         switch (intel_encoder->type) {
5272         case INTEL_OUTPUT_UNKNOWN:
5273                 /* Only DDI platforms should ever use this output type */
5274                 WARN_ON_ONCE(!HAS_DDI(dev));
5275         case INTEL_OUTPUT_DISPLAYPORT:
5276         case INTEL_OUTPUT_HDMI:
5277         case INTEL_OUTPUT_EDP:
5278                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5279                 return port_to_power_domain(intel_dig_port->port);
5280         case INTEL_OUTPUT_DP_MST:
5281                 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5282                 return port_to_power_domain(intel_dig_port->port);
5283         case INTEL_OUTPUT_ANALOG:
5284                 return POWER_DOMAIN_PORT_CRT;
5285         case INTEL_OUTPUT_DSI:
5286                 return POWER_DOMAIN_PORT_DSI;
5287         default:
5288                 return POWER_DOMAIN_PORT_OTHER;
5289         }
5290 }
5291
5292 static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5293 {
5294         struct drm_device *dev = crtc->dev;
5295         struct intel_encoder *intel_encoder;
5296         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5297         enum pipe pipe = intel_crtc->pipe;
5298         unsigned long mask;
5299         enum transcoder transcoder;
5300
5301         transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5302
5303         mask = BIT(POWER_DOMAIN_PIPE(pipe));
5304         mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5305         if (intel_crtc->config->pch_pfit.enabled ||
5306             intel_crtc->config->pch_pfit.force_thru)
5307                 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5308
5309         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5310                 mask |= BIT(intel_display_port_power_domain(intel_encoder));
5311
5312         return mask;
5313 }
5314
5315 static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5316 {
5317         struct drm_device *dev = state->dev;
5318         struct drm_i915_private *dev_priv = dev->dev_private;
5319         unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5320         struct intel_crtc *crtc;
5321
5322         /*
5323          * First get all needed power domains, then put all unneeded, to avoid
5324          * any unnecessary toggling of the power wells.
5325          */
5326         for_each_intel_crtc(dev, crtc) {
5327                 enum intel_display_power_domain domain;
5328
5329                 if (!crtc->base.state->enable)
5330                         continue;
5331
5332                 pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5333
5334                 for_each_power_domain(domain, pipe_domains[crtc->pipe])
5335                         intel_display_power_get(dev_priv, domain);
5336         }
5337
5338         if (dev_priv->display.modeset_global_resources)
5339                 dev_priv->display.modeset_global_resources(state);
5340
5341         for_each_intel_crtc(dev, crtc) {
5342                 enum intel_display_power_domain domain;
5343
5344                 for_each_power_domain(domain, crtc->enabled_power_domains)
5345                         intel_display_power_put(dev_priv, domain);
5346
5347                 crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5348         }
5349
5350         intel_display_set_init_power(dev_priv, false);
5351 }
5352
5353 void broxton_set_cdclk(struct drm_device *dev, int frequency)
5354 {
5355         struct drm_i915_private *dev_priv = dev->dev_private;
5356         uint32_t divider;
5357         uint32_t ratio;
5358         uint32_t current_freq;
5359         int ret;
5360
5361         /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5362         switch (frequency) {
5363         case 144000:
5364                 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5365                 ratio = BXT_DE_PLL_RATIO(60);
5366                 break;
5367         case 288000:
5368                 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5369                 ratio = BXT_DE_PLL_RATIO(60);
5370                 break;
5371         case 384000:
5372                 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5373                 ratio = BXT_DE_PLL_RATIO(60);
5374                 break;
5375         case 576000:
5376                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5377                 ratio = BXT_DE_PLL_RATIO(60);
5378                 break;
5379         case 624000:
5380                 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5381                 ratio = BXT_DE_PLL_RATIO(65);
5382                 break;
5383         case 19200:
5384                 /*
5385                  * Bypass frequency with DE PLL disabled. Init ratio, divider
5386                  * to suppress GCC warning.
5387                  */
5388                 ratio = 0;
5389                 divider = 0;
5390                 break;
5391         default:
5392                 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5393
5394                 return;
5395         }
5396
5397         mutex_lock(&dev_priv->rps.hw_lock);
5398         /* Inform power controller of upcoming frequency change */
5399         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5400                                       0x80000000);
5401         mutex_unlock(&dev_priv->rps.hw_lock);
5402
5403         if (ret) {
5404                 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5405                           ret, frequency);
5406                 return;
5407         }
5408
5409         current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5410         /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5411         current_freq = current_freq * 500 + 1000;
5412
5413         /*
5414          * DE PLL has to be disabled when
5415          * - setting to 19.2MHz (bypass, PLL isn't used)
5416          * - before setting to 624MHz (PLL needs toggling)
5417          * - before setting to any frequency from 624MHz (PLL needs toggling)
5418          */
5419         if (frequency == 19200 || frequency == 624000 ||
5420             current_freq == 624000) {
5421                 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5422                 /* Timeout 200us */
5423                 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5424                              1))
5425                         DRM_ERROR("timout waiting for DE PLL unlock\n");
5426         }
5427
5428         if (frequency != 19200) {
5429                 uint32_t val;
5430
5431                 val = I915_READ(BXT_DE_PLL_CTL);
5432                 val &= ~BXT_DE_PLL_RATIO_MASK;
5433                 val |= ratio;
5434                 I915_WRITE(BXT_DE_PLL_CTL, val);
5435
5436                 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5437                 /* Timeout 200us */
5438                 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5439                         DRM_ERROR("timeout waiting for DE PLL lock\n");
5440
5441                 val = I915_READ(CDCLK_CTL);
5442                 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5443                 val |= divider;
5444                 /*
5445                  * Disable SSA Precharge when CD clock frequency < 500 MHz,
5446                  * enable otherwise.
5447                  */
5448                 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5449                 if (frequency >= 500000)
5450                         val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5451
5452                 val &= ~CDCLK_FREQ_DECIMAL_MASK;
5453                 /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5454                 val |= (frequency - 1000) / 500;
5455                 I915_WRITE(CDCLK_CTL, val);
5456         }
5457
5458         mutex_lock(&dev_priv->rps.hw_lock);
5459         ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5460                                       DIV_ROUND_UP(frequency, 25000));
5461         mutex_unlock(&dev_priv->rps.hw_lock);
5462
5463         if (ret) {
5464                 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5465                           ret, frequency);
5466                 return;
5467         }
5468
5469         dev_priv->cdclk_freq = frequency;
5470 }
5471
5472 void broxton_init_cdclk(struct drm_device *dev)
5473 {
5474         struct drm_i915_private *dev_priv = dev->dev_private;
5475         uint32_t val;
5476
5477         /*
5478          * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5479          * or else the reset will hang because there is no PCH to respond.
5480          * Move the handshake programming to initialization sequence.
5481          * Previously was left up to BIOS.
5482          */
5483         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5484         val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5485         I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5486
5487         /* Enable PG1 for cdclk */
5488         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5489
5490         /* check if cd clock is enabled */
5491         if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5492                 DRM_DEBUG_KMS("Display already initialized\n");
5493                 return;
5494         }
5495
5496         /*
5497          * FIXME:
5498          * - The initial CDCLK needs to be read from VBT.
5499          *   Need to make this change after VBT has changes for BXT.
5500          * - check if setting the max (or any) cdclk freq is really necessary
5501          *   here, it belongs to modeset time
5502          */
5503         broxton_set_cdclk(dev, 624000);
5504
5505         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5506         POSTING_READ(DBUF_CTL);
5507
5508         udelay(10);
5509
5510         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5511                 DRM_ERROR("DBuf power enable timeout!\n");
5512 }
5513
5514 void broxton_uninit_cdclk(struct drm_device *dev)
5515 {
5516         struct drm_i915_private *dev_priv = dev->dev_private;
5517
5518         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5519         POSTING_READ(DBUF_CTL);
5520
5521         udelay(10);
5522
5523         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5524                 DRM_ERROR("DBuf power disable timeout!\n");
5525
5526         /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5527         broxton_set_cdclk(dev, 19200);
5528
5529         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5530 }
5531
5532 static const struct skl_cdclk_entry {
5533         unsigned int freq;
5534         unsigned int vco;
5535 } skl_cdclk_frequencies[] = {
5536         { .freq = 308570, .vco = 8640 },
5537         { .freq = 337500, .vco = 8100 },
5538         { .freq = 432000, .vco = 8640 },
5539         { .freq = 450000, .vco = 8100 },
5540         { .freq = 540000, .vco = 8100 },
5541         { .freq = 617140, .vco = 8640 },
5542         { .freq = 675000, .vco = 8100 },
5543 };
5544
5545 static unsigned int skl_cdclk_decimal(unsigned int freq)
5546 {
5547         return (freq - 1000) / 500;
5548 }
5549
5550 static unsigned int skl_cdclk_get_vco(unsigned int freq)
5551 {
5552         unsigned int i;
5553
5554         for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5555                 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5556
5557                 if (e->freq == freq)
5558                         return e->vco;
5559         }
5560
5561         return 8100;
5562 }
5563
5564 static void
5565 skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5566 {
5567         unsigned int min_freq;
5568         u32 val;
5569
5570         /* select the minimum CDCLK before enabling DPLL 0 */
5571         val = I915_READ(CDCLK_CTL);
5572         val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5573         val |= CDCLK_FREQ_337_308;
5574
5575         if (required_vco == 8640)
5576                 min_freq = 308570;
5577         else
5578                 min_freq = 337500;
5579
5580         val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5581
5582         I915_WRITE(CDCLK_CTL, val);
5583         POSTING_READ(CDCLK_CTL);
5584
5585         /*
5586          * We always enable DPLL0 with the lowest link rate possible, but still
5587          * taking into account the VCO required to operate the eDP panel at the
5588          * desired frequency. The usual DP link rates operate with a VCO of
5589          * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5590          * The modeset code is responsible for the selection of the exact link
5591          * rate later on, with the constraint of choosing a frequency that
5592          * works with required_vco.
5593          */
5594         val = I915_READ(DPLL_CTRL1);
5595
5596         val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5597                  DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5598         val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5599         if (required_vco == 8640)
5600                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5601                                             SKL_DPLL0);
5602         else
5603                 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5604                                             SKL_DPLL0);
5605
5606         I915_WRITE(DPLL_CTRL1, val);
5607         POSTING_READ(DPLL_CTRL1);
5608
5609         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5610
5611         if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5612                 DRM_ERROR("DPLL0 not locked\n");
5613 }
5614
5615 static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5616 {
5617         int ret;
5618         u32 val;
5619
5620         /* inform PCU we want to change CDCLK */
5621         val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5622         mutex_lock(&dev_priv->rps.hw_lock);
5623         ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5624         mutex_unlock(&dev_priv->rps.hw_lock);
5625
5626         return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5627 }
5628
5629 static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5630 {
5631         unsigned int i;
5632
5633         for (i = 0; i < 15; i++) {
5634                 if (skl_cdclk_pcu_ready(dev_priv))
5635                         return true;
5636                 udelay(10);
5637         }
5638
5639         return false;
5640 }
5641
5642 static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5643 {
5644         u32 freq_select, pcu_ack;
5645
5646         DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5647
5648         if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5649                 DRM_ERROR("failed to inform PCU about cdclk change\n");
5650                 return;
5651         }
5652
5653         /* set CDCLK_CTL */
5654         switch(freq) {
5655         case 450000:
5656         case 432000:
5657                 freq_select = CDCLK_FREQ_450_432;
5658                 pcu_ack = 1;
5659                 break;
5660         case 540000:
5661                 freq_select = CDCLK_FREQ_540;
5662                 pcu_ack = 2;
5663                 break;
5664         case 308570:
5665         case 337500:
5666         default:
5667                 freq_select = CDCLK_FREQ_337_308;
5668                 pcu_ack = 0;
5669                 break;
5670         case 617140:
5671         case 675000:
5672                 freq_select = CDCLK_FREQ_675_617;
5673                 pcu_ack = 3;
5674                 break;
5675         }
5676
5677         I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5678         POSTING_READ(CDCLK_CTL);
5679
5680         /* inform PCU of the change */
5681         mutex_lock(&dev_priv->rps.hw_lock);
5682         sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5683         mutex_unlock(&dev_priv->rps.hw_lock);
5684 }
5685
5686 void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5687 {
5688         /* disable DBUF power */
5689         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5690         POSTING_READ(DBUF_CTL);
5691
5692         udelay(10);
5693
5694         if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5695                 DRM_ERROR("DBuf power disable timeout\n");
5696
5697         /* disable DPLL0 */
5698         I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5699         if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5700                 DRM_ERROR("Couldn't disable DPLL0\n");
5701
5702         intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5703 }
5704
5705 void skl_init_cdclk(struct drm_i915_private *dev_priv)
5706 {
5707         u32 val;
5708         unsigned int required_vco;
5709
5710         /* enable PCH reset handshake */
5711         val = I915_READ(HSW_NDE_RSTWRN_OPT);
5712         I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5713
5714         /* enable PG1 and Misc I/O */
5715         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5716
5717         /* DPLL0 already enabed !? */
5718         if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5719                 DRM_DEBUG_DRIVER("DPLL0 already running\n");
5720                 return;
5721         }
5722
5723         /* enable DPLL0 */
5724         required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5725         skl_dpll0_enable(dev_priv, required_vco);
5726
5727         /* set CDCLK to the frequency the BIOS chose */
5728         skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5729
5730         /* enable DBUF power */
5731         I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5732         POSTING_READ(DBUF_CTL);
5733
5734         udelay(10);
5735
5736         if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5737                 DRM_ERROR("DBuf power enable timeout\n");
5738 }
5739
5740 /* returns HPLL frequency in kHz */
5741 static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5742 {
5743         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5744
5745         /* Obtain SKU information */
5746         mutex_lock(&dev_priv->sb_lock);
5747         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5748                 CCK_FUSE_HPLL_FREQ_MASK;
5749         mutex_unlock(&dev_priv->sb_lock);
5750
5751         return vco_freq[hpll_freq] * 1000;
5752 }
5753
5754 static void vlv_update_cdclk(struct drm_device *dev)
5755 {
5756         struct drm_i915_private *dev_priv = dev->dev_private;
5757
5758         dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5759         DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5760                          dev_priv->cdclk_freq);
5761
5762         /*
5763          * Program the gmbus_freq based on the cdclk frequency.
5764          * BSpec erroneously claims we should aim for 4MHz, but
5765          * in fact 1MHz is the correct frequency.
5766          */
5767         I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5768 }
5769
5770 /* Adjust CDclk dividers to allow high res or save power if possible */
5771 static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5772 {
5773         struct drm_i915_private *dev_priv = dev->dev_private;
5774         u32 val, cmd;
5775
5776         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5777                                         != dev_priv->cdclk_freq);
5778
5779         if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5780                 cmd = 2;
5781         else if (cdclk == 266667)
5782                 cmd = 1;
5783         else
5784                 cmd = 0;
5785
5786         mutex_lock(&dev_priv->rps.hw_lock);
5787         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5788         val &= ~DSPFREQGUAR_MASK;
5789         val |= (cmd << DSPFREQGUAR_SHIFT);
5790         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5791         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5792                       DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5793                      50)) {
5794                 DRM_ERROR("timed out waiting for CDclk change\n");
5795         }
5796         mutex_unlock(&dev_priv->rps.hw_lock);
5797
5798         mutex_lock(&dev_priv->sb_lock);
5799
5800         if (cdclk == 400000) {
5801                 u32 divider;
5802
5803                 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5804
5805                 /* adjust cdclk divider */
5806                 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5807                 val &= ~DISPLAY_FREQUENCY_VALUES;
5808                 val |= divider;
5809                 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5810
5811                 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5812                               DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5813                              50))
5814                         DRM_ERROR("timed out waiting for CDclk change\n");
5815         }
5816
5817         /* adjust self-refresh exit latency value */
5818         val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5819         val &= ~0x7f;
5820
5821         /*
5822          * For high bandwidth configs, we set a higher latency in the bunit
5823          * so that the core display fetch happens in time to avoid underruns.
5824          */
5825         if (cdclk == 400000)
5826                 val |= 4500 / 250; /* 4.5 usec */
5827         else
5828                 val |= 3000 / 250; /* 3.0 usec */
5829         vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5830
5831         mutex_unlock(&dev_priv->sb_lock);
5832
5833         vlv_update_cdclk(dev);
5834 }
5835
5836 static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5837 {
5838         struct drm_i915_private *dev_priv = dev->dev_private;
5839         u32 val, cmd;
5840
5841         WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5842                                                 != dev_priv->cdclk_freq);
5843
5844         switch (cdclk) {
5845         case 333333:
5846         case 320000:
5847         case 266667:
5848         case 200000:
5849                 break;
5850         default:
5851                 MISSING_CASE(cdclk);
5852                 return;
5853         }
5854
5855         /*
5856          * Specs are full of misinformation, but testing on actual
5857          * hardware has shown that we just need to write the desired
5858          * CCK divider into the Punit register.
5859          */
5860         cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5861
5862         mutex_lock(&dev_priv->rps.hw_lock);
5863         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5864         val &= ~DSPFREQGUAR_MASK_CHV;
5865         val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5866         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5867         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5868                       DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5869                      50)) {
5870                 DRM_ERROR("timed out waiting for CDclk change\n");
5871         }
5872         mutex_unlock(&dev_priv->rps.hw_lock);
5873
5874         vlv_update_cdclk(dev);
5875 }
5876
5877 static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5878                                  int max_pixclk)
5879 {
5880         int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5881         int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5882
5883         /*
5884          * Really only a few cases to deal with, as only 4 CDclks are supported:
5885          *   200MHz
5886          *   267MHz
5887          *   320/333MHz (depends on HPLL freq)
5888          *   400MHz (VLV only)
5889          * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5890          * of the lower bin and adjust if needed.
5891          *
5892          * We seem to get an unstable or solid color picture at 200MHz.
5893          * Not sure what's wrong. For now use 200MHz only when all pipes
5894          * are off.
5895          */
5896         if (!IS_CHERRYVIEW(dev_priv) &&
5897             max_pixclk > freq_320*limit/100)
5898                 return 400000;
5899         else if (max_pixclk > 266667*limit/100)
5900                 return freq_320;
5901         else if (max_pixclk > 0)
5902                 return 266667;
5903         else
5904                 return 200000;
5905 }
5906
5907 static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5908                               int max_pixclk)
5909 {
5910         /*
5911          * FIXME:
5912          * - remove the guardband, it's not needed on BXT
5913          * - set 19.2MHz bypass frequency if there are no active pipes
5914          */
5915         if (max_pixclk > 576000*9/10)
5916                 return 624000;
5917         else if (max_pixclk > 384000*9/10)
5918                 return 576000;
5919         else if (max_pixclk > 288000*9/10)
5920                 return 384000;
5921         else if (max_pixclk > 144000*9/10)
5922                 return 288000;
5923         else
5924                 return 144000;
5925 }
5926
5927 /* Compute the max pixel clock for new configuration. Uses atomic state if
5928  * that's non-NULL, look at current state otherwise. */
5929 static int intel_mode_max_pixclk(struct drm_device *dev,
5930                                  struct drm_atomic_state *state)
5931 {
5932         struct intel_crtc *intel_crtc;
5933         struct intel_crtc_state *crtc_state;
5934         int max_pixclk = 0;
5935
5936         for_each_intel_crtc(dev, intel_crtc) {
5937                 if (state)
5938                         crtc_state =
5939                                 intel_atomic_get_crtc_state(state, intel_crtc);
5940                 else
5941                         crtc_state = intel_crtc->config;
5942                 if (IS_ERR(crtc_state))
5943                         return PTR_ERR(crtc_state);
5944
5945                 if (!crtc_state->base.enable)
5946                         continue;
5947
5948                 max_pixclk = max(max_pixclk,
5949                                  crtc_state->base.adjusted_mode.crtc_clock);
5950         }
5951
5952         return max_pixclk;
5953 }
5954
5955 static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
5956 {
5957         struct drm_i915_private *dev_priv = to_i915(state->dev);
5958         struct drm_crtc *crtc;
5959         struct drm_crtc_state *crtc_state;
5960         int max_pixclk = intel_mode_max_pixclk(state->dev, state);
5961         int cdclk, i;
5962
5963         if (max_pixclk < 0)
5964                 return max_pixclk;
5965
5966         if (IS_VALLEYVIEW(dev_priv))
5967                 cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5968         else
5969                 cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5970
5971         if (cdclk == dev_priv->cdclk_freq)
5972                 return 0;
5973
5974         /* add all active pipes to the state */
5975         for_each_crtc(state->dev, crtc) {
5976                 if (!crtc->state->enable)
5977                         continue;
5978
5979                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
5980                 if (IS_ERR(crtc_state))
5981                         return PTR_ERR(crtc_state);
5982         }
5983
5984         /* disable/enable all currently active pipes while we change cdclk */
5985         for_each_crtc_in_state(state, crtc, crtc_state, i)
5986                 if (crtc_state->enable)
5987                         crtc_state->mode_changed = true;
5988
5989         return 0;
5990 }
5991
5992 static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5993 {
5994         unsigned int credits, default_credits;
5995
5996         if (IS_CHERRYVIEW(dev_priv))
5997                 default_credits = PFI_CREDIT(12);
5998         else
5999                 default_credits = PFI_CREDIT(8);
6000
6001         if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
6002                 /* CHV suggested value is 31 or 63 */
6003                 if (IS_CHERRYVIEW(dev_priv))
6004                         credits = PFI_CREDIT_31;
6005                 else
6006                         credits = PFI_CREDIT(15);
6007         } else {
6008                 credits = default_credits;
6009         }
6010
6011         /*
6012          * WA - write default credits before re-programming
6013          * FIXME: should we also set the resend bit here?
6014          */
6015         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6016                    default_credits);
6017
6018         I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6019                    credits | PFI_CREDIT_RESEND);
6020
6021         /*
6022          * FIXME is this guaranteed to clear
6023          * immediately or should we poll for it?
6024          */
6025         WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6026 }
6027
6028 static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
6029 {
6030         struct drm_device *dev = old_state->dev;
6031         struct drm_i915_private *dev_priv = dev->dev_private;
6032         int max_pixclk = intel_mode_max_pixclk(dev, NULL);
6033         int req_cdclk;
6034
6035         /* The path in intel_mode_max_pixclk() with a NULL atomic state should
6036          * never fail. */
6037         if (WARN_ON(max_pixclk < 0))
6038                 return;
6039
6040         req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
6041
6042         if (req_cdclk != dev_priv->cdclk_freq) {
6043                 /*
6044                  * FIXME: We can end up here with all power domains off, yet
6045                  * with a CDCLK frequency other than the minimum. To account
6046                  * for this take the PIPE-A power domain, which covers the HW
6047                  * blocks needed for the following programming. This can be
6048                  * removed once it's guaranteed that we get here either with
6049                  * the minimum CDCLK set, or the required power domains
6050                  * enabled.
6051                  */
6052                 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6053
6054                 if (IS_CHERRYVIEW(dev))
6055                         cherryview_set_cdclk(dev, req_cdclk);
6056                 else
6057                         valleyview_set_cdclk(dev, req_cdclk);
6058
6059                 vlv_program_pfi_credits(dev_priv);
6060
6061                 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6062         }
6063 }
6064
6065 static void valleyview_crtc_enable(struct drm_crtc *crtc)
6066 {
6067         struct drm_device *dev = crtc->dev;
6068         struct drm_i915_private *dev_priv = to_i915(dev);
6069         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6070         struct intel_encoder *encoder;
6071         int pipe = intel_crtc->pipe;
6072         bool is_dsi;
6073
6074         WARN_ON(!crtc->state->enable);
6075
6076         if (intel_crtc->active)
6077                 return;
6078
6079         is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6080
6081         if (!is_dsi) {
6082                 if (IS_CHERRYVIEW(dev))
6083                         chv_prepare_pll(intel_crtc, intel_crtc->config);
6084                 else
6085                         vlv_prepare_pll(intel_crtc, intel_crtc->config);
6086         }
6087
6088         if (intel_crtc->config->has_dp_encoder)
6089                 intel_dp_set_m_n(intel_crtc, M1_N1);
6090
6091         intel_set_pipe_timings(intel_crtc);
6092
6093         if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6094                 struct drm_i915_private *dev_priv = dev->dev_private;
6095
6096                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6097                 I915_WRITE(CHV_CANVAS(pipe), 0);
6098         }
6099
6100         i9xx_set_pipeconf(intel_crtc);
6101
6102         intel_crtc->active = true;
6103
6104         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6105
6106         for_each_encoder_on_crtc(dev, crtc, encoder)
6107                 if (encoder->pre_pll_enable)
6108                         encoder->pre_pll_enable(encoder);
6109
6110         if (!is_dsi) {
6111                 if (IS_CHERRYVIEW(dev))
6112                         chv_enable_pll(intel_crtc, intel_crtc->config);
6113                 else
6114                         vlv_enable_pll(intel_crtc, intel_crtc->config);
6115         }
6116
6117         for_each_encoder_on_crtc(dev, crtc, encoder)
6118                 if (encoder->pre_enable)
6119                         encoder->pre_enable(encoder);
6120
6121         i9xx_pfit_enable(intel_crtc);
6122
6123         intel_crtc_load_lut(crtc);
6124
6125         intel_update_watermarks(crtc);
6126         intel_enable_pipe(intel_crtc);
6127
6128         assert_vblank_disabled(crtc);
6129         drm_crtc_vblank_on(crtc);
6130
6131         for_each_encoder_on_crtc(dev, crtc, encoder)
6132                 encoder->enable(encoder);
6133 }
6134
6135 static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6136 {
6137         struct drm_device *dev = crtc->base.dev;
6138         struct drm_i915_private *dev_priv = dev->dev_private;
6139
6140         I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6141         I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6142 }
6143
6144 static void i9xx_crtc_enable(struct drm_crtc *crtc)
6145 {
6146         struct drm_device *dev = crtc->dev;
6147         struct drm_i915_private *dev_priv = to_i915(dev);
6148         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6149         struct intel_encoder *encoder;
6150         int pipe = intel_crtc->pipe;
6151
6152         WARN_ON(!crtc->state->enable);
6153
6154         if (intel_crtc->active)
6155                 return;
6156
6157         i9xx_set_pll_dividers(intel_crtc);
6158
6159         if (intel_crtc->config->has_dp_encoder)
6160                 intel_dp_set_m_n(intel_crtc, M1_N1);
6161
6162         intel_set_pipe_timings(intel_crtc);
6163
6164         i9xx_set_pipeconf(intel_crtc);
6165
6166         intel_crtc->active = true;
6167
6168         if (!IS_GEN2(dev))
6169                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6170
6171         for_each_encoder_on_crtc(dev, crtc, encoder)
6172                 if (encoder->pre_enable)
6173                         encoder->pre_enable(encoder);
6174
6175         i9xx_enable_pll(intel_crtc);
6176
6177         i9xx_pfit_enable(intel_crtc);
6178
6179         intel_crtc_load_lut(crtc);
6180
6181         intel_update_watermarks(crtc);
6182         intel_enable_pipe(intel_crtc);
6183
6184         assert_vblank_disabled(crtc);
6185         drm_crtc_vblank_on(crtc);
6186
6187         for_each_encoder_on_crtc(dev, crtc, encoder)
6188                 encoder->enable(encoder);
6189 }
6190
6191 static void i9xx_pfit_disable(struct intel_crtc *crtc)
6192 {
6193         struct drm_device *dev = crtc->base.dev;
6194         struct drm_i915_private *dev_priv = dev->dev_private;
6195
6196         if (!crtc->config->gmch_pfit.control)
6197                 return;
6198
6199         assert_pipe_disabled(dev_priv, crtc->pipe);
6200
6201         DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6202                          I915_READ(PFIT_CONTROL));
6203         I915_WRITE(PFIT_CONTROL, 0);
6204 }
6205
6206 static void i9xx_crtc_disable(struct drm_crtc *crtc)
6207 {
6208         struct drm_device *dev = crtc->dev;
6209         struct drm_i915_private *dev_priv = dev->dev_private;
6210         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6211         struct intel_encoder *encoder;
6212         int pipe = intel_crtc->pipe;
6213
6214         if (!intel_crtc->active)
6215                 return;
6216
6217         /*
6218          * On gen2 planes are double buffered but the pipe isn't, so we must
6219          * wait for planes to fully turn off before disabling the pipe.
6220          * We also need to wait on all gmch platforms because of the
6221          * self-refresh mode constraint explained above.
6222          */
6223         intel_wait_for_vblank(dev, pipe);
6224
6225         for_each_encoder_on_crtc(dev, crtc, encoder)
6226                 encoder->disable(encoder);
6227
6228         drm_crtc_vblank_off(crtc);
6229         assert_vblank_disabled(crtc);
6230
6231         intel_disable_pipe(intel_crtc);
6232
6233         i9xx_pfit_disable(intel_crtc);
6234
6235         for_each_encoder_on_crtc(dev, crtc, encoder)
6236                 if (encoder->post_disable)
6237                         encoder->post_disable(encoder);
6238
6239         if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6240                 if (IS_CHERRYVIEW(dev))
6241                         chv_disable_pll(dev_priv, pipe);
6242                 else if (IS_VALLEYVIEW(dev))
6243                         vlv_disable_pll(dev_priv, pipe);
6244                 else
6245                         i9xx_disable_pll(intel_crtc);
6246         }
6247
6248         if (!IS_GEN2(dev))
6249                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6250
6251         intel_crtc->active = false;
6252         intel_update_watermarks(crtc);
6253
6254         mutex_lock(&dev->struct_mutex);
6255         intel_fbc_update(dev);
6256         mutex_unlock(&dev->struct_mutex);
6257 }
6258
6259 static void i9xx_crtc_off(struct drm_crtc *crtc)
6260 {
6261 }
6262
6263 /* Master function to enable/disable CRTC and corresponding power wells */
6264 void intel_crtc_control(struct drm_crtc *crtc, bool enable)
6265 {
6266         struct drm_device *dev = crtc->dev;
6267         struct drm_i915_private *dev_priv = dev->dev_private;
6268         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6269         enum intel_display_power_domain domain;
6270         unsigned long domains;
6271
6272         if (enable) {
6273                 if (!intel_crtc->active) {
6274                         domains = get_crtc_power_domains(crtc);
6275                         for_each_power_domain(domain, domains)
6276                                 intel_display_power_get(dev_priv, domain);
6277                         intel_crtc->enabled_power_domains = domains;
6278
6279                         dev_priv->display.crtc_enable(crtc);
6280                         intel_crtc_enable_planes(crtc);
6281                 }
6282         } else {
6283                 if (intel_crtc->active) {
6284                         intel_crtc_disable_planes(crtc);
6285                         dev_priv->display.crtc_disable(crtc);
6286
6287                         domains = intel_crtc->enabled_power_domains;
6288                         for_each_power_domain(domain, domains)
6289                                 intel_display_power_put(dev_priv, domain);
6290                         intel_crtc->enabled_power_domains = 0;
6291                 }
6292         }
6293 }
6294
6295 /**
6296  * Sets the power management mode of the pipe and plane.
6297  */
6298 void intel_crtc_update_dpms(struct drm_crtc *crtc)
6299 {
6300         struct drm_device *dev = crtc->dev;
6301         struct intel_encoder *intel_encoder;
6302         bool enable = false;
6303
6304         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6305                 enable |= intel_encoder->connectors_active;
6306
6307         intel_crtc_control(crtc, enable);
6308
6309         crtc->state->active = enable;
6310 }
6311
6312 static void intel_crtc_disable(struct drm_crtc *crtc)
6313 {
6314         struct drm_device *dev = crtc->dev;
6315         struct drm_connector *connector;
6316         struct drm_i915_private *dev_priv = dev->dev_private;
6317
6318         intel_crtc_disable_planes(crtc);
6319         dev_priv->display.crtc_disable(crtc);
6320         dev_priv->display.off(crtc);
6321
6322         drm_plane_helper_disable(crtc->primary);
6323
6324         /* Update computed state. */
6325         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6326                 if (!connector->encoder || !connector->encoder->crtc)
6327                         continue;
6328
6329                 if (connector->encoder->crtc != crtc)
6330                         continue;
6331
6332                 connector->dpms = DRM_MODE_DPMS_OFF;
6333                 to_intel_encoder(connector->encoder)->connectors_active = false;
6334         }
6335 }
6336
6337 void intel_encoder_destroy(struct drm_encoder *encoder)
6338 {
6339         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6340
6341         drm_encoder_cleanup(encoder);
6342         kfree(intel_encoder);
6343 }
6344
6345 /* Simple dpms helper for encoders with just one connector, no cloning and only
6346  * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6347  * state of the entire output pipe. */
6348 static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6349 {
6350         if (mode == DRM_MODE_DPMS_ON) {
6351                 encoder->connectors_active = true;
6352
6353                 intel_crtc_update_dpms(encoder->base.crtc);
6354         } else {
6355                 encoder->connectors_active = false;
6356
6357                 intel_crtc_update_dpms(encoder->base.crtc);
6358         }
6359 }
6360
6361 /* Cross check the actual hw state with our own modeset state tracking (and it's
6362  * internal consistency). */
6363 static void intel_connector_check_state(struct intel_connector *connector)
6364 {
6365         if (connector->get_hw_state(connector)) {
6366                 struct intel_encoder *encoder = connector->encoder;
6367                 struct drm_crtc *crtc;
6368                 bool encoder_enabled;
6369                 enum pipe pipe;
6370
6371                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6372                               connector->base.base.id,
6373                               connector->base.name);
6374
6375                 /* there is no real hw state for MST connectors */
6376                 if (connector->mst_port)
6377                         return;
6378
6379                 I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6380                      "wrong connector dpms state\n");
6381                 I915_STATE_WARN(connector->base.encoder != &encoder->base,
6382                      "active connector not linked to encoder\n");
6383
6384                 if (encoder) {
6385                         I915_STATE_WARN(!encoder->connectors_active,
6386                              "encoder->connectors_active not set\n");
6387
6388                         encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6389                         I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6390                         if (I915_STATE_WARN_ON(!encoder->base.crtc))
6391                                 return;
6392
6393                         crtc = encoder->base.crtc;
6394
6395                         I915_STATE_WARN(!crtc->state->enable,
6396                                         "crtc not enabled\n");
6397                         I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6398                         I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6399                              "encoder active on the wrong pipe\n");
6400                 }
6401         }
6402 }
6403
6404 int intel_connector_init(struct intel_connector *connector)
6405 {
6406         struct drm_connector_state *connector_state;
6407
6408         connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6409         if (!connector_state)
6410                 return -ENOMEM;
6411
6412         connector->base.state = connector_state;
6413         return 0;
6414 }
6415
6416 struct intel_connector *intel_connector_alloc(void)
6417 {
6418         struct intel_connector *connector;
6419
6420         connector = kzalloc(sizeof *connector, GFP_KERNEL);
6421         if (!connector)
6422                 return NULL;
6423
6424         if (intel_connector_init(connector) < 0) {
6425                 kfree(connector);
6426                 return NULL;
6427         }
6428
6429         return connector;
6430 }
6431
6432 /* Even simpler default implementation, if there's really no special case to
6433  * consider. */
6434 void intel_connector_dpms(struct drm_connector *connector, int mode)
6435 {
6436         /* All the simple cases only support two dpms states. */
6437         if (mode != DRM_MODE_DPMS_ON)
6438                 mode = DRM_MODE_DPMS_OFF;
6439
6440         if (mode == connector->dpms)
6441                 return;
6442
6443         connector->dpms = mode;
6444
6445         /* Only need to change hw state when actually enabled */
6446         if (connector->encoder)
6447                 intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6448
6449         intel_modeset_check_state(connector->dev);
6450 }
6451
6452 /* Simple connector->get_hw_state implementation for encoders that support only
6453  * one connector and no cloning and hence the encoder state determines the state
6454  * of the connector. */
6455 bool intel_connector_get_hw_state(struct intel_connector *connector)
6456 {
6457         enum pipe pipe = 0;
6458         struct intel_encoder *encoder = connector->encoder;
6459
6460         return encoder->get_hw_state(encoder, &pipe);
6461 }
6462
6463 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6464 {
6465         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6466                 return crtc_state->fdi_lanes;
6467
6468         return 0;
6469 }
6470
6471 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6472                                      struct intel_crtc_state *pipe_config)
6473 {
6474         struct drm_atomic_state *state = pipe_config->base.state;
6475         struct intel_crtc *other_crtc;
6476         struct intel_crtc_state *other_crtc_state;
6477
6478         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6479                       pipe_name(pipe), pipe_config->fdi_lanes);
6480         if (pipe_config->fdi_lanes > 4) {
6481                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6482                               pipe_name(pipe), pipe_config->fdi_lanes);
6483                 return -EINVAL;
6484         }
6485
6486         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6487                 if (pipe_config->fdi_lanes > 2) {
6488                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6489                                       pipe_config->fdi_lanes);
6490                         return -EINVAL;
6491                 } else {
6492                         return 0;
6493                 }
6494         }
6495
6496         if (INTEL_INFO(dev)->num_pipes == 2)
6497                 return 0;
6498
6499         /* Ivybridge 3 pipe is really complicated */
6500         switch (pipe) {
6501         case PIPE_A:
6502                 return 0;
6503         case PIPE_B:
6504                 if (pipe_config->fdi_lanes <= 2)
6505                         return 0;
6506
6507                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6508                 other_crtc_state =
6509                         intel_atomic_get_crtc_state(state, other_crtc);
6510                 if (IS_ERR(other_crtc_state))
6511                         return PTR_ERR(other_crtc_state);
6512
6513                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6514                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6515                                       pipe_name(pipe), pipe_config->fdi_lanes);
6516                         return -EINVAL;
6517                 }
6518                 return 0;
6519         case PIPE_C:
6520                 if (pipe_config->fdi_lanes > 2) {
6521                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6522                                       pipe_name(pipe), pipe_config->fdi_lanes);
6523                         return -EINVAL;
6524                 }
6525
6526                 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6527                 other_crtc_state =
6528                         intel_atomic_get_crtc_state(state, other_crtc);
6529                 if (IS_ERR(other_crtc_state))
6530                         return PTR_ERR(other_crtc_state);
6531
6532                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6533                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6534                         return -EINVAL;
6535                 }
6536                 return 0;
6537         default:
6538                 BUG();
6539         }
6540 }
6541
6542 #define RETRY 1
6543 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6544                                        struct intel_crtc_state *pipe_config)
6545 {
6546         struct drm_device *dev = intel_crtc->base.dev;
6547         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6548         int lane, link_bw, fdi_dotclock, ret;
6549         bool needs_recompute = false;
6550
6551 retry:
6552         /* FDI is a binary signal running at ~2.7GHz, encoding
6553          * each output octet as 10 bits. The actual frequency
6554          * is stored as a divider into a 100MHz clock, and the
6555          * mode pixel clock is stored in units of 1KHz.
6556          * Hence the bw of each lane in terms of the mode signal
6557          * is:
6558          */
6559         link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6560
6561         fdi_dotclock = adjusted_mode->crtc_clock;
6562
6563         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6564                                            pipe_config->pipe_bpp);
6565
6566         pipe_config->fdi_lanes = lane;
6567
6568         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6569                                link_bw, &pipe_config->fdi_m_n);
6570
6571         ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6572                                        intel_crtc->pipe, pipe_config);
6573         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6574                 pipe_config->pipe_bpp -= 2*3;
6575                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6576                               pipe_config->pipe_bpp);
6577                 needs_recompute = true;
6578                 pipe_config->bw_constrained = true;
6579
6580                 goto retry;
6581         }
6582
6583         if (needs_recompute)
6584                 return RETRY;
6585
6586         return ret;
6587 }
6588
6589 static void hsw_compute_ips_config(struct intel_crtc *crtc,
6590                                    struct intel_crtc_state *pipe_config)
6591 {
6592         pipe_config->ips_enabled = i915.enable_ips &&
6593                                    hsw_crtc_supports_ips(crtc) &&
6594                                    pipe_config->pipe_bpp <= 24;
6595 }
6596
6597 static int intel_crtc_compute_config(struct intel_crtc *crtc,
6598                                      struct intel_crtc_state *pipe_config)
6599 {
6600         struct drm_device *dev = crtc->base.dev;
6601         struct drm_i915_private *dev_priv = dev->dev_private;
6602         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6603         int ret;
6604
6605         /* FIXME should check pixel clock limits on all platforms */
6606         if (INTEL_INFO(dev)->gen < 4) {
6607                 int clock_limit =
6608                         dev_priv->display.get_display_clock_speed(dev);
6609
6610                 /*
6611                  * Enable pixel doubling when the dot clock
6612                  * is > 90% of the (display) core speed.
6613                  *
6614                  * GDG double wide on either pipe,
6615                  * otherwise pipe A only.
6616                  */
6617                 if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6618                     adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6619                         clock_limit *= 2;
6620                         pipe_config->double_wide = true;
6621                 }
6622
6623                 if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6624                         return -EINVAL;
6625         }
6626
6627         /*
6628          * Pipe horizontal size must be even in:
6629          * - DVO ganged mode
6630          * - LVDS dual channel mode
6631          * - Double wide pipe
6632          */
6633         if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6634              intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6635                 pipe_config->pipe_src_w &= ~1;
6636
6637         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6638          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6639          */
6640         if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6641                 adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6642                 return -EINVAL;
6643
6644         if (HAS_IPS(dev))
6645                 hsw_compute_ips_config(crtc, pipe_config);
6646
6647         if (pipe_config->has_pch_encoder)
6648                 return ironlake_fdi_compute_config(crtc, pipe_config);
6649
6650         /* FIXME: remove below call once atomic mode set is place and all crtc
6651          * related checks called from atomic_crtc_check function */
6652         ret = 0;
6653         DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6654                 crtc, pipe_config->base.state);
6655         ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6656
6657         return ret;
6658 }
6659
6660 static int skylake_get_display_clock_speed(struct drm_device *dev)
6661 {
6662         struct drm_i915_private *dev_priv = to_i915(dev);
6663         uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6664         uint32_t cdctl = I915_READ(CDCLK_CTL);
6665         uint32_t linkrate;
6666
6667         if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6668                 WARN(1, "LCPLL1 not enabled\n");
6669                 return 24000; /* 24MHz is the cd freq with NSSC ref */
6670         }
6671
6672         if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6673                 return 540000;
6674
6675         linkrate = (I915_READ(DPLL_CTRL1) &
6676                     DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6677
6678         if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6679             linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6680                 /* vco 8640 */
6681                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6682                 case CDCLK_FREQ_450_432:
6683                         return 432000;
6684                 case CDCLK_FREQ_337_308:
6685                         return 308570;
6686                 case CDCLK_FREQ_675_617:
6687                         return 617140;
6688                 default:
6689                         WARN(1, "Unknown cd freq selection\n");
6690                 }
6691         } else {
6692                 /* vco 8100 */
6693                 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6694                 case CDCLK_FREQ_450_432:
6695                         return 450000;
6696                 case CDCLK_FREQ_337_308:
6697                         return 337500;
6698                 case CDCLK_FREQ_675_617:
6699                         return 675000;
6700                 default:
6701                         WARN(1, "Unknown cd freq selection\n");
6702                 }
6703         }
6704
6705         /* error case, do as if DPLL0 isn't enabled */
6706         return 24000;
6707 }
6708
6709 static int broadwell_get_display_clock_speed(struct drm_device *dev)
6710 {
6711         struct drm_i915_private *dev_priv = dev->dev_private;
6712         uint32_t lcpll = I915_READ(LCPLL_CTL);
6713         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6714
6715         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6716                 return 800000;
6717         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6718                 return 450000;
6719         else if (freq == LCPLL_CLK_FREQ_450)
6720                 return 450000;
6721         else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6722                 return 540000;
6723         else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6724                 return 337500;
6725         else
6726                 return 675000;
6727 }
6728
6729 static int haswell_get_display_clock_speed(struct drm_device *dev)
6730 {
6731         struct drm_i915_private *dev_priv = dev->dev_private;
6732         uint32_t lcpll = I915_READ(LCPLL_CTL);
6733         uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6734
6735         if (lcpll & LCPLL_CD_SOURCE_FCLK)
6736                 return 800000;
6737         else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6738                 return 450000;
6739         else if (freq == LCPLL_CLK_FREQ_450)
6740                 return 450000;
6741         else if (IS_HSW_ULT(dev))
6742                 return 337500;
6743         else
6744                 return 540000;
6745 }
6746
6747 static int valleyview_get_display_clock_speed(struct drm_device *dev)
6748 {
6749         struct drm_i915_private *dev_priv = dev->dev_private;
6750         u32 val;
6751         int divider;
6752
6753         if (dev_priv->hpll_freq == 0)
6754                 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6755
6756         mutex_lock(&dev_priv->sb_lock);
6757         val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6758         mutex_unlock(&dev_priv->sb_lock);
6759
6760         divider = val & DISPLAY_FREQUENCY_VALUES;
6761
6762         WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6763              (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6764              "cdclk change in progress\n");
6765
6766         return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6767 }
6768
6769 static int ilk_get_display_clock_speed(struct drm_device *dev)
6770 {
6771         return 450000;
6772 }
6773
6774 static int i945_get_display_clock_speed(struct drm_device *dev)
6775 {
6776         return 400000;
6777 }
6778
6779 static int i915_get_display_clock_speed(struct drm_device *dev)
6780 {
6781         return 333333;
6782 }
6783
6784 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6785 {
6786         return 200000;
6787 }
6788
6789 static int pnv_get_display_clock_speed(struct drm_device *dev)
6790 {
6791         u16 gcfgc = 0;
6792
6793         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6794
6795         switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6796         case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6797                 return 266667;
6798         case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6799                 return 333333;
6800         case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6801                 return 444444;
6802         case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6803                 return 200000;
6804         default:
6805                 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6806         case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6807                 return 133333;
6808         case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6809                 return 166667;
6810         }
6811 }
6812
6813 static int i915gm_get_display_clock_speed(struct drm_device *dev)
6814 {
6815         u16 gcfgc = 0;
6816
6817         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6818
6819         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6820                 return 133333;
6821         else {
6822                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6823                 case GC_DISPLAY_CLOCK_333_MHZ:
6824                         return 333333;
6825                 default:
6826                 case GC_DISPLAY_CLOCK_190_200_MHZ:
6827                         return 190000;
6828                 }
6829         }
6830 }
6831
6832 static int i865_get_display_clock_speed(struct drm_device *dev)
6833 {
6834         return 266667;
6835 }
6836
6837 static int i855_get_display_clock_speed(struct drm_device *dev)
6838 {
6839         u16 hpllcc = 0;
6840         /* Assume that the hardware is in the high speed state.  This
6841          * should be the default.
6842          */
6843         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6844         case GC_CLOCK_133_200:
6845         case GC_CLOCK_100_200:
6846                 return 200000;
6847         case GC_CLOCK_166_250:
6848                 return 250000;
6849         case GC_CLOCK_100_133:
6850                 return 133333;
6851         }
6852
6853         /* Shouldn't happen */
6854         return 0;
6855 }
6856
6857 static int i830_get_display_clock_speed(struct drm_device *dev)
6858 {
6859         return 133333;
6860 }
6861
6862 static void
6863 intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6864 {
6865         while (*num > DATA_LINK_M_N_MASK ||
6866                *den > DATA_LINK_M_N_MASK) {
6867                 *num >>= 1;
6868                 *den >>= 1;
6869         }
6870 }
6871
6872 static void compute_m_n(unsigned int m, unsigned int n,
6873                         uint32_t *ret_m, uint32_t *ret_n)
6874 {
6875         *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6876         *ret_m = div_u64((uint64_t) m * *ret_n, n);
6877         intel_reduce_m_n_ratio(ret_m, ret_n);
6878 }
6879
6880 void
6881 intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6882                        int pixel_clock, int link_clock,
6883                        struct intel_link_m_n *m_n)
6884 {
6885         m_n->tu = 64;
6886
6887         compute_m_n(bits_per_pixel * pixel_clock,
6888                     link_clock * nlanes * 8,
6889                     &m_n->gmch_m, &m_n->gmch_n);
6890
6891         compute_m_n(pixel_clock, link_clock,
6892                     &m_n->link_m, &m_n->link_n);
6893 }
6894
6895 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6896 {
6897         if (i915.panel_use_ssc >= 0)
6898                 return i915.panel_use_ssc != 0;
6899         return dev_priv->vbt.lvds_use_ssc
6900                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6901 }
6902
6903 static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6904                            int num_connectors)
6905 {
6906         struct drm_device *dev = crtc_state->base.crtc->dev;
6907         struct drm_i915_private *dev_priv = dev->dev_private;
6908         int refclk;
6909
6910         WARN_ON(!crtc_state->base.state);
6911
6912         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
6913                 refclk = 100000;
6914         } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6915             intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6916                 refclk = dev_priv->vbt.lvds_ssc_freq;
6917                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6918         } else if (!IS_GEN2(dev)) {
6919                 refclk = 96000;
6920         } else {
6921                 refclk = 48000;
6922         }
6923
6924         return refclk;
6925 }
6926
6927 static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6928 {
6929         return (1 << dpll->n) << 16 | dpll->m2;
6930 }
6931
6932 static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6933 {
6934         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6935 }
6936
6937 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6938                                      struct intel_crtc_state *crtc_state,
6939                                      intel_clock_t *reduced_clock)
6940 {
6941         struct drm_device *dev = crtc->base.dev;
6942         u32 fp, fp2 = 0;
6943
6944         if (IS_PINEVIEW(dev)) {
6945                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6946                 if (reduced_clock)
6947                         fp2 = pnv_dpll_compute_fp(reduced_clock);
6948         } else {
6949                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6950                 if (reduced_clock)
6951                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
6952         }
6953
6954         crtc_state->dpll_hw_state.fp0 = fp;
6955
6956         crtc->lowfreq_avail = false;
6957         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6958             reduced_clock) {
6959                 crtc_state->dpll_hw_state.fp1 = fp2;
6960                 crtc->lowfreq_avail = true;
6961         } else {
6962                 crtc_state->dpll_hw_state.fp1 = fp;
6963         }
6964 }
6965
6966 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6967                 pipe)
6968 {
6969         u32 reg_val;
6970
6971         /*
6972          * PLLB opamp always calibrates to max value of 0x3f, force enable it
6973          * and set it to a reasonable value instead.
6974          */
6975         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6976         reg_val &= 0xffffff00;
6977         reg_val |= 0x00000030;
6978         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6979
6980         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6981         reg_val &= 0x8cffffff;
6982         reg_val = 0x8c000000;
6983         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6984
6985         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6986         reg_val &= 0xffffff00;
6987         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6988
6989         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6990         reg_val &= 0x00ffffff;
6991         reg_val |= 0xb0000000;
6992         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6993 }
6994
6995 static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6996                                          struct intel_link_m_n *m_n)
6997 {
6998         struct drm_device *dev = crtc->base.dev;
6999         struct drm_i915_private *dev_priv = dev->dev_private;
7000         int pipe = crtc->pipe;
7001
7002         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7003         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7004         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7005         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7006 }
7007
7008 static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7009                                          struct intel_link_m_n *m_n,
7010                                          struct intel_link_m_n *m2_n2)
7011 {
7012         struct drm_device *dev = crtc->base.dev;
7013         struct drm_i915_private *dev_priv = dev->dev_private;
7014         int pipe = crtc->pipe;
7015         enum transcoder transcoder = crtc->config->cpu_transcoder;
7016
7017         if (INTEL_INFO(dev)->gen >= 5) {
7018                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7019                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7020                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7021                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7022                 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7023                  * for gen < 8) and if DRRS is supported (to make sure the
7024                  * registers are not unnecessarily accessed).
7025                  */
7026                 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7027                         crtc->config->has_drrs) {
7028                         I915_WRITE(PIPE_DATA_M2(transcoder),
7029                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7030                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7031                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7032                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7033                 }
7034         } else {
7035                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7036                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7037                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7038                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7039         }
7040 }
7041
7042 void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7043 {
7044         struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7045
7046         if (m_n == M1_N1) {
7047                 dp_m_n = &crtc->config->dp_m_n;
7048                 dp_m2_n2 = &crtc->config->dp_m2_n2;
7049         } else if (m_n == M2_N2) {
7050
7051                 /*
7052                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7053                  * needs to be programmed into M1_N1.
7054                  */
7055                 dp_m_n = &crtc->config->dp_m2_n2;
7056         } else {
7057                 DRM_ERROR("Unsupported divider value\n");
7058                 return;
7059         }
7060
7061         if (crtc->config->has_pch_encoder)
7062                 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7063         else
7064                 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7065 }
7066
7067 static void vlv_update_pll(struct intel_crtc *crtc,
7068                            struct intel_crtc_state *pipe_config)
7069 {
7070         u32 dpll, dpll_md;
7071
7072         /*
7073          * Enable DPIO clock input. We should never disable the reference
7074          * clock for pipe B, since VGA hotplug / manual detection depends
7075          * on it.
7076          */
7077         dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7078                 DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7079         /* We should never disable this, set it here for state tracking */
7080         if (crtc->pipe == PIPE_B)
7081                 dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7082         dpll |= DPLL_VCO_ENABLE;
7083         pipe_config->dpll_hw_state.dpll = dpll;
7084
7085         dpll_md = (pipe_config->pixel_multiplier - 1)
7086                 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7087         pipe_config->dpll_hw_state.dpll_md = dpll_md;
7088 }
7089
7090 static void vlv_prepare_pll(struct intel_crtc *crtc,
7091                             const struct intel_crtc_state *pipe_config)
7092 {
7093         struct drm_device *dev = crtc->base.dev;
7094         struct drm_i915_private *dev_priv = dev->dev_private;
7095         int pipe = crtc->pipe;
7096         u32 mdiv;
7097         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7098         u32 coreclk, reg_val;
7099
7100         mutex_lock(&dev_priv->sb_lock);
7101
7102         bestn = pipe_config->dpll.n;
7103         bestm1 = pipe_config->dpll.m1;
7104         bestm2 = pipe_config->dpll.m2;
7105         bestp1 = pipe_config->dpll.p1;
7106         bestp2 = pipe_config->dpll.p2;
7107
7108         /* See eDP HDMI DPIO driver vbios notes doc */
7109
7110         /* PLL B needs special handling */
7111         if (pipe == PIPE_B)
7112                 vlv_pllb_recal_opamp(dev_priv, pipe);
7113
7114         /* Set up Tx target for periodic Rcomp update */
7115         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7116
7117         /* Disable target IRef on PLL */
7118         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7119         reg_val &= 0x00ffffff;
7120         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7121
7122         /* Disable fast lock */
7123         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7124
7125         /* Set idtafcrecal before PLL is enabled */
7126         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7127         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7128         mdiv |= ((bestn << DPIO_N_SHIFT));
7129         mdiv |= (1 << DPIO_K_SHIFT);
7130
7131         /*
7132          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7133          * but we don't support that).
7134          * Note: don't use the DAC post divider as it seems unstable.
7135          */
7136         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7137         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7138
7139         mdiv |= DPIO_ENABLE_CALIBRATION;
7140         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7141
7142         /* Set HBR and RBR LPF coefficients */
7143         if (pipe_config->port_clock == 162000 ||
7144             intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7145             intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7146                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7147                                  0x009f0003);
7148         else
7149                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7150                                  0x00d0000f);
7151
7152         if (pipe_config->has_dp_encoder) {
7153                 /* Use SSC source */
7154                 if (pipe == PIPE_A)
7155                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7156                                          0x0df40000);
7157                 else
7158                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7159                                          0x0df70000);
7160         } else { /* HDMI or VGA */
7161                 /* Use bend source */
7162                 if (pipe == PIPE_A)
7163                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7164                                          0x0df70000);
7165                 else
7166                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7167                                          0x0df40000);
7168         }
7169
7170         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7171         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7172         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7173             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7174                 coreclk |= 0x01000000;
7175         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7176
7177         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7178         mutex_unlock(&dev_priv->sb_lock);
7179 }
7180
7181 static void chv_update_pll(struct intel_crtc *crtc,
7182                            struct intel_crtc_state *pipe_config)
7183 {
7184         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
7185                 DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7186                 DPLL_VCO_ENABLE;
7187         if (crtc->pipe != PIPE_A)
7188                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7189
7190         pipe_config->dpll_hw_state.dpll_md =
7191                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7192 }
7193
7194 static void chv_prepare_pll(struct intel_crtc *crtc,
7195                             const struct intel_crtc_state *pipe_config)
7196 {
7197         struct drm_device *dev = crtc->base.dev;
7198         struct drm_i915_private *dev_priv = dev->dev_private;
7199         int pipe = crtc->pipe;
7200         int dpll_reg = DPLL(crtc->pipe);
7201         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7202         u32 loopfilter, tribuf_calcntr;
7203         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7204         u32 dpio_val;
7205         int vco;
7206
7207         bestn = pipe_config->dpll.n;
7208         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7209         bestm1 = pipe_config->dpll.m1;
7210         bestm2 = pipe_config->dpll.m2 >> 22;
7211         bestp1 = pipe_config->dpll.p1;
7212         bestp2 = pipe_config->dpll.p2;
7213         vco = pipe_config->dpll.vco;
7214         dpio_val = 0;
7215         loopfilter = 0;
7216
7217         /*
7218          * Enable Refclk and SSC
7219          */
7220         I915_WRITE(dpll_reg,
7221                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7222
7223         mutex_lock(&dev_priv->sb_lock);
7224
7225         /* p1 and p2 divider */
7226         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7227                         5 << DPIO_CHV_S1_DIV_SHIFT |
7228                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7229                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7230                         1 << DPIO_CHV_K_DIV_SHIFT);
7231
7232         /* Feedback post-divider - m2 */
7233         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7234
7235         /* Feedback refclk divider - n and m1 */
7236         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7237                         DPIO_CHV_M1_DIV_BY_2 |
7238                         1 << DPIO_CHV_N_DIV_SHIFT);
7239
7240         /* M2 fraction division */
7241         if (bestm2_frac)
7242                 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7243
7244         /* M2 fraction division enable */
7245         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7246         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7247         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7248         if (bestm2_frac)
7249                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7250         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7251
7252         /* Program digital lock detect threshold */
7253         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7254         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7255                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7256         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7257         if (!bestm2_frac)
7258                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7259         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7260
7261         /* Loop filter */
7262         if (vco == 5400000) {
7263                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7264                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7265                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7266                 tribuf_calcntr = 0x9;
7267         } else if (vco <= 6200000) {
7268                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7269                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7270                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7271                 tribuf_calcntr = 0x9;
7272         } else if (vco <= 6480000) {
7273                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7274                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7275                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7276                 tribuf_calcntr = 0x8;
7277         } else {
7278                 /* Not supported. Apply the same limits as in the max case */
7279                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7280                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7281                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7282                 tribuf_calcntr = 0;
7283         }
7284         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7285
7286         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7287         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7288         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7289         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7290
7291         /* AFC Recal */
7292         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7293                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7294                         DPIO_AFC_RECAL);
7295
7296         mutex_unlock(&dev_priv->sb_lock);
7297 }
7298
7299 /**
7300  * vlv_force_pll_on - forcibly enable just the PLL
7301  * @dev_priv: i915 private structure
7302  * @pipe: pipe PLL to enable
7303  * @dpll: PLL configuration
7304  *
7305  * Enable the PLL for @pipe using the supplied @dpll config. To be used
7306  * in cases where we need the PLL enabled even when @pipe is not going to
7307  * be enabled.
7308  */
7309 void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7310                       const struct dpll *dpll)
7311 {
7312         struct intel_crtc *crtc =
7313                 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7314         struct intel_crtc_state pipe_config = {
7315                 .base.crtc = &crtc->base,
7316                 .pixel_multiplier = 1,
7317                 .dpll = *dpll,
7318         };
7319
7320         if (IS_CHERRYVIEW(dev)) {
7321                 chv_update_pll(crtc, &pipe_config);
7322                 chv_prepare_pll(crtc, &pipe_config);
7323                 chv_enable_pll(crtc, &pipe_config);
7324         } else {
7325                 vlv_update_pll(crtc, &pipe_config);
7326                 vlv_prepare_pll(crtc, &pipe_config);
7327                 vlv_enable_pll(crtc, &pipe_config);
7328         }
7329 }
7330
7331 /**
7332  * vlv_force_pll_off - forcibly disable just the PLL
7333  * @dev_priv: i915 private structure
7334  * @pipe: pipe PLL to disable
7335  *
7336  * Disable the PLL for @pipe. To be used in cases where we need
7337  * the PLL enabled even when @pipe is not going to be enabled.
7338  */
7339 void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7340 {
7341         if (IS_CHERRYVIEW(dev))
7342                 chv_disable_pll(to_i915(dev), pipe);
7343         else
7344                 vlv_disable_pll(to_i915(dev), pipe);
7345 }
7346
7347 static void i9xx_update_pll(struct intel_crtc *crtc,
7348                             struct intel_crtc_state *crtc_state,
7349                             intel_clock_t *reduced_clock,
7350                             int num_connectors)
7351 {
7352         struct drm_device *dev = crtc->base.dev;
7353         struct drm_i915_private *dev_priv = dev->dev_private;
7354         u32 dpll;
7355         bool is_sdvo;
7356         struct dpll *clock = &crtc_state->dpll;
7357
7358         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7359
7360         is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7361                 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7362
7363         dpll = DPLL_VGA_MODE_DIS;
7364
7365         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7366                 dpll |= DPLLB_MODE_LVDS;
7367         else
7368                 dpll |= DPLLB_MODE_DAC_SERIAL;
7369
7370         if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7371                 dpll |= (crtc_state->pixel_multiplier - 1)
7372                         << SDVO_MULTIPLIER_SHIFT_HIRES;
7373         }
7374
7375         if (is_sdvo)
7376                 dpll |= DPLL_SDVO_HIGH_SPEED;
7377
7378         if (crtc_state->has_dp_encoder)
7379                 dpll |= DPLL_SDVO_HIGH_SPEED;
7380
7381         /* compute bitmask from p1 value */
7382         if (IS_PINEVIEW(dev))
7383                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7384         else {
7385                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7386                 if (IS_G4X(dev) && reduced_clock)
7387                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7388         }
7389         switch (clock->p2) {
7390         case 5:
7391                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7392                 break;
7393         case 7:
7394                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7395                 break;
7396         case 10:
7397                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7398                 break;
7399         case 14:
7400                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7401                 break;
7402         }
7403         if (INTEL_INFO(dev)->gen >= 4)
7404                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7405
7406         if (crtc_state->sdvo_tv_clock)
7407                 dpll |= PLL_REF_INPUT_TVCLKINBC;
7408         else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7409                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7410                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7411         else
7412                 dpll |= PLL_REF_INPUT_DREFCLK;
7413
7414         dpll |= DPLL_VCO_ENABLE;
7415         crtc_state->dpll_hw_state.dpll = dpll;
7416
7417         if (INTEL_INFO(dev)->gen >= 4) {
7418                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7419                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7420                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
7421         }
7422 }
7423
7424 static void i8xx_update_pll(struct intel_crtc *crtc,
7425                             struct intel_crtc_state *crtc_state,
7426                             intel_clock_t *reduced_clock,
7427                             int num_connectors)
7428 {
7429         struct drm_device *dev = crtc->base.dev;
7430         struct drm_i915_private *dev_priv = dev->dev_private;
7431         u32 dpll;
7432         struct dpll *clock = &crtc_state->dpll;
7433
7434         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7435
7436         dpll = DPLL_VGA_MODE_DIS;
7437
7438         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7439                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7440         } else {
7441                 if (clock->p1 == 2)
7442                         dpll |= PLL_P1_DIVIDE_BY_TWO;
7443                 else
7444                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7445                 if (clock->p2 == 4)
7446                         dpll |= PLL_P2_DIVIDE_BY_4;
7447         }
7448
7449         if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7450                 dpll |= DPLL_DVO_2X_MODE;
7451
7452         if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7453                  intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7454                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7455         else
7456                 dpll |= PLL_REF_INPUT_DREFCLK;
7457
7458         dpll |= DPLL_VCO_ENABLE;
7459         crtc_state->dpll_hw_state.dpll = dpll;
7460 }
7461
7462 static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7463 {
7464         struct drm_device *dev = intel_crtc->base.dev;
7465         struct drm_i915_private *dev_priv = dev->dev_private;
7466         enum pipe pipe = intel_crtc->pipe;
7467         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7468         struct drm_display_mode *adjusted_mode =
7469                 &intel_crtc->config->base.adjusted_mode;
7470         uint32_t crtc_vtotal, crtc_vblank_end;
7471         int vsyncshift = 0;
7472
7473         /* We need to be careful not to changed the adjusted mode, for otherwise
7474          * the hw state checker will get angry at the mismatch. */
7475         crtc_vtotal = adjusted_mode->crtc_vtotal;
7476         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7477
7478         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7479                 /* the chip adds 2 halflines automatically */
7480                 crtc_vtotal -= 1;
7481                 crtc_vblank_end -= 1;
7482
7483                 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7484                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7485                 else
7486                         vsyncshift = adjusted_mode->crtc_hsync_start -
7487                                 adjusted_mode->crtc_htotal / 2;
7488                 if (vsyncshift < 0)
7489                         vsyncshift += adjusted_mode->crtc_htotal;
7490         }
7491
7492         if (INTEL_INFO(dev)->gen > 3)
7493                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7494
7495         I915_WRITE(HTOTAL(cpu_transcoder),
7496                    (adjusted_mode->crtc_hdisplay - 1) |
7497                    ((adjusted_mode->crtc_htotal - 1) << 16));
7498         I915_WRITE(HBLANK(cpu_transcoder),
7499                    (adjusted_mode->crtc_hblank_start - 1) |
7500                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
7501         I915_WRITE(HSYNC(cpu_transcoder),
7502                    (adjusted_mode->crtc_hsync_start - 1) |
7503                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
7504
7505         I915_WRITE(VTOTAL(cpu_transcoder),
7506                    (adjusted_mode->crtc_vdisplay - 1) |
7507                    ((crtc_vtotal - 1) << 16));
7508         I915_WRITE(VBLANK(cpu_transcoder),
7509                    (adjusted_mode->crtc_vblank_start - 1) |
7510                    ((crtc_vblank_end - 1) << 16));
7511         I915_WRITE(VSYNC(cpu_transcoder),
7512                    (adjusted_mode->crtc_vsync_start - 1) |
7513                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
7514
7515         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7516          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7517          * documented on the DDI_FUNC_CTL register description, EDP Input Select
7518          * bits. */
7519         if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7520             (pipe == PIPE_B || pipe == PIPE_C))
7521                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7522
7523         /* pipesrc controls the size that is scaled from, which should
7524          * always be the user's requested size.
7525          */
7526         I915_WRITE(PIPESRC(pipe),
7527                    ((intel_crtc->config->pipe_src_w - 1) << 16) |
7528                    (intel_crtc->config->pipe_src_h - 1));
7529 }
7530
7531 static void intel_get_pipe_timings(struct intel_crtc *crtc,
7532                                    struct intel_crtc_state *pipe_config)
7533 {
7534         struct drm_device *dev = crtc->base.dev;
7535         struct drm_i915_private *dev_priv = dev->dev_private;
7536         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7537         uint32_t tmp;
7538
7539         tmp = I915_READ(HTOTAL(cpu_transcoder));
7540         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7541         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7542         tmp = I915_READ(HBLANK(cpu_transcoder));
7543         pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7544         pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7545         tmp = I915_READ(HSYNC(cpu_transcoder));
7546         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7547         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7548
7549         tmp = I915_READ(VTOTAL(cpu_transcoder));
7550         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7551         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7552         tmp = I915_READ(VBLANK(cpu_transcoder));
7553         pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7554         pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7555         tmp = I915_READ(VSYNC(cpu_transcoder));
7556         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7557         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7558
7559         if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7560                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7561                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7562                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7563         }
7564
7565         tmp = I915_READ(PIPESRC(crtc->pipe));
7566         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7567         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7568
7569         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7570         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7571 }
7572
7573 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7574                                  struct intel_crtc_state *pipe_config)
7575 {
7576         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7577         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7578         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7579         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7580
7581         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7582         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7583         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7584         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7585
7586         mode->flags = pipe_config->base.adjusted_mode.flags;
7587
7588         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7589         mode->flags |= pipe_config->base.adjusted_mode.flags;
7590 }
7591
7592 static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7593 {
7594         struct drm_device *dev = intel_crtc->base.dev;
7595         struct drm_i915_private *dev_priv = dev->dev_private;
7596         uint32_t pipeconf;
7597
7598         pipeconf = 0;
7599
7600         if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7601             (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7602                 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7603
7604         if (intel_crtc->config->double_wide)
7605                 pipeconf |= PIPECONF_DOUBLE_WIDE;
7606
7607         /* only g4x and later have fancy bpc/dither controls */
7608         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7609                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
7610                 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7611                         pipeconf |= PIPECONF_DITHER_EN |
7612                                     PIPECONF_DITHER_TYPE_SP;
7613
7614                 switch (intel_crtc->config->pipe_bpp) {
7615                 case 18:
7616                         pipeconf |= PIPECONF_6BPC;
7617                         break;
7618                 case 24:
7619                         pipeconf |= PIPECONF_8BPC;
7620                         break;
7621                 case 30:
7622                         pipeconf |= PIPECONF_10BPC;
7623                         break;
7624                 default:
7625                         /* Case prevented by intel_choose_pipe_bpp_dither. */
7626                         BUG();
7627                 }
7628         }
7629
7630         if (HAS_PIPE_CXSR(dev)) {
7631                 if (intel_crtc->lowfreq_avail) {
7632                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7633                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7634                 } else {
7635                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7636                 }
7637         }
7638
7639         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7640                 if (INTEL_INFO(dev)->gen < 4 ||
7641                     intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7642                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7643                 else
7644                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7645         } else
7646                 pipeconf |= PIPECONF_PROGRESSIVE;
7647
7648         if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7649                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7650
7651         I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7652         POSTING_READ(PIPECONF(intel_crtc->pipe));
7653 }
7654
7655 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7656                                    struct intel_crtc_state *crtc_state)
7657 {
7658         struct drm_device *dev = crtc->base.dev;
7659         struct drm_i915_private *dev_priv = dev->dev_private;
7660         int refclk, num_connectors = 0;
7661         intel_clock_t clock, reduced_clock;
7662         bool ok, has_reduced_clock = false;
7663         bool is_lvds = false, is_dsi = false;
7664         struct intel_encoder *encoder;
7665         const intel_limit_t *limit;
7666         struct drm_atomic_state *state = crtc_state->base.state;
7667         struct drm_connector *connector;
7668         struct drm_connector_state *connector_state;
7669         int i;
7670
7671         memset(&crtc_state->dpll_hw_state, 0,
7672                sizeof(crtc_state->dpll_hw_state));
7673
7674         for_each_connector_in_state(state, connector, connector_state, i) {
7675                 if (connector_state->crtc != &crtc->base)
7676                         continue;
7677
7678                 encoder = to_intel_encoder(connector_state->best_encoder);
7679
7680                 switch (encoder->type) {
7681                 case INTEL_OUTPUT_LVDS:
7682                         is_lvds = true;
7683                         break;
7684                 case INTEL_OUTPUT_DSI:
7685                         is_dsi = true;
7686                         break;
7687                 default:
7688                         break;
7689                 }
7690
7691                 num_connectors++;
7692         }
7693
7694         if (is_dsi)
7695                 return 0;
7696
7697         if (!crtc_state->clock_set) {
7698                 refclk = i9xx_get_refclk(crtc_state, num_connectors);
7699
7700                 /*
7701                  * Returns a set of divisors for the desired target clock with
7702                  * the given refclk, or FALSE.  The returned values represent
7703                  * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7704                  * 2) / p1 / p2.
7705                  */
7706                 limit = intel_limit(crtc_state, refclk);
7707                 ok = dev_priv->display.find_dpll(limit, crtc_state,
7708                                                  crtc_state->port_clock,
7709                                                  refclk, NULL, &clock);
7710                 if (!ok) {
7711                         DRM_ERROR("Couldn't find PLL settings for mode!\n");
7712                         return -EINVAL;
7713                 }
7714
7715                 if (is_lvds && dev_priv->lvds_downclock_avail) {
7716                         /*
7717                          * Ensure we match the reduced clock's P to the target
7718                          * clock.  If the clocks don't match, we can't switch
7719                          * the display clock by using the FP0/FP1. In such case
7720                          * we will disable the LVDS downclock feature.
7721                          */
7722                         has_reduced_clock =
7723                                 dev_priv->display.find_dpll(limit, crtc_state,
7724                                                             dev_priv->lvds_downclock,
7725                                                             refclk, &clock,
7726                                                             &reduced_clock);
7727                 }
7728                 /* Compat-code for transition, will disappear. */
7729                 crtc_state->dpll.n = clock.n;
7730                 crtc_state->dpll.m1 = clock.m1;
7731                 crtc_state->dpll.m2 = clock.m2;
7732                 crtc_state->dpll.p1 = clock.p1;
7733                 crtc_state->dpll.p2 = clock.p2;
7734         }
7735
7736         if (IS_GEN2(dev)) {
7737                 i8xx_update_pll(crtc, crtc_state,
7738                                 has_reduced_clock ? &reduced_clock : NULL,
7739                                 num_connectors);
7740         } else if (IS_CHERRYVIEW(dev)) {
7741                 chv_update_pll(crtc, crtc_state);
7742         } else if (IS_VALLEYVIEW(dev)) {
7743                 vlv_update_pll(crtc, crtc_state);
7744         } else {
7745                 i9xx_update_pll(crtc, crtc_state,
7746                                 has_reduced_clock ? &reduced_clock : NULL,
7747                                 num_connectors);
7748         }
7749
7750         return 0;
7751 }
7752
7753 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7754                                  struct intel_crtc_state *pipe_config)
7755 {
7756         struct drm_device *dev = crtc->base.dev;
7757         struct drm_i915_private *dev_priv = dev->dev_private;
7758         uint32_t tmp;
7759
7760         if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7761                 return;
7762
7763         tmp = I915_READ(PFIT_CONTROL);
7764         if (!(tmp & PFIT_ENABLE))
7765                 return;
7766
7767         /* Check whether the pfit is attached to our pipe. */
7768         if (INTEL_INFO(dev)->gen < 4) {
7769                 if (crtc->pipe != PIPE_B)
7770                         return;
7771         } else {
7772                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7773                         return;
7774         }
7775
7776         pipe_config->gmch_pfit.control = tmp;
7777         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7778         if (INTEL_INFO(dev)->gen < 5)
7779                 pipe_config->gmch_pfit.lvds_border_bits =
7780                         I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7781 }
7782
7783 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7784                                struct intel_crtc_state *pipe_config)
7785 {
7786         struct drm_device *dev = crtc->base.dev;
7787         struct drm_i915_private *dev_priv = dev->dev_private;
7788         int pipe = pipe_config->cpu_transcoder;
7789         intel_clock_t clock;
7790         u32 mdiv;
7791         int refclk = 100000;
7792
7793         /* In case of MIPI DPLL will not even be used */
7794         if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7795                 return;
7796
7797         mutex_lock(&dev_priv->sb_lock);
7798         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7799         mutex_unlock(&dev_priv->sb_lock);
7800
7801         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7802         clock.m2 = mdiv & DPIO_M2DIV_MASK;
7803         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7804         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7805         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7806
7807         vlv_clock(refclk, &clock);
7808
7809         /* clock.dot is the fast clock */
7810         pipe_config->port_clock = clock.dot / 5;
7811 }
7812
7813 static void
7814 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7815                               struct intel_initial_plane_config *plane_config)
7816 {
7817         struct drm_device *dev = crtc->base.dev;
7818         struct drm_i915_private *dev_priv = dev->dev_private;
7819         u32 val, base, offset;
7820         int pipe = crtc->pipe, plane = crtc->plane;
7821         int fourcc, pixel_format;
7822         unsigned int aligned_height;
7823         struct drm_framebuffer *fb;
7824         struct intel_framebuffer *intel_fb;
7825
7826         val = I915_READ(DSPCNTR(plane));
7827         if (!(val & DISPLAY_PLANE_ENABLE))
7828                 return;
7829
7830         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7831         if (!intel_fb) {
7832                 DRM_DEBUG_KMS("failed to alloc fb\n");
7833                 return;
7834         }
7835
7836         fb = &intel_fb->base;
7837
7838         if (INTEL_INFO(dev)->gen >= 4) {
7839                 if (val & DISPPLANE_TILED) {
7840                         plane_config->tiling = I915_TILING_X;
7841                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7842                 }
7843         }
7844
7845         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7846         fourcc = i9xx_format_to_fourcc(pixel_format);
7847         fb->pixel_format = fourcc;
7848         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7849
7850         if (INTEL_INFO(dev)->gen >= 4) {
7851                 if (plane_config->tiling)
7852                         offset = I915_READ(DSPTILEOFF(plane));
7853                 else
7854                         offset = I915_READ(DSPLINOFF(plane));
7855                 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7856         } else {
7857                 base = I915_READ(DSPADDR(plane));
7858         }
7859         plane_config->base = base;
7860
7861         val = I915_READ(PIPESRC(pipe));
7862         fb->width = ((val >> 16) & 0xfff) + 1;
7863         fb->height = ((val >> 0) & 0xfff) + 1;
7864
7865         val = I915_READ(DSPSTRIDE(pipe));
7866         fb->pitches[0] = val & 0xffffffc0;
7867
7868         aligned_height = intel_fb_align_height(dev, fb->height,
7869                                                fb->pixel_format,
7870                                                fb->modifier[0]);
7871
7872         plane_config->size = fb->pitches[0] * aligned_height;
7873
7874         DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7875                       pipe_name(pipe), plane, fb->width, fb->height,
7876                       fb->bits_per_pixel, base, fb->pitches[0],
7877                       plane_config->size);
7878
7879         plane_config->fb = intel_fb;
7880 }
7881
7882 static void chv_crtc_clock_get(struct intel_crtc *crtc,
7883                                struct intel_crtc_state *pipe_config)
7884 {
7885         struct drm_device *dev = crtc->base.dev;
7886         struct drm_i915_private *dev_priv = dev->dev_private;
7887         int pipe = pipe_config->cpu_transcoder;
7888         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7889         intel_clock_t clock;
7890         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7891         int refclk = 100000;
7892
7893         mutex_lock(&dev_priv->sb_lock);
7894         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7895         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7896         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7897         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7898         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7899         mutex_unlock(&dev_priv->sb_lock);
7900
7901         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7902         clock.m2 = (pll_dw0 & 0xff) << 22;
7903         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7904                 clock.m2 |= pll_dw2 & 0x3fffff;
7905         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7906         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7907         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7908
7909         chv_clock(refclk, &clock);
7910
7911         /* clock.dot is the fast clock */
7912         pipe_config->port_clock = clock.dot / 5;
7913 }
7914
7915 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7916                                  struct intel_crtc_state *pipe_config)
7917 {
7918         struct drm_device *dev = crtc->base.dev;
7919         struct drm_i915_private *dev_priv = dev->dev_private;
7920         uint32_t tmp;
7921
7922         if (!intel_display_power_is_enabled(dev_priv,
7923                                             POWER_DOMAIN_PIPE(crtc->pipe)))
7924                 return false;
7925
7926         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7927         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7928
7929         tmp = I915_READ(PIPECONF(crtc->pipe));
7930         if (!(tmp & PIPECONF_ENABLE))
7931                 return false;
7932
7933         if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7934                 switch (tmp & PIPECONF_BPC_MASK) {
7935                 case PIPECONF_6BPC:
7936                         pipe_config->pipe_bpp = 18;
7937                         break;
7938                 case PIPECONF_8BPC:
7939                         pipe_config->pipe_bpp = 24;
7940                         break;
7941                 case PIPECONF_10BPC:
7942                         pipe_config->pipe_bpp = 30;
7943                         break;
7944                 default:
7945                         break;
7946                 }
7947         }
7948
7949         if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7950                 pipe_config->limited_color_range = true;
7951
7952         if (INTEL_INFO(dev)->gen < 4)
7953                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7954
7955         intel_get_pipe_timings(crtc, pipe_config);
7956
7957         i9xx_get_pfit_config(crtc, pipe_config);
7958
7959         if (INTEL_INFO(dev)->gen >= 4) {
7960                 tmp = I915_READ(DPLL_MD(crtc->pipe));
7961                 pipe_config->pixel_multiplier =
7962                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7963                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7964                 pipe_config->dpll_hw_state.dpll_md = tmp;
7965         } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7966                 tmp = I915_READ(DPLL(crtc->pipe));
7967                 pipe_config->pixel_multiplier =
7968                         ((tmp & SDVO_MULTIPLIER_MASK)
7969                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7970         } else {
7971                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
7972                  * port and will be fixed up in the encoder->get_config
7973                  * function. */
7974                 pipe_config->pixel_multiplier = 1;
7975         }
7976         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7977         if (!IS_VALLEYVIEW(dev)) {
7978                 /*
7979                  * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7980                  * on 830. Filter it out here so that we don't
7981                  * report errors due to that.
