Merge tag 'drm-misc-next-2017-03-06' of git://anongit.freedesktop.org/git/drm-misc...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178                                      uint32_t mask,
179                                      uint32_t bits)
180 {
181         uint32_t val;
182
183         assert_spin_locked(&dev_priv->irq_lock);
184         WARN_ON(bits & ~mask);
185
186         val = I915_READ(PORT_HOTPLUG_EN);
187         val &= ~mask;
188         val |= bits;
189         I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205                                    uint32_t mask,
206                                    uint32_t bits)
207 {
208         spin_lock_irq(&dev_priv->irq_lock);
209         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210         spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220                             uint32_t interrupt_mask,
221                             uint32_t enabled_irq_mask)
222 {
223         uint32_t new_val;
224
225         assert_spin_locked(&dev_priv->irq_lock);
226
227         WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230                 return;
231
232         new_val = dev_priv->irq_mask;
233         new_val &= ~interrupt_mask;
234         new_val |= (~enabled_irq_mask & interrupt_mask);
235
236         if (new_val != dev_priv->irq_mask) {
237                 dev_priv->irq_mask = new_val;
238                 I915_WRITE(DEIMR, dev_priv->irq_mask);
239                 POSTING_READ(DEIMR);
240         }
241 }
242
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250                               uint32_t interrupt_mask,
251                               uint32_t enabled_irq_mask)
252 {
253         assert_spin_locked(&dev_priv->irq_lock);
254
255         WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258                 return;
259
260         dev_priv->gt_irq_mask &= ~interrupt_mask;
261         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268         POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273         ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298                               uint32_t interrupt_mask,
299                               uint32_t enabled_irq_mask)
300 {
301         uint32_t new_val;
302
303         WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305         assert_spin_locked(&dev_priv->irq_lock);
306
307         new_val = dev_priv->pm_imr;
308         new_val &= ~interrupt_mask;
309         new_val |= (~enabled_irq_mask & interrupt_mask);
310
311         if (new_val != dev_priv->pm_imr) {
312                 dev_priv->pm_imr = new_val;
313                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314                 POSTING_READ(gen6_pm_imr(dev_priv));
315         }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321                 return;
322
323         snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         assert_spin_locked(&dev_priv->irq_lock);
344
345         I915_WRITE(reg, reset_mask);
346         I915_WRITE(reg, reset_mask);
347         POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352         assert_spin_locked(&dev_priv->irq_lock);
353
354         dev_priv->pm_ier |= enable_mask;
355         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356         gen6_unmask_pm_irq(dev_priv, enable_mask);
357         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362         assert_spin_locked(&dev_priv->irq_lock);
363
364         dev_priv->pm_ier &= ~disable_mask;
365         __gen6_mask_pm_irq(dev_priv, disable_mask);
366         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367         /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372         spin_lock_irq(&dev_priv->irq_lock);
373         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374         dev_priv->rps.pm_iir = 0;
375         spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380         if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381                 return;
382
383         spin_lock_irq(&dev_priv->irq_lock);
384         WARN_ON_ONCE(dev_priv->rps.pm_iir);
385         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386         dev_priv->rps.interrupts_enabled = true;
387         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389         spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
393 {
394         return (mask & ~dev_priv->rps.pm_intr_keep);
395 }
396
397 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
398 {
399         if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
400                 return;
401
402         spin_lock_irq(&dev_priv->irq_lock);
403         dev_priv->rps.interrupts_enabled = false;
404
405         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
406
407         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
408
409         spin_unlock_irq(&dev_priv->irq_lock);
410         synchronize_irq(dev_priv->drm.irq);
411
412         /* Now that we will not be generating any more work, flush any
413          * outsanding tasks. As we are called on the RPS idle path,
414          * we will reset the GPU to minimum frequencies, so the current
415          * state of the worker can be discarded.
416          */
417         cancel_work_sync(&dev_priv->rps.work);
418         gen6_reset_rps_interrupts(dev_priv);
419 }
420
421 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
422 {
423         spin_lock_irq(&dev_priv->irq_lock);
424         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
425         spin_unlock_irq(&dev_priv->irq_lock);
426 }
427
428 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
429 {
430         spin_lock_irq(&dev_priv->irq_lock);
431         if (!dev_priv->guc.interrupts_enabled) {
432                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
433                                        dev_priv->pm_guc_events);
434                 dev_priv->guc.interrupts_enabled = true;
435                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
436         }
437         spin_unlock_irq(&dev_priv->irq_lock);
438 }
439
440 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
441 {
442         spin_lock_irq(&dev_priv->irq_lock);
443         dev_priv->guc.interrupts_enabled = false;
444
445         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
446
447         spin_unlock_irq(&dev_priv->irq_lock);
448         synchronize_irq(dev_priv->drm.irq);
449
450         gen9_reset_guc_interrupts(dev_priv);
451 }
452
453 /**
454  * bdw_update_port_irq - update DE port interrupt
455  * @dev_priv: driver private
456  * @interrupt_mask: mask of interrupt bits to update
457  * @enabled_irq_mask: mask of interrupt bits to enable
458  */
459 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
460                                 uint32_t interrupt_mask,
461                                 uint32_t enabled_irq_mask)
462 {
463         uint32_t new_val;
464         uint32_t old_val;
465
466         assert_spin_locked(&dev_priv->irq_lock);
467
468         WARN_ON(enabled_irq_mask & ~interrupt_mask);
469
470         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
471                 return;
472
473         old_val = I915_READ(GEN8_DE_PORT_IMR);
474
475         new_val = old_val;
476         new_val &= ~interrupt_mask;
477         new_val |= (~enabled_irq_mask & interrupt_mask);
478
479         if (new_val != old_val) {
480                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
481                 POSTING_READ(GEN8_DE_PORT_IMR);
482         }
483 }
484
485 /**
486  * bdw_update_pipe_irq - update DE pipe interrupt
487  * @dev_priv: driver private
488  * @pipe: pipe whose interrupt to update
489  * @interrupt_mask: mask of interrupt bits to update
490  * @enabled_irq_mask: mask of interrupt bits to enable
491  */
492 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
493                          enum pipe pipe,
494                          uint32_t interrupt_mask,
495                          uint32_t enabled_irq_mask)
496 {
497         uint32_t new_val;
498
499         assert_spin_locked(&dev_priv->irq_lock);
500
501         WARN_ON(enabled_irq_mask & ~interrupt_mask);
502
503         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
504                 return;
505
506         new_val = dev_priv->de_irq_mask[pipe];
507         new_val &= ~interrupt_mask;
508         new_val |= (~enabled_irq_mask & interrupt_mask);
509
510         if (new_val != dev_priv->de_irq_mask[pipe]) {
511                 dev_priv->de_irq_mask[pipe] = new_val;
512                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
513                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
514         }
515 }
516
517 /**
518  * ibx_display_interrupt_update - update SDEIMR
519  * @dev_priv: driver private
520  * @interrupt_mask: mask of interrupt bits to update
521  * @enabled_irq_mask: mask of interrupt bits to enable
522  */
523 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
524                                   uint32_t interrupt_mask,
525                                   uint32_t enabled_irq_mask)
526 {
527         uint32_t sdeimr = I915_READ(SDEIMR);
528         sdeimr &= ~interrupt_mask;
529         sdeimr |= (~enabled_irq_mask & interrupt_mask);
530
531         WARN_ON(enabled_irq_mask & ~interrupt_mask);
532
533         assert_spin_locked(&dev_priv->irq_lock);
534
535         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536                 return;
537
538         I915_WRITE(SDEIMR, sdeimr);
539         POSTING_READ(SDEIMR);
540 }
541
542 static void
543 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
544                        u32 enable_mask, u32 status_mask)
545 {
546         i915_reg_t reg = PIPESTAT(pipe);
547         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
548
549         assert_spin_locked(&dev_priv->irq_lock);
550         WARN_ON(!intel_irqs_enabled(dev_priv));
551
552         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
553                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
554                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
555                       pipe_name(pipe), enable_mask, status_mask))
556                 return;
557
558         if ((pipestat & enable_mask) == enable_mask)
559                 return;
560
561         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
562
563         /* Enable the interrupt, clear any pending status */
564         pipestat |= enable_mask | status_mask;
565         I915_WRITE(reg, pipestat);
566         POSTING_READ(reg);
567 }
568
569 static void
570 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
571                         u32 enable_mask, u32 status_mask)
572 {
573         i915_reg_t reg = PIPESTAT(pipe);
574         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
575
576         assert_spin_locked(&dev_priv->irq_lock);
577         WARN_ON(!intel_irqs_enabled(dev_priv));
578
579         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
580                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
581                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
582                       pipe_name(pipe), enable_mask, status_mask))
583                 return;
584
585         if ((pipestat & enable_mask) == 0)
586                 return;
587
588         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
589
590         pipestat &= ~enable_mask;
591         I915_WRITE(reg, pipestat);
592         POSTING_READ(reg);
593 }
594
595 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
596 {
597         u32 enable_mask = status_mask << 16;
598
599         /*
600          * On pipe A we don't support the PSR interrupt yet,
601          * on pipe B and C the same bit MBZ.
602          */
603         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
604                 return 0;
605         /*
606          * On pipe B and C we don't support the PSR interrupt yet, on pipe
607          * A the same bit is for perf counters which we don't use either.
608          */
609         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
610                 return 0;
611
612         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
613                          SPRITE0_FLIP_DONE_INT_EN_VLV |
614                          SPRITE1_FLIP_DONE_INT_EN_VLV);
615         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
616                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
617         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
618                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
619
620         return enable_mask;
621 }
622
623 void
624 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
625                      u32 status_mask)
626 {
627         u32 enable_mask;
628
629         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
630                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
631                                                            status_mask);
632         else
633                 enable_mask = status_mask << 16;
634         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
635 }
636
637 void
638 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
639                       u32 status_mask)
640 {
641         u32 enable_mask;
642
643         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
644                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
645                                                            status_mask);
646         else
647                 enable_mask = status_mask << 16;
648         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
649 }
650
651 /**
652  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
653  * @dev_priv: i915 device private
654  */
655 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
656 {
657         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
658                 return;
659
660         spin_lock_irq(&dev_priv->irq_lock);
661
662         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
663         if (INTEL_GEN(dev_priv) >= 4)
664                 i915_enable_pipestat(dev_priv, PIPE_A,
665                                      PIPE_LEGACY_BLC_EVENT_STATUS);
666
667         spin_unlock_irq(&dev_priv->irq_lock);
668 }
669
670 /*
671  * This timing diagram depicts the video signal in and
672  * around the vertical blanking period.
673  *
674  * Assumptions about the fictitious mode used in this example:
675  *  vblank_start >= 3
676  *  vsync_start = vblank_start + 1
677  *  vsync_end = vblank_start + 2
678  *  vtotal = vblank_start + 3
679  *
680  *           start of vblank:
681  *           latch double buffered registers
682  *           increment frame counter (ctg+)
683  *           generate start of vblank interrupt (gen4+)
684  *           |
685  *           |          frame start:
686  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
687  *           |          may be shifted forward 1-3 extra lines via PIPECONF
688  *           |          |
689  *           |          |  start of vsync:
690  *           |          |  generate vsync interrupt
691  *           |          |  |
692  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
693  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
694  * ----va---> <-----------------vb--------------------> <--------va-------------
695  *       |          |       <----vs----->                     |
696  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
697  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
698  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
699  *       |          |                                         |
700  *       last visible pixel                                   first visible pixel
701  *                  |                                         increment frame counter (gen3/4)
702  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
703  *
704  * x  = horizontal active
705  * _  = horizontal blanking
706  * hs = horizontal sync
707  * va = vertical active
708  * vb = vertical blanking
709  * vs = vertical sync
710  * vbs = vblank_start (number)
711  *
712  * Summary:
713  * - most events happen at the start of horizontal sync
714  * - frame start happens at the start of horizontal blank, 1-4 lines
715  *   (depending on PIPECONF settings) after the start of vblank
716  * - gen3/4 pixel and frame counter are synchronized with the start
717  *   of horizontal active on the first line of vertical active
718  */
719
720 /* Called from drm generic code, passed a 'crtc', which
721  * we use as a pipe index
722  */
723 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
724 {
725         struct drm_i915_private *dev_priv = to_i915(dev);
726         i915_reg_t high_frame, low_frame;
727         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
728         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
729                                                                 pipe);
730         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
731
732         htotal = mode->crtc_htotal;
733         hsync_start = mode->crtc_hsync_start;
734         vbl_start = mode->crtc_vblank_start;
735         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
736                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
737
738         /* Convert to pixel count */
739         vbl_start *= htotal;
740
741         /* Start of vblank event occurs at start of hsync */
742         vbl_start -= htotal - hsync_start;
743
744         high_frame = PIPEFRAME(pipe);
745         low_frame = PIPEFRAMEPIXEL(pipe);
746
747         /*
748          * High & low register fields aren't synchronized, so make sure
749          * we get a low value that's stable across two reads of the high
750          * register.
751          */
752         do {
753                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
754                 low   = I915_READ(low_frame);
755                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
756         } while (high1 != high2);
757
758         high1 >>= PIPE_FRAME_HIGH_SHIFT;
759         pixel = low & PIPE_PIXEL_MASK;
760         low >>= PIPE_FRAME_LOW_SHIFT;
761
762         /*
763          * The frame counter increments at beginning of active.
764          * Cook up a vblank counter by also checking the pixel
765          * counter against vblank start.
766          */
767         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768 }
769
770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771 {
772         struct drm_i915_private *dev_priv = to_i915(dev);
773
774         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775 }
776
777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         struct drm_i915_private *dev_priv = to_i915(dev);
782         const struct drm_display_mode *mode = &crtc->base.hwmode;
783         enum pipe pipe = crtc->pipe;
784         int position, vtotal;
785
786         vtotal = mode->crtc_vtotal;
787         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
788                 vtotal /= 2;
789
790         if (IS_GEN2(dev_priv))
791                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
792         else
793                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
794
795         /*
796          * On HSW, the DSL reg (0x70000) appears to return 0 if we
797          * read it just before the start of vblank.  So try it again
798          * so we don't accidentally end up spanning a vblank frame
799          * increment, causing the pipe_update_end() code to squak at us.
800          *
801          * The nature of this problem means we can't simply check the ISR
802          * bit and return the vblank start value; nor can we use the scanline
803          * debug register in the transcoder as it appears to have the same
804          * problem.  We may need to extend this to include other platforms,
805          * but so far testing only shows the problem on HSW.
806          */
807         if (HAS_DDI(dev_priv) && !position) {
808                 int i, temp;
809
810                 for (i = 0; i < 100; i++) {
811                         udelay(1);
812                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
813                                 DSL_LINEMASK_GEN3;
814                         if (temp != position) {
815                                 position = temp;
816                                 break;
817                         }
818                 }
819         }
820
821         /*
822          * See update_scanline_offset() for the details on the
823          * scanline_offset adjustment.
824          */
825         return (position + crtc->scanline_offset) % vtotal;
826 }
827
828 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
829                                     unsigned int flags, int *vpos, int *hpos,
830                                     ktime_t *stime, ktime_t *etime,
831                                     const struct drm_display_mode *mode)
832 {
833         struct drm_i915_private *dev_priv = to_i915(dev);
834         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
835                                                                 pipe);
836         int position;
837         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
838         bool in_vbl = true;
839         int ret = 0;
840         unsigned long irqflags;
841
842         if (WARN_ON(!mode->crtc_clock)) {
843                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
844                                  "pipe %c\n", pipe_name(pipe));
845                 return 0;
846         }
847
848         htotal = mode->crtc_htotal;
849         hsync_start = mode->crtc_hsync_start;
850         vtotal = mode->crtc_vtotal;
851         vbl_start = mode->crtc_vblank_start;
852         vbl_end = mode->crtc_vblank_end;
853
854         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
856                 vbl_end /= 2;
857                 vtotal /= 2;
858         }
859
860         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
861
862         /*
863          * Lock uncore.lock, as we will do multiple timing critical raw
864          * register reads, potentially with preemption disabled, so the
865          * following code must not block on uncore.lock.
866          */
867         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
868
869         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
870
871         /* Get optional system timestamp before query. */
872         if (stime)
873                 *stime = ktime_get();
874
875         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
876                 /* No obvious pixelcount register. Only query vertical
877                  * scanout position from Display scan line register.
878                  */
879                 position = __intel_get_crtc_scanline(intel_crtc);
880         } else {
881                 /* Have access to pixelcount since start of frame.
882                  * We can split this into vertical and horizontal
883                  * scanout position.
884                  */
885                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
886
887                 /* convert to pixel counts */
888                 vbl_start *= htotal;
889                 vbl_end *= htotal;
890                 vtotal *= htotal;
891
892                 /*
893                  * In interlaced modes, the pixel counter counts all pixels,
894                  * so one field will have htotal more pixels. In order to avoid
895                  * the reported position from jumping backwards when the pixel
896                  * counter is beyond the length of the shorter field, just
897                  * clamp the position the length of the shorter field. This
898                  * matches how the scanline counter based position works since
899                  * the scanline counter doesn't count the two half lines.
900                  */
901                 if (position >= vtotal)
902                         position = vtotal - 1;
903
904                 /*
905                  * Start of vblank interrupt is triggered at start of hsync,
906                  * just prior to the first active line of vblank. However we
907                  * consider lines to start at the leading edge of horizontal
908                  * active. So, should we get here before we've crossed into
909                  * the horizontal active of the first line in vblank, we would
910                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
911                  * always add htotal-hsync_start to the current pixel position.
912                  */
913                 position = (position + htotal - hsync_start) % vtotal;
914         }
915
916         /* Get optional system timestamp after query. */
917         if (etime)
918                 *etime = ktime_get();
919
920         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
921
922         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
923
924         in_vbl = position >= vbl_start && position < vbl_end;
925
926         /*
927          * While in vblank, position will be negative
928          * counting up towards 0 at vbl_end. And outside
929          * vblank, position will be positive counting
930          * up since vbl_end.
931          */
932         if (position >= vbl_start)
933                 position -= vbl_end;
934         else
935                 position += vtotal - vbl_end;
936
937         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
938                 *vpos = position;
939                 *hpos = 0;
940         } else {
941                 *vpos = position / htotal;
942                 *hpos = position - (*vpos * htotal);
943         }
944
945         /* In vblank? */
946         if (in_vbl)
947                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
948
949         return ret;
950 }
951
952 int intel_get_crtc_scanline(struct intel_crtc *crtc)
953 {
954         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955         unsigned long irqflags;
956         int position;
957
958         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959         position = __intel_get_crtc_scanline(crtc);
960         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961
962         return position;
963 }
964
965 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
966                               int *max_error,
967                               struct timeval *vblank_time,
968                               unsigned flags)
969 {
970         struct drm_i915_private *dev_priv = to_i915(dev);
971         struct intel_crtc *crtc;
972
973         if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
974                 DRM_ERROR("Invalid crtc %u\n", pipe);
975                 return -EINVAL;
976         }
977
978         /* Get drm_crtc to timestamp: */
979         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
980         if (crtc == NULL) {
981                 DRM_ERROR("Invalid crtc %u\n", pipe);
982                 return -EINVAL;
983         }
984
985         if (!crtc->base.hwmode.crtc_clock) {
986                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
987                 return -EBUSY;
988         }
989
990         /* Helper routine in DRM core does all the work: */
991         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
992                                                      vblank_time, flags,
993                                                      &crtc->base.hwmode);
994 }
995
996 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
997 {
998         u32 busy_up, busy_down, max_avg, min_avg;
999         u8 new_delay;
1000
1001         spin_lock(&mchdev_lock);
1002
1003         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1004
1005         new_delay = dev_priv->ips.cur_delay;
1006
1007         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1008         busy_up = I915_READ(RCPREVBSYTUPAVG);
1009         busy_down = I915_READ(RCPREVBSYTDNAVG);
1010         max_avg = I915_READ(RCBMAXAVG);
1011         min_avg = I915_READ(RCBMINAVG);
1012
1013         /* Handle RCS change request from hw */
1014         if (busy_up > max_avg) {
1015                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1016                         new_delay = dev_priv->ips.cur_delay - 1;
1017                 if (new_delay < dev_priv->ips.max_delay)
1018                         new_delay = dev_priv->ips.max_delay;
1019         } else if (busy_down < min_avg) {
1020                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1021                         new_delay = dev_priv->ips.cur_delay + 1;
1022                 if (new_delay > dev_priv->ips.min_delay)
1023                         new_delay = dev_priv->ips.min_delay;
1024         }
1025
1026         if (ironlake_set_drps(dev_priv, new_delay))
1027                 dev_priv->ips.cur_delay = new_delay;
1028
1029         spin_unlock(&mchdev_lock);
1030
1031         return;
1032 }
1033
1034 static void notify_ring(struct intel_engine_cs *engine)
1035 {
1036         smp_store_mb(engine->breadcrumbs.irq_posted, true);
1037         if (intel_engine_wakeup(engine))
1038                 trace_i915_gem_request_notify(engine);
1039 }
1040
1041 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1042                         struct intel_rps_ei *ei)
1043 {
1044         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1045         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1046         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1047 }
1048
1049 static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1050                          const struct intel_rps_ei *old,
1051                          const struct intel_rps_ei *now,
1052                          int threshold)
1053 {
1054         u64 time, c0;
1055         unsigned int mul = 100;
1056
1057         if (old->cz_clock == 0)
1058                 return false;
1059
1060         if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1061                 mul <<= 8;
1062
1063         time = now->cz_clock - old->cz_clock;
1064         time *= threshold * dev_priv->czclk_freq;
1065
1066         /* Workload can be split between render + media, e.g. SwapBuffers
1067          * being blitted in X after being rendered in mesa. To account for
1068          * this we need to combine both engines into our activity counter.
1069          */
1070         c0 = now->render_c0 - old->render_c0;
1071         c0 += now->media_c0 - old->media_c0;
1072         c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1073
1074         return c0 >= time;
1075 }
1076
1077 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1078 {
1079         vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1080         dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1081 }
1082
1083 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1084 {
1085         struct intel_rps_ei now;
1086         u32 events = 0;
1087
1088         if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1089                 return 0;
1090
1091         vlv_c0_read(dev_priv, &now);
1092         if (now.cz_clock == 0)
1093                 return 0;
1094
1095         if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1096                 if (!vlv_c0_above(dev_priv,
1097                                   &dev_priv->rps.down_ei, &now,
1098                                   dev_priv->rps.down_threshold))
1099                         events |= GEN6_PM_RP_DOWN_THRESHOLD;
1100                 dev_priv->rps.down_ei = now;
1101         }
1102
1103         if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1104                 if (vlv_c0_above(dev_priv,
1105                                  &dev_priv->rps.up_ei, &now,
1106                                  dev_priv->rps.up_threshold))
1107                         events |= GEN6_PM_RP_UP_THRESHOLD;
1108                 dev_priv->rps.up_ei = now;
1109         }
1110
1111         return events;
1112 }
1113
1114 static bool any_waiters(struct drm_i915_private *dev_priv)
1115 {
1116         struct intel_engine_cs *engine;
1117         enum intel_engine_id id;
1118
1119         for_each_engine(engine, dev_priv, id)
1120                 if (intel_engine_has_waiter(engine))
1121                         return true;
1122
1123         return false;
1124 }
1125
1126 static void gen6_pm_rps_work(struct work_struct *work)
1127 {
1128         struct drm_i915_private *dev_priv =
1129                 container_of(work, struct drm_i915_private, rps.work);
1130         bool client_boost;
1131         int new_delay, adj, min, max;
1132         u32 pm_iir;
1133
1134         spin_lock_irq(&dev_priv->irq_lock);
1135         /* Speed up work cancelation during disabling rps interrupts. */
1136         if (!dev_priv->rps.interrupts_enabled) {
1137                 spin_unlock_irq(&dev_priv->irq_lock);
1138                 return;
1139         }
1140
1141         pm_iir = dev_priv->rps.pm_iir;
1142         dev_priv->rps.pm_iir = 0;
1143         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1144         gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1145         client_boost = dev_priv->rps.client_boost;
1146         dev_priv->rps.client_boost = false;
1147         spin_unlock_irq(&dev_priv->irq_lock);
1148
1149         /* Make sure we didn't queue anything we're not going to process. */
1150         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1151
1152         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1153                 return;
1154
1155         mutex_lock(&dev_priv->rps.hw_lock);
1156
1157         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1158
1159         adj = dev_priv->rps.last_adj;
1160         new_delay = dev_priv->rps.cur_freq;
1161         min = dev_priv->rps.min_freq_softlimit;
1162         max = dev_priv->rps.max_freq_softlimit;
1163         if (client_boost || any_waiters(dev_priv))
1164                 max = dev_priv->rps.max_freq;
1165         if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1166                 new_delay = dev_priv->rps.boost_freq;
1167                 adj = 0;
1168         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1169                 if (adj > 0)
1170                         adj *= 2;
1171                 else /* CHV needs even encode values */
1172                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1173
1174                 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1175                         adj = 0;
1176                 /*
1177                  * For better performance, jump directly
1178                  * to RPe if we're below it.
1179                  */
1180                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1181                         new_delay = dev_priv->rps.efficient_freq;
1182                         adj = 0;
1183                 }
1184         } else if (client_boost || any_waiters(dev_priv)) {
1185                 adj = 0;
1186         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1187                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1188                         new_delay = dev_priv->rps.efficient_freq;
1189                 else
1190                         new_delay = dev_priv->rps.min_freq_softlimit;
1191                 adj = 0;
1192         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1193                 if (adj < 0)
1194                         adj *= 2;
1195                 else /* CHV needs even encode values */
1196                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1197
1198                 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1199                         adj = 0;
1200         } else { /* unknown event */
1201                 adj = 0;
1202         }
1203
1204         dev_priv->rps.last_adj = adj;
1205
1206         /* sysfs frequency interfaces may have snuck in while servicing the
1207          * interrupt
1208          */
1209         new_delay += adj;
1210         new_delay = clamp_t(int, new_delay, min, max);
1211
1212         intel_set_rps(dev_priv, new_delay);
1213
1214         mutex_unlock(&dev_priv->rps.hw_lock);
1215 }
1216
1217
1218 /**
1219  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1220  * occurred.
1221  * @work: workqueue struct
1222  *
1223  * Doesn't actually do anything except notify userspace. As a consequence of
1224  * this event, userspace should try to remap the bad rows since statistically
1225  * it is likely the same row is more likely to go bad again.
1226  */
1227 static void ivybridge_parity_work(struct work_struct *work)
1228 {
1229         struct drm_i915_private *dev_priv =
1230                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1231         u32 error_status, row, bank, subbank;
1232         char *parity_event[6];
1233         uint32_t misccpctl;
1234         uint8_t slice = 0;
1235
1236         /* We must turn off DOP level clock gating to access the L3 registers.
1237          * In order to prevent a get/put style interface, acquire struct mutex
1238          * any time we access those registers.
