Merge remote-tracking branches 'regulator/fix/max1586', 'regulator/fix/max77686'...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 static const u32 hpd_ibx[] = {
41         [HPD_CRT] = SDE_CRT_HOTPLUG,
42         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
43         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
44         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
45         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
46 };
47
48 static const u32 hpd_cpt[] = {
49         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
50         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
51         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
52         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
53         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
54 };
55
56 static const u32 hpd_mask_i915[] = {
57         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
58         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
59         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
60         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
61         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
62         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
63 };
64
65 static const u32 hpd_status_g4x[] = {
66         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
67         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
68         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
69         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
70         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
71         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
72 };
73
74 static const u32 hpd_status_i915[] = { /* i915 and valleyview are the same */
75         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
76         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
77         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
78         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
79         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
80         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
81 };
82
83 /* IIR can theoretically queue up two events. Be paranoid. */
84 #define GEN8_IRQ_RESET_NDX(type, which) do { \
85         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
86         POSTING_READ(GEN8_##type##_IMR(which)); \
87         I915_WRITE(GEN8_##type##_IER(which), 0); \
88         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
89         POSTING_READ(GEN8_##type##_IIR(which)); \
90         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
91         POSTING_READ(GEN8_##type##_IIR(which)); \
92 } while (0)
93
94 #define GEN5_IRQ_RESET(type) do { \
95         I915_WRITE(type##IMR, 0xffffffff); \
96         POSTING_READ(type##IMR); \
97         I915_WRITE(type##IER, 0); \
98         I915_WRITE(type##IIR, 0xffffffff); \
99         POSTING_READ(type##IIR); \
100         I915_WRITE(type##IIR, 0xffffffff); \
101         POSTING_READ(type##IIR); \
102 } while (0)
103
104 /*
105  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
106  */
107 #define GEN5_ASSERT_IIR_IS_ZERO(reg) do { \
108         u32 val = I915_READ(reg); \
109         if (val) { \
110                 WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n", \
111                      (reg), val); \
112                 I915_WRITE((reg), 0xffffffff); \
113                 POSTING_READ(reg); \
114                 I915_WRITE((reg), 0xffffffff); \
115                 POSTING_READ(reg); \
116         } \
117 } while (0)
118
119 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
120         GEN5_ASSERT_IIR_IS_ZERO(GEN8_##type##_IIR(which)); \
121         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
122         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
123         POSTING_READ(GEN8_##type##_IER(which)); \
124 } while (0)
125
126 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
127         GEN5_ASSERT_IIR_IS_ZERO(type##IIR); \
128         I915_WRITE(type##IMR, (imr_val)); \
129         I915_WRITE(type##IER, (ier_val)); \
130         POSTING_READ(type##IER); \
131 } while (0)
132
133 /* For display hotplug interrupt */
134 static void
135 ironlake_enable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
136 {
137         assert_spin_locked(&dev_priv->irq_lock);
138
139         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
140                 return;
141
142         if ((dev_priv->irq_mask & mask) != 0) {
143                 dev_priv->irq_mask &= ~mask;
144                 I915_WRITE(DEIMR, dev_priv->irq_mask);
145                 POSTING_READ(DEIMR);
146         }
147 }
148
149 static void
150 ironlake_disable_display_irq(struct drm_i915_private *dev_priv, u32 mask)
151 {
152         assert_spin_locked(&dev_priv->irq_lock);
153
154         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
155                 return;
156
157         if ((dev_priv->irq_mask & mask) != mask) {
158                 dev_priv->irq_mask |= mask;
159                 I915_WRITE(DEIMR, dev_priv->irq_mask);
160                 POSTING_READ(DEIMR);
161         }
162 }
163
164 /**
165  * ilk_update_gt_irq - update GTIMR
166  * @dev_priv: driver private
167  * @interrupt_mask: mask of interrupt bits to update
168  * @enabled_irq_mask: mask of interrupt bits to enable
169  */
170 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
171                               uint32_t interrupt_mask,
172                               uint32_t enabled_irq_mask)
173 {
174         assert_spin_locked(&dev_priv->irq_lock);
175
176         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
177                 return;
178
179         dev_priv->gt_irq_mask &= ~interrupt_mask;
180         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
181         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
182         POSTING_READ(GTIMR);
183 }
184
185 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
186 {
187         ilk_update_gt_irq(dev_priv, mask, mask);
188 }
189
190 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
191 {
192         ilk_update_gt_irq(dev_priv, mask, 0);
193 }
194
195 /**
196   * snb_update_pm_irq - update GEN6_PMIMR
197   * @dev_priv: driver private
198   * @interrupt_mask: mask of interrupt bits to update
199   * @enabled_irq_mask: mask of interrupt bits to enable
200   */
201 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
202                               uint32_t interrupt_mask,
203                               uint32_t enabled_irq_mask)
204 {
205         uint32_t new_val;
206
207         assert_spin_locked(&dev_priv->irq_lock);
208
209         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
210                 return;
211
212         new_val = dev_priv->pm_irq_mask;
213         new_val &= ~interrupt_mask;
214         new_val |= (~enabled_irq_mask & interrupt_mask);
215
216         if (new_val != dev_priv->pm_irq_mask) {
217                 dev_priv->pm_irq_mask = new_val;
218                 I915_WRITE(GEN6_PMIMR, dev_priv->pm_irq_mask);
219                 POSTING_READ(GEN6_PMIMR);
220         }
221 }
222
223 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
224 {
225         snb_update_pm_irq(dev_priv, mask, mask);
226 }
227
228 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
229 {
230         snb_update_pm_irq(dev_priv, mask, 0);
231 }
232
233 static bool ivb_can_enable_err_int(struct drm_device *dev)
234 {
235         struct drm_i915_private *dev_priv = dev->dev_private;
236         struct intel_crtc *crtc;
237         enum pipe pipe;
238
239         assert_spin_locked(&dev_priv->irq_lock);
240
241         for_each_pipe(dev_priv, pipe) {
242                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
243
244                 if (crtc->cpu_fifo_underrun_disabled)
245                         return false;
246         }
247
248         return true;
249 }
250
251 /**
252   * bdw_update_pm_irq - update GT interrupt 2
253   * @dev_priv: driver private
254   * @interrupt_mask: mask of interrupt bits to update
255   * @enabled_irq_mask: mask of interrupt bits to enable
256   *
257   * Copied from the snb function, updated with relevant register offsets
258   */
259 static void bdw_update_pm_irq(struct drm_i915_private *dev_priv,
260                               uint32_t interrupt_mask,
261                               uint32_t enabled_irq_mask)
262 {
263         uint32_t new_val;
264
265         assert_spin_locked(&dev_priv->irq_lock);
266
267         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
268                 return;
269
270         new_val = dev_priv->pm_irq_mask;
271         new_val &= ~interrupt_mask;
272         new_val |= (~enabled_irq_mask & interrupt_mask);
273
274         if (new_val != dev_priv->pm_irq_mask) {
275                 dev_priv->pm_irq_mask = new_val;
276                 I915_WRITE(GEN8_GT_IMR(2), dev_priv->pm_irq_mask);
277                 POSTING_READ(GEN8_GT_IMR(2));
278         }
279 }
280
281 void gen8_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
282 {
283         bdw_update_pm_irq(dev_priv, mask, mask);
284 }
285
286 void gen8_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
287 {
288         bdw_update_pm_irq(dev_priv, mask, 0);
289 }
290
291 static bool cpt_can_enable_serr_int(struct drm_device *dev)
292 {
293         struct drm_i915_private *dev_priv = dev->dev_private;
294         enum pipe pipe;
295         struct intel_crtc *crtc;
296
297         assert_spin_locked(&dev_priv->irq_lock);
298
299         for_each_pipe(dev_priv, pipe) {
300                 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
301
302                 if (crtc->pch_fifo_underrun_disabled)
303                         return false;
304         }
305
306         return true;
307 }
308
309 void i9xx_check_fifo_underruns(struct drm_device *dev)
310 {
311         struct drm_i915_private *dev_priv = dev->dev_private;
312         struct intel_crtc *crtc;
313         unsigned long flags;
314
315         spin_lock_irqsave(&dev_priv->irq_lock, flags);
316
317         for_each_intel_crtc(dev, crtc) {
318                 u32 reg = PIPESTAT(crtc->pipe);
319                 u32 pipestat;
320
321                 if (crtc->cpu_fifo_underrun_disabled)
322                         continue;
323
324                 pipestat = I915_READ(reg) & 0xffff0000;
325                 if ((pipestat & PIPE_FIFO_UNDERRUN_STATUS) == 0)
326                         continue;
327
328                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
329                 POSTING_READ(reg);
330
331                 DRM_ERROR("pipe %c underrun\n", pipe_name(crtc->pipe));
332         }
333
334         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
335 }
336
337 static void i9xx_set_fifo_underrun_reporting(struct drm_device *dev,
338                                              enum pipe pipe,
339                                              bool enable, bool old)
340 {
341         struct drm_i915_private *dev_priv = dev->dev_private;
342         u32 reg = PIPESTAT(pipe);
343         u32 pipestat = I915_READ(reg) & 0xffff0000;
344
345         assert_spin_locked(&dev_priv->irq_lock);
346
347         if (enable) {
348                 I915_WRITE(reg, pipestat | PIPE_FIFO_UNDERRUN_STATUS);
349                 POSTING_READ(reg);
350         } else {
351                 if (old && pipestat & PIPE_FIFO_UNDERRUN_STATUS)
352                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
353         }
354 }
355
356 static void ironlake_set_fifo_underrun_reporting(struct drm_device *dev,
357                                                  enum pipe pipe, bool enable)
358 {
359         struct drm_i915_private *dev_priv = dev->dev_private;
360         uint32_t bit = (pipe == PIPE_A) ? DE_PIPEA_FIFO_UNDERRUN :
361                                           DE_PIPEB_FIFO_UNDERRUN;
362
363         if (enable)
364                 ironlake_enable_display_irq(dev_priv, bit);
365         else
366                 ironlake_disable_display_irq(dev_priv, bit);
367 }
368
369 static void ivybridge_set_fifo_underrun_reporting(struct drm_device *dev,
370                                                   enum pipe pipe,
371                                                   bool enable, bool old)
372 {
373         struct drm_i915_private *dev_priv = dev->dev_private;
374         if (enable) {
375                 I915_WRITE(GEN7_ERR_INT, ERR_INT_FIFO_UNDERRUN(pipe));
376
377                 if (!ivb_can_enable_err_int(dev))
378                         return;
379
380                 ironlake_enable_display_irq(dev_priv, DE_ERR_INT_IVB);
381         } else {
382                 ironlake_disable_display_irq(dev_priv, DE_ERR_INT_IVB);
383
384                 if (old &&
385                     I915_READ(GEN7_ERR_INT) & ERR_INT_FIFO_UNDERRUN(pipe)) {
386                         DRM_ERROR("uncleared fifo underrun on pipe %c\n",
387                                   pipe_name(pipe));
388                 }
389         }
390 }
391
392 static void broadwell_set_fifo_underrun_reporting(struct drm_device *dev,
393                                                   enum pipe pipe, bool enable)
394 {
395         struct drm_i915_private *dev_priv = dev->dev_private;
396
397         assert_spin_locked(&dev_priv->irq_lock);
398
399         if (enable)
400                 dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_FIFO_UNDERRUN;
401         else
402                 dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_FIFO_UNDERRUN;
403         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
404         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
405 }
406
407 /**
408  * ibx_display_interrupt_update - update SDEIMR
409  * @dev_priv: driver private
410  * @interrupt_mask: mask of interrupt bits to update
411  * @enabled_irq_mask: mask of interrupt bits to enable
412  */
413 static void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
414                                          uint32_t interrupt_mask,
415                                          uint32_t enabled_irq_mask)
416 {
417         uint32_t sdeimr = I915_READ(SDEIMR);
418         sdeimr &= ~interrupt_mask;
419         sdeimr |= (~enabled_irq_mask & interrupt_mask);
420
421         assert_spin_locked(&dev_priv->irq_lock);
422
423         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
424                 return;
425
426         I915_WRITE(SDEIMR, sdeimr);
427         POSTING_READ(SDEIMR);
428 }
429 #define ibx_enable_display_interrupt(dev_priv, bits) \
430         ibx_display_interrupt_update((dev_priv), (bits), (bits))
431 #define ibx_disable_display_interrupt(dev_priv, bits) \
432         ibx_display_interrupt_update((dev_priv), (bits), 0)
433
434 static void ibx_set_fifo_underrun_reporting(struct drm_device *dev,
435                                             enum transcoder pch_transcoder,
436                                             bool enable)
437 {
438         struct drm_i915_private *dev_priv = dev->dev_private;
439         uint32_t bit = (pch_transcoder == TRANSCODER_A) ?
440                        SDE_TRANSA_FIFO_UNDER : SDE_TRANSB_FIFO_UNDER;
441
442         if (enable)
443                 ibx_enable_display_interrupt(dev_priv, bit);
444         else
445                 ibx_disable_display_interrupt(dev_priv, bit);
446 }
447
448 static void cpt_set_fifo_underrun_reporting(struct drm_device *dev,
449                                             enum transcoder pch_transcoder,
450                                             bool enable, bool old)
451 {
452         struct drm_i915_private *dev_priv = dev->dev_private;
453
454         if (enable) {
455                 I915_WRITE(SERR_INT,
456                            SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder));
457
458                 if (!cpt_can_enable_serr_int(dev))
459                         return;
460
461                 ibx_enable_display_interrupt(dev_priv, SDE_ERROR_CPT);
462         } else {
463                 ibx_disable_display_interrupt(dev_priv, SDE_ERROR_CPT);
464
465                 if (old && I915_READ(SERR_INT) &
466                     SERR_INT_TRANS_FIFO_UNDERRUN(pch_transcoder)) {
467                         DRM_ERROR("uncleared pch fifo underrun on pch transcoder %c\n",
468                                   transcoder_name(pch_transcoder));
469                 }
470         }
471 }
472
473 /**
474  * intel_set_cpu_fifo_underrun_reporting - enable/disable FIFO underrun messages
475  * @dev: drm device
476  * @pipe: pipe
477  * @enable: true if we want to report FIFO underrun errors, false otherwise
478  *
479  * This function makes us disable or enable CPU fifo underruns for a specific
480  * pipe. Notice that on some Gens (e.g. IVB, HSW), disabling FIFO underrun
481  * reporting for one pipe may also disable all the other CPU error interruts for
482  * the other pipes, due to the fact that there's just one interrupt mask/enable
483  * bit for all the pipes.
484  *
485  * Returns the previous state of underrun reporting.
486  */
487 static bool __intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
488                                                     enum pipe pipe, bool enable)
489 {
490         struct drm_i915_private *dev_priv = dev->dev_private;
491         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
492         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
493         bool old;
494
495         assert_spin_locked(&dev_priv->irq_lock);
496
497         old = !intel_crtc->cpu_fifo_underrun_disabled;
498         intel_crtc->cpu_fifo_underrun_disabled = !enable;
499
500         if (HAS_GMCH_DISPLAY(dev))
501                 i9xx_set_fifo_underrun_reporting(dev, pipe, enable, old);
502         else if (IS_GEN5(dev) || IS_GEN6(dev))
503                 ironlake_set_fifo_underrun_reporting(dev, pipe, enable);
504         else if (IS_GEN7(dev))
505                 ivybridge_set_fifo_underrun_reporting(dev, pipe, enable, old);
506         else if (IS_GEN8(dev))
507                 broadwell_set_fifo_underrun_reporting(dev, pipe, enable);
508
509         return old;
510 }
511
512 bool intel_set_cpu_fifo_underrun_reporting(struct drm_device *dev,
513                                            enum pipe pipe, bool enable)
514 {
515         struct drm_i915_private *dev_priv = dev->dev_private;
516         unsigned long flags;
517         bool ret;
518
519         spin_lock_irqsave(&dev_priv->irq_lock, flags);
520         ret = __intel_set_cpu_fifo_underrun_reporting(dev, pipe, enable);
521         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
522
523         return ret;
524 }
525
526 static bool __cpu_fifo_underrun_reporting_enabled(struct drm_device *dev,
527                                                   enum pipe pipe)
528 {
529         struct drm_i915_private *dev_priv = dev->dev_private;
530         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
531         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
532
533         return !intel_crtc->cpu_fifo_underrun_disabled;
534 }
535
536 /**
537  * intel_set_pch_fifo_underrun_reporting - enable/disable FIFO underrun messages
538  * @dev: drm device
539  * @pch_transcoder: the PCH transcoder (same as pipe on IVB and older)
540  * @enable: true if we want to report FIFO underrun errors, false otherwise
541  *
542  * This function makes us disable or enable PCH fifo underruns for a specific
543  * PCH transcoder. Notice that on some PCHs (e.g. CPT/PPT), disabling FIFO
544  * underrun reporting for one transcoder may also disable all the other PCH
545  * error interruts for the other transcoders, due to the fact that there's just
546  * one interrupt mask/enable bit for all the transcoders.
547  *
548  * Returns the previous state of underrun reporting.
549  */
550 bool intel_set_pch_fifo_underrun_reporting(struct drm_device *dev,
551                                            enum transcoder pch_transcoder,
552                                            bool enable)
553 {
554         struct drm_i915_private *dev_priv = dev->dev_private;
555         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pch_transcoder];
556         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
557         unsigned long flags;
558         bool old;
559
560         /*
561          * NOTE: Pre-LPT has a fixed cpu pipe -> pch transcoder mapping, but LPT
562          * has only one pch transcoder A that all pipes can use. To avoid racy
563          * pch transcoder -> pipe lookups from interrupt code simply store the
564          * underrun statistics in crtc A. Since we never expose this anywhere
565          * nor use it outside of the fifo underrun code here using the "wrong"
566          * crtc on LPT won't cause issues.
567          */
568
569         spin_lock_irqsave(&dev_priv->irq_lock, flags);
570
571         old = !intel_crtc->pch_fifo_underrun_disabled;
572         intel_crtc->pch_fifo_underrun_disabled = !enable;
573
574         if (HAS_PCH_IBX(dev))
575                 ibx_set_fifo_underrun_reporting(dev, pch_transcoder, enable);
576         else
577                 cpt_set_fifo_underrun_reporting(dev, pch_transcoder, enable, old);
578
579         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
580         return old;
581 }
582
583
584 static void
585 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
586                        u32 enable_mask, u32 status_mask)
587 {
588         u32 reg = PIPESTAT(pipe);
589         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
590
591         assert_spin_locked(&dev_priv->irq_lock);
592
593         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
594                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
595                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
596                       pipe_name(pipe), enable_mask, status_mask))
597                 return;
598
599         if ((pipestat & enable_mask) == enable_mask)
600                 return;
601
602         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
603
604         /* Enable the interrupt, clear any pending status */
605         pipestat |= enable_mask | status_mask;
606         I915_WRITE(reg, pipestat);
607         POSTING_READ(reg);
608 }
609
610 static void
611 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
612                         u32 enable_mask, u32 status_mask)
613 {
614         u32 reg = PIPESTAT(pipe);
615         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
616
617         assert_spin_locked(&dev_priv->irq_lock);
618
619         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
620                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
621                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
622                       pipe_name(pipe), enable_mask, status_mask))
623                 return;
624
625         if ((pipestat & enable_mask) == 0)
626                 return;
627
628         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
629
630         pipestat &= ~enable_mask;
631         I915_WRITE(reg, pipestat);
632         POSTING_READ(reg);
633 }
634
635 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
636 {
637         u32 enable_mask = status_mask << 16;
638
639         /*
640          * On pipe A we don't support the PSR interrupt yet,
641          * on pipe B and C the same bit MBZ.
642          */
643         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
644                 return 0;
645         /*
646          * On pipe B and C we don't support the PSR interrupt yet, on pipe
647          * A the same bit is for perf counters which we don't use either.