7982                  */
7983                 if (IS_I830(dev))
7984                         pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7985
7986                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7987                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7988         } else {
7989                 /* Mask out read-only status bits. */
7990                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7991                                                      DPLL_PORTC_READY_MASK |
7992                                                      DPLL_PORTB_READY_MASK);
7993         }
7994
7995         if (IS_CHERRYVIEW(dev))
7996                 chv_crtc_clock_get(crtc, pipe_config);
7997         else if (IS_VALLEYVIEW(dev))
7998                 vlv_crtc_clock_get(crtc, pipe_config);
7999         else
8000                 i9xx_crtc_clock_get(crtc, pipe_config);
8001
8002         return true;
8003 }
8004
8005 static void ironlake_init_pch_refclk(struct drm_device *dev)
8006 {
8007         struct drm_i915_private *dev_priv = dev->dev_private;
8008         struct intel_encoder *encoder;
8009         u32 val, final;
8010         bool has_lvds = false;
8011         bool has_cpu_edp = false;
8012         bool has_panel = false;
8013         bool has_ck505 = false;
8014         bool can_ssc = false;
8015
8016         /* We need to take the global config into account */
8017         for_each_intel_encoder(dev, encoder) {
8018                 switch (encoder->type) {
8019                 case INTEL_OUTPUT_LVDS:
8020                         has_panel = true;
8021                         has_lvds = true;
8022                         break;
8023                 case INTEL_OUTPUT_EDP:
8024                         has_panel = true;
8025                         if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8026                                 has_cpu_edp = true;
8027                         break;
8028                 default:
8029                         break;
8030                 }
8031         }
8032
8033         if (HAS_PCH_IBX(dev)) {
8034                 has_ck505 = dev_priv->vbt.display_clock_mode;
8035                 can_ssc = has_ck505;
8036         } else {
8037                 has_ck505 = false;
8038                 can_ssc = true;
8039         }
8040
8041         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8042                       has_panel, has_lvds, has_ck505);
8043
8044         /* Ironlake: try to setup display ref clock before DPLL
8045          * enabling. This is only under driver's control after
8046          * PCH B stepping, previous chipset stepping should be
8047          * ignoring this setting.
8048          */
8049         val = I915_READ(PCH_DREF_CONTROL);
8050
8051         /* As we must carefully and slowly disable/enable each source in turn,
8052          * compute the final state we want first and check if we need to
8053          * make any changes at all.
8054          */
8055         final = val;
8056         final &= ~DREF_NONSPREAD_SOURCE_MASK;
8057         if (has_ck505)
8058                 final |= DREF_NONSPREAD_CK505_ENABLE;
8059         else
8060                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8061
8062         final &= ~DREF_SSC_SOURCE_MASK;
8063         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8064         final &= ~DREF_SSC1_ENABLE;
8065
8066         if (has_panel) {
8067                 final |= DREF_SSC_SOURCE_ENABLE;
8068
8069                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8070                         final |= DREF_SSC1_ENABLE;
8071
8072                 if (has_cpu_edp) {
8073                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
8074                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8075                         else
8076                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8077                 } else
8078                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8079         } else {
8080                 final |= DREF_SSC_SOURCE_DISABLE;
8081                 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8082         }
8083
8084         if (final == val)
8085                 return;
8086
8087         /* Always enable nonspread source */
8088         val &= ~DREF_NONSPREAD_SOURCE_MASK;
8089
8090         if (has_ck505)
8091                 val |= DREF_NONSPREAD_CK505_ENABLE;
8092         else
8093                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
8094
8095         if (has_panel) {
8096                 val &= ~DREF_SSC_SOURCE_MASK;
8097                 val |= DREF_SSC_SOURCE_ENABLE;
8098
8099                 /* SSC must be turned on before enabling the CPU output  */
8100                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8101                         DRM_DEBUG_KMS("Using SSC on panel\n");
8102                         val |= DREF_SSC1_ENABLE;
8103                 } else
8104                         val &= ~DREF_SSC1_ENABLE;
8105
8106                 /* Get SSC going before enabling the outputs */
8107                 I915_WRITE(PCH_DREF_CONTROL, val);
8108                 POSTING_READ(PCH_DREF_CONTROL);
8109                 udelay(200);
8110
8111                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8112
8113                 /* Enable CPU source on CPU attached eDP */
8114                 if (has_cpu_edp) {
8115                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8116                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
8117                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8118                         } else
8119                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8120                 } else
8121                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8122
8123                 I915_WRITE(PCH_DREF_CONTROL, val);
8124                 POSTING_READ(PCH_DREF_CONTROL);
8125                 udelay(200);
8126         } else {
8127                 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8128
8129                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8130
8131                 /* Turn off CPU output */
8132                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8133
8134                 I915_WRITE(PCH_DREF_CONTROL, val);
8135                 POSTING_READ(PCH_DREF_CONTROL);
8136                 udelay(200);
8137
8138                 /* Turn off the SSC source */
8139                 val &= ~DREF_SSC_SOURCE_MASK;
8140                 val |= DREF_SSC_SOURCE_DISABLE;
8141
8142                 /* Turn off SSC1 */
8143                 val &= ~DREF_SSC1_ENABLE;
8144
8145                 I915_WRITE(PCH_DREF_CONTROL, val);
8146                 POSTING_READ(PCH_DREF_CONTROL);
8147                 udelay(200);
8148         }
8149
8150         BUG_ON(val != final);
8151 }
8152
8153 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8154 {
8155         uint32_t tmp;
8156
8157         tmp = I915_READ(SOUTH_CHICKEN2);
8158         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8159         I915_WRITE(SOUTH_CHICKEN2, tmp);
8160
8161         if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8162                                FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8163                 DRM_ERROR("FDI mPHY reset assert timeout\n");
8164
8165         tmp = I915_READ(SOUTH_CHICKEN2);
8166         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8167         I915_WRITE(SOUTH_CHICKEN2, tmp);
8168
8169         if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8170                                 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8171                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8172 }
8173
8174 /* WaMPhyProgramming:hsw */
8175 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8176 {
8177         uint32_t tmp;
8178
8179         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8180         tmp &= ~(0xFF << 24);
8181         tmp |= (0x12 << 24);
8182         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8183
8184         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8185         tmp |= (1 << 11);
8186         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8187
8188         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8189         tmp |= (1 << 11);
8190         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8191
8192         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8193         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8194         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8195
8196         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8197         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8198         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8199
8200         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8201         tmp &= ~(7 << 13);
8202         tmp |= (5 << 13);
8203         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8204
8205         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8206         tmp &= ~(7 << 13);
8207         tmp |= (5 << 13);
8208         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8209
8210         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8211         tmp &= ~0xFF;
8212         tmp |= 0x1C;
8213         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8214
8215         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8216         tmp &= ~0xFF;
8217         tmp |= 0x1C;
8218         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8219
8220         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8221         tmp &= ~(0xFF << 16);
8222         tmp |= (0x1C << 16);
8223         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8224
8225         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8226         tmp &= ~(0xFF << 16);
8227         tmp |= (0x1C << 16);
8228         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8229
8230         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8231         tmp |= (1 << 27);
8232         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8233
8234         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8235         tmp |= (1 << 27);
8236         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8237
8238         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8239         tmp &= ~(0xF << 28);
8240         tmp |= (4 << 28);
8241         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8242
8243         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8244         tmp &= ~(0xF << 28);
8245         tmp |= (4 << 28);
8246         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8247 }
8248
8249 /* Implements 3 different sequences from BSpec chapter "Display iCLK
8250  * Programming" based on the parameters passed:
8251  * - Sequence to enable CLKOUT_DP
8252  * - Sequence to enable CLKOUT_DP without spread
8253  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8254  */
8255 static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8256                                  bool with_fdi)
8257 {
8258         struct drm_i915_private *dev_priv = dev->dev_private;
8259         uint32_t reg, tmp;
8260
8261         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8262                 with_spread = true;
8263         if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8264                  with_fdi, "LP PCH doesn't have FDI\n"))
8265                 with_fdi = false;
8266
8267         mutex_lock(&dev_priv->sb_lock);
8268
8269         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8270         tmp &= ~SBI_SSCCTL_DISABLE;
8271         tmp |= SBI_SSCCTL_PATHALT;
8272         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8273
8274         udelay(24);
8275
8276         if (with_spread) {
8277                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8278                 tmp &= ~SBI_SSCCTL_PATHALT;
8279                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8280
8281                 if (with_fdi) {
8282                         lpt_reset_fdi_mphy(dev_priv);
8283                         lpt_program_fdi_mphy(dev_priv);
8284                 }
8285         }
8286
8287         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8288                SBI_GEN0 : SBI_DBUFF0;
8289         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8290         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8291         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8292
8293         mutex_unlock(&dev_priv->sb_lock);
8294 }
8295
8296 /* Sequence to disable CLKOUT_DP */
8297 static void lpt_disable_clkout_dp(struct drm_device *dev)
8298 {
8299         struct drm_i915_private *dev_priv = dev->dev_private;
8300         uint32_t reg, tmp;
8301
8302         mutex_lock(&dev_priv->sb_lock);
8303
8304         reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8305                SBI_GEN0 : SBI_DBUFF0;
8306         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8307         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8308         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8309
8310         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8311         if (!(tmp & SBI_SSCCTL_DISABLE)) {
8312                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8313                         tmp |= SBI_SSCCTL_PATHALT;
8314                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8315                         udelay(32);
8316                 }
8317                 tmp |= SBI_SSCCTL_DISABLE;
8318                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8319         }
8320
8321         mutex_unlock(&dev_priv->sb_lock);
8322 }
8323
8324 static void lpt_init_pch_refclk(struct drm_device *dev)
8325 {
8326         struct intel_encoder *encoder;
8327         bool has_vga = false;
8328
8329         for_each_intel_encoder(dev, encoder) {
8330                 switch (encoder->type) {
8331                 case INTEL_OUTPUT_ANALOG:
8332                         has_vga = true;
8333                         break;
8334                 default:
8335                         break;
8336                 }
8337         }
8338
8339         if (has_vga)
8340                 lpt_enable_clkout_dp(dev, true, true);
8341         else
8342                 lpt_disable_clkout_dp(dev);
8343 }
8344
8345 /*
8346  * Initialize reference clocks when the driver loads
8347  */
8348 void intel_init_pch_refclk(struct drm_device *dev)
8349 {
8350         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8351                 ironlake_init_pch_refclk(dev);
8352         else if (HAS_PCH_LPT(dev))
8353                 lpt_init_pch_refclk(dev);
8354 }
8355
8356 static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8357 {
8358         struct drm_device *dev = crtc_state->base.crtc->dev;
8359         struct drm_i915_private *dev_priv = dev->dev_private;
8360         struct drm_atomic_state *state = crtc_state->base.state;
8361         struct drm_connector *connector;
8362         struct drm_connector_state *connector_state;
8363         struct intel_encoder *encoder;
8364         int num_connectors = 0, i;
8365         bool is_lvds = false;
8366
8367         for_each_connector_in_state(state, connector, connector_state, i) {
8368                 if (connector_state->crtc != crtc_state->base.crtc)
8369                         continue;
8370
8371                 encoder = to_intel_encoder(connector_state->best_encoder);
8372
8373                 switch (encoder->type) {
8374                 case INTEL_OUTPUT_LVDS:
8375                         is_lvds = true;
8376                         break;
8377                 default:
8378                         break;
8379                 }
8380                 num_connectors++;
8381         }
8382
8383         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8384                 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8385                               dev_priv->vbt.lvds_ssc_freq);
8386                 return dev_priv->vbt.lvds_ssc_freq;
8387         }
8388
8389         return 120000;
8390 }
8391
8392 static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8393 {
8394         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8395         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8396         int pipe = intel_crtc->pipe;
8397         uint32_t val;
8398
8399         val = 0;
8400
8401         switch (intel_crtc->config->pipe_bpp) {
8402         case 18:
8403                 val |= PIPECONF_6BPC;
8404                 break;
8405         case 24:
8406                 val |= PIPECONF_8BPC;
8407                 break;
8408         case 30:
8409                 val |= PIPECONF_10BPC;
8410                 break;
8411         case 36:
8412                 val |= PIPECONF_12BPC;
8413                 break;
8414         default:
8415                 /* Case prevented by intel_choose_pipe_bpp_dither. */
8416                 BUG();
8417         }
8418
8419         if (intel_crtc->config->dither)
8420                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8421
8422         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8423                 val |= PIPECONF_INTERLACED_ILK;
8424         else
8425                 val |= PIPECONF_PROGRESSIVE;
8426
8427         if (intel_crtc->config->limited_color_range)
8428                 val |= PIPECONF_COLOR_RANGE_SELECT;
8429
8430         I915_WRITE(PIPECONF(pipe), val);
8431         POSTING_READ(PIPECONF(pipe));
8432 }
8433
8434 /*
8435  * Set up the pipe CSC unit.
8436  *
8437  * Currently only full range RGB to limited range RGB conversion
8438  * is supported, but eventually this should handle various
8439  * RGB<->YCbCr scenarios as well.
8440  */
8441 static void intel_set_pipe_csc(struct drm_crtc *crtc)
8442 {
8443         struct drm_device *dev = crtc->dev;
8444         struct drm_i915_private *dev_priv = dev->dev_private;
8445         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8446         int pipe = intel_crtc->pipe;
8447         uint16_t coeff = 0x7800; /* 1.0 */
8448
8449         /*
8450          * TODO: Check what kind of values actually come out of the pipe
8451          * with these coeff/postoff values and adjust to get the best
8452          * accuracy. Perhaps we even need to take the bpc value into
8453          * consideration.
8454          */
8455
8456         if (intel_crtc->config->limited_color_range)
8457                 coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8458
8459         /*
8460          * GY/GU and RY/RU should be the other way around according
8461          * to BSpec, but reality doesn't agree. Just set them up in
8462          * a way that results in the correct picture.
8463          */
8464         I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8465         I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8466
8467         I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8468         I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8469
8470         I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8471         I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8472
8473         I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8474         I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8475         I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8476
8477         if (INTEL_INFO(dev)->gen > 6) {
8478                 uint16_t postoff = 0;
8479
8480                 if (intel_crtc->config->limited_color_range)
8481                         postoff = (16 * (1 << 12) / 255) & 0x1fff;
8482
8483                 I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8484                 I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8485                 I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8486
8487                 I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8488         } else {
8489                 uint32_t mode = CSC_MODE_YUV_TO_RGB;
8490
8491                 if (intel_crtc->config->limited_color_range)
8492                         mode |= CSC_BLACK_SCREEN_OFFSET;
8493
8494                 I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8495         }
8496 }
8497
8498 static void haswell_set_pipeconf(struct drm_crtc *crtc)
8499 {
8500         struct drm_device *dev = crtc->dev;
8501         struct drm_i915_private *dev_priv = dev->dev_private;
8502         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8503         enum pipe pipe = intel_crtc->pipe;
8504         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8505         uint32_t val;
8506
8507         val = 0;
8508
8509         if (IS_HASWELL(dev) && intel_crtc->config->dither)
8510                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8511
8512         if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8513                 val |= PIPECONF_INTERLACED_ILK;
8514         else
8515                 val |= PIPECONF_PROGRESSIVE;
8516
8517         I915_WRITE(PIPECONF(cpu_transcoder), val);
8518         POSTING_READ(PIPECONF(cpu_transcoder));
8519
8520         I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8521         POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8522
8523         if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8524                 val = 0;
8525
8526                 switch (intel_crtc->config->pipe_bpp) {
8527                 case 18:
8528                         val |= PIPEMISC_DITHER_6_BPC;
8529                         break;
8530                 case 24:
8531                         val |= PIPEMISC_DITHER_8_BPC;
8532                         break;
8533                 case 30:
8534                         val |= PIPEMISC_DITHER_10_BPC;
8535                         break;
8536                 case 36:
8537                         val |= PIPEMISC_DITHER_12_BPC;
8538                         break;
8539                 default:
8540                         /* Case prevented by pipe_config_set_bpp. */
8541                         BUG();
8542                 }
8543
8544                 if (intel_crtc->config->dither)
8545                         val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8546
8547                 I915_WRITE(PIPEMISC(pipe), val);
8548         }
8549 }
8550
8551 static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8552                                     struct intel_crtc_state *crtc_state,
8553                                     intel_clock_t *clock,
8554                                     bool *has_reduced_clock,
8555                                     intel_clock_t *reduced_clock)
8556 {
8557         struct drm_device *dev = crtc->dev;
8558         struct drm_i915_private *dev_priv = dev->dev_private;
8559         int refclk;
8560         const intel_limit_t *limit;
8561         bool ret, is_lvds = false;
8562
8563         is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8564
8565         refclk = ironlake_get_refclk(crtc_state);
8566
8567         /*
8568          * Returns a set of divisors for the desired target clock with the given
8569          * refclk, or FALSE.  The returned values represent the clock equation:
8570          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8571          */
8572         limit = intel_limit(crtc_state, refclk);
8573         ret = dev_priv->display.find_dpll(limit, crtc_state,
8574                                           crtc_state->port_clock,
8575                                           refclk, NULL, clock);
8576         if (!ret)
8577                 return false;
8578
8579         if (is_lvds && dev_priv->lvds_downclock_avail) {
8580                 /*
8581                  * Ensure we match the reduced clock's P to the target clock.
8582                  * If the clocks don't match, we can't switch the display clock
8583                  * by using the FP0/FP1. In such case we will disable the LVDS
8584                  * downclock feature.
8585                 */
8586                 *has_reduced_clock =
8587                         dev_priv->display.find_dpll(limit, crtc_state,
8588                                                     dev_priv->lvds_downclock,
8589                                                     refclk, clock,
8590                                                     reduced_clock);
8591         }
8592
8593         return true;
8594 }
8595
8596 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8597 {
8598         /*
8599          * Account for spread spectrum to avoid
8600          * oversubscribing the link. Max center spread
8601          * is 2.5%; use 5% for safety's sake.
8602          */
8603         u32 bps = target_clock * bpp * 21 / 20;
8604         return DIV_ROUND_UP(bps, link_bw * 8);
8605 }
8606
8607 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8608 {
8609         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8610 }
8611
8612 static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8613                                       struct intel_crtc_state *crtc_state,
8614                                       u32 *fp,
8615                                       intel_clock_t *reduced_clock, u32 *fp2)
8616 {
8617         struct drm_crtc *crtc = &intel_crtc->base;
8618         struct drm_device *dev = crtc->dev;
8619         struct drm_i915_private *dev_priv = dev->dev_private;
8620         struct drm_atomic_state *state = crtc_state->base.state;
8621         struct drm_connector *connector;
8622         struct drm_connector_state *connector_state;
8623         struct intel_encoder *encoder;
8624         uint32_t dpll;
8625         int factor, num_connectors = 0, i;
8626         bool is_lvds = false, is_sdvo = false;
8627
8628         for_each_connector_in_state(state, connector, connector_state, i) {
8629                 if (connector_state->crtc != crtc_state->base.crtc)
8630                         continue;
8631
8632                 encoder = to_intel_encoder(connector_state->best_encoder);
8633
8634                 switch (encoder->type) {
8635                 case INTEL_OUTPUT_LVDS:
8636                         is_lvds = true;
8637                         break;
8638                 case INTEL_OUTPUT_SDVO:
8639                 case INTEL_OUTPUT_HDMI:
8640                         is_sdvo = true;
8641                         break;
8642                 default:
8643                         break;
8644                 }
8645
8646                 num_connectors++;
8647         }
8648
8649         /* Enable autotuning of the PLL clock (if permissible) */
8650         factor = 21;
8651         if (is_lvds) {
8652                 if ((intel_panel_use_ssc(dev_priv) &&
8653                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
8654                     (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8655                         factor = 25;
8656         } else if (crtc_state->sdvo_tv_clock)
8657                 factor = 20;
8658
8659         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8660                 *fp |= FP_CB_TUNE;
8661
8662         if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8663                 *fp2 |= FP_CB_TUNE;
8664
8665         dpll = 0;
8666
8667         if (is_lvds)
8668                 dpll |= DPLLB_MODE_LVDS;
8669         else
8670                 dpll |= DPLLB_MODE_DAC_SERIAL;
8671
8672         dpll |= (crtc_state->pixel_multiplier - 1)
8673                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8674
8675         if (is_sdvo)
8676                 dpll |= DPLL_SDVO_HIGH_SPEED;
8677         if (crtc_state->has_dp_encoder)
8678                 dpll |= DPLL_SDVO_HIGH_SPEED;
8679
8680         /* compute bitmask from p1 value */
8681         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8682         /* also FPA1 */
8683         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8684
8685         switch (crtc_state->dpll.p2) {
8686         case 5:
8687                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8688                 break;
8689         case 7:
8690                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8691                 break;
8692         case 10:
8693                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8694                 break;
8695         case 14:
8696                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8697                 break;
8698         }
8699
8700         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8701                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8702         else
8703                 dpll |= PLL_REF_INPUT_DREFCLK;
8704
8705         return dpll | DPLL_VCO_ENABLE;
8706 }
8707
8708 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8709                                        struct intel_crtc_state *crtc_state)
8710 {
8711         struct drm_device *dev = crtc->base.dev;
8712         intel_clock_t clock, reduced_clock;
8713         u32 dpll = 0, fp = 0, fp2 = 0;
8714         bool ok, has_reduced_clock = false;
8715         bool is_lvds = false;
8716         struct intel_shared_dpll *pll;
8717
8718         memset(&crtc_state->dpll_hw_state, 0,
8719                sizeof(crtc_state->dpll_hw_state));
8720
8721         is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8722
8723         WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8724              "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8725
8726         ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8727                                      &has_reduced_clock, &reduced_clock);
8728         if (!ok && !crtc_state->clock_set) {
8729                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8730                 return -EINVAL;
8731         }
8732         /* Compat-code for transition, will disappear. */
8733         if (!crtc_state->clock_set) {
8734                 crtc_state->dpll.n = clock.n;
8735                 crtc_state->dpll.m1 = clock.m1;
8736                 crtc_state->dpll.m2 = clock.m2;
8737                 crtc_state->dpll.p1 = clock.p1;
8738                 crtc_state->dpll.p2 = clock.p2;
8739         }
8740
8741         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8742         if (crtc_state->has_pch_encoder) {
8743                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8744                 if (has_reduced_clock)
8745                         fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8746
8747                 dpll = ironlake_compute_dpll(crtc, crtc_state,
8748                                              &fp, &reduced_clock,
8749                                              has_reduced_clock ? &fp2 : NULL);
8750
8751                 crtc_state->dpll_hw_state.dpll = dpll;
8752                 crtc_state->dpll_hw_state.fp0 = fp;
8753                 if (has_reduced_clock)
8754                         crtc_state->dpll_hw_state.fp1 = fp2;
8755                 else
8756                         crtc_state->dpll_hw_state.fp1 = fp;
8757
8758                 pll = intel_get_shared_dpll(crtc, crtc_state);
8759                 if (pll == NULL) {
8760                         DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8761                                          pipe_name(crtc->pipe));
8762                         return -EINVAL;
8763                 }
8764         }
8765
8766         if (is_lvds && has_reduced_clock)
8767                 crtc->lowfreq_avail = true;
8768         else
8769                 crtc->lowfreq_avail = false;
8770
8771         return 0;
8772 }
8773
8774 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8775                                          struct intel_link_m_n *m_n)
8776 {
8777         struct drm_device *dev = crtc->base.dev;
8778         struct drm_i915_private *dev_priv = dev->dev_private;
8779         enum pipe pipe = crtc->pipe;
8780
8781         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8782         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8783         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8784                 & ~TU_SIZE_MASK;
8785         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8786         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8787                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8788 }
8789
8790 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8791                                          enum transcoder transcoder,
8792                                          struct intel_link_m_n *m_n,
8793                                          struct intel_link_m_n *m2_n2)
8794 {
8795         struct drm_device *dev = crtc->base.dev;
8796         struct drm_i915_private *dev_priv = dev->dev_private;
8797         enum pipe pipe = crtc->pipe;
8798
8799         if (INTEL_INFO(dev)->gen >= 5) {
8800                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8801                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8802                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8803                         & ~TU_SIZE_MASK;
8804                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8805                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8806                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8807                 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8808                  * gen < 8) and if DRRS is supported (to make sure the
8809                  * registers are not unnecessarily read).
8810                  */
8811                 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8812                         crtc->config->has_drrs) {
8813                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8814                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8815                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8816                                         & ~TU_SIZE_MASK;
8817                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8818                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8819                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8820                 }
8821         } else {
8822                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8823                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8824                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8825                         & ~TU_SIZE_MASK;
8826                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8827                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8828                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8829         }
8830 }
8831
8832 void intel_dp_get_m_n(struct intel_crtc *crtc,
8833                       struct intel_crtc_state *pipe_config)
8834 {
8835         if (pipe_config->has_pch_encoder)
8836                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8837         else
8838                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8839                                              &pipe_config->dp_m_n,
8840                                              &pipe_config->dp_m2_n2);
8841 }
8842
8843 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8844                                         struct intel_crtc_state *pipe_config)
8845 {
8846         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8847                                      &pipe_config->fdi_m_n, NULL);
8848 }
8849
8850 static void skylake_get_pfit_config(struct intel_crtc *crtc,
8851                                     struct intel_crtc_state *pipe_config)
8852 {
8853         struct drm_device *dev = crtc->base.dev;
8854         struct drm_i915_private *dev_priv = dev->dev_private;
8855         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8856         uint32_t ps_ctrl = 0;
8857         int id = -1;
8858         int i;
8859
8860         /* find scaler attached to this pipe */
8861         for (i = 0; i < crtc->num_scalers; i++) {
8862                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8863                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8864                         id = i;
8865                         pipe_config->pch_pfit.enabled = true;
8866                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8867                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8868                         break;
8869                 }
8870         }
8871
8872         scaler_state->scaler_id = id;
8873         if (id >= 0) {
8874                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8875         } else {
8876                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8877         }
8878 }
8879
8880 static void
8881 skylake_get_initial_plane_config(struct intel_crtc *crtc,
8882                                  struct intel_initial_plane_config *plane_config)
8883 {
8884         struct drm_device *dev = crtc->base.dev;
8885         struct drm_i915_private *dev_priv = dev->dev_private;
8886         u32 val, base, offset, stride_mult, tiling;
8887         int pipe = crtc->pipe;
8888         int fourcc, pixel_format;
8889         unsigned int aligned_height;
8890         struct drm_framebuffer *fb;
8891         struct intel_framebuffer *intel_fb;
8892
8893         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8894         if (!intel_fb) {
8895                 DRM_DEBUG_KMS("failed to alloc fb\n");
8896                 return;
8897         }
8898
8899         fb = &intel_fb->base;
8900
8901         val = I915_READ(PLANE_CTL(pipe, 0));
8902         if (!(val & PLANE_CTL_ENABLE))
8903                 goto error;
8904
8905         pixel_format = val & PLANE_CTL_FORMAT_MASK;
8906         fourcc = skl_format_to_fourcc(pixel_format,
8907                                       val & PLANE_CTL_ORDER_RGBX,
8908                                       val & PLANE_CTL_ALPHA_MASK);
8909         fb->pixel_format = fourcc;
8910         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8911
8912         tiling = val & PLANE_CTL_TILED_MASK;
8913         switch (tiling) {
8914         case PLANE_CTL_TILED_LINEAR:
8915                 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8916                 break;
8917         case PLANE_CTL_TILED_X:
8918                 plane_config->tiling = I915_TILING_X;
8919                 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8920                 break;
8921         case PLANE_CTL_TILED_Y:
8922                 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8923                 break;
8924         case PLANE_CTL_TILED_YF:
8925                 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8926                 break;
8927         default:
8928                 MISSING_CASE(tiling);
8929                 goto error;
8930         }
8931
8932         base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8933         plane_config->base = base;
8934
8935         offset = I915_READ(PLANE_OFFSET(pipe, 0));
8936
8937         val = I915_READ(PLANE_SIZE(pipe, 0));
8938         fb->height = ((val >> 16) & 0xfff) + 1;
8939         fb->width = ((val >> 0) & 0x1fff) + 1;
8940
8941         val = I915_READ(PLANE_STRIDE(pipe, 0));
8942         stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8943                                                 fb->pixel_format);
8944         fb->pitches[0] = (val & 0x3ff) * stride_mult;
8945
8946         aligned_height = intel_fb_align_height(dev, fb->height,
8947                                                fb->pixel_format,
8948                                                fb->modifier[0]);
8949
8950         plane_config->size = fb->pitches[0] * aligned_height;
8951
8952         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8953                       pipe_name(pipe), fb->width, fb->height,
8954                       fb->bits_per_pixel, base, fb->pitches[0],
8955                       plane_config->size);
8956
8957         plane_config->fb = intel_fb;
8958         return;
8959
8960 error:
8961         kfree(fb);
8962 }
8963
8964 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8965                                      struct intel_crtc_state *pipe_config)
8966 {
8967         struct drm_device *dev = crtc->base.dev;
8968         struct drm_i915_private *dev_priv = dev->dev_private;
8969         uint32_t tmp;
8970
8971         tmp = I915_READ(PF_CTL(crtc->pipe));
8972
8973         if (tmp & PF_ENABLE) {
8974                 pipe_config->pch_pfit.enabled = true;
8975                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8976                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8977
8978                 /* We currently do not free assignements of panel fitters on
8979                  * ivb/hsw (since we don't use the higher upscaling modes which
8980                  * differentiates them) so just WARN about this case for now. */
8981                 if (IS_GEN7(dev)) {
8982                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8983                                 PF_PIPE_SEL_IVB(crtc->pipe));
8984                 }
8985         }
8986 }
8987
8988 static void
8989 ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8990                                   struct intel_initial_plane_config *plane_config)
8991 {
8992         struct drm_device *dev = crtc->base.dev;
8993         struct drm_i915_private *dev_priv = dev->dev_private;
8994         u32 val, base, offset;
8995         int pipe = crtc->pipe;
8996         int fourcc, pixel_format;
8997         unsigned int aligned_height;
8998         struct drm_framebuffer *fb;
8999         struct intel_framebuffer *intel_fb;
9000
9001         val = I915_READ(DSPCNTR(pipe));
9002         if (!(val & DISPLAY_PLANE_ENABLE))
9003                 return;
9004
9005         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9006         if (!intel_fb) {
9007                 DRM_DEBUG_KMS("failed to alloc fb\n");
9008                 return;
9009         }
9010
9011         fb = &intel_fb->base;
9012
9013         if (INTEL_INFO(dev)->gen >= 4) {
9014                 if (val & DISPPLANE_TILED) {
9015                         plane_config->tiling = I915_TILING_X;
9016                         fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9017                 }
9018         }
9019
9020         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9021         fourcc = i9xx_format_to_fourcc(pixel_format);
9022         fb->pixel_format = fourcc;
9023         fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9024
9025         base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9026         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9027                 offset = I915_READ(DSPOFFSET(pipe));
9028         } else {
9029                 if (plane_config->tiling)
9030                         offset = I915_READ(DSPTILEOFF(pipe));
9031                 else
9032                         offset = I915_READ(DSPLINOFF(pipe));
9033         }
9034         plane_config->base = base;
9035
9036         val = I915_READ(PIPESRC(pipe));
9037         fb->width = ((val >> 16) & 0xfff) + 1;
9038         fb->height = ((val >> 0) & 0xfff) + 1;
9039
9040         val = I915_READ(DSPSTRIDE(pipe));
9041         fb->pitches[0] = val & 0xffffffc0;
9042
9043         aligned_height = intel_fb_align_height(dev, fb->height,
9044                                                fb->pixel_format,
9045                                                fb->modifier[0]);
9046
9047         plane_config->size = fb->pitches[0] * aligned_height;
9048
9049         DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9050                       pipe_name(pipe), fb->width, fb->height,
9051                       fb->bits_per_pixel, base, fb->pitches[0],
9052                       plane_config->size);
9053
9054         plane_config->fb = intel_fb;
9055 }
9056
9057 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9058                                      struct intel_crtc_state *pipe_config)
9059 {
9060         struct drm_device *dev = crtc->base.dev;
9061         struct drm_i915_private *dev_priv = dev->dev_private;
9062         uint32_t tmp;
9063
9064         if (!intel_display_power_is_enabled(dev_priv,
9065                                             POWER_DOMAIN_PIPE(crtc->pipe)))
9066                 return false;
9067
9068         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9069         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9070
9071         tmp = I915_READ(PIPECONF(crtc->pipe));
9072         if (!(tmp & PIPECONF_ENABLE))
9073                 return false;
9074
9075         switch (tmp & PIPECONF_BPC_MASK) {
9076         case PIPECONF_6BPC:
9077                 pipe_config->pipe_bpp = 18;
9078                 break;
9079         case PIPECONF_8BPC:
9080                 pipe_config->pipe_bpp = 24;
9081                 break;
9082         case PIPECONF_10BPC:
9083                 pipe_config->pipe_bpp = 30;
9084                 break;
9085         case PIPECONF_12BPC:
9086                 pipe_config->pipe_bpp = 36;
9087                 break;
9088         default:
9089                 break;
9090         }
9091
9092         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9093                 pipe_config->limited_color_range = true;
9094
9095         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9096                 struct intel_shared_dpll *pll;
9097
9098                 pipe_config->has_pch_encoder = true;
9099
9100                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9101                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9102                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9103
9104                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9105
9106                 if (HAS_PCH_IBX(dev_priv->dev)) {
9107                         pipe_config->shared_dpll =
9108                                 (enum intel_dpll_id) crtc->pipe;
9109                 } else {
9110                         tmp = I915_READ(PCH_DPLL_SEL);
9111                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9112                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9113                         else
9114                                 pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9115                 }
9116
9117                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9118
9119                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9120                                            &pipe_config->dpll_hw_state));
9121
9122                 tmp = pipe_config->dpll_hw_state.dpll;
9123                 pipe_config->pixel_multiplier =
9124                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9125                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9126
9127                 ironlake_pch_clock_get(crtc, pipe_config);
9128         } else {
9129                 pipe_config->pixel_multiplier = 1;
9130         }
9131
9132         intel_get_pipe_timings(crtc, pipe_config);
9133
9134         ironlake_get_pfit_config(crtc, pipe_config);
9135
9136         return true;
9137 }
9138
9139 static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9140 {
9141         struct drm_device *dev = dev_priv->dev;
9142         struct intel_crtc *crtc;
9143
9144         for_each_intel_crtc(dev, crtc)
9145                 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9146                      pipe_name(crtc->pipe));
9147
9148         I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9149         I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9150         I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9151         I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9152         I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9153         I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9154              "CPU PWM1 enabled\n");
9155         if (IS_HASWELL(dev))
9156                 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9157                      "CPU PWM2 enabled\n");
9158         I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9159              "PCH PWM1 enabled\n");
9160         I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9161              "Utility pin enabled\n");
9162         I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9163
9164         /*
9165          * In theory we can still leave IRQs enabled, as long as only the HPD
9166          * interrupts remain enabled. We used to check for that, but since it's
9167          * gen-specific and since we only disable LCPLL after we fully disable
9168          * the interrupts, the check below should be enough.
9169          */
9170         I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9171 }
9172
9173 static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9174 {
9175         struct drm_device *dev = dev_priv->dev;
9176
9177         if (IS_HASWELL(dev))
9178                 return I915_READ(D_COMP_HSW);
9179         else
9180                 return I915_READ(D_COMP_BDW);
9181 }
9182
9183 static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9184 {
9185         struct drm_device *dev = dev_priv->dev;
9186
9187         if (IS_HASWELL(dev)) {
9188                 mutex_lock(&dev_priv->rps.hw_lock);
9189                 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9190                                             val))
9191                         DRM_ERROR("Failed to write to D_COMP\n");
9192                 mutex_unlock(&dev_priv->rps.hw_lock);
9193         } else {
9194                 I915_WRITE(D_COMP_BDW, val);
9195                 POSTING_READ(D_COMP_BDW);
9196         }
9197 }
9198
9199 /*
9200  * This function implements pieces of two sequences from BSpec:
9201  * - Sequence for display software to disable LCPLL
9202  * - Sequence for display software to allow package C8+
9203  * The steps implemented here are just the steps that actually touch the LCPLL
9204  * register. Callers should take care of disabling all the display engine
9205  * functions, doing the mode unset, fixing interrupts, etc.
9206  */
9207 static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9208                               bool switch_to_fclk, bool allow_power_down)
9209 {
9210         uint32_t val;
9211
9212         assert_can_disable_lcpll(dev_priv);
9213
9214         val = I915_READ(LCPLL_CTL);
9215
9216         if (switch_to_fclk) {
9217                 val |= LCPLL_CD_SOURCE_FCLK;
9218                 I915_WRITE(LCPLL_CTL, val);
9219
9220                 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9221                                        LCPLL_CD_SOURCE_FCLK_DONE, 1))
9222                         DRM_ERROR("Switching to FCLK failed\n");
9223
9224                 val = I915_READ(LCPLL_CTL);
9225         }
9226
9227         val |= LCPLL_PLL_DISABLE;
9228         I915_WRITE(LCPLL_CTL, val);
9229         POSTING_READ(LCPLL_CTL);
9230
9231         if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9232                 DRM_ERROR("LCPLL still locked\n");
9233
9234         val = hsw_read_dcomp(dev_priv);
9235         val |= D_COMP_COMP_DISABLE;
9236         hsw_write_dcomp(dev_priv, val);
9237         ndelay(100);
9238
9239         if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9240                      1))
9241                 DRM_ERROR("D_COMP RCOMP still in progress\n");
9242
9243         if (allow_power_down) {
9244                 val = I915_READ(LCPLL_CTL);
9245                 val |= LCPLL_POWER_DOWN_ALLOW;
9246                 I915_WRITE(LCPLL_CTL, val);
9247                 POSTING_READ(LCPLL_CTL);
9248         }
9249 }
9250
9251 /*
9252  * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9253  * source.
9254  */
9255 static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9256 {
9257         uint32_t val;
9258
9259         val = I915_READ(LCPLL_CTL);
9260
9261         if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9262                     LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9263                 return;
9264
9265         /*
9266          * Make sure we're not on PC8 state before disabling PC8, otherwise
9267          * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9268          */
9269         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9270
9271         if (val & LCPLL_POWER_DOWN_ALLOW) {
9272                 val &= ~LCPLL_POWER_DOWN_ALLOW;
9273                 I915_WRITE(LCPLL_CTL, val);
9274                 POSTING_READ(LCPLL_CTL);
9275         }
9276
9277         val = hsw_read_dcomp(dev_priv);
9278         val |= D_COMP_COMP_FORCE;
9279         val &= ~D_COMP_COMP_DISABLE;
9280         hsw_write_dcomp(dev_priv, val);
9281
9282         val = I915_READ(LCPLL_CTL);
9283         val &= ~LCPLL_PLL_DISABLE;
9284         I915_WRITE(LCPLL_CTL, val);
9285
9286         if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9287                 DRM_ERROR("LCPLL not locked yet\n");
9288
9289         if (val & LCPLL_CD_SOURCE_FCLK) {
9290                 val = I915_READ(LCPLL_CTL);
9291                 val &= ~LCPLL_CD_SOURCE_FCLK;
9292                 I915_WRITE(LCPLL_CTL, val);
9293
9294                 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9295                                         LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9296                         DRM_ERROR("Switching back to LCPLL failed\n");
9297         }
9298
9299         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9300 }
9301
9302 /*
9303  * Package states C8 and deeper are really deep PC states that can only be
9304  * reached when all the devices on the system allow it, so even if the graphics
9305  * device allows PC8+, it doesn't mean the system will actually get to these
9306  * states. Our driver only allows PC8+ when going into runtime PM.
9307  *
9308  * The requirements for PC8+ are that all the outputs are disabled, the power
9309  * well is disabled and most interrupts are disabled, and these are also
9310  * requirements for runtime PM. When these conditions are met, we manually do
9311  * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9312  * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9313  * hang the machine.
9314  *
9315  * When we really reach PC8 or deeper states (not just when we allow it) we lose
9316  * the state of some registers, so when we come back from PC8+ we need to
9317  * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9318  * need to take care of the registers kept by RC6. Notice that this happens even
9319  * if we don't put the device in PCI D3 state (which is what currently happens
9320  * because of the runtime PM support).
9321  *
9322  * For more, read "Display Sequences for Package C8" on the hardware
9323  * documentation.
9324  */
9325 void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9326 {
9327         struct drm_device *dev = dev_priv->dev;
9328         uint32_t val;
9329
9330         DRM_DEBUG_KMS("Enabling package C8+\n");
9331
9332         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9333                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9334                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9335                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9336         }
9337
9338         lpt_disable_clkout_dp(dev);
9339         hsw_disable_lcpll(dev_priv, true, true);
9340 }
9341
9342 void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9343 {
9344         struct drm_device *dev = dev_priv->dev;
9345         uint32_t val;
9346
9347         DRM_DEBUG_KMS("Disabling package C8+\n");
9348
9349         hsw_restore_lcpll(dev_priv);
9350         lpt_init_pch_refclk(dev);
9351
9352         if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9353                 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9354                 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9355                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9356         }
9357
9358         intel_prepare_ddi(dev);
9359 }
9360
9361 static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
9362 {
9363         struct drm_device *dev = old_state->dev;
9364         struct drm_i915_private *dev_priv = dev->dev_private;
9365         int max_pixclk = intel_mode_max_pixclk(dev, NULL);
9366         int req_cdclk;
9367
9368         /* see the comment in valleyview_modeset_global_resources */
9369         if (WARN_ON(max_pixclk < 0))
9370                 return;
9371
9372         req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9373
9374         if (req_cdclk != dev_priv->cdclk_freq)
9375                 broxton_set_cdclk(dev, req_cdclk);
9376 }
9377
9378 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9379                                       struct intel_crtc_state *crtc_state)
9380 {
9381         if (!intel_ddi_pll_select(crtc, crtc_state))
9382                 return -EINVAL;
9383
9384         crtc->lowfreq_avail = false;
9385
9386         return 0;
9387 }
9388
9389 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9390                                 enum port port,
9391                                 struct intel_crtc_state *pipe_config)
9392 {
9393         switch (port) {
9394         case PORT_A:
9395                 pipe_config->ddi_pll_sel = SKL_DPLL0;
9396                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9397                 break;
9398         case PORT_B:
9399                 pipe_config->ddi_pll_sel = SKL_DPLL1;
9400                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9401                 break;
9402         case PORT_C:
9403                 pipe_config->ddi_pll_sel = SKL_DPLL2;
9404                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9405                 break;
9406         default:
9407                 DRM_ERROR("Incorrect port type\n");
9408         }
9409 }
9410
9411 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9412                                 enum port port,
9413                                 struct intel_crtc_state *pipe_config)
9414 {
9415         u32 temp, dpll_ctl1;
9416
9417         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9418         pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9419
9420         switch (pipe_config->ddi_pll_sel) {
9421         case SKL_DPLL0:
9422                 /*
9423                  * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9424                  * of the shared DPLL framework and thus needs to be read out
9425                  * separately
9426                  */
9427                 dpll_ctl1 = I915_READ(DPLL_CTRL1);
9428                 pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9429                 break;
9430         case SKL_DPLL1:
9431                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9432                 break;
9433         case SKL_DPLL2:
9434                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9435                 break;
9436         case SKL_DPLL3:
9437                 pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9438                 break;
9439         }
9440 }
9441
9442 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9443                                 enum port port,
9444                                 struct intel_crtc_state *pipe_config)
9445 {
9446         pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9447
9448         switch (pipe_config->ddi_pll_sel) {
9449         case PORT_CLK_SEL_WRPLL1:
9450                 pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9451                 break;
9452         case PORT_CLK_SEL_WRPLL2:
9453                 pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9454                 break;
9455         }
9456 }
9457
9458 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9459                                        struct intel_crtc_state *pipe_config)
9460 {
9461         struct drm_device *dev = crtc->base.dev;
9462         struct drm_i915_private *dev_priv = dev->dev_private;
9463         struct intel_shared_dpll *pll;
9464         enum port port;
9465         uint32_t tmp;
9466
9467         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9468
9469         port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9470
9471         if (IS_SKYLAKE(dev))
9472                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
9473         else if (IS_BROXTON(dev))
9474                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
9475         else
9476                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9477
9478         if (pipe_config->shared_dpll >= 0) {
9479                 pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9480
9481                 WARN_ON(!pll->get_hw_state(dev_priv, pll,
9482                                            &pipe_config->dpll_hw_state));
9483         }
9484
9485         /*
9486          * Haswell has only FDI/PCH transcoder A. It is which is connected to
9487          * DDI E. So just check whether this pipe is wired to DDI E and whether
9488          * the PCH transcoder is on.
9489          */
9490         if (INTEL_INFO(dev)->gen < 9 &&
9491             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9492                 pipe_config->has_pch_encoder = true;
9493
9494                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9495                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9496                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
9497
9498                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9499         }
9500 }
9501
9502 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9503                                     struct intel_crtc_state *pipe_config)
9504 {
9505         struct drm_device *dev = crtc->base.dev;
9506         struct drm_i915_private *dev_priv = dev->dev_private;
9507         enum intel_display_power_domain pfit_domain;
9508         uint32_t tmp;
9509
9510         if (!intel_display_power_is_enabled(dev_priv,
9511                                          POWER_DOMAIN_PIPE(crtc->pipe)))
9512                 return false;
9513
9514         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9515         pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9516
9517         tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9518         if (tmp & TRANS_DDI_FUNC_ENABLE) {
9519                 enum pipe trans_edp_pipe;
9520                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9521                 default:
9522                         WARN(1, "unknown pipe linked to edp transcoder\n");
9523                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9524                 case TRANS_DDI_EDP_INPUT_A_ON:
9525                         trans_edp_pipe = PIPE_A;
9526                         break;
9527                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9528                         trans_edp_pipe = PIPE_B;
9529                         break;
9530                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9531                         trans_edp_pipe = PIPE_C;
9532                         break;
9533                 }
9534
9535                 if (trans_edp_pipe == crtc->pipe)
9536                         pipe_config->cpu_transcoder = TRANSCODER_EDP;
9537         }
9538
9539         if (!intel_display_power_is_enabled(dev_priv,
9540                         POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9541                 return false;
9542
9543         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9544         if (!(tmp & PIPECONF_ENABLE))
9545                 return false;
9546
9547         haswell_get_ddi_port_state(crtc, pipe_config);
9548
9549         intel_get_pipe_timings(crtc, pipe_config);
9550
9551         if (INTEL_INFO(dev)->gen >= 9) {
9552                 skl_init_scalers(dev, crtc, pipe_config);
9553         }
9554
9555         pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9556
9557         if (INTEL_INFO(dev)->gen >= 9) {
9558                 pipe_config->scaler_state.scaler_id = -1;
9559                 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9560         }
9561
9562         if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9563                 if (INTEL_INFO(dev)->gen == 9)
9564                         skylake_get_pfit_config(crtc, pipe_config);
9565                 else if (INTEL_INFO(dev)->gen < 9)
9566                         ironlake_get_pfit_config(crtc, pipe_config);
9567                 else
9568                         MISSING_CASE(INTEL_INFO(dev)->gen);
9569         }
9570
9571         if (IS_HASWELL(dev))
9572                 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9573                         (I915_READ(IPS_CTL) & IPS_ENABLE);
9574
9575         if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9576                 pipe_config->pixel_multiplier =
9577                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9578         } else {
9579                 pipe_config->pixel_multiplier = 1;
9580         }
9581
9582         return true;
9583 }
9584
9585 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9586 {
9587         struct drm_device *dev = crtc->dev;
9588         struct drm_i915_private *dev_priv = dev->dev_private;
9589         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9590         uint32_t cntl = 0, size = 0;
9591
9592         if (base) {
9593                 unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9594                 unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9595                 unsigned int stride = roundup_pow_of_two(width) * 4;
9596
9597                 switch (stride) {
9598                 default:
9599                         WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9600                                   width, stride);
9601                         stride = 256;
9602                         /* fallthrough */
9603                 case 256:
9604                 case 512:
9605                 case 1024:
9606                 case 2048:
9607                         break;
9608                 }
9609
9610                 cntl |= CURSOR_ENABLE |
9611                         CURSOR_GAMMA_ENABLE |
9612                         CURSOR_FORMAT_ARGB |
9613                         CURSOR_STRIDE(stride);
9614
9615                 size = (height << 12) | width;
9616         }
9617
9618         if (intel_crtc->cursor_cntl != 0 &&
9619             (intel_crtc->cursor_base != base ||
9620              intel_crtc->cursor_size != size ||
9621              intel_crtc->cursor_cntl != cntl)) {
9622                 /* On these chipsets we can only modify the base/size/stride
9623                  * whilst the cursor is disabled.
9624                  */
9625                 I915_WRITE(_CURACNTR, 0);
9626                 POSTING_READ(_CURACNTR);
9627                 intel_crtc->cursor_cntl = 0;
9628         }
9629
9630         if (intel_crtc->cursor_base != base) {
9631                 I915_WRITE(_CURABASE, base);
9632                 intel_crtc->cursor_base = base;
9633         }
9634
9635         if (intel_crtc->cursor_size != size) {
9636                 I915_WRITE(CURSIZE, size);
9637                 intel_crtc->cursor_size = size;
9638         }
9639
9640         if (intel_crtc->cursor_cntl != cntl) {
9641                 I915_WRITE(_CURACNTR, cntl);
9642                 POSTING_READ(_CURACNTR);
9643                 intel_crtc->cursor_cntl = cntl;
9644         }
9645 }
9646
9647 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9648 {
9649         struct drm_device *dev = crtc->dev;
9650         struct drm_i915_private *dev_priv = dev->dev_private;
9651         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9652         int pipe = intel_crtc->pipe;
9653         uint32_t cntl;
9654
9655         cntl = 0;
9656         if (base) {
9657                 cntl = MCURSOR_GAMMA_ENABLE;
9658                 switch (intel_crtc->base.cursor->state->crtc_w) {
9659                         case 64:
9660                                 cntl |= CURSOR_MODE_64_ARGB_AX;
9661                                 break;
9662                         case 128:
9663                                 cntl |= CURSOR_MODE_128_ARGB_AX;
9664                                 break;
9665                         case 256:
9666                                 cntl |= CURSOR_MODE_256_ARGB_AX;
9667                                 break;
9668                         default:
9669                                 MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9670                                 return;
9671                 }
9672                 cntl |= pipe << 28; /* Connect to correct pipe */
9673
9674                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9675                         cntl |= CURSOR_PIPE_CSC_ENABLE;
9676         }
9677
9678         if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9679                 cntl |= CURSOR_ROTATE_180;
9680
9681         if (intel_crtc->cursor_cntl != cntl) {
9682                 I915_WRITE(CURCNTR(pipe), cntl);
9683                 POSTING_READ(CURCNTR(pipe));
9684                 intel_crtc->cursor_cntl = cntl;
9685         }
9686
9687         /* and commit changes on next vblank */
9688         I915_WRITE(CURBASE(pipe), base);
9689         POSTING_READ(CURBASE(pipe));
9690
9691         intel_crtc->cursor_base = base;
9692 }
9693
9694 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9695 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9696                                      bool on)
9697 {
9698         struct drm_device *dev = crtc->dev;
9699         struct drm_i915_private *dev_priv = dev->dev_private;
9700         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9701         int pipe = intel_crtc->pipe;
9702         int x = crtc->cursor_x;
9703         int y = crtc->cursor_y;
9704         u32 base = 0, pos = 0;
9705
9706         if (on)
9707                 base = intel_crtc->cursor_addr;
9708
9709         if (x >= intel_crtc->config->pipe_src_w)
9710                 base = 0;
9711
9712         if (y >= intel_crtc->config->pipe_src_h)
9713                 base = 0;
9714
9715         if (x < 0) {
9716                 if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9717                         base = 0;
9718
9719                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9720                 x = -x;
9721         }
9722         pos |= x << CURSOR_X_SHIFT;
9723
9724         if (y < 0) {
9725                 if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9726                         base = 0;
9727
9728                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9729                 y = -y;
9730         }
9731         pos |= y << CURSOR_Y_SHIFT;
9732
9733         if (base == 0 && intel_crtc->cursor_base == 0)
9734                 return;
9735
9736         I915_WRITE(CURPOS(pipe), pos);
9737
9738         /* ILK+ do this automagically */
9739         if (HAS_GMCH_DISPLAY(dev) &&
9740             crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9741                 base += (intel_crtc->base.cursor->state->crtc_h *
9742                         intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9743         }
9744
9745         if (IS_845G(dev) || IS_I865G(dev))
9746                 i845_update_cursor(crtc, base);
9747         else
9748                 i9xx_update_cursor(crtc, base);
9749 }
9750
9751 static bool cursor_size_ok(struct drm_device *dev,
9752                            uint32_t width, uint32_t height)
9753 {
9754         if (width == 0 || height == 0)
9755                 return false;
9756
9757         /*
9758          * 845g/865g are special in that they are only limited by
9759          * the width of their cursors, the height is arbitrary up to
9760          * the precision of the register. Everything else requires
9761          * square cursors, limited to a few power-of-two sizes.
9762          */
9763         if (IS_845G(dev) || IS_I865G(dev)) {
9764                 if ((width & 63) != 0)
9765                         return false;
9766
9767                 if (width > (IS_845G(dev) ? 64 : 512))
9768                         return false;
9769
9770                 if (height > 1023)
9771                         return false;
9772         } else {
9773                 switch (width | height) {
9774                 case 256:
9775                 case 128:
9776                         if (IS_GEN2(dev))
9777                                 return false;
9778                 case 64:
9779                         break;
9780                 default:
9781                         return false;
9782                 }
9783         }
9784
9785         return true;
9786 }
9787
9788 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
9789                                  u16 *blue, uint32_t start, uint32_t size)
9790 {
9791         int end = (start + size > 256) ? 256 : start + size, i;
9792         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9793
9794         for (i = start; i < end; i++) {
9795                 intel_crtc->lut_r[i] = red[i] >> 8;
9796                 intel_crtc->lut_g[i] = green[i] >> 8;
9797                 intel_crtc->lut_b[i] = blue[i] >> 8;
9798         }
9799
9800         intel_crtc_load_lut(crtc);
9801 }
9802
9803 /* VESA 640x480x72Hz mode to set on the pipe */
9804 static struct drm_display_mode load_detect_mode = {
9805         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9806                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9807 };
9808
9809 struct drm_framebuffer *
9810 __intel_framebuffer_create(struct drm_device *dev,
9811                            struct drm_mode_fb_cmd2 *mode_cmd,
9812                            struct drm_i915_gem_object *obj)
9813 {
9814         struct intel_framebuffer *intel_fb;
9815         int ret;
9816
9817         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9818         if (!intel_fb) {
9819                 drm_gem_object_unreference(&obj->base);
9820                 return ERR_PTR(-ENOMEM);
9821         }
9822
9823         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
9824         if (ret)
9825                 goto err;
9826
9827         return &intel_fb->base;
9828 err:
9829         drm_gem_object_unreference(&obj->base);
9830         kfree(intel_fb);
9831
9832         return ERR_PTR(ret);
9833 }
9834
9835 static struct drm_framebuffer *
9836 intel_framebuffer_create(struct drm_device *dev,
9837                          struct drm_mode_fb_cmd2 *mode_cmd,
9838                          struct drm_i915_gem_object *obj)
9839 {
9840         struct drm_framebuffer *fb;
9841         int ret;
9842
9843         ret = i915_mutex_lock_interruptible(dev);
9844         if (ret)
9845                 return ERR_PTR(ret);
9846         fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9847         mutex_unlock(&dev->struct_mutex);
9848
9849         return fb;
9850 }
9851
9852 static u32
9853 intel_framebuffer_pitch_for_width(int width, int bpp)
9854 {
9855         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9856         return ALIGN(pitch, 64);
9857 }
9858
9859 static u32
9860 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9861 {
9862         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9863         return PAGE_ALIGN(pitch * mode->vdisplay);
9864 }
9865
9866 static struct drm_framebuffer *
9867 intel_framebuffer_create_for_mode(struct drm_device *dev,
9868                                   struct drm_display_mode *mode,
9869                                   int depth, int bpp)
9870 {
9871         struct drm_i915_gem_object *obj;
9872         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9873
9874         obj = i915_gem_alloc_object(dev,
9875                                     intel_framebuffer_size_for_mode(mode, bpp));
9876         if (obj == NULL)
9877                 return ERR_PTR(-ENOMEM);
9878
9879         mode_cmd.width = mode->hdisplay;
9880         mode_cmd.height = mode->vdisplay;
9881         mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9882                                                                 bpp);
9883         mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9884
9885         return intel_framebuffer_create(dev, &mode_cmd, obj);
9886 }
9887
9888 static struct drm_framebuffer *
9889 mode_fits_in_fbdev(struct drm_device *dev,
9890                    struct drm_display_mode *mode)
9891 {
9892 #ifdef CONFIG_DRM_I915_FBDEV
9893         struct drm_i915_private *dev_priv = dev->dev_private;
9894         struct drm_i915_gem_object *obj;
9895         struct drm_framebuffer *fb;
9896
9897         if (!dev_priv->fbdev)
9898                 return NULL;
9899
9900         if (!dev_priv->fbdev->fb)
9901                 return NULL;
9902
9903         obj = dev_priv->fbdev->fb->obj;
9904         BUG_ON(!obj);
9905
9906         fb = &dev_priv->fbdev->fb->base;
9907         if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9908                                                                fb->bits_per_pixel))
9909                 return NULL;
9910
9911         if (obj->base.size < mode->vdisplay * fb->pitches[0])
9912                 return NULL;
9913
9914         return fb;
9915 #else
9916         return NULL;
9917 #endif
9918 }
9919
9920 static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9921                                            struct drm_crtc *crtc,
9922                                            struct drm_display_mode *mode,
9923                                            struct drm_framebuffer *fb,
9924                                            int x, int y)
9925 {
9926         struct drm_plane_state *plane_state;
9927         int hdisplay, vdisplay;
9928         int ret;
9929
9930         plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9931         if (IS_ERR(plane_state))
9932                 return PTR_ERR(plane_state);
9933
9934         if (mode)
9935                 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
9936         else
9937                 hdisplay = vdisplay = 0;
9938
9939         ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9940         if (ret)
9941                 return ret;
9942         drm_atomic_set_fb_for_plane(plane_state, fb);
9943         plane_state->crtc_x = 0;
9944         plane_state->crtc_y = 0;
9945         plane_state->crtc_w = hdisplay;
9946         plane_state->crtc_h = vdisplay;
9947         plane_state->src_x = x << 16;
9948         plane_state->src_y = y << 16;
9949         plane_state->src_w = hdisplay << 16;
9950         plane_state->src_h = vdisplay << 16;
9951
9952         return 0;
9953 }
9954
9955 bool intel_get_load_detect_pipe(struct drm_connector *connector,
9956                                 struct drm_display_mode *mode,
9957                                 struct intel_load_detect_pipe *old,
9958                                 struct drm_modeset_acquire_ctx *ctx)
9959 {
9960         struct intel_crtc *intel_crtc;
9961         struct intel_encoder *intel_encoder =
9962                 intel_attached_encoder(connector);
9963         struct drm_crtc *possible_crtc;
9964         struct drm_encoder *encoder = &intel_encoder->base;
9965         struct drm_crtc *crtc = NULL;
9966         struct drm_device *dev = encoder->dev;
9967         struct drm_framebuffer *fb;
9968         struct drm_mode_config *config = &dev->mode_config;
9969         struct drm_atomic_state *state = NULL;
9970         struct drm_connector_state *connector_state;
9971         struct intel_crtc_state *crtc_state;
9972         int ret, i = -1;
9973
9974         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9975                       connector->base.id, connector->name,
9976                       encoder->base.id, encoder->name);
9977
9978 retry:
9979         ret = drm_modeset_lock(&config->connection_mutex, ctx);
9980         if (ret)
9981                 goto fail_unlock;
9982
9983         /*
9984          * Algorithm gets a little messy:
9985          *
9986          *   - if the connector already has an assigned crtc, use it (but make
9987          *     sure it's on first)
9988          *
9989          *   - try to find the first unused crtc that can drive this connector,
9990          *     and use that if we find one
9991          */
9992
9993         /* See if we already have a CRTC for this connector */
9994         if (encoder->crtc) {
9995                 crtc = encoder->crtc;
9996
9997                 ret = drm_modeset_lock(&crtc->mutex, ctx);
9998                 if (ret)
9999                         goto fail_unlock;
10000                 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10001                 if (ret)
10002                         goto fail_unlock;
10003
10004                 old->dpms_mode = connector->dpms;
10005                 old->load_detect_temp = false;
10006
10007                 /* Make sure the crtc and connector are running */
10008                 if (connector->dpms != DRM_MODE_DPMS_ON)
10009                         connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10010
10011                 return true;
10012         }
10013
10014         /* Find an unused one (if possible) */
10015         for_each_crtc(dev, possible_crtc) {
10016                 i++;
10017                 if (!(encoder->possible_crtcs & (1 << i)))
10018                         continue;
10019                 if (possible_crtc->state->enable)
10020                         continue;
10021                 /* This can occur when applying the pipe A quirk on resume. */
10022                 if (to_intel_crtc(possible_crtc)->new_enabled)
10023                         continue;
10024
10025                 crtc = possible_crtc;
10026                 break;
10027         }
10028
10029         /*
10030          * If we didn't find an unused CRTC, don't use any.
10031          */
10032         if (!crtc) {
10033                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
10034                 goto fail_unlock;
10035         }
10036
10037         ret = drm_modeset_lock(&crtc->mutex, ctx);
10038         if (ret)
10039                 goto fail_unlock;
10040         ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10041         if (ret)
10042                 goto fail_unlock;
10043         intel_encoder->new_crtc = to_intel_crtc(crtc);
10044         to_intel_connector(connector)->new_encoder = intel_encoder;
10045
10046         intel_crtc = to_intel_crtc(crtc);
10047         intel_crtc->new_enabled = true;
10048         old->dpms_mode = connector->dpms;
10049         old->load_detect_temp = true;
10050         old->release_fb = NULL;
10051
10052         state = drm_atomic_state_alloc(dev);
10053         if (!state)
10054                 return false;
10055
10056         state->acquire_ctx = ctx;
10057
10058         connector_state = drm_atomic_get_connector_state(state, connector);
10059         if (IS_ERR(connector_state)) {
10060                 ret = PTR_ERR(connector_state);
10061                 goto fail;
10062         }
10063
10064         connector_state->crtc = crtc;
10065         connector_state->best_encoder = &intel_encoder->base;
10066
10067         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10068         if (IS_ERR(crtc_state)) {
10069                 ret = PTR_ERR(crtc_state);
10070                 goto fail;
10071         }
10072
10073         crtc_state->base.active = crtc_state->base.enable = true;
10074
10075         if (!mode)
10076                 mode = &load_detect_mode;
10077
10078         /* We need a framebuffer large enough to accommodate all accesses
10079          * that the plane may generate whilst we perform load detection.
10080          * We can not rely on the fbcon either being present (we get called
10081          * during its initialisation to detect all boot displays, or it may
10082          * not even exist) or that it is large enough to satisfy the
10083          * requested mode.
10084          */
10085         fb = mode_fits_in_fbdev(dev, mode);
10086         if (fb == NULL) {
10087                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10088                 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10089                 old->release_fb = fb;
10090         } else
10091                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10092         if (IS_ERR(fb)) {
10093                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10094                 goto fail;
10095         }
10096
10097         ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10098         if (ret)
10099                 goto fail;
10100
10101         drm_mode_copy(&crtc_state->base.mode, mode);
10102
10103         if (intel_set_mode(crtc, state, true)) {
10104                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10105                 if (old->release_fb)
10106                         old->release_fb->funcs->destroy(old->release_fb);
10107                 goto fail;
10108         }
10109         crtc->primary->crtc = crtc;
10110
10111         /* let the connector get through one full cycle before testing */
10112         intel_wait_for_vblank(dev, intel_crtc->pipe);
10113         return true;
10114
10115  fail:
10116         intel_crtc->new_enabled = crtc->state->enable;
10117 fail_unlock:
10118         drm_atomic_state_free(state);
10119         state = NULL;
10120
10121         if (ret == -EDEADLK) {
10122                 drm_modeset_backoff(ctx);
10123                 goto retry;
10124         }
10125
10126         return false;
10127 }
10128
10129 void intel_release_load_detect_pipe(struct drm_connector *connector,
10130                                     struct intel_load_detect_pipe *old,
10131                                     struct drm_modeset_acquire_ctx *ctx)
10132 {
10133         struct drm_device *dev = connector->dev;
10134         struct intel_encoder *intel_encoder =
10135                 intel_attached_encoder(connector);
10136         struct drm_encoder *encoder = &intel_encoder->base;
10137         struct drm_crtc *crtc = encoder->crtc;
10138         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10139         struct drm_atomic_state *state;
10140         struct drm_connector_state *connector_state;
10141         struct intel_crtc_state *crtc_state;
10142         int ret;
10143
10144         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10145                       connector->base.id, connector->name,
10146                       encoder->base.id, encoder->name);
10147
10148         if (old->load_detect_temp) {
10149                 state = drm_atomic_state_alloc(dev);
10150                 if (!state)
10151                         goto fail;
10152
10153                 state->acquire_ctx = ctx;
10154
10155                 connector_state = drm_atomic_get_connector_state(state, connector);
10156                 if (IS_ERR(connector_state))
10157                         goto fail;
10158
10159                 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10160                 if (IS_ERR(crtc_state))
10161                         goto fail;
10162
10163                 to_intel_connector(connector)->new_encoder = NULL;
10164                 intel_encoder->new_crtc = NULL;
10165                 intel_crtc->new_enabled = false;
10166
10167                 connector_state->best_encoder = NULL;
10168                 connector_state->crtc = NULL;
10169
10170                 crtc_state->base.enable = crtc_state->base.active = false;
10171
10172                 ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10173                                                       0, 0);
10174                 if (ret)
10175                         goto fail;
10176
10177                 ret = intel_set_mode(crtc, state, true);
10178                 if (ret)
10179                         goto fail;
10180
10181                 if (old->release_fb) {
10182                         drm_framebuffer_unregister_private(old->release_fb);
10183                         drm_framebuffer_unreference(old->release_fb);
10184                 }
10185
10186                 return;
10187         }
10188
10189         /* Switch crtc and encoder back off if necessary */
10190         if (old->dpms_mode != DRM_MODE_DPMS_ON)
10191                 connector->funcs->dpms(connector, old->dpms_mode);
10192
10193         return;
10194 fail:
10195         DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10196         drm_atomic_state_free(state);
10197 }
10198
10199 static int i9xx_pll_refclk(struct drm_device *dev,
10200                            const struct intel_crtc_state *pipe_config)
10201 {
10202         struct drm_i915_private *dev_priv = dev->dev_private;
10203         u32 dpll = pipe_config->dpll_hw_state.dpll;
10204
10205         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10206                 return dev_priv->vbt.lvds_ssc_freq;
10207         else if (HAS_PCH_SPLIT(dev))
10208                 return 120000;
10209         else if (!IS_GEN2(dev))
10210                 return 96000;
10211         else
10212                 return 48000;
10213 }
10214
10215 /* Returns the clock of the currently programmed mode of the given pipe. */
10216 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10217                                 struct intel_crtc_state *pipe_config)
10218 {
10219         struct drm_device *dev = crtc->base.dev;
10220         struct drm_i915_private *dev_priv = dev->dev_private;
10221         int pipe = pipe_config->cpu_transcoder;
10222         u32 dpll = pipe_config->dpll_hw_state.dpll;
10223         u32 fp;
10224         intel_clock_t clock;
10225         int refclk = i9xx_pll_refclk(dev, pipe_config);
10226
10227         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10228                 fp = pipe_config->dpll_hw_state.fp0;
10229         else
10230                 fp = pipe_config->dpll_hw_state.fp1;
10231
10232         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10233         if (IS_PINEVIEW(dev)) {
10234                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10235                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10236         } else {
10237                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10238                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10239         }
10240
10241         if (!IS_GEN2(dev)) {
10242                 if (IS_PINEVIEW(dev))
10243                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10244                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10245                 else
10246                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10247                                DPLL_FPA01_P1_POST_DIV_SHIFT);
10248
10249                 switch (dpll & DPLL_MODE_MASK) {
10250                 case DPLLB_MODE_DAC_SERIAL:
10251                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10252                                 5 : 10;
10253                         break;
10254                 case DPLLB_MODE_LVDS:
10255                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10256                                 7 : 14;
10257                         break;
10258                 default:
10259                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10260                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
10261                         return;
10262                 }
10263
10264                 if (IS_PINEVIEW(dev))
10265                         pineview_clock(refclk, &clock);
10266                 else
10267                         i9xx_clock(refclk, &clock);
10268         } else {
10269                 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10270                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10271
10272                 if (is_lvds) {
10273                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10274                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
10275
10276                         if (lvds & LVDS_CLKB_POWER_UP)
10277                                 clock.p2 = 7;
10278                         else
10279                                 clock.p2 = 14;
10280                 } else {
10281                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
10282                                 clock.p1 = 2;
10283                         else {
10284                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10285                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10286                         }
10287                         if (dpll & PLL_P2_DIVIDE_BY_4)
10288                                 clock.p2 = 4;
10289                         else
10290                                 clock.p2 = 2;
10291                 }
10292
10293                 i9xx_clock(refclk, &clock);
10294         }
10295
10296         /*
10297          * This value includes pixel_multiplier. We will use
10298          * port_clock to compute adjusted_mode.crtc_clock in the
10299          * encoder's get_config() function.
10300          */
10301         pipe_config->port_clock = clock.dot;
10302 }
10303
10304 int intel_dotclock_calculate(int link_freq,
10305                              const struct intel_link_m_n *m_n)
10306 {
10307         /*
10308          * The calculation for the data clock is:
10309          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10310          * But we want to avoid losing precison if possible, so:
10311          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10312          *
10313          * and the link clock is simpler:
10314          * link_clock = (m * link_clock) / n
10315          */
10316
10317         if (!m_n->link_n)
10318                 return 0;
10319
10320         return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10321 }
10322
10323 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10324                                    struct intel_crtc_state *pipe_config)
10325 {
10326         struct drm_device *dev = crtc->base.dev;
10327
10328         /* read out port_clock from the DPLL */
10329         i9xx_crtc_clock_get(crtc, pipe_config);
10330
10331         /*
10332          * This value does not include pixel_multiplier.
10333          * We will check that port_clock and adjusted_mode.crtc_clock
10334          * agree once we know their relationship in the encoder's
10335          * get_config() function.
10336          */
10337         pipe_config->base.adjusted_mode.crtc_clock =
10338                 intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10339                                          &pipe_config->fdi_m_n);
10340 }
10341
10342 /** Returns the currently programmed mode of the given pipe. */
10343 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10344                                              struct drm_crtc *crtc)
10345 {
10346         struct drm_i915_private *dev_priv = dev->dev_private;
10347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10348         enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10349         struct drm_display_mode *mode;
10350         struct intel_crtc_state pipe_config;
10351         int htot = I915_READ(HTOTAL(cpu_transcoder));
10352         int hsync = I915_READ(HSYNC(cpu_transcoder));
10353         int vtot = I915_READ(VTOTAL(cpu_transcoder));
10354         int vsync = I915_READ(VSYNC(cpu_transcoder));
10355         enum pipe pipe = intel_crtc->pipe;
10356
10357         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10358         if (!mode)
10359                 return NULL;
10360
10361         /*
10362          * Construct a pipe_config sufficient for getting the clock info
10363          * back out of crtc_clock_get.
10364          *
10365          * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10366          * to use a real value here instead.
10367          */
10368         pipe_config.cpu_transcoder = (enum transcoder) pipe;
10369         pipe_config.pixel_multiplier = 1;
10370         pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10371         pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10372         pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10373         i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10374
10375         mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10376         mode->hdisplay = (htot & 0xffff) + 1;
10377         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10378         mode->hsync_start = (hsync & 0xffff) + 1;
10379         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10380         mode->vdisplay = (vtot & 0xffff) + 1;
10381         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10382         mode->vsync_start = (vsync & 0xffff) + 1;
10383         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10384
10385         drm_mode_set_name(mode);
10386
10387         return mode;
10388 }
10389
10390 static void intel_decrease_pllclock(struct drm_crtc *crtc)
10391 {
10392         struct drm_device *dev = crtc->dev;
10393         struct drm_i915_private *dev_priv = dev->dev_private;
10394         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10395
10396         if (!HAS_GMCH_DISPLAY(dev))
10397                 return;
10398
10399         if (!dev_priv->lvds_downclock_avail)
10400                 return;
10401
10402         /*
10403          * Since this is called by a timer, we should never get here in
10404          * the manual case.
10405          */
10406         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10407                 int pipe = intel_crtc->pipe;
10408                 int dpll_reg = DPLL(pipe);
10409                 int dpll;
10410
10411                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
10412
10413                 assert_panel_unlocked(dev_priv, pipe);
10414
10415                 dpll = I915_READ(dpll_reg);
10416                 dpll |= DISPLAY_RATE_SELECT_FPA1;
10417                 I915_WRITE(dpll_reg, dpll);
10418                 intel_wait_for_vblank(dev, pipe);
10419                 dpll = I915_READ(dpll_reg);
10420                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10421                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10422         }
10423
10424 }
10425
10426 void intel_mark_busy(struct drm_device *dev)
10427 {
10428         struct drm_i915_private *dev_priv = dev->dev_private;
10429
10430         if (dev_priv->mm.busy)
10431                 return;
10432
10433         intel_runtime_pm_get(dev_priv);
10434         i915_update_gfx_val(dev_priv);
10435         if (INTEL_INFO(dev)->gen >= 6)
10436                 gen6_rps_busy(dev_priv);
10437         dev_priv->mm.busy = true;
10438 }
10439
10440 void intel_mark_idle(struct drm_device *dev)
10441 {
10442         struct drm_i915_private *dev_priv = dev->dev_private;
10443         struct drm_crtc *crtc;
10444
10445         if (!dev_priv->mm.busy)
10446                 return;
10447
10448         dev_priv->mm.busy = false;
10449
10450         for_each_crtc(dev, crtc) {
10451                 if (!crtc->primary->fb)
10452                         continue;
10453
10454                 intel_decrease_pllclock(crtc);
10455         }
10456
10457         if (INTEL_INFO(dev)->gen >= 6)
10458                 gen6_rps_idle(dev->dev_private);
10459
10460         intel_runtime_pm_put(dev_priv);
10461 }
10462
10463 static void intel_crtc_destroy(struct drm_crtc *crtc)
10464 {
10465         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10466         struct drm_device *dev = crtc->dev;
10467         struct intel_unpin_work *work;
10468
10469         spin_lock_irq(&dev->event_lock);
10470         work = intel_crtc->unpin_work;
10471         intel_crtc->unpin_work = NULL;
10472         spin_unlock_irq(&dev->event_lock);
10473
10474         if (work) {
10475                 cancel_work_sync(&work->work);
10476                 kfree(work);
10477         }
10478
10479         drm_crtc_cleanup(crtc);
10480
10481         kfree(intel_crtc);
10482 }
10483
10484 static void intel_unpin_work_fn(struct work_struct *__work)
10485 {
10486         struct intel_unpin_work *work =
10487                 container_of(__work, struct intel_unpin_work, work);
10488         struct drm_device *dev = work->crtc->dev;
10489         enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10490
10491         mutex_lock(&dev->struct_mutex);
10492         intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10493         drm_gem_object_unreference(&work->pending_flip_obj->base);
10494
10495         intel_fbc_update(dev);
10496
10497         if (work->flip_queued_req)
10498                 i915_gem_request_assign(&work->flip_queued_req, NULL);
10499         mutex_unlock(&dev->struct_mutex);
10500
10501         intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10502         drm_framebuffer_unreference(work->old_fb);
10503
10504         BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10505         atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10506
10507         kfree(work);
10508 }
10509
10510 static void do_intel_finish_page_flip(struct drm_device *dev,
10511                                       struct drm_crtc *crtc)
10512 {
10513         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10514         struct intel_unpin_work *work;
10515         unsigned long flags;
10516
10517         /* Ignore early vblank irqs */
10518         if (intel_crtc == NULL)
10519                 return;
10520
10521         /*
10522          * This is called both by irq handlers and the reset code (to complete
10523          * lost pageflips) so needs the full irqsave spinlocks.
10524          */
10525         spin_lock_irqsave(&dev->event_lock, flags);
10526         work = intel_crtc->unpin_work;
10527
10528         /* Ensure we don't miss a work->pending update ... */
10529         smp_rmb();
10530
10531         if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10532                 spin_unlock_irqrestore(&dev->event_lock, flags);
10533                 return;
10534         }
10535
10536         page_flip_completed(intel_crtc);
10537
10538         spin_unlock_irqrestore(&dev->event_lock, flags);
10539 }
10540
10541 void intel_finish_page_flip(struct drm_device *dev, int pipe)
10542 {
10543         struct drm_i915_private *dev_priv = dev->dev_private;
10544         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10545
10546         do_intel_finish_page_flip(dev, crtc);
10547 }
10548
10549 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10550 {
10551         struct drm_i915_private *dev_priv = dev->dev_private;
10552         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10553
10554         do_intel_finish_page_flip(dev, crtc);
10555 }
10556
10557 /* Is 'a' after or equal to 'b'? */
10558 static bool g4x_flip_count_after_eq(u32 a, u32 b)
10559 {
10560         return !((a - b) & 0x80000000);
10561 }
10562
10563 static bool page_flip_finished(struct intel_crtc *crtc)
10564 {
10565         struct drm_device *dev = crtc->base.dev;
10566         struct drm_i915_private *dev_priv = dev->dev_private;
10567
10568         if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10569             crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10570                 return true;
10571
10572         /*
10573          * The relevant registers doen't exist on pre-ctg.
10574          * As the flip done interrupt doesn't trigger for mmio
10575          * flips on gmch platforms, a flip count check isn't
10576          * really needed there. But since ctg has the registers,
10577          * include it in the check anyway.
10578          */
10579         if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10580                 return true;
10581
10582         /*
10583          * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10584          * used the same base address. In that case the mmio flip might
10585          * have completed, but the CS hasn't even executed the flip yet.
10586          *
10587          * A flip count check isn't enough as the CS might have updated
10588          * the base address just after start of vblank, but before we
10589          * managed to process the interrupt. This means we'd complete the
10590          * CS flip too soon.
10591          *
10592          * Combining both checks should get us a good enough result. It may
10593          * still happen that the CS flip has been executed, but has not
10594          * yet actually completed. But in case the base address is the same
10595          * anyway, we don't really care.
10596          */
10597         return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10598                 crtc->unpin_work->gtt_offset &&
10599                 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10600                                     crtc->unpin_work->flip_count);
10601 }
10602
10603 void intel_prepare_page_flip(struct drm_device *dev, int plane)
10604 {
10605         struct drm_i915_private *dev_priv = dev->dev_private;
10606         struct intel_crtc *intel_crtc =
10607                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10608         unsigned long flags;
10609
10610
10611         /*
10612          * This is called both by irq handlers and the reset code (to complete
10613          * lost pageflips) so needs the full irqsave spinlocks.
10614          *
10615          * NB: An MMIO update of the plane base pointer will also
10616          * generate a page-flip completion irq, i.e. every modeset
10617          * is also accompanied by a spurious intel_prepare_page_flip().
10618          */
10619         spin_lock_irqsave(&dev->event_lock, flags);
10620         if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10621                 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10622         spin_unlock_irqrestore(&dev->event_lock, flags);
10623 }
10624
10625 static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10626 {
10627         /* Ensure that the work item is consistent when activating it ... */
10628         smp_wmb();
10629         atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10630         /* and that it is marked active as soon as the irq could fire. */
10631         smp_wmb();
10632 }
10633
10634 static int intel_gen2_queue_flip(struct drm_device *dev,
10635                                  struct drm_crtc *crtc,
10636                                  struct drm_framebuffer *fb,
10637                                  struct drm_i915_gem_object *obj,
10638                                  struct intel_engine_cs *ring,
10639                                  uint32_t flags)
10640 {
10641         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10642         u32 flip_mask;
10643         int ret;
10644
10645         ret = intel_ring_begin(ring, 6);
10646         if (ret)
10647                 return ret;
10648
10649         /* Can't queue multiple flips, so wait for the previous
10650          * one to finish before executing the next.
10651          */
10652         if (intel_crtc->plane)
10653                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10654         else
10655                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10656         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10657         intel_ring_emit(ring, MI_NOOP);
10658         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10659                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10660         intel_ring_emit(ring, fb->pitches[0]);
10661         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10662         intel_ring_emit(ring, 0); /* aux display base address, unused */
10663
10664         intel_mark_page_flip_active(intel_crtc);
10665         __intel_ring_advance(ring);
10666         return 0;
10667 }
10668
10669 static int intel_gen3_queue_flip(struct drm_device *dev,
10670                                  struct drm_crtc *crtc,
10671                                  struct drm_framebuffer *fb,
10672                                  struct drm_i915_gem_object *obj,
10673                                  struct intel_engine_cs *ring,
10674                                  uint32_t flags)
10675 {
10676         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10677         u32 flip_mask;
10678         int ret;
10679
10680         ret = intel_ring_begin(ring, 6);
10681         if (ret)
10682                 return ret;
10683
10684         if (intel_crtc->plane)
10685                 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10686         else
10687                 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10688         intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10689         intel_ring_emit(ring, MI_NOOP);
10690         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10691                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10692         intel_ring_emit(ring, fb->pitches[0]);
10693         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10694         intel_ring_emit(ring, MI_NOOP);
10695
10696         intel_mark_page_flip_active(intel_crtc);
10697         __intel_ring_advance(ring);
10698         return 0;
10699 }
10700
10701 static int intel_gen4_queue_flip(struct drm_device *dev,
10702                                  struct drm_crtc *crtc,
10703                                  struct drm_framebuffer *fb,
10704                                  struct drm_i915_gem_object *obj,
10705                                  struct intel_engine_cs *ring,
10706                                  uint32_t flags)
10707 {
10708         struct drm_i915_private *dev_priv = dev->dev_private;
10709         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10710         uint32_t pf, pipesrc;
10711         int ret;
10712
10713         ret = intel_ring_begin(ring, 4);
10714         if (ret)
10715                 return ret;
10716
10717         /* i965+ uses the linear or tiled offsets from the
10718          * Display Registers (which do not change across a page-flip)
10719          * so we need only reprogram the base address.
10720          */
10721         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10722                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10723         intel_ring_emit(ring, fb->pitches[0]);
10724         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10725                         obj->tiling_mode);
10726
10727         /* XXX Enabling the panel-fitter across page-flip is so far
10728          * untested on non-native modes, so ignore it for now.
10729          * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10730          */
10731         pf = 0;
10732         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10733         intel_ring_emit(ring, pf | pipesrc);
10734
10735         intel_mark_page_flip_active(intel_crtc);
10736         __intel_ring_advance(ring);
10737         return 0;
10738 }
10739
10740 static int intel_gen6_queue_flip(struct drm_device *dev,
10741                                  struct drm_crtc *crtc,
10742                                  struct drm_framebuffer *fb,
10743                                  struct drm_i915_gem_object *obj,
10744                                  struct intel_engine_cs *ring,
10745                                  uint32_t flags)
10746 {
10747         struct drm_i915_private *dev_priv = dev->dev_private;
10748         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10749         uint32_t pf, pipesrc;
10750         int ret;
10751
10752         ret = intel_ring_begin(ring, 4);
10753         if (ret)
10754                 return ret;
10755
10756         intel_ring_emit(ring, MI_DISPLAY_FLIP |
10757                         MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10758         intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10759         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10760
10761         /* Contrary to the suggestions in the documentation,
10762          * "Enable Panel Fitter" does not seem to be required when page
10763          * flipping with a non-native mode, and worse causes a normal
10764          * modeset to fail.
10765          * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10766          */
10767         pf = 0;
10768         pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10769         intel_ring_emit(ring, pf | pipesrc);
10770
10771         intel_mark_page_flip_active(intel_crtc);
10772         __intel_ring_advance(ring);
10773         return 0;
10774 }
10775
10776 static int intel_gen7_queue_flip(struct drm_device *dev,
10777                                  struct drm_crtc *crtc,
10778                                  struct drm_framebuffer *fb,
10779                                  struct drm_i915_gem_object *obj,
10780                                  struct intel_engine_cs *ring,
10781                                  uint32_t flags)
10782 {
10783         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10784         uint32_t plane_bit = 0;
10785         int len, ret;
10786
10787         switch (intel_crtc->plane) {
10788         case PLANE_A:
10789                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10790                 break;
10791         case PLANE_B:
10792                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10793                 break;
10794         case PLANE_C:
10795                 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10796                 break;
10797         default:
10798                 WARN_ONCE(1, "unknown plane in flip command\n");
10799                 return -ENODEV;
10800         }
10801
10802         len = 4;
10803         if (ring->id == RCS) {
10804                 len += 6;
10805                 /*
10806                  * On Gen 8, SRM is now taking an extra dword to accommodate
10807                  * 48bits addresses, and we need a NOOP for the batch size to
10808                  * stay even.
10809                  */
10810                 if (IS_GEN8(dev))
10811                         len += 2;
10812         }
10813
10814         /*
10815          * BSpec MI_DISPLAY_FLIP for IVB:
10816          * "The full packet must be contained within the same cache line."
10817          *
10818          * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10819          * cacheline, if we ever start emitting more commands before
10820          * the MI_DISPLAY_FLIP we may need to first emit everything else,
10821          * then do the cacheline alignment, and finally emit the
10822          * MI_DISPLAY_FLIP.
10823          */
10824         ret = intel_ring_cacheline_align(ring);
10825         if (ret)
10826                 return ret;
10827
10828         ret = intel_ring_begin(ring, len);
10829         if (ret)
10830                 return ret;
10831
10832         /* Unmask the flip-done completion message. Note that the bspec says that
10833          * we should do this for both the BCS and RCS, and that we must not unmask
10834          * more than one flip event at any time (or ensure that one flip message
10835          * can be sent by waiting for flip-done prior to queueing new flips).
10836          * Experimentation says that BCS works despite DERRMR masking all
10837          * flip-done completion events and that unmasking all planes at once
10838          * for the RCS also doesn't appear to drop events. Setting the DERRMR
10839          * to zero does lead to lockups within MI_DISPLAY_FLIP.
10840          */
10841         if (ring->id == RCS) {
10842                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10843                 intel_ring_emit(ring, DERRMR);
10844                 intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10845                                         DERRMR_PIPEB_PRI_FLIP_DONE |
10846                                         DERRMR_PIPEC_PRI_FLIP_DONE));
10847                 if (IS_GEN8(dev))
10848                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10849                                               MI_SRM_LRM_GLOBAL_GTT);
10850                 else
10851                         intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10852                                               MI_SRM_LRM_GLOBAL_GTT);
10853                 intel_ring_emit(ring, DERRMR);
10854                 intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
10855                 if (IS_GEN8(dev)) {
10856                         intel_ring_emit(ring, 0);
10857                         intel_ring_emit(ring, MI_NOOP);
10858                 }
10859         }
10860
10861         intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
10862         intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
10863         intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10864         intel_ring_emit(ring, (MI_NOOP));
10865
10866         intel_mark_page_flip_active(intel_crtc);
10867         __intel_ring_advance(ring);
10868         return 0;
10869 }
10870
10871 static bool use_mmio_flip(struct intel_engine_cs *ring,
10872                           struct drm_i915_gem_object *obj)
10873 {
10874         /*
10875          * This is not being used for older platforms, because
10876          * non-availability of flip done interrupt forces us to use
10877          * CS flips. Older platforms derive flip done using some clever
10878          * tricks involving the flip_pending status bits and vblank irqs.
10879          * So using MMIO flips there would disrupt this mechanism.
10880          */
10881
10882         if (ring == NULL)
10883                 return true;
10884
10885         if (INTEL_INFO(ring->dev)->gen < 5)
10886                 return false;
10887
10888         if (i915.use_mmio_flip < 0)
10889                 return false;
10890         else if (i915.use_mmio_flip > 0)
10891                 return true;
10892         else if (i915.enable_execlists)
10893                 return true;
10894         else
10895                 return ring != i915_gem_request_get_ring(obj->last_write_req);
10896 }
10897
10898 static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10899 {
10900         struct drm_device *dev = intel_crtc->base.dev;
10901         struct drm_i915_private *dev_priv = dev->dev_private;
10902         struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10903         const enum pipe pipe = intel_crtc->pipe;
10904         u32 ctl, stride;
10905
10906         ctl = I915_READ(PLANE_CTL(pipe, 0));
10907         ctl &= ~PLANE_CTL_TILED_MASK;
10908         switch (fb->modifier[0]) {
10909         case DRM_FORMAT_MOD_NONE:
10910                 break;
10911         case I915_FORMAT_MOD_X_TILED:
10912                 ctl |= PLANE_CTL_TILED_X;
10913                 break;
10914         case I915_FORMAT_MOD_Y_TILED:
10915                 ctl |= PLANE_CTL_TILED_Y;
10916                 break;
10917         case I915_FORMAT_MOD_Yf_TILED:
10918                 ctl |= PLANE_CTL_TILED_YF;
10919                 break;
10920         default:
10921                 MISSING_CASE(fb->modifier[0]);
10922         }
10923
10924         /*
10925          * The stride is either expressed as a multiple of 64 bytes chunks for
10926          * linear buffers or in number of tiles for tiled buffers.
10927          */
10928         stride = fb->pitches[0] /
10929                  intel_fb_stride_alignment(dev, fb->modifier[0],
10930                                            fb->pixel_format);
10931
10932         /*
10933          * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10934          * PLANE_SURF updates, the update is then guaranteed to be atomic.
10935          */
10936         I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10937         I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10938
10939         I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10940         POSTING_READ(PLANE_SURF(pipe, 0));
10941 }
10942
10943 static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
10944 {
10945         struct drm_device *dev = intel_crtc->base.dev;
10946         struct drm_i915_private *dev_priv = dev->dev_private;
10947         struct intel_framebuffer *intel_fb =
10948                 to_intel_framebuffer(intel_crtc->base.primary->fb);
10949         struct drm_i915_gem_object *obj = intel_fb->obj;
10950         u32 dspcntr;
10951         u32 reg;
10952
10953         reg = DSPCNTR(intel_crtc->plane);
10954         dspcntr = I915_READ(reg);
10955
10956         if (obj->tiling_mode != I915_TILING_NONE)
10957                 dspcntr |= DISPPLANE_TILED;
10958         else
10959                 dspcntr &= ~DISPPLANE_TILED;
10960
10961         I915_WRITE(reg, dspcntr);
10962
10963         I915_WRITE(DSPSURF(intel_crtc->plane),
10964                    intel_crtc->unpin_work->gtt_offset);
10965         POSTING_READ(DSPSURF(intel_crtc->plane));
10966
10967 }
10968
10969 /*
10970  * XXX: This is the temporary way to update the plane registers until we get
10971  * around to using the usual plane update functions for MMIO flips
10972  */
10973 static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10974 {
10975         struct drm_device *dev = intel_crtc->base.dev;
10976         bool atomic_update;
10977         u32 start_vbl_count;
10978
10979         intel_mark_page_flip_active(intel_crtc);
10980
10981         atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10982
10983         if (INTEL_INFO(dev)->gen >= 9)
10984                 skl_do_mmio_flip(intel_crtc);
10985         else
10986                 /* use_mmio_flip() retricts MMIO flips to ilk+ */
10987                 ilk_do_mmio_flip(intel_crtc);
10988
10989         if (atomic_update)
10990                 intel_pipe_update_end(intel_crtc, start_vbl_count);
10991 }
10992
10993 static void intel_mmio_flip_work_func(struct work_struct *work)
10994 {
10995         struct intel_mmio_flip *mmio_flip =
10996                 container_of(work, struct intel_mmio_flip, work);
10997
10998         if (mmio_flip->req)
10999                 WARN_ON(__i915_wait_request(mmio_flip->req,
11000                                             mmio_flip->crtc->reset_counter,
11001                                             false, NULL,
11002                                             &mmio_flip->i915->rps.mmioflips));
11003
11004         intel_do_mmio_flip(mmio_flip->crtc);
11005
11006         i915_gem_request_unreference__unlocked(mmio_flip->req);
11007         kfree(mmio_flip);
11008 }
11009
11010 static int intel_queue_mmio_flip(struct drm_device *dev,
11011                                  struct drm_crtc *crtc,
11012                                  struct drm_framebuffer *fb,
11013                                  struct drm_i915_gem_object *obj,
11014                                  struct intel_engine_cs *ring,
11015                                  uint32_t flags)
11016 {
11017         struct intel_mmio_flip *mmio_flip;
11018
11019         mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11020         if (mmio_flip == NULL)
11021                 return -ENOMEM;
11022
11023         mmio_flip->i915 = to_i915(dev);
11024         mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11025         mmio_flip->crtc = to_intel_crtc(crtc);
11026
11027         INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11028         schedule_work(&mmio_flip->work);
11029
11030         return 0;
11031 }
11032
11033 static int intel_default_queue_flip(struct drm_device *dev,
11034                                     struct drm_crtc *crtc,
11035                                     struct drm_framebuffer *fb,
11036                                     struct drm_i915_gem_object *obj,
11037                                     struct intel_engine_cs *ring,
11038                                     uint32_t flags)
11039 {
11040         return -ENODEV;
11041 }
11042
11043 static bool __intel_pageflip_stall_check(struct drm_device *dev,
11044                                          struct drm_crtc *crtc)
11045 {
11046         struct drm_i915_private *dev_priv = dev->dev_private;
11047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11048         struct intel_unpin_work *work = intel_crtc->unpin_work;
11049         u32 addr;
11050
11051         if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11052                 return true;
11053
11054         if (!work->enable_stall_check)
11055                 return false;
11056
11057         if (work->flip_ready_vblank == 0) {
11058                 if (work->flip_queued_req &&
11059                     !i915_gem_request_completed(work->flip_queued_req, true))
11060                         return false;
11061
11062                 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11063         }
11064
11065         if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11066                 return false;
11067
11068         /* Potential stall - if we see that the flip has happened,
11069          * assume a missed interrupt. */
11070         if (INTEL_INFO(dev)->gen >= 4)
11071                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11072         else
11073                 addr = I915_READ(DSPADDR(intel_crtc->plane));
11074
11075         /* There is a potential issue here with a false positive after a flip
11076          * to the same address. We could address this by checking for a
11077          * non-incrementing frame counter.
11078          */
11079         return addr == work->gtt_offset;
11080 }
11081
11082 void intel_check_page_flip(struct drm_device *dev, int pipe)
11083 {
11084         struct drm_i915_private *dev_priv = dev->dev_private;
11085         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11086         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11087         struct intel_unpin_work *work;
11088
11089         WARN_ON(!in_interrupt());
11090
11091         if (crtc == NULL)
11092                 return;
11093
11094         spin_lock(&dev->event_lock);
11095         work = intel_crtc->unpin_work;
11096         if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11097                 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11098                          work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11099                 page_flip_completed(intel_crtc);
11100                 work = NULL;
11101         }
11102         if (work != NULL &&
11103             drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11104                 intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11105         spin_unlock(&dev->event_lock);
11106 }
11107
11108 static int intel_crtc_page_flip(struct drm_crtc *crtc,
11109                                 struct drm_framebuffer *fb,
11110                                 struct drm_pending_vblank_event *event,
11111                                 uint32_t page_flip_flags)
11112 {
11113         struct drm_device *dev = crtc->dev;
11114         struct drm_i915_private *dev_priv = dev->dev_private;
11115         struct drm_framebuffer *old_fb = crtc->primary->fb;
11116         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11117         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11118         struct drm_plane *primary = crtc->primary;
11119         enum pipe pipe = intel_crtc->pipe;
11120         struct intel_unpin_work *work;
11121         struct intel_engine_cs *ring;
11122         bool mmio_flip;
11123         int ret;
11124
11125         /*
11126          * drm_mode_page_flip_ioctl() should already catch this, but double
11127          * check to be safe.  In the future we may enable pageflipping from
11128          * a disabled primary plane.
11129          */
11130         if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11131                 return -EBUSY;
11132
11133         /* Can't change pixel format via MI display flips. */
11134         if (fb->pixel_format != crtc->primary->fb->pixel_format)
11135                 return -EINVAL;
11136
11137         /*
11138          * TILEOFF/LINOFF registers can't be changed via MI display flips.
11139          * Note that pitch changes could also affect these register.
11140          */
11141         if (INTEL_INFO(dev)->gen > 3 &&
11142             (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11143              fb->pitches[0] != crtc->primary->fb->pitches[0]))
11144                 return -EINVAL;
11145
11146         if (i915_terminally_wedged(&dev_priv->gpu_error))
11147                 goto out_hang;
11148
11149         work = kzalloc(sizeof(*work), GFP_KERNEL);
11150         if (work == NULL)
11151                 return -ENOMEM;
11152
11153         work->event = event;
11154         work->crtc = crtc;
11155         work->old_fb = old_fb;
11156         INIT_WORK(&work->work, intel_unpin_work_fn);
11157
11158         ret = drm_crtc_vblank_get(crtc);
11159         if (ret)
11160                 goto free_work;
11161
11162         /* We borrow the event spin lock for protecting unpin_work */
11163         spin_lock_irq(&dev->event_lock);
11164         if (intel_crtc->unpin_work) {
11165                 /* Before declaring the flip queue wedged, check if
11166                  * the hardware completed the operation behind our backs.
11167                  */
11168                 if (__intel_pageflip_stall_check(dev, crtc)) {
11169                         DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11170                         page_flip_completed(intel_crtc);
11171                 } else {
11172                         DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11173                         spin_unlock_irq(&dev->event_lock);
11174
11175                         drm_crtc_vblank_put(crtc);
11176                         kfree(work);
11177                         return -EBUSY;
11178                 }
11179         }
11180         intel_crtc->unpin_work = work;
11181         spin_unlock_irq(&dev->event_lock);
11182
11183         if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11184                 flush_workqueue(dev_priv->wq);
11185
11186         /* Reference the objects for the scheduled work. */
11187         drm_framebuffer_reference(work->old_fb);
11188         drm_gem_object_reference(&obj->base);
11189
11190         crtc->primary->fb = fb;
11191         update_state_fb(crtc->primary);
11192
11193         work->pending_flip_obj = obj;
11194
11195         ret = i915_mutex_lock_interruptible(dev);
11196         if (ret)
11197                 goto cleanup;
11198
11199         atomic_inc(&intel_crtc->unpin_work_count);
11200         intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11201
11202         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11203                 work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11204
11205         if (IS_VALLEYVIEW(dev)) {
11206                 ring = &dev_priv->ring[BCS];
11207                 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11208                         /* vlv: DISPLAY_FLIP fails to change tiling */
11209                         ring = NULL;
11210         } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11211                 ring = &dev_priv->ring[BCS];
11212         } else if (INTEL_INFO(dev)->gen >= 7) {
11213                 ring = i915_gem_request_get_ring(obj->last_write_req);
11214                 if (ring == NULL || ring->id != RCS)
11215                         ring = &dev_priv->ring[BCS];
11216         } else {
11217                 ring = &dev_priv->ring[RCS];
11218         }
11219
11220         mmio_flip = use_mmio_flip(ring, obj);
11221
11222         /* When using CS flips, we want to emit semaphores between rings.
11223          * However, when using mmio flips we will create a task to do the
11224          * synchronisation, so all we want here is to pin the framebuffer
11225          * into the display plane and skip any waits.
11226          */
11227         ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11228                                          crtc->primary->state,
11229                                          mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring);
11230         if (ret)
11231                 goto cleanup_pending;
11232
11233         work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11234                                                   + intel_crtc->dspaddr_offset;
11235
11236         if (mmio_flip) {
11237                 ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11238                                             page_flip_flags);
11239                 if (ret)
11240                         goto cleanup_unpin;
11241
11242                 i915_gem_request_assign(&work->flip_queued_req,
11243                                         obj->last_write_req);
11244         } else {
11245                 if (obj->last_write_req) {
11246                         ret = i915_gem_check_olr(obj->last_write_req);
11247                         if (ret)
11248                                 goto cleanup_unpin;
11249                 }
11250
11251                 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
11252                                                    page_flip_flags);
11253                 if (ret)
11254                         goto cleanup_unpin;
11255
11256                 i915_gem_request_assign(&work->flip_queued_req,
11257                                         intel_ring_get_request(ring));
11258         }
11259
11260         work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11261         work->enable_stall_check = true;
11262
11263         i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11264                           INTEL_FRONTBUFFER_PRIMARY(pipe));
11265
11266         intel_fbc_disable(dev);
11267         intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11268         mutex_unlock(&dev->struct_mutex);
11269
11270         trace_i915_flip_request(intel_crtc->plane, obj);
11271
11272         return 0;
11273
11274 cleanup_unpin:
11275         intel_unpin_fb_obj(fb, crtc->primary->state);
11276 cleanup_pending:
11277         atomic_dec(&intel_crtc->unpin_work_count);
11278         mutex_unlock(&dev->struct_mutex);
11279 cleanup:
11280         crtc->primary->fb = old_fb;
11281         update_state_fb(crtc->primary);
11282
11283         drm_gem_object_unreference_unlocked(&obj->base);
11284         drm_framebuffer_unreference(work->old_fb);
11285
11286         spin_lock_irq(&dev->event_lock);
11287         intel_crtc->unpin_work = NULL;
11288         spin_unlock_irq(&dev->event_lock);
11289
11290         drm_crtc_vblank_put(crtc);
11291 free_work:
11292         kfree(work);
11293
11294         if (ret == -EIO) {
11295 out_hang:
11296                 ret = intel_plane_restore(primary);
11297                 if (ret == 0 && event) {
11298                         spin_lock_irq(&dev->event_lock);
11299                         drm_send_vblank_event(dev, pipe, event);
11300                         spin_unlock_irq(&dev->event_lock);
11301                 }
11302         }
11303         return ret;
11304 }
11305
11306 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11307         .mode_set_base_atomic = intel_pipe_set_base_atomic,
11308         .load_lut = intel_crtc_load_lut,
11309         .atomic_begin = intel_begin_crtc_commit,
11310         .atomic_flush = intel_finish_crtc_commit,
11311 };
11312
11313 /**
11314  * intel_modeset_update_staged_output_state
11315  *
11316  * Updates the staged output configuration state, e.g. after we've read out the
11317  * current hw state.
11318  */
11319 static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11320 {
11321         struct intel_crtc *crtc;
11322         struct intel_encoder *encoder;
11323         struct intel_connector *connector;
11324
11325         for_each_intel_connector(dev, connector) {
11326                 connector->new_encoder =
11327                         to_intel_encoder(connector->base.encoder);
11328         }
11329
11330         for_each_intel_encoder(dev, encoder) {
11331                 encoder->new_crtc =
11332                         to_intel_crtc(encoder->base.crtc);
11333         }
11334
11335         for_each_intel_crtc(dev, crtc) {
11336                 crtc->new_enabled = crtc->base.state->enable;
11337         }
11338 }
11339
11340 /* Transitional helper to copy current connector/encoder state to
11341  * connector->state. This is needed so that code that is partially
11342  * converted to atomic does the right thing.
11343  */
11344 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11345 {
11346         struct intel_connector *connector;
11347
11348         for_each_intel_connector(dev, connector) {
11349                 if (connector->base.encoder) {
11350                         connector->base.state->best_encoder =
11351                                 connector->base.encoder;
11352                         connector->base.state->crtc =
11353                                 connector->base.encoder->crtc;
11354                 } else {
11355                         connector->base.state->best_encoder = NULL;
11356                         connector->base.state->crtc = NULL;
11357                 }
11358         }
11359 }
11360
11361 /* Fixup legacy state after an atomic state swap.
11362  */
11363 static void intel_modeset_fixup_state(struct drm_atomic_state *state)
11364 {
11365         struct intel_crtc *crtc;
11366         struct intel_encoder *encoder;
11367         struct intel_connector *connector;
11368
11369         for_each_intel_connector(state->dev, connector) {
11370                 connector->base.encoder = connector->base.state->best_encoder;
11371                 if (connector->base.encoder)
11372                         connector->base.encoder->crtc =
11373                                 connector->base.state->crtc;
11374         }
11375
11376         /* Update crtc of disabled encoders */
11377         for_each_intel_encoder(state->dev, encoder) {
11378                 int num_connectors = 0;
11379
11380                 for_each_intel_connector(state->dev, connector)
11381                         if (connector->base.encoder == &encoder->base)
11382                                 num_connectors++;
11383
11384                 if (num_connectors == 0)
11385                         encoder->base.crtc = NULL;
11386         }
11387
11388         for_each_intel_crtc(state->dev, crtc) {
11389                 crtc->base.enabled = crtc->base.state->enable;
11390                 crtc->config = to_intel_crtc_state(crtc->base.state);
11391         }
11392 }
11393
11394 static void
11395 connected_sink_compute_bpp(struct intel_connector *connector,
11396                            struct intel_crtc_state *pipe_config)
11397 {
11398         int bpp = pipe_config->pipe_bpp;
11399
11400         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11401                 connector->base.base.id,
11402                 connector->base.name);
11403
11404         /* Don't use an invalid EDID bpc value */
11405         if (connector->base.display_info.bpc &&
11406             connector->base.display_info.bpc * 3 < bpp) {
11407                 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11408                               bpp, connector->base.display_info.bpc*3);
11409                 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11410         }
11411
11412         /* Clamp bpp to 8 on screens without EDID 1.4 */
11413         if (connector->base.display_info.bpc == 0 && bpp > 24) {
11414                 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11415                               bpp);
11416                 pipe_config->pipe_bpp = 24;
11417         }
11418 }
11419
11420 static int
11421 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11422                           struct intel_crtc_state *pipe_config)
11423 {
11424         struct drm_device *dev = crtc->base.dev;
11425         struct drm_atomic_state *state;
11426         struct drm_connector *connector;
11427         struct drm_connector_state *connector_state;
11428         int bpp, i;
11429
11430         if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11431                 bpp = 10*3;
11432         else if (INTEL_INFO(dev)->gen >= 5)
11433                 bpp = 12*3;
11434         else
11435                 bpp = 8*3;
11436
11437
11438         pipe_config->pipe_bpp = bpp;
11439
11440         state = pipe_config->base.state;
11441
11442         /* Clamp display bpp to EDID value */
11443         for_each_connector_in_state(state, connector, connector_state, i) {
11444                 if (connector_state->crtc != &crtc->base)
11445                         continue;
11446
11447                 connected_sink_compute_bpp(to_intel_connector(connector),
11448                                            pipe_config);
11449         }
11450
11451         return bpp;
11452 }
11453
11454 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11455 {
11456         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11457                         "type: 0x%x flags: 0x%x\n",
11458                 mode->crtc_clock,
11459                 mode->crtc_hdisplay, mode->crtc_hsync_start,
11460                 mode->crtc_hsync_end, mode->crtc_htotal,
11461                 mode->crtc_vdisplay, mode->crtc_vsync_start,
11462                 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11463 }
11464
11465 static void intel_dump_pipe_config(struct intel_crtc *crtc,
11466                                    struct intel_crtc_state *pipe_config,
11467                                    const char *context)
11468 {
11469         struct drm_device *dev = crtc->base.dev;
11470         struct drm_plane *plane;
11471         struct intel_plane *intel_plane;
11472         struct intel_plane_state *state;
11473         struct drm_framebuffer *fb;
11474
11475         DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11476                       context, pipe_config, pipe_name(crtc->pipe));
11477
11478         DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11479         DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11480                       pipe_config->pipe_bpp, pipe_config->dither);
11481         DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11482                       pipe_config->has_pch_encoder,
11483                       pipe_config->fdi_lanes,
11484                       pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11485                       pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11486                       pipe_config->fdi_m_n.tu);
11487         DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11488                       pipe_config->has_dp_encoder,
11489                       pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11490                       pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11491                       pipe_config->dp_m_n.tu);
11492
11493         DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11494                       pipe_config->has_dp_encoder,
11495                       pipe_config->dp_m2_n2.gmch_m,
11496                       pipe_config->dp_m2_n2.gmch_n,
11497                       pipe_config->dp_m2_n2.link_m,
11498                       pipe_config->dp_m2_n2.link_n,
11499                       pipe_config->dp_m2_n2.tu);
11500
11501         DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11502                       pipe_config->has_audio,
11503                       pipe_config->has_infoframe);
11504
11505         DRM_DEBUG_KMS("requested mode:\n");
11506         drm_mode_debug_printmodeline(&pipe_config->base.mode);
11507         DRM_DEBUG_KMS("adjusted mode:\n");
11508         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11509         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11510         DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11511         DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11512                       pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11513         DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11514                       crtc->num_scalers,
11515                       pipe_config->scaler_state.scaler_users,
11516                       pipe_config->scaler_state.scaler_id);
11517         DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11518                       pipe_config->gmch_pfit.control,
11519                       pipe_config->gmch_pfit.pgm_ratios,
11520                       pipe_config->gmch_pfit.lvds_border_bits);
11521         DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11522                       pipe_config->pch_pfit.pos,
11523                       pipe_config->pch_pfit.size,
11524                       pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11525         DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11526         DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11527
11528         if (IS_BROXTON(dev)) {
11529                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
11530                               "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11531                               "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
11532                               pipe_config->ddi_pll_sel,
11533                               pipe_config->dpll_hw_state.ebb0,
11534                               pipe_config->dpll_hw_state.pll0,
11535                               pipe_config->dpll_hw_state.pll1,
11536                               pipe_config->dpll_hw_state.pll2,
11537                               pipe_config->dpll_hw_state.pll3,
11538                               pipe_config->dpll_hw_state.pll6,
11539                               pipe_config->dpll_hw_state.pll8,
11540                               pipe_config->dpll_hw_state.pcsdw12);
11541         } else if (IS_SKYLAKE(dev)) {
11542                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11543                               "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11544                               pipe_config->ddi_pll_sel,
11545                               pipe_config->dpll_hw_state.ctrl1,
11546                               pipe_config->dpll_hw_state.cfgcr1,
11547                               pipe_config->dpll_hw_state.cfgcr2);
11548         } else if (HAS_DDI(dev)) {
11549                 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11550                               pipe_config->ddi_pll_sel,
11551                               pipe_config->dpll_hw_state.wrpll);
11552         } else {
11553                 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11554                               "fp0: 0x%x, fp1: 0x%x\n",
11555                               pipe_config->dpll_hw_state.dpll,
11556                               pipe_config->dpll_hw_state.dpll_md,
11557                               pipe_config->dpll_hw_state.fp0,
11558                               pipe_config->dpll_hw_state.fp1);
11559         }
11560
11561         DRM_DEBUG_KMS("planes on this crtc\n");
11562         list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11563                 intel_plane = to_intel_plane(plane);
11564                 if (intel_plane->pipe != crtc->pipe)
11565                         continue;
11566
11567                 state = to_intel_plane_state(plane->state);
11568                 fb = state->base.fb;
11569                 if (!fb) {
11570                         DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11571                                 "disabled, scaler_id = %d\n",
11572                                 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11573                                 plane->base.id, intel_plane->pipe,
11574                                 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11575                                 drm_plane_index(plane), state->scaler_id);
11576                         continue;
11577                 }
11578
11579                 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11580                         plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11581                         plane->base.id, intel_plane->pipe,
11582                         crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11583                         drm_plane_index(plane));
11584                 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11585                         fb->base.id, fb->width, fb->height, fb->pixel_format);
11586                 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11587                         state->scaler_id,
11588                         state->src.x1 >> 16, state->src.y1 >> 16,
11589                         drm_rect_width(&state->src) >> 16,
11590                         drm_rect_height(&state->src) >> 16,
11591                         state->dst.x1, state->dst.y1,
11592                         drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11593         }
11594 }
11595
11596 static bool encoders_cloneable(const struct intel_encoder *a,
11597                                const struct intel_encoder *b)
11598 {
11599         /* masks could be asymmetric, so check both ways */
11600         return a == b || (a->cloneable & (1 << b->type) &&
11601                           b->cloneable & (1 << a->type));
11602 }
11603
11604 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11605                                          struct intel_crtc *crtc,
11606                                          struct intel_encoder *encoder)
11607 {
11608         struct intel_encoder *source_encoder;
11609         struct drm_connector *connector;
11610         struct drm_connector_state *connector_state;
11611         int i;
11612
11613         for_each_connector_in_state(state, connector, connector_state, i) {
11614                 if (connector_state->crtc != &crtc->base)
11615                         continue;
11616
11617                 source_encoder =
11618                         to_intel_encoder(connector_state->best_encoder);
11619                 if (!encoders_cloneable(encoder, source_encoder))
11620                         return false;
11621         }
11622
11623         return true;
11624 }
11625
11626 static bool check_encoder_cloning(struct drm_atomic_state *state,
11627                                   struct intel_crtc *crtc)
11628 {
11629         struct intel_encoder *encoder;
11630         struct drm_connector *connector;
11631         struct drm_connector_state *connector_state;
11632         int i;
11633
11634         for_each_connector_in_state(state, connector, connector_state, i) {
11635                 if (connector_state->crtc != &crtc->base)
11636                         continue;
11637
11638                 encoder = to_intel_encoder(connector_state->best_encoder);
11639                 if (!check_single_encoder_cloning(state, crtc, encoder))
11640                         return false;
11641         }
11642
11643         return true;
11644 }
11645
11646 static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11647 {
11648         struct drm_device *dev = state->dev;
11649         struct intel_encoder *encoder;
11650         struct drm_connector *connector;
11651         struct drm_connector_state *connector_state;
11652         unsigned int used_ports = 0;
11653         int i;
11654
11655         /*
11656          * Walk the connector list instead of the encoder
11657          * list to detect the problem on ddi platforms
11658          * where there's just one encoder per digital port.
11659          */
11660         for_each_connector_in_state(state, connector, connector_state, i) {
11661                 if (!connector_state->best_encoder)
11662                         continue;
11663
11664                 encoder = to_intel_encoder(connector_state->best_encoder);
11665
11666                 WARN_ON(!connector_state->crtc);
11667
11668                 switch (encoder->type) {
11669                         unsigned int port_mask;
11670                 case INTEL_OUTPUT_UNKNOWN:
11671                         if (WARN_ON(!HAS_DDI(dev)))
11672                                 break;
11673                 case INTEL_OUTPUT_DISPLAYPORT:
11674                 case INTEL_OUTPUT_HDMI:
11675                 case INTEL_OUTPUT_EDP:
11676                         port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11677
11678                         /* the same port mustn't appear more than once */
11679                         if (used_ports & port_mask)
11680                                 return false;
11681
11682                         used_ports |= port_mask;
11683                 default:
11684                         break;
11685                 }
11686         }
11687
11688         return true;
11689 }
11690
11691 static void
11692 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11693 {
11694         struct drm_crtc_state tmp_state;
11695         struct intel_crtc_scaler_state scaler_state;
11696         struct intel_dpll_hw_state dpll_hw_state;
11697         enum intel_dpll_id shared_dpll;
11698         uint32_t ddi_pll_sel;
11699
11700         /* FIXME: before the switch to atomic started, a new pipe_config was
11701          * kzalloc'd. Code that depends on any field being zero should be
11702          * fixed, so that the crtc_state can be safely duplicated. For now,
11703          * only fields that are know to not cause problems are preserved. */
11704
11705         tmp_state = crtc_state->base;
11706         scaler_state = crtc_state->scaler_state;
11707         shared_dpll = crtc_state->shared_dpll;
11708         dpll_hw_state = crtc_state->dpll_hw_state;
11709         ddi_pll_sel = crtc_state->ddi_pll_sel;
11710
11711         memset(crtc_state, 0, sizeof *crtc_state);
11712
11713         crtc_state->base = tmp_state;
11714         crtc_state->scaler_state = scaler_state;
11715         crtc_state->shared_dpll = shared_dpll;
11716         crtc_state->dpll_hw_state = dpll_hw_state;
11717         crtc_state->ddi_pll_sel = ddi_pll_sel;
11718 }
11719
11720 static int
11721 intel_modeset_pipe_config(struct drm_crtc *crtc,
11722                           struct drm_atomic_state *state,
11723                           struct intel_crtc_state *pipe_config)
11724 {
11725         struct intel_encoder *encoder;
11726         struct drm_connector *connector;
11727         struct drm_connector_state *connector_state;
11728         int base_bpp, ret = -EINVAL;
11729         int i;
11730         bool retry = true;
11731
11732         if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
11733                 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11734                 return -EINVAL;
11735         }
11736
11737         if (!check_digital_port_conflicts(state)) {
11738                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11739                 return -EINVAL;
11740         }
11741
11742         clear_intel_crtc_state(pipe_config);
11743
11744         pipe_config->cpu_transcoder =
11745                 (enum transcoder) to_intel_crtc(crtc)->pipe;
11746
11747         /*
11748          * Sanitize sync polarity flags based on requested ones. If neither
11749          * positive or negative polarity is requested, treat this as meaning
11750          * negative polarity.
11751          */
11752         if (!(pipe_config->base.adjusted_mode.flags &
11753               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11754                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11755
11756         if (!(pipe_config->base.adjusted_mode.flags &
11757               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11758                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11759
11760         /* Compute a starting value for pipe_config->pipe_bpp taking the source
11761          * plane pixel format and any sink constraints into account. Returns the
11762          * source plane bpp so that dithering can be selected on mismatches
11763          * after encoders and crtc also have had their say. */
11764         base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11765                                              pipe_config);
11766         if (base_bpp < 0)
11767                 goto fail;
11768
11769         /*
11770          * Determine the real pipe dimensions. Note that stereo modes can
11771          * increase the actual pipe size due to the frame doubling and
11772          * insertion of additional space for blanks between the frame. This
11773          * is stored in the crtc timings. We use the requested mode to do this
11774          * computation to clearly distinguish it from the adjusted mode, which
11775          * can be changed by the connectors in the below retry loop.
11776          */
11777         drm_crtc_get_hv_timing(&pipe_config->base.mode,
11778                                &pipe_config->pipe_src_w,
11779                                &pipe_config->pipe_src_h);
11780
11781 encoder_retry:
11782         /* Ensure the port clock defaults are reset when retrying. */
11783         pipe_config->port_clock = 0;
11784         pipe_config->pixel_multiplier = 1;
11785
11786         /* Fill in default crtc timings, allow encoders to overwrite them. */
11787         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11788                               CRTC_STEREO_DOUBLE);
11789
11790         /* Pass our mode to the connectors and the CRTC to give them a chance to
11791          * adjust it according to limitations or connector properties, and also
11792          * a chance to reject the mode entirely.
