Merge remote-tracking branch 'asoc/fix/rcar' into asoc-linus
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178                                      uint32_t mask,
179                                      uint32_t bits)
180 {
181         uint32_t val;
182
183         lockdep_assert_held(&dev_priv->irq_lock);
184         WARN_ON(bits & ~mask);
185
186         val = I915_READ(PORT_HOTPLUG_EN);
187         val &= ~mask;
188         val |= bits;
189         I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205                                    uint32_t mask,
206                                    uint32_t bits)
207 {
208         spin_lock_irq(&dev_priv->irq_lock);
209         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210         spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220                             uint32_t interrupt_mask,
221                             uint32_t enabled_irq_mask)
222 {
223         uint32_t new_val;
224
225         lockdep_assert_held(&dev_priv->irq_lock);
226
227         WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230                 return;
231
232         new_val = dev_priv->irq_mask;
233         new_val &= ~interrupt_mask;
234         new_val |= (~enabled_irq_mask & interrupt_mask);
235
236         if (new_val != dev_priv->irq_mask) {
237                 dev_priv->irq_mask = new_val;
238                 I915_WRITE(DEIMR, dev_priv->irq_mask);
239                 POSTING_READ(DEIMR);
240         }
241 }
242
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250                               uint32_t interrupt_mask,
251                               uint32_t enabled_irq_mask)
252 {
253         lockdep_assert_held(&dev_priv->irq_lock);
254
255         WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258                 return;
259
260         dev_priv->gt_irq_mask &= ~interrupt_mask;
261         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268         POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273         ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298                               uint32_t interrupt_mask,
299                               uint32_t enabled_irq_mask)
300 {
301         uint32_t new_val;
302
303         WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305         lockdep_assert_held(&dev_priv->irq_lock);
306
307         new_val = dev_priv->pm_imr;
308         new_val &= ~interrupt_mask;
309         new_val |= (~enabled_irq_mask & interrupt_mask);
310
311         if (new_val != dev_priv->pm_imr) {
312                 dev_priv->pm_imr = new_val;
313                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314                 POSTING_READ(gen6_pm_imr(dev_priv));
315         }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321                 return;
322
323         snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         lockdep_assert_held(&dev_priv->irq_lock);
344
345         I915_WRITE(reg, reset_mask);
346         I915_WRITE(reg, reset_mask);
347         POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352         lockdep_assert_held(&dev_priv->irq_lock);
353
354         dev_priv->pm_ier |= enable_mask;
355         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356         gen6_unmask_pm_irq(dev_priv, enable_mask);
357         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362         lockdep_assert_held(&dev_priv->irq_lock);
363
364         dev_priv->pm_ier &= ~disable_mask;
365         __gen6_mask_pm_irq(dev_priv, disable_mask);
366         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367         /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372         spin_lock_irq(&dev_priv->irq_lock);
373         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374         dev_priv->rps.pm_iir = 0;
375         spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380         if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381                 return;
382
383         spin_lock_irq(&dev_priv->irq_lock);
384         WARN_ON_ONCE(dev_priv->rps.pm_iir);
385         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386         dev_priv->rps.interrupts_enabled = true;
387         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389         spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394         if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395                 return;
396
397         spin_lock_irq(&dev_priv->irq_lock);
398         dev_priv->rps.interrupts_enabled = false;
399
400         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401
402         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403
404         spin_unlock_irq(&dev_priv->irq_lock);
405         synchronize_irq(dev_priv->drm.irq);
406
407         /* Now that we will not be generating any more work, flush any
408          * outsanding tasks. As we are called on the RPS idle path,
409          * we will reset the GPU to minimum frequencies, so the current
410          * state of the worker can be discarded.
411          */
412         cancel_work_sync(&dev_priv->rps.work);
413         gen6_reset_rps_interrupts(dev_priv);
414 }
415
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418         spin_lock_irq(&dev_priv->irq_lock);
419         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420         spin_unlock_irq(&dev_priv->irq_lock);
421 }
422
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425         spin_lock_irq(&dev_priv->irq_lock);
426         if (!dev_priv->guc.interrupts_enabled) {
427                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428                                        dev_priv->pm_guc_events);
429                 dev_priv->guc.interrupts_enabled = true;
430                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431         }
432         spin_unlock_irq(&dev_priv->irq_lock);
433 }
434
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437         spin_lock_irq(&dev_priv->irq_lock);
438         dev_priv->guc.interrupts_enabled = false;
439
440         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441
442         spin_unlock_irq(&dev_priv->irq_lock);
443         synchronize_irq(dev_priv->drm.irq);
444
445         gen9_reset_guc_interrupts(dev_priv);
446 }
447
448 /**
449  * bdw_update_port_irq - update DE port interrupt
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455                                 uint32_t interrupt_mask,
456                                 uint32_t enabled_irq_mask)
457 {
458         uint32_t new_val;
459         uint32_t old_val;
460
461         lockdep_assert_held(&dev_priv->irq_lock);
462
463         WARN_ON(enabled_irq_mask & ~interrupt_mask);
464
465         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466                 return;
467
468         old_val = I915_READ(GEN8_DE_PORT_IMR);
469
470         new_val = old_val;
471         new_val &= ~interrupt_mask;
472         new_val |= (~enabled_irq_mask & interrupt_mask);
473
474         if (new_val != old_val) {
475                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476                 POSTING_READ(GEN8_DE_PORT_IMR);
477         }
478 }
479
480 /**
481  * bdw_update_pipe_irq - update DE pipe interrupt
482  * @dev_priv: driver private
483  * @pipe: pipe whose interrupt to update
484  * @interrupt_mask: mask of interrupt bits to update
485  * @enabled_irq_mask: mask of interrupt bits to enable
486  */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488                          enum pipe pipe,
489                          uint32_t interrupt_mask,
490                          uint32_t enabled_irq_mask)
491 {
492         uint32_t new_val;
493
494         lockdep_assert_held(&dev_priv->irq_lock);
495
496         WARN_ON(enabled_irq_mask & ~interrupt_mask);
497
498         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499                 return;
500
501         new_val = dev_priv->de_irq_mask[pipe];
502         new_val &= ~interrupt_mask;
503         new_val |= (~enabled_irq_mask & interrupt_mask);
504
505         if (new_val != dev_priv->de_irq_mask[pipe]) {
506                 dev_priv->de_irq_mask[pipe] = new_val;
507                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509         }
510 }
511
512 /**
513  * ibx_display_interrupt_update - update SDEIMR
514  * @dev_priv: driver private
515  * @interrupt_mask: mask of interrupt bits to update
516  * @enabled_irq_mask: mask of interrupt bits to enable
517  */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519                                   uint32_t interrupt_mask,
520                                   uint32_t enabled_irq_mask)
521 {
522         uint32_t sdeimr = I915_READ(SDEIMR);
523         sdeimr &= ~interrupt_mask;
524         sdeimr |= (~enabled_irq_mask & interrupt_mