Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_breadcrumbs.c
1 /*
2  * Copyright © 2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/kthread.h>
26 #include <uapi/linux/sched/types.h>
27
28 #include "i915_drv.h"
29
30 static unsigned int __intel_breadcrumbs_wakeup(struct intel_breadcrumbs *b)
31 {
32         struct intel_wait *wait;
33         unsigned int result = 0;
34
35         lockdep_assert_held(&b->irq_lock);
36
37         wait = b->irq_wait;
38         if (wait) {
39                 result = ENGINE_WAKEUP_WAITER;
40                 if (wake_up_process(wait->tsk))
41                         result |= ENGINE_WAKEUP_ASLEEP;
42         }
43
44         return result;
45 }
46
47 unsigned int intel_engine_wakeup(struct intel_engine_cs *engine)
48 {
49         struct intel_breadcrumbs *b = &engine->breadcrumbs;
50         unsigned long flags;
51         unsigned int result;
52
53         spin_lock_irqsave(&b->irq_lock, flags);
54         result = __intel_breadcrumbs_wakeup(b);
55         spin_unlock_irqrestore(&b->irq_lock, flags);
56
57         return result;
58 }
59
60 static unsigned long wait_timeout(void)
61 {
62         return round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES);
63 }
64
65 static noinline void missed_breadcrumb(struct intel_engine_cs *engine)
66 {
67         DRM_DEBUG_DRIVER("%s missed breadcrumb at %pS, irq posted? %s, current seqno=%x, last=%x\n",
68                          engine->name, __builtin_return_address(0),
69                          yesno(test_bit(ENGINE_IRQ_BREADCRUMB,
70                                         &engine->irq_posted)),
71                          intel_engine_get_seqno(engine),
72                          intel_engine_last_submit(engine));
73
74         set_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
75 }
76
77 static void intel_breadcrumbs_hangcheck(struct timer_list *t)
78 {
79         struct intel_engine_cs *engine = from_timer(engine, t,
80                                                     breadcrumbs.hangcheck);
81         struct intel_breadcrumbs *b = &engine->breadcrumbs;
82
83         if (!b->irq_armed)
84                 return;
85
86         if (b->hangcheck_interrupts != atomic_read(&engine->irq_count)) {
87                 b->hangcheck_interrupts = atomic_read(&engine->irq_count);
88                 mod_timer(&b->hangcheck, wait_timeout());
89                 return;
90         }
91
92         /* We keep the hangcheck timer alive until we disarm the irq, even
93          * if there are no waiters at present.
94          *
95          * If the waiter was currently running, assume it hasn't had a chance
96          * to process the pending interrupt (e.g, low priority task on a loaded
97          * system) and wait until it sleeps before declaring a missed interrupt.
98          *
99          * If the waiter was asleep (and not even pending a wakeup), then we
100          * must have missed an interrupt as the GPU has stopped advancing
101          * but we still have a waiter. Assuming all batches complete within
102          * DRM_I915_HANGCHECK_JIFFIES [1.5s]!
103          */
104         if (intel_engine_wakeup(engine) & ENGINE_WAKEUP_ASLEEP) {
105                 missed_breadcrumb(engine);
106                 mod_timer(&engine->breadcrumbs.fake_irq, jiffies + 1);
107         } else {
108                 mod_timer(&b->hangcheck, wait_timeout());
109         }
110 }
111
112 static void intel_breadcrumbs_fake_irq(struct timer_list *t)
113 {
114         struct intel_engine_cs *engine = from_timer(engine, t,
115                                                     breadcrumbs.fake_irq);
116         struct intel_breadcrumbs *b = &engine->breadcrumbs;
117
118         /* The timer persists in case we cannot enable interrupts,
119          * or if we have previously seen seqno/interrupt incoherency
120          * ("missed interrupt" syndrome, better known as a "missed breadcrumb").
121          * Here the worker will wake up every jiffie in order to kick the
122          * oldest waiter to do the coherent seqno check.
123          */
124
125         spin_lock_irq(&b->irq_lock);
126         if (!__intel_breadcrumbs_wakeup(b))
127                 __intel_engine_disarm_breadcrumbs(engine);
128         spin_unlock_irq(&b->irq_lock);
129         if (!b->irq_armed)
130                 return;
131
132         mod_timer(&b->fake_irq, jiffies + 1);
133
134         /* Ensure that even if the GPU hangs, we get woken up.
135          *
136          * However, note that if no one is waiting, we never notice
137          * a gpu hang. Eventually, we will have to wait for a resource
138          * held by the GPU and so trigger a hangcheck. In the most
139          * pathological case, this will be upon memory starvation! To
140          * prevent this, we also queue the hangcheck from the retire
141          * worker.
142          */
143         i915_queue_hangcheck(engine->i915);
144 }
145
146 static void irq_enable(struct intel_engine_cs *engine)
147 {
148         /* Enabling the IRQ may miss the generation of the interrupt, but
149          * we still need to force the barrier before reading the seqno,
150          * just in case.
151          */
152         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
153
154         /* Caller disables interrupts */
155         spin_lock(&engine->i915->irq_lock);
156         engine->irq_enable(engine);
157         spin_unlock(&engine->i915->irq_lock);
158 }
159
160 static void irq_disable(struct intel_engine_cs *engine)
161 {
162         /* Caller disables interrupts */
163         spin_lock(&engine->i915->irq_lock);
164         engine->irq_disable(engine);
165         spin_unlock(&engine->i915->irq_lock);
166 }
167
168 void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
169 {
170         struct intel_breadcrumbs *b = &engine->breadcrumbs;
171
172         lockdep_assert_held(&b->irq_lock);
173         GEM_BUG_ON(b->irq_wait);
174
175         if (b->irq_enabled) {
176                 irq_disable(engine);
177                 b->irq_enabled = false;
178         }
179
180         b->irq_armed = false;
181 }
182
183 void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine)
184 {
185         struct intel_breadcrumbs *b = &engine->breadcrumbs;
186         struct intel_wait *wait, *n, *first;
187
188         if (!b->irq_armed)
189                 goto wakeup_signaler;
190
191         /* We only disarm the irq when we are idle (all requests completed),
192          * so if the bottom-half remains asleep, it missed the request
193          * completion.
194          */
195
196         spin_lock_irq(&b->rb_lock);
197
198         spin_lock(&b->irq_lock);
199         first = fetch_and_zero(&b->irq_wait);
200         __intel_engine_disarm_breadcrumbs(engine);
201         spin_unlock(&b->irq_lock);
202
203         rbtree_postorder_for_each_entry_safe(wait, n, &b->waiters, node) {
204                 RB_CLEAR_NODE(&wait->node);
205                 if (wake_up_process(wait->tsk) && wait == first)
206                         missed_breadcrumb(engine);
207         }
208         b->waiters = RB_ROOT;
209
210         spin_unlock_irq(&b->rb_lock);
211
212         /*
213          * The signaling thread may be asleep holding a reference to a request,
214          * that had its signaling cancelled prior to being preempted. We need
215          * to kick the signaler, just in case, to release any such reference.
216          */
217 wakeup_signaler:
218         wake_up_process(b->signaler);
219 }
220
221 static bool use_fake_irq(const struct intel_breadcrumbs *b)
222 {
223         const struct intel_engine_cs *engine =
224                 container_of(b, struct intel_engine_cs, breadcrumbs);
225
226         if (!test_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings))
227                 return false;
228
229         /* Only start with the heavy weight fake irq timer if we have not
230          * seen any interrupts since enabling it the first time. If the
231          * interrupts are still arriving, it means we made a mistake in our
232          * engine->seqno_barrier(), a timing error that should be transient
233          * and unlikely to reoccur.
234          */
235         return atomic_read(&engine->irq_count) == b->hangcheck_interrupts;
236 }
237
238 static void enable_fake_irq(struct intel_breadcrumbs *b)
239 {
240         /* Ensure we never sleep indefinitely */
241         if (!b->irq_enabled || use_fake_irq(b))
242                 mod_timer(&b->fake_irq, jiffies + 1);
243         else
244                 mod_timer(&b->hangcheck, wait_timeout());
245 }
246
247 static bool __intel_breadcrumbs_enable_irq(struct intel_breadcrumbs *b)
248 {
249         struct intel_engine_cs *engine =
250                 container_of(b, struct intel_engine_cs, breadcrumbs);
251         struct drm_i915_private *i915 = engine->i915;
252
253         lockdep_assert_held(&b->irq_lock);
254         if (b->irq_armed)
255                 return false;
256
257         /* The breadcrumb irq will be disarmed on the interrupt after the
258          * waiters are signaled. This gives us a single interrupt window in
259          * which we can add a new waiter and avoid the cost of re-enabling
260          * the irq.
261          */
262         b->irq_armed = true;
263         GEM_BUG_ON(b->irq_enabled);
264
265         if (I915_SELFTEST_ONLY(b->mock)) {
266                 /* For our mock objects we want to avoid interaction
267                  * with the real hardware (which is not set up). So
268                  * we simply pretend we have enabled the powerwell
269                  * and the irq, and leave it up to the mock
270                  * implementation to call intel_engine_wakeup()
271                  * itself when it wants to simulate a user interrupt,
272                  */
273                 return true;
274         }
275
276         /* Since we are waiting on a request, the GPU should be busy
277          * and should have its own rpm reference. This is tracked
278          * by i915->gt.awake, we can forgo holding our own wakref
279          * for the interrupt as before i915->gt.awake is released (when
280          * the driver is idle) we disarm the breadcrumbs.
281          */
282
283         /* No interrupts? Kick the waiter every jiffie! */
284         if (intel_irqs_enabled(i915)) {
285                 if (!test_bit(engine->id, &i915->gpu_error.test_irq_rings))
286                         irq_enable(engine);
287                 b->irq_enabled = true;
288         }
289
290         enable_fake_irq(b);
291         return true;
292 }
293
294 static inline struct intel_wait *to_wait(struct rb_node *node)
295 {
296         return rb_entry(node, struct intel_wait, node);
297 }
298
299 static inline void __intel_breadcrumbs_finish(struct intel_breadcrumbs *b,
300                                               struct intel_wait *wait)
301 {
302         lockdep_assert_held(&b->rb_lock);
303         GEM_BUG_ON(b->irq_wait == wait);
304
305         /* This request is completed, so remove it from the tree, mark it as
306          * complete, and *then* wake up the associated task. N.B. when the
307          * task wakes up, it will find the empty rb_node, discern that it
308          * has already been removed from the tree and skip the serialisation
309          * of the b->rb_lock and b->irq_lock. This means that the destruction
310          * of the intel_wait is not serialised with the interrupt handler
311          * by the waiter - it must instead be serialised by the caller.
312          */
313         rb_erase(&wait->node, &b->waiters);
314         RB_CLEAR_NODE(&wait->node);
315
316         wake_up_process(wait->tsk); /* implicit smp_wmb() */
317 }
318
319 static inline void __intel_breadcrumbs_next(struct intel_engine_cs *engine,
320                                             struct rb_node *next)
321 {
322         struct intel_breadcrumbs *b = &engine->breadcrumbs;
323
324         spin_lock(&b->irq_lock);
325         GEM_BUG_ON(!b->irq_armed);
326         GEM_BUG_ON(!b->irq_wait);
327         b->irq_wait = to_wait(next);
328         spin_unlock(&b->irq_lock);
329
330         /* We always wake up the next waiter that takes over as the bottom-half
331          * as we may delegate not only the irq-seqno barrier to the next waiter
332          * but also the task of waking up concurrent waiters.
333          */
334         if (next)
335                 wake_up_process(to_wait(next)->tsk);
336 }
337
338 static bool __intel_engine_add_wait(struct intel_engine_cs *engine,
339                                     struct intel_wait *wait)
340 {
341         struct intel_breadcrumbs *b = &engine->breadcrumbs;
342         struct rb_node **p, *parent, *completed;
343         bool first, armed;
344         u32 seqno;
345
346         /* Insert the request into the retirement ordered list
347          * of waiters by walking the rbtree. If we are the oldest
348          * seqno in the tree (the first to be retired), then
349          * set ourselves as the bottom-half.
350          *
351          * As we descend the tree, prune completed branches since we hold the
352          * spinlock we know that the first_waiter must be delayed and can
353          * reduce some of the sequential wake up latency if we take action
354          * ourselves and wake up the completed tasks in parallel. Also, by
355          * removing stale elements in the tree, we may be able to reduce the
356          * ping-pong between the old bottom-half and ourselves as first-waiter.
357          */
358         armed = false;
359         first = true;
360         parent = NULL;
361         completed = NULL;
362         seqno = intel_engine_get_seqno(engine);
363
364          /* If the request completed before we managed to grab the spinlock,
365           * return now before adding ourselves to the rbtree. We let the
366           * current bottom-half handle any pending wakeups and instead
367           * try and get out of the way quickly.
368           */
369         if (i915_seqno_passed(seqno, wait->seqno)) {
370                 RB_CLEAR_NODE(&wait->node);
371                 return first;
372         }
373
374         p = &b->waiters.rb_node;
375         while (*p) {
376                 parent = *p;
377                 if (wait->seqno == to_wait(parent)->seqno) {
378                         /* We have multiple waiters on the same seqno, select
379                          * the highest priority task (that with the smallest
380                          * task->prio) to serve as the bottom-half for this
381                          * group.
382                          */
383                         if (wait->tsk->prio > to_wait(parent)->tsk->prio) {
384                                 p = &parent->rb_right;
385                                 first = false;
386                         } else {
387                                 p = &parent->rb_left;
388                         }
389                 } else if (i915_seqno_passed(wait->seqno,
390                                              to_wait(parent)->seqno)) {
391                         p = &parent->rb_right;
392                         if (i915_seqno_passed(seqno, to_wait(parent)->seqno))
393                                 completed = parent;
394                         else
395                                 first = false;
396                 } else {
397                         p = &parent->rb_left;
398                 }
399         }
400         rb_link_node(&wait->node, parent, p);
401         rb_insert_color(&wait->node, &b->waiters);
402
403         if (first) {
404                 spin_lock(&b->irq_lock);
405                 b->irq_wait = wait;
406                 /* After assigning ourselves as the new bottom-half, we must
407                  * perform a cursory check to prevent a missed interrupt.
408                  * Either we miss the interrupt whilst programming the hardware,
409                  * or if there was a previous waiter (for a later seqno) they
410                  * may be woken instead of us (due to the inherent race
411                  * in the unlocked read of b->irq_seqno_bh in the irq handler)
412                  * and so we miss the wake up.
413                  */
414                 armed = __intel_breadcrumbs_enable_irq(b);
415                 spin_unlock(&b->irq_lock);
416         }
417
418         if (completed) {
419                 /* Advance the bottom-half (b->irq_wait) before we wake up
420                  * the waiters who may scribble over their intel_wait
421                  * just as the interrupt handler is dereferencing it via
422                  * b->irq_wait.