1239          */
1240         mutex_lock(&dev_priv->drm.struct_mutex);
1241
1242         /* If we've screwed up tracking, just let the interrupt fire again */
1243         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1244                 goto out;
1245
1246         misccpctl = I915_READ(GEN7_MISCCPCTL);
1247         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1248         POSTING_READ(GEN7_MISCCPCTL);
1249
1250         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1251                 i915_reg_t reg;
1252
1253                 slice--;
1254                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1255                         break;
1256
1257                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1258
1259                 reg = GEN7_L3CDERRST1(slice);
1260
1261                 error_status = I915_READ(reg);
1262                 row = GEN7_PARITY_ERROR_ROW(error_status);
1263                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1264                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1265
1266                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1267                 POSTING_READ(reg);
1268
1269                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1270                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1271                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1272                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1273                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1274                 parity_event[5] = NULL;
1275
1276                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1277                                    KOBJ_CHANGE, parity_event);
1278
1279                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1280                           slice, row, bank, subbank);
1281
1282                 kfree(parity_event[4]);
1283                 kfree(parity_event[3]);
1284                 kfree(parity_event[2]);
1285                 kfree(parity_event[1]);
1286         }
1287
1288         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1289
1290 out:
1291         WARN_ON(dev_priv->l3_parity.which_slice);
1292         spin_lock_irq(&dev_priv->irq_lock);
1293         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1294         spin_unlock_irq(&dev_priv->irq_lock);
1295
1296         mutex_unlock(&dev_priv->drm.struct_mutex);
1297 }
1298
1299 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1300                                                u32 iir)
1301 {
1302         if (!HAS_L3_DPF(dev_priv))
1303                 return;
1304
1305         spin_lock(&dev_priv->irq_lock);
1306         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1307         spin_unlock(&dev_priv->irq_lock);
1308
1309         iir &= GT_PARITY_ERROR(dev_priv);
1310         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1311                 dev_priv->l3_parity.which_slice |= 1 << 1;
1312
1313         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1314                 dev_priv->l3_parity.which_slice |= 1 << 0;
1315
1316         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1317 }
1318
1319 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1320                                u32 gt_iir)
1321 {
1322         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1323                 notify_ring(dev_priv->engine[RCS]);
1324         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1325                 notify_ring(dev_priv->engine[VCS]);
1326 }
1327
1328 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1329                                u32 gt_iir)
1330 {
1331         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1332                 notify_ring(dev_priv->engine[RCS]);
1333         if (gt_iir & GT_BSD_USER_INTERRUPT)
1334                 notify_ring(dev_priv->engine[VCS]);
1335         if (gt_iir & GT_BLT_USER_INTERRUPT)
1336                 notify_ring(dev_priv->engine[BCS]);
1337
1338         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1339                       GT_BSD_CS_ERROR_INTERRUPT |
1340                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1341                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1342
1343         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1344                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1345 }
1346
1347 static __always_inline void
1348 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1349 {
1350         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1351                 notify_ring(engine);
1352         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1353                 tasklet_schedule(&engine->irq_tasklet);
1354 }
1355
1356 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1357                                    u32 master_ctl,
1358                                    u32 gt_iir[4])
1359 {
1360         irqreturn_t ret = IRQ_NONE;
1361
1362         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1363                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1364                 if (gt_iir[0]) {
1365                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1366                         ret = IRQ_HANDLED;
1367                 } else
1368                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1369         }
1370
1371         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1372                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1373                 if (gt_iir[1]) {
1374                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1375                         ret = IRQ_HANDLED;
1376                 } else
1377                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1378         }
1379
1380         if (master_ctl & GEN8_GT_VECS_IRQ) {
1381                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1382                 if (gt_iir[3]) {
1383                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1384                         ret = IRQ_HANDLED;
1385                 } else
1386                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1387         }
1388
1389         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1390                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1391                 if (gt_iir[2] & (dev_priv->pm_rps_events |
1392                                  dev_priv->pm_guc_events)) {
1393                         I915_WRITE_FW(GEN8_GT_IIR(2),
1394                                       gt_iir[2] & (dev_priv->pm_rps_events |
1395                                                    dev_priv->pm_guc_events));
1396                         ret = IRQ_HANDLED;
1397                 } else
1398                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1399         }
1400
1401         return ret;
1402 }
1403
1404 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1405                                 u32 gt_iir[4])
1406 {
1407         if (gt_iir[0]) {
1408                 gen8_cs_irq_handler(dev_priv->engine[RCS],
1409                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1410                 gen8_cs_irq_handler(dev_priv->engine[BCS],
1411                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1412         }
1413
1414         if (gt_iir[1]) {
1415                 gen8_cs_irq_handler(dev_priv->engine[VCS],
1416                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1417                 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1418                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1419         }
1420
1421         if (gt_iir[3])
1422                 gen8_cs_irq_handler(dev_priv->engine[VECS],
1423                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1424
1425         if (gt_iir[2] & dev_priv->pm_rps_events)
1426                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1427
1428         if (gt_iir[2] & dev_priv->pm_guc_events)
1429                 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1430 }
1431
1432 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1433 {
1434         switch (port) {
1435         case PORT_A:
1436                 return val & PORTA_HOTPLUG_LONG_DETECT;
1437         case PORT_B:
1438                 return val & PORTB_HOTPLUG_LONG_DETECT;
1439         case PORT_C:
1440                 return val & PORTC_HOTPLUG_LONG_DETECT;
1441         default:
1442                 return false;
1443         }
1444 }
1445
1446 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1447 {
1448         switch (port) {
1449         case PORT_E:
1450                 return val & PORTE_HOTPLUG_LONG_DETECT;
1451         default:
1452                 return false;
1453         }
1454 }
1455
1456 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1457 {
1458         switch (port) {
1459         case PORT_A:
1460                 return val & PORTA_HOTPLUG_LONG_DETECT;
1461         case PORT_B:
1462                 return val & PORTB_HOTPLUG_LONG_DETECT;
1463         case PORT_C:
1464                 return val & PORTC_HOTPLUG_LONG_DETECT;
1465         case PORT_D:
1466                 return val & PORTD_HOTPLUG_LONG_DETECT;
1467         default:
1468                 return false;
1469         }
1470 }
1471
1472 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1473 {
1474         switch (port) {
1475         case PORT_A:
1476                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1477         default:
1478                 return false;
1479         }
1480 }
1481
1482 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1483 {
1484         switch (port) {
1485         case PORT_B:
1486                 return val & PORTB_HOTPLUG_LONG_DETECT;
1487         case PORT_C:
1488                 return val & PORTC_HOTPLUG_LONG_DETECT;
1489         case PORT_D:
1490                 return val & PORTD_HOTPLUG_LONG_DETECT;
1491         default:
1492                 return false;
1493         }
1494 }
1495
1496 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1497 {
1498         switch (port) {
1499         case PORT_B:
1500                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1501         case PORT_C:
1502                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1503         case PORT_D:
1504                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1505         default:
1506                 return false;
1507         }
1508 }
1509
1510 /*
1511  * Get a bit mask of pins that have triggered, and which ones may be long.
1512  * This can be called multiple times with the same masks to accumulate
1513  * hotplug detection results from several registers.
1514  *
1515  * Note that the caller is expected to zero out the masks initially.
1516  */
1517 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1518                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1519                              const u32 hpd[HPD_NUM_PINS],
1520                              bool long_pulse_detect(enum port port, u32 val))
1521 {
1522         enum port port;
1523         int i;
1524
1525         for_each_hpd_pin(i) {
1526                 if ((hpd[i] & hotplug_trigger) == 0)
1527                         continue;
1528
1529                 *pin_mask |= BIT(i);
1530
1531                 if (!intel_hpd_pin_to_port(i, &port))
1532                         continue;
1533
1534                 if (long_pulse_detect(port, dig_hotplug_reg))
1535                         *long_mask |= BIT(i);
1536         }
1537
1538         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1539                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1540
1541 }
1542
1543 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1544 {
1545         wake_up_all(&dev_priv->gmbus_wait_queue);
1546 }
1547
1548 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1549 {
1550         wake_up_all(&dev_priv->gmbus_wait_queue);
1551 }
1552
1553 #if defined(CONFIG_DEBUG_FS)
1554 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1555                                          enum pipe pipe,
1556                                          uint32_t crc0, uint32_t crc1,
1557                                          uint32_t crc2, uint32_t crc3,
1558                                          uint32_t crc4)
1559 {
1560         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1561         struct intel_pipe_crc_entry *entry;
1562         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1563         struct drm_driver *driver = dev_priv->drm.driver;
1564         uint32_t crcs[5];
1565         int head, tail;
1566
1567         spin_lock(&pipe_crc->lock);
1568         if (pipe_crc->source) {
1569                 if (!pipe_crc->entries) {
1570                         spin_unlock(&pipe_crc->lock);
1571                         DRM_DEBUG_KMS("spurious interrupt\n");
1572                         return;
1573                 }
1574
1575                 head = pipe_crc->head;
1576                 tail = pipe_crc->tail;
1577
1578                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1579                         spin_unlock(&pipe_crc->lock);
1580                         DRM_ERROR("CRC buffer overflowing\n");
1581                         return;
1582                 }
1583
1584                 entry = &pipe_crc->entries[head];
1585
1586                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1587                 entry->crc[0] = crc0;
1588                 entry->crc[1] = crc1;
1589                 entry->crc[2] = crc2;
1590                 entry->crc[3] = crc3;
1591                 entry->crc[4] = crc4;
1592
1593                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1594                 pipe_crc->head = head;
1595
1596                 spin_unlock(&pipe_crc->lock);
1597
1598                 wake_up_interruptible(&pipe_crc->wq);
1599         } else {
1600                 /*
1601                  * For some not yet identified reason, the first CRC is
1602                  * bonkers. So let's just wait for the next vblank and read
1603                  * out the buggy result.
1604                  *
1605                  * On CHV sometimes the second CRC is bonkers as well, so
1606                  * don't trust that one either.
1607                  */
1608                 if (pipe_crc->skipped == 0 ||
1609                     (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1610                         pipe_crc->skipped++;
1611                         spin_unlock(&pipe_crc->lock);
1612                         return;
1613                 }
1614                 spin_unlock(&pipe_crc->lock);
1615                 crcs[0] = crc0;
1616                 crcs[1] = crc1;
1617                 crcs[2] = crc2;
1618                 crcs[3] = crc3;
1619                 crcs[4] = crc4;
1620                 drm_crtc_add_crc_entry(&crtc->base, true,
1621                                        drm_accurate_vblank_count(&crtc->base),
1622                                        crcs);
1623         }
1624 }
1625 #else
1626 static inline void
1627 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1628                              enum pipe pipe,
1629                              uint32_t crc0, uint32_t crc1,
1630                              uint32_t crc2, uint32_t crc3,
1631                              uint32_t crc4) {}
1632 #endif
1633
1634
1635 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1636                                      enum pipe pipe)
1637 {
1638         display_pipe_crc_irq_handler(dev_priv, pipe,
1639                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1640                                      0, 0, 0, 0);
1641 }
1642
1643 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1644                                      enum pipe pipe)
1645 {
1646         display_pipe_crc_irq_handler(dev_priv, pipe,
1647                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1648                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1649                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1650                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1651                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1652 }
1653
1654 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1655                                       enum pipe pipe)
1656 {
1657         uint32_t res1, res2;
1658
1659         if (INTEL_GEN(dev_priv) >= 3)
1660                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1661         else
1662                 res1 = 0;
1663
1664         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1665                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1666         else
1667                 res2 = 0;
1668
1669         display_pipe_crc_irq_handler(dev_priv, pipe,
1670                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1671                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1672                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1673                                      res1, res2);
1674 }
1675
1676 /* The RPS events need forcewake, so we add them to a work queue and mask their
1677  * IMR bits until the work is done. Other interrupts can be processed without
1678  * the work queue. */
1679 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1680 {
1681         if (pm_iir & dev_priv->pm_rps_events) {
1682                 spin_lock(&dev_priv->irq_lock);
1683                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1684                 if (dev_priv->rps.interrupts_enabled) {
1685                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1686                         schedule_work(&dev_priv->rps.work);
1687                 }
1688                 spin_unlock(&dev_priv->irq_lock);
1689         }
1690
1691         if (INTEL_INFO(dev_priv)->gen >= 8)
1692                 return;
1693
1694         if (HAS_VEBOX(dev_priv)) {
1695                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1696                         notify_ring(dev_priv->engine[VECS]);
1697
1698                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1699                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1700         }
1701 }
1702
1703 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1704 {
1705         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1706                 /* Sample the log buffer flush related bits & clear them out now
1707                  * itself from the message identity register to minimize the
1708                  * probability of losing a flush interrupt, when there are back
1709                  * to back flush interrupts.
1710                  * There can be a new flush interrupt, for different log buffer
1711                  * type (like for ISR), whilst Host is handling one (for DPC).
1712                  * Since same bit is used in message register for ISR & DPC, it
1713                  * could happen that GuC sets the bit for 2nd interrupt but Host
1714                  * clears out the bit on handling the 1st interrupt.
1715                  */
1716                 u32 msg, flush;
1717
1718                 msg = I915_READ(SOFT_SCRATCH(15));
1719                 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1720                                INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1721                 if (flush) {
1722                         /* Clear the message bits that are handled */
1723                         I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1724
1725                         /* Handle flush interrupt in bottom half */
1726                         queue_work(dev_priv->guc.log.flush_wq,
1727                                    &dev_priv->guc.log.flush_work);
1728
1729                         dev_priv->guc.log.flush_interrupt_count++;
1730                 } else {
1731                         /* Not clearing of unhandled event bits won't result in
1732                          * re-triggering of the interrupt.
1733                          */
1734                 }
1735         }
1736 }
1737
1738 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1739                                      enum pipe pipe)
1740 {
1741         bool ret;
1742
1743         ret = drm_handle_vblank(&dev_priv->drm, pipe);
1744         if (ret)
1745                 intel_finish_page_flip_mmio(dev_priv, pipe);
1746
1747         return ret;
1748 }
1749
1750 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1751                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1752 {
1753         int pipe;
1754
1755         spin_lock(&dev_priv->irq_lock);
1756
1757         if (!dev_priv->display_irqs_enabled) {
1758                 spin_unlock(&dev_priv->irq_lock);
1759                 return;
1760         }
1761
1762         for_each_pipe(dev_priv, pipe) {
1763                 i915_reg_t reg;
1764                 u32 mask, iir_bit = 0;
1765
1766                 /*
1767                  * PIPESTAT bits get signalled even when the interrupt is
1768                  * disabled with the mask bits, and some of the status bits do
1769                  * not generate interrupts at all (like the underrun bit). Hence
1770                  * we need to be careful that we only handle what we want to
1771                  * handle.
1772                  */
1773
1774                 /* fifo underruns are filterered in the underrun handler. */
1775                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1776
1777                 switch (pipe) {
1778                 case PIPE_A:
1779                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1780                         break;
1781                 case PIPE_B:
1782                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1783                         break;
1784                 case PIPE_C:
1785                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1786                         break;
1787                 }
1788                 if (iir & iir_bit)
1789                         mask |= dev_priv->pipestat_irq_mask[pipe];
1790
1791                 if (!mask)
1792                         continue;
1793
1794                 reg = PIPESTAT(pipe);
1795                 mask |= PIPESTAT_INT_ENABLE_MASK;
1796                 pipe_stats[pipe] = I915_READ(reg) & mask;
1797
1798                 /*
1799                  * Clear the PIPE*STAT regs before the IIR
1800                  */
1801                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1802                                         PIPESTAT_INT_STATUS_MASK))
1803                         I915_WRITE(reg, pipe_stats[pipe]);
1804         }
1805         spin_unlock(&dev_priv->irq_lock);
1806 }
1807
1808 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1809                                             u32 pipe_stats[I915_MAX_PIPES])
1810 {
1811         enum pipe pipe;
1812
1813         for_each_pipe(dev_priv, pipe) {
1814                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1815                     intel_pipe_handle_vblank(dev_priv, pipe))
1816                         intel_check_page_flip(dev_priv, pipe);
1817
1818                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1819                         intel_finish_page_flip_cs(dev_priv, pipe);
1820
1821                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1822                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1823
1824                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1825                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1826         }
1827
1828         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1829                 gmbus_irq_handler(dev_priv);
1830 }
1831
1832 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1833 {
1834         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1835
1836         if (hotplug_status)
1837                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1838
1839         return hotplug_status;
1840 }
1841
1842 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1843                                  u32 hotplug_status)
1844 {
1845         u32 pin_mask = 0, long_mask = 0;
1846
1847         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1848             IS_CHERRYVIEW(dev_priv)) {
1849                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1850
1851                 if (hotplug_trigger) {
1852                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1853                                            hotplug_trigger, hpd_status_g4x,
1854                                            i9xx_port_hotplug_long_detect);
1855
1856                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1857                 }
1858
1859                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1860                         dp_aux_irq_handler(dev_priv);
1861         } else {
1862                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1863
1864                 if (hotplug_trigger) {
1865                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1866                                            hotplug_trigger, hpd_status_i915,
1867                                            i9xx_port_hotplug_long_detect);
1868                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1869                 }
1870         }
1871 }
1872
1873 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1874 {
1875         struct drm_device *dev = arg;
1876         struct drm_i915_private *dev_priv = to_i915(dev);
1877         irqreturn_t ret = IRQ_NONE;
1878
1879         if (!intel_irqs_enabled(dev_priv))
1880                 return IRQ_NONE;
1881
1882         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1883         disable_rpm_wakeref_asserts(dev_priv);
1884
1885         do {
1886                 u32 iir, gt_iir, pm_iir;
1887                 u32 pipe_stats[I915_MAX_PIPES] = {};
1888                 u32 hotplug_status = 0;
1889                 u32 ier = 0;
1890
1891                 gt_iir = I915_READ(GTIIR);
1892                 pm_iir = I915_READ(GEN6_PMIIR);
1893                 iir = I915_READ(VLV_IIR);
1894
1895                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1896                         break;
1897
1898                 ret = IRQ_HANDLED;
1899
1900                 /*
1901                  * Theory on interrupt generation, based on empirical evidence:
1902                  *
1903                  * x = ((VLV_IIR & VLV_IER) ||
1904                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1905                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1906                  *
1907                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1908                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1909                  * guarantee the CPU interrupt will be raised again even if we
1910                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1911                  * bits this time around.