648          */
649         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
650                 return 0;
651
652         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
653                          SPRITE0_FLIP_DONE_INT_EN_VLV |
654                          SPRITE1_FLIP_DONE_INT_EN_VLV);
655         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
656                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
657         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
658                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
659
660         return enable_mask;
661 }
662
663 void
664 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
665                      u32 status_mask)
666 {
667         u32 enable_mask;
668
669         if (IS_VALLEYVIEW(dev_priv->dev))
670                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
671                                                            status_mask);
672         else
673                 enable_mask = status_mask << 16;
674         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
675 }
676
677 void
678 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
679                       u32 status_mask)
680 {
681         u32 enable_mask;
682
683         if (IS_VALLEYVIEW(dev_priv->dev))
684                 enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
685                                                            status_mask);
686         else
687                 enable_mask = status_mask << 16;
688         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
689 }
690
691 /**
692  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
693  */
694 static void i915_enable_asle_pipestat(struct drm_device *dev)
695 {
696         struct drm_i915_private *dev_priv = dev->dev_private;
697         unsigned long irqflags;
698
699         if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
700                 return;
701
702         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
703
704         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
705         if (INTEL_INFO(dev)->gen >= 4)
706                 i915_enable_pipestat(dev_priv, PIPE_A,
707                                      PIPE_LEGACY_BLC_EVENT_STATUS);
708
709         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
710 }
711
712 /**
713  * i915_pipe_enabled - check if a pipe is enabled
714  * @dev: DRM device
715  * @pipe: pipe to check
716  *
717  * Reading certain registers when the pipe is disabled can hang the chip.
718  * Use this routine to make sure the PLL is running and the pipe is active
719  * before reading such registers if unsure.
720  */
721 static int
722 i915_pipe_enabled(struct drm_device *dev, int pipe)
723 {
724         struct drm_i915_private *dev_priv = dev->dev_private;
725
726         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
727                 /* Locking is horribly broken here, but whatever. */
728                 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
729                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
730
731                 return intel_crtc->active;
732         } else {
733                 return I915_READ(PIPECONF(pipe)) & PIPECONF_ENABLE;
734         }
735 }
736
737 /*
738  * This timing diagram depicts the video signal in and
739  * around the vertical blanking period.
740  *
741  * Assumptions about the fictitious mode used in this example:
742  *  vblank_start >= 3
743  *  vsync_start = vblank_start + 1
744  *  vsync_end = vblank_start + 2
745  *  vtotal = vblank_start + 3
746  *
747  *           start of vblank:
748  *           latch double buffered registers
749  *           increment frame counter (ctg+)
750  *           generate start of vblank interrupt (gen4+)
751  *           |
752  *           |          frame start:
753  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
754  *           |          may be shifted forward 1-3 extra lines via PIPECONF
755  *           |          |
756  *           |          |  start of vsync:
757  *           |          |  generate vsync interrupt
758  *           |          |  |
759  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
760  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
761  * ----va---> <-----------------vb--------------------> <--------va-------------
762  *       |          |       <----vs----->                     |
763  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
764  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
765  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
766  *       |          |                                         |
767  *       last visible pixel                                   first visible pixel
768  *                  |                                         increment frame counter (gen3/4)
769  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
770  *
771  * x  = horizontal active
772  * _  = horizontal blanking
773  * hs = horizontal sync
774  * va = vertical active
775  * vb = vertical blanking
776  * vs = vertical sync
777  * vbs = vblank_start (number)
778  *
779  * Summary:
780  * - most events happen at the start of horizontal sync
781  * - frame start happens at the start of horizontal blank, 1-4 lines
782  *   (depending on PIPECONF settings) after the start of vblank
783  * - gen3/4 pixel and frame counter are synchronized with the start
784  *   of horizontal active on the first line of vertical active
785  */
786
787 static u32 i8xx_get_vblank_counter(struct drm_device *dev, int pipe)
788 {
789         /* Gen2 doesn't have a hardware frame counter */
790         return 0;
791 }
792
793 /* Called from drm generic code, passed a 'crtc', which
794  * we use as a pipe index
795  */
796 static u32 i915_get_vblank_counter(struct drm_device *dev, int pipe)
797 {
798         struct drm_i915_private *dev_priv = dev->dev_private;
799         unsigned long high_frame;
800         unsigned long low_frame;
801         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
802
803         if (!i915_pipe_enabled(dev, pipe)) {
804                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
805                                 "pipe %c\n", pipe_name(pipe));
806                 return 0;
807         }
808
809         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
810                 struct intel_crtc *intel_crtc =
811                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
812                 const struct drm_display_mode *mode =
813                         &intel_crtc->config.adjusted_mode;
814
815                 htotal = mode->crtc_htotal;
816                 hsync_start = mode->crtc_hsync_start;
817                 vbl_start = mode->crtc_vblank_start;
818                 if (mode->flags & DRM_MODE_FLAG_INTERLACE)
819                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
820         } else {
821                 enum transcoder cpu_transcoder = (enum transcoder) pipe;
822
823                 htotal = ((I915_READ(HTOTAL(cpu_transcoder)) >> 16) & 0x1fff) + 1;
824                 hsync_start = (I915_READ(HSYNC(cpu_transcoder))  & 0x1fff) + 1;
825                 vbl_start = (I915_READ(VBLANK(cpu_transcoder)) & 0x1fff) + 1;
826                 if ((I915_READ(PIPECONF(cpu_transcoder)) &
827                      PIPECONF_INTERLACE_MASK) != PIPECONF_PROGRESSIVE)
828                         vbl_start = DIV_ROUND_UP(vbl_start, 2);
829         }
830
831         /* Convert to pixel count */
832         vbl_start *= htotal;
833
834         /* Start of vblank event occurs at start of hsync */
835         vbl_start -= htotal - hsync_start;
836
837         high_frame = PIPEFRAME(pipe);
838         low_frame = PIPEFRAMEPIXEL(pipe);
839
840         /*
841          * High & low register fields aren't synchronized, so make sure
842          * we get a low value that's stable across two reads of the high
843          * register.
844          */
845         do {
846                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
847                 low   = I915_READ(low_frame);
848                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
849         } while (high1 != high2);
850
851         high1 >>= PIPE_FRAME_HIGH_SHIFT;
852         pixel = low & PIPE_PIXEL_MASK;
853         low >>= PIPE_FRAME_LOW_SHIFT;
854
855         /*
856          * The frame counter increments at beginning of active.
857          * Cook up a vblank counter by also checking the pixel
858          * counter against vblank start.
859          */
860         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
861 }
862
863 static u32 gm45_get_vblank_counter(struct drm_device *dev, int pipe)
864 {
865         struct drm_i915_private *dev_priv = dev->dev_private;
866         int reg = PIPE_FRMCOUNT_GM45(pipe);
867
868         if (!i915_pipe_enabled(dev, pipe)) {
869                 DRM_DEBUG_DRIVER("trying to get vblank count for disabled "
870                                  "pipe %c\n", pipe_name(pipe));
871                 return 0;
872         }
873
874         return I915_READ(reg);
875 }
876
877 /* raw reads, only for fast reads of display block, no need for forcewake etc. */
878 #define __raw_i915_read32(dev_priv__, reg__) readl((dev_priv__)->regs + (reg__))
879
880 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
881 {
882         struct drm_device *dev = crtc->base.dev;
883         struct drm_i915_private *dev_priv = dev->dev_private;
884         const struct drm_display_mode *mode = &crtc->config.adjusted_mode;
885         enum pipe pipe = crtc->pipe;
886         int position, vtotal;
887
888         vtotal = mode->crtc_vtotal;
889         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
890                 vtotal /= 2;
891
892         if (IS_GEN2(dev))
893                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
894         else
895                 position = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
896
897         /*
898          * See update_scanline_offset() for the details on the
899          * scanline_offset adjustment.
900          */
901         return (position + crtc->scanline_offset) % vtotal;
902 }
903
904 static int i915_get_crtc_scanoutpos(struct drm_device *dev, int pipe,
905                                     unsigned int flags, int *vpos, int *hpos,
906                                     ktime_t *stime, ktime_t *etime)
907 {
908         struct drm_i915_private *dev_priv = dev->dev_private;
909         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
910         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
911         const struct drm_display_mode *mode = &intel_crtc->config.adjusted_mode;
912         int position;
913         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
914         bool in_vbl = true;
915         int ret = 0;
916         unsigned long irqflags;
917
918         if (!intel_crtc->active) {
919                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
920                                  "pipe %c\n", pipe_name(pipe));
921                 return 0;
922         }
923
924         htotal = mode->crtc_htotal;
925         hsync_start = mode->crtc_hsync_start;
926         vtotal = mode->crtc_vtotal;
927         vbl_start = mode->crtc_vblank_start;
928         vbl_end = mode->crtc_vblank_end;
929
930         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
931                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
932                 vbl_end /= 2;
933                 vtotal /= 2;
934         }
935
936         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
937
938         /*
939          * Lock uncore.lock, as we will do multiple timing critical raw
940          * register reads, potentially with preemption disabled, so the
941          * following code must not block on uncore.lock.
942          */
943         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
944
945         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
946
947         /* Get optional system timestamp before query. */
948         if (stime)
949                 *stime = ktime_get();
950
951         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
952                 /* No obvious pixelcount register. Only query vertical
953                  * scanout position from Display scan line register.
954                  */
955                 position = __intel_get_crtc_scanline(intel_crtc);
956         } else {
957                 /* Have access to pixelcount since start of frame.
958                  * We can split this into vertical and horizontal
959                  * scanout position.
960                  */
961                 position = (__raw_i915_read32(dev_priv, PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
962
963                 /* convert to pixel counts */
964                 vbl_start *= htotal;
965                 vbl_end *= htotal;
966                 vtotal *= htotal;
967
968                 /*
969                  * In interlaced modes, the pixel counter counts all pixels,
970                  * so one field will have htotal more pixels. In order to avoid
971                  * the reported position from jumping backwards when the pixel
972                  * counter is beyond the length of the shorter field, just
973                  * clamp the position the length of the shorter field. This
974                  * matches how the scanline counter based position works since
975                  * the scanline counter doesn't count the two half lines.
976                  */
977                 if (position >= vtotal)
978                         position = vtotal - 1;
979
980                 /*
981                  * Start of vblank interrupt is triggered at start of hsync,
982                  * just prior to the first active line of vblank. However we
983                  * consider lines to start at the leading edge of horizontal
984                  * active. So, should we get here before we've crossed into
985                  * the horizontal active of the first line in vblank, we would
986                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
987                  * always add htotal-hsync_start to the current pixel position.
988                  */
989                 position = (position + htotal - hsync_start) % vtotal;
990         }
991
992         /* Get optional system timestamp after query. */
993         if (etime)
994                 *etime = ktime_get();
995
996         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
997
998         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
999
1000         in_vbl = position >= vbl_start && position < vbl_end;
1001
1002         /*
1003          * While in vblank, position will be negative
1004          * counting up towards 0 at vbl_end. And outside
1005          * vblank, position will be positive counting
1006          * up since vbl_end.
1007          */
1008         if (position >= vbl_start)
1009                 position -= vbl_end;
1010         else
1011                 position += vtotal - vbl_end;
1012
1013         if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
1014                 *vpos = position;
1015                 *hpos = 0;
1016         } else {
1017                 *vpos = position / htotal;
1018                 *hpos = position - (*vpos * htotal);
1019         }
1020
1021         /* In vblank? */
1022         if (in_vbl)
1023                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
1024
1025         return ret;
1026 }
1027
1028 int intel_get_crtc_scanline(struct intel_crtc *crtc)
1029 {
1030         struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1031         unsigned long irqflags;
1032         int position;
1033
1034         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1035         position = __intel_get_crtc_scanline(crtc);
1036         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1037
1038         return position;
1039 }
1040
1041 static int i915_get_vblank_timestamp(struct drm_device *dev, int pipe,
1042                               int *max_error,
1043                               struct timeval *vblank_time,
1044                               unsigned flags)
1045 {
1046         struct drm_crtc *crtc;
1047
1048         if (pipe < 0 || pipe >= INTEL_INFO(dev)->num_pipes) {
1049                 DRM_ERROR("Invalid crtc %d\n", pipe);
1050                 return -EINVAL;
1051         }
1052
1053         /* Get drm_crtc to timestamp: */
1054         crtc = intel_get_crtc_for_pipe(dev, pipe);
1055         if (crtc == NULL) {
1056                 DRM_ERROR("Invalid crtc %d\n", pipe);
1057                 return -EINVAL;
1058         }
1059
1060         if (!crtc->enabled) {
1061                 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1062                 return -EBUSY;
1063         }
1064
1065         /* Helper routine in DRM core does all the work: */
1066         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
1067                                                      vblank_time, flags,
1068                                                      crtc,
1069                                                      &to_intel_crtc(crtc)->config.adjusted_mode);
1070 }
1071
1072 static bool intel_hpd_irq_event(struct drm_device *dev,
1073                                 struct drm_connector *connector)
1074 {
1075         enum drm_connector_status old_status;
1076
1077         WARN_ON(!mutex_is_locked(&dev->mode_config.mutex));
1078         old_status = connector->status;
1079
1080         connector->status = connector->funcs->detect(connector, false);
1081         if (old_status == connector->status)
1082                 return false;
1083
1084         DRM_DEBUG_KMS("[CONNECTOR:%d:%s] status updated from %s to %s\n",
1085                       connector->base.id,
1086                       connector->name,
1087                       drm_get_connector_status_name(old_status),
1088                       drm_get_connector_status_name(connector->status));
1089
1090         return true;
1091 }
1092
1093 static void i915_digport_work_func(struct work_struct *work)
1094 {
1095         struct drm_i915_private *dev_priv =
1096                 container_of(work, struct drm_i915_private, dig_port_work);
1097         unsigned long irqflags;
1098         u32 long_port_mask, short_port_mask;
1099         struct intel_digital_port *intel_dig_port;
1100         int i, ret;
1101         u32 old_bits = 0;
1102
1103         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1104         long_port_mask = dev_priv->long_hpd_port_mask;
1105         dev_priv->long_hpd_port_mask = 0;
1106         short_port_mask = dev_priv->short_hpd_port_mask;
1107         dev_priv->short_hpd_port_mask = 0;
1108         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1109
1110         for (i = 0; i < I915_MAX_PORTS; i++) {
1111                 bool valid = false;
1112                 bool long_hpd = false;
1113                 intel_dig_port = dev_priv->hpd_irq_port[i];
1114                 if (!intel_dig_port || !intel_dig_port->hpd_pulse)
1115                         continue;
1116
1117                 if (long_port_mask & (1 << i))  {
1118                         valid = true;
1119                         long_hpd = true;
1120                 } else if (short_port_mask & (1 << i))
1121                         valid = true;
1122
1123                 if (valid) {
1124                         ret = intel_dig_port->hpd_pulse(intel_dig_port, long_hpd);
1125                         if (ret == true) {
1126                                 /* if we get true fallback to old school hpd */
1127                                 old_bits |= (1 << intel_dig_port->base.hpd_pin);
1128                         }
1129                 }
1130         }
1131
1132         if (old_bits) {
1133                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1134                 dev_priv->hpd_event_bits |= old_bits;
1135                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1136                 schedule_work(&dev_priv->hotplug_work);
1137         }
1138 }
1139
1140 /*
1141  * Handle hotplug events outside the interrupt handler proper.