423                  */
424                 if (!first) {
425                         struct rb_node *next = rb_next(completed);
426                         GEM_BUG_ON(next == &wait->node);
427                         __intel_breadcrumbs_next(engine, next);
428                 }
429
430                 do {
431                         struct intel_wait *crumb = to_wait(completed);
432                         completed = rb_prev(completed);
433                         __intel_breadcrumbs_finish(b, crumb);
434                 } while (completed);
435         }
436
437         GEM_BUG_ON(!b->irq_wait);
438         GEM_BUG_ON(!b->irq_armed);
439         GEM_BUG_ON(rb_first(&b->waiters) != &b->irq_wait->node);
440
441         return armed;
442 }
443
444 bool intel_engine_add_wait(struct intel_engine_cs *engine,
445                            struct intel_wait *wait)
446 {
447         struct intel_breadcrumbs *b = &engine->breadcrumbs;
448         bool armed;
449
450         spin_lock_irq(&b->rb_lock);
451         armed = __intel_engine_add_wait(engine, wait);
452         spin_unlock_irq(&b->rb_lock);
453         if (armed)
454                 return armed;
455
456         /* Make the caller recheck if its request has already started. */
457         return i915_seqno_passed(intel_engine_get_seqno(engine),
458                                  wait->seqno - 1);
459 }
460
461 static inline bool chain_wakeup(struct rb_node *rb, int priority)
462 {
463         return rb && to_wait(rb)->tsk->prio <= priority;
464 }
465
466 static inline int wakeup_priority(struct intel_breadcrumbs *b,
467                                   struct task_struct *tsk)
468 {
469         if (tsk == b->signaler)
470                 return INT_MIN;
471         else
472                 return tsk->prio;
473 }
474
475 static void __intel_engine_remove_wait(struct intel_engine_cs *engine,
476                                        struct intel_wait *wait)
477 {
478         struct intel_breadcrumbs *b = &engine->breadcrumbs;
479
480         lockdep_assert_held(&b->rb_lock);
481
482         if (RB_EMPTY_NODE(&wait->node))
483                 goto out;
484
485         if (b->irq_wait == wait) {
486                 const int priority = wakeup_priority(b, wait->tsk);
487                 struct rb_node *next;
488
489                 /* We are the current bottom-half. Find the next candidate,
490                  * the first waiter in the queue on the remaining oldest
491                  * request. As multiple seqnos may complete in the time it
492                  * takes us to wake up and find the next waiter, we have to
493                  * wake up that waiter for it to perform its own coherent
494                  * completion check.
495                  */
496                 next = rb_next(&wait->node);
497                 if (chain_wakeup(next, priority)) {
498                         /* If the next waiter is already complete,
499                          * wake it up and continue onto the next waiter. So
500                          * if have a small herd, they will wake up in parallel
501                          * rather than sequentially, which should reduce
502                          * the overall latency in waking all the completed
503                          * clients.
504                          *
505                          * However, waking up a chain adds extra latency to
506                          * the first_waiter. This is undesirable if that
507                          * waiter is a high priority task.
508                          */
509                         u32 seqno = intel_engine_get_seqno(engine);
510
511                         while (i915_seqno_passed(seqno, to_wait(next)->seqno)) {
512                                 struct rb_node *n = rb_next(next);
513
514                                 __intel_breadcrumbs_finish(b, to_wait(next));
515                                 next = n;
516                                 if (!chain_wakeup(next, priority))
517                                         break;
518                         }
519                 }
520
521                 __intel_breadcrumbs_next(engine, next);
522         } else {
523                 GEM_BUG_ON(rb_first(&b->waiters) == &wait->node);
524         }
525
526         GEM_BUG_ON(RB_EMPTY_NODE(&wait->node));
527         rb_erase(&wait->node, &b->waiters);
528         RB_CLEAR_NODE(&wait->node);
529
530 out:
531         GEM_BUG_ON(b->irq_wait == wait);
532         GEM_BUG_ON(rb_first(&b->waiters) !=
533                    (b->irq_wait ? &b->irq_wait->node : NULL));
534 }
535
536 void intel_engine_remove_wait(struct intel_engine_cs *engine,
537                               struct intel_wait *wait)
538 {
539         struct intel_breadcrumbs *b = &engine->breadcrumbs;
540
541         /* Quick check to see if this waiter was already decoupled from
542          * the tree by the bottom-half to avoid contention on the spinlock
543          * by the herd.