11793          */
11794         for_each_connector_in_state(state, connector, connector_state, i) {
11795                 if (connector_state->crtc != crtc)
11796                         continue;
11797
11798                 encoder = to_intel_encoder(connector_state->best_encoder);
11799
11800                 if (!(encoder->compute_config(encoder, pipe_config))) {
11801                         DRM_DEBUG_KMS("Encoder config failure\n");
11802                         goto fail;
11803                 }
11804         }
11805
11806         /* Set default port clock if not overwritten by the encoder. Needs to be
11807          * done afterwards in case the encoder adjusts the mode. */
11808         if (!pipe_config->port_clock)
11809                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11810                         * pipe_config->pixel_multiplier;
11811
11812         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11813         if (ret < 0) {
11814                 DRM_DEBUG_KMS("CRTC fixup failed\n");
11815                 goto fail;
11816         }
11817
11818         if (ret == RETRY) {
11819                 if (WARN(!retry, "loop in pipe configuration computation\n")) {
11820                         ret = -EINVAL;
11821                         goto fail;
11822                 }
11823
11824                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11825                 retry = false;
11826                 goto encoder_retry;
11827         }
11828
11829         pipe_config->dither = pipe_config->pipe_bpp != base_bpp;
11830         DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
11831                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11832
11833         return 0;
11834 fail:
11835         return ret;
11836 }
11837
11838 static bool intel_crtc_in_use(struct drm_crtc *crtc)
11839 {
11840         struct drm_encoder *encoder;
11841         struct drm_device *dev = crtc->dev;
11842
11843         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11844                 if (encoder->crtc == crtc)
11845                         return true;
11846
11847         return false;
11848 }
11849
11850 static bool
11851 needs_modeset(struct drm_crtc_state *state)
11852 {
11853         return state->mode_changed || state->active_changed;
11854 }
11855
11856 static void
11857 intel_modeset_update_state(struct drm_atomic_state *state)
11858 {
11859         struct drm_device *dev = state->dev;
11860         struct drm_i915_private *dev_priv = dev->dev_private;
11861         struct intel_encoder *intel_encoder;
11862         struct drm_crtc *crtc;
11863         struct drm_crtc_state *crtc_state;
11864         struct drm_connector *connector;
11865         int i;
11866
11867         intel_shared_dpll_commit(dev_priv);
11868
11869         for_each_intel_encoder(dev, intel_encoder) {
11870                 if (!intel_encoder->base.crtc)
11871                         continue;
11872
11873                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
11874                         if (crtc != intel_encoder->base.crtc)
11875                                 continue;
11876
11877                         if (crtc_state->enable && needs_modeset(crtc_state))
11878                                 intel_encoder->connectors_active = false;
11879
11880                         break;
11881                 }
11882         }
11883
11884         drm_atomic_helper_swap_state(state->dev, state);
11885         intel_modeset_fixup_state(state);
11886
11887         /* Double check state. */
11888         for_each_crtc(dev, crtc) {
11889                 WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
11890         }
11891
11892         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11893                 if (!connector->encoder || !connector->encoder->crtc)
11894                         continue;
11895
11896                 for_each_crtc_in_state(state, crtc, crtc_state, i) {
11897                         if (crtc != connector->encoder->crtc)
11898                                 continue;
11899
11900                         if (crtc->state->enable && needs_modeset(crtc->state)) {
11901                                 struct drm_property *dpms_property =
11902                                         dev->mode_config.dpms_property;
11903
11904                                 connector->dpms = DRM_MODE_DPMS_ON;
11905                                 drm_object_property_set_value(&connector->base,
11906                                                                  dpms_property,
11907                                                                  DRM_MODE_DPMS_ON);
11908
11909                                 intel_encoder = to_intel_encoder(connector->encoder);
11910                                 intel_encoder->connectors_active = true;
11911                         }
11912
11913                         break;
11914                 }
11915         }
11916
11917 }
11918
11919 static bool intel_fuzzy_clock_check(int clock1, int clock2)
11920 {
11921         int diff;
11922
11923         if (clock1 == clock2)
11924                 return true;
11925
11926         if (!clock1 || !clock2)
11927                 return false;
11928
11929         diff = abs(clock1 - clock2);
11930
11931         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11932                 return true;
11933
11934         return false;
11935 }
11936
11937 #define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11938         list_for_each_entry((intel_crtc), \
11939                             &(dev)->mode_config.crtc_list, \
11940                             base.head) \
11941                 if (mask & (1 <<(intel_crtc)->pipe))
11942
11943 static bool
11944 intel_pipe_config_compare(struct drm_device *dev,
11945                           struct intel_crtc_state *current_config,
11946                           struct intel_crtc_state *pipe_config)
11947 {
11948 #define PIPE_CONF_CHECK_X(name) \
11949         if (current_config->name != pipe_config->name) { \
11950                 DRM_ERROR("mismatch in " #name " " \
11951                           "(expected 0x%08x, found 0x%08x)\n", \
11952                           current_config->name, \
11953                           pipe_config->name); \
11954                 return false; \
11955         }
11956
11957 #define PIPE_CONF_CHECK_I(name) \
11958         if (current_config->name != pipe_config->name) { \
11959                 DRM_ERROR("mismatch in " #name " " \
11960                           "(expected %i, found %i)\n", \
11961                           current_config->name, \
11962                           pipe_config->name); \
11963                 return false; \
11964         }
11965
11966 /* This is required for BDW+ where there is only one set of registers for
11967  * switching between high and low RR.
11968  * This macro can be used whenever a comparison has to be made between one
11969  * hw state and multiple sw state variables.
11970  */
11971 #define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11972         if ((current_config->name != pipe_config->name) && \
11973                 (current_config->alt_name != pipe_config->name)) { \
11974                         DRM_ERROR("mismatch in " #name " " \
11975                                   "(expected %i or %i, found %i)\n", \
11976                                   current_config->name, \
11977                                   current_config->alt_name, \
11978                                   pipe_config->name); \
11979                         return false; \
11980         }
11981
11982 #define PIPE_CONF_CHECK_FLAGS(name, mask)       \
11983         if ((current_config->name ^ pipe_config->name) & (mask)) { \
11984                 DRM_ERROR("mismatch in " #name "(" #mask ") "      \
11985                           "(expected %i, found %i)\n", \
11986                           current_config->name & (mask), \
11987                           pipe_config->name & (mask)); \
11988                 return false; \
11989         }
11990
11991 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11992         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11993                 DRM_ERROR("mismatch in " #name " " \
11994                           "(expected %i, found %i)\n", \
11995                           current_config->name, \
11996                           pipe_config->name); \
11997                 return false; \
11998         }
11999
12000 #define PIPE_CONF_QUIRK(quirk)  \
12001         ((current_config->quirks | pipe_config->quirks) & (quirk))
12002
12003         PIPE_CONF_CHECK_I(cpu_transcoder);
12004
12005         PIPE_CONF_CHECK_I(has_pch_encoder);
12006         PIPE_CONF_CHECK_I(fdi_lanes);
12007         PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12008         PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12009         PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12010         PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12011         PIPE_CONF_CHECK_I(fdi_m_n.tu);
12012
12013         PIPE_CONF_CHECK_I(has_dp_encoder);
12014
12015         if (INTEL_INFO(dev)->gen < 8) {
12016                 PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12017                 PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12018                 PIPE_CONF_CHECK_I(dp_m_n.link_m);
12019                 PIPE_CONF_CHECK_I(dp_m_n.link_n);
12020                 PIPE_CONF_CHECK_I(dp_m_n.tu);
12021
12022                 if (current_config->has_drrs) {
12023                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12024                         PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12025                         PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12026                         PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12027                         PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12028                 }
12029         } else {
12030                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12031                 PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12032                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12033                 PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12034                 PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12035         }
12036
12037         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12038         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12039         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12040         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12041         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12042         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12043
12044         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12045         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12046         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12047         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12048         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12049         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12050
12051         PIPE_CONF_CHECK_I(pixel_multiplier);
12052         PIPE_CONF_CHECK_I(has_hdmi_sink);
12053         if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12054             IS_VALLEYVIEW(dev))
12055                 PIPE_CONF_CHECK_I(limited_color_range);
12056         PIPE_CONF_CHECK_I(has_infoframe);
12057
12058         PIPE_CONF_CHECK_I(has_audio);
12059
12060         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12061                               DRM_MODE_FLAG_INTERLACE);
12062
12063         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12064                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12065                                       DRM_MODE_FLAG_PHSYNC);
12066                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12067                                       DRM_MODE_FLAG_NHSYNC);
12068                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12069                                       DRM_MODE_FLAG_PVSYNC);
12070                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12071                                       DRM_MODE_FLAG_NVSYNC);
12072         }
12073
12074         PIPE_CONF_CHECK_I(pipe_src_w);
12075         PIPE_CONF_CHECK_I(pipe_src_h);
12076
12077         /*
12078          * FIXME: BIOS likes to set up a cloned config with lvds+external
12079          * screen. Since we don't yet re-compute the pipe config when moving
12080          * just the lvds port away to another pipe the sw tracking won't match.
12081          *
12082          * Proper atomic modesets with recomputed global state will fix this.
12083          * Until then just don't check gmch state for inherited modes.
12084          */
12085         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12086                 PIPE_CONF_CHECK_I(gmch_pfit.control);
12087                 /* pfit ratios are autocomputed by the hw on gen4+ */
12088                 if (INTEL_INFO(dev)->gen < 4)
12089                         PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12090                 PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12091         }
12092
12093         PIPE_CONF_CHECK_I(pch_pfit.enabled);
12094         if (current_config->pch_pfit.enabled) {
12095                 PIPE_CONF_CHECK_I(pch_pfit.pos);
12096                 PIPE_CONF_CHECK_I(pch_pfit.size);
12097         }
12098
12099         PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12100
12101         /* BDW+ don't expose a synchronous way to read the state */
12102         if (IS_HASWELL(dev))
12103                 PIPE_CONF_CHECK_I(ips_enabled);
12104
12105         PIPE_CONF_CHECK_I(double_wide);
12106
12107         PIPE_CONF_CHECK_X(ddi_pll_sel);
12108
12109         PIPE_CONF_CHECK_I(shared_dpll);
12110         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12111         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12112         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12113         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12114         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12115         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12116         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12117         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12118
12119         if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12120                 PIPE_CONF_CHECK_I(pipe_bpp);
12121
12122         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12123         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12124
12125 #undef PIPE_CONF_CHECK_X
12126 #undef PIPE_CONF_CHECK_I
12127 #undef PIPE_CONF_CHECK_I_ALT
12128 #undef PIPE_CONF_CHECK_FLAGS
12129 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
12130 #undef PIPE_CONF_QUIRK
12131
12132         return true;
12133 }
12134
12135 static void check_wm_state(struct drm_device *dev)
12136 {
12137         struct drm_i915_private *dev_priv = dev->dev_private;
12138         struct skl_ddb_allocation hw_ddb, *sw_ddb;
12139         struct intel_crtc *intel_crtc;
12140         int plane;
12141
12142         if (INTEL_INFO(dev)->gen < 9)
12143                 return;
12144
12145         skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12146         sw_ddb = &dev_priv->wm.skl_hw.ddb;
12147
12148         for_each_intel_crtc(dev, intel_crtc) {
12149                 struct skl_ddb_entry *hw_entry, *sw_entry;
12150                 const enum pipe pipe = intel_crtc->pipe;
12151
12152                 if (!intel_crtc->active)
12153                         continue;
12154
12155                 /* planes */
12156                 for_each_plane(dev_priv, pipe, plane) {
12157                         hw_entry = &hw_ddb.plane[pipe][plane];
12158                         sw_entry = &sw_ddb->plane[pipe][plane];
12159
12160                         if (skl_ddb_entry_equal(hw_entry, sw_entry))
12161                                 continue;
12162
12163                         DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12164                                   "(expected (%u,%u), found (%u,%u))\n",
12165                                   pipe_name(pipe), plane + 1,
12166                                   sw_entry->start, sw_entry->end,
12167                                   hw_entry->start, hw_entry->end);
12168                 }
12169
12170                 /* cursor */
12171                 hw_entry = &hw_ddb.cursor[pipe];
12172                 sw_entry = &sw_ddb->cursor[pipe];
12173
12174                 if (skl_ddb_entry_equal(hw_entry, sw_entry))
12175                         continue;
12176
12177                 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12178                           "(expected (%u,%u), found (%u,%u))\n",
12179                           pipe_name(pipe),
12180                           sw_entry->start, sw_entry->end,
12181                           hw_entry->start, hw_entry->end);
12182         }
12183 }
12184
12185 static void
12186 check_connector_state(struct drm_device *dev)
12187 {
12188         struct intel_connector *connector;
12189
12190         for_each_intel_connector(dev, connector) {
12191                 /* This also checks the encoder/connector hw state with the
12192                  * ->get_hw_state callbacks. */
12193                 intel_connector_check_state(connector);
12194
12195                 I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
12196                      "connector's staged encoder doesn't match current encoder\n");
12197         }
12198 }
12199
12200 static void
12201 check_encoder_state(struct drm_device *dev)
12202 {
12203         struct intel_encoder *encoder;
12204         struct intel_connector *connector;
12205
12206         for_each_intel_encoder(dev, encoder) {
12207                 bool enabled = false;
12208                 bool active = false;
12209                 enum pipe pipe, tracked_pipe;
12210
12211                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12212                               encoder->base.base.id,
12213                               encoder->base.name);
12214
12215                 I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
12216                      "encoder's stage crtc doesn't match current crtc\n");
12217                 I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12218                      "encoder's active_connectors set, but no crtc\n");
12219
12220                 for_each_intel_connector(dev, connector) {
12221                         if (connector->base.encoder != &encoder->base)
12222                                 continue;
12223                         enabled = true;
12224                         if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12225                                 active = true;
12226                 }
12227                 /*
12228                  * for MST connectors if we unplug the connector is gone
12229                  * away but the encoder is still connected to a crtc
12230                  * until a modeset happens in response to the hotplug.
12231                  */
12232                 if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12233                         continue;
12234
12235                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
12236                      "encoder's enabled state mismatch "
12237                      "(expected %i, found %i)\n",
12238                      !!encoder->base.crtc, enabled);
12239                 I915_STATE_WARN(active && !encoder->base.crtc,
12240                      "active encoder with no crtc\n");
12241
12242                 I915_STATE_WARN(encoder->connectors_active != active,
12243                      "encoder's computed active state doesn't match tracked active state "
12244                      "(expected %i, found %i)\n", active, encoder->connectors_active);
12245
12246                 active = encoder->get_hw_state(encoder, &pipe);
12247                 I915_STATE_WARN(active != encoder->connectors_active,
12248                      "encoder's hw state doesn't match sw tracking "
12249                      "(expected %i, found %i)\n",
12250                      encoder->connectors_active, active);
12251
12252                 if (!encoder->base.crtc)
12253                         continue;
12254
12255                 tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12256                 I915_STATE_WARN(active && pipe != tracked_pipe,
12257                      "active encoder's pipe doesn't match"
12258                      "(expected %i, found %i)\n",
12259                      tracked_pipe, pipe);
12260
12261         }
12262 }
12263
12264 static void
12265 check_crtc_state(struct drm_device *dev)
12266 {
12267         struct drm_i915_private *dev_priv = dev->dev_private;
12268         struct intel_crtc *crtc;
12269         struct intel_encoder *encoder;
12270         struct intel_crtc_state pipe_config;
12271
12272         for_each_intel_crtc(dev, crtc) {
12273                 bool enabled = false;
12274                 bool active = false;
12275
12276                 memset(&pipe_config, 0, sizeof(pipe_config));
12277
12278                 DRM_DEBUG_KMS("[CRTC:%d]\n",
12279                               crtc->base.base.id);
12280
12281                 I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12282                      "active crtc, but not enabled in sw tracking\n");
12283
12284                 for_each_intel_encoder(dev, encoder) {
12285                         if (encoder->base.crtc != &crtc->base)
12286                                 continue;
12287                         enabled = true;
12288                         if (encoder->connectors_active)
12289                                 active = true;
12290                 }
12291
12292                 I915_STATE_WARN(active != crtc->active,
12293                      "crtc's computed active state doesn't match tracked active state "
12294                      "(expected %i, found %i)\n", active, crtc->active);
12295                 I915_STATE_WARN(enabled != crtc->base.state->enable,
12296                      "crtc's computed enabled state doesn't match tracked enabled state "
12297                      "(expected %i, found %i)\n", enabled,
12298                                 crtc->base.state->enable);
12299
12300                 active = dev_priv->display.get_pipe_config(crtc,
12301                                                            &pipe_config);
12302
12303                 /* hw state is inconsistent with the pipe quirk */
12304                 if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12305                     (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12306                         active = crtc->active;
12307
12308                 for_each_intel_encoder(dev, encoder) {
12309                         enum pipe pipe;
12310                         if (encoder->base.crtc != &crtc->base)
12311                                 continue;
12312                         if (encoder->get_hw_state(encoder, &pipe))
12313                                 encoder->get_config(encoder, &pipe_config);
12314                 }
12315
12316                 I915_STATE_WARN(crtc->active != active,
12317                      "crtc active state doesn't match with hw state "
12318                      "(expected %i, found %i)\n", crtc->active, active);
12319
12320                 if (active &&
12321                     !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12322                         I915_STATE_WARN(1, "pipe state doesn't match!\n");
12323                         intel_dump_pipe_config(crtc, &pipe_config,
12324                                                "[hw state]");
12325                         intel_dump_pipe_config(crtc, crtc->config,
12326                                                "[sw state]");
12327                 }
12328         }
12329 }
12330
12331 static void
12332 check_shared_dpll_state(struct drm_device *dev)
12333 {
12334         struct drm_i915_private *dev_priv = dev->dev_private;
12335         struct intel_crtc *crtc;
12336         struct intel_dpll_hw_state dpll_hw_state;
12337         int i;
12338
12339         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12340                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12341                 int enabled_crtcs = 0, active_crtcs = 0;
12342                 bool active;
12343
12344                 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12345
12346                 DRM_DEBUG_KMS("%s\n", pll->name);
12347
12348                 active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12349
12350                 I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12351                      "more active pll users than references: %i vs %i\n",
12352                      pll->active, hweight32(pll->config.crtc_mask));
12353                 I915_STATE_WARN(pll->active && !pll->on,
12354                      "pll in active use but not on in sw tracking\n");
12355                 I915_STATE_WARN(pll->on && !pll->active,
12356                      "pll in on but not on in use in sw tracking\n");
12357                 I915_STATE_WARN(pll->on != active,
12358                      "pll on state mismatch (expected %i, found %i)\n",
12359                      pll->on, active);
12360
12361                 for_each_intel_crtc(dev, crtc) {
12362                         if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12363                                 enabled_crtcs++;
12364                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12365                                 active_crtcs++;
12366                 }
12367                 I915_STATE_WARN(pll->active != active_crtcs,
12368                      "pll active crtcs mismatch (expected %i, found %i)\n",
12369                      pll->active, active_crtcs);
12370                 I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12371                      "pll enabled crtcs mismatch (expected %i, found %i)\n",
12372                      hweight32(pll->config.crtc_mask), enabled_crtcs);
12373
12374                 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12375                                        sizeof(dpll_hw_state)),
12376                      "pll hw state mismatch\n");
12377         }
12378 }
12379
12380 void
12381 intel_modeset_check_state(struct drm_device *dev)
12382 {
12383         check_wm_state(dev);
12384         check_connector_state(dev);
12385         check_encoder_state(dev);
12386         check_crtc_state(dev);
12387         check_shared_dpll_state(dev);
12388 }
12389
12390 void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12391                                      int dotclock)
12392 {
12393         /*
12394          * FDI already provided one idea for the dotclock.
12395          * Yell if the encoder disagrees.
12396          */
12397         WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12398              "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12399              pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12400 }
12401
12402 static void update_scanline_offset(struct intel_crtc *crtc)
12403 {
12404         struct drm_device *dev = crtc->base.dev;
12405
12406         /*
12407          * The scanline counter increments at the leading edge of hsync.
12408          *
12409          * On most platforms it starts counting from vtotal-1 on the
12410          * first active line. That means the scanline counter value is
12411          * always one less than what we would expect. Ie. just after
12412          * start of vblank, which also occurs at start of hsync (on the
12413          * last active line), the scanline counter will read vblank_start-1.
12414          *
12415          * On gen2 the scanline counter starts counting from 1 instead
12416          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12417          * to keep the value positive), instead of adding one.
12418          *
12419          * On HSW+ the behaviour of the scanline counter depends on the output
12420          * type. For DP ports it behaves like most other platforms, but on HDMI
12421          * there's an extra 1 line difference. So we need to add two instead of
12422          * one to the value.
12423          */
12424         if (IS_GEN2(dev)) {
12425                 const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12426                 int vtotal;
12427
12428                 vtotal = mode->crtc_vtotal;
12429                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12430                         vtotal /= 2;
12431
12432                 crtc->scanline_offset = vtotal - 1;
12433         } else if (HAS_DDI(dev) &&
12434                    intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12435                 crtc->scanline_offset = 2;
12436         } else
12437                 crtc->scanline_offset = 1;
12438 }
12439
12440 static struct intel_crtc_state *
12441 intel_modeset_compute_config(struct drm_crtc *crtc,
12442                              struct drm_atomic_state *state)
12443 {
12444         struct intel_crtc_state *pipe_config;
12445         int ret = 0;
12446
12447         ret = drm_atomic_add_affected_connectors(state, crtc);
12448         if (ret)
12449                 return ERR_PTR(ret);
12450
12451         ret = drm_atomic_helper_check_modeset(state->dev, state);
12452         if (ret)
12453                 return ERR_PTR(ret);
12454
12455         /*
12456          * Note this needs changes when we start tracking multiple modes
12457          * and crtcs.  At that point we'll need to compute the whole config
12458          * (i.e. one pipe_config for each crtc) rather than just the one
12459          * for this crtc.
12460          */
12461         pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12462         if (IS_ERR(pipe_config))
12463                 return pipe_config;
12464
12465         if (!pipe_config->base.enable)
12466                 return pipe_config;
12467
12468         ret = intel_modeset_pipe_config(crtc, state, pipe_config);
12469         if (ret)
12470                 return ERR_PTR(ret);
12471
12472         /* Check things that can only be changed through modeset */
12473         if (pipe_config->has_audio !=
12474             to_intel_crtc(crtc)->config->has_audio)
12475                 pipe_config->base.mode_changed = true;
12476
12477         /*
12478          * Note we have an issue here with infoframes: current code
12479          * only updates them on the full mode set path per hw
12480          * requirements.  So here we should be checking for any
12481          * required changes and forcing a mode set.
12482          */
12483
12484         intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,"[modeset]");
12485
12486         ret = drm_atomic_helper_check_planes(state->dev, state);
12487         if (ret)
12488                 return ERR_PTR(ret);
12489
12490         return pipe_config;
12491 }
12492
12493 static int __intel_set_mode_setup_plls(struct drm_atomic_state *state)
12494 {
12495         struct drm_device *dev = state->dev;
12496         struct drm_i915_private *dev_priv = to_i915(dev);
12497         unsigned clear_pipes = 0;
12498         struct intel_crtc *intel_crtc;
12499         struct intel_crtc_state *intel_crtc_state;
12500         struct drm_crtc *crtc;
12501         struct drm_crtc_state *crtc_state;
12502         int ret = 0;
12503         int i;
12504
12505         if (!dev_priv->display.crtc_compute_clock)
12506                 return 0;
12507
12508         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12509                 intel_crtc = to_intel_crtc(crtc);
12510                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12511
12512                 if (needs_modeset(crtc_state)) {
12513                         clear_pipes |= 1 << intel_crtc->pipe;
12514                         intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12515                 }
12516         }
12517
12518         ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12519         if (ret)
12520                 goto done;
12521
12522         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12523                 if (!needs_modeset(crtc_state) || !crtc_state->enable)
12524                         continue;
12525
12526                 intel_crtc = to_intel_crtc(crtc);
12527                 intel_crtc_state = to_intel_crtc_state(crtc_state);
12528
12529                 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12530                                                            intel_crtc_state);
12531                 if (ret) {
12532                         intel_shared_dpll_abort_config(dev_priv);
12533                         goto done;
12534                 }
12535         }
12536
12537 done:
12538         return ret;
12539 }
12540
12541 /* Code that should eventually be part of atomic_check() */
12542 static int __intel_set_mode_checks(struct drm_atomic_state *state)
12543 {
12544         struct drm_device *dev = state->dev;
12545         int ret;
12546
12547         /*
12548          * See if the config requires any additional preparation, e.g.
12549          * to adjust global state with pipes off.  We need to do this
12550          * here so we can get the modeset_pipe updated config for the new
12551          * mode set on this crtc.  For other crtcs we need to use the
12552          * adjusted_mode bits in the crtc directly.
12553          */
12554         if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
12555                 ret = valleyview_modeset_global_pipes(state);
12556                 if (ret)
12557                         return ret;
12558         }
12559
12560         ret = __intel_set_mode_setup_plls(state);
12561         if (ret)
12562                 return ret;
12563
12564         return 0;
12565 }
12566
12567 static int __intel_set_mode(struct drm_crtc *modeset_crtc,
12568                             struct intel_crtc_state *pipe_config)
12569 {
12570         struct drm_device *dev = modeset_crtc->dev;
12571         struct drm_i915_private *dev_priv = dev->dev_private;
12572         struct drm_atomic_state *state = pipe_config->base.state;
12573         struct drm_crtc *crtc;
12574         struct drm_crtc_state *crtc_state;
12575         int ret = 0;
12576         int i;
12577
12578         ret = __intel_set_mode_checks(state);
12579         if (ret < 0)
12580                 return ret;
12581
12582         ret = drm_atomic_helper_prepare_planes(dev, state);
12583         if (ret)
12584                 return ret;
12585
12586         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12587                 if (!needs_modeset(crtc_state))
12588                         continue;
12589
12590                 if (!crtc_state->enable) {
12591                         if (crtc->state->enable)
12592                                 intel_crtc_disable(crtc);
12593                 } else if (crtc->state->enable) {
12594                         intel_crtc_disable_planes(crtc);
12595                         dev_priv->display.crtc_disable(crtc);
12596                 }
12597         }
12598
12599         /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12600          * to set it here already despite that we pass it down the callchain.
12601          *
12602          * Note we'll need to fix this up when we start tracking multiple
12603          * pipes; here we assume a single modeset_pipe and only track the
12604          * single crtc and mode.
12605          */
12606         if (pipe_config->base.enable && needs_modeset(&pipe_config->base)) {
12607                 modeset_crtc->mode = pipe_config->base.mode;
12608
12609                 /*
12610                  * Calculate and store various constants which
12611                  * are later needed by vblank and swap-completion
12612                  * timestamping. They are derived from true hwmode.
12613                  */
12614                 drm_calc_timestamping_constants(modeset_crtc,
12615                                                 &pipe_config->base.adjusted_mode);
12616         }
12617
12618         /* Only after disabling all output pipelines that will be changed can we
12619          * update the the output configuration. */
12620         intel_modeset_update_state(state);
12621
12622         /* The state has been swaped above, so state actually contains the
12623          * old state now. */
12624
12625         modeset_update_crtc_power_domains(state);
12626
12627         drm_atomic_helper_commit_planes(dev, state);
12628
12629         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12630         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12631                 if (!needs_modeset(crtc->state) || !crtc->state->enable)
12632                         continue;
12633
12634                 update_scanline_offset(to_intel_crtc(crtc));
12635
12636                 dev_priv->display.crtc_enable(crtc);
12637                 intel_crtc_enable_planes(crtc);
12638         }
12639
12640         /* FIXME: add subpixel order */
12641
12642         drm_atomic_helper_cleanup_planes(dev, state);
12643
12644         drm_atomic_state_free(state);
12645
12646         return 0;
12647 }
12648
12649 static int intel_set_mode_with_config(struct drm_crtc *crtc,
12650                                       struct intel_crtc_state *pipe_config,
12651                                       bool force_restore)
12652 {
12653         int ret;
12654
12655         ret = __intel_set_mode(crtc, pipe_config);
12656
12657         if (ret == 0 && force_restore) {
12658                 intel_modeset_update_staged_output_state(crtc->dev);
12659                 intel_modeset_check_state(crtc->dev);
12660         }
12661
12662         return ret;
12663 }
12664
12665 static int intel_set_mode(struct drm_crtc *crtc,
12666                           struct drm_atomic_state *state,
12667                           bool force_restore)
12668 {
12669         struct intel_crtc_state *pipe_config;
12670         int ret = 0;
12671
12672         pipe_config = intel_modeset_compute_config(crtc, state);
12673         if (IS_ERR(pipe_config)) {
12674                 ret = PTR_ERR(pipe_config);
12675                 goto out;
12676         }
12677
12678         ret = intel_set_mode_with_config(crtc, pipe_config, force_restore);
12679         if (ret)
12680                 goto out;
12681
12682 out:
12683         return ret;
12684 }
12685
12686 void intel_crtc_restore_mode(struct drm_crtc *crtc)
12687 {
12688         struct drm_device *dev = crtc->dev;
12689         struct drm_atomic_state *state;
12690         struct intel_encoder *encoder;
12691         struct intel_connector *connector;
12692         struct drm_connector_state *connector_state;
12693         struct intel_crtc_state *crtc_state;
12694         int ret;
12695
12696         state = drm_atomic_state_alloc(dev);
12697         if (!state) {
12698                 DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12699                               crtc->base.id);
12700                 return;
12701         }
12702
12703         state->acquire_ctx = dev->mode_config.acquire_ctx;
12704
12705         /* The force restore path in the HW readout code relies on the staged
12706          * config still keeping the user requested config while the actual
12707          * state has been overwritten by the configuration read from HW. We
12708          * need to copy the staged config to the atomic state, otherwise the
12709          * mode set will just reapply the state the HW is already in. */
12710         for_each_intel_encoder(dev, encoder) {
12711                 if (&encoder->new_crtc->base != crtc)
12712                         continue;
12713
12714                 for_each_intel_connector(dev, connector) {
12715                         if (connector->new_encoder != encoder)
12716                                 continue;
12717
12718                         connector_state = drm_atomic_get_connector_state(state, &connector->base);
12719                         if (IS_ERR(connector_state)) {
12720                                 DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12721                                               connector->base.base.id,
12722                                               connector->base.name,
12723                                               PTR_ERR(connector_state));
12724                                 continue;
12725                         }
12726
12727                         connector_state->crtc = crtc;
12728                         connector_state->best_encoder = &encoder->base;
12729                 }
12730         }
12731
12732         crtc_state = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12733         if (IS_ERR(crtc_state)) {
12734                 DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
12735                               crtc->base.id, PTR_ERR(crtc_state));
12736                 drm_atomic_state_free(state);
12737                 return;
12738         }
12739
12740         crtc_state->base.active = crtc_state->base.enable =
12741                 to_intel_crtc(crtc)->new_enabled;
12742
12743         drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
12744
12745         intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
12746                                         crtc->primary->fb, crtc->x, crtc->y);
12747
12748         ret = intel_set_mode(crtc, state, false);
12749         if (ret)
12750                 drm_atomic_state_free(state);
12751 }
12752
12753 #undef for_each_intel_crtc_masked
12754
12755 static bool intel_connector_in_mode_set(struct intel_connector *connector,
12756                                         struct drm_mode_set *set)
12757 {
12758         int ro;
12759
12760         for (ro = 0; ro < set->num_connectors; ro++)
12761                 if (set->connectors[ro] == &connector->base)
12762                         return true;
12763
12764         return false;
12765 }
12766
12767 static int
12768 intel_modeset_stage_output_state(struct drm_device *dev,
12769                                  struct drm_mode_set *set,
12770                                  struct drm_atomic_state *state)
12771 {
12772         struct intel_connector *connector;
12773         struct drm_connector *drm_connector;
12774         struct drm_connector_state *connector_state;
12775         struct drm_crtc *crtc;
12776         struct drm_crtc_state *crtc_state;
12777         int i, ret;
12778
12779         /* The upper layers ensure that we either disable a crtc or have a list
12780          * of connectors. For paranoia, double-check this. */
12781         WARN_ON(!set->fb && (set->num_connectors != 0));
12782         WARN_ON(set->fb && (set->num_connectors == 0));
12783
12784         for_each_intel_connector(dev, connector) {
12785                 bool in_mode_set = intel_connector_in_mode_set(connector, set);
12786
12787                 if (!in_mode_set && connector->base.state->crtc != set->crtc)
12788                         continue;
12789
12790                 connector_state =
12791                         drm_atomic_get_connector_state(state, &connector->base);
12792                 if (IS_ERR(connector_state))
12793                         return PTR_ERR(connector_state);
12794
12795                 if (in_mode_set) {
12796                         int pipe = to_intel_crtc(set->crtc)->pipe;
12797                         connector_state->best_encoder =
12798                                 &intel_find_encoder(connector, pipe)->base;
12799                 }
12800
12801                 if (connector->base.state->crtc != set->crtc)
12802                         continue;
12803
12804                 /* If we disable the crtc, disable all its connectors. Also, if
12805                  * the connector is on the changing crtc but not on the new
12806                  * connector list, disable it. */
12807                 if (!set->fb || !in_mode_set) {
12808                         connector_state->best_encoder = NULL;
12809
12810                         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12811                                 connector->base.base.id,
12812                                 connector->base.name);
12813                 }
12814         }
12815         /* connector->new_encoder is now updated for all connectors. */
12816
12817         for_each_connector_in_state(state, drm_connector, connector_state, i) {
12818                 connector = to_intel_connector(drm_connector);
12819
12820                 if (!connector_state->best_encoder) {
12821                         ret = drm_atomic_set_crtc_for_connector(connector_state,
12822                                                                 NULL);
12823                         if (ret)
12824                                 return ret;
12825
12826                         continue;
12827                 }
12828
12829                 if (intel_connector_in_mode_set(connector, set)) {
12830                         struct drm_crtc *crtc = connector->base.state->crtc;
12831
12832                         /* If this connector was in a previous crtc, add it
12833                          * to the state. We might need to disable it. */
12834                         if (crtc) {
12835                                 crtc_state =
12836                                         drm_atomic_get_crtc_state(state, crtc);
12837                                 if (IS_ERR(crtc_state))
12838                                         return PTR_ERR(crtc_state);
12839                         }
12840
12841                         ret = drm_atomic_set_crtc_for_connector(connector_state,
12842                                                                 set->crtc);
12843                         if (ret)
12844                                 return ret;
12845                 }
12846
12847                 /* Make sure the new CRTC will work with the encoder */
12848                 if (!drm_encoder_crtc_ok(connector_state->best_encoder,
12849                                          connector_state->crtc)) {
12850                         return -EINVAL;
12851                 }
12852
12853                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12854                         connector->base.base.id,
12855                         connector->base.name,
12856                         connector_state->crtc->base.id);
12857
12858                 if (connector_state->best_encoder != &connector->encoder->base)
12859                         connector->encoder =
12860                                 to_intel_encoder(connector_state->best_encoder);
12861         }
12862
12863         for_each_crtc_in_state(state, crtc, crtc_state, i) {
12864                 bool has_connectors;
12865
12866                 ret = drm_atomic_add_affected_connectors(state, crtc);
12867                 if (ret)
12868                         return ret;
12869
12870                 has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
12871                 if (has_connectors != crtc_state->enable)
12872                         crtc_state->enable =
12873                         crtc_state->active = has_connectors;
12874         }
12875
12876         ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
12877                                               set->fb, set->x, set->y);
12878         if (ret)
12879                 return ret;
12880
12881         crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
12882         if (IS_ERR(crtc_state))
12883                 return PTR_ERR(crtc_state);
12884
12885         if (set->mode)
12886                 drm_mode_copy(&crtc_state->mode, set->mode);
12887
12888         if (set->num_connectors)
12889                 crtc_state->active = true;
12890
12891         return 0;
12892 }
12893
12894 static bool primary_plane_visible(struct drm_crtc *crtc)
12895 {
12896         struct intel_plane_state *plane_state =
12897                 to_intel_plane_state(crtc->primary->state);
12898
12899         return plane_state->visible;
12900 }
12901
12902 static int intel_crtc_set_config(struct drm_mode_set *set)
12903 {
12904         struct drm_device *dev;
12905         struct drm_atomic_state *state = NULL;
12906         struct intel_crtc_state *pipe_config;
12907         bool primary_plane_was_visible;
12908         int ret;
12909
12910         BUG_ON(!set);
12911         BUG_ON(!set->crtc);
12912         BUG_ON(!set->crtc->helper_private);
12913
12914         /* Enforce sane interface api - has been abused by the fb helper. */
12915         BUG_ON(!set->mode && set->fb);
12916         BUG_ON(set->fb && set->num_connectors == 0);
12917
12918         if (set->fb) {
12919                 DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12920                                 set->crtc->base.id, set->fb->base.id,
12921                                 (int)set->num_connectors, set->x, set->y);
12922         } else {
12923                 DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12924         }
12925
12926         dev = set->crtc->dev;
12927
12928         state = drm_atomic_state_alloc(dev);
12929         if (!state)
12930                 return -ENOMEM;
12931
12932         state->acquire_ctx = dev->mode_config.acquire_ctx;
12933
12934         ret = intel_modeset_stage_output_state(dev, set, state);
12935         if (ret)
12936                 goto out;
12937
12938         pipe_config = intel_modeset_compute_config(set->crtc, state);
12939         if (IS_ERR(pipe_config)) {
12940                 ret = PTR_ERR(pipe_config);
12941                 goto out;
12942         }
12943
12944         intel_update_pipe_size(to_intel_crtc(set->crtc));
12945
12946         primary_plane_was_visible = primary_plane_visible(set->crtc);
12947
12948         ret = intel_set_mode_with_config(set->crtc, pipe_config, true);
12949
12950         if (ret == 0 &&
12951             pipe_config->base.enable &&
12952             pipe_config->base.planes_changed &&
12953             !needs_modeset(&pipe_config->base)) {
12954                 struct intel_crtc *intel_crtc = to_intel_crtc(set->crtc);
12955
12956                 /*
12957                  * We need to make sure the primary plane is re-enabled if it
12958                  * has previously been turned off.
12959                  */
12960                 if (ret == 0 && !primary_plane_was_visible &&
12961                     primary_plane_visible(set->crtc)) {
12962                         WARN_ON(!intel_crtc->active);
12963                         intel_post_enable_primary(set->crtc);
12964                 }
12965
12966                 /*
12967                  * In the fastboot case this may be our only check of the
12968                  * state after boot.  It would be better to only do it on
12969                  * the first update, but we don't have a nice way of doing that
12970                  * (and really, set_config isn't used much for high freq page
12971                  * flipping, so increasing its cost here shouldn't be a big
12972                  * deal).
12973                  */
12974                 if (i915.fastboot && ret == 0)
12975                         intel_modeset_check_state(set->crtc->dev);
12976         }
12977
12978         if (ret) {
12979                 DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12980                               set->crtc->base.id, ret);
12981         }
12982
12983 out:
12984         if (ret)
12985                 drm_atomic_state_free(state);
12986         return ret;
12987 }
12988
12989 static const struct drm_crtc_funcs intel_crtc_funcs = {
12990         .gamma_set = intel_crtc_gamma_set,
12991         .set_config = intel_crtc_set_config,
12992         .destroy = intel_crtc_destroy,
12993         .page_flip = intel_crtc_page_flip,
12994         .atomic_duplicate_state = intel_crtc_duplicate_state,
12995         .atomic_destroy_state = intel_crtc_destroy_state,
12996 };
12997
12998 static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12999                                       struct intel_shared_dpll *pll,
13000                                       struct intel_dpll_hw_state *hw_state)
13001 {
13002         uint32_t val;
13003
13004         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
13005                 return false;
13006
13007         val = I915_READ(PCH_DPLL(pll->id));
13008         hw_state->dpll = val;
13009         hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
13010         hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
13011
13012         return val & DPLL_VCO_ENABLE;
13013 }
13014
13015 static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
13016                                   struct intel_shared_dpll *pll)
13017 {
13018         I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
13019         I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
13020 }
13021
13022 static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
13023                                 struct intel_shared_dpll *pll)
13024 {
13025         /* PCH refclock must be enabled first */
13026         ibx_assert_pch_refclk_enabled(dev_priv);
13027
13028         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13029
13030         /* Wait for the clocks to stabilize. */
13031         POSTING_READ(PCH_DPLL(pll->id));
13032         udelay(150);
13033
13034         /* The pixel multiplier can only be updated once the
13035          * DPLL is enabled and the clocks are stable.
13036          *
13037          * So write it again.
13038          */
13039         I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13040         POSTING_READ(PCH_DPLL(pll->id));
13041         udelay(200);
13042 }
13043
13044 static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13045                                  struct intel_shared_dpll *pll)
13046 {
13047         struct drm_device *dev = dev_priv->dev;
13048         struct intel_crtc *crtc;
13049
13050         /* Make sure no transcoder isn't still depending on us. */
13051         for_each_intel_crtc(dev, crtc) {
13052                 if (intel_crtc_to_shared_dpll(crtc) == pll)
13053                         assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13054         }
13055
13056         I915_WRITE(PCH_DPLL(pll->id), 0);
13057         POSTING_READ(PCH_DPLL(pll->id));
13058         udelay(200);
13059 }
13060
13061 static char *ibx_pch_dpll_names[] = {
13062         "PCH DPLL A",
13063         "PCH DPLL B",
13064 };
13065
13066 static void ibx_pch_dpll_init(struct drm_device *dev)
13067 {
13068         struct drm_i915_private *dev_priv = dev->dev_private;
13069         int i;
13070
13071         dev_priv->num_shared_dpll = 2;
13072
13073         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13074                 dev_priv->shared_dplls[i].id = i;
13075                 dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13076                 dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13077                 dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13078                 dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13079                 dev_priv->shared_dplls[i].get_hw_state =
13080                         ibx_pch_dpll_get_hw_state;
13081         }
13082 }
13083
13084 static void intel_shared_dpll_init(struct drm_device *dev)
13085 {
13086         struct drm_i915_private *dev_priv = dev->dev_private;
13087
13088         if (HAS_DDI(dev))
13089                 intel_ddi_pll_init(dev);
13090         else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13091                 ibx_pch_dpll_init(dev);
13092         else
13093                 dev_priv->num_shared_dpll = 0;
13094
13095         BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13096 }
13097
13098 /**
13099  * intel_wm_need_update - Check whether watermarks need updating
13100  * @plane: drm plane
13101  * @state: new plane state
13102  *
13103  * Check current plane state versus the new one to determine whether
13104  * watermarks need to be recalculated.
13105  *
13106  * Returns true or false.
13107  */
13108 bool intel_wm_need_update(struct drm_plane *plane,
13109                           struct drm_plane_state *state)
13110 {
13111         /* Update watermarks on tiling changes. */
13112         if (!plane->state->fb || !state->fb ||
13113             plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13114             plane->state->rotation != state->rotation)
13115                 return true;
13116
13117         return false;
13118 }
13119
13120 /**
13121  * intel_prepare_plane_fb - Prepare fb for usage on plane
13122  * @plane: drm plane to prepare for
13123  * @fb: framebuffer to prepare for presentation
13124  *
13125  * Prepares a framebuffer for usage on a display plane.  Generally this
13126  * involves pinning the underlying object and updating the frontbuffer tracking
13127  * bits.  Some older platforms need special physical address handling for
13128  * cursor planes.
13129  *
13130  * Returns 0 on success, negative error code on failure.
13131  */
13132 int
13133 intel_prepare_plane_fb(struct drm_plane *plane,
13134                        struct drm_framebuffer *fb,
13135                        const struct drm_plane_state *new_state)
13136 {
13137         struct drm_device *dev = plane->dev;
13138         struct intel_plane *intel_plane = to_intel_plane(plane);
13139         enum pipe pipe = intel_plane->pipe;
13140         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13141         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13142         unsigned frontbuffer_bits = 0;
13143         int ret = 0;
13144
13145         if (!obj)
13146                 return 0;
13147
13148         switch (plane->type) {
13149         case DRM_PLANE_TYPE_PRIMARY:
13150                 frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13151                 break;
13152         case DRM_PLANE_TYPE_CURSOR:
13153                 frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13154                 break;
13155         case DRM_PLANE_TYPE_OVERLAY:
13156                 frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13157                 break;
13158         }
13159
13160         mutex_lock(&dev->struct_mutex);
13161
13162         if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13163             INTEL_INFO(dev)->cursor_needs_physical) {
13164                 int align = IS_I830(dev) ? 16 * 1024 : 256;
13165                 ret = i915_gem_object_attach_phys(obj, align);
13166                 if (ret)
13167                         DRM_DEBUG_KMS("failed to attach phys object\n");
13168         } else {
13169                 ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
13170         }
13171
13172         if (ret == 0)
13173                 i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
13174
13175         mutex_unlock(&dev->struct_mutex);
13176
13177         return ret;
13178 }
13179
13180 /**
13181  * intel_cleanup_plane_fb - Cleans up an fb after plane use
13182  * @plane: drm plane to clean up for
13183  * @fb: old framebuffer that was on plane
13184  *
13185  * Cleans up a framebuffer that has just been removed from a plane.
13186  */
13187 void
13188 intel_cleanup_plane_fb(struct drm_plane *plane,
13189                        struct drm_framebuffer *fb,
13190                        const struct drm_plane_state *old_state)
13191 {
13192         struct drm_device *dev = plane->dev;
13193         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13194
13195         if (WARN_ON(!obj))
13196                 return;
13197
13198         if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13199             !INTEL_INFO(dev)->cursor_needs_physical) {
13200                 mutex_lock(&dev->struct_mutex);
13201                 intel_unpin_fb_obj(fb, old_state);
13202                 mutex_unlock(&dev->struct_mutex);
13203         }
13204 }
13205
13206 int
13207 skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13208 {
13209         int max_scale;
13210         struct drm_device *dev;
13211         struct drm_i915_private *dev_priv;
13212         int crtc_clock, cdclk;
13213
13214         if (!intel_crtc || !crtc_state)
13215                 return DRM_PLANE_HELPER_NO_SCALING;
13216
13217         dev = intel_crtc->base.dev;
13218         dev_priv = dev->dev_private;
13219         crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13220         cdclk = dev_priv->display.get_display_clock_speed(dev);
13221
13222         if (!crtc_clock || !cdclk)
13223                 return DRM_PLANE_HELPER_NO_SCALING;
13224
13225         /*
13226          * skl max scale is lower of:
13227          *    close to 3 but not 3, -1 is for that purpose
13228          *            or
13229          *    cdclk/crtc_clock
13230          */
13231         max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13232
13233         return max_scale;
13234 }
13235
13236 static int
13237 intel_check_primary_plane(struct drm_plane *plane,
13238                           struct intel_plane_state *state)
13239 {
13240         struct drm_device *dev = plane->dev;
13241         struct drm_i915_private *dev_priv = dev->dev_private;
13242         struct drm_crtc *crtc = state->base.crtc;
13243         struct intel_crtc *intel_crtc;
13244         struct intel_crtc_state *crtc_state;
13245         struct drm_framebuffer *fb = state->base.fb;
13246         struct drm_rect *dest = &state->dst;
13247         struct drm_rect *src = &state->src;
13248         const struct drm_rect *clip = &state->clip;
13249         bool can_position = false;
13250         int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13251         int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13252         int ret;
13253
13254         crtc = crtc ? crtc : plane->crtc;
13255         intel_crtc = to_intel_crtc(crtc);
13256         crtc_state = state->base.state ?
13257                 intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13258
13259         if (INTEL_INFO(dev)->gen >= 9) {
13260                 /* use scaler when colorkey is not required */
13261                 if (to_intel_plane(plane)->ckey.flags == I915_SET_COLORKEY_NONE) {
13262                         min_scale = 1;
13263                         max_scale = skl_max_scale(intel_crtc, crtc_state);
13264                 }
13265                 can_position = true;
13266         }
13267
13268         ret = drm_plane_helper_check_update(plane, crtc, fb,
13269                                             src, dest, clip,
13270                                             min_scale,
13271                                             max_scale,
13272                                             can_position, true,
13273                                             &state->visible);
13274         if (ret)
13275                 return ret;
13276
13277         if (crtc_state ? crtc_state->base.active : intel_crtc->active) {
13278                 struct intel_plane_state *old_state =
13279                         to_intel_plane_state(plane->state);
13280
13281                 intel_crtc->atomic.wait_for_flips = true;
13282
13283                 /*
13284                  * FBC does not work on some platforms for rotated
13285                  * planes, so disable it when rotation is not 0 and
13286                  * update it when rotation is set back to 0.
13287                  *
13288                  * FIXME: This is redundant with the fbc update done in
13289                  * the primary plane enable function except that that
13290                  * one is done too late. We eventually need to unify
13291                  * this.
13292                  */
13293                 if (state->visible &&
13294                     INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13295                     dev_priv->fbc.crtc == intel_crtc &&
13296                     state->base.rotation != BIT(DRM_ROTATE_0)) {
13297                         intel_crtc->atomic.disable_fbc = true;
13298                 }
13299
13300                 if (state->visible && !old_state->visible) {
13301                         /*
13302                          * BDW signals flip done immediately if the plane
13303                          * is disabled, even if the plane enable is already
13304                          * armed to occur at the next vblank :(
13305                          */
13306                         if (IS_BROADWELL(dev))
13307                                 intel_crtc->atomic.wait_vblank = true;
13308                 }
13309
13310                 /*
13311                  * FIXME: Actually if we will still have any other plane enabled
13312                  * on the pipe we could let IPS enabled still, but for
13313                  * now lets consider that when we make primary invisible
13314                  * by setting DSPCNTR to 0 on update_primary_plane function
13315                  * IPS needs to be disable.
13316                  */
13317                 if (!state->visible || !fb)
13318                         intel_crtc->atomic.disable_ips = true;
13319
13320                 intel_crtc->atomic.fb_bits |=
13321                         INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13322
13323                 intel_crtc->atomic.update_fbc = true;
13324
13325                 if (intel_wm_need_update(plane, &state->base))
13326                         intel_crtc->atomic.update_wm = true;
13327         }
13328
13329         if (INTEL_INFO(dev)->gen >= 9) {
13330                 ret = skl_update_scaler_users(intel_crtc, crtc_state,
13331                         to_intel_plane(plane), state, 0);
13332                 if (ret)
13333                         return ret;
13334         }
13335
13336         return 0;
13337 }
13338
13339 static void
13340 intel_commit_primary_plane(struct drm_plane *plane,
13341                            struct intel_plane_state *state)
13342 {
13343         struct drm_crtc *crtc = state->base.crtc;
13344         struct drm_framebuffer *fb = state->base.fb;
13345         struct drm_device *dev = plane->dev;
13346         struct drm_i915_private *dev_priv = dev->dev_private;
13347         struct intel_crtc *intel_crtc;
13348         struct drm_rect *src = &state->src;
13349
13350         crtc = crtc ? crtc : plane->crtc;
13351         intel_crtc = to_intel_crtc(crtc);
13352
13353         plane->fb = fb;
13354         crtc->x = src->x1 >> 16;
13355         crtc->y = src->y1 >> 16;
13356
13357         if (intel_crtc->active) {
13358                 if (state->visible)
13359                         /* FIXME: kill this fastboot hack */
13360                         intel_update_pipe_size(intel_crtc);
13361
13362                 dev_priv->display.update_primary_plane(crtc, plane->fb,
13363                                                        crtc->x, crtc->y);
13364         }
13365 }
13366
13367 static void
13368 intel_disable_primary_plane(struct drm_plane *plane,
13369                             struct drm_crtc *crtc,
13370                             bool force)
13371 {
13372         struct drm_device *dev = plane->dev;
13373         struct drm_i915_private *dev_priv = dev->dev_private;
13374
13375         dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13376 }
13377
13378 static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13379 {
13380         struct drm_device *dev = crtc->dev;
13381         struct drm_i915_private *dev_priv = dev->dev_private;
13382         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13383         struct intel_plane *intel_plane;
13384         struct drm_plane *p;
13385         unsigned fb_bits = 0;
13386
13387         /* Track fb's for any planes being disabled */
13388         list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13389                 intel_plane = to_intel_plane(p);
13390
13391                 if (intel_crtc->atomic.disabled_planes &
13392                     (1 << drm_plane_index(p))) {
13393                         switch (p->type) {
13394                         case DRM_PLANE_TYPE_PRIMARY:
13395                                 fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13396                                 break;
13397                         case DRM_PLANE_TYPE_CURSOR:
13398                                 fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13399                                 break;
13400                         case DRM_PLANE_TYPE_OVERLAY:
13401                                 fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13402                                 break;
13403                         }
13404
13405                         mutex_lock(&dev->struct_mutex);
13406                         i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13407                         mutex_unlock(&dev->struct_mutex);
13408                 }
13409         }
13410
13411         if (intel_crtc->atomic.wait_for_flips)
13412                 intel_crtc_wait_for_pending_flips(crtc);
13413
13414         if (intel_crtc->atomic.disable_fbc)
13415                 intel_fbc_disable(dev);
13416
13417         if (intel_crtc->atomic.disable_ips)
13418                 hsw_disable_ips(intel_crtc);
13419
13420         if (intel_crtc->atomic.pre_disable_primary)
13421                 intel_pre_disable_primary(crtc);
13422
13423         if (intel_crtc->atomic.update_wm)
13424                 intel_update_watermarks(crtc);
13425
13426         intel_runtime_pm_get(dev_priv);
13427
13428         /* Perform vblank evasion around commit operation */
13429         if (intel_crtc->active)
13430                 intel_crtc->atomic.evade =
13431                         intel_pipe_update_start(intel_crtc,
13432                                                 &intel_crtc->atomic.start_vbl_count);
13433 }
13434
13435 static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13436 {
13437         struct drm_device *dev = crtc->dev;
13438         struct drm_i915_private *dev_priv = dev->dev_private;
13439         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13440         struct drm_plane *p;
13441
13442         if (intel_crtc->atomic.evade)
13443                 intel_pipe_update_end(intel_crtc,
13444                                       intel_crtc->atomic.start_vbl_count);
13445
13446         intel_runtime_pm_put(dev_priv);
13447
13448         if (intel_crtc->atomic.wait_vblank)
13449                 intel_wait_for_vblank(dev, intel_crtc->pipe);
13450
13451         intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13452
13453         if (intel_crtc->atomic.update_fbc) {
13454                 mutex_lock(&dev->struct_mutex);
13455                 intel_fbc_update(dev);
13456                 mutex_unlock(&dev->struct_mutex);
13457         }
13458
13459         if (intel_crtc->atomic.post_enable_primary)
13460                 intel_post_enable_primary(crtc);
13461
13462         drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13463                 if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13464                         intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13465                                                        false, false);
13466
13467         memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13468 }
13469
13470 /**
13471  * intel_plane_destroy - destroy a plane
13472  * @plane: plane to destroy
13473  *
13474  * Common destruction function for all types of planes (primary, cursor,
13475  * sprite).
13476  */
13477 void intel_plane_destroy(struct drm_plane *plane)
13478 {
13479         struct intel_plane *intel_plane = to_intel_plane(plane);
13480         drm_plane_cleanup(plane);
13481         kfree(intel_plane);
13482 }
13483
13484 const struct drm_plane_funcs intel_plane_funcs = {
13485         .update_plane = drm_atomic_helper_update_plane,
13486         .disable_plane = drm_atomic_helper_disable_plane,
13487         .destroy = intel_plane_destroy,
13488         .set_property = drm_atomic_helper_plane_set_property,
13489         .atomic_get_property = intel_plane_atomic_get_property,
13490         .atomic_set_property = intel_plane_atomic_set_property,
13491         .atomic_duplicate_state = intel_plane_duplicate_state,
13492         .atomic_destroy_state = intel_plane_destroy_state,
13493
13494 };
13495
13496 static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13497                                                     int pipe)
13498 {
13499         struct intel_plane *primary;
13500         struct intel_plane_state *state;
13501         const uint32_t *intel_primary_formats;
13502         int num_formats;
13503
13504         primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13505         if (primary == NULL)
13506                 return NULL;
13507
13508         state = intel_create_plane_state(&primary->base);
13509         if (!state) {
13510                 kfree(primary);
13511                 return NULL;
13512         }
13513         primary->base.state = &state->base;
13514
13515         primary->can_scale = false;
13516         primary->max_downscale = 1;
13517         if (INTEL_INFO(dev)->gen >= 9) {
13518                 primary->can_scale = true;
13519                 state->scaler_id = -1;
13520         }
13521         primary->pipe = pipe;
13522         primary->plane = pipe;
13523         primary->check_plane = intel_check_primary_plane;
13524         primary->commit_plane = intel_commit_primary_plane;
13525         primary->disable_plane = intel_disable_primary_plane;
13526         primary->ckey.flags = I915_SET_COLORKEY_NONE;
13527         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13528                 primary->plane = !pipe;
13529
13530         if (INTEL_INFO(dev)->gen >= 9) {
13531                 intel_primary_formats = skl_primary_formats;
13532                 num_formats = ARRAY_SIZE(skl_primary_formats);
13533         } else if (INTEL_INFO(dev)->gen >= 4) {
13534                 intel_primary_formats = i965_primary_formats;
13535                 num_formats = ARRAY_SIZE(i965_primary_formats);
13536         } else {
13537                 intel_primary_formats = i8xx_primary_formats;
13538                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
13539         }
13540
13541         drm_universal_plane_init(dev, &primary->base, 0,
13542                                  &intel_plane_funcs,
13543                                  intel_primary_formats, num_formats,
13544                                  DRM_PLANE_TYPE_PRIMARY);
13545
13546         if (INTEL_INFO(dev)->gen >= 4)
13547                 intel_create_rotation_property(dev, primary);
13548
13549         drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13550
13551         return &primary->base;
13552 }
13553
13554 void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13555 {
13556         if (!dev->mode_config.rotation_property) {
13557                 unsigned long flags = BIT(DRM_ROTATE_0) |
13558                         BIT(DRM_ROTATE_180);
13559
13560                 if (INTEL_INFO(dev)->gen >= 9)
13561                         flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13562
13563                 dev->mode_config.rotation_property =
13564                         drm_mode_create_rotation_property(dev, flags);
13565         }
13566         if (dev->mode_config.rotation_property)
13567                 drm_object_attach_property(&plane->base.base,
13568                                 dev->mode_config.rotation_property,
13569                                 plane->base.state->rotation);
13570 }
13571
13572 static int
13573 intel_check_cursor_plane(struct drm_plane *plane,
13574                          struct intel_plane_state *state)
13575 {
13576         struct drm_crtc *crtc = state->base.crtc;
13577         struct drm_device *dev = plane->dev;
13578         struct drm_framebuffer *fb = state->base.fb;
13579         struct drm_rect *dest = &state->dst;
13580         struct drm_rect *src = &state->src;
13581         const struct drm_rect *clip = &state->clip;
13582         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13583         struct intel_crtc *intel_crtc;
13584         unsigned stride;
13585         int ret;
13586
13587         crtc = crtc ? crtc : plane->crtc;
13588         intel_crtc = to_intel_crtc(crtc);
13589
13590         ret = drm_plane_helper_check_update(plane, crtc, fb,
13591                                             src, dest, clip,
13592                                             DRM_PLANE_HELPER_NO_SCALING,
13593                                             DRM_PLANE_HELPER_NO_SCALING,
13594                                             true, true, &state->visible);
13595         if (ret)
13596                 return ret;
13597
13598
13599         /* if we want to turn off the cursor ignore width and height */
13600         if (!obj)
13601                 goto finish;
13602
13603         /* Check for which cursor types we support */
13604         if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13605                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13606                           state->base.crtc_w, state->base.crtc_h);
13607                 return -EINVAL;
13608         }
13609
13610         stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13611         if (obj->base.size < stride * state->base.crtc_h) {
13612                 DRM_DEBUG_KMS("buffer is too small\n");
13613                 return -ENOMEM;
13614         }
13615
13616         if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13617                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
13618                 ret = -EINVAL;
13619         }
13620
13621 finish:
13622         if (intel_crtc->active) {
13623                 if (plane->state->crtc_w != state->base.crtc_w)
13624                         intel_crtc->atomic.update_wm = true;
13625
13626                 intel_crtc->atomic.fb_bits |=
13627                         INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13628         }
13629
13630         return ret;
13631 }
13632
13633 static void
13634 intel_disable_cursor_plane(struct drm_plane *plane,
13635                            struct drm_crtc *crtc,
13636                            bool force)
13637 {
13638         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13639
13640         if (!force) {
13641                 plane->fb = NULL;
13642                 intel_crtc->cursor_bo = NULL;
13643                 intel_crtc->cursor_addr = 0;
13644         }
13645
13646         intel_crtc_update_cursor(crtc, false);
13647 }
13648
13649 static void
13650 intel_commit_cursor_plane(struct drm_plane *plane,
13651                           struct intel_plane_state *state)
13652 {
13653         struct drm_crtc *crtc = state->base.crtc;
13654         struct drm_device *dev = plane->dev;
13655         struct intel_crtc *intel_crtc;
13656         struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13657         uint32_t addr;
13658
13659         crtc = crtc ? crtc : plane->crtc;
13660         intel_crtc = to_intel_crtc(crtc);
13661
13662         plane->fb = state->base.fb;
13663         crtc->cursor_x = state->base.crtc_x;
13664         crtc->cursor_y = state->base.crtc_y;
13665
13666         if (intel_crtc->cursor_bo == obj)
13667                 goto update;
13668
13669         if (!obj)
13670                 addr = 0;
13671         else if (!INTEL_INFO(dev)->cursor_needs_physical)
13672                 addr = i915_gem_obj_ggtt_offset(obj);
13673         else
13674                 addr = obj->phys_handle->busaddr;
13675
13676         intel_crtc->cursor_addr = addr;
13677         intel_crtc->cursor_bo = obj;
13678 update:
13679
13680         if (intel_crtc->active)
13681                 intel_crtc_update_cursor(crtc, state->visible);
13682 }
13683
13684 static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13685                                                    int pipe)
13686 {
13687         struct intel_plane *cursor;
13688         struct intel_plane_state *state;
13689
13690         cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13691         if (cursor == NULL)
13692                 return NULL;
13693
13694         state = intel_create_plane_state(&cursor->base);
13695         if (!state) {
13696                 kfree(cursor);
13697                 return NULL;
13698         }
13699         cursor->base.state = &state->base;
13700
13701         cursor->can_scale = false;
13702         cursor->max_downscale = 1;
13703         cursor->pipe = pipe;
13704         cursor->plane = pipe;
13705         cursor->check_plane = intel_check_cursor_plane;
13706         cursor->commit_plane = intel_commit_cursor_plane;
13707         cursor->disable_plane = intel_disable_cursor_plane;
13708
13709         drm_universal_plane_init(dev, &cursor->base, 0,
13710                                  &intel_plane_funcs,
13711                                  intel_cursor_formats,
13712                                  ARRAY_SIZE(intel_cursor_formats),
13713                                  DRM_PLANE_TYPE_CURSOR);
13714
13715         if (INTEL_INFO(dev)->gen >= 4) {
13716                 if (!dev->mode_config.rotation_property)
13717                         dev->mode_config.rotation_property =
13718                                 drm_mode_create_rotation_property(dev,
13719                                                         BIT(DRM_ROTATE_0) |
13720                                                         BIT(DRM_ROTATE_180));
13721                 if (dev->mode_config.rotation_property)
13722                         drm_object_attach_property(&cursor->base.base,
13723                                 dev->mode_config.rotation_property,
13724                                 state->base.rotation);
13725         }
13726
13727         if (INTEL_INFO(dev)->gen >=9)
13728                 state->scaler_id = -1;
13729
13730         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13731
13732         return &cursor->base;
13733 }
13734
13735 static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13736         struct intel_crtc_state *crtc_state)
13737 {
13738         int i;
13739         struct intel_scaler *intel_scaler;
13740         struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13741
13742         for (i = 0; i < intel_crtc->num_scalers; i++) {
13743                 intel_scaler = &scaler_state->scalers[i];
13744                 intel_scaler->in_use = 0;
13745                 intel_scaler->id = i;
13746
13747                 intel_scaler->mode = PS_SCALER_MODE_DYN;
13748         }
13749
13750         scaler_state->scaler_id = -1;
13751 }
13752
13753 static void intel_crtc_init(struct drm_device *dev, int pipe)
13754 {
13755         struct drm_i915_private *dev_priv = dev->dev_private;
13756         struct intel_crtc *intel_crtc;
13757         struct intel_crtc_state *crtc_state = NULL;
13758         struct drm_plane *primary = NULL;
13759         struct drm_plane *cursor = NULL;
13760         int i, ret;
13761
13762         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13763         if (intel_crtc == NULL)
13764                 return;
13765
13766         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13767         if (!crtc_state)
13768                 goto fail;
13769         intel_crtc->config = crtc_state;
13770         intel_crtc->base.state = &crtc_state->base;
13771         crtc_state->base.crtc = &intel_crtc->base;
13772
13773         /* initialize shared scalers */
13774         if (INTEL_INFO(dev)->gen >= 9) {
13775                 if (pipe == PIPE_C)
13776                         intel_crtc->num_scalers = 1;
13777                 else
13778                         intel_crtc->num_scalers = SKL_NUM_SCALERS;
13779
13780                 skl_init_scalers(dev, intel_crtc, crtc_state);
13781         }
13782
13783         primary = intel_primary_plane_create(dev, pipe);
13784         if (!primary)
13785                 goto fail;
13786
13787         cursor = intel_cursor_plane_create(dev, pipe);
13788         if (!cursor)
13789                 goto fail;
13790
13791         ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13792                                         cursor, &intel_crtc_funcs);
13793         if (ret)
13794                 goto fail;
13795
13796         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13797         for (i = 0; i < 256; i++) {
13798                 intel_crtc->lut_r[i] = i;
13799                 intel_crtc->lut_g[i] = i;
13800                 intel_crtc->lut_b[i] = i;
13801         }
13802
13803         /*
13804          * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13805          * is hooked to pipe B. Hence we want plane A feeding pipe B.
13806          */
13807         intel_crtc->pipe = pipe;
13808         intel_crtc->plane = pipe;
13809         if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13810                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13811                 intel_crtc->plane = !pipe;
13812         }
13813
13814         intel_crtc->cursor_base = ~0;
13815         intel_crtc->cursor_cntl = ~0;
13816         intel_crtc->cursor_size = ~0;
13817
13818         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13819                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13820         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13821         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13822
13823         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13824
13825         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13826         return;
13827
13828 fail:
13829         if (primary)
13830                 drm_plane_cleanup(primary);
13831         if (cursor)
13832                 drm_plane_cleanup(cursor);
13833         kfree(crtc_state);
13834         kfree(intel_crtc);
13835 }
13836
13837 enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13838 {
13839         struct drm_encoder *encoder = connector->base.encoder;
13840         struct drm_device *dev = connector->base.dev;
13841
13842         WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13843
13844         if (!encoder || WARN_ON(!encoder->crtc))
13845                 return INVALID_PIPE;
13846
13847         return to_intel_crtc(encoder->crtc)->pipe;
13848 }
13849
13850 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13851                                 struct drm_file *file)
13852 {
13853         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13854         struct drm_crtc *drmmode_crtc;
13855         struct intel_crtc *crtc;
13856
13857         drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13858
13859         if (!drmmode_crtc) {
13860                 DRM_ERROR("no such CRTC id\n");
13861                 return -ENOENT;
13862         }
13863
13864         crtc = to_intel_crtc(drmmode_crtc);
13865         pipe_from_crtc_id->pipe = crtc->pipe;
13866
13867         return 0;
13868 }
13869
13870 static int intel_encoder_clones(struct intel_encoder *encoder)
13871 {
13872         struct drm_device *dev = encoder->base.dev;
13873         struct intel_encoder *source_encoder;
13874         int index_mask = 0;
13875         int entry = 0;
13876
13877         for_each_intel_encoder(dev, source_encoder) {
13878                 if (encoders_cloneable(encoder, source_encoder))
13879                         index_mask |= (1 << entry);
13880
13881                 entry++;
13882         }
13883
13884         return index_mask;
13885 }
13886
13887 static bool has_edp_a(struct drm_device *dev)
13888 {
13889         struct drm_i915_private *dev_priv = dev->dev_private;
13890
13891         if (!IS_MOBILE(dev))
13892                 return false;
13893
13894         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13895                 return false;
13896
13897         if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13898                 return false;
13899
13900         return true;
13901 }
13902
13903 static bool intel_crt_present(struct drm_device *dev)
13904 {
13905         struct drm_i915_private *dev_priv = dev->dev_private;
13906
13907         if (INTEL_INFO(dev)->gen >= 9)
13908                 return false;
13909
13910         if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13911                 return false;
13912
13913         if (IS_CHERRYVIEW(dev))
13914                 return false;
13915
13916         if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13917                 return false;
13918
13919         return true;
13920 }
13921
13922 static void intel_setup_outputs(struct drm_device *dev)
13923 {
13924         struct drm_i915_private *dev_priv = dev->dev_private;
13925         struct intel_encoder *encoder;
13926         bool dpd_is_edp = false;
13927
13928         intel_lvds_init(dev);
13929
13930         if (intel_crt_present(dev))
13931                 intel_crt_init(dev);
13932
13933         if (IS_BROXTON(dev)) {
13934                 /*
13935                  * FIXME: Broxton doesn't support port detection via the
13936                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13937                  * detect the ports.
13938                  */
13939                 intel_ddi_init(dev, PORT_A);
13940                 intel_ddi_init(dev, PORT_B);
13941                 intel_ddi_init(dev, PORT_C);
13942         } else if (HAS_DDI(dev)) {
13943                 int found;
13944
13945                 /*
13946                  * Haswell uses DDI functions to detect digital outputs.
13947                  * On SKL pre-D0 the strap isn't connected, so we assume
13948                  * it's there.
13949                  */
13950                 found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13951                 /* WaIgnoreDDIAStrap: skl */
13952                 if (found ||
13953                     (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13954                         intel_ddi_init(dev, PORT_A);
13955
13956                 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13957                  * register */
13958                 found = I915_READ(SFUSE_STRAP);
13959
13960                 if (found & SFUSE_STRAP_DDIB_DETECTED)
13961                         intel_ddi_init(dev, PORT_B);
13962                 if (found & SFUSE_STRAP_DDIC_DETECTED)
13963                         intel_ddi_init(dev, PORT_C);
13964                 if (found & SFUSE_STRAP_DDID_DETECTED)
13965                         intel_ddi_init(dev, PORT_D);
13966         } else if (HAS_PCH_SPLIT(dev)) {
13967                 int found;
13968                 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13969
13970                 if (has_edp_a(dev))
13971                         intel_dp_init(dev, DP_A, PORT_A);
13972
13973                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13974                         /* PCH SDVOB multiplex with HDMIB */
13975                         found = intel_sdvo_init(dev, PCH_SDVOB, true);
13976                         if (!found)
13977                                 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13978                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13979                                 intel_dp_init(dev, PCH_DP_B, PORT_B);
13980                 }
13981
13982                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13983                         intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13984
13985                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13986                         intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13987
13988                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
13989                         intel_dp_init(dev, PCH_DP_C, PORT_C);
13990
13991                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
13992                         intel_dp_init(dev, PCH_DP_D, PORT_D);
13993         } else if (IS_VALLEYVIEW(dev)) {
13994                 /*
13995                  * The DP_DETECTED bit is the latched state of the DDC
13996                  * SDA pin at boot. However since eDP doesn't require DDC
13997                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
13998                  * eDP ports may have been muxed to an alternate function.
13999                  * Thus we can't rely on the DP_DETECTED bit alone to detect
14000                  * eDP ports. Consult the VBT as well as DP_DETECTED to
14001                  * detect eDP ports.
14002                  */
14003                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
14004                     !intel_dp_is_edp(dev, PORT_B))
14005                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
14006                                         PORT_B);
14007                 if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
14008                     intel_dp_is_edp(dev, PORT_B))
14009                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
14010
14011                 if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
14012                     !intel_dp_is_edp(dev, PORT_C))
14013                         intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
14014                                         PORT_C);
14015                 if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
14016                     intel_dp_is_edp(dev, PORT_C))
14017                         intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
14018
14019                 if (IS_CHERRYVIEW(dev)) {
14020                         if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
14021                                 intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
14022                                                 PORT_D);
14023                         /* eDP not supported on port D, so don't check VBT */
14024                         if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
14025                                 intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
14026                 }
14027
14028                 intel_dsi_init(dev);
14029         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14030                 bool found = false;
14031
14032                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14033                         DRM_DEBUG_KMS("probing SDVOB\n");
14034                         found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14035                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14036                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14037                                 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14038                         }
14039
14040                         if (!found && SUPPORTS_INTEGRATED_DP(dev))
14041                                 intel_dp_init(dev, DP_B, PORT_B);
14042                 }
14043
14044                 /* Before G4X SDVOC doesn't have its own detect register */
14045
14046                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14047                         DRM_DEBUG_KMS("probing SDVOC\n");
14048                         found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14049                 }
14050
14051                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14052
14053                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14054                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14055                                 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14056                         }
14057                         if (SUPPORTS_INTEGRATED_DP(dev))
14058                                 intel_dp_init(dev, DP_C, PORT_C);
14059                 }
14060
14061                 if (SUPPORTS_INTEGRATED_DP(dev) &&
14062                     (I915_READ(DP_D) & DP_DETECTED))
14063                         intel_dp_init(dev, DP_D, PORT_D);
14064         } else if (IS_GEN2(dev))
14065                 intel_dvo_init(dev);
14066
14067         if (SUPPORTS_TV(dev))
14068                 intel_tv_init(dev);
14069
14070         intel_psr_init(dev);
14071
14072         for_each_intel_encoder(dev, encoder) {
14073                 encoder->base.possible_crtcs = encoder->crtc_mask;
14074                 encoder->base.possible_clones =
14075                         intel_encoder_clones(encoder);
14076         }
14077
14078         intel_init_pch_refclk(dev);
14079
14080         drm_helper_move_panel_connectors_to_head(dev);
14081 }
14082
14083 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14084 {
14085         struct drm_device *dev = fb->dev;
14086         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14087
14088         drm_framebuffer_cleanup(fb);
14089         mutex_lock(&dev->struct_mutex);
14090         WARN_ON(!intel_fb->obj->framebuffer_references--);
14091         drm_gem_object_unreference(&intel_fb->obj->base);
14092         mutex_unlock(&dev->struct_mutex);
14093         kfree(intel_fb);
14094 }
14095
14096 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14097                                                 struct drm_file *file,
14098                                                 unsigned int *handle)
14099 {
14100         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14101         struct drm_i915_gem_object *obj = intel_fb->obj;
14102
14103         return drm_gem_handle_create(file, &obj->base, handle);
14104 }
14105
14106 static const struct drm_framebuffer_funcs intel_fb_funcs = {
14107         .destroy = intel_user_framebuffer_destroy,
14108         .create_handle = intel_user_framebuffer_create_handle,
14109 };
14110
14111 static
14112 u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14113                          uint32_t pixel_format)
14114 {
14115         u32 gen = INTEL_INFO(dev)->gen;
14116
14117         if (gen >= 9) {
14118                 /* "The stride in bytes must not exceed the of the size of 8K
14119                  *  pixels and 32K bytes."