1142  */
1143 #define I915_REENABLE_HOTPLUG_DELAY (2*60*1000)
1144
1145 static void i915_hotplug_work_func(struct work_struct *work)
1146 {
1147         struct drm_i915_private *dev_priv =
1148                 container_of(work, struct drm_i915_private, hotplug_work);
1149         struct drm_device *dev = dev_priv->dev;
1150         struct drm_mode_config *mode_config = &dev->mode_config;
1151         struct intel_connector *intel_connector;
1152         struct intel_encoder *intel_encoder;
1153         struct drm_connector *connector;
1154         unsigned long irqflags;
1155         bool hpd_disabled = false;
1156         bool changed = false;
1157         u32 hpd_event_bits;
1158
1159         mutex_lock(&mode_config->mutex);
1160         DRM_DEBUG_KMS("running encoder hotplug functions\n");
1161
1162         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
1163
1164         hpd_event_bits = dev_priv->hpd_event_bits;
1165         dev_priv->hpd_event_bits = 0;
1166         list_for_each_entry(connector, &mode_config->connector_list, head) {
1167                 intel_connector = to_intel_connector(connector);
1168                 if (!intel_connector->encoder)
1169                         continue;
1170                 intel_encoder = intel_connector->encoder;
1171                 if (intel_encoder->hpd_pin > HPD_NONE &&
1172                     dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_MARK_DISABLED &&
1173                     connector->polled == DRM_CONNECTOR_POLL_HPD) {
1174                         DRM_INFO("HPD interrupt storm detected on connector %s: "
1175                                  "switching from hotplug detection to polling\n",
1176                                 connector->name);
1177                         dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark = HPD_DISABLED;
1178                         connector->polled = DRM_CONNECTOR_POLL_CONNECT
1179                                 | DRM_CONNECTOR_POLL_DISCONNECT;
1180                         hpd_disabled = true;
1181                 }
1182                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1183                         DRM_DEBUG_KMS("Connector %s (pin %i) received hotplug event.\n",
1184                                       connector->name, intel_encoder->hpd_pin);
1185                 }
1186         }
1187          /* if there were no outputs to poll, poll was disabled,
1188           * therefore make sure it's enabled when disabling HPD on
1189           * some connectors */
1190         if (hpd_disabled) {
1191                 drm_kms_helper_poll_enable(dev);
1192                 mod_delayed_work(system_wq, &dev_priv->hotplug_reenable_work,
1193                                  msecs_to_jiffies(I915_REENABLE_HOTPLUG_DELAY));
1194         }
1195
1196         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
1197
1198         list_for_each_entry(connector, &mode_config->connector_list, head) {
1199                 intel_connector = to_intel_connector(connector);
1200                 if (!intel_connector->encoder)
1201                         continue;
1202                 intel_encoder = intel_connector->encoder;
1203                 if (hpd_event_bits & (1 << intel_encoder->hpd_pin)) {
1204                         if (intel_encoder->hot_plug)
1205                                 intel_encoder->hot_plug(intel_encoder);
1206                         if (intel_hpd_irq_event(dev, connector))
1207                                 changed = true;
1208                 }
1209         }
1210         mutex_unlock(&mode_config->mutex);
1211
1212         if (changed)
1213                 drm_kms_helper_hotplug_event(dev);
1214 }
1215
1216 static void ironlake_rps_change_irq_handler(struct drm_device *dev)
1217 {
1218         struct drm_i915_private *dev_priv = dev->dev_private;
1219         u32 busy_up, busy_down, max_avg, min_avg;
1220         u8 new_delay;
1221
1222         spin_lock(&mchdev_lock);
1223
1224         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1225
1226         new_delay = dev_priv->ips.cur_delay;
1227
1228         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1229         busy_up = I915_READ(RCPREVBSYTUPAVG);
1230         busy_down = I915_READ(RCPREVBSYTDNAVG);
1231         max_avg = I915_READ(RCBMAXAVG);
1232         min_avg = I915_READ(RCBMINAVG);
1233
1234         /* Handle RCS change request from hw */
1235         if (busy_up > max_avg) {
1236                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1237                         new_delay = dev_priv->ips.cur_delay - 1;
1238                 if (new_delay < dev_priv->ips.max_delay)
1239                         new_delay = dev_priv->ips.max_delay;
1240         } else if (busy_down < min_avg) {
1241                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1242                         new_delay = dev_priv->ips.cur_delay + 1;
1243                 if (new_delay > dev_priv->ips.min_delay)
1244                         new_delay = dev_priv->ips.min_delay;
1245         }
1246
1247         if (ironlake_set_drps(dev, new_delay))
1248                 dev_priv->ips.cur_delay = new_delay;
1249
1250         spin_unlock(&mchdev_lock);
1251
1252         return;
1253 }
1254
1255 static void notify_ring(struct drm_device *dev,
1256                         struct intel_engine_cs *ring)
1257 {
1258         if (!intel_ring_initialized(ring))
1259                 return;
1260
1261         trace_i915_gem_request_complete(ring);
1262
1263         if (drm_core_check_feature(dev, DRIVER_MODESET))
1264                 intel_notify_mmio_flip(ring);
1265
1266         wake_up_all(&ring->irq_queue);
1267         i915_queue_hangcheck(dev);
1268 }
1269
1270 static u32 vlv_c0_residency(struct drm_i915_private *dev_priv,
1271                             struct intel_rps_ei *rps_ei)
1272 {
1273         u32 cz_ts, cz_freq_khz;
1274         u32 render_count, media_count;
1275         u32 elapsed_render, elapsed_media, elapsed_time;
1276         u32 residency = 0;
1277
1278         cz_ts = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1279         cz_freq_khz = DIV_ROUND_CLOSEST(dev_priv->mem_freq * 1000, 4);
1280
1281         render_count = I915_READ(VLV_RENDER_C0_COUNT_REG);
1282         media_count = I915_READ(VLV_MEDIA_C0_COUNT_REG);
1283
1284         if (rps_ei->cz_clock == 0) {
1285                 rps_ei->cz_clock = cz_ts;
1286                 rps_ei->render_c0 = render_count;
1287                 rps_ei->media_c0 = media_count;
1288
1289                 return dev_priv->rps.cur_freq;
1290         }
1291
1292         elapsed_time = cz_ts - rps_ei->cz_clock;
1293         rps_ei->cz_clock = cz_ts;
1294
1295         elapsed_render = render_count - rps_ei->render_c0;
1296         rps_ei->render_c0 = render_count;
1297
1298         elapsed_media = media_count - rps_ei->media_c0;
1299         rps_ei->media_c0 = media_count;
1300
1301         /* Convert all the counters into common unit of milli sec */
1302         elapsed_time /= VLV_CZ_CLOCK_TO_MILLI_SEC;
1303         elapsed_render /=  cz_freq_khz;
1304         elapsed_media /= cz_freq_khz;
1305
1306         /*
1307          * Calculate overall C0 residency percentage
1308          * only if elapsed time is non zero
1309          */
1310         if (elapsed_time) {
1311                 residency =
1312                         ((max(elapsed_render, elapsed_media) * 100)
1313                                 / elapsed_time);
1314         }
1315
1316         return residency;
1317 }
1318
1319 /**
1320  * vlv_calc_delay_from_C0_counters - Increase/Decrease freq based on GPU
1321  * busy-ness calculated from C0 counters of render & media power wells
1322  * @dev_priv: DRM device private
1323  *
1324  */
1325 static int vlv_calc_delay_from_C0_counters(struct drm_i915_private *dev_priv)
1326 {
1327         u32 residency_C0_up = 0, residency_C0_down = 0;
1328         int new_delay, adj;
1329
1330         dev_priv->rps.ei_interrupt_count++;
1331
1332         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
1333
1334
1335         if (dev_priv->rps.up_ei.cz_clock == 0) {
1336                 vlv_c0_residency(dev_priv, &dev_priv->rps.up_ei);
1337                 vlv_c0_residency(dev_priv, &dev_priv->rps.down_ei);
1338                 return dev_priv->rps.cur_freq;
1339         }
1340
1341
1342         /*
1343          * To down throttle, C0 residency should be less than down threshold
1344          * for continous EI intervals. So calculate down EI counters
1345          * once in VLV_INT_COUNT_FOR_DOWN_EI
1346          */
1347         if (dev_priv->rps.ei_interrupt_count == VLV_INT_COUNT_FOR_DOWN_EI) {
1348
1349                 dev_priv->rps.ei_interrupt_count = 0;
1350
1351                 residency_C0_down = vlv_c0_residency(dev_priv,
1352                                                      &dev_priv->rps.down_ei);
1353         } else {
1354                 residency_C0_up = vlv_c0_residency(dev_priv,
1355                                                    &dev_priv->rps.up_ei);
1356         }
1357
1358         new_delay = dev_priv->rps.cur_freq;
1359
1360         adj = dev_priv->rps.last_adj;
1361         /* C0 residency is greater than UP threshold. Increase Frequency */
1362         if (residency_C0_up >= VLV_RP_UP_EI_THRESHOLD) {
1363                 if (adj > 0)
1364                         adj *= 2;
1365                 else
1366                         adj = 1;
1367
1368                 if (dev_priv->rps.cur_freq < dev_priv->rps.max_freq_softlimit)
1369                         new_delay = dev_priv->rps.cur_freq + adj;
1370
1371                 /*
1372                  * For better performance, jump directly
1373                  * to RPe if we're below it.
1374                  */
1375                 if (new_delay < dev_priv->rps.efficient_freq)
1376                         new_delay = dev_priv->rps.efficient_freq;
1377
1378         } else if (!dev_priv->rps.ei_interrupt_count &&
1379                         (residency_C0_down < VLV_RP_DOWN_EI_THRESHOLD)) {
1380                 if (adj < 0)
1381                         adj *= 2;
1382                 else
1383                         adj = -1;
1384                 /*
1385                  * This means, C0 residency is less than down threshold over
1386                  * a period of VLV_INT_COUNT_FOR_DOWN_EI. So, reduce the freq
1387                  */
1388                 if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1389                         new_delay = dev_priv->rps.cur_freq + adj;
1390         }
1391
1392         return new_delay;
1393 }
1394
1395 static void gen6_pm_rps_work(struct work_struct *work)
1396 {
1397         struct drm_i915_private *dev_priv =
1398                 container_of(work, struct drm_i915_private, rps.work);
1399         u32 pm_iir;
1400         int new_delay, adj;
1401
1402         spin_lock_irq(&dev_priv->irq_lock);
1403         pm_iir = dev_priv->rps.pm_iir;
1404         dev_priv->rps.pm_iir = 0;
1405         if (INTEL_INFO(dev_priv->dev)->gen >= 8)
1406                 gen8_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1407         else {
1408                 /* Make sure not to corrupt PMIMR state used by ringbuffer */
1409                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1410         }
1411         spin_unlock_irq(&dev_priv->irq_lock);
1412
1413         /* Make sure we didn't queue anything we're not going to process. */
1414         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1415
1416         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1417                 return;
1418
1419         mutex_lock(&dev_priv->rps.hw_lock);
1420
1421         adj = dev_priv->rps.last_adj;
1422         if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1423                 if (adj > 0)
1424                         adj *= 2;
1425                 else {
1426                         /* CHV needs even encode values */
1427                         adj = IS_CHERRYVIEW(dev_priv->dev) ? 2 : 1;
1428                 }
1429                 new_delay = dev_priv->rps.cur_freq + adj;
1430
1431                 /*
1432                  * For better performance, jump directly
1433                  * to RPe if we're below it.
1434                  */
1435                 if (new_delay < dev_priv->rps.efficient_freq)
1436                         new_delay = dev_priv->rps.efficient_freq;
1437         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1438                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1439                         new_delay = dev_priv->rps.efficient_freq;
1440                 else
1441                         new_delay = dev_priv->rps.min_freq_softlimit;
1442                 adj = 0;
1443         } else if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1444                 new_delay = vlv_calc_delay_from_C0_counters(dev_priv);
1445         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1446                 if (adj < 0)
1447                         adj *= 2;
1448                 else {
1449                         /* CHV needs even encode values */
1450                         adj = IS_CHERRYVIEW(dev_priv->dev) ? -2 : -1;
1451                 }
1452                 new_delay = dev_priv->rps.cur_freq + adj;
1453         } else { /* unknown event */
1454                 new_delay = dev_priv->rps.cur_freq;
1455         }
1456
1457         /* sysfs frequency interfaces may have snuck in while servicing the
1458          * interrupt
1459          */
1460         new_delay = clamp_t(int, new_delay,
1461                             dev_priv->rps.min_freq_softlimit,
1462                             dev_priv->rps.max_freq_softlimit);
1463
1464         dev_priv->rps.last_adj = new_delay - dev_priv->rps.cur_freq;
1465
1466         if (IS_VALLEYVIEW(dev_priv->dev))
1467                 valleyview_set_rps(dev_priv->dev, new_delay);
1468         else
1469                 gen6_set_rps(dev_priv->dev, new_delay);
1470
1471         mutex_unlock(&dev_priv->rps.hw_lock);
1472 }
1473
1474
1475 /**
1476  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1477  * occurred.
1478  * @work: workqueue struct
1479  *
1480  * Doesn't actually do anything except notify userspace. As a consequence of
1481  * this event, userspace should try to remap the bad rows since statistically
1482  * it is likely the same row is more likely to go bad again.
1483  */
1484 static void ivybridge_parity_work(struct work_struct *work)
1485 {
1486         struct drm_i915_private *dev_priv =
1487                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1488         u32 error_status, row, bank, subbank;
1489         char *parity_event[6];
1490         uint32_t misccpctl;
1491         unsigned long flags;
1492         uint8_t slice = 0;
1493
1494         /* We must turn off DOP level clock gating to access the L3 registers.
1495          * In order to prevent a get/put style interface, acquire struct mutex
1496          * any time we access those registers.
1497          */
1498         mutex_lock(&dev_priv->dev->struct_mutex);
1499
1500         /* If we've screwed up tracking, just let the interrupt fire again */
1501         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1502                 goto out;
1503
1504         misccpctl = I915_READ(GEN7_MISCCPCTL);
1505         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1506         POSTING_READ(GEN7_MISCCPCTL);
1507
1508         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1509                 u32 reg;
1510
1511                 slice--;
1512                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1513                         break;
1514
1515                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1516
1517                 reg = GEN7_L3CDERRST1 + (slice * 0x200);
1518
1519                 error_status = I915_READ(reg);
1520                 row = GEN7_PARITY_ERROR_ROW(error_status);
1521                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1522                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1523
1524                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1525                 POSTING_READ(reg);
1526
1527                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1528                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1529                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1530                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1531                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1532                 parity_event[5] = NULL;
1533
1534                 kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1535                                    KOBJ_CHANGE, parity_event);
1536
1537                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1538                           slice, row, bank, subbank);
1539
1540                 kfree(parity_event[4]);
1541                 kfree(parity_event[3]);
1542                 kfree(parity_event[2]);
1543                 kfree(parity_event[1]);
1544         }
1545
1546         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1547
1548 out:
1549         WARN_ON(dev_priv->l3_parity.which_slice);
1550         spin_lock_irqsave(&dev_priv->irq_lock, flags);
1551         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1552         spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
1553
1554         mutex_unlock(&dev_priv->dev->struct_mutex);
1555 }
1556
1557 static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1558 {
1559         struct drm_i915_private *dev_priv = dev->dev_private;
1560
1561         if (!HAS_L3_DPF(dev))
1562                 return;
1563
1564         spin_lock(&dev_priv->irq_lock);
1565         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1566         spin_unlock(&dev_priv->irq_lock);
1567
1568         iir &= GT_PARITY_ERROR(dev);
1569         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1570                 dev_priv->l3_parity.which_slice |= 1 << 1;
1571
1572         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1573                 dev_priv->l3_parity.which_slice |= 1 << 0;
1574
1575         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1576 }
1577
1578 static void ilk_gt_irq_handler(struct drm_device *dev,
1579                                struct drm_i915_private *dev_priv,
1580                                u32 gt_iir)
1581 {
1582         if (gt_iir &
1583             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1584                 notify_ring(dev, &dev_priv->ring[RCS]);
1585         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1586                 notify_ring(dev, &dev_priv->ring[VCS]);
1587 }
1588
1589 static void snb_gt_irq_handler(struct drm_device *dev,
1590                                struct drm_i915_private *dev_priv,
1591                                u32 gt_iir)
1592 {
1593
1594         if (gt_iir &
1595             (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1596                 notify_ring(dev, &dev_priv->ring[RCS]);
1597         if (gt_iir & GT_BSD_USER_INTERRUPT)
1598                 notify_ring(dev, &dev_priv->ring[VCS]);
1599         if (gt_iir & GT_BLT_USER_INTERRUPT)
1600                 notify_ring(dev, &dev_priv->ring[BCS]);
1601
1602         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1603                       GT_BSD_CS_ERROR_INTERRUPT |
1604                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT)) {
1605                 i915_handle_error(dev, false, "GT error interrupt 0x%08x",
1606                                   gt_iir);
1607         }
1608
1609         if (gt_iir & GT_PARITY_ERROR(dev))
1610                 ivybridge_parity_error_irq_handler(dev, gt_iir);
1611 }
1612
1613 static void gen8_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1614 {
1615         if ((pm_iir & dev_priv->pm_rps_events) == 0)
1616                 return;
1617
1618         spin_lock(&dev_priv->irq_lock);
1619         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1620         gen8_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1621         spin_unlock(&dev_priv->irq_lock);
1622
1623         queue_work(dev_priv->wq, &dev_priv->rps.work);
1624 }
1625
1626 static irqreturn_t gen8_gt_irq_handler(struct drm_device *dev,
1627                                        struct drm_i915_private *dev_priv,
1628                                        u32 master_ctl)
1629 {
1630         struct intel_engine_cs *ring;
1631         u32 rcs, bcs, vcs;
1632         uint32_t tmp = 0;
1633         irqreturn_t ret = IRQ_NONE;
1634
1635         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1636                 tmp = I915_READ(GEN8_GT_IIR(0));
1637                 if (tmp) {
1638                         I915_WRITE(GEN8_GT_IIR(0), tmp);
1639                         ret = IRQ_HANDLED;
1640
1641                         rcs = tmp >> GEN8_RCS_IRQ_SHIFT;
1642                         ring = &dev_priv->ring[RCS];
1643                         if (rcs & GT_RENDER_USER_INTERRUPT)
1644                                 notify_ring(dev, ring);
1645                         if (rcs & GT_CONTEXT_SWITCH_INTERRUPT)
1646                                 intel_execlists_handle_ctx_events(ring);
1647
1648                         bcs = tmp >> GEN8_BCS_IRQ_SHIFT;
1649                         ring = &dev_priv->ring[BCS];
1650                         if (bcs & GT_RENDER_USER_INTERRUPT)
1651                                 notify_ring(dev, ring);
1652                         if (bcs & GT_CONTEXT_SWITCH_INTERRUPT)
1653                                 intel_execlists_handle_ctx_events(ring);
1654                 } else
1655                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1656         }
1657
1658         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1659                 tmp = I915_READ(GEN8_GT_IIR(1));
1660                 if (tmp) {
1661                         I915_WRITE(GEN8_GT_IIR(1), tmp);
1662                         ret = IRQ_HANDLED;
1663
1664                         vcs = tmp >> GEN8_VCS1_IRQ_SHIFT;
1665                         ring = &dev_priv->ring[VCS];
1666                         if (vcs & GT_RENDER_USER_INTERRUPT)
1667                                 notify_ring(dev, ring);
1668                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1669                                 intel_execlists_handle_ctx_events(ring);
1670
1671                         vcs = tmp >> GEN8_VCS2_IRQ_SHIFT;
1672                         ring = &dev_priv->ring[VCS2];
1673                         if (vcs & GT_RENDER_USER_INTERRUPT)
1674                                 notify_ring(dev, ring);
1675                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1676                                 intel_execlists_handle_ctx_events(ring);
1677                 } else
1678                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1679         }
1680
1681         if (master_ctl & GEN8_GT_PM_IRQ) {
1682                 tmp = I915_READ(GEN8_GT_IIR(2));
1683                 if (tmp & dev_priv->pm_rps_events) {
1684                         I915_WRITE(GEN8_GT_IIR(2),
1685                                    tmp & dev_priv->pm_rps_events);
1686                         ret = IRQ_HANDLED;
1687                         gen8_rps_irq_handler(dev_priv, tmp);
1688                 } else
1689                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1690         }
1691
1692         if (master_ctl & GEN8_GT_VECS_IRQ) {
1693                 tmp = I915_READ(GEN8_GT_IIR(3));
1694                 if (tmp) {
1695                         I915_WRITE(GEN8_GT_IIR(3), tmp);
1696                         ret = IRQ_HANDLED;
1697
1698                         vcs = tmp >> GEN8_VECS_IRQ_SHIFT;
1699                         ring = &dev_priv->ring[VECS];
1700                         if (vcs & GT_RENDER_USER_INTERRUPT)
1701                                 notify_ring(dev, ring);
1702                         if (vcs & GT_CONTEXT_SWITCH_INTERRUPT)
1703                                 intel_execlists_handle_ctx_events(ring);
1704                 } else
1705                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1706         }
1707
1708         return ret;
1709 }
1710
1711 #define HPD_STORM_DETECT_PERIOD 1000
1712 #define HPD_STORM_THRESHOLD 5
1713
1714 static int pch_port_to_hotplug_shift(enum port port)
1715 {
1716         switch (port) {
1717         case PORT_A:
1718         case PORT_E:
1719         default:
1720                 return -1;
1721         case PORT_B:
1722                 return 0;
1723         case PORT_C:
1724                 return 8;
1725         case PORT_D:
1726                 return 16;
1727         }
1728 }
1729
1730 static int i915_port_to_hotplug_shift(enum port port)
1731 {
1732         switch (port) {
1733         case PORT_A:
1734         case PORT_E:
1735         default:
1736                 return -1;
1737         case PORT_B:
1738                 return 17;
1739         case PORT_C:
1740                 return 19;
1741         case PORT_D:
1742                 return 21;
1743         }
1744 }
1745
1746 static inline enum port get_port_from_pin(enum hpd_pin pin)
1747 {
1748         switch (pin) {
1749         case HPD_PORT_B:
1750                 return PORT_B;
1751         case HPD_PORT_C:
1752                 return PORT_C;
1753         case HPD_PORT_D:
1754                 return PORT_D;
1755         default:
1756                 return PORT_A; /* no hpd */
1757         }
1758 }
1759
1760 static inline void intel_hpd_irq_handler(struct drm_device *dev,
1761                                          u32 hotplug_trigger,
1762                                          u32 dig_hotplug_reg,
1763                                          const u32 *hpd)
1764 {
1765         struct drm_i915_private *dev_priv = dev->dev_private;
1766         int i;
1767         enum port port;
1768         bool storm_detected = false;
1769         bool queue_dig = false, queue_hp = false;
1770         u32 dig_shift;
1771         u32 dig_port_mask = 0;
1772
1773         if (!hotplug_trigger)
1774                 return;
1775
1776         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x\n",
1777                          hotplug_trigger, dig_hotplug_reg);
1778
1779         spin_lock(&dev_priv->irq_lock);
1780         for (i = 1; i < HPD_NUM_PINS; i++) {
1781                 if (!(hpd[i] & hotplug_trigger))
1782                         continue;
1783
1784                 port = get_port_from_pin(i);
1785                 if (port && dev_priv->hpd_irq_port[port]) {
1786                         bool long_hpd;
1787
1788                         if (HAS_PCH_SPLIT(dev)) {
1789                                 dig_shift = pch_port_to_hotplug_shift(port);
1790                                 long_hpd = (dig_hotplug_reg >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1791                         } else {
1792                                 dig_shift = i915_port_to_hotplug_shift(port);
1793                                 long_hpd = (hotplug_trigger >> dig_shift) & PORTB_HOTPLUG_LONG_DETECT;
1794                         }
1795
1796                         DRM_DEBUG_DRIVER("digital hpd port %c - %s\n",
1797                                          port_name(port),
1798                                          long_hpd ? "long" : "short");
1799                         /* for long HPD pulses we want to have the digital queue happen,
1800                            but we still want HPD storm detection to function. */
1801                         if (long_hpd) {
1802                                 dev_priv->long_hpd_port_mask |= (1 << port);
1803                                 dig_port_mask |= hpd[i];
1804                         } else {
1805                                 /* for short HPD just trigger the digital queue */
1806                                 dev_priv->short_hpd_port_mask |= (1 << port);
1807                                 hotplug_trigger &= ~hpd[i];
1808                         }
1809                         queue_dig = true;
1810                 }
1811         }
1812
1813         for (i = 1; i < HPD_NUM_PINS; i++) {
1814                 if (hpd[i] & hotplug_trigger &&
1815                     dev_priv->hpd_stats[i].hpd_mark == HPD_DISABLED) {
1816                         /*
1817                          * On GMCH platforms the interrupt mask bits only
1818                          * prevent irq generation, not the setting of the
1819                          * hotplug bits itself. So only WARN about unexpected
1820                          * interrupts on saner platforms.