544          */
545         if (RB_EMPTY_NODE(&wait->node)) {
546                 GEM_BUG_ON(READ_ONCE(b->irq_wait) == wait);
547                 return;
548         }
549
550         spin_lock_irq(&b->rb_lock);
551         __intel_engine_remove_wait(engine, wait);
552         spin_unlock_irq(&b->rb_lock);
553 }
554
555 static bool signal_valid(const struct drm_i915_gem_request *request)
556 {
557         return intel_wait_check_request(&request->signaling.wait, request);
558 }
559
560 static bool signal_complete(const struct drm_i915_gem_request *request)
561 {
562         if (!request)
563                 return false;
564
565         /* If another process served as the bottom-half it may have already
566          * signalled that this wait is already completed.
567          */
568         if (intel_wait_complete(&request->signaling.wait))
569                 return signal_valid(request);
570
571         /* Carefully check if the request is complete, giving time for the
572          * seqno to be visible or if the GPU hung.
573          */
574         if (__i915_request_irq_complete(request))
575                 return true;
576
577         return false;
578 }
579
580 static struct drm_i915_gem_request *to_signaler(struct rb_node *rb)
581 {
582         return rb_entry(rb, struct drm_i915_gem_request, signaling.node);
583 }
584
585 static void signaler_set_rtpriority(void)
586 {
587          struct sched_param param = { .sched_priority = 1 };
588
589          sched_setscheduler_nocheck(current, SCHED_FIFO, &param);
590 }
591
592 static int intel_breadcrumbs_signaler(void *arg)
593 {
594         struct intel_engine_cs *engine = arg;
595         struct intel_breadcrumbs *b = &engine->breadcrumbs;
596         struct drm_i915_gem_request *request;
597
598         /* Install ourselves with high priority to reduce signalling latency */
599         signaler_set_rtpriority();
600
601         do {
602                 bool do_schedule = true;
603
604                 set_current_state(TASK_INTERRUPTIBLE);
605
606                 /* We are either woken up by the interrupt bottom-half,
607                  * or by a client adding a new signaller. In both cases,
608                  * the GPU seqno may have advanced beyond our oldest signal.
609                  * If it has, propagate the signal, remove the waiter and
610                  * check again with the next oldest signal. Otherwise we
611                  * need to wait for a new interrupt from the GPU or for
612                  * a new client.
613                  */
614                 rcu_read_lock();
615                 request = rcu_dereference(b->first_signal);
616                 if (request)
617                         request = i915_gem_request_get_rcu(request);
618                 rcu_read_unlock();
619                 if (signal_complete(request)) {
620                         local_bh_disable();
621                         dma_fence_signal(&request->fence);
622                         local_bh_enable(); /* kick start the tasklets */
623
624                         spin_lock_irq(&b->rb_lock);
625
626                         /* Wake up all other completed waiters and select the
627                          * next bottom-half for the next user interrupt.
628                          */
629                         __intel_engine_remove_wait(engine,
630                                                    &request->signaling.wait);
631
632                         /* Find the next oldest signal. Note that as we have
633                          * not been holding the lock, another client may
634                          * have installed an even older signal than the one
635                          * we just completed - so double check we are still
636                          * the oldest before picking the next one.
637                          */
638                         if (request == rcu_access_pointer(b->first_signal)) {
639                                 struct rb_node *rb =
640                                         rb_next(&request->signaling.node);
641                                 rcu_assign_pointer(b->first_signal,
642                                                    rb ? to_signaler(rb) : NULL);
643                         }
644                         rb_erase(&request->signaling.node, &b->signals);
645                         RB_CLEAR_NODE(&request->signaling.node);
646
647                         spin_unlock_irq(&b->rb_lock);
648
649                         i915_gem_request_put(request);
650
651                         /* If the engine is saturated we may be continually
652                          * processing completed requests. This angers the
653                          * NMI watchdog if we never let anything else
654                          * have access to the CPU. Let's pretend to be nice
655                          * and relinquish the CPU if we burn through the
656                          * entire RT timeslice!
657                          */
658                         do_schedule = need_resched();
659                 }
660
661                 if (unlikely(do_schedule)) {
662                         if (kthread_should_park())
663                                 kthread_parkme();
664
665                         if (unlikely(kthread_should_stop())) {
666                                 i915_gem_request_put(request);
667                                 break;
668                         }
669
670                         schedule();
671                 }
672                 i915_gem_request_put(request);
673         } while (1);
674         __set_current_state(TASK_RUNNING);
675
676         return 0;
677 }
678
679 void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
680                                    bool wakeup)
681 {
682         struct intel_engine_cs *engine = request->engine;
683         struct intel_breadcrumbs *b = &engine->breadcrumbs;
684         u32 seqno;
685
686         /* Note that we may be called from an interrupt handler on another
687          * device (e.g. nouveau signaling a fence completion causing us
688          * to submit a request, and so enable signaling). As such,
689          * we need to make sure that all other users of b->rb_lock protect
690          * against interrupts, i.e. use spin_lock_irqsave.
691          */
692
693         /* locked by dma_fence_enable_sw_signaling() (irqsafe fence->lock) */
694         GEM_BUG_ON(!irqs_disabled());
695         lockdep_assert_held(&request->lock);
696
697         seqno = i915_gem_request_global_seqno(request);
698         if (!seqno)
699                 return;
700
701         request->signaling.wait.tsk = b->signaler;
702         request->signaling.wait.request = request;
703         request->signaling.wait.seqno = seqno;
704         i915_gem_request_get(request);
705
706         spin_lock(&b->rb_lock);
707
708         /* First add ourselves into the list of waiters, but register our
709          * bottom-half as the signaller thread. As per usual, only the oldest
710          * waiter (not just signaller) is tasked as the bottom-half waking
711          * up all completed waiters after the user interrupt.
712          *
713          * If we are the oldest waiter, enable the irq (after which we
714          * must double check that the seqno did not complete).
715          */
716         wakeup &= __intel_engine_add_wait(engine, &request->signaling.wait);
717
718         if (!__i915_gem_request_completed(request, seqno)) {
719                 struct rb_node *parent, **p;
720                 bool first;
721
722                 /* Now insert ourselves into the retirement ordered list of
723                  * signals on this engine. We track the oldest seqno as that
724                  * will be the first signal to complete.
725                  */
726                 parent = NULL;
727                 first = true;
728                 p = &b->signals.rb_node;
729                 while (*p) {
730                         parent = *p;
731                         if (i915_seqno_passed(seqno,
732                                               to_signaler(parent)->signaling.wait.seqno)) {
733                                 p = &parent->rb_right;
734                                 first = false;
735                         } else {
736                                 p = &parent->rb_left;
737                         }
738                 }
739                 rb_link_node(&request->signaling.node, parent, p);
740                 rb_insert_color(&request->signaling.node, &b->signals);
741                 if (first)
742                         rcu_assign_pointer(b->first_signal, request);
743         } else {
744                 __intel_engine_remove_wait(engine, &request->signaling.wait);
745                 i915_gem_request_put(request);
746                 wakeup = false;
747         }
748
749         spin_unlock(&b->rb_lock);
750
751         if (wakeup)
752                 wake_up_process(b->signaler);
753 }
754
755 void intel_engine_cancel_signaling(struct drm_i915_gem_request *request)
756 {
757         struct intel_engine_cs *engine = request->engine;
758         struct intel_breadcrumbs *b = &engine->breadcrumbs;
759
760         GEM_BUG_ON(!irqs_disabled());
761         lockdep_assert_held(&request->lock);
762         GEM_BUG_ON(!request->signaling.wait.seqno);
763
764         spin_lock(&b->rb_lock);
765
766         if (!RB_EMPTY_NODE(&request->signaling.node)) {
767                 if (request == rcu_access_pointer(b->first_signal)) {
768                         struct rb_node *rb =
769                                 rb_next(&request->signaling.node);
770                         rcu_assign_pointer(b->first_signal,
771                                            rb ? to_signaler(rb) : NULL);
772                 }
773                 rb_erase(&request->signaling.node, &b->signals);
774                 RB_CLEAR_NODE(&request->signaling.node);
775                 i915_gem_request_put(request);
776         }
777
778         __intel_engine_remove_wait(engine, &request->signaling.wait);
779
780         spin_unlock(&b->rb_lock);
781
782         request->signaling.wait.seqno = 0;
783 }
784
785 int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine)
786 {
787         struct intel_breadcrumbs *b = &engine->breadcrumbs;
788         struct task_struct *tsk;
789
790         spin_lock_init(&b->rb_lock);
791         spin_lock_init(&b->irq_lock);
792
793         timer_setup(&b->fake_irq, intel_breadcrumbs_fake_irq, 0);
794         timer_setup(&b->hangcheck, intel_breadcrumbs_hangcheck, 0);
795
796         /* Spawn a thread to provide a common bottom-half for all signals.
797          * As this is an asynchronous interface we cannot steal the current
798          * task for handling the bottom-half to the user interrupt, therefore
799          * we create a thread to do the coherent seqno dance after the
800          * interrupt and then signal the waitqueue (via the dma-buf/fence).
801          */
802         tsk = kthread_run(intel_breadcrumbs_signaler, engine,
803                           "i915/signal:%d", engine->id);
804         if (IS_ERR(tsk))
805                 return PTR_ERR(tsk);
806
807         b->signaler = tsk;
808
809         return 0;
810 }
811
812 static void cancel_fake_irq(struct intel_engine_cs *engine)
813 {
814         struct intel_breadcrumbs *b = &engine->breadcrumbs;
815
816         del_timer_sync(&b->hangcheck);
817         del_timer_sync(&b->fake_irq);
818         clear_bit(engine->id, &engine->i915->gpu_error.missed_irq_rings);
819 }
820
821 void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine)
822 {
823         struct intel_breadcrumbs *b = &engine->breadcrumbs;
824
825         cancel_fake_irq(engine);
826         spin_lock_irq(&b->irq_lock);
827
828         if (b->irq_enabled)
829                 irq_enable(engine);
830         else
831                 irq_disable(engine);
832
833         /* We set the IRQ_BREADCRUMB bit when we enable the irq presuming the
834          * GPU is active and may have already executed the MI_USER_INTERRUPT
835          * before the CPU is ready to receive. However, the engine is currently
836          * idle (we haven't started it yet), there is no possibility for a
837          * missed interrupt as we enabled the irq and so we can clear the
838          * immediate wakeup (until a real interrupt arrives for the waiter).
839          */
840         clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
841
842         if (b->irq_armed)
843                 enable_fake_irq(b);
844
845         spin_unlock_irq(&b->irq_lock);
846 }
847
848 void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine)
849 {
850         struct intel_breadcrumbs *b = &engine->breadcrumbs;
851
852         /* The engines should be idle and all requests accounted for! */
853         WARN_ON(READ_ONCE(b->irq_wait));
854         WARN_ON(!RB_EMPTY_ROOT(&b->waiters));
855         WARN_ON(rcu_access_pointer(b->first_signal));
856         WARN_ON(!RB_EMPTY_ROOT(&b->signals));
857
858         if (!IS_ERR_OR_NULL(b->signaler))
859                 kthread_stop(b->signaler);
860
861         cancel_fake_irq(engine);
862 }
863
864 bool intel_breadcrumbs_busy(struct intel_engine_cs *engine)
865 {
866         struct intel_breadcrumbs *b = &engine->breadcrumbs;
867         bool busy = false;
868
869         spin_lock_irq(&b->rb_lock);
870
871         if (b->irq_wait) {
872                 wake_up_process(b->irq_wait->tsk);
873                 busy = true;
874         }
875
876         if (rcu_access_pointer(b->first_signal)) {
877                 wake_up_process(b->signaler);
878                 busy = true;
879         }
880
881         spin_unlock_irq(&b->rb_lock);
882
883         return busy;
884 }
885
886 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
887 #include "selftests/intel_breadcrumbs.c"
888 #endif