1912                  */
1913                 I915_WRITE(VLV_MASTER_IER, 0);
1914                 ier = I915_READ(VLV_IER);
1915                 I915_WRITE(VLV_IER, 0);
1916
1917                 if (gt_iir)
1918                         I915_WRITE(GTIIR, gt_iir);
1919                 if (pm_iir)
1920                         I915_WRITE(GEN6_PMIIR, pm_iir);
1921
1922                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1923                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1924
1925                 /* Call regardless, as some status bits might not be
1926                  * signalled in iir */
1927                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1928
1929                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1930                            I915_LPE_PIPE_B_INTERRUPT))
1931                         intel_lpe_audio_irq_handler(dev_priv);
1932
1933                 /*
1934                  * VLV_IIR is single buffered, and reflects the level
1935                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1936                  */
1937                 if (iir)
1938                         I915_WRITE(VLV_IIR, iir);
1939
1940                 I915_WRITE(VLV_IER, ier);
1941                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1942                 POSTING_READ(VLV_MASTER_IER);
1943
1944                 if (gt_iir)
1945                         snb_gt_irq_handler(dev_priv, gt_iir);
1946                 if (pm_iir)
1947                         gen6_rps_irq_handler(dev_priv, pm_iir);
1948
1949                 if (hotplug_status)
1950                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1951
1952                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1953         } while (0);
1954
1955         enable_rpm_wakeref_asserts(dev_priv);
1956
1957         return ret;
1958 }
1959
1960 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1961 {
1962         struct drm_device *dev = arg;
1963         struct drm_i915_private *dev_priv = to_i915(dev);
1964         irqreturn_t ret = IRQ_NONE;
1965
1966         if (!intel_irqs_enabled(dev_priv))
1967                 return IRQ_NONE;
1968
1969         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1970         disable_rpm_wakeref_asserts(dev_priv);
1971
1972         do {
1973                 u32 master_ctl, iir;
1974                 u32 gt_iir[4] = {};
1975                 u32 pipe_stats[I915_MAX_PIPES] = {};
1976                 u32 hotplug_status = 0;
1977                 u32 ier = 0;
1978
1979                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1980                 iir = I915_READ(VLV_IIR);
1981
1982                 if (master_ctl == 0 && iir == 0)
1983                         break;
1984
1985                 ret = IRQ_HANDLED;
1986
1987                 /*
1988                  * Theory on interrupt generation, based on empirical evidence:
1989                  *
1990                  * x = ((VLV_IIR & VLV_IER) ||
1991                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1992                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1993                  *
1994                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1995                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1996                  * guarantee the CPU interrupt will be raised again even if we
1997                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1998                  * bits this time around.
1999                  */
2000                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2001                 ier = I915_READ(VLV_IER);
2002                 I915_WRITE(VLV_IER, 0);
2003
2004                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2005
2006                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2007                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2008
2009                 /* Call regardless, as some status bits might not be
2010                  * signalled in iir */
2011                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2012
2013                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2014                            I915_LPE_PIPE_B_INTERRUPT |
2015                            I915_LPE_PIPE_C_INTERRUPT))
2016                         intel_lpe_audio_irq_handler(dev_priv);
2017
2018                 /*
2019                  * VLV_IIR is single buffered, and reflects the level
2020                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2021                  */
2022                 if (iir)
2023                         I915_WRITE(VLV_IIR, iir);
2024
2025                 I915_WRITE(VLV_IER, ier);
2026                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2027                 POSTING_READ(GEN8_MASTER_IRQ);
2028
2029                 gen8_gt_irq_handler(dev_priv, gt_iir);
2030
2031                 if (hotplug_status)
2032                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2033
2034                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2035         } while (0);
2036
2037         enable_rpm_wakeref_asserts(dev_priv);
2038
2039         return ret;
2040 }
2041
2042 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2043                                 u32 hotplug_trigger,
2044                                 const u32 hpd[HPD_NUM_PINS])
2045 {
2046         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2047
2048         /*
2049          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2050          * unless we touch the hotplug register, even if hotplug_trigger is
2051          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2052          * errors.
2053          */
2054         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2055         if (!hotplug_trigger) {
2056                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2057                         PORTD_HOTPLUG_STATUS_MASK |
2058                         PORTC_HOTPLUG_STATUS_MASK |
2059                         PORTB_HOTPLUG_STATUS_MASK;
2060                 dig_hotplug_reg &= ~mask;
2061         }
2062
2063         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2064         if (!hotplug_trigger)
2065                 return;
2066
2067         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2068                            dig_hotplug_reg, hpd,
2069                            pch_port_hotplug_long_detect);
2070
2071         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2072 }
2073
2074 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2075 {
2076         int pipe;
2077         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2078
2079         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2080
2081         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2082                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2083                                SDE_AUDIO_POWER_SHIFT);
2084                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2085                                  port_name(port));
2086         }
2087
2088         if (pch_iir & SDE_AUX_MASK)
2089                 dp_aux_irq_handler(dev_priv);
2090
2091         if (pch_iir & SDE_GMBUS)
2092                 gmbus_irq_handler(dev_priv);
2093
2094         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2095                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2096
2097         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2098                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2099
2100         if (pch_iir & SDE_POISON)
2101                 DRM_ERROR("PCH poison interrupt\n");
2102
2103         if (pch_iir & SDE_FDI_MASK)
2104                 for_each_pipe(dev_priv, pipe)
2105                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2106                                          pipe_name(pipe),
2107                                          I915_READ(FDI_RX_IIR(pipe)));
2108
2109         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2110                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2111
2112         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2113                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2114
2115         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2116                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2117
2118         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2119                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2120 }
2121
2122 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2123 {
2124         u32 err_int = I915_READ(GEN7_ERR_INT);
2125         enum pipe pipe;
2126
2127         if (err_int & ERR_INT_POISON)
2128                 DRM_ERROR("Poison interrupt\n");
2129
2130         for_each_pipe(dev_priv, pipe) {
2131                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2132                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2133
2134                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2135                         if (IS_IVYBRIDGE(dev_priv))
2136                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2137                         else
2138                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2139                 }
2140         }
2141
2142         I915_WRITE(GEN7_ERR_INT, err_int);
2143 }
2144
2145 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2146 {
2147         u32 serr_int = I915_READ(SERR_INT);
2148
2149         if (serr_int & SERR_INT_POISON)
2150                 DRM_ERROR("PCH poison interrupt\n");
2151
2152         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2153                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2154
2155         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2156                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2157
2158         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2159                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2160
2161         I915_WRITE(SERR_INT, serr_int);
2162 }
2163
2164 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2165 {
2166         int pipe;
2167         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2168
2169         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2170
2171         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2172                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2173                                SDE_AUDIO_POWER_SHIFT_CPT);
2174                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2175                                  port_name(port));
2176         }
2177
2178         if (pch_iir & SDE_AUX_MASK_CPT)
2179                 dp_aux_irq_handler(dev_priv);
2180
2181         if (pch_iir & SDE_GMBUS_CPT)
2182                 gmbus_irq_handler(dev_priv);
2183
2184         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2185                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2186
2187         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2188                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2189
2190         if (pch_iir & SDE_FDI_MASK_CPT)
2191                 for_each_pipe(dev_priv, pipe)
2192                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2193                                          pipe_name(pipe),
2194                                          I915_READ(FDI_RX_IIR(pipe)));
2195
2196         if (pch_iir & SDE_ERROR_CPT)
2197                 cpt_serr_int_handler(dev_priv);
2198 }
2199
2200 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2201 {
2202         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2203                 ~SDE_PORTE_HOTPLUG_SPT;
2204         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2205         u32 pin_mask = 0, long_mask = 0;
2206
2207         if (hotplug_trigger) {
2208                 u32 dig_hotplug_reg;
2209
2210                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2211                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2212
2213                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2214                                    dig_hotplug_reg, hpd_spt,
2215                                    spt_port_hotplug_long_detect);
2216         }
2217
2218         if (hotplug2_trigger) {
2219                 u32 dig_hotplug_reg;
2220
2221                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2222                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2223
2224                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2225                                    dig_hotplug_reg, hpd_spt,
2226                                    spt_port_hotplug2_long_detect);
2227         }
2228
2229         if (pin_mask)
2230                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2231
2232         if (pch_iir & SDE_GMBUS_CPT)
2233                 gmbus_irq_handler(dev_priv);
2234 }
2235
2236 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2237                                 u32 hotplug_trigger,
2238                                 const u32 hpd[HPD_NUM_PINS])
2239 {
2240         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2241
2242         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2243         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2244
2245         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2246                            dig_hotplug_reg, hpd,
2247                            ilk_port_hotplug_long_detect);
2248
2249         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2250 }
2251
2252 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2253                                     u32 de_iir)
2254 {
2255         enum pipe pipe;
2256         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2257
2258         if (hotplug_trigger)
2259                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2260
2261         if (de_iir & DE_AUX_CHANNEL_A)
2262                 dp_aux_irq_handler(dev_priv);
2263
2264         if (de_iir & DE_GSE)
2265                 intel_opregion_asle_intr(dev_priv);
2266
2267         if (de_iir & DE_POISON)
2268                 DRM_ERROR("Poison interrupt\n");
2269
2270         for_each_pipe(dev_priv, pipe) {
2271                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2272                     intel_pipe_handle_vblank(dev_priv, pipe))
2273                         intel_check_page_flip(dev_priv, pipe);
2274
2275                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2276                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2277
2278                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2279                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2280
2281                 /* plane/pipes map 1:1 on ilk+ */
2282                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2283                         intel_finish_page_flip_cs(dev_priv, pipe);
2284         }
2285
2286         /* check event from PCH */
2287         if (de_iir & DE_PCH_EVENT) {
2288                 u32 pch_iir = I915_READ(SDEIIR);
2289
2290                 if (HAS_PCH_CPT(dev_priv))
2291                         cpt_irq_handler(dev_priv, pch_iir);
2292                 else
2293                         ibx_irq_handler(dev_priv, pch_iir);
2294
2295                 /* should clear PCH hotplug event before clear CPU irq */
2296                 I915_WRITE(SDEIIR, pch_iir);
2297         }
2298
2299         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2300                 ironlake_rps_change_irq_handler(dev_priv);
2301 }
2302
2303 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2304                                     u32 de_iir)
2305 {
2306         enum pipe pipe;
2307         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2308
2309         if (hotplug_trigger)
2310                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2311
2312         if (de_iir & DE_ERR_INT_IVB)
2313                 ivb_err_int_handler(dev_priv);
2314
2315         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2316                 dp_aux_irq_handler(dev_priv);
2317
2318         if (de_iir & DE_GSE_IVB)
2319                 intel_opregion_asle_intr(dev_priv);
2320
2321         for_each_pipe(dev_priv, pipe) {
2322                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2323                     intel_pipe_handle_vblank(dev_priv, pipe))
2324                         intel_check_page_flip(dev_priv, pipe);
2325
2326                 /* plane/pipes map 1:1 on ilk+ */
2327                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2328                         intel_finish_page_flip_cs(dev_priv, pipe);
2329         }
2330
2331         /* check event from PCH */
2332         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2333                 u32 pch_iir = I915_READ(SDEIIR);
2334
2335                 cpt_irq_handler(dev_priv, pch_iir);
2336
2337                 /* clear PCH hotplug event before clear CPU irq */
2338                 I915_WRITE(SDEIIR, pch_iir);
2339         }
2340 }
2341
2342 /*
2343  * To handle irqs with the minimum potential races with fresh interrupts, we:
2344  * 1 - Disable Master Interrupt Control.
2345  * 2 - Find the source(s) of the interrupt.
2346  * 3 - Clear the Interrupt Identity bits (IIR).
2347  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2348  * 5 - Re-enable Master Interrupt Control.
2349  */
2350 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2351 {
2352         struct drm_device *dev = arg;
2353         struct drm_i915_private *dev_priv = to_i915(dev);
2354         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2355         irqreturn_t ret = IRQ_NONE;
2356
2357         if (!intel_irqs_enabled(dev_priv))
2358                 return IRQ_NONE;
2359
2360         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2361         disable_rpm_wakeref_asserts(dev_priv);
2362
2363         /* disable master interrupt before clearing iir  */
2364         de_ier = I915_READ(DEIER);
2365         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2366         POSTING_READ(DEIER);
2367
2368         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2369          * interrupts will will be stored on its back queue, and then we'll be
2370          * able to process them after we restore SDEIER (as soon as we restore
2371          * it, we'll get an interrupt if SDEIIR still has something to process
2372          * due to its back queue). */
2373         if (!HAS_PCH_NOP(dev_priv)) {
2374                 sde_ier = I915_READ(SDEIER);
2375                 I915_WRITE(SDEIER, 0);
2376                 POSTING_READ(SDEIER);
2377         }
2378
2379         /* Find, clear, then process each source of interrupt */
2380
2381         gt_iir = I915_READ(GTIIR);
2382         if (gt_iir) {
2383                 I915_WRITE(GTIIR, gt_iir);
2384                 ret = IRQ_HANDLED;
2385                 if (INTEL_GEN(dev_priv) >= 6)
2386                         snb_gt_irq_handler(dev_priv, gt_iir);
2387                 else
2388                         ilk_gt_irq_handler(dev_priv, gt_iir);
2389         }
2390
2391         de_iir = I915_READ(DEIIR);
2392         if (de_iir) {
2393                 I915_WRITE(DEIIR, de_iir);
2394                 ret = IRQ_HANDLED;
2395                 if (INTEL_GEN(dev_priv) >= 7)
2396                         ivb_display_irq_handler(dev_priv, de_iir);
2397                 else
2398                         ilk_display_irq_handler(dev_priv, de_iir);
2399         }
2400
2401         if (INTEL_GEN(dev_priv) >= 6) {
2402                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2403                 if (pm_iir) {
2404                         I915_WRITE(GEN6_PMIIR, pm_iir);
2405                         ret = IRQ_HANDLED;
2406                         gen6_rps_irq_handler(dev_priv, pm_iir);
2407                 }
2408         }
2409
2410         I915_WRITE(DEIER, de_ier);
2411         POSTING_READ(DEIER);
2412         if (!HAS_PCH_NOP(dev_priv)) {
2413                 I915_WRITE(SDEIER, sde_ier);
2414                 POSTING_READ(SDEIER);
2415         }
2416
2417         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2418         enable_rpm_wakeref_asserts(dev_priv);
2419
2420         return ret;
2421 }
2422
2423 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2424                                 u32 hotplug_trigger,
2425                                 const u32 hpd[HPD_NUM_PINS])
2426 {
2427         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2428
2429         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2430         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2431
2432         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2433                            dig_hotplug_reg, hpd,
2434                            bxt_port_hotplug_long_detect);
2435
2436         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2437 }
2438
2439 static irqreturn_t
2440 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2441 {
2442         irqreturn_t ret = IRQ_NONE;
2443         u32 iir;
2444         enum pipe pipe;
2445
2446         if (master_ctl & GEN8_DE_MISC_IRQ) {
2447                 iir = I915_READ(GEN8_DE_MISC_IIR);
2448                 if (iir) {
2449                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2450                         ret = IRQ_HANDLED;
2451                         if (iir & GEN8_DE_MISC_GSE)
2452                                 intel_opregion_asle_intr(dev_priv);
2453                         else
2454                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2455                 }
2456                 else
2457                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2458         }
2459
2460         if (master_ctl & GEN8_DE_PORT_IRQ) {
2461                 iir = I915_READ(GEN8_DE_PORT_IIR);
2462                 if (iir) {
2463                         u32 tmp_mask;
2464                         bool found = false;
2465
2466                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2467                         ret = IRQ_HANDLED;
2468
2469                         tmp_mask = GEN8_AUX_CHANNEL_A;
2470                         if (INTEL_INFO(dev_priv)->gen >= 9)
2471                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2472                                             GEN9_AUX_CHANNEL_C |
2473                                             GEN9_AUX_CHANNEL_D;
2474
2475                         if (iir & tmp_mask) {
2476                                 dp_aux_irq_handler(dev_priv);
2477                                 found = true;
2478                         }
2479
2480                         if (IS_GEN9_LP(dev_priv)) {
2481                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2482                                 if (tmp_mask) {
2483                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2484                                                             hpd_bxt);
2485                                         found = true;
2486                                 }
2487                         } else if (IS_BROADWELL(dev_priv)) {
2488                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2489                                 if (tmp_mask) {
2490                                         ilk_hpd_irq_handler(dev_priv,
2491                                                             tmp_mask, hpd_bdw);
2492                                         found = true;
2493                                 }
2494                         }
2495
2496                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2497                                 gmbus_irq_handler(dev_priv);
2498                                 found = true;
2499                         }
2500
2501                         if (!found)
2502                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2503                 }
2504                 else
2505                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2506         }
2507
2508         for_each_pipe(dev_priv, pipe) {
2509                 u32 flip_done, fault_errors;
2510
2511                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2512                         continue;
2513
2514                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2515                 if (!iir) {
2516                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2517                         continue;
2518                 }
2519
2520                 ret = IRQ_HANDLED;
2521                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2522
2523                 if (iir & GEN8_PIPE_VBLANK &&
2524                     intel_pipe_handle_vblank(dev_priv, pipe))
2525                         intel_check_page_flip(dev_priv, pipe);
2526
2527                 flip_done = iir;
2528                 if (INTEL_INFO(dev_priv)->gen >= 9)
2529                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2530                 else
2531                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2532
2533                 if (flip_done)
2534                         intel_finish_page_flip_cs(dev_priv, pipe);
2535
2536                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2537                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2538
2539                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2540                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2541
2542                 fault_errors = iir;
2543                 if (INTEL_INFO(dev_priv)->gen >= 9)
2544                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2545                 else
2546                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2547
2548                 if (fault_errors)
2549                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2550                                   pipe_name(pipe),
2551                                   fault_errors);
2552         }
2553
2554         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2555             master_ctl & GEN8_DE_PCH_IRQ) {
2556                 /*
2557                  * FIXME(BDW): Assume for now that the new interrupt handling
2558                  * scheme also closed the SDE interrupt handling race we've seen
2559                  * on older pch-split platforms. But this needs testing.
2560                  */
2561                 iir = I915_READ(SDEIIR);
2562                 if (iir) {
2563                         I915_WRITE(SDEIIR, iir);
2564                         ret = IRQ_HANDLED;
2565
2566                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2567                                 spt_irq_handler(dev_priv, iir);
2568                         else
2569                                 cpt_irq_handler(dev_priv, iir);
2570                 } else {
2571                         /*
2572                          * Like on previous PCH there seems to be something
2573                          * fishy going on with forwarding PCH interrupts.
2574                          */
2575                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2576                 }
2577         }
2578
2579         return ret;
2580 }
2581
2582 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2583 {
2584         struct drm_device *dev = arg;
2585         struct drm_i915_private *dev_priv = to_i915(dev);
2586         u32 master_ctl;
2587         u32 gt_iir[4] = {};
2588         irqreturn_t ret;
2589
2590         if (!intel_irqs_enabled(dev_priv))
2591                 return IRQ_NONE;
2592
2593         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2594         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2595         if (!master_ctl)
2596                 return IRQ_NONE;
2597
2598         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2599
2600         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2601         disable_rpm_wakeref_asserts(dev_priv);
2602
2603         /* Find, clear, then process each source of interrupt */
2604         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2605         gen8_gt_irq_handler(dev_priv, gt_iir);
2606         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2607
2608         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2609         POSTING_READ_FW(GEN8_MASTER_IRQ);
2610
2611         enable_rpm_wakeref_asserts(dev_priv);
2612
2613         return ret;
2614 }
2615
2616 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2617 {
2618         /*
2619          * Notify all waiters for GPU completion events that reset state has
2620          * been changed, and that they need to restart their wait after
2621          * checking for potential errors (and bail out to drop locks if there is
2622          * a gpu reset pending so that i915_error_work_func can acquire them).
2623          */
2624
2625         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2626         wake_up_all(&dev_priv->gpu_error.wait_queue);
2627
2628         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2629         wake_up_all(&dev_priv->pending_flip_queue);
2630 }
2631
2632 /**
2633  * i915_reset_and_wakeup - do process context error handling work
2634  * @dev_priv: i915 device private
2635  *
2636  * Fire an error uevent so userspace can see that a hang or error
2637  * was detected.
2638  */
2639 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2640 {
2641         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2642         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2643         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2644         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2645
2646         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2647
2648         DRM_DEBUG_DRIVER("resetting chip\n");
2649         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2650
2651         /*
2652          * In most cases it's guaranteed that we get here with an RPM
2653          * reference held, for example because there is a pending GPU
2654          * request that won't finish until the reset is done. This
2655          * isn't the case at least when we get here by doing a
2656          * simulated reset via debugs, so get an RPM reference.
2657          */
2658         intel_runtime_pm_get(dev_priv);
2659         intel_prepare_reset(dev_priv);
2660
2661         do {
2662                 /*
2663                  * All state reset _must_ be completed before we update the
2664                  * reset counter, for otherwise waiters might miss the reset
2665                  * pending state and not properly drop locks, resulting in
2666                  * deadlocks with the reset work.
2667                  */
2668                 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2669                         i915_reset(dev_priv);
2670                         mutex_unlock(&dev_priv->drm.struct_mutex);
2671                 }
2672
2673                 /* We need to wait for anyone holding the lock to wakeup */
2674         } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2675                                      I915_RESET_IN_PROGRESS,
2676                                      TASK_UNINTERRUPTIBLE,
2677                                      HZ));
2678
2679         intel_finish_reset(dev_priv);
2680         intel_runtime_pm_put(dev_priv);
2681
2682         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2683                 kobject_uevent_env(kobj,
2684                                    KOBJ_CHANGE, reset_done_event);
2685
2686         /*
2687          * Note: The wake_up also serves as a memory barrier so that
2688          * waiters see the updated value of the dev_priv->gpu_error.
2689          */
2690         wake_up_all(&dev_priv->gpu_error.reset_queue);
2691 }
2692
2693 static inline void
2694 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2695                         struct intel_instdone *instdone)
2696 {
2697         int slice;
2698         int subslice;
2699
2700         pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2701
2702         if (INTEL_GEN(dev_priv) <= 3)
2703                 return;
2704
2705         pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2706
2707         if (INTEL_GEN(dev_priv) <= 6)
2708                 return;
2709
2710         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2711                 pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2712                        slice, subslice, instdone->sampler[slice][subslice]);
2713
2714         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2715                 pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2716                        slice, subslice, instdone->row[slice][subslice]);
2717 }
2718
2719 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2720 {
2721         u32 eir;
2722
2723         if (!IS_GEN2(dev_priv))
2724                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2725
2726         if (INTEL_GEN(dev_priv) < 4)
2727                 I915_WRITE(IPEIR, I915_READ(IPEIR));
2728         else
2729                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2730
2731         I915_WRITE(EIR, I915_READ(EIR));
2732         eir = I915_READ(EIR);
2733         if (eir) {
2734                 /*
2735                  * some errors might have become stuck,
2736                  * mask them.
2737                  */
2738                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2739                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2740                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2741         }
2742 }
2743
2744 /**
2745  * i915_handle_error - handle a gpu error
2746  * @dev_priv: i915 device private
2747  * @engine_mask: mask representing engines that are hung
2748  * @fmt: Error message format string
2749  *
2750  * Do some basic checking of register state at error time and
2751  * dump it to the syslog.  Also call i915_capture_error_state() to make
2752  * sure we get a record and make it available in debugfs.  Fire a uevent
2753  * so userspace knows something bad happened (should trigger collection
2754  * of a ring dump etc.).
2755  */
2756 void i915_handle_error(struct drm_i915_private *dev_priv,
2757                        u32 engine_mask,
2758                        const char *fmt, ...)
2759 {
2760         va_list args;
2761         char error_msg[80];
2762
2763         va_start(args, fmt);
2764         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2765         va_end(args);
2766
2767         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2768         i915_clear_error_registers(dev_priv);
2769
2770         if (!engine_mask)
2771                 return;
2772
2773         if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2774                              &dev_priv->gpu_error.flags))
2775                 return;
2776
2777         /*
2778          * Wakeup waiting processes so that the reset function
2779          * i915_reset_and_wakeup doesn't deadlock trying to grab
2780          * various locks. By bumping the reset counter first, the woken
2781          * processes will see a reset in progress and back off,
2782          * releasing their locks and then wait for the reset completion.
2783          * We must do this for _all_ gpu waiters that might hold locks
2784          * that the reset work needs to acquire.
2785          *
2786          * Note: The wake_up also provides a memory barrier to ensure that the
2787          * waiters see the updated value of the reset flags.
2788          */
2789         i915_error_wake_up(dev_priv);
2790
2791         i915_reset_and_wakeup(dev_priv);
2792 }
2793
2794 /* Called from drm generic code, passed 'crtc' which
2795  * we use as a pipe index
2796  */
2797 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2798 {
2799         struct drm_i915_private *dev_priv = to_i915(dev);
2800         unsigned long irqflags;
2801
2802         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2803         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2804         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2805
2806         return 0;
2807 }
2808
2809 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2810 {
2811         struct drm_i915_private *dev_priv = to_i915(dev);
2812         unsigned long irqflags;
2813
2814         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2815         i915_enable_pipestat(dev_priv, pipe,
2816                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2817         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2818
2819         return 0;
2820 }
2821
2822 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2823 {
2824         struct drm_i915_private *dev_priv = to_i915(dev);
2825         unsigned long irqflags;
2826         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2827                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2828
2829         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2830         ilk_enable_display_irq(dev_priv, bit);
2831         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2832
2833         return 0;
2834 }
2835
2836 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2837 {
2838         struct drm_i915_private *dev_priv = to_i915(dev);
2839         unsigned long irqflags;
2840
2841         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2842         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2843         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2844
2845         return 0;
2846 }
2847
2848 /* Called from drm generic code, passed 'crtc' which
2849  * we use as a pipe index
2850  */
2851 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2852 {
2853         struct drm_i915_private *dev_priv = to_i915(dev);
2854         unsigned long irqflags;
2855
2856         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2857         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2858         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2859 }
2860
2861 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2862 {
2863         struct drm_i915_private *dev_priv = to_i915(dev);
2864         unsigned long irqflags;
2865
2866         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2867         i915_disable_pipestat(dev_priv, pipe,
2868                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2869         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2870 }
2871
2872 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2873 {
2874         struct drm_i915_private *dev_priv = to_i915(dev);
2875         unsigned long irqflags;
2876         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2877                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2878
2879         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2880         ilk_disable_display_irq(dev_priv, bit);
2881         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2882 }
2883
2884 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2885 {
2886         struct drm_i915_private *dev_priv = to_i915(dev);
2887         unsigned long irqflags;
2888
2889         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2890         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2891         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2892 }
2893
2894 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2895 {
2896         if (HAS_PCH_NOP(dev_priv))
2897                 return;
2898
2899         GEN5_IRQ_RESET(SDE);
2900
2901         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2902                 I915_WRITE(SERR_INT, 0xffffffff);
2903 }
2904
2905 /*
2906  * SDEIER is also touched by the interrupt handler to work around missed PCH
2907  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2908  * instead we unconditionally enable all PCH interrupt sources here, but then
2909  * only unmask them as needed with SDEIMR.
2910  *
2911  * This function needs to be called before interrupts are enabled.
2912  */
2913 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2914 {
2915         struct drm_i915_private *dev_priv = to_i915(dev);
2916
2917         if (HAS_PCH_NOP(dev_priv))
2918                 return;
2919
2920         WARN_ON(I915_READ(SDEIER) != 0);
2921         I915_WRITE(SDEIER, 0xffffffff);
2922         POSTING_READ(SDEIER);
2923 }
2924
2925 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2926 {
2927         GEN5_IRQ_RESET(GT);
2928         if (INTEL_GEN(dev_priv) >= 6)
2929                 GEN5_IRQ_RESET(GEN6_PM);
2930 }
2931
2932 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2933 {
2934         enum pipe pipe;
2935
2936         if (IS_CHERRYVIEW(dev_priv))
2937                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2938         else
2939                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2940
2941         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2942         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2943
2944         for_each_pipe(dev_priv, pipe) {
2945                 I915_WRITE(PIPESTAT(pipe),
2946                            PIPE_FIFO_UNDERRUN_STATUS |
2947                            PIPESTAT_INT_STATUS_MASK);
2948                 dev_priv->pipestat_irq_mask[pipe] = 0;
2949         }
2950
2951         GEN5_IRQ_RESET(VLV_);
2952         dev_priv->irq_mask = ~0;
2953 }
2954
2955 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2956 {
2957         u32 pipestat_mask;
2958         u32 enable_mask;
2959         enum pipe pipe;
2960         u32 val;
2961
2962         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2963                         PIPE_CRC_DONE_INTERRUPT_STATUS;
2964
2965         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2966         for_each_pipe(dev_priv, pipe)
2967                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2968
2969         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2970                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2971                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2972         if (IS_CHERRYVIEW(dev_priv))
2973                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2974
2975         WARN_ON(dev_priv->irq_mask != ~0);
2976
2977         val = (I915_LPE_PIPE_A_INTERRUPT |
2978                 I915_LPE_PIPE_B_INTERRUPT |
2979                 I915_LPE_PIPE_C_INTERRUPT);
2980
2981         enable_mask |= val;
2982
2983         dev_priv->irq_mask = ~enable_mask;
2984
2985         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2986 }
2987
2988 /* drm_dma.h hooks
2989 */
2990 static void ironlake_irq_reset(struct drm_device *dev)
2991 {
2992         struct drm_i915_private *dev_priv = to_i915(dev);
2993
2994         I915_WRITE(HWSTAM, 0xffffffff);
2995
2996         GEN5_IRQ_RESET(DE);
2997         if (IS_GEN7(dev_priv))
2998                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2999
3000         gen5_gt_irq_reset(dev_priv);
3001
3002         ibx_irq_reset(dev_priv);
3003 }
3004
3005 static void valleyview_irq_preinstall(struct drm_device *dev)
3006 {
3007         struct drm_i915_private *dev_priv = to_i915(dev);
3008
3009         I915_WRITE(VLV_MASTER_IER, 0);
3010         POSTING_READ(VLV_MASTER_IER);
3011
3012         gen5_gt_irq_reset(dev_priv);
3013
3014         spin_lock_irq(&dev_priv->irq_lock);
3015         if (dev_priv->display_irqs_enabled)
3016                 vlv_display_irq_reset(dev_priv);
3017         spin_unlock_irq(&dev_priv->irq_lock);
3018 }
3019
3020 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3021 {
3022         GEN8_IRQ_RESET_NDX(GT, 0);
3023         GEN8_IRQ_RESET_NDX(GT, 1);
3024         GEN8_IRQ_RESET_NDX(GT, 2);
3025         GEN8_IRQ_RESET_NDX(GT, 3);
3026 }
3027
3028 static void gen8_irq_reset(struct drm_device *dev)
3029 {
3030         struct drm_i915_private *dev_priv = to_i915(dev);
3031         int pipe;
3032
3033         I915_WRITE(GEN8_MASTER_IRQ, 0);
3034         POSTING_READ(GEN8_MASTER_IRQ);
3035
3036         gen8_gt_irq_reset(dev_priv);
3037
3038         for_each_pipe(dev_priv, pipe)
3039                 if (intel_display_power_is_enabled(dev_priv,
3040                                                    POWER_DOMAIN_PIPE(pipe)))
3041                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3042
3043         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3044         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3045         GEN5_IRQ_RESET(GEN8_PCU_);
3046
3047         if (HAS_PCH_SPLIT(dev_priv))
3048                 ibx_irq_reset(dev_priv);
3049 }
3050
3051 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3052                                      unsigned int pipe_mask)
3053 {
3054         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3055         enum pipe pipe;
3056
3057         spin_lock_irq(&dev_priv->irq_lock);
3058         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3059                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3060                                   dev_priv->de_irq_mask[pipe],
3061                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3062         spin_unlock_irq(&dev_priv->irq_lock);
3063 }
3064
3065 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3066                                      unsigned int pipe_mask)
3067 {
3068         enum pipe pipe;
3069
3070         spin_lock_irq(&dev_priv->irq_lock);
3071         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3072                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3073         spin_unlock_irq(&dev_priv->irq_lock);
3074
3075         /* make sure we're done processing display irqs */
3076         synchronize_irq(dev_priv->drm.irq);
3077 }
3078
3079 static void cherryview_irq_preinstall(struct drm_device *dev)
3080 {
3081         struct drm_i915_private *dev_priv = to_i915(dev);
3082
3083         I915_WRITE(GEN8_MASTER_IRQ, 0);
3084         POSTING_READ(GEN8_MASTER_IRQ);
3085
3086         gen8_gt_irq_reset(dev_priv);
3087
3088         GEN5_IRQ_RESET(GEN8_PCU_);
3089
3090         spin_lock_irq(&dev_priv->irq_lock);
3091         if (dev_priv->display_irqs_enabled)
3092                 vlv_display_irq_reset(dev_priv);
3093         spin_unlock_irq(&dev_priv->irq_lock);
3094 }
3095
3096 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3097                                   const u32 hpd[HPD_NUM_PINS])
3098 {
3099         struct intel_encoder *encoder;
3100         u32 enabled_irqs = 0;
3101
3102         for_each_intel_encoder(&dev_priv->drm, encoder)
3103                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3104                         enabled_irqs |= hpd[encoder->hpd_pin];
3105
3106         return enabled_irqs;
3107 }
3108
3109 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3110 {
3111         u32 hotplug_irqs, hotplug, enabled_irqs;
3112
3113         if (HAS_PCH_IBX(dev_priv)) {
3114                 hotplug_irqs = SDE_HOTPLUG_MASK;
3115                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3116         } else {
3117                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3118                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3119         }
3120
3121         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3122
3123         /*
3124          * Enable digital hotplug on the PCH, and configure the DP short pulse
3125          * duration to 2ms (which is the minimum in the Display Port spec).
3126          * The pulse duration bits are reserved on LPT+.
3127          */
3128         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3129         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3130         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3131         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3132         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3133         /*
3134          * When CPU and PCH are on the same package, port A
3135          * HPD must be enabled in both north and south.
3136          */
3137         if (HAS_PCH_LPT_LP(dev_priv))
3138                 hotplug |= PORTA_HOTPLUG_ENABLE;
3139         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3140 }
3141
3142 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3143 {
3144         u32 hotplug;
3145
3146         /* Enable digital hotplug on the PCH */
3147         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3148         hotplug |= PORTA_HOTPLUG_ENABLE |
3149                    PORTB_HOTPLUG_ENABLE |
3150                    PORTC_HOTPLUG_ENABLE |
3151                    PORTD_HOTPLUG_ENABLE;
3152         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3153
3154         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3155         hotplug |= PORTE_HOTPLUG_ENABLE;
3156         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3157 }
3158
3159 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3160 {
3161         u32 hotplug_irqs, enabled_irqs;
3162
3163         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3164         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3165
3166         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3167
3168         spt_hpd_detection_setup(dev_priv);
3169 }
3170
3171 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3172 {
3173         u32 hotplug_irqs, hotplug, enabled_irqs;
3174
3175         if (INTEL_GEN(dev_priv) >= 8) {
3176                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3177                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3178
3179                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3180         } else if (INTEL_GEN(dev_priv) >= 7) {
3181                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3182                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3183
3184                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3185         } else {
3186                 hotplug_irqs = DE_DP_A_HOTPLUG;
3187                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3188
3189                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3190         }
3191
3192         /*
3193          * Enable digital hotplug on the CPU, and configure the DP short pulse
3194          * duration to 2ms (which is the minimum in the Display Port spec)
3195          * The pulse duration bits are reserved on HSW+.
3196          */
3197         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3198         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3199         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3200         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3201
3202         ibx_hpd_irq_setup(dev_priv);
3203 }
3204
3205 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3206                                       u32 enabled_irqs)
3207 {
3208         u32 hotplug;
3209
3210         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3211         hotplug |= PORTA_HOTPLUG_ENABLE |
3212                    PORTB_HOTPLUG_ENABLE |
3213                    PORTC_HOTPLUG_ENABLE;
3214
3215         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3216                       hotplug, enabled_irqs);
3217         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3218
3219         /*
3220          * For BXT invert bit has to be set based on AOB design
3221          * for HPD detection logic, update it based on VBT fields.
3222          */
3223         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3224             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3225                 hotplug |= BXT_DDIA_HPD_INVERT;
3226         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3227             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3228                 hotplug |= BXT_DDIB_HPD_INVERT;
3229         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3230             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3231                 hotplug |= BXT_DDIC_HPD_INVERT;
3232
3233         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3234 }
3235
3236 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3237 {
3238         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3239 }
3240
3241 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3242 {
3243         u32 hotplug_irqs, enabled_irqs;
3244
3245         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3246         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3247
3248         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3249
3250         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3251 }
3252
3253 static void ibx_irq_postinstall(struct drm_device *dev)
3254 {
3255         struct drm_i915_private *dev_priv = to_i915(dev);
3256         u32 mask;
3257
3258         if (HAS_PCH_NOP(dev_priv))
3259                 return;
3260
3261         if (HAS_PCH_IBX(dev_priv))
3262                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3263         else
3264                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3265
3266         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3267         I915_WRITE(SDEIMR, ~mask);
3268
3269         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3270             HAS_PCH_LPT(dev_priv))
3271                 ; /* TODO: Enable HPD detection on older PCH platforms too */
3272         else
3273                 spt_hpd_detection_setup(dev_priv);
3274 }
3275
3276 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3277 {
3278         struct drm_i915_private *dev_priv = to_i915(dev);
3279         u32 pm_irqs, gt_irqs;
3280
3281         pm_irqs = gt_irqs = 0;
3282
3283         dev_priv->gt_irq_mask = ~0;
3284         if (HAS_L3_DPF(dev_priv)) {
3285                 /* L3 parity interrupt is always unmasked. */
3286                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3287                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3288         }
3289
3290         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3291         if (IS_GEN5(dev_priv)) {
3292                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3293         } else {
3294                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3295         }
3296
3297         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3298
3299         if (INTEL_GEN(dev_priv) >= 6) {
3300                 /*
3301                  * RPS interrupts will get enabled/disabled on demand when RPS
3302                  * itself is enabled/disabled.
3303                  */
3304                 if (HAS_VEBOX(dev_priv)) {
3305                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3306                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3307                 }
3308
3309                 dev_priv->pm_imr = 0xffffffff;
3310                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3311         }
3312 }
3313
3314 static int ironlake_irq_postinstall(struct drm_device *dev)
3315 {
3316         struct drm_i915_private *dev_priv = to_i915(dev);
3317         u32 display_mask, extra_mask;
3318
3319         if (INTEL_GEN(dev_priv) >= 7) {
3320                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3321                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3322                                 DE_PLANEB_FLIP_DONE_IVB |
3323                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3324                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3325                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3326                               DE_DP_A_HOTPLUG_IVB);
3327         } else {
3328                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3329                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3330                                 DE_AUX_CHANNEL_A |
3331                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3332                                 DE_POISON);
3333                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3334                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3335                               DE_DP_A_HOTPLUG);
3336         }
3337
3338         dev_priv->irq_mask = ~display_mask;
3339
3340         I915_WRITE(HWSTAM, 0xeffe);
3341
3342         ibx_irq_pre_postinstall(dev);
3343
3344         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3345
3346         gen5_gt_irq_postinstall(dev);
3347
3348         ibx_irq_postinstall(dev);
3349
3350         if (IS_IRONLAKE_M(dev_priv)) {
3351                 /* Enable PCU event interrupts
3352                  *
3353                  * spinlocking not required here for correctness since interrupt
3354                  * setup is guaranteed to run in single-threaded context. But we
3355                  * need it to make the assert_spin_locked happy. */
3356                 spin_lock_irq(&dev_priv->irq_lock);
3357                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3358                 spin_unlock_irq(&dev_priv->irq_lock);
3359         }
3360
3361         return 0;
3362 }
3363
3364 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3365 {
3366         assert_spin_locked(&dev_priv->irq_lock);
3367
3368         if (dev_priv->display_irqs_enabled)
3369                 return;
3370
3371         dev_priv->display_irqs_enabled = true;
3372
3373         if (intel_irqs_enabled(dev_priv)) {
3374                 vlv_display_irq_reset(dev_priv);
3375                 vlv_display_irq_postinstall(dev_priv);
3376         }
3377 }
3378
3379 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3380 {
3381         assert_spin_locked(&dev_priv->irq_lock);
3382
3383         if (!dev_priv->display_irqs_enabled)
3384                 return;
3385
3386         dev_priv->display_irqs_enabled = false;
3387
3388         if (intel_irqs_enabled(dev_priv))
3389                 vlv_display_irq_reset(dev_priv);
3390 }
3391
3392
3393 static int valleyview_irq_postinstall(struct drm_device *dev)
3394 {
3395         struct drm_i915_private *dev_priv = to_i915(dev);
3396
3397         gen5_gt_irq_postinstall(dev);
3398
3399         spin_lock_irq(&dev_priv->irq_lock);
3400         if (dev_priv->display_irqs_enabled)
3401                 vlv_display_irq_postinstall(dev_priv);
3402         spin_unlock_irq(&dev_priv->irq_lock);
3403
3404         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3405         POSTING_READ(VLV_MASTER_IER);
3406
3407         return 0;
3408 }
3409
3410 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3411 {
3412         /* These are interrupts we'll toggle with the ring mask register */
3413         uint32_t gt_interrupts[] = {
3414                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3415                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3416                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3417                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3418                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3419                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3420                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3421                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3422                 0,
3423                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3424                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3425                 };
3426
3427         if (HAS_L3_DPF(dev_priv))
3428                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3429
3430         dev_priv->pm_ier = 0x0;
3431         dev_priv->pm_imr = ~dev_priv->pm_ier;
3432         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3433         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3434         /*
3435          * RPS interrupts will get enabled/disabled on demand when RPS itself
3436          * is enabled/disabled. Same wil be the case for GuC interrupts.
3437          */
3438         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3439         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3440 }
3441
3442 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3443 {
3444         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3445         uint32_t de_pipe_enables;
3446         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3447         u32 de_port_enables;
3448         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3449         enum pipe pipe;
3450
3451         if (INTEL_INFO(dev_priv)->gen >= 9) {
3452                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3453                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3454                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3455                                   GEN9_AUX_CHANNEL_D;
3456                 if (IS_GEN9_LP(dev_priv))
3457                         de_port_masked |= BXT_DE_PORT_GMBUS;
3458         } else {
3459                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3460                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3461         }
3462
3463         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3464                                            GEN8_PIPE_FIFO_UNDERRUN;
3465
3466         de_port_enables = de_port_masked;
3467         if (IS_GEN9_LP(dev_priv))
3468                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3469         else if (IS_BROADWELL(dev_priv))
3470                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3471
3472         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3473         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3474         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3475
3476         for_each_pipe(dev_priv, pipe)
3477                 if (intel_display_power_is_enabled(dev_priv,
3478                                 POWER_DOMAIN_PIPE(pipe)))
3479                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3480                                           dev_priv->de_irq_mask[pipe],
3481                                           de_pipe_enables);
3482
3483         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3484         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3485
3486         if (IS_GEN9_LP(dev_priv))
3487                 bxt_hpd_detection_setup(dev_priv);
3488 }
3489
3490 static int gen8_irq_postinstall(struct drm_device *dev)
3491 {
3492         struct drm_i915_private *dev_priv = to_i915(dev);
3493
3494         if (HAS_PCH_SPLIT(dev_priv))
3495                 ibx_irq_pre_postinstall(dev);
3496
3497         gen8_gt_irq_postinstall(dev_priv);
3498         gen8_de_irq_postinstall(dev_priv);
3499
3500         if (HAS_PCH_SPLIT(dev_priv))
3501                 ibx_irq_postinstall(dev);
3502
3503         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3504         POSTING_READ(GEN8_MASTER_IRQ);
3505
3506         return 0;
3507 }
3508
3509 static int cherryview_irq_postinstall(struct drm_device *dev)
3510 {
3511         struct drm_i915_private *dev_priv = to_i915(dev);
3512
3513         gen8_gt_irq_postinstall(dev_priv);
3514
3515         spin_lock_irq(&dev_priv->irq_lock);
3516         if (dev_priv->display_irqs_enabled)
3517                 vlv_display_irq_postinstall(dev_priv);
3518         spin_unlock_irq(&dev_priv->irq_lock);
3519
3520         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3521         POSTING_READ(GEN8_MASTER_IRQ);
3522
3523         return 0;
3524 }
3525
3526 static void gen8_irq_uninstall(struct drm_device *dev)
3527 {
3528         struct drm_i915_private *dev_priv = to_i915(dev);
3529
3530         if (!dev_priv)
3531                 return;
3532
3533         gen8_irq_reset(dev);
3534 }
3535
3536 static void valleyview_irq_uninstall(struct drm_device *dev)
3537 {
3538         struct drm_i915_private *dev_priv = to_i915(dev);
3539
3540         if (!dev_priv)
3541                 return;
3542
3543         I915_WRITE(VLV_MASTER_IER, 0);
3544         POSTING_READ(VLV_MASTER_IER);
3545
3546         gen5_gt_irq_reset(dev_priv);
3547
3548         I915_WRITE(HWSTAM, 0xffffffff);
3549
3550         spin_lock_irq(&dev_priv->irq_lock);
3551         if (dev_priv->display_irqs_enabled)
3552                 vlv_display_irq_reset(dev_priv);
3553         spin_unlock_irq(&dev_priv->irq_lock);
3554 }
3555
3556 static void cherryview_irq_uninstall(struct drm_device *dev)
3557 {
3558         struct drm_i915_private *dev_priv = to_i915(dev);
3559
3560         if (!dev_priv)
3561                 return;
3562
3563         I915_WRITE(GEN8_MASTER_IRQ, 0);
3564         POSTING_READ(GEN8_MASTER_IRQ);
3565
3566         gen8_gt_irq_reset(dev_priv);
3567
3568         GEN5_IRQ_RESET(GEN8_PCU_);
3569
3570         spin_lock_irq(&dev_priv->irq_lock);
3571         if (dev_priv->display_irqs_enabled)
3572                 vlv_display_irq_reset(dev_priv);
3573         spin_unlock_irq(&dev_priv->irq_lock);
3574 }
3575
3576 static void ironlake_irq_uninstall(struct drm_device *dev)
3577 {
3578         struct drm_i915_private *dev_priv = to_i915(dev);
3579
3580         if (!dev_priv)
3581                 return;
3582
3583         ironlake_irq_reset(dev);
3584 }
3585
3586 static void i8xx_irq_preinstall(struct drm_device * dev)
3587 {
3588         struct drm_i915_private *dev_priv = to_i915(dev);
3589         int pipe;
3590
3591         for_each_pipe(dev_priv, pipe)
3592                 I915_WRITE(PIPESTAT(pipe), 0);
3593         I915_WRITE16(IMR, 0xffff);
3594         I915_WRITE16(IER, 0x0);
3595         POSTING_READ16(IER);
3596 }
3597
3598 static int i8xx_irq_postinstall(struct drm_device *dev)
3599 {
3600         struct drm_i915_private *dev_priv = to_i915(dev);
3601
3602         I915_WRITE16(EMR,
3603                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3604
3605         /* Unmask the interrupts that we always want on. */
3606         dev_priv->irq_mask =
3607                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3608                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3609                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3610                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3611         I915_WRITE16(IMR, dev_priv->irq_mask);
3612
3613         I915_WRITE16(IER,
3614                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3615                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3616                      I915_USER_INTERRUPT);
3617         POSTING_READ16(IER);
3618
3619         /* Interrupt setup is already guaranteed to be single-threaded, this is
3620          * just to make the assert_spin_locked check happy. */
3621         spin_lock_irq(&dev_priv->irq_lock);
3622         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3623         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3624         spin_unlock_irq(&dev_priv->irq_lock);
3625
3626         return 0;
3627 }
3628
3629 /*
3630  * Returns true when a page flip has completed.
3631  */
3632 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3633                                int plane, int pipe, u32 iir)
3634 {
3635         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3636
3637         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3638                 return false;
3639
3640         if ((iir & flip_pending) == 0)
3641                 goto check_page_flip;
3642
3643         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3644          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3645          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3646          * the flip is completed (no longer pending). Since this doesn't raise
3647          * an interrupt per se, we watch for the change at vblank.
3648          */
3649         if (I915_READ16(ISR) & flip_pending)
3650                 goto check_page_flip;
3651
3652         intel_finish_page_flip_cs(dev_priv, pipe);
3653         return true;
3654
3655 check_page_flip:
3656         intel_check_page_flip(dev_priv, pipe);
3657         return false;
3658 }
3659
3660 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3661 {
3662         struct drm_device *dev = arg;
3663         struct drm_i915_private *dev_priv = to_i915(dev);
3664         u16 iir, new_iir;
3665         u32 pipe_stats[2];
3666         int pipe;
3667         u16 flip_mask =
3668                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3669                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3670         irqreturn_t ret;
3671
3672         if (!intel_irqs_enabled(dev_priv))
3673                 return IRQ_NONE;
3674
3675         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3676         disable_rpm_wakeref_asserts(dev_priv);
3677
3678         ret = IRQ_NONE;
3679         iir = I915_READ16(IIR);
3680         if (iir == 0)
3681                 goto out;
3682
3683         while (iir & ~flip_mask) {
3684                 /* Can't rely on pipestat interrupt bit in iir as it might
3685                  * have been cleared after the pipestat interrupt was received.
3686                  * It doesn't set the bit in iir again, but it still produces
3687                  * interrupts (for non-MSI).
3688                  */
3689                 spin_lock(&dev_priv->irq_lock);
3690                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3691                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3692
3693                 for_each_pipe(dev_priv, pipe) {
3694                         i915_reg_t reg = PIPESTAT(pipe);
3695                         pipe_stats[pipe] = I915_READ(reg);
3696
3697                         /*
3698                          * Clear the PIPE*STAT regs before the IIR
3699                          */
3700                         if (pipe_stats[pipe] & 0x8000ffff)
3701                                 I915_WRITE(reg, pipe_stats[pipe]);
3702                 }
3703                 spin_unlock(&dev_priv->irq_lock);
3704
3705                 I915_WRITE16(IIR, iir & ~flip_mask);
3706                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3707
3708                 if (iir & I915_USER_INTERRUPT)
3709                         notify_ring(dev_priv->engine[RCS]);
3710
3711                 for_each_pipe(dev_priv, pipe) {
3712                         int plane = pipe;
3713                         if (HAS_FBC(dev_priv))
3714                                 plane = !plane;
3715
3716                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3717                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3718                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3719
3720                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3721                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3722
3723                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3724                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3725                                                                     pipe);
3726                 }
3727
3728                 iir = new_iir;
3729         }
3730         ret = IRQ_HANDLED;
3731
3732 out:
3733         enable_rpm_wakeref_asserts(dev_priv);
3734
3735         return ret;
3736 }
3737
3738 static void i8xx_irq_uninstall(struct drm_device * dev)
3739 {
3740         struct drm_i915_private *dev_priv = to_i915(dev);
3741         int pipe;
3742
3743         for_each_pipe(dev_priv, pipe) {
3744                 /* Clear enable bits; then clear status bits */
3745                 I915_WRITE(PIPESTAT(pipe), 0);
3746                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3747         }
3748         I915_WRITE16(IMR, 0xffff);
3749         I915_WRITE16(IER, 0x0);
3750         I915_WRITE16(IIR, I915_READ16(IIR));
3751 }
3752
3753 static void i915_irq_preinstall(struct drm_device * dev)
3754 {
3755         struct drm_i915_private *dev_priv = to_i915(dev);
3756         int pipe;
3757
3758         if (I915_HAS_HOTPLUG(dev_priv)) {
3759                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3760                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3761         }
3762
3763         I915_WRITE16(HWSTAM, 0xeffe);
3764         for_each_pipe(dev_priv, pipe)
3765                 I915_WRITE(PIPESTAT(pipe), 0);
3766         I915_WRITE(IMR, 0xffffffff);
3767         I915_WRITE(IER, 0x0);
3768         POSTING_READ(IER);
3769 }
3770
3771 static int i915_irq_postinstall(struct drm_device *dev)
3772 {
3773         struct drm_i915_private *dev_priv = to_i915(dev);
3774         u32 enable_mask;
3775
3776         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3777
3778         /* Unmask the interrupts that we always want on. */
3779         dev_priv->irq_mask =
3780                 ~(I915_ASLE_INTERRUPT |
3781                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3782                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3783                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3784                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3785
3786         enable_mask =
3787                 I915_ASLE_INTERRUPT |
3788                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3789                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3790                 I915_USER_INTERRUPT;
3791
3792         if (I915_HAS_HOTPLUG(dev_priv)) {
3793                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3794                 POSTING_READ(PORT_HOTPLUG_EN);
3795
3796                 /* Enable in IER... */
3797                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3798                 /* and unmask in IMR */
3799                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3800         }
3801
3802         I915_WRITE(IMR, dev_priv->irq_mask);
3803         I915_WRITE(IER, enable_mask);
3804         POSTING_READ(IER);
3805
3806         i915_enable_asle_pipestat(dev_priv);
3807
3808         /* Interrupt setup is already guaranteed to be single-threaded, this is
3809          * just to make the assert_spin_locked check happy. */
3810         spin_lock_irq(&dev_priv->irq_lock);
3811         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3812         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3813         spin_unlock_irq(&dev_priv->irq_lock);
3814
3815         return 0;
3816 }
3817
3818 /*
3819  * Returns true when a page flip has completed.
3820  */
3821 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3822                                int plane, int pipe, u32 iir)
3823 {
3824         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3825
3826         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3827                 return false;
3828
3829         if ((iir & flip_pending) == 0)
3830                 goto check_page_flip;
3831
3832         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3833          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3834          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3835          * the flip is completed (no longer pending). Since this doesn't raise
3836          * an interrupt per se, we watch for the change at vblank.
3837          */
3838         if (I915_READ(ISR) & flip_pending)
3839                 goto check_page_flip;
3840
3841         intel_finish_page_flip_cs(dev_priv, pipe);
3842         return true;
3843
3844 check_page_flip:
3845         intel_check_page_flip(dev_priv, pipe);
3846         return false;
3847 }
3848
3849 static irqreturn_t i915_irq_handler(int irq, void *arg)
3850 {
3851         struct drm_device *dev = arg;
3852         struct drm_i915_private *dev_priv = to_i915(dev);
3853         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3854         u32 flip_mask =
3855                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3856                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3857         int pipe, ret = IRQ_NONE;
3858
3859         if (!intel_irqs_enabled(dev_priv))
3860                 return IRQ_NONE;
3861
3862         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3863         disable_rpm_wakeref_asserts(dev_priv);
3864
3865         iir = I915_READ(IIR);
3866         do {
3867                 bool irq_received = (iir & ~flip_mask) != 0;
3868                 bool blc_event = false;
3869
3870                 /* Can't rely on pipestat interrupt bit in iir as it might
3871                  * have been cleared after the pipestat interrupt was received.
3872                  * It doesn't set the bit in iir again, but it still produces
3873                  * interrupts (for non-MSI).
3874                  */
3875                 spin_lock(&dev_priv->irq_lock);
3876                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3877                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3878
3879                 for_each_pipe(dev_priv, pipe) {
3880                         i915_reg_t reg = PIPESTAT(pipe);
3881                         pipe_stats[pipe] = I915_READ(reg);
3882
3883                         /* Clear the PIPE*STAT regs before the IIR */
3884                         if (pipe_stats[pipe] & 0x8000ffff) {
3885                                 I915_WRITE(reg, pipe_stats[pipe]);
3886                                 irq_received = true;
3887                         }
3888                 }
3889                 spin_unlock(&dev_priv->irq_lock);
3890
3891                 if (!irq_received)
3892                         break;
3893
3894                 /* Consume port.  Then clear IIR or we'll miss events */
3895                 if (I915_HAS_HOTPLUG(dev_priv) &&
3896                     iir & I915_DISPLAY_PORT_INTERRUPT) {
3897                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3898                         if (hotplug_status)
3899                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3900                 }
3901
3902                 I915_WRITE(IIR, iir & ~flip_mask);
3903                 new_iir = I915_READ(IIR); /* Flush posted writes */
3904
3905                 if (iir & I915_USER_INTERRUPT)
3906                         notify_ring(dev_priv->engine[RCS]);
3907
3908                 for_each_pipe(dev_priv, pipe) {
3909                         int plane = pipe;
3910                         if (HAS_FBC(dev_priv))
3911                                 plane = !plane;
3912
3913                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3914                             i915_handle_vblank(dev_priv, plane, pipe, iir))
3915                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3916
3917                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3918                                 blc_event = true;
3919
3920                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3921                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3922
3923                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3924                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3925                                                                     pipe);
3926                 }
3927
3928                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3929                         intel_opregion_asle_intr(dev_priv);
3930
3931                 /* With MSI, interrupts are only generated when iir
3932                  * transitions from zero to nonzero.  If another bit got
3933                  * set while we were handling the existing iir bits, then
3934                  * we would never get another interrupt.
3935                  *
3936                  * This is fine on non-MSI as well, as if we hit this path
3937                  * we avoid exiting the interrupt handler only to generate
3938                  * another one.
3939                  *
3940                  * Note that for MSI this could cause a stray interrupt report
3941                  * if an interrupt landed in the time between writing IIR and
3942                  * the posting read.  This should be rare enough to never
3943                  * trigger the 99% of 100,000 interrupts test for disabling
3944                  * stray interrupts.
3945                  */
3946                 ret = IRQ_HANDLED;
3947                 iir = new_iir;
3948         } while (iir & ~flip_mask);
3949
3950         enable_rpm_wakeref_asserts(dev_priv);
3951
3952         return ret;
3953 }
3954
3955 static void i915_irq_uninstall(struct drm_device * dev)
3956 {
3957         struct drm_i915_private *dev_priv = to_i915(dev);
3958         int pipe;
3959
3960         if (I915_HAS_HOTPLUG(dev_priv)) {
3961                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3962                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3963         }
3964
3965         I915_WRITE16(HWSTAM, 0xffff);
3966         for_each_pipe(dev_priv, pipe) {
3967                 /* Clear enable bits; then clear status bits */
3968                 I915_WRITE(PIPESTAT(pipe), 0);
3969                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3970         }
3971         I915_WRITE(IMR, 0xffffffff);
3972         I915_WRITE(IER, 0x0);
3973
3974         I915_WRITE(IIR, I915_READ(IIR));
3975 }
3976
3977 static void i965_irq_preinstall(struct drm_device * dev)
3978 {
3979         struct drm_i915_private *dev_priv = to_i915(dev);
3980         int pipe;
3981
3982         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3983         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3984
3985         I915_WRITE(HWSTAM, 0xeffe);
3986         for_each_pipe(dev_priv, pipe)
3987                 I915_WRITE(PIPESTAT(pipe), 0);
3988         I915_WRITE(IMR, 0xffffffff);
3989         I915_WRITE(IER, 0x0);
3990         POSTING_READ(IER);
3991 }
3992
3993 static int i965_irq_postinstall(struct drm_device *dev)
3994 {
3995         struct drm_i915_private *dev_priv = to_i915(dev);
3996         u32 enable_mask;
3997         u32 error_mask;
3998
3999         /* Unmask the interrupts that we always want on. */
4000         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4001                                I915_DISPLAY_PORT_INTERRUPT |
4002                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4003                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4004                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4005                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4006                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4007
4008         enable_mask = ~dev_priv->irq_mask;
4009         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4010                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4011         enable_mask |= I915_USER_INTERRUPT;
4012
4013         if (IS_G4X(dev_priv))
4014                 enable_mask |= I915_BSD_USER_INTERRUPT;
4015
4016         /* Interrupt setup is already guaranteed to be single-threaded, this is
4017          * just to make the assert_spin_locked check happy. */
4018         spin_lock_irq(&dev_priv->irq_lock);
4019         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4020         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4021         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4022         spin_unlock_irq(&dev_priv->irq_lock);
4023
4024         /*
4025          * Enable some error detection, note the instruction error mask
4026          * bit is reserved, so we leave it masked.
4027          */
4028         if (IS_G4X(dev_priv)) {
4029                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4030                                GM45_ERROR_MEM_PRIV |
4031                                GM45_ERROR_CP_PRIV |
4032                                I915_ERROR_MEMORY_REFRESH);
4033         } else {
4034                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4035                                I915_ERROR_MEMORY_REFRESH);
4036         }
4037         I915_WRITE(EMR, error_mask);
4038
4039         I915_WRITE(IMR, dev_priv->irq_mask);
4040         I915_WRITE(IER, enable_mask);
4041         POSTING_READ(IER);
4042
4043         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4044         POSTING_READ(PORT_HOTPLUG_EN);
4045
4046         i915_enable_asle_pipestat(dev_priv);
4047
4048         return 0;
4049 }
4050
4051 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4052 {
4053         u32 hotplug_en;
4054
4055         assert_spin_locked(&dev_priv->irq_lock);
4056
4057         /* Note HDMI and DP share hotplug bits */
4058         /* enable bits are the same for all generations */
4059         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4060         /* Programming the CRT detection parameters tends
4061            to generate a spurious hotplug event about three
4062            seconds later.  So just do it once.
4063         */
4064         if (IS_G4X(dev_priv))
4065                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4066         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4067
4068         /* Ignore TV since it's buggy */
4069         i915_hotplug_interrupt_update_locked(dev_priv,
4070                                              HOTPLUG_INT_EN_MASK |
4071                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4072                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4073                                              hotplug_en);
4074 }
4075
4076 static irqreturn_t i965_irq_handler(int irq, void *arg)
4077 {
4078         struct drm_device *dev = arg;
4079         struct drm_i915_private *dev_priv = to_i915(dev);
4080         u32 iir, new_iir;
4081         u32 pipe_stats[I915_MAX_PIPES];
4082         int ret = IRQ_NONE, pipe;
4083         u32 flip_mask =
4084                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4085                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4086
4087         if (!intel_irqs_enabled(dev_priv))
4088                 return IRQ_NONE;
4089
4090         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4091         disable_rpm_wakeref_asserts(dev_priv);
4092
4093         iir = I915_READ(IIR);
4094
4095         for (;;) {
4096                 bool irq_received = (iir & ~flip_mask) != 0;
4097                 bool blc_event = false;
4098
4099                 /* Can't rely on pipestat interrupt bit in iir as it might
4100                  * have been cleared after the pipestat interrupt was received.
4101                  * It doesn't set the bit in iir again, but it still produces
4102                  * interrupts (for non-MSI).
4103                  */
4104                 spin_lock(&dev_priv->irq_lock);
4105                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4106                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4107
4108                 for_each_pipe(dev_priv, pipe) {
4109                         i915_reg_t reg = PIPESTAT(pipe);
4110                         pipe_stats[pipe] = I915_READ(reg);
4111
4112                         /*
4113                          * Clear the PIPE*STAT regs before the IIR
4114                          */
4115                         if (pipe_stats[pipe] & 0x8000ffff) {
4116                                 I915_WRITE(reg, pipe_stats[pipe]);
4117                                 irq_received = true;
4118                         }
4119                 }
4120                 spin_unlock(&dev_priv->irq_lock);
4121
4122                 if (!irq_received)
4123                         break;
4124
4125                 ret = IRQ_HANDLED;
4126
4127                 /* Consume port.  Then clear IIR or we'll miss events */
4128                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4129                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4130                         if (hotplug_status)
4131                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4132                 }
4133
4134                 I915_WRITE(IIR, iir & ~flip_mask);
4135                 new_iir = I915_READ(IIR); /* Flush posted writes */
4136
4137                 if (iir & I915_USER_INTERRUPT)
4138                         notify_ring(dev_priv->engine[RCS]);
4139                 if (iir & I915_BSD_USER_INTERRUPT)
4140                         notify_ring(dev_priv->engine[VCS]);
4141
4142                 for_each_pipe(dev_priv, pipe) {
4143                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4144                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4145                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4146
4147                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4148                                 blc_event = true;
4149
4150                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4151                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4152
4153                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4154                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4155                 }
4156
4157                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4158                         intel_opregion_asle_intr(dev_priv);
4159
4160                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4161                         gmbus_irq_handler(dev_priv);
4162
4163                 /* With MSI, interrupts are only generated when iir
4164                  * transitions from zero to nonzero.  If another bit got
4165                  * set while we were handling the existing iir bits, then
4166                  * we would never get another interrupt.
4167                  *
4168                  * This is fine on non-MSI as well, as if we hit this path
4169                  * we avoid exiting the interrupt handler only to generate
4170                  * another one.
4171                  *
4172                  * Note that for MSI this could cause a stray interrupt report
4173                  * if an interrupt landed in the time between writing IIR and
4174                  * the posting read.  This should be rare enough to never
4175                  * trigger the 99% of 100,000 interrupts test for disabling
4176                  * stray interrupts.
4177                  */
4178                 iir = new_iir;
4179         }
4180
4181         enable_rpm_wakeref_asserts(dev_priv);
4182
4183         return ret;
4184 }
4185
4186 static void i965_irq_uninstall(struct drm_device * dev)
4187 {
4188         struct drm_i915_private *dev_priv = to_i915(dev);
4189         int pipe;
4190
4191         if (!dev_priv)
4192                 return;
4193
4194         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4195         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4196
4197         I915_WRITE(HWSTAM, 0xffffffff);
4198         for_each_pipe(dev_priv, pipe)
4199                 I915_WRITE(PIPESTAT(pipe), 0);
4200         I915_WRITE(IMR, 0xffffffff);
4201         I915_WRITE(IER, 0x0);
4202
4203         for_each_pipe(dev_priv, pipe)
4204                 I915_WRITE(PIPESTAT(pipe),
4205                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4206         I915_WRITE(IIR, I915_READ(IIR));
4207 }
4208
4209 /**
4210  * intel_irq_init - initializes irq support
4211  * @dev_priv: i915 device instance
4212  *
4213  * This function initializes all the irq support including work items, timers
4214  * and all the vtables. It does not setup the interrupt itself though.
4215  */
4216 void intel_irq_init(struct drm_i915_private *dev_priv)
4217 {
4218         struct drm_device *dev = &dev_priv->drm;
4219
4220         intel_hpd_init_work(dev_priv);
4221
4222         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4223         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4224
4225         if (HAS_GUC_SCHED(dev_priv))
4226                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4227
4228         /* Let's track the enabled rps events */
4229         if (IS_VALLEYVIEW(dev_priv))
4230                 /* WaGsvRC0ResidencyMethod:vlv */
4231                 dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4232         else
4233                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4234
4235         dev_priv->rps.pm_intr_keep = 0;
4236
4237         /*
4238          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4239          * if GEN6_PM_UP_EI_EXPIRED is masked.
4240          *
4241          * TODO: verify if this can be reproduced on VLV,CHV.
4242          */
4243         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4244                 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4245
4246         if (INTEL_INFO(dev_priv)->gen >= 8)
4247                 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4248
4249         if (IS_GEN2(dev_priv)) {
4250                 /* Gen2 doesn't have a hardware frame counter */
4251                 dev->max_vblank_count = 0;
4252         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4253                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4254                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4255         } else {
4256                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4257                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4258         }
4259
4260         /*
4261          * Opt out of the vblank disable timer on everything except gen2.
4262          * Gen2 doesn't have a hardware frame counter and so depends on
4263          * vblank interrupts to produce sane vblank seuquence numbers.
4264          */
4265         if (!IS_GEN2(dev_priv))
4266                 dev->vblank_disable_immediate = true;
4267
4268         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4269         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4270
4271         if (IS_CHERRYVIEW(dev_priv)) {
4272                 dev->driver->irq_handler = cherryview_irq_handler;
4273                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4274                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4275                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4276                 dev->driver->enable_vblank = i965_enable_vblank;
4277                 dev->driver->disable_vblank = i965_disable_vblank;
4278                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4279         } else if (IS_VALLEYVIEW(dev_priv)) {
4280                 dev->driver->irq_handler = valleyview_irq_handler;
4281                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4282                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4283                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4284                 dev->driver->enable_vblank = i965_enable_vblank;
4285                 dev->driver->disable_vblank = i965_disable_vblank;
4286                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4287         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4288                 dev->driver->irq_handler = gen8_irq_handler;
4289                 dev->driver->irq_preinstall = gen8_irq_reset;
4290                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4291                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4292                 dev->driver->enable_vblank = gen8_enable_vblank;
4293                 dev->driver->disable_vblank = gen8_disable_vblank;
4294                 if (IS_GEN9_LP(dev_priv))
4295                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4296                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4297                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4298                 else
4299                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4300         } else if (HAS_PCH_SPLIT(dev_priv)) {
4301                 dev->driver->irq_handler = ironlake_irq_handler;
4302                 dev->driver->irq_preinstall = ironlake_irq_reset;
4303                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4304                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4305                 dev->driver->enable_vblank = ironlake_enable_vblank;
4306                 dev->driver->disable_vblank = ironlake_disable_vblank;
4307                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4308         } else {
4309                 if (IS_GEN2(dev_priv)) {
4310                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4311                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4312                         dev->driver->irq_handler = i8xx_irq_handler;
4313                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4314                         dev->driver->enable_vblank = i8xx_enable_vblank;
4315                         dev->driver->disable_vblank = i8xx_disable_vblank;
4316                 } else if (IS_GEN3(dev_priv)) {
4317                         dev->driver->irq_preinstall = i915_irq_preinstall;
4318                         dev->driver->irq_postinstall = i915_irq_postinstall;
4319                         dev->driver->irq_uninstall = i915_irq_uninstall;
4320                         dev->driver->irq_handler = i915_irq_handler;
4321                         dev->driver->enable_vblank = i8xx_enable_vblank;
4322                         dev->driver->disable_vblank = i8xx_disable_vblank;
4323                 } else {
4324                         dev->driver->irq_preinstall = i965_irq_preinstall;
4325                         dev->driver->irq_postinstall = i965_irq_postinstall;
4326                         dev->driver->irq_uninstall = i965_irq_uninstall;
4327                         dev->driver->irq_handler = i965_irq_handler;
4328                         dev->driver->enable_vblank = i965_enable_vblank;
4329                         dev->driver->disable_vblank = i965_disable_vblank;
4330                 }
4331                 if (I915_HAS_HOTPLUG(dev_priv))
4332                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4333         }
4334 }
4335
4336 /**
4337  * intel_irq_install - enables the hardware interrupt
4338  * @dev_priv: i915 device instance
4339  *
4340  * This function enables the hardware interrupt handling, but leaves the hotplug
4341  * handling still disabled. It is called after intel_irq_init().
4342  *
4343  * In the driver load and resume code we need working interrupts in a few places
4344  * but don't want to deal with the hassle of concurrent probe and hotplug
4345  * workers. Hence the split into this two-stage approach.
4346  */
4347 int intel_irq_install(struct drm_i915_private *dev_priv)
4348 {
4349         /*
4350          * We enable some interrupt sources in our postinstall hooks, so mark
4351          * interrupts as enabled _before_ actually enabling them to avoid
4352          * special cases in our ordering checks.
4353          */
4354         dev_priv->pm.irqs_enabled = true;
4355
4356         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4357 }
4358
4359 /**
4360  * intel_irq_uninstall - finilizes all irq handling
4361  * @dev_priv: i915 device instance
4362  *
4363  * This stops interrupt and hotplug handling and unregisters and frees all
4364  * resources acquired in the init functions.
4365  */
4366 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4367 {
4368         drm_irq_uninstall(&dev_priv->drm);
4369         intel_hpd_cancel_work(dev_priv);
4370         dev_priv->pm.irqs_enabled = false;
4371 }
4372
4373 /**
4374  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4375  * @dev_priv: i915 device instance
4376  *
4377  * This function is used to disable interrupts at runtime, both in the runtime
4378  * pm and the system suspend/resume code.
4379  */
4380 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4381 {
4382         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4383         dev_priv->pm.irqs_enabled = false;
4384         synchronize_irq(dev_priv->drm.irq);
4385 }
4386
4387 /**
4388  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4389  * @dev_priv: i915 device instance
4390  *
4391  * This function is used to enable interrupts at runtime, both in the runtime
4392  * pm and the system suspend/resume code.
4393  */
4394 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4395 {
4396         dev_priv->pm.irqs_enabled = true;
4397         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4398         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4399 }