1821                          */
1822                         WARN_ONCE(INTEL_INFO(dev)->gen >= 5 && !IS_VALLEYVIEW(dev),
1823                                   "Received HPD interrupt (0x%08x) on pin %d (0x%08x) although disabled\n",
1824                                   hotplug_trigger, i, hpd[i]);
1825
1826                         continue;
1827                 }
1828
1829                 if (!(hpd[i] & hotplug_trigger) ||
1830                     dev_priv->hpd_stats[i].hpd_mark != HPD_ENABLED)
1831                         continue;
1832
1833                 if (!(dig_port_mask & hpd[i])) {
1834                         dev_priv->hpd_event_bits |= (1 << i);
1835                         queue_hp = true;
1836                 }
1837
1838                 if (!time_in_range(jiffies, dev_priv->hpd_stats[i].hpd_last_jiffies,
1839                                    dev_priv->hpd_stats[i].hpd_last_jiffies
1840                                    + msecs_to_jiffies(HPD_STORM_DETECT_PERIOD))) {
1841                         dev_priv->hpd_stats[i].hpd_last_jiffies = jiffies;
1842                         dev_priv->hpd_stats[i].hpd_cnt = 0;
1843                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: 0\n", i);
1844                 } else if (dev_priv->hpd_stats[i].hpd_cnt > HPD_STORM_THRESHOLD) {
1845                         dev_priv->hpd_stats[i].hpd_mark = HPD_MARK_DISABLED;
1846                         dev_priv->hpd_event_bits &= ~(1 << i);
1847                         DRM_DEBUG_KMS("HPD interrupt storm detected on PIN %d\n", i);
1848                         storm_detected = true;
1849                 } else {
1850                         dev_priv->hpd_stats[i].hpd_cnt++;
1851                         DRM_DEBUG_KMS("Received HPD interrupt on PIN %d - cnt: %d\n", i,
1852                                       dev_priv->hpd_stats[i].hpd_cnt);
1853                 }
1854         }
1855
1856         if (storm_detected)
1857                 dev_priv->display.hpd_irq_setup(dev);
1858         spin_unlock(&dev_priv->irq_lock);
1859
1860         /*
1861          * Our hotplug handler can grab modeset locks (by calling down into the
1862          * fb helpers). Hence it must not be run on our own dev-priv->wq work
1863          * queue for otherwise the flush_work in the pageflip code will
1864          * deadlock.
1865          */
1866         if (queue_dig)
1867                 queue_work(dev_priv->dp_wq, &dev_priv->dig_port_work);
1868         if (queue_hp)
1869                 schedule_work(&dev_priv->hotplug_work);
1870 }
1871
1872 static void gmbus_irq_handler(struct drm_device *dev)
1873 {
1874         struct drm_i915_private *dev_priv = dev->dev_private;
1875
1876         wake_up_all(&dev_priv->gmbus_wait_queue);
1877 }
1878
1879 static void dp_aux_irq_handler(struct drm_device *dev)
1880 {
1881         struct drm_i915_private *dev_priv = dev->dev_private;
1882
1883         wake_up_all(&dev_priv->gmbus_wait_queue);
1884 }
1885
1886 #if defined(CONFIG_DEBUG_FS)
1887 static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1888                                          uint32_t crc0, uint32_t crc1,
1889                                          uint32_t crc2, uint32_t crc3,
1890                                          uint32_t crc4)
1891 {
1892         struct drm_i915_private *dev_priv = dev->dev_private;
1893         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1894         struct intel_pipe_crc_entry *entry;
1895         int head, tail;
1896
1897         spin_lock(&pipe_crc->lock);
1898
1899         if (!pipe_crc->entries) {
1900                 spin_unlock(&pipe_crc->lock);
1901                 DRM_ERROR("spurious interrupt\n");
1902                 return;
1903         }
1904
1905         head = pipe_crc->head;
1906         tail = pipe_crc->tail;
1907
1908         if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1909                 spin_unlock(&pipe_crc->lock);
1910                 DRM_ERROR("CRC buffer overflowing\n");
1911                 return;
1912         }
1913
1914         entry = &pipe_crc->entries[head];
1915
1916         entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1917         entry->crc[0] = crc0;
1918         entry->crc[1] = crc1;
1919         entry->crc[2] = crc2;
1920         entry->crc[3] = crc3;
1921         entry->crc[4] = crc4;
1922
1923         head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1924         pipe_crc->head = head;
1925
1926         spin_unlock(&pipe_crc->lock);
1927
1928         wake_up_interruptible(&pipe_crc->wq);
1929 }
1930 #else
1931 static inline void
1932 display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1933                              uint32_t crc0, uint32_t crc1,
1934                              uint32_t crc2, uint32_t crc3,
1935                              uint32_t crc4) {}
1936 #endif
1937
1938
1939 static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1940 {
1941         struct drm_i915_private *dev_priv = dev->dev_private;
1942
1943         display_pipe_crc_irq_handler(dev, pipe,
1944                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1945                                      0, 0, 0, 0);
1946 }
1947
1948 static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1949 {
1950         struct drm_i915_private *dev_priv = dev->dev_private;
1951
1952         display_pipe_crc_irq_handler(dev, pipe,
1953                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1954                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1955                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1956                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1957                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1958 }
1959
1960 static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
1961 {
1962         struct drm_i915_private *dev_priv = dev->dev_private;
1963         uint32_t res1, res2;
1964
1965         if (INTEL_INFO(dev)->gen >= 3)
1966                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1967         else
1968                 res1 = 0;
1969
1970         if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1971                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1972         else
1973                 res2 = 0;
1974
1975         display_pipe_crc_irq_handler(dev, pipe,
1976                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1977                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1978                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1979                                      res1, res2);
1980 }
1981
1982 /* The RPS events need forcewake, so we add them to a work queue and mask their
1983  * IMR bits until the work is done. Other interrupts can be processed without
1984  * the work queue. */
1985 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1986 {
1987         if (pm_iir & dev_priv->pm_rps_events) {
1988                 spin_lock(&dev_priv->irq_lock);
1989                 dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1990                 gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1991                 spin_unlock(&dev_priv->irq_lock);
1992
1993                 queue_work(dev_priv->wq, &dev_priv->rps.work);
1994         }
1995
1996         if (HAS_VEBOX(dev_priv->dev)) {
1997                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1998                         notify_ring(dev_priv->dev, &dev_priv->ring[VECS]);
1999
2000                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT) {
2001                         i915_handle_error(dev_priv->dev, false,
2002                                           "VEBOX CS error interrupt 0x%08x",
2003                                           pm_iir);
2004                 }
2005         }
2006 }
2007
2008 static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
2009 {
2010         if (!drm_handle_vblank(dev, pipe))
2011                 return false;
2012
2013         return true;
2014 }
2015
2016 static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
2017 {
2018         struct drm_i915_private *dev_priv = dev->dev_private;
2019         u32 pipe_stats[I915_MAX_PIPES] = { };
2020         int pipe;
2021
2022         spin_lock(&dev_priv->irq_lock);
2023         for_each_pipe(dev_priv, pipe) {
2024                 int reg;
2025                 u32 mask, iir_bit = 0;
2026
2027                 /*
2028                  * PIPESTAT bits get signalled even when the interrupt is
2029                  * disabled with the mask bits, and some of the status bits do
2030                  * not generate interrupts at all (like the underrun bit). Hence
2031                  * we need to be careful that we only handle what we want to
2032                  * handle.
2033                  */
2034                 mask = 0;
2035                 if (__cpu_fifo_underrun_reporting_enabled(dev, pipe))
2036                         mask |= PIPE_FIFO_UNDERRUN_STATUS;
2037
2038                 switch (pipe) {
2039                 case PIPE_A:
2040                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
2041                         break;
2042                 case PIPE_B:
2043                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2044                         break;
2045                 case PIPE_C:
2046                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2047                         break;
2048                 }
2049                 if (iir & iir_bit)
2050                         mask |= dev_priv->pipestat_irq_mask[pipe];
2051
2052                 if (!mask)
2053                         continue;
2054
2055                 reg = PIPESTAT(pipe);
2056                 mask |= PIPESTAT_INT_ENABLE_MASK;
2057                 pipe_stats[pipe] = I915_READ(reg) & mask;
2058
2059                 /*
2060                  * Clear the PIPE*STAT regs before the IIR
2061                  */
2062                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
2063                                         PIPESTAT_INT_STATUS_MASK))
2064                         I915_WRITE(reg, pipe_stats[pipe]);
2065         }
2066         spin_unlock(&dev_priv->irq_lock);
2067
2068         for_each_pipe(dev_priv, pipe) {
2069                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
2070                     intel_pipe_handle_vblank(dev, pipe))
2071                         intel_check_page_flip(dev, pipe);
2072
2073                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
2074                         intel_prepare_page_flip(dev, pipe);
2075                         intel_finish_page_flip(dev, pipe);
2076                 }
2077
2078                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
2079                         i9xx_pipe_crc_irq_handler(dev, pipe);
2080
2081                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
2082                     intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2083                         DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
2084         }
2085
2086         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
2087                 gmbus_irq_handler(dev);
2088 }
2089
2090 static void i9xx_hpd_irq_handler(struct drm_device *dev)
2091 {
2092         struct drm_i915_private *dev_priv = dev->dev_private;
2093         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
2094
2095         if (hotplug_status) {
2096                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
2097                 /*
2098                  * Make sure hotplug status is cleared before we clear IIR, or else we
2099                  * may miss hotplug events.
2100                  */
2101                 POSTING_READ(PORT_HOTPLUG_STAT);
2102
2103                 if (IS_G4X(dev)) {
2104                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
2105
2106                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_g4x);
2107                 } else {
2108                         u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
2109
2110                         intel_hpd_irq_handler(dev, hotplug_trigger, 0, hpd_status_i915);
2111                 }
2112
2113                 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)) &&
2114                     hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
2115                         dp_aux_irq_handler(dev);
2116         }
2117 }
2118
2119 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
2120 {
2121         struct drm_device *dev = arg;
2122         struct drm_i915_private *dev_priv = dev->dev_private;
2123         u32 iir, gt_iir, pm_iir;
2124         irqreturn_t ret = IRQ_NONE;
2125
2126         while (true) {
2127                 /* Find, clear, then process each source of interrupt */
2128
2129                 gt_iir = I915_READ(GTIIR);
2130                 if (gt_iir)
2131                         I915_WRITE(GTIIR, gt_iir);
2132
2133                 pm_iir = I915_READ(GEN6_PMIIR);
2134                 if (pm_iir)
2135                         I915_WRITE(GEN6_PMIIR, pm_iir);
2136
2137                 iir = I915_READ(VLV_IIR);
2138                 if (iir) {
2139                         /* Consume port before clearing IIR or we'll miss events */
2140                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
2141                                 i9xx_hpd_irq_handler(dev);
2142                         I915_WRITE(VLV_IIR, iir);
2143                 }
2144
2145                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
2146                         goto out;
2147
2148                 ret = IRQ_HANDLED;
2149
2150                 if (gt_iir)
2151                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2152                 if (pm_iir)
2153                         gen6_rps_irq_handler(dev_priv, pm_iir);
2154                 /* Call regardless, as some status bits might not be
2155                  * signalled in iir */
2156                 valleyview_pipestat_irq_handler(dev, iir);
2157         }
2158
2159 out:
2160         return ret;
2161 }
2162
2163 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2164 {
2165         struct drm_device *dev = arg;
2166         struct drm_i915_private *dev_priv = dev->dev_private;
2167         u32 master_ctl, iir;
2168         irqreturn_t ret = IRQ_NONE;
2169
2170         for (;;) {
2171                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2172                 iir = I915_READ(VLV_IIR);
2173
2174                 if (master_ctl == 0 && iir == 0)
2175                         break;
2176
2177                 ret = IRQ_HANDLED;
2178
2179                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2180
2181                 /* Find, clear, then process each source of interrupt */
2182
2183                 if (iir) {
2184                         /* Consume port before clearing IIR or we'll miss events */
2185                         if (iir & I915_DISPLAY_PORT_INTERRUPT)
2186                                 i9xx_hpd_irq_handler(dev);
2187                         I915_WRITE(VLV_IIR, iir);
2188                 }
2189
2190                 gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2191
2192                 /* Call regardless, as some status bits might not be
2193                  * signalled in iir */
2194                 valleyview_pipestat_irq_handler(dev, iir);
2195
2196                 I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
2197                 POSTING_READ(GEN8_MASTER_IRQ);
2198         }
2199
2200         return ret;
2201 }
2202
2203 static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
2204 {
2205         struct drm_i915_private *dev_priv = dev->dev_private;
2206         int pipe;
2207         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2208         u32 dig_hotplug_reg;
2209
2210         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2211         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2212
2213         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_ibx);
2214
2215         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2216                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2217                                SDE_AUDIO_POWER_SHIFT);
2218                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2219                                  port_name(port));
2220         }
2221
2222         if (pch_iir & SDE_AUX_MASK)
2223                 dp_aux_irq_handler(dev);
2224
2225         if (pch_iir & SDE_GMBUS)
2226                 gmbus_irq_handler(dev);
2227
2228         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2229                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2230
2231         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2232                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2233
2234         if (pch_iir & SDE_POISON)
2235                 DRM_ERROR("PCH poison interrupt\n");
2236
2237         if (pch_iir & SDE_FDI_MASK)
2238                 for_each_pipe(dev_priv, pipe)
2239                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2240                                          pipe_name(pipe),
2241                                          I915_READ(FDI_RX_IIR(pipe)));
2242
2243         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2244                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2245
2246         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2247                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2248
2249         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2250                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2251                                                           false))
2252                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
2253
2254         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2255                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2256                                                           false))
2257                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
2258 }
2259
2260 static void ivb_err_int_handler(struct drm_device *dev)
2261 {
2262         struct drm_i915_private *dev_priv = dev->dev_private;
2263         u32 err_int = I915_READ(GEN7_ERR_INT);
2264         enum pipe pipe;
2265
2266         if (err_int & ERR_INT_POISON)
2267                 DRM_ERROR("Poison interrupt\n");
2268
2269         for_each_pipe(dev_priv, pipe) {
2270                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe)) {
2271                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2272                                                                   false))
2273                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2274                                           pipe_name(pipe));
2275                 }
2276
2277                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2278                         if (IS_IVYBRIDGE(dev))
2279                                 ivb_pipe_crc_irq_handler(dev, pipe);
2280                         else
2281                                 hsw_pipe_crc_irq_handler(dev, pipe);
2282                 }
2283         }
2284
2285         I915_WRITE(GEN7_ERR_INT, err_int);
2286 }
2287
2288 static void cpt_serr_int_handler(struct drm_device *dev)
2289 {
2290         struct drm_i915_private *dev_priv = dev->dev_private;
2291         u32 serr_int = I915_READ(SERR_INT);
2292
2293         if (serr_int & SERR_INT_POISON)
2294                 DRM_ERROR("PCH poison interrupt\n");
2295
2296         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2297                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_A,
2298                                                           false))
2299                         DRM_ERROR("PCH transcoder A FIFO underrun\n");
2300
2301         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2302                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_B,
2303                                                           false))
2304                         DRM_ERROR("PCH transcoder B FIFO underrun\n");
2305
2306         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2307                 if (intel_set_pch_fifo_underrun_reporting(dev, TRANSCODER_C,
2308                                                           false))
2309                         DRM_ERROR("PCH transcoder C FIFO underrun\n");
2310
2311         I915_WRITE(SERR_INT, serr_int);
2312 }
2313
2314 static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
2315 {
2316         struct drm_i915_private *dev_priv = dev->dev_private;
2317         int pipe;
2318         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2319         u32 dig_hotplug_reg;
2320
2321         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2322         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2323
2324         intel_hpd_irq_handler(dev, hotplug_trigger, dig_hotplug_reg, hpd_cpt);
2325
2326         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2327                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2328                                SDE_AUDIO_POWER_SHIFT_CPT);
2329                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2330                                  port_name(port));
2331         }
2332
2333         if (pch_iir & SDE_AUX_MASK_CPT)
2334                 dp_aux_irq_handler(dev);
2335
2336         if (pch_iir & SDE_GMBUS_CPT)
2337                 gmbus_irq_handler(dev);
2338
2339         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2340                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2341
2342         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2343                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2344
2345         if (pch_iir & SDE_FDI_MASK_CPT)
2346                 for_each_pipe(dev_priv, pipe)
2347                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2348                                          pipe_name(pipe),
2349                                          I915_READ(FDI_RX_IIR(pipe)));
2350
2351         if (pch_iir & SDE_ERROR_CPT)
2352                 cpt_serr_int_handler(dev);
2353 }
2354
2355 static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
2356 {
2357         struct drm_i915_private *dev_priv = dev->dev_private;
2358         enum pipe pipe;
2359
2360         if (de_iir & DE_AUX_CHANNEL_A)
2361                 dp_aux_irq_handler(dev);
2362
2363         if (de_iir & DE_GSE)
2364                 intel_opregion_asle_intr(dev);
2365
2366         if (de_iir & DE_POISON)
2367                 DRM_ERROR("Poison interrupt\n");
2368
2369         for_each_pipe(dev_priv, pipe) {
2370                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2371                     intel_pipe_handle_vblank(dev, pipe))
2372                         intel_check_page_flip(dev, pipe);
2373
2374                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2375                         if (intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
2376                                 DRM_ERROR("Pipe %c FIFO underrun\n",
2377                                           pipe_name(pipe));
2378
2379                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2380                         i9xx_pipe_crc_irq_handler(dev, pipe);
2381
2382                 /* plane/pipes map 1:1 on ilk+ */
2383                 if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2384                         intel_prepare_page_flip(dev, pipe);
2385                         intel_finish_page_flip_plane(dev, pipe);
2386                 }
2387         }
2388
2389         /* check event from PCH */
2390         if (de_iir & DE_PCH_EVENT) {
2391                 u32 pch_iir = I915_READ(SDEIIR);
2392
2393                 if (HAS_PCH_CPT(dev))
2394                         cpt_irq_handler(dev, pch_iir);
2395                 else
2396                         ibx_irq_handler(dev, pch_iir);
2397
2398                 /* should clear PCH hotplug event before clear CPU irq */
2399                 I915_WRITE(SDEIIR, pch_iir);
2400         }
2401
2402         if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2403                 ironlake_rps_change_irq_handler(dev);
2404 }
2405
2406 static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
2407 {
2408         struct drm_i915_private *dev_priv = dev->dev_private;
2409         enum pipe pipe;
2410
2411         if (de_iir & DE_ERR_INT_IVB)
2412                 ivb_err_int_handler(dev);
2413
2414         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2415                 dp_aux_irq_handler(dev);
2416
2417         if (de_iir & DE_GSE_IVB)
2418                 intel_opregion_asle_intr(dev);
2419
2420         for_each_pipe(dev_priv, pipe) {
2421                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2422                     intel_pipe_handle_vblank(dev, pipe))
2423                         intel_check_page_flip(dev, pipe);
2424
2425                 /* plane/pipes map 1:1 on ilk+ */
2426                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2427                         intel_prepare_page_flip(dev, pipe);
2428                         intel_finish_page_flip_plane(dev, pipe);
2429                 }
2430         }
2431
2432         /* check event from PCH */
2433         if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2434                 u32 pch_iir = I915_READ(SDEIIR);
2435
2436                 cpt_irq_handler(dev, pch_iir);
2437
2438                 /* clear PCH hotplug event before clear CPU irq */
2439                 I915_WRITE(SDEIIR, pch_iir);
2440         }
2441 }
2442
2443 /*
2444  * To handle irqs with the minimum potential races with fresh interrupts, we:
2445  * 1 - Disable Master Interrupt Control.
2446  * 2 - Find the source(s) of the interrupt.
2447  * 3 - Clear the Interrupt Identity bits (IIR).
2448  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2449  * 5 - Re-enable Master Interrupt Control.
2450  */
2451 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2452 {
2453         struct drm_device *dev = arg;
2454         struct drm_i915_private *dev_priv = dev->dev_private;
2455         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2456         irqreturn_t ret = IRQ_NONE;
2457
2458         /* We get interrupts on unclaimed registers, so check for this before we
2459          * do any I915_{READ,WRITE}. */
2460         intel_uncore_check_errors(dev);
2461
2462         /* disable master interrupt before clearing iir  */
2463         de_ier = I915_READ(DEIER);
2464         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2465         POSTING_READ(DEIER);
2466
2467         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2468          * interrupts will will be stored on its back queue, and then we'll be
2469          * able to process them after we restore SDEIER (as soon as we restore
2470          * it, we'll get an interrupt if SDEIIR still has something to process
2471          * due to its back queue). */
2472         if (!HAS_PCH_NOP(dev)) {
2473                 sde_ier = I915_READ(SDEIER);
2474                 I915_WRITE(SDEIER, 0);
2475                 POSTING_READ(SDEIER);
2476         }
2477
2478         /* Find, clear, then process each source of interrupt */
2479
2480         gt_iir = I915_READ(GTIIR);
2481         if (gt_iir) {
2482                 I915_WRITE(GTIIR, gt_iir);
2483                 ret = IRQ_HANDLED;
2484                 if (INTEL_INFO(dev)->gen >= 6)
2485                         snb_gt_irq_handler(dev, dev_priv, gt_iir);
2486                 else
2487                         ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2488         }
2489
2490         de_iir = I915_READ(DEIIR);
2491         if (de_iir) {
2492                 I915_WRITE(DEIIR, de_iir);
2493                 ret = IRQ_HANDLED;
2494                 if (INTEL_INFO(dev)->gen >= 7)
2495                         ivb_display_irq_handler(dev, de_iir);
2496                 else
2497                         ilk_display_irq_handler(dev, de_iir);
2498         }
2499
2500         if (INTEL_INFO(dev)->gen >= 6) {
2501                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2502                 if (pm_iir) {
2503                         I915_WRITE(GEN6_PMIIR, pm_iir);
2504                         ret = IRQ_HANDLED;
2505                         gen6_rps_irq_handler(dev_priv, pm_iir);
2506                 }
2507         }
2508
2509         I915_WRITE(DEIER, de_ier);
2510         POSTING_READ(DEIER);
2511         if (!HAS_PCH_NOP(dev)) {
2512                 I915_WRITE(SDEIER, sde_ier);
2513                 POSTING_READ(SDEIER);
2514         }
2515
2516         return ret;
2517 }
2518
2519 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2520 {
2521         struct drm_device *dev = arg;
2522         struct drm_i915_private *dev_priv = dev->dev_private;
2523         u32 master_ctl;
2524         irqreturn_t ret = IRQ_NONE;
2525         uint32_t tmp = 0;
2526         enum pipe pipe;
2527
2528         master_ctl = I915_READ(GEN8_MASTER_IRQ);
2529         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2530         if (!master_ctl)
2531                 return IRQ_NONE;
2532
2533         I915_WRITE(GEN8_MASTER_IRQ, 0);
2534         POSTING_READ(GEN8_MASTER_IRQ);
2535
2536         /* Find, clear, then process each source of interrupt */
2537
2538         ret = gen8_gt_irq_handler(dev, dev_priv, master_ctl);
2539
2540         if (master_ctl & GEN8_DE_MISC_IRQ) {
2541                 tmp = I915_READ(GEN8_DE_MISC_IIR);
2542                 if (tmp) {
2543                         I915_WRITE(GEN8_DE_MISC_IIR, tmp);
2544                         ret = IRQ_HANDLED;
2545                         if (tmp & GEN8_DE_MISC_GSE)
2546                                 intel_opregion_asle_intr(dev);
2547                         else
2548                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2549                 }
2550                 else
2551                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2552         }
2553
2554         if (master_ctl & GEN8_DE_PORT_IRQ) {
2555                 tmp = I915_READ(GEN8_DE_PORT_IIR);
2556                 if (tmp) {
2557                         I915_WRITE(GEN8_DE_PORT_IIR, tmp);
2558                         ret = IRQ_HANDLED;
2559                         if (tmp & GEN8_AUX_CHANNEL_A)
2560                                 dp_aux_irq_handler(dev);
2561                         else
2562                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2563                 }
2564                 else
2565                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2566         }
2567
2568         for_each_pipe(dev_priv, pipe) {
2569                 uint32_t pipe_iir;
2570
2571                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2572                         continue;
2573
2574                 pipe_iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2575                 if (pipe_iir) {
2576                         ret = IRQ_HANDLED;
2577                         I915_WRITE(GEN8_DE_PIPE_IIR(pipe), pipe_iir);
2578                         if (pipe_iir & GEN8_PIPE_VBLANK &&
2579                             intel_pipe_handle_vblank(dev, pipe))
2580                                 intel_check_page_flip(dev, pipe);
2581
2582                         if (pipe_iir & GEN8_PIPE_PRIMARY_FLIP_DONE) {
2583                                 intel_prepare_page_flip(dev, pipe);
2584                                 intel_finish_page_flip_plane(dev, pipe);
2585                         }
2586
2587                         if (pipe_iir & GEN8_PIPE_CDCLK_CRC_DONE)
2588                                 hsw_pipe_crc_irq_handler(dev, pipe);
2589
2590                         if (pipe_iir & GEN8_PIPE_FIFO_UNDERRUN) {
2591                                 if (intel_set_cpu_fifo_underrun_reporting(dev, pipe,
2592                                                                           false))
2593                                         DRM_ERROR("Pipe %c FIFO underrun\n",
2594                                                   pipe_name(pipe));
2595                         }
2596
2597                         if (pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS) {
2598                                 DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2599                                           pipe_name(pipe),
2600                                           pipe_iir & GEN8_DE_PIPE_IRQ_FAULT_ERRORS);
2601                         }
2602                 } else
2603                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2604         }
2605
2606         if (!HAS_PCH_NOP(dev) && master_ctl & GEN8_DE_PCH_IRQ) {
2607                 /*
2608                  * FIXME(BDW): Assume for now that the new interrupt handling
2609                  * scheme also closed the SDE interrupt handling race we've seen
2610                  * on older pch-split platforms. But this needs testing.
2611                  */
2612                 u32 pch_iir = I915_READ(SDEIIR);
2613                 if (pch_iir) {
2614                         I915_WRITE(SDEIIR, pch_iir);
2615                         ret = IRQ_HANDLED;
2616                         cpt_irq_handler(dev, pch_iir);
2617                 } else
2618                         DRM_ERROR("The master control interrupt lied (SDE)!\n");
2619
2620         }
2621
2622         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2623         POSTING_READ(GEN8_MASTER_IRQ);
2624
2625         return ret;
2626 }
2627
2628 static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2629                                bool reset_completed)
2630 {
2631         struct intel_engine_cs *ring;
2632         int i;
2633
2634         /*
2635          * Notify all waiters for GPU completion events that reset state has
2636          * been changed, and that they need to restart their wait after
2637          * checking for potential errors (and bail out to drop locks if there is
2638          * a gpu reset pending so that i915_error_work_func can acquire them).
2639          */
2640
2641         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2642         for_each_ring(ring, dev_priv, i)
2643                 wake_up_all(&ring->irq_queue);
2644
2645         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2646         wake_up_all(&dev_priv->pending_flip_queue);
2647
2648         /*
2649          * Signal tasks blocked in i915_gem_wait_for_error that the pending
2650          * reset state is cleared.
2651          */
2652         if (reset_completed)
2653                 wake_up_all(&dev_priv->gpu_error.reset_queue);
2654 }
2655
2656 /**
2657  * i915_error_work_func - do process context error handling work
2658  * @work: work struct
2659  *
2660  * Fire an error uevent so userspace can see that a hang or error
2661  * was detected.
2662  */
2663 static void i915_error_work_func(struct work_struct *work)
2664 {
2665         struct i915_gpu_error *error = container_of(work, struct i915_gpu_error,
2666                                                     work);
2667         struct drm_i915_private *dev_priv =
2668                 container_of(error, struct drm_i915_private, gpu_error);
2669         struct drm_device *dev = dev_priv->dev;
2670         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2671         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2672         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2673         int ret;
2674
2675         kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
2676
2677         /*
2678          * Note that there's only one work item which does gpu resets, so we
2679          * need not worry about concurrent gpu resets potentially incrementing
2680          * error->reset_counter twice. We only need to take care of another
2681          * racing irq/hangcheck declaring the gpu dead for a second time. A
2682          * quick check for that is good enough: schedule_work ensures the
2683          * correct ordering between hang detection and this work item, and since
2684          * the reset in-progress bit is only ever set by code outside of this
2685          * work we don't need to worry about any other races.
2686          */
2687         if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2688                 DRM_DEBUG_DRIVER("resetting chip\n");
2689                 kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2690                                    reset_event);
2691
2692                 /*
2693                  * In most cases it's guaranteed that we get here with an RPM
2694                  * reference held, for example because there is a pending GPU
2695                  * request that won't finish until the reset is done. This
2696                  * isn't the case at least when we get here by doing a
2697                  * simulated reset via debugs, so get an RPM reference.
2698                  */
2699                 intel_runtime_pm_get(dev_priv);
2700                 /*
2701                  * All state reset _must_ be completed before we update the
2702                  * reset counter, for otherwise waiters might miss the reset
2703                  * pending state and not properly drop locks, resulting in
2704                  * deadlocks with the reset work.
2705                  */
2706                 ret = i915_reset(dev);
2707
2708                 intel_display_handle_reset(dev);
2709
2710                 intel_runtime_pm_put(dev_priv);
2711
2712                 if (ret == 0) {
2713                         /*
2714                          * After all the gem state is reset, increment the reset
2715                          * counter and wake up everyone waiting for the reset to
2716                          * complete.
2717                          *
2718                          * Since unlock operations are a one-sided barrier only,
2719                          * we need to insert a barrier here to order any seqno
2720                          * updates before
2721                          * the counter increment.
2722                          */
2723                         smp_mb__before_atomic();
2724                         atomic_inc(&dev_priv->gpu_error.reset_counter);
2725
2726                         kobject_uevent_env(&dev->primary->kdev->kobj,
2727                                            KOBJ_CHANGE, reset_done_event);
2728                 } else {
2729                         atomic_set_mask(I915_WEDGED, &error->reset_counter);
2730                 }
2731
2732                 /*
2733                  * Note: The wake_up also serves as a memory barrier so that
2734                  * waiters see the update value of the reset counter atomic_t.
2735                  */
2736                 i915_error_wake_up(dev_priv, true);
2737         }
2738 }
2739
2740 static void i915_report_and_clear_eir(struct drm_device *dev)
2741 {
2742         struct drm_i915_private *dev_priv = dev->dev_private;
2743         uint32_t instdone[I915_NUM_INSTDONE_REG];
2744         u32 eir = I915_READ(EIR);
2745         int pipe, i;
2746
2747         if (!eir)
2748                 return;
2749
2750         pr_err("render error detected, EIR: 0x%08x\n", eir);
2751
2752         i915_get_extra_instdone(dev, instdone);
2753
2754         if (IS_G4X(dev)) {
2755                 if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2756                         u32 ipeir = I915_READ(IPEIR_I965);
2757
2758                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2759                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2760                         for (i = 0; i < ARRAY_SIZE(instdone); i++)
2761                                 pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2762                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2763                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2764                         I915_WRITE(IPEIR_I965, ipeir);
2765                         POSTING_READ(IPEIR_I965);
2766                 }
2767                 if (eir & GM45_ERROR_PAGE_TABLE) {
2768                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2769                         pr_err("page table error\n");
2770                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2771                         I915_WRITE(PGTBL_ER, pgtbl_err);
2772                         POSTING_READ(PGTBL_ER);
2773                 }
2774         }
2775
2776         if (!IS_GEN2(dev)) {
2777                 if (eir & I915_ERROR_PAGE_TABLE) {
2778                         u32 pgtbl_err = I915_READ(PGTBL_ER);
2779                         pr_err("page table error\n");
2780                         pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2781                         I915_WRITE(PGTBL_ER, pgtbl_err);
2782                         POSTING_READ(PGTBL_ER);
2783                 }
2784         }
2785
2786         if (eir & I915_ERROR_MEMORY_REFRESH) {
2787                 pr_err("memory refresh error:\n");
2788                 for_each_pipe(dev_priv, pipe)
2789                         pr_err("pipe %c stat: 0x%08x\n",
2790                                pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2791                 /* pipestat has already been acked */
2792         }
2793         if (eir & I915_ERROR_INSTRUCTION) {
2794                 pr_err("instruction error\n");
2795                 pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2796                 for (i = 0; i < ARRAY_SIZE(instdone); i++)
2797                         pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2798                 if (INTEL_INFO(dev)->gen < 4) {
2799                         u32 ipeir = I915_READ(IPEIR);
2800
2801                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2802                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2803                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2804                         I915_WRITE(IPEIR, ipeir);
2805                         POSTING_READ(IPEIR);
2806                 } else {
2807                         u32 ipeir = I915_READ(IPEIR_I965);
2808
2809                         pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2810                         pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2811                         pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2812                         pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2813                         I915_WRITE(IPEIR_I965, ipeir);
2814                         POSTING_READ(IPEIR_I965);
2815                 }
2816         }
2817
2818         I915_WRITE(EIR, eir);
2819         POSTING_READ(EIR);
2820         eir = I915_READ(EIR);
2821         if (eir) {
2822                 /*
2823                  * some errors might have become stuck,
2824                  * mask them.
2825                  */
2826                 DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2827                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2828                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2829         }
2830 }
2831
2832 /**
2833  * i915_handle_error - handle an error interrupt
2834  * @dev: drm device
2835  *
2836  * Do some basic checking of regsiter state at error interrupt time and
2837  * dump it to the syslog.  Also call i915_capture_error_state() to make
2838  * sure we get a record and make it available in debugfs.  Fire a uevent
2839  * so userspace knows something bad happened (should trigger collection
2840  * of a ring dump etc.).
2841  */
2842 void i915_handle_error(struct drm_device *dev, bool wedged,
2843                        const char *fmt, ...)
2844 {
2845         struct drm_i915_private *dev_priv = dev->dev_private;
2846         va_list args;
2847         char error_msg[80];
2848
2849         va_start(args, fmt);
2850         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2851         va_end(args);
2852
2853         i915_capture_error_state(dev, wedged, error_msg);
2854         i915_report_and_clear_eir(dev);
2855
2856         if (wedged) {
2857                 atomic_set_mask(I915_RESET_IN_PROGRESS_FLAG,
2858                                 &dev_priv->gpu_error.reset_counter);
2859
2860                 /*
2861                  * Wakeup waiting processes so that the reset work function
2862                  * i915_error_work_func doesn't deadlock trying to grab various
2863                  * locks. By bumping the reset counter first, the woken
2864                  * processes will see a reset in progress and back off,
2865                  * releasing their locks and then wait for the reset completion.
2866                  * We must do this for _all_ gpu waiters that might hold locks
2867                  * that the reset work needs to acquire.
2868                  *
2869                  * Note: The wake_up serves as the required memory barrier to
2870                  * ensure that the waiters see the updated value of the reset
2871                  * counter atomic_t.
2872                  */
2873                 i915_error_wake_up(dev_priv, false);
2874         }
2875
2876         /*
2877          * Our reset work can grab modeset locks (since it needs to reset the
2878          * state of outstanding pagelips). Hence it must not be run on our own
2879          * dev-priv->wq work queue for otherwise the flush_work in the pageflip
2880          * code will deadlock.
2881          */
2882         schedule_work(&dev_priv->gpu_error.work);
2883 }
2884
2885 /* Called from drm generic code, passed 'crtc' which
2886  * we use as a pipe index
2887  */
2888 static int i915_enable_vblank(struct drm_device *dev, int pipe)
2889 {
2890         struct drm_i915_private *dev_priv = dev->dev_private;
2891         unsigned long irqflags;
2892
2893         if (!i915_pipe_enabled(dev, pipe))
2894                 return -EINVAL;
2895
2896         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2897         if (INTEL_INFO(dev)->gen >= 4)
2898                 i915_enable_pipestat(dev_priv, pipe,
2899                                      PIPE_START_VBLANK_INTERRUPT_STATUS);
2900         else
2901                 i915_enable_pipestat(dev_priv, pipe,
2902                                      PIPE_VBLANK_INTERRUPT_STATUS);
2903         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2904
2905         return 0;
2906 }
2907
2908 static int ironlake_enable_vblank(struct drm_device *dev, int pipe)
2909 {
2910         struct drm_i915_private *dev_priv = dev->dev_private;
2911         unsigned long irqflags;
2912         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2913                                                      DE_PIPE_VBLANK(pipe);
2914
2915         if (!i915_pipe_enabled(dev, pipe))
2916                 return -EINVAL;
2917
2918         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2919         ironlake_enable_display_irq(dev_priv, bit);
2920         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2921
2922         return 0;
2923 }
2924
2925 static int valleyview_enable_vblank(struct drm_device *dev, int pipe)
2926 {
2927         struct drm_i915_private *dev_priv = dev->dev_private;
2928         unsigned long irqflags;
2929
2930         if (!i915_pipe_enabled(dev, pipe))
2931                 return -EINVAL;
2932
2933         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2934         i915_enable_pipestat(dev_priv, pipe,
2935                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2936         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2937
2938         return 0;
2939 }
2940
2941 static int gen8_enable_vblank(struct drm_device *dev, int pipe)
2942 {
2943         struct drm_i915_private *dev_priv = dev->dev_private;
2944         unsigned long irqflags;
2945
2946         if (!i915_pipe_enabled(dev, pipe))
2947                 return -EINVAL;
2948
2949         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2950         dev_priv->de_irq_mask[pipe] &= ~GEN8_PIPE_VBLANK;
2951         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
2952         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
2953         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2954         return 0;
2955 }
2956
2957 /* Called from drm generic code, passed 'crtc' which
2958  * we use as a pipe index
2959  */
2960 static void i915_disable_vblank(struct drm_device *dev, int pipe)
2961 {
2962         struct drm_i915_private *dev_priv = dev->dev_private;
2963         unsigned long irqflags;
2964
2965         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2966         i915_disable_pipestat(dev_priv, pipe,
2967                               PIPE_VBLANK_INTERRUPT_STATUS |
2968                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2969         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2970 }
2971
2972 static void ironlake_disable_vblank(struct drm_device *dev, int pipe)
2973 {
2974         struct drm_i915_private *dev_priv = dev->dev_private;
2975         unsigned long irqflags;
2976         uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2977                                                      DE_PIPE_VBLANK(pipe);
2978
2979         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2980         ironlake_disable_display_irq(dev_priv, bit);
2981         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2982 }
2983
2984 static void valleyview_disable_vblank(struct drm_device *dev, int pipe)
2985 {
2986         struct drm_i915_private *dev_priv = dev->dev_private;
2987         unsigned long irqflags;
2988
2989         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2990         i915_disable_pipestat(dev_priv, pipe,
2991                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2992         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2993 }
2994
2995 static void gen8_disable_vblank(struct drm_device *dev, int pipe)
2996 {
2997         struct drm_i915_private *dev_priv = dev->dev_private;
2998         unsigned long irqflags;
2999
3000         if (!i915_pipe_enabled(dev, pipe))
3001                 return;
3002
3003         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3004         dev_priv->de_irq_mask[pipe] |= GEN8_PIPE_VBLANK;
3005         I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
3006         POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
3007         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3008 }
3009
3010 static u32
3011 ring_last_seqno(struct intel_engine_cs *ring)
3012 {
3013         return list_entry(ring->request_list.prev,
3014                           struct drm_i915_gem_request, list)->seqno;
3015 }
3016
3017 static bool
3018 ring_idle(struct intel_engine_cs *ring, u32 seqno)
3019 {
3020         return (list_empty(&ring->request_list) ||
3021                 i915_seqno_passed(seqno, ring_last_seqno(ring)));
3022 }
3023
3024 static bool
3025 ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
3026 {
3027         if (INTEL_INFO(dev)->gen >= 8) {
3028                 return (ipehr >> 23) == 0x1c;
3029         } else {
3030                 ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
3031                 return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
3032                                  MI_SEMAPHORE_REGISTER);
3033         }
3034 }
3035
3036 static struct intel_engine_cs *
3037 semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
3038 {
3039         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3040         struct intel_engine_cs *signaller;
3041         int i;
3042
3043         if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
3044                 for_each_ring(signaller, dev_priv, i) {
3045                         if (ring == signaller)
3046                                 continue;
3047
3048                         if (offset == signaller->semaphore.signal_ggtt[ring->id])
3049                                 return signaller;
3050                 }
3051         } else {
3052                 u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
3053
3054                 for_each_ring(signaller, dev_priv, i) {
3055                         if(ring == signaller)
3056                                 continue;
3057
3058                         if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
3059                                 return signaller;
3060                 }
3061         }
3062
3063         DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
3064                   ring->id, ipehr, offset);
3065
3066         return NULL;
3067 }
3068
3069 static struct intel_engine_cs *
3070 semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
3071 {
3072         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3073         u32 cmd, ipehr, head;
3074         u64 offset = 0;
3075         int i, backwards;
3076
3077         ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
3078         if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
3079                 return NULL;
3080
3081         /*
3082          * HEAD is likely pointing to the dword after the actual command,
3083          * so scan backwards until we find the MBOX. But limit it to just 3
3084          * or 4 dwords depending on the semaphore wait command size.