14120                  */
14121                  return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14122         } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14123                 return 32*1024;
14124         } else if (gen >= 4) {
14125                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14126                         return 16*1024;
14127                 else
14128                         return 32*1024;
14129         } else if (gen >= 3) {
14130                 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14131                         return 8*1024;
14132                 else
14133                         return 16*1024;
14134         } else {
14135                 /* XXX DSPC is limited to 4k tiled */
14136                 return 8*1024;
14137         }
14138 }
14139
14140 static int intel_framebuffer_init(struct drm_device *dev,
14141                                   struct intel_framebuffer *intel_fb,
14142                                   struct drm_mode_fb_cmd2 *mode_cmd,
14143                                   struct drm_i915_gem_object *obj)
14144 {
14145         unsigned int aligned_height;
14146         int ret;
14147         u32 pitch_limit, stride_alignment;
14148
14149         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14150
14151         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14152                 /* Enforce that fb modifier and tiling mode match, but only for
14153                  * X-tiled. This is needed for FBC. */
14154                 if (!!(obj->tiling_mode == I915_TILING_X) !=
14155                     !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14156                         DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14157                         return -EINVAL;
14158                 }
14159         } else {
14160                 if (obj->tiling_mode == I915_TILING_X)
14161                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14162                 else if (obj->tiling_mode == I915_TILING_Y) {
14163                         DRM_DEBUG("No Y tiling for legacy addfb\n");
14164                         return -EINVAL;
14165                 }
14166         }
14167
14168         /* Passed in modifier sanity checking. */
14169         switch (mode_cmd->modifier[0]) {
14170         case I915_FORMAT_MOD_Y_TILED:
14171         case I915_FORMAT_MOD_Yf_TILED:
14172                 if (INTEL_INFO(dev)->gen < 9) {
14173                         DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14174                                   mode_cmd->modifier[0]);
14175                         return -EINVAL;
14176                 }
14177         case DRM_FORMAT_MOD_NONE:
14178         case I915_FORMAT_MOD_X_TILED:
14179                 break;
14180         default:
14181                 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14182                           mode_cmd->modifier[0]);
14183                 return -EINVAL;
14184         }
14185
14186         stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14187                                                      mode_cmd->pixel_format);
14188         if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14189                 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14190                           mode_cmd->pitches[0], stride_alignment);
14191                 return -EINVAL;
14192         }
14193
14194         pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14195                                            mode_cmd->pixel_format);
14196         if (mode_cmd->pitches[0] > pitch_limit) {
14197                 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14198                           mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14199                           "tiled" : "linear",
14200                           mode_cmd->pitches[0], pitch_limit);
14201                 return -EINVAL;
14202         }
14203
14204         if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14205             mode_cmd->pitches[0] != obj->stride) {
14206                 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14207                           mode_cmd->pitches[0], obj->stride);
14208                 return -EINVAL;
14209         }
14210
14211         /* Reject formats not supported by any plane early. */
14212         switch (mode_cmd->pixel_format) {
14213         case DRM_FORMAT_C8:
14214         case DRM_FORMAT_RGB565:
14215         case DRM_FORMAT_XRGB8888:
14216         case DRM_FORMAT_ARGB8888:
14217                 break;
14218         case DRM_FORMAT_XRGB1555:
14219                 if (INTEL_INFO(dev)->gen > 3) {
14220                         DRM_DEBUG("unsupported pixel format: %s\n",
14221                                   drm_get_format_name(mode_cmd->pixel_format));
14222                         return -EINVAL;
14223                 }
14224                 break;
14225         case DRM_FORMAT_ABGR8888:
14226                 if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14227                         DRM_DEBUG("unsupported pixel format: %s\n",
14228                                   drm_get_format_name(mode_cmd->pixel_format));
14229                         return -EINVAL;
14230                 }
14231                 break;
14232         case DRM_FORMAT_XBGR8888:
14233         case DRM_FORMAT_XRGB2101010:
14234         case DRM_FORMAT_XBGR2101010:
14235                 if (INTEL_INFO(dev)->gen < 4) {
14236                         DRM_DEBUG("unsupported pixel format: %s\n",
14237                                   drm_get_format_name(mode_cmd->pixel_format));
14238                         return -EINVAL;
14239                 }
14240                 break;
14241         case DRM_FORMAT_ABGR2101010:
14242                 if (!IS_VALLEYVIEW(dev)) {
14243                         DRM_DEBUG("unsupported pixel format: %s\n",
14244                                   drm_get_format_name(mode_cmd->pixel_format));
14245                         return -EINVAL;
14246                 }
14247                 break;
14248         case DRM_FORMAT_YUYV:
14249         case DRM_FORMAT_UYVY:
14250         case DRM_FORMAT_YVYU:
14251         case DRM_FORMAT_VYUY:
14252                 if (INTEL_INFO(dev)->gen < 5) {
14253                         DRM_DEBUG("unsupported pixel format: %s\n",
14254                                   drm_get_format_name(mode_cmd->pixel_format));
14255                         return -EINVAL;
14256                 }
14257                 break;
14258         default:
14259                 DRM_DEBUG("unsupported pixel format: %s\n",
14260                           drm_get_format_name(mode_cmd->pixel_format));
14261                 return -EINVAL;
14262         }
14263
14264         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14265         if (mode_cmd->offsets[0] != 0)
14266                 return -EINVAL;
14267
14268         aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14269                                                mode_cmd->pixel_format,
14270                                                mode_cmd->modifier[0]);
14271         /* FIXME drm helper for size checks (especially planar formats)? */
14272         if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14273                 return -EINVAL;
14274
14275         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14276         intel_fb->obj = obj;
14277         intel_fb->obj->framebuffer_references++;
14278
14279         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14280         if (ret) {
14281                 DRM_ERROR("framebuffer init failed %d\n", ret);
14282                 return ret;
14283         }
14284
14285         return 0;
14286 }
14287
14288 static struct drm_framebuffer *
14289 intel_user_framebuffer_create(struct drm_device *dev,
14290                               struct drm_file *filp,
14291                               struct drm_mode_fb_cmd2 *mode_cmd)
14292 {
14293         struct drm_i915_gem_object *obj;
14294
14295         obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14296                                                 mode_cmd->handles[0]));
14297         if (&obj->base == NULL)
14298                 return ERR_PTR(-ENOENT);
14299
14300         return intel_framebuffer_create(dev, mode_cmd, obj);
14301 }
14302
14303 #ifndef CONFIG_DRM_I915_FBDEV
14304 static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14305 {
14306 }
14307 #endif
14308
14309 static const struct drm_mode_config_funcs intel_mode_funcs = {
14310         .fb_create = intel_user_framebuffer_create,
14311         .output_poll_changed = intel_fbdev_output_poll_changed,
14312         .atomic_check = intel_atomic_check,
14313         .atomic_commit = intel_atomic_commit,
14314 };
14315
14316 /* Set up chip specific display functions */
14317 static void intel_init_display(struct drm_device *dev)
14318 {
14319         struct drm_i915_private *dev_priv = dev->dev_private;
14320
14321         if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14322                 dev_priv->display.find_dpll = g4x_find_best_dpll;
14323         else if (IS_CHERRYVIEW(dev))
14324                 dev_priv->display.find_dpll = chv_find_best_dpll;
14325         else if (IS_VALLEYVIEW(dev))
14326                 dev_priv->display.find_dpll = vlv_find_best_dpll;
14327         else if (IS_PINEVIEW(dev))
14328                 dev_priv->display.find_dpll = pnv_find_best_dpll;
14329         else
14330                 dev_priv->display.find_dpll = i9xx_find_best_dpll;
14331
14332         if (INTEL_INFO(dev)->gen >= 9) {
14333                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14334                 dev_priv->display.get_initial_plane_config =
14335                         skylake_get_initial_plane_config;
14336                 dev_priv->display.crtc_compute_clock =
14337                         haswell_crtc_compute_clock;
14338                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14339                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14340                 dev_priv->display.off = ironlake_crtc_off;
14341                 dev_priv->display.update_primary_plane =
14342                         skylake_update_primary_plane;
14343         } else if (HAS_DDI(dev)) {
14344                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14345                 dev_priv->display.get_initial_plane_config =
14346                         ironlake_get_initial_plane_config;
14347                 dev_priv->display.crtc_compute_clock =
14348                         haswell_crtc_compute_clock;
14349                 dev_priv->display.crtc_enable = haswell_crtc_enable;
14350                 dev_priv->display.crtc_disable = haswell_crtc_disable;
14351                 dev_priv->display.off = ironlake_crtc_off;
14352                 dev_priv->display.update_primary_plane =
14353                         ironlake_update_primary_plane;
14354         } else if (HAS_PCH_SPLIT(dev)) {
14355                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14356                 dev_priv->display.get_initial_plane_config =
14357                         ironlake_get_initial_plane_config;
14358                 dev_priv->display.crtc_compute_clock =
14359                         ironlake_crtc_compute_clock;
14360                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14361                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
14362                 dev_priv->display.off = ironlake_crtc_off;
14363                 dev_priv->display.update_primary_plane =
14364                         ironlake_update_primary_plane;
14365         } else if (IS_VALLEYVIEW(dev)) {
14366                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14367                 dev_priv->display.get_initial_plane_config =
14368                         i9xx_get_initial_plane_config;
14369                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14370                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14371                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14372                 dev_priv->display.off = i9xx_crtc_off;
14373                 dev_priv->display.update_primary_plane =
14374                         i9xx_update_primary_plane;
14375         } else {
14376                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14377                 dev_priv->display.get_initial_plane_config =
14378                         i9xx_get_initial_plane_config;
14379                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14380                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14381                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14382                 dev_priv->display.off = i9xx_crtc_off;
14383                 dev_priv->display.update_primary_plane =
14384                         i9xx_update_primary_plane;
14385         }
14386
14387         /* Returns the core display clock speed */
14388         if (IS_SKYLAKE(dev))
14389                 dev_priv->display.get_display_clock_speed =
14390                         skylake_get_display_clock_speed;
14391         else if (IS_BROADWELL(dev))
14392                 dev_priv->display.get_display_clock_speed =
14393                         broadwell_get_display_clock_speed;
14394         else if (IS_HASWELL(dev))
14395                 dev_priv->display.get_display_clock_speed =
14396                         haswell_get_display_clock_speed;
14397         else if (IS_VALLEYVIEW(dev))
14398                 dev_priv->display.get_display_clock_speed =
14399                         valleyview_get_display_clock_speed;
14400         else if (IS_GEN5(dev))
14401                 dev_priv->display.get_display_clock_speed =
14402                         ilk_get_display_clock_speed;
14403         else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14404                  IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
14405                 dev_priv->display.get_display_clock_speed =
14406                         i945_get_display_clock_speed;
14407         else if (IS_I915G(dev))
14408                 dev_priv->display.get_display_clock_speed =
14409                         i915_get_display_clock_speed;
14410         else if (IS_I945GM(dev) || IS_845G(dev))
14411                 dev_priv->display.get_display_clock_speed =
14412                         i9xx_misc_get_display_clock_speed;
14413         else if (IS_PINEVIEW(dev))
14414                 dev_priv->display.get_display_clock_speed =
14415                         pnv_get_display_clock_speed;
14416         else if (IS_I915GM(dev))
14417                 dev_priv->display.get_display_clock_speed =
14418                         i915gm_get_display_clock_speed;
14419         else if (IS_I865G(dev))
14420                 dev_priv->display.get_display_clock_speed =
14421                         i865_get_display_clock_speed;
14422         else if (IS_I85X(dev))
14423                 dev_priv->display.get_display_clock_speed =
14424                         i855_get_display_clock_speed;
14425         else /* 852, 830 */
14426                 dev_priv->display.get_display_clock_speed =
14427                         i830_get_display_clock_speed;
14428
14429         if (IS_GEN5(dev)) {
14430                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14431         } else if (IS_GEN6(dev)) {
14432                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14433         } else if (IS_IVYBRIDGE(dev)) {
14434                 /* FIXME: detect B0+ stepping and use auto training */
14435                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14436         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14437                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14438         } else if (IS_VALLEYVIEW(dev)) {
14439                 dev_priv->display.modeset_global_resources =
14440                         valleyview_modeset_global_resources;
14441         } else if (IS_BROXTON(dev)) {
14442                 dev_priv->display.modeset_global_resources =
14443                         broxton_modeset_global_resources;
14444         }
14445
14446         switch (INTEL_INFO(dev)->gen) {
14447         case 2:
14448                 dev_priv->display.queue_flip = intel_gen2_queue_flip;
14449                 break;
14450
14451         case 3:
14452                 dev_priv->display.queue_flip = intel_gen3_queue_flip;
14453                 break;
14454
14455         case 4:
14456         case 5:
14457                 dev_priv->display.queue_flip = intel_gen4_queue_flip;
14458                 break;
14459
14460         case 6:
14461                 dev_priv->display.queue_flip = intel_gen6_queue_flip;
14462                 break;
14463         case 7:
14464         case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14465                 dev_priv->display.queue_flip = intel_gen7_queue_flip;
14466                 break;
14467         case 9:
14468                 /* Drop through - unsupported since execlist only. */
14469         default:
14470                 /* Default just returns -ENODEV to indicate unsupported */
14471                 dev_priv->display.queue_flip = intel_default_queue_flip;
14472         }
14473
14474         intel_panel_init_backlight_funcs(dev);
14475
14476         mutex_init(&dev_priv->pps_mutex);
14477 }
14478
14479 /*
14480  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14481  * resume, or other times.  This quirk makes sure that's the case for
14482  * affected systems.
14483  */
14484 static void quirk_pipea_force(struct drm_device *dev)
14485 {
14486         struct drm_i915_private *dev_priv = dev->dev_private;
14487
14488         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14489         DRM_INFO("applying pipe a force quirk\n");
14490 }
14491
14492 static void quirk_pipeb_force(struct drm_device *dev)
14493 {
14494         struct drm_i915_private *dev_priv = dev->dev_private;
14495
14496         dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14497         DRM_INFO("applying pipe b force quirk\n");
14498 }
14499
14500 /*
14501  * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14502  */
14503 static void quirk_ssc_force_disable(struct drm_device *dev)
14504 {
14505         struct drm_i915_private *dev_priv = dev->dev_private;
14506         dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14507         DRM_INFO("applying lvds SSC disable quirk\n");
14508 }
14509
14510 /*
14511  * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14512  * brightness value
14513  */
14514 static void quirk_invert_brightness(struct drm_device *dev)
14515 {
14516         struct drm_i915_private *dev_priv = dev->dev_private;
14517         dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14518         DRM_INFO("applying inverted panel brightness quirk\n");
14519 }
14520
14521 /* Some VBT's incorrectly indicate no backlight is present */
14522 static void quirk_backlight_present(struct drm_device *dev)
14523 {
14524         struct drm_i915_private *dev_priv = dev->dev_private;
14525         dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14526         DRM_INFO("applying backlight present quirk\n");
14527 }
14528
14529 struct intel_quirk {
14530         int device;
14531         int subsystem_vendor;
14532         int subsystem_device;
14533         void (*hook)(struct drm_device *dev);
14534 };
14535
14536 /* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14537 struct intel_dmi_quirk {
14538         void (*hook)(struct drm_device *dev);
14539         const struct dmi_system_id (*dmi_id_list)[];
14540 };
14541
14542 static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14543 {
14544         DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14545         return 1;
14546 }
14547
14548 static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14549         {
14550                 .dmi_id_list = &(const struct dmi_system_id[]) {
14551                         {
14552                                 .callback = intel_dmi_reverse_brightness,
14553                                 .ident = "NCR Corporation",
14554                                 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14555                                             DMI_MATCH(DMI_PRODUCT_NAME, ""),
14556                                 },
14557                         },
14558                         { }  /* terminating entry */
14559                 },
14560                 .hook = quirk_invert_brightness,
14561         },
14562 };
14563
14564 static struct intel_quirk intel_quirks[] = {
14565         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14566         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14567
14568         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14569         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14570
14571         /* 830 needs to leave pipe A & dpll A up */
14572         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14573
14574         /* 830 needs to leave pipe B & dpll B up */
14575         { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14576
14577         /* Lenovo U160 cannot use SSC on LVDS */
14578         { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14579
14580         /* Sony Vaio Y cannot use SSC on LVDS */
14581         { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14582
14583         /* Acer Aspire 5734Z must invert backlight brightness */
14584         { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14585
14586         /* Acer/eMachines G725 */
14587         { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14588
14589         /* Acer/eMachines e725 */
14590         { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14591
14592         /* Acer/Packard Bell NCL20 */
14593         { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14594
14595         /* Acer Aspire 4736Z */
14596         { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14597
14598         /* Acer Aspire 5336 */
14599         { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14600
14601         /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14602         { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14603
14604         /* Acer C720 Chromebook (Core i3 4005U) */
14605         { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14606
14607         /* Apple Macbook 2,1 (Core 2 T7400) */
14608         { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14609
14610         /* Toshiba CB35 Chromebook (Celeron 2955U) */
14611         { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14612
14613         /* HP Chromebook 14 (Celeron 2955U) */
14614         { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14615
14616         /* Dell Chromebook 11 */
14617         { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14618 };
14619
14620 static void intel_init_quirks(struct drm_device *dev)
14621 {
14622         struct pci_dev *d = dev->pdev;
14623         int i;
14624
14625         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14626                 struct intel_quirk *q = &intel_quirks[i];
14627
14628                 if (d->device == q->device &&
14629                     (d->subsystem_vendor == q->subsystem_vendor ||
14630                      q->subsystem_vendor == PCI_ANY_ID) &&
14631                     (d->subsystem_device == q->subsystem_device ||
14632                      q->subsystem_device == PCI_ANY_ID))
14633                         q->hook(dev);
14634         }
14635         for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14636                 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14637                         intel_dmi_quirks[i].hook(dev);
14638         }
14639 }
14640
14641 /* Disable the VGA plane that we never use */
14642 static void i915_disable_vga(struct drm_device *dev)
14643 {
14644         struct drm_i915_private *dev_priv = dev->dev_private;
14645         u8 sr1;
14646         u32 vga_reg = i915_vgacntrl_reg(dev);
14647
14648         /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14649         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14650         outb(SR01, VGA_SR_INDEX);
14651         sr1 = inb(VGA_SR_DATA);
14652         outb(sr1 | 1<<5, VGA_SR_DATA);
14653         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14654         udelay(300);
14655
14656         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14657         POSTING_READ(vga_reg);
14658 }
14659
14660 void intel_modeset_init_hw(struct drm_device *dev)
14661 {
14662         intel_prepare_ddi(dev);
14663
14664         if (IS_VALLEYVIEW(dev))
14665                 vlv_update_cdclk(dev);
14666
14667         intel_init_clock_gating(dev);
14668
14669         intel_enable_gt_powersave(dev);
14670 }
14671
14672 void intel_modeset_init(struct drm_device *dev)
14673 {
14674         struct drm_i915_private *dev_priv = dev->dev_private;
14675         int sprite, ret;
14676         enum pipe pipe;
14677         struct intel_crtc *crtc;
14678
14679         drm_mode_config_init(dev);
14680
14681         dev->mode_config.min_width = 0;
14682         dev->mode_config.min_height = 0;
14683
14684         dev->mode_config.preferred_depth = 24;
14685         dev->mode_config.prefer_shadow = 1;
14686
14687         dev->mode_config.allow_fb_modifiers = true;
14688
14689         dev->mode_config.funcs = &intel_mode_funcs;
14690
14691         intel_init_quirks(dev);
14692
14693         intel_init_pm(dev);
14694
14695         if (INTEL_INFO(dev)->num_pipes == 0)
14696                 return;
14697
14698         intel_init_display(dev);
14699         intel_init_audio(dev);
14700
14701         if (IS_GEN2(dev)) {
14702                 dev->mode_config.max_width = 2048;
14703                 dev->mode_config.max_height = 2048;
14704         } else if (IS_GEN3(dev)) {
14705                 dev->mode_config.max_width = 4096;
14706                 dev->mode_config.max_height = 4096;
14707         } else {
14708                 dev->mode_config.max_width = 8192;
14709                 dev->mode_config.max_height = 8192;
14710         }
14711
14712         if (IS_845G(dev) || IS_I865G(dev)) {
14713                 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14714                 dev->mode_config.cursor_height = 1023;
14715         } else if (IS_GEN2(dev)) {
14716                 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14717                 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14718         } else {
14719                 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14720                 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14721         }
14722
14723         dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14724
14725         DRM_DEBUG_KMS("%d display pipe%s available.\n",
14726                       INTEL_INFO(dev)->num_pipes,
14727                       INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14728
14729         for_each_pipe(dev_priv, pipe) {
14730                 intel_crtc_init(dev, pipe);
14731                 for_each_sprite(dev_priv, pipe, sprite) {
14732                         ret = intel_plane_init(dev, pipe, sprite);
14733                         if (ret)
14734                                 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14735                                               pipe_name(pipe), sprite_name(pipe, sprite), ret);
14736                 }
14737         }
14738
14739         intel_init_dpio(dev);
14740
14741         intel_shared_dpll_init(dev);
14742
14743         /* Just disable it once at startup */
14744         i915_disable_vga(dev);
14745         intel_setup_outputs(dev);
14746
14747         /* Just in case the BIOS is doing something questionable. */
14748         intel_fbc_disable(dev);
14749
14750         drm_modeset_lock_all(dev);
14751         intel_modeset_setup_hw_state(dev, false);
14752         drm_modeset_unlock_all(dev);
14753
14754         for_each_intel_crtc(dev, crtc) {
14755                 if (!crtc->active)
14756                         continue;
14757
14758                 /*
14759                  * Note that reserving the BIOS fb up front prevents us
14760                  * from stuffing other stolen allocations like the ring
14761                  * on top.  This prevents some ugliness at boot time, and
14762                  * can even allow for smooth boot transitions if the BIOS
14763                  * fb is large enough for the active pipe configuration.
14764                  */
14765                 if (dev_priv->display.get_initial_plane_config) {
14766                         dev_priv->display.get_initial_plane_config(crtc,
14767                                                            &crtc->plane_config);
14768                         /*
14769                          * If the fb is shared between multiple heads, we'll
14770                          * just get the first one.
14771                          */
14772                         intel_find_initial_plane_obj(crtc, &crtc->plane_config);
14773                 }
14774         }
14775 }
14776
14777 static void intel_enable_pipe_a(struct drm_device *dev)
14778 {
14779         struct intel_connector *connector;
14780         struct drm_connector *crt = NULL;
14781         struct intel_load_detect_pipe load_detect_temp;
14782         struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14783
14784         /* We can't just switch on the pipe A, we need to set things up with a
14785          * proper mode and output configuration. As a gross hack, enable pipe A
14786          * by enabling the load detect pipe once. */
14787         for_each_intel_connector(dev, connector) {
14788                 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14789                         crt = &connector->base;
14790                         break;
14791                 }
14792         }
14793
14794         if (!crt)
14795                 return;
14796
14797         if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14798                 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14799 }
14800
14801 static bool
14802 intel_check_plane_mapping(struct intel_crtc *crtc)
14803 {
14804         struct drm_device *dev = crtc->base.dev;
14805         struct drm_i915_private *dev_priv = dev->dev_private;
14806         u32 reg, val;
14807
14808         if (INTEL_INFO(dev)->num_pipes == 1)
14809                 return true;
14810
14811         reg = DSPCNTR(!crtc->plane);
14812         val = I915_READ(reg);
14813
14814         if ((val & DISPLAY_PLANE_ENABLE) &&
14815             (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14816                 return false;
14817
14818         return true;
14819 }
14820
14821 static void intel_sanitize_crtc(struct intel_crtc *crtc)
14822 {
14823         struct drm_device *dev = crtc->base.dev;
14824         struct drm_i915_private *dev_priv = dev->dev_private;
14825         u32 reg;
14826
14827         /* Clear any frame start delays used for debugging left by the BIOS */
14828         reg = PIPECONF(crtc->config->cpu_transcoder);
14829         I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14830
14831         /* restore vblank interrupts to correct state */
14832         drm_crtc_vblank_reset(&crtc->base);
14833         if (crtc->active) {
14834                 update_scanline_offset(crtc);
14835                 drm_crtc_vblank_on(&crtc->base);
14836         }
14837
14838         /* We need to sanitize the plane -> pipe mapping first because this will
14839          * disable the crtc (and hence change the state) if it is wrong. Note
14840          * that gen4+ has a fixed plane -> pipe mapping.  */
14841         if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14842                 struct intel_connector *connector;
14843                 bool plane;
14844
14845                 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14846                               crtc->base.base.id);
14847
14848                 /* Pipe has the wrong plane attached and the plane is active.
14849                  * Temporarily change the plane mapping and disable everything
14850                  * ...  */
14851                 plane = crtc->plane;
14852                 to_intel_plane_state(crtc->base.primary->state)->visible = true;
14853                 crtc->plane = !plane;
14854                 intel_crtc_disable_planes(&crtc->base);
14855                 dev_priv->display.crtc_disable(&crtc->base);
14856                 crtc->plane = plane;
14857
14858                 /* ... and break all links. */
14859                 for_each_intel_connector(dev, connector) {
14860                         if (connector->encoder->base.crtc != &crtc->base)
14861                                 continue;
14862
14863                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14864                         connector->base.encoder = NULL;
14865                 }
14866                 /* multiple connectors may have the same encoder:
14867                  *  handle them and break crtc link separately */
14868                 for_each_intel_connector(dev, connector)
14869                         if (connector->encoder->base.crtc == &crtc->base) {
14870                                 connector->encoder->base.crtc = NULL;
14871                                 connector->encoder->connectors_active = false;
14872                         }
14873
14874                 WARN_ON(crtc->active);
14875                 crtc->base.state->enable = false;
14876                 crtc->base.state->active = false;
14877                 crtc->base.enabled = false;
14878         }
14879
14880         if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14881             crtc->pipe == PIPE_A && !crtc->active) {
14882                 /* BIOS forgot to enable pipe A, this mostly happens after
14883                  * resume. Force-enable the pipe to fix this, the update_dpms
14884                  * call below we restore the pipe to the right state, but leave
14885                  * the required bits on. */
14886                 intel_enable_pipe_a(dev);
14887         }
14888
14889         /* Adjust the state of the output pipe according to whether we
14890          * have active connectors/encoders. */
14891         intel_crtc_update_dpms(&crtc->base);
14892
14893         if (crtc->active != crtc->base.state->enable) {
14894                 struct intel_encoder *encoder;
14895
14896                 /* This can happen either due to bugs in the get_hw_state
14897                  * functions or because the pipe is force-enabled due to the
14898                  * pipe A quirk. */
14899                 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14900                               crtc->base.base.id,
14901                               crtc->base.state->enable ? "enabled" : "disabled",
14902                               crtc->active ? "enabled" : "disabled");
14903
14904                 crtc->base.state->enable = crtc->active;
14905                 crtc->base.state->active = crtc->active;
14906                 crtc->base.enabled = crtc->active;
14907
14908                 /* Because we only establish the connector -> encoder ->
14909                  * crtc links if something is active, this means the
14910                  * crtc is now deactivated. Break the links. connector
14911                  * -> encoder links are only establish when things are
14912                  *  actually up, hence no need to break them. */
14913                 WARN_ON(crtc->active);
14914
14915                 for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14916                         WARN_ON(encoder->connectors_active);
14917                         encoder->base.crtc = NULL;
14918                 }
14919         }
14920
14921         if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14922                 /*
14923                  * We start out with underrun reporting disabled to avoid races.
14924                  * For correct bookkeeping mark this on active crtcs.
14925                  *
14926                  * Also on gmch platforms we dont have any hardware bits to
14927                  * disable the underrun reporting. Which means we need to start
14928                  * out with underrun reporting disabled also on inactive pipes,
14929                  * since otherwise we'll complain about the garbage we read when
14930                  * e.g. coming up after runtime pm.
14931                  *
14932                  * No protection against concurrent access is required - at
14933                  * worst a fifo underrun happens which also sets this to false.
14934                  */
14935                 crtc->cpu_fifo_underrun_disabled = true;
14936                 crtc->pch_fifo_underrun_disabled = true;
14937         }
14938 }
14939
14940 static void intel_sanitize_encoder(struct intel_encoder *encoder)
14941 {
14942         struct intel_connector *connector;
14943         struct drm_device *dev = encoder->base.dev;
14944
14945         /* We need to check both for a crtc link (meaning that the
14946          * encoder is active and trying to read from a pipe) and the
14947          * pipe itself being active. */
14948         bool has_active_crtc = encoder->base.crtc &&
14949                 to_intel_crtc(encoder->base.crtc)->active;
14950
14951         if (encoder->connectors_active && !has_active_crtc) {
14952                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14953                               encoder->base.base.id,
14954                               encoder->base.name);
14955
14956                 /* Connector is active, but has no active pipe. This is
14957                  * fallout from our resume register restoring. Disable
14958                  * the encoder manually again. */
14959                 if (encoder->base.crtc) {
14960                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14961                                       encoder->base.base.id,
14962                                       encoder->base.name);
14963                         encoder->disable(encoder);
14964                         if (encoder->post_disable)
14965                                 encoder->post_disable(encoder);
14966                 }
14967                 encoder->base.crtc = NULL;
14968                 encoder->connectors_active = false;
14969
14970                 /* Inconsistent output/port/pipe state happens presumably due to
14971                  * a bug in one of the get_hw_state functions. Or someplace else
14972                  * in our code, like the register restore mess on resume. Clamp
14973                  * things to off as a safer default. */
14974                 for_each_intel_connector(dev, connector) {
14975                         if (connector->encoder != encoder)
14976                                 continue;
14977                         connector->base.dpms = DRM_MODE_DPMS_OFF;
14978                         connector->base.encoder = NULL;
14979                 }
14980         }
14981         /* Enabled encoders without active connectors will be fixed in
14982          * the crtc fixup. */
14983 }
14984
14985 void i915_redisable_vga_power_on(struct drm_device *dev)
14986 {
14987         struct drm_i915_private *dev_priv = dev->dev_private;
14988         u32 vga_reg = i915_vgacntrl_reg(dev);
14989
14990         if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14991                 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14992                 i915_disable_vga(dev);
14993         }
14994 }
14995
14996 void i915_redisable_vga(struct drm_device *dev)
14997 {
14998         struct drm_i915_private *dev_priv = dev->dev_private;
14999
15000         /* This function can be called both from intel_modeset_setup_hw_state or
15001          * at a very early point in our resume sequence, where the power well
15002          * structures are not yet restored. Since this function is at a very
15003          * paranoid "someone might have enabled VGA while we were not looking"
15004          * level, just check if the power well is enabled instead of trying to
15005          * follow the "don't touch the power well if we don't need it" policy
15006          * the rest of the driver uses. */
15007         if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
15008                 return;
15009
15010         i915_redisable_vga_power_on(dev);
15011 }
15012
15013 static bool primary_get_hw_state(struct intel_crtc *crtc)
15014 {
15015         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
15016
15017         if (!crtc->active)
15018                 return false;
15019
15020         return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
15021 }
15022
15023 static void intel_modeset_readout_hw_state(struct drm_device *dev)
15024 {
15025         struct drm_i915_private *dev_priv = dev->dev_private;
15026         enum pipe pipe;
15027         struct intel_crtc *crtc;
15028         struct intel_encoder *encoder;
15029         struct intel_connector *connector;
15030         int i;
15031
15032         for_each_intel_crtc(dev, crtc) {
15033                 struct drm_plane *primary = crtc->base.primary;
15034                 struct intel_plane_state *plane_state;
15035
15036                 memset(crtc->config, 0, sizeof(*crtc->config));
15037
15038                 crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15039
15040                 crtc->active = dev_priv->display.get_pipe_config(crtc,
15041                                                                  crtc->config);
15042
15043                 crtc->base.state->enable = crtc->active;
15044                 crtc->base.state->active = crtc->active;
15045                 crtc->base.enabled = crtc->active;
15046
15047                 plane_state = to_intel_plane_state(primary->state);
15048                 plane_state->visible = primary_get_hw_state(crtc);
15049
15050                 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15051                               crtc->base.base.id,
15052                               crtc->active ? "enabled" : "disabled");
15053         }
15054
15055         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15056                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15057
15058                 pll->on = pll->get_hw_state(dev_priv, pll,
15059                                             &pll->config.hw_state);
15060                 pll->active = 0;
15061                 pll->config.crtc_mask = 0;
15062                 for_each_intel_crtc(dev, crtc) {
15063                         if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15064                                 pll->active++;
15065                                 pll->config.crtc_mask |= 1 << crtc->pipe;
15066                         }
15067                 }
15068
15069                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15070                               pll->name, pll->config.crtc_mask, pll->on);
15071
15072                 if (pll->config.crtc_mask)
15073                         intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15074         }
15075
15076         for_each_intel_encoder(dev, encoder) {
15077                 pipe = 0;
15078
15079                 if (encoder->get_hw_state(encoder, &pipe)) {
15080                         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15081                         encoder->base.crtc = &crtc->base;
15082                         encoder->get_config(encoder, crtc->config);
15083                 } else {
15084                         encoder->base.crtc = NULL;
15085                 }
15086
15087                 encoder->connectors_active = false;
15088                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15089                               encoder->base.base.id,
15090                               encoder->base.name,
15091                               encoder->base.crtc ? "enabled" : "disabled",
15092                               pipe_name(pipe));
15093         }
15094
15095         for_each_intel_connector(dev, connector) {
15096                 if (connector->get_hw_state(connector)) {
15097                         connector->base.dpms = DRM_MODE_DPMS_ON;
15098                         connector->encoder->connectors_active = true;
15099                         connector->base.encoder = &connector->encoder->base;
15100                 } else {
15101                         connector->base.dpms = DRM_MODE_DPMS_OFF;
15102                         connector->base.encoder = NULL;
15103                 }
15104                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15105                               connector->base.base.id,
15106                               connector->base.name,
15107                               connector->base.encoder ? "enabled" : "disabled");
15108         }
15109 }
15110
15111 /* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15112  * and i915 state tracking structures. */
15113 void intel_modeset_setup_hw_state(struct drm_device *dev,
15114                                   bool force_restore)
15115 {
15116         struct drm_i915_private *dev_priv = dev->dev_private;
15117         enum pipe pipe;
15118         struct intel_crtc *crtc;
15119         struct intel_encoder *encoder;
15120         int i;
15121
15122         intel_modeset_readout_hw_state(dev);
15123
15124         /*
15125          * Now that we have the config, copy it to each CRTC struct
15126          * Note that this could go away if we move to using crtc_config
15127          * checking everywhere.
15128          */
15129         for_each_intel_crtc(dev, crtc) {
15130                 if (crtc->active && i915.fastboot) {
15131                         intel_mode_from_pipe_config(&crtc->base.mode,
15132                                                     crtc->config);
15133                         DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15134                                       crtc->base.base.id);
15135                         drm_mode_debug_printmodeline(&crtc->base.mode);
15136                 }
15137         }
15138
15139         /* HW state is read out, now we need to sanitize this mess. */
15140         for_each_intel_encoder(dev, encoder) {
15141                 intel_sanitize_encoder(encoder);
15142         }
15143
15144         for_each_pipe(dev_priv, pipe) {
15145                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15146                 intel_sanitize_crtc(crtc);
15147                 intel_dump_pipe_config(crtc, crtc->config,
15148                                        "[setup_hw_state]");
15149         }
15150
15151         intel_modeset_update_connector_atomic_state(dev);
15152
15153         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15154                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15155
15156                 if (!pll->on || pll->active)
15157                         continue;
15158
15159                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15160
15161                 pll->disable(dev_priv, pll);
15162                 pll->on = false;
15163         }
15164
15165         if (IS_GEN9(dev))
15166                 skl_wm_get_hw_state(dev);
15167         else if (HAS_PCH_SPLIT(dev))
15168                 ilk_wm_get_hw_state(dev);
15169
15170         if (force_restore) {
15171                 i915_redisable_vga(dev);
15172
15173                 /*
15174                  * We need to use raw interfaces for restoring state to avoid
15175                  * checking (bogus) intermediate states.
15176                  */
15177                 for_each_pipe(dev_priv, pipe) {
15178                         struct drm_crtc *crtc =
15179                                 dev_priv->pipe_to_crtc_mapping[pipe];
15180
15181                         intel_crtc_restore_mode(crtc);
15182                 }
15183         } else {
15184                 intel_modeset_update_staged_output_state(dev);
15185         }
15186
15187         intel_modeset_check_state(dev);
15188 }
15189
15190 void intel_modeset_gem_init(struct drm_device *dev)
15191 {
15192         struct drm_i915_private *dev_priv = dev->dev_private;
15193         struct drm_crtc *c;
15194         struct drm_i915_gem_object *obj;
15195         int ret;
15196
15197         mutex_lock(&dev->struct_mutex);
15198         intel_init_gt_powersave(dev);
15199         mutex_unlock(&dev->struct_mutex);
15200
15201         /*
15202          * There may be no VBT; and if the BIOS enabled SSC we can
15203          * just keep using it to avoid unnecessary flicker.  Whereas if the
15204          * BIOS isn't using it, don't assume it will work even if the VBT
15205          * indicates as much.
15206          */
15207         if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15208                 dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15209                                                 DREF_SSC1_ENABLE);
15210
15211         intel_modeset_init_hw(dev);
15212
15213         intel_setup_overlay(dev);
15214
15215         /*
15216          * Make sure any fbs we allocated at startup are properly
15217          * pinned & fenced.  When we do the allocation it's too early
15218          * for this.
15219          */
15220         for_each_crtc(dev, c) {
15221                 obj = intel_fb_obj(c->primary->fb);
15222                 if (obj == NULL)
15223                         continue;
15224
15225                 mutex_lock(&dev->struct_mutex);
15226                 ret = intel_pin_and_fence_fb_obj(c->primary,
15227                                                  c->primary->fb,
15228                                                  c->primary->state,
15229                                                  NULL);
15230                 mutex_unlock(&dev->struct_mutex);
15231                 if (ret) {
15232                         DRM_ERROR("failed to pin boot fb on pipe %d\n",
15233                                   to_intel_crtc(c)->pipe);
15234                         drm_framebuffer_unreference(c->primary->fb);
15235                         c->primary->fb = NULL;
15236                         update_state_fb(c->primary);
15237                 }
15238         }
15239
15240         intel_backlight_register(dev);
15241 }
15242
15243 void intel_connector_unregister(struct intel_connector *intel_connector)
15244 {
15245         struct drm_connector *connector = &intel_connector->base;
15246
15247         intel_panel_destroy_backlight(connector);
15248         drm_connector_unregister(connector);
15249 }
15250
15251 void intel_modeset_cleanup(struct drm_device *dev)
15252 {
15253         struct drm_i915_private *dev_priv = dev->dev_private;
15254         struct drm_connector *connector;
15255
15256         intel_disable_gt_powersave(dev);
15257
15258         intel_backlight_unregister(dev);
15259
15260         /*
15261          * Interrupts and polling as the first thing to avoid creating havoc.
15262          * Too much stuff here (turning of connectors, ...) would
15263          * experience fancy races otherwise.
15264          */
15265         intel_irq_uninstall(dev_priv);
15266
15267         /*
15268          * Due to the hpd irq storm handling the hotplug work can re-arm the
15269          * poll handlers. Hence disable polling after hpd handling is shut down.
15270          */
15271         drm_kms_helper_poll_fini(dev);
15272
15273         mutex_lock(&dev->struct_mutex);
15274
15275         intel_unregister_dsm_handler();
15276
15277         intel_fbc_disable(dev);
15278
15279         mutex_unlock(&dev->struct_mutex);
15280
15281         /* flush any delayed tasks or pending work */
15282         flush_scheduled_work();
15283
15284         /* destroy the backlight and sysfs files before encoders/connectors */
15285         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15286                 struct intel_connector *intel_connector;
15287
15288                 intel_connector = to_intel_connector(connector);
15289                 intel_connector->unregister(intel_connector);
15290         }
15291
15292         drm_mode_config_cleanup(dev);
15293
15294         intel_cleanup_overlay(dev);
15295
15296         mutex_lock(&dev->struct_mutex);
15297         intel_cleanup_gt_powersave(dev);
15298         mutex_unlock(&dev->struct_mutex);
15299 }
15300
15301 /*
15302  * Return which encoder is currently attached for connector.
15303  */
15304 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15305 {
15306         return &intel_attached_encoder(connector)->base;
15307 }
15308
15309 void intel_connector_attach_encoder(struct intel_connector *connector,
15310                                     struct intel_encoder *encoder)
15311 {
15312         connector->encoder = encoder;
15313         drm_mode_connector_attach_encoder(&connector->base,
15314                                           &encoder->base);
15315 }
15316
15317 /*
15318  * set vga decode state - true == enable VGA decode
15319  */
15320 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15321 {
15322         struct drm_i915_private *dev_priv = dev->dev_private;
15323         unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15324         u16 gmch_ctrl;
15325
15326         if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15327                 DRM_ERROR("failed to read control word\n");
15328                 return -EIO;
15329         }
15330
15331         if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15332                 return 0;
15333
15334         if (state)
15335                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15336         else
15337                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15338
15339         if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15340                 DRM_ERROR("failed to write control word\n");
15341                 return -EIO;
15342         }
15343
15344         return 0;
15345 }
15346
15347 struct intel_display_error_state {
15348
15349         u32 power_well_driver;
15350
15351         int num_transcoders;
15352
15353         struct intel_cursor_error_state {
15354                 u32 control;
15355                 u32 position;
15356                 u32 base;
15357                 u32 size;
15358         } cursor[I915_MAX_PIPES];
15359
15360         struct intel_pipe_error_state {
15361                 bool power_domain_on;
15362                 u32 source;
15363                 u32 stat;
15364         } pipe[I915_MAX_PIPES];
15365
15366         struct intel_plane_error_state {
15367                 u32 control;
15368                 u32 stride;
15369                 u32 size;
15370                 u32 pos;
15371                 u32 addr;
15372                 u32 surface;
15373                 u32 tile_offset;
15374         } plane[I915_MAX_PIPES];
15375
15376         struct intel_transcoder_error_state {
15377                 bool power_domain_on;
15378                 enum transcoder cpu_transcoder;
15379
15380                 u32 conf;
15381
15382                 u32 htotal;
15383                 u32 hblank;
15384                 u32 hsync;
15385                 u32 vtotal;
15386                 u32 vblank;
15387                 u32 vsync;
15388         } transcoder[4];
15389 };
15390
15391 struct intel_display_error_state *
15392 intel_display_capture_error_state(struct drm_device *dev)
15393 {
15394         struct drm_i915_private *dev_priv = dev->dev_private;
15395         struct intel_display_error_state *error;
15396         int transcoders[] = {
15397                 TRANSCODER_A,
15398                 TRANSCODER_B,
15399                 TRANSCODER_C,
15400                 TRANSCODER_EDP,
15401         };
15402         int i;
15403
15404         if (INTEL_INFO(dev)->num_pipes == 0)
15405                 return NULL;
15406
15407         error = kzalloc(sizeof(*error), GFP_ATOMIC);
15408         if (error == NULL)
15409                 return NULL;
15410
15411         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15412                 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15413
15414         for_each_pipe(dev_priv, i) {
15415                 error->pipe[i].power_domain_on =
15416                         __intel_display_power_is_enabled(dev_priv,
15417                                                          POWER_DOMAIN_PIPE(i));
15418                 if (!error->pipe[i].power_domain_on)
15419                         continue;
15420
15421                 error->cursor[i].control = I915_READ(CURCNTR(i));
15422                 error->cursor[i].position = I915_READ(CURPOS(i));
15423                 error->cursor[i].base = I915_READ(CURBASE(i));
15424
15425                 error->plane[i].control = I915_READ(DSPCNTR(i));
15426                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15427                 if (INTEL_INFO(dev)->gen <= 3) {
15428                         error->plane[i].size = I915_READ(DSPSIZE(i));
15429                         error->plane[i].pos = I915_READ(DSPPOS(i));
15430                 }
15431                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15432                         error->plane[i].addr = I915_READ(DSPADDR(i));
15433                 if (INTEL_INFO(dev)->gen >= 4) {
15434                         error->plane[i].surface = I915_READ(DSPSURF(i));
15435                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15436                 }
15437
15438                 error->pipe[i].source = I915_READ(PIPESRC(i));
15439
15440                 if (HAS_GMCH_DISPLAY(dev))
15441                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
15442         }
15443
15444         error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15445         if (HAS_DDI(dev_priv->dev))
15446                 error->num_transcoders++; /* Account for eDP. */
15447
15448         for (i = 0; i < error->num_transcoders; i++) {
15449                 enum transcoder cpu_transcoder = transcoders[i];
15450
15451                 error->transcoder[i].power_domain_on =
15452                         __intel_display_power_is_enabled(dev_priv,
15453                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15454                 if (!error->transcoder[i].power_domain_on)
15455                         continue;
15456
15457                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
15458
15459                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15460                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15461                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15462                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15463                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15464                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15465                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15466         }
15467
15468         return error;
15469 }
15470
15471 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15472
15473 void
15474 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15475                                 struct drm_device *dev,
15476                                 struct intel_display_error_state *error)
15477 {
15478         struct drm_i915_private *dev_priv = dev->dev_private;
15479         int i;
15480
15481         if (!error)
15482                 return;
15483
15484         err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15485         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15486                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
15487                            error->power_well_driver);
15488         for_each_pipe(dev_priv, i) {
15489                 err_printf(m, "Pipe [%d]:\n", i);
15490                 err_printf(m, "  Power: %s\n",
15491                            error->pipe[i].power_domain_on ? "on" : "off");
15492                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15493                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15494
15495                 err_printf(m, "Plane [%d]:\n", i);
15496                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15497                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15498                 if (INTEL_INFO(dev)->gen <= 3) {
15499                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15500                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15501                 }
15502                 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15503                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15504                 if (INTEL_INFO(dev)->gen >= 4) {
15505                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15506                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15507                 }
15508
15509                 err_printf(m, "Cursor [%d]:\n", i);
15510                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15511                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15512                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15513         }
15514
15515         for (i = 0; i < error->num_transcoders; i++) {
15516                 err_printf(m, "CPU transcoder: %c\n",
15517                            transcoder_name(error->transcoder[i].cpu_transcoder));
15518                 err_printf(m, "  Power: %s\n",
15519                            error->transcoder[i].power_domain_on ? "on" : "off");
15520                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15521                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15522                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15523                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15524                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15525                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15526                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15527         }
15528 }
15529
15530 void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15531 {
15532         struct intel_crtc *crtc;
15533
15534         for_each_intel_crtc(dev, crtc) {
15535                 struct intel_unpin_work *work;
15536
15537                 spin_lock_irq(&dev->event_lock);
15538
15539                 work = crtc->unpin_work;
15540
15541                 if (work && work->event &&
15542                     work->event->base.file_priv == file) {
15543                         kfree(work->event);
15544                         work->event = NULL;
15545                 }
15546
15547                 spin_unlock_irq(&dev->event_lock);
15548         }
15549 }