3085          * Note that we don't care about ACTHD here since that might
3086          * point at at batch, and semaphores are always emitted into the
3087          * ringbuffer itself.
3088          */
3089         head = I915_READ_HEAD(ring) & HEAD_ADDR;
3090         backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
3091
3092         for (i = backwards; i; --i) {
3093                 /*
3094                  * Be paranoid and presume the hw has gone off into the wild -
3095                  * our ring is smaller than what the hardware (and hence
3096                  * HEAD_ADDR) allows. Also handles wrap-around.
3097                  */
3098                 head &= ring->buffer->size - 1;
3099
3100                 /* This here seems to blow up */
3101                 cmd = ioread32(ring->buffer->virtual_start + head);
3102                 if (cmd == ipehr)
3103                         break;
3104
3105                 head -= 4;
3106         }
3107
3108         if (!i)
3109                 return NULL;
3110
3111         *seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
3112         if (INTEL_INFO(ring->dev)->gen >= 8) {
3113                 offset = ioread32(ring->buffer->virtual_start + head + 12);
3114                 offset <<= 32;
3115                 offset = ioread32(ring->buffer->virtual_start + head + 8);
3116         }
3117         return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
3118 }
3119
3120 static int semaphore_passed(struct intel_engine_cs *ring)
3121 {
3122         struct drm_i915_private *dev_priv = ring->dev->dev_private;
3123         struct intel_engine_cs *signaller;
3124         u32 seqno;
3125
3126         ring->hangcheck.deadlock++;
3127
3128         signaller = semaphore_waits_for(ring, &seqno);
3129         if (signaller == NULL)
3130                 return -1;
3131
3132         /* Prevent pathological recursion due to driver bugs */
3133         if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
3134                 return -1;
3135
3136         if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
3137                 return 1;
3138
3139         /* cursory check for an unkickable deadlock */
3140         if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
3141             semaphore_passed(signaller) < 0)
3142                 return -1;
3143
3144         return 0;
3145 }
3146
3147 static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
3148 {
3149         struct intel_engine_cs *ring;
3150         int i;
3151
3152         for_each_ring(ring, dev_priv, i)
3153                 ring->hangcheck.deadlock = 0;
3154 }
3155
3156 static enum intel_ring_hangcheck_action
3157 ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3158 {
3159         struct drm_device *dev = ring->dev;
3160         struct drm_i915_private *dev_priv = dev->dev_private;
3161         u32 tmp;
3162
3163         if (acthd != ring->hangcheck.acthd) {
3164                 if (acthd > ring->hangcheck.max_acthd) {
3165                         ring->hangcheck.max_acthd = acthd;
3166                         return HANGCHECK_ACTIVE;
3167                 }
3168
3169                 return HANGCHECK_ACTIVE_LOOP;
3170         }
3171
3172         if (IS_GEN2(dev))
3173                 return HANGCHECK_HUNG;
3174
3175         /* Is the chip hanging on a WAIT_FOR_EVENT?
3176          * If so we can simply poke the RB_WAIT bit
3177          * and break the hang. This should work on
3178          * all but the second generation chipsets.
3179          */
3180         tmp = I915_READ_CTL(ring);
3181         if (tmp & RING_WAIT) {
3182                 i915_handle_error(dev, false,
3183                                   "Kicking stuck wait on %s",
3184                                   ring->name);
3185                 I915_WRITE_CTL(ring, tmp);
3186                 return HANGCHECK_KICK;
3187         }
3188
3189         if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3190                 switch (semaphore_passed(ring)) {
3191                 default:
3192                         return HANGCHECK_HUNG;
3193                 case 1:
3194                         i915_handle_error(dev, false,
3195                                           "Kicking stuck semaphore on %s",
3196                                           ring->name);
3197                         I915_WRITE_CTL(ring, tmp);
3198                         return HANGCHECK_KICK;
3199                 case 0:
3200                         return HANGCHECK_WAIT;
3201                 }
3202         }
3203
3204         return HANGCHECK_HUNG;
3205 }
3206
3207 /**
3208  * This is called when the chip hasn't reported back with completed
3209  * batchbuffers in a long time. We keep track per ring seqno progress and
3210  * if there are no progress, hangcheck score for that ring is increased.
3211  * Further, acthd is inspected to see if the ring is stuck. On stuck case
3212  * we kick the ring. If we see no progress on three subsequent calls
3213  * we assume chip is wedged and try to fix it by resetting the chip.
3214  */
3215 static void i915_hangcheck_elapsed(unsigned long data)
3216 {
3217         struct drm_device *dev = (struct drm_device *)data;
3218         struct drm_i915_private *dev_priv = dev->dev_private;
3219         struct intel_engine_cs *ring;
3220         int i;
3221         int busy_count = 0, rings_hung = 0;
3222         bool stuck[I915_NUM_RINGS] = { 0 };
3223 #define BUSY 1
3224 #define KICK 5
3225 #define HUNG 20
3226
3227         if (!i915.enable_hangcheck)
3228                 return;
3229
3230         for_each_ring(ring, dev_priv, i) {
3231                 u64 acthd;
3232                 u32 seqno;
3233                 bool busy = true;
3234
3235                 semaphore_clear_deadlocks(dev_priv);
3236
3237                 seqno = ring->get_seqno(ring, false);
3238                 acthd = intel_ring_get_active_head(ring);
3239
3240                 if (ring->hangcheck.seqno == seqno) {
3241                         if (ring_idle(ring, seqno)) {
3242                                 ring->hangcheck.action = HANGCHECK_IDLE;
3243
3244                                 if (waitqueue_active(&ring->irq_queue)) {
3245                                         /* Issue a wake-up to catch stuck h/w. */
3246                                         if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3247                                                 if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3248                                                         DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3249                                                                   ring->name);
3250                                                 else
3251                                                         DRM_INFO("Fake missed irq on %s\n",
3252                                                                  ring->name);
3253                                                 wake_up_all(&ring->irq_queue);
3254                                         }
3255                                         /* Safeguard against driver failure */
3256                                         ring->hangcheck.score += BUSY;
3257                                 } else
3258                                         busy = false;
3259                         } else {
3260                                 /* We always increment the hangcheck score
3261                                  * if the ring is busy and still processing
3262                                  * the same request, so that no single request
3263                                  * can run indefinitely (such as a chain of
3264                                  * batches). The only time we do not increment
3265                                  * the hangcheck score on this ring, if this
3266                                  * ring is in a legitimate wait for another
3267                                  * ring. In that case the waiting ring is a
3268                                  * victim and we want to be sure we catch the
3269                                  * right culprit. Then every time we do kick
3270                                  * the ring, add a small increment to the
3271                                  * score so that we can catch a batch that is
3272                                  * being repeatedly kicked and so responsible
3273                                  * for stalling the machine.
3274                                  */
3275                                 ring->hangcheck.action = ring_stuck(ring,
3276                                                                     acthd);
3277
3278                                 switch (ring->hangcheck.action) {
3279                                 case HANGCHECK_IDLE:
3280                                 case HANGCHECK_WAIT:
3281                                 case HANGCHECK_ACTIVE:
3282                                         break;
3283                                 case HANGCHECK_ACTIVE_LOOP:
3284                                         ring->hangcheck.score += BUSY;
3285                                         break;
3286                                 case HANGCHECK_KICK:
3287                                         ring->hangcheck.score += KICK;
3288                                         break;
3289                                 case HANGCHECK_HUNG:
3290                                         ring->hangcheck.score += HUNG;
3291                                         stuck[i] = true;
3292                                         break;
3293                                 }
3294                         }
3295                 } else {
3296                         ring->hangcheck.action = HANGCHECK_ACTIVE;
3297
3298                         /* Gradually reduce the count so that we catch DoS
3299                          * attempts across multiple batches.
3300                          */
3301                         if (ring->hangcheck.score > 0)
3302                                 ring->hangcheck.score--;
3303
3304                         ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3305                 }
3306
3307                 ring->hangcheck.seqno = seqno;
3308                 ring->hangcheck.acthd = acthd;
3309                 busy_count += busy;
3310         }
3311
3312         for_each_ring(ring, dev_priv, i) {
3313                 if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3314                         DRM_INFO("%s on %s\n",
3315                                  stuck[i] ? "stuck" : "no progress",
3316                                  ring->name);
3317                         rings_hung++;
3318                 }
3319         }
3320
3321         if (rings_hung)
3322                 return i915_handle_error(dev, true, "Ring hung");
3323
3324         if (busy_count)
3325                 /* Reset timer case chip hangs without another request
3326                  * being added */
3327                 i915_queue_hangcheck(dev);
3328 }
3329
3330 void i915_queue_hangcheck(struct drm_device *dev)
3331 {
3332         struct drm_i915_private *dev_priv = dev->dev_private;
3333         if (!i915.enable_hangcheck)
3334                 return;
3335
3336         mod_timer(&dev_priv->gpu_error.hangcheck_timer,
3337                   round_jiffies_up(jiffies + DRM_I915_HANGCHECK_JIFFIES));
3338 }
3339
3340 static void ibx_irq_reset(struct drm_device *dev)
3341 {
3342         struct drm_i915_private *dev_priv = dev->dev_private;
3343
3344         if (HAS_PCH_NOP(dev))
3345                 return;
3346
3347         GEN5_IRQ_RESET(SDE);
3348
3349         if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3350                 I915_WRITE(SERR_INT, 0xffffffff);
3351 }
3352
3353 /*
3354  * SDEIER is also touched by the interrupt handler to work around missed PCH
3355  * interrupts. Hence we can't update it after the interrupt handler is enabled -
3356  * instead we unconditionally enable all PCH interrupt sources here, but then
3357  * only unmask them as needed with SDEIMR.
3358  *
3359  * This function needs to be called before interrupts are enabled.
3360  */
3361 static void ibx_irq_pre_postinstall(struct drm_device *dev)
3362 {
3363         struct drm_i915_private *dev_priv = dev->dev_private;
3364
3365         if (HAS_PCH_NOP(dev))
3366                 return;
3367
3368         WARN_ON(I915_READ(SDEIER) != 0);
3369         I915_WRITE(SDEIER, 0xffffffff);
3370         POSTING_READ(SDEIER);
3371 }
3372
3373 static void gen5_gt_irq_reset(struct drm_device *dev)
3374 {
3375         struct drm_i915_private *dev_priv = dev->dev_private;
3376
3377         GEN5_IRQ_RESET(GT);
3378         if (INTEL_INFO(dev)->gen >= 6)
3379                 GEN5_IRQ_RESET(GEN6_PM);
3380 }
3381
3382 /* drm_dma.h hooks
3383 */
3384 static void ironlake_irq_reset(struct drm_device *dev)
3385 {
3386         struct drm_i915_private *dev_priv = dev->dev_private;
3387
3388         I915_WRITE(HWSTAM, 0xffffffff);
3389
3390         GEN5_IRQ_RESET(DE);
3391         if (IS_GEN7(dev))
3392                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
3393
3394         gen5_gt_irq_reset(dev);
3395
3396         ibx_irq_reset(dev);
3397 }
3398
3399 static void valleyview_irq_preinstall(struct drm_device *dev)
3400 {
3401         struct drm_i915_private *dev_priv = dev->dev_private;
3402         int pipe;
3403
3404         /* VLV magic */
3405         I915_WRITE(VLV_IMR, 0);
3406         I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3407         I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3408         I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3409
3410         /* and GT */
3411         I915_WRITE(GTIIR, I915_READ(GTIIR));
3412         I915_WRITE(GTIIR, I915_READ(GTIIR));
3413
3414         gen5_gt_irq_reset(dev);
3415
3416         I915_WRITE(DPINVGTT, 0xff);
3417
3418         I915_WRITE(PORT_HOTPLUG_EN, 0);
3419         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3420         for_each_pipe(dev_priv, pipe)
3421                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3422         I915_WRITE(VLV_IIR, 0xffffffff);
3423         I915_WRITE(VLV_IMR, 0xffffffff);
3424         I915_WRITE(VLV_IER, 0x0);
3425         POSTING_READ(VLV_IER);
3426 }
3427
3428 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3429 {
3430         GEN8_IRQ_RESET_NDX(GT, 0);
3431         GEN8_IRQ_RESET_NDX(GT, 1);
3432         GEN8_IRQ_RESET_NDX(GT, 2);
3433         GEN8_IRQ_RESET_NDX(GT, 3);
3434 }
3435
3436 static void gen8_irq_reset(struct drm_device *dev)
3437 {
3438         struct drm_i915_private *dev_priv = dev->dev_private;
3439         int pipe;
3440
3441         I915_WRITE(GEN8_MASTER_IRQ, 0);
3442         POSTING_READ(GEN8_MASTER_IRQ);
3443
3444         gen8_gt_irq_reset(dev_priv);
3445
3446         for_each_pipe(dev_priv, pipe)
3447                 if (intel_display_power_enabled(dev_priv,
3448                                                 POWER_DOMAIN_PIPE(pipe)))
3449                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3450
3451         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3452         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3453         GEN5_IRQ_RESET(GEN8_PCU_);
3454
3455         ibx_irq_reset(dev);
3456 }
3457
3458 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv)
3459 {
3460         unsigned long irqflags;
3461         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3462
3463         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3464         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_B, dev_priv->de_irq_mask[PIPE_B],
3465                           ~dev_priv->de_irq_mask[PIPE_B] | extra_ier);
3466         GEN8_IRQ_INIT_NDX(DE_PIPE, PIPE_C, dev_priv->de_irq_mask[PIPE_C],
3467                           ~dev_priv->de_irq_mask[PIPE_C] | extra_ier);
3468         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3469 }
3470
3471 static void cherryview_irq_preinstall(struct drm_device *dev)
3472 {
3473         struct drm_i915_private *dev_priv = dev->dev_private;
3474         int pipe;
3475
3476         I915_WRITE(GEN8_MASTER_IRQ, 0);
3477         POSTING_READ(GEN8_MASTER_IRQ);
3478
3479         gen8_gt_irq_reset(dev_priv);
3480
3481         GEN5_IRQ_RESET(GEN8_PCU_);
3482
3483         POSTING_READ(GEN8_PCU_IIR);
3484
3485         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3486
3487         I915_WRITE(PORT_HOTPLUG_EN, 0);
3488         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3489
3490         for_each_pipe(dev_priv, pipe)
3491                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3492
3493         I915_WRITE(VLV_IMR, 0xffffffff);
3494         I915_WRITE(VLV_IER, 0x0);
3495         I915_WRITE(VLV_IIR, 0xffffffff);
3496         POSTING_READ(VLV_IIR);
3497 }
3498
3499 static void ibx_hpd_irq_setup(struct drm_device *dev)
3500 {
3501         struct drm_i915_private *dev_priv = dev->dev_private;
3502         struct intel_encoder *intel_encoder;
3503         u32 hotplug_irqs, hotplug, enabled_irqs = 0;
3504
3505         if (HAS_PCH_IBX(dev)) {
3506                 hotplug_irqs = SDE_HOTPLUG_MASK;
3507                 for_each_intel_encoder(dev, intel_encoder)
3508                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3509                                 enabled_irqs |= hpd_ibx[intel_encoder->hpd_pin];
3510         } else {
3511                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3512                 for_each_intel_encoder(dev, intel_encoder)
3513                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
3514                                 enabled_irqs |= hpd_cpt[intel_encoder->hpd_pin];
3515         }
3516
3517         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3518
3519         /*
3520          * Enable digital hotplug on the PCH, and configure the DP short pulse
3521          * duration to 2ms (which is the minimum in the Display Port spec)
3522          *
3523          * This register is the same on all known PCH chips.
3524          */
3525         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3526         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3527         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3528         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3529         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3530         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3531 }
3532
3533 static void ibx_irq_postinstall(struct drm_device *dev)
3534 {
3535         struct drm_i915_private *dev_priv = dev->dev_private;
3536         u32 mask;
3537
3538         if (HAS_PCH_NOP(dev))
3539                 return;
3540
3541         if (HAS_PCH_IBX(dev))
3542                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3543         else
3544                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3545
3546         GEN5_ASSERT_IIR_IS_ZERO(SDEIIR);
3547         I915_WRITE(SDEIMR, ~mask);
3548 }
3549
3550 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3551 {
3552         struct drm_i915_private *dev_priv = dev->dev_private;
3553         u32 pm_irqs, gt_irqs;
3554
3555         pm_irqs = gt_irqs = 0;
3556
3557         dev_priv->gt_irq_mask = ~0;
3558         if (HAS_L3_DPF(dev)) {
3559                 /* L3 parity interrupt is always unmasked. */
3560                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3561                 gt_irqs |= GT_PARITY_ERROR(dev);
3562         }
3563
3564         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3565         if (IS_GEN5(dev)) {
3566                 gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3567                            ILK_BSD_USER_INTERRUPT;
3568         } else {
3569                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3570         }
3571
3572         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3573
3574         if (INTEL_INFO(dev)->gen >= 6) {
3575                 pm_irqs |= dev_priv->pm_rps_events;
3576
3577                 if (HAS_VEBOX(dev))
3578                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3579
3580                 dev_priv->pm_irq_mask = 0xffffffff;
3581                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3582         }
3583 }
3584
3585 static int ironlake_irq_postinstall(struct drm_device *dev)
3586 {
3587         unsigned long irqflags;
3588         struct drm_i915_private *dev_priv = dev->dev_private;
3589         u32 display_mask, extra_mask;
3590
3591         if (INTEL_INFO(dev)->gen >= 7) {
3592                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3593                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3594                                 DE_PLANEB_FLIP_DONE_IVB |
3595                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3596                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3597                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB);
3598         } else {
3599                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3600                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3601                                 DE_AUX_CHANNEL_A |
3602                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3603                                 DE_POISON);
3604                 extra_mask = DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3605                                 DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN;
3606         }
3607
3608         dev_priv->irq_mask = ~display_mask;
3609
3610         I915_WRITE(HWSTAM, 0xeffe);
3611
3612         ibx_irq_pre_postinstall(dev);
3613
3614         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3615
3616         gen5_gt_irq_postinstall(dev);
3617
3618         ibx_irq_postinstall(dev);
3619
3620         if (IS_IRONLAKE_M(dev)) {
3621                 /* Enable PCU event interrupts
3622                  *
3623                  * spinlocking not required here for correctness since interrupt
3624                  * setup is guaranteed to run in single-threaded context. But we
3625                  * need it to make the assert_spin_locked happy. */
3626                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3627                 ironlake_enable_display_irq(dev_priv, DE_PCU_EVENT);
3628                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3629         }
3630
3631         return 0;
3632 }
3633
3634 static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3635 {
3636         u32 pipestat_mask;
3637         u32 iir_mask;
3638
3639         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3640                         PIPE_FIFO_UNDERRUN_STATUS;
3641
3642         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3643         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3644         POSTING_READ(PIPESTAT(PIPE_A));
3645
3646         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3647                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3648
3649         i915_enable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3650                                                PIPE_GMBUS_INTERRUPT_STATUS);
3651         i915_enable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3652
3653         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3654                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3655                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3656         dev_priv->irq_mask &= ~iir_mask;
3657
3658         I915_WRITE(VLV_IIR, iir_mask);
3659         I915_WRITE(VLV_IIR, iir_mask);
3660         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3661         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3662         POSTING_READ(VLV_IER);
3663 }
3664
3665 static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3666 {
3667         u32 pipestat_mask;
3668         u32 iir_mask;
3669
3670         iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3671                    I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3672                    I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3673
3674         dev_priv->irq_mask |= iir_mask;
3675         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3676         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3677         I915_WRITE(VLV_IIR, iir_mask);
3678         I915_WRITE(VLV_IIR, iir_mask);
3679         POSTING_READ(VLV_IIR);
3680
3681         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3682                         PIPE_CRC_DONE_INTERRUPT_STATUS;
3683
3684         i915_disable_pipestat(dev_priv, PIPE_A, pipestat_mask |
3685                                                 PIPE_GMBUS_INTERRUPT_STATUS);
3686         i915_disable_pipestat(dev_priv, PIPE_B, pipestat_mask);
3687
3688         pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3689                         PIPE_FIFO_UNDERRUN_STATUS;
3690         I915_WRITE(PIPESTAT(PIPE_A), pipestat_mask);
3691         I915_WRITE(PIPESTAT(PIPE_B), pipestat_mask);
3692         POSTING_READ(PIPESTAT(PIPE_A));
3693 }
3694
3695 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3696 {
3697         assert_spin_locked(&dev_priv->irq_lock);
3698
3699         if (dev_priv->display_irqs_enabled)
3700                 return;
3701
3702         dev_priv->display_irqs_enabled = true;
3703
3704         if (dev_priv->dev->irq_enabled)
3705                 valleyview_display_irqs_install(dev_priv);
3706 }
3707
3708 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3709 {
3710         assert_spin_locked(&dev_priv->irq_lock);
3711
3712         if (!dev_priv->display_irqs_enabled)
3713                 return;
3714
3715         dev_priv->display_irqs_enabled = false;
3716
3717         if (dev_priv->dev->irq_enabled)
3718                 valleyview_display_irqs_uninstall(dev_priv);
3719 }
3720
3721 static int valleyview_irq_postinstall(struct drm_device *dev)
3722 {
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724         unsigned long irqflags;
3725
3726         dev_priv->irq_mask = ~0;
3727
3728         I915_WRITE(PORT_HOTPLUG_EN, 0);
3729         POSTING_READ(PORT_HOTPLUG_EN);
3730
3731         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3732         I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3733         I915_WRITE(VLV_IIR, 0xffffffff);
3734         POSTING_READ(VLV_IER);
3735
3736         /* Interrupt setup is already guaranteed to be single-threaded, this is
3737          * just to make the assert_spin_locked check happy. */
3738         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3739         if (dev_priv->display_irqs_enabled)
3740                 valleyview_display_irqs_install(dev_priv);
3741         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3742
3743         I915_WRITE(VLV_IIR, 0xffffffff);
3744         I915_WRITE(VLV_IIR, 0xffffffff);
3745
3746         gen5_gt_irq_postinstall(dev);
3747
3748         /* ack & enable invalid PTE error interrupts */
3749 #if 0 /* FIXME: add support to irq handler for checking these bits */
3750         I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3751         I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3752 #endif
3753
3754         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3755
3756         return 0;
3757 }
3758
3759 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3760 {
3761         /* These are interrupts we'll toggle with the ring mask register */
3762         uint32_t gt_interrupts[] = {
3763                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3764                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3765                         GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3766                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3767                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3768                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3769                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3770                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3771                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3772                 0,
3773                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3774                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3775                 };
3776
3777         dev_priv->pm_irq_mask = 0xffffffff;
3778         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3779         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3780         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, dev_priv->pm_rps_events);
3781         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3782 }
3783
3784 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3785 {
3786         uint32_t de_pipe_masked = GEN8_PIPE_PRIMARY_FLIP_DONE |
3787                 GEN8_PIPE_CDCLK_CRC_DONE |
3788                 GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3789         uint32_t de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3790                 GEN8_PIPE_FIFO_UNDERRUN;
3791         int pipe;
3792         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3793         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3794         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3795
3796         for_each_pipe(dev_priv, pipe)
3797                 if (intel_display_power_enabled(dev_priv,
3798                                 POWER_DOMAIN_PIPE(pipe)))
3799                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3800                                           dev_priv->de_irq_mask[pipe],
3801                                           de_pipe_enables);
3802
3803         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~GEN8_AUX_CHANNEL_A, GEN8_AUX_CHANNEL_A);
3804 }
3805
3806 static int gen8_irq_postinstall(struct drm_device *dev)
3807 {
3808         struct drm_i915_private *dev_priv = dev->dev_private;
3809
3810         ibx_irq_pre_postinstall(dev);
3811
3812         gen8_gt_irq_postinstall(dev_priv);
3813         gen8_de_irq_postinstall(dev_priv);
3814
3815         ibx_irq_postinstall(dev);
3816
3817         I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3818         POSTING_READ(GEN8_MASTER_IRQ);
3819
3820         return 0;
3821 }
3822
3823 static int cherryview_irq_postinstall(struct drm_device *dev)
3824 {
3825         struct drm_i915_private *dev_priv = dev->dev_private;
3826         u32 enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3827                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3828                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3829                 I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3830         u32 pipestat_enable = PLANE_FLIP_DONE_INT_STATUS_VLV |
3831                 PIPE_CRC_DONE_INTERRUPT_STATUS;
3832         unsigned long irqflags;
3833         int pipe;
3834
3835         /*
3836          * Leave vblank interrupts masked initially.  enable/disable will
3837          * toggle them based on usage.
3838          */
3839         dev_priv->irq_mask = ~enable_mask;
3840
3841         for_each_pipe(dev_priv, pipe)
3842                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3843
3844         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3845         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3846         for_each_pipe(dev_priv, pipe)
3847                 i915_enable_pipestat(dev_priv, pipe, pipestat_enable);
3848         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3849
3850         I915_WRITE(VLV_IIR, 0xffffffff);
3851         I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3852         I915_WRITE(VLV_IER, enable_mask);
3853
3854         gen8_gt_irq_postinstall(dev_priv);
3855
3856         I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3857         POSTING_READ(GEN8_MASTER_IRQ);
3858
3859         return 0;
3860 }
3861
3862 static void gen8_irq_uninstall(struct drm_device *dev)
3863 {
3864         struct drm_i915_private *dev_priv = dev->dev_private;
3865
3866         if (!dev_priv)
3867                 return;
3868
3869         gen8_irq_reset(dev);
3870 }
3871
3872 static void valleyview_irq_uninstall(struct drm_device *dev)
3873 {
3874         struct drm_i915_private *dev_priv = dev->dev_private;
3875         unsigned long irqflags;
3876         int pipe;
3877
3878         if (!dev_priv)
3879                 return;
3880
3881         I915_WRITE(VLV_MASTER_IER, 0);
3882
3883         for_each_pipe(dev_priv, pipe)
3884                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3885
3886         I915_WRITE(HWSTAM, 0xffffffff);
3887         I915_WRITE(PORT_HOTPLUG_EN, 0);
3888         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3889
3890         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3891         if (dev_priv->display_irqs_enabled)
3892                 valleyview_display_irqs_uninstall(dev_priv);
3893         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3894
3895         dev_priv->irq_mask = 0;
3896
3897         I915_WRITE(VLV_IIR, 0xffffffff);
3898         I915_WRITE(VLV_IMR, 0xffffffff);
3899         I915_WRITE(VLV_IER, 0x0);
3900         POSTING_READ(VLV_IER);
3901 }
3902
3903 static void cherryview_irq_uninstall(struct drm_device *dev)
3904 {
3905         struct drm_i915_private *dev_priv = dev->dev_private;
3906         int pipe;
3907
3908         if (!dev_priv)
3909                 return;
3910
3911         I915_WRITE(GEN8_MASTER_IRQ, 0);
3912         POSTING_READ(GEN8_MASTER_IRQ);
3913
3914 #define GEN8_IRQ_FINI_NDX(type, which)                          \
3915 do {                                                            \
3916         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff);       \
3917         I915_WRITE(GEN8_##type##_IER(which), 0);                \
3918         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3919         POSTING_READ(GEN8_##type##_IIR(which));                 \
3920         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff);       \
3921 } while (0)
3922
3923 #define GEN8_IRQ_FINI(type)                             \
3924 do {                                                    \
3925         I915_WRITE(GEN8_##type##_IMR, 0xffffffff);      \
3926         I915_WRITE(GEN8_##type##_IER, 0);               \
3927         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3928         POSTING_READ(GEN8_##type##_IIR);                \
3929         I915_WRITE(GEN8_##type##_IIR, 0xffffffff);      \
3930 } while (0)
3931
3932         GEN8_IRQ_FINI_NDX(GT, 0);
3933         GEN8_IRQ_FINI_NDX(GT, 1);
3934         GEN8_IRQ_FINI_NDX(GT, 2);
3935         GEN8_IRQ_FINI_NDX(GT, 3);
3936
3937         GEN8_IRQ_FINI(PCU);
3938
3939 #undef GEN8_IRQ_FINI
3940 #undef GEN8_IRQ_FINI_NDX
3941
3942         I915_WRITE(PORT_HOTPLUG_EN, 0);
3943         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3944
3945         for_each_pipe(dev_priv, pipe)
3946                 I915_WRITE(PIPESTAT(pipe), 0xffff);
3947
3948         I915_WRITE(VLV_IMR, 0xffffffff);
3949         I915_WRITE(VLV_IER, 0x0);
3950         I915_WRITE(VLV_IIR, 0xffffffff);
3951         POSTING_READ(VLV_IIR);
3952 }
3953
3954 static void ironlake_irq_uninstall(struct drm_device *dev)
3955 {
3956         struct drm_i915_private *dev_priv = dev->dev_private;
3957
3958         if (!dev_priv)
3959                 return;
3960
3961         ironlake_irq_reset(dev);
3962 }
3963
3964 static void i8xx_irq_preinstall(struct drm_device * dev)
3965 {
3966         struct drm_i915_private *dev_priv = dev->dev_private;
3967         int pipe;
3968
3969         for_each_pipe(dev_priv, pipe)
3970                 I915_WRITE(PIPESTAT(pipe), 0);
3971         I915_WRITE16(IMR, 0xffff);
3972         I915_WRITE16(IER, 0x0);
3973         POSTING_READ16(IER);
3974 }
3975
3976 static int i8xx_irq_postinstall(struct drm_device *dev)
3977 {
3978         struct drm_i915_private *dev_priv = dev->dev_private;
3979         unsigned long irqflags;
3980
3981         I915_WRITE16(EMR,
3982                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3983
3984         /* Unmask the interrupts that we always want on. */
3985         dev_priv->irq_mask =
3986                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3987                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3988                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3989                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3990                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3991         I915_WRITE16(IMR, dev_priv->irq_mask);
3992
3993         I915_WRITE16(IER,
3994                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3995                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3996                      I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
3997                      I915_USER_INTERRUPT);
3998         POSTING_READ16(IER);
3999
4000         /* Interrupt setup is already guaranteed to be single-threaded, this is
4001          * just to make the assert_spin_locked check happy. */
4002         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4003         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4004         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4005         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4006
4007         return 0;
4008 }
4009
4010 /*
4011  * Returns true when a page flip has completed.
4012  */
4013 static bool i8xx_handle_vblank(struct drm_device *dev,
4014                                int plane, int pipe, u32 iir)
4015 {
4016         struct drm_i915_private *dev_priv = dev->dev_private;
4017         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4018
4019         if (!intel_pipe_handle_vblank(dev, pipe))
4020                 return false;
4021
4022         if ((iir & flip_pending) == 0)
4023                 goto check_page_flip;
4024
4025         intel_prepare_page_flip(dev, plane);
4026
4027         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4028          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4029          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4030          * the flip is completed (no longer pending). Since this doesn't raise
4031          * an interrupt per se, we watch for the change at vblank.
4032          */
4033         if (I915_READ16(ISR) & flip_pending)
4034                 goto check_page_flip;
4035
4036         intel_finish_page_flip(dev, pipe);
4037         return true;
4038
4039 check_page_flip:
4040         intel_check_page_flip(dev, pipe);
4041         return false;
4042 }
4043
4044 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4045 {
4046         struct drm_device *dev = arg;
4047         struct drm_i915_private *dev_priv = dev->dev_private;
4048         u16 iir, new_iir;
4049         u32 pipe_stats[2];
4050         unsigned long irqflags;
4051         int pipe;
4052         u16 flip_mask =
4053                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4054                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4055
4056         iir = I915_READ16(IIR);
4057         if (iir == 0)
4058                 return IRQ_NONE;
4059
4060         while (iir & ~flip_mask) {
4061                 /* Can't rely on pipestat interrupt bit in iir as it might
4062                  * have been cleared after the pipestat interrupt was received.
4063                  * It doesn't set the bit in iir again, but it still produces
4064                  * interrupts (for non-MSI).
4065                  */
4066                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4067                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4068                         i915_handle_error(dev, false,
4069                                           "Command parser error, iir 0x%08x",
4070                                           iir);
4071
4072                 for_each_pipe(dev_priv, pipe) {
4073                         int reg = PIPESTAT(pipe);
4074                         pipe_stats[pipe] = I915_READ(reg);
4075
4076                         /*
4077                          * Clear the PIPE*STAT regs before the IIR
4078                          */
4079                         if (pipe_stats[pipe] & 0x8000ffff)
4080                                 I915_WRITE(reg, pipe_stats[pipe]);
4081                 }
4082                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4083
4084                 I915_WRITE16(IIR, iir & ~flip_mask);
4085                 new_iir = I915_READ16(IIR); /* Flush posted writes */
4086
4087                 i915_update_dri1_breadcrumb(dev);
4088
4089                 if (iir & I915_USER_INTERRUPT)
4090                         notify_ring(dev, &dev_priv->ring[RCS]);
4091
4092                 for_each_pipe(dev_priv, pipe) {
4093                         int plane = pipe;
4094                         if (HAS_FBC(dev))
4095                                 plane = !plane;
4096
4097                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4098                             i8xx_handle_vblank(dev, plane, pipe, iir))
4099                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4100
4101                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4102                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4103
4104                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4105                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4106                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4107                 }
4108
4109                 iir = new_iir;
4110         }
4111
4112         return IRQ_HANDLED;
4113 }
4114
4115 static void i8xx_irq_uninstall(struct drm_device * dev)
4116 {
4117         struct drm_i915_private *dev_priv = dev->dev_private;
4118         int pipe;
4119
4120         for_each_pipe(dev_priv, pipe) {
4121                 /* Clear enable bits; then clear status bits */
4122                 I915_WRITE(PIPESTAT(pipe), 0);
4123                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4124         }
4125         I915_WRITE16(IMR, 0xffff);
4126         I915_WRITE16(IER, 0x0);
4127         I915_WRITE16(IIR, I915_READ16(IIR));
4128 }
4129
4130 static void i915_irq_preinstall(struct drm_device * dev)
4131 {
4132         struct drm_i915_private *dev_priv = dev->dev_private;
4133         int pipe;
4134
4135         if (I915_HAS_HOTPLUG(dev)) {
4136                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4137                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4138         }
4139
4140         I915_WRITE16(HWSTAM, 0xeffe);
4141         for_each_pipe(dev_priv, pipe)
4142                 I915_WRITE(PIPESTAT(pipe), 0);
4143         I915_WRITE(IMR, 0xffffffff);
4144         I915_WRITE(IER, 0x0);
4145         POSTING_READ(IER);
4146 }
4147
4148 static int i915_irq_postinstall(struct drm_device *dev)
4149 {
4150         struct drm_i915_private *dev_priv = dev->dev_private;
4151         u32 enable_mask;
4152         unsigned long irqflags;
4153
4154         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
4155
4156         /* Unmask the interrupts that we always want on. */
4157         dev_priv->irq_mask =
4158                 ~(I915_ASLE_INTERRUPT |
4159                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4160                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4161                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4162                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4163                   I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4164
4165         enable_mask =
4166                 I915_ASLE_INTERRUPT |
4167                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4168                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4169                 I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT |
4170                 I915_USER_INTERRUPT;
4171
4172         if (I915_HAS_HOTPLUG(dev)) {
4173                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4174                 POSTING_READ(PORT_HOTPLUG_EN);
4175
4176                 /* Enable in IER... */
4177                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4178                 /* and unmask in IMR */
4179                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4180         }
4181
4182         I915_WRITE(IMR, dev_priv->irq_mask);
4183         I915_WRITE(IER, enable_mask);
4184         POSTING_READ(IER);
4185
4186         i915_enable_asle_pipestat(dev);
4187
4188         /* Interrupt setup is already guaranteed to be single-threaded, this is
4189          * just to make the assert_spin_locked check happy. */
4190         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4191         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4192         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4193         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4194
4195         return 0;
4196 }
4197
4198 /*
4199  * Returns true when a page flip has completed.
4200  */
4201 static bool i915_handle_vblank(struct drm_device *dev,
4202                                int plane, int pipe, u32 iir)
4203 {
4204         struct drm_i915_private *dev_priv = dev->dev_private;
4205         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4206
4207         if (!intel_pipe_handle_vblank(dev, pipe))
4208                 return false;
4209
4210         if ((iir & flip_pending) == 0)
4211                 goto check_page_flip;
4212
4213         intel_prepare_page_flip(dev, plane);
4214
4215         /* We detect FlipDone by looking for the change in PendingFlip from '1'
4216          * to '0' on the following vblank, i.e. IIR has the Pendingflip
4217          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4218          * the flip is completed (no longer pending). Since this doesn't raise
4219          * an interrupt per se, we watch for the change at vblank.
4220          */
4221         if (I915_READ(ISR) & flip_pending)
4222                 goto check_page_flip;
4223
4224         intel_finish_page_flip(dev, pipe);
4225         return true;
4226
4227 check_page_flip:
4228         intel_check_page_flip(dev, pipe);
4229         return false;
4230 }
4231
4232 static irqreturn_t i915_irq_handler(int irq, void *arg)
4233 {
4234         struct drm_device *dev = arg;
4235         struct drm_i915_private *dev_priv = dev->dev_private;
4236         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4237         unsigned long irqflags;
4238         u32 flip_mask =
4239                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4240                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4241         int pipe, ret = IRQ_NONE;
4242
4243         iir = I915_READ(IIR);
4244         do {
4245                 bool irq_received = (iir & ~flip_mask) != 0;
4246                 bool blc_event = false;
4247
4248                 /* Can't rely on pipestat interrupt bit in iir as it might
4249                  * have been cleared after the pipestat interrupt was received.
4250                  * It doesn't set the bit in iir again, but it still produces
4251                  * interrupts (for non-MSI).
4252                  */
4253                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4254                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4255                         i915_handle_error(dev, false,
4256                                           "Command parser error, iir 0x%08x",
4257                                           iir);
4258
4259                 for_each_pipe(dev_priv, pipe) {
4260                         int reg = PIPESTAT(pipe);
4261                         pipe_stats[pipe] = I915_READ(reg);
4262
4263                         /* Clear the PIPE*STAT regs before the IIR */
4264                         if (pipe_stats[pipe] & 0x8000ffff) {
4265                                 I915_WRITE(reg, pipe_stats[pipe]);
4266                                 irq_received = true;
4267                         }
4268                 }
4269                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4270
4271                 if (!irq_received)
4272                         break;
4273
4274                 /* Consume port.  Then clear IIR or we'll miss events */
4275                 if (I915_HAS_HOTPLUG(dev) &&
4276                     iir & I915_DISPLAY_PORT_INTERRUPT)
4277                         i9xx_hpd_irq_handler(dev);
4278
4279                 I915_WRITE(IIR, iir & ~flip_mask);
4280                 new_iir = I915_READ(IIR); /* Flush posted writes */
4281
4282                 if (iir & I915_USER_INTERRUPT)
4283                         notify_ring(dev, &dev_priv->ring[RCS]);
4284
4285                 for_each_pipe(dev_priv, pipe) {
4286                         int plane = pipe;
4287                         if (HAS_FBC(dev))
4288                                 plane = !plane;
4289
4290                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4291                             i915_handle_vblank(dev, plane, pipe, iir))
4292                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4293
4294                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4295                                 blc_event = true;
4296
4297                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4298                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4299
4300                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4301                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4302                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4303                 }
4304
4305                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4306                         intel_opregion_asle_intr(dev);
4307
4308                 /* With MSI, interrupts are only generated when iir
4309                  * transitions from zero to nonzero.  If another bit got
4310                  * set while we were handling the existing iir bits, then
4311                  * we would never get another interrupt.
4312                  *
4313                  * This is fine on non-MSI as well, as if we hit this path
4314                  * we avoid exiting the interrupt handler only to generate
4315                  * another one.
4316                  *
4317                  * Note that for MSI this could cause a stray interrupt report
4318                  * if an interrupt landed in the time between writing IIR and
4319                  * the posting read.  This should be rare enough to never
4320                  * trigger the 99% of 100,000 interrupts test for disabling
4321                  * stray interrupts.
4322                  */
4323                 ret = IRQ_HANDLED;
4324                 iir = new_iir;
4325         } while (iir & ~flip_mask);
4326
4327         i915_update_dri1_breadcrumb(dev);
4328
4329         return ret;
4330 }
4331
4332 static void i915_irq_uninstall(struct drm_device * dev)
4333 {
4334         struct drm_i915_private *dev_priv = dev->dev_private;
4335         int pipe;
4336
4337         if (I915_HAS_HOTPLUG(dev)) {
4338                 I915_WRITE(PORT_HOTPLUG_EN, 0);
4339                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4340         }
4341
4342         I915_WRITE16(HWSTAM, 0xffff);
4343         for_each_pipe(dev_priv, pipe) {
4344                 /* Clear enable bits; then clear status bits */
4345                 I915_WRITE(PIPESTAT(pipe), 0);
4346                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4347         }
4348         I915_WRITE(IMR, 0xffffffff);
4349         I915_WRITE(IER, 0x0);
4350
4351         I915_WRITE(IIR, I915_READ(IIR));
4352 }
4353
4354 static void i965_irq_preinstall(struct drm_device * dev)
4355 {
4356         struct drm_i915_private *dev_priv = dev->dev_private;
4357         int pipe;
4358
4359         I915_WRITE(PORT_HOTPLUG_EN, 0);
4360         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4361
4362         I915_WRITE(HWSTAM, 0xeffe);
4363         for_each_pipe(dev_priv, pipe)
4364                 I915_WRITE(PIPESTAT(pipe), 0);
4365         I915_WRITE(IMR, 0xffffffff);
4366         I915_WRITE(IER, 0x0);
4367         POSTING_READ(IER);
4368 }
4369
4370 static int i965_irq_postinstall(struct drm_device *dev)
4371 {
4372         struct drm_i915_private *dev_priv = dev->dev_private;
4373         u32 enable_mask;
4374         u32 error_mask;
4375         unsigned long irqflags;
4376
4377         /* Unmask the interrupts that we always want on. */
4378         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4379                                I915_DISPLAY_PORT_INTERRUPT |
4380                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4381                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4382                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4383                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4384                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4385
4386         enable_mask = ~dev_priv->irq_mask;
4387         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4388                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4389         enable_mask |= I915_USER_INTERRUPT;
4390
4391         if (IS_G4X(dev))
4392                 enable_mask |= I915_BSD_USER_INTERRUPT;
4393
4394         /* Interrupt setup is already guaranteed to be single-threaded, this is
4395          * just to make the assert_spin_locked check happy. */
4396         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4397         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4398         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4399         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4400         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4401
4402         /*
4403          * Enable some error detection, note the instruction error mask
4404          * bit is reserved, so we leave it masked.
4405          */
4406         if (IS_G4X(dev)) {
4407                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4408                                GM45_ERROR_MEM_PRIV |
4409                                GM45_ERROR_CP_PRIV |
4410                                I915_ERROR_MEMORY_REFRESH);
4411         } else {
4412                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4413                                I915_ERROR_MEMORY_REFRESH);
4414         }
4415         I915_WRITE(EMR, error_mask);
4416
4417         I915_WRITE(IMR, dev_priv->irq_mask);
4418         I915_WRITE(IER, enable_mask);
4419         POSTING_READ(IER);
4420
4421         I915_WRITE(PORT_HOTPLUG_EN, 0);
4422         POSTING_READ(PORT_HOTPLUG_EN);
4423
4424         i915_enable_asle_pipestat(dev);
4425
4426         return 0;
4427 }
4428
4429 static void i915_hpd_irq_setup(struct drm_device *dev)
4430 {
4431         struct drm_i915_private *dev_priv = dev->dev_private;
4432         struct intel_encoder *intel_encoder;
4433         u32 hotplug_en;
4434
4435         assert_spin_locked(&dev_priv->irq_lock);
4436
4437         if (I915_HAS_HOTPLUG(dev)) {
4438                 hotplug_en = I915_READ(PORT_HOTPLUG_EN);
4439                 hotplug_en &= ~HOTPLUG_INT_EN_MASK;
4440                 /* Note HDMI and DP share hotplug bits */
4441                 /* enable bits are the same for all generations */
4442                 for_each_intel_encoder(dev, intel_encoder)
4443                         if (dev_priv->hpd_stats[intel_encoder->hpd_pin].hpd_mark == HPD_ENABLED)
4444                                 hotplug_en |= hpd_mask_i915[intel_encoder->hpd_pin];
4445                 /* Programming the CRT detection parameters tends
4446                    to generate a spurious hotplug event about three
4447                    seconds later.  So just do it once.
4448                 */
4449                 if (IS_G4X(dev))
4450                         hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4451                 hotplug_en &= ~CRT_HOTPLUG_VOLTAGE_COMPARE_MASK;
4452                 hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4453
4454                 /* Ignore TV since it's buggy */
4455                 I915_WRITE(PORT_HOTPLUG_EN, hotplug_en);
4456         }
4457 }
4458
4459 static irqreturn_t i965_irq_handler(int irq, void *arg)
4460 {
4461         struct drm_device *dev = arg;
4462         struct drm_i915_private *dev_priv = dev->dev_private;
4463         u32 iir, new_iir;
4464         u32 pipe_stats[I915_MAX_PIPES];
4465         unsigned long irqflags;
4466         int ret = IRQ_NONE, pipe;
4467         u32 flip_mask =
4468                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4469                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4470
4471         iir = I915_READ(IIR);
4472
4473         for (;;) {
4474                 bool irq_received = (iir & ~flip_mask) != 0;
4475                 bool blc_event = false;
4476
4477                 /* Can't rely on pipestat interrupt bit in iir as it might
4478                  * have been cleared after the pipestat interrupt was received.
4479                  * It doesn't set the bit in iir again, but it still produces
4480                  * interrupts (for non-MSI).
4481                  */
4482                 spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4483                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4484                         i915_handle_error(dev, false,
4485                                           "Command parser error, iir 0x%08x",
4486                                           iir);
4487
4488                 for_each_pipe(dev_priv, pipe) {
4489                         int reg = PIPESTAT(pipe);
4490                         pipe_stats[pipe] = I915_READ(reg);
4491
4492                         /*
4493                          * Clear the PIPE*STAT regs before the IIR
4494                          */
4495                         if (pipe_stats[pipe] & 0x8000ffff) {
4496                                 I915_WRITE(reg, pipe_stats[pipe]);
4497                                 irq_received = true;
4498                         }
4499                 }
4500                 spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4501
4502                 if (!irq_received)
4503                         break;
4504
4505                 ret = IRQ_HANDLED;
4506
4507                 /* Consume port.  Then clear IIR or we'll miss events */
4508                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
4509                         i9xx_hpd_irq_handler(dev);
4510
4511                 I915_WRITE(IIR, iir & ~flip_mask);
4512                 new_iir = I915_READ(IIR); /* Flush posted writes */
4513
4514                 if (iir & I915_USER_INTERRUPT)
4515                         notify_ring(dev, &dev_priv->ring[RCS]);
4516                 if (iir & I915_BSD_USER_INTERRUPT)
4517                         notify_ring(dev, &dev_priv->ring[VCS]);
4518
4519                 for_each_pipe(dev_priv, pipe) {
4520                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4521                             i915_handle_vblank(dev, pipe, pipe, iir))
4522                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4523
4524                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4525                                 blc_event = true;
4526
4527                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4528                                 i9xx_pipe_crc_irq_handler(dev, pipe);
4529
4530                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS &&
4531                             intel_set_cpu_fifo_underrun_reporting(dev, pipe, false))
4532                                 DRM_ERROR("pipe %c underrun\n", pipe_name(pipe));
4533                 }
4534
4535                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4536                         intel_opregion_asle_intr(dev);
4537
4538                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4539                         gmbus_irq_handler(dev);
4540
4541                 /* With MSI, interrupts are only generated when iir
4542                  * transitions from zero to nonzero.  If another bit got
4543                  * set while we were handling the existing iir bits, then
4544                  * we would never get another interrupt.
4545                  *
4546                  * This is fine on non-MSI as well, as if we hit this path
4547                  * we avoid exiting the interrupt handler only to generate
4548                  * another one.
4549                  *
4550                  * Note that for MSI this could cause a stray interrupt report
4551                  * if an interrupt landed in the time between writing IIR and
4552                  * the posting read.  This should be rare enough to never
4553                  * trigger the 99% of 100,000 interrupts test for disabling
4554                  * stray interrupts.
4555                  */
4556                 iir = new_iir;
4557         }
4558
4559         i915_update_dri1_breadcrumb(dev);
4560
4561         return ret;
4562 }
4563
4564 static void i965_irq_uninstall(struct drm_device * dev)
4565 {
4566         struct drm_i915_private *dev_priv = dev->dev_private;
4567         int pipe;
4568
4569         if (!dev_priv)
4570                 return;
4571
4572         I915_WRITE(PORT_HOTPLUG_EN, 0);
4573         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4574
4575         I915_WRITE(HWSTAM, 0xffffffff);
4576         for_each_pipe(dev_priv, pipe)
4577                 I915_WRITE(PIPESTAT(pipe), 0);
4578         I915_WRITE(IMR, 0xffffffff);
4579         I915_WRITE(IER, 0x0);
4580
4581         for_each_pipe(dev_priv, pipe)
4582                 I915_WRITE(PIPESTAT(pipe),
4583                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4584         I915_WRITE(IIR, I915_READ(IIR));
4585 }
4586
4587 static void intel_hpd_irq_reenable(struct work_struct *work)
4588 {
4589         struct drm_i915_private *dev_priv =
4590                 container_of(work, typeof(*dev_priv),
4591                              hotplug_reenable_work.work);
4592         struct drm_device *dev = dev_priv->dev;
4593         struct drm_mode_config *mode_config = &dev->mode_config;
4594         unsigned long irqflags;
4595         int i;
4596
4597         intel_runtime_pm_get(dev_priv);
4598
4599         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4600         for (i = (HPD_NONE + 1); i < HPD_NUM_PINS; i++) {
4601                 struct drm_connector *connector;
4602
4603                 if (dev_priv->hpd_stats[i].hpd_mark != HPD_DISABLED)
4604                         continue;
4605
4606                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4607
4608                 list_for_each_entry(connector, &mode_config->connector_list, head) {
4609                         struct intel_connector *intel_connector = to_intel_connector(connector);
4610
4611                         if (intel_connector->encoder->hpd_pin == i) {
4612                                 if (connector->polled != intel_connector->polled)
4613                                         DRM_DEBUG_DRIVER("Reenabling HPD on connector %s\n",
4614                                                          connector->name);
4615                                 connector->polled = intel_connector->polled;
4616                                 if (!connector->polled)
4617                                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4618                         }
4619                 }
4620         }
4621         if (dev_priv->display.hpd_irq_setup)
4622                 dev_priv->display.hpd_irq_setup(dev);
4623         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4624
4625         intel_runtime_pm_put(dev_priv);
4626 }
4627
4628 void intel_irq_init(struct drm_device *dev)
4629 {
4630         struct drm_i915_private *dev_priv = dev->dev_private;
4631
4632         INIT_WORK(&dev_priv->hotplug_work, i915_hotplug_work_func);
4633         INIT_WORK(&dev_priv->dig_port_work, i915_digport_work_func);
4634         INIT_WORK(&dev_priv->gpu_error.work, i915_error_work_func);
4635         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4636         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4637
4638         /* Let's track the enabled rps events */
4639         if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev))
4640                 /* WaGsvRC0ResidencyMethod:vlv */
4641                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4642         else
4643                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4644
4645         setup_timer(&dev_priv->gpu_error.hangcheck_timer,
4646                     i915_hangcheck_elapsed,
4647                     (unsigned long) dev);
4648         INIT_DELAYED_WORK(&dev_priv->hotplug_reenable_work,
4649                           intel_hpd_irq_reenable);
4650
4651         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
4652
4653         /* Haven't installed the IRQ handler yet */
4654         dev_priv->pm._irqs_disabled = true;
4655
4656         if (IS_GEN2(dev)) {
4657                 dev->max_vblank_count = 0;
4658                 dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4659         } else if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
4660                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4661                 dev->driver->get_vblank_counter = gm45_get_vblank_counter;
4662         } else {
4663                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4664                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4665         }
4666
4667         /*
4668          * Opt out of the vblank disable timer on everything except gen2.
4669          * Gen2 doesn't have a hardware frame counter and so depends on
4670          * vblank interrupts to produce sane vblank seuquence numbers.
4671          */
4672         if (!IS_GEN2(dev))
4673                 dev->vblank_disable_immediate = true;
4674
4675         if (drm_core_check_feature(dev, DRIVER_MODESET)) {
4676                 dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4677                 dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4678         }
4679
4680         if (IS_CHERRYVIEW(dev)) {
4681                 dev->driver->irq_handler = cherryview_irq_handler;
4682                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4683                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4684                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4685                 dev->driver->enable_vblank = valleyview_enable_vblank;
4686                 dev->driver->disable_vblank = valleyview_disable_vblank;
4687                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4688         } else if (IS_VALLEYVIEW(dev)) {
4689                 dev->driver->irq_handler = valleyview_irq_handler;
4690                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4691                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4692                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4693                 dev->driver->enable_vblank = valleyview_enable_vblank;
4694                 dev->driver->disable_vblank = valleyview_disable_vblank;
4695                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4696         } else if (IS_GEN8(dev)) {
4697                 dev->driver->irq_handler = gen8_irq_handler;
4698                 dev->driver->irq_preinstall = gen8_irq_reset;
4699                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4700                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4701                 dev->driver->enable_vblank = gen8_enable_vblank;
4702                 dev->driver->disable_vblank = gen8_disable_vblank;
4703                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4704         } else if (HAS_PCH_SPLIT(dev)) {
4705                 dev->driver->irq_handler = ironlake_irq_handler;
4706                 dev->driver->irq_preinstall = ironlake_irq_reset;
4707                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4708                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4709                 dev->driver->enable_vblank = ironlake_enable_vblank;
4710                 dev->driver->disable_vblank = ironlake_disable_vblank;
4711                 dev_priv->display.hpd_irq_setup = ibx_hpd_irq_setup;
4712         } else {
4713                 if (INTEL_INFO(dev)->gen == 2) {
4714                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4715                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4716                         dev->driver->irq_handler = i8xx_irq_handler;
4717                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4718                 } else if (INTEL_INFO(dev)->gen == 3) {
4719                         dev->driver->irq_preinstall = i915_irq_preinstall;
4720                         dev->driver->irq_postinstall = i915_irq_postinstall;
4721                         dev->driver->irq_uninstall = i915_irq_uninstall;
4722                         dev->driver->irq_handler = i915_irq_handler;
4723                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4724                 } else {
4725                         dev->driver->irq_preinstall = i965_irq_preinstall;
4726                         dev->driver->irq_postinstall = i965_irq_postinstall;
4727                         dev->driver->irq_uninstall = i965_irq_uninstall;
4728                         dev->driver->irq_handler = i965_irq_handler;
4729                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4730                 }
4731                 dev->driver->enable_vblank = i915_enable_vblank;
4732                 dev->driver->disable_vblank = i915_disable_vblank;
4733         }
4734 }
4735
4736 void intel_hpd_init(struct drm_device *dev)
4737 {
4738         struct drm_i915_private *dev_priv = dev->dev_private;
4739         struct drm_mode_config *mode_config = &dev->mode_config;
4740         struct drm_connector *connector;
4741         unsigned long irqflags;
4742         int i;
4743
4744         for (i = 1; i < HPD_NUM_PINS; i++) {
4745                 dev_priv->hpd_stats[i].hpd_cnt = 0;
4746                 dev_priv->hpd_stats[i].hpd_mark = HPD_ENABLED;
4747         }
4748         list_for_each_entry(connector, &mode_config->connector_list, head) {
4749                 struct intel_connector *intel_connector = to_intel_connector(connector);
4750                 connector->polled = intel_connector->polled;
4751                 if (connector->encoder && !connector->polled && I915_HAS_HOTPLUG(dev) && intel_connector->encoder->hpd_pin > HPD_NONE)
4752                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4753                 if (intel_connector->mst_port)
4754                         connector->polled = DRM_CONNECTOR_POLL_HPD;
4755         }
4756
4757         /* Interrupt setup is already guaranteed to be single-threaded, this is
4758          * just to make the assert_spin_locked checks happy. */
4759         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
4760         if (dev_priv->display.hpd_irq_setup)
4761                 dev_priv->display.hpd_irq_setup(dev);
4762         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
4763 }
4764
4765 /* Disable interrupts so we can allow runtime PM. */
4766 void intel_runtime_pm_disable_interrupts(struct drm_device *dev)
4767 {
4768         struct drm_i915_private *dev_priv = dev->dev_private;
4769
4770         dev->driver->irq_uninstall(dev);
4771         dev_priv->pm._irqs_disabled = true;
4772 }
4773
4774 /* Restore interrupts so we can recover from runtime PM. */
4775 void intel_runtime_pm_restore_interrupts(struct drm_device *dev)
4776 {
4777         struct drm_i915_private *dev_priv = dev->dev_private;
4778
4779         dev_priv->pm._irqs_disabled = false;
4780         dev->driver->irq_preinstall(dev);
4781         dev->driver->irq_postinstall(dev);
4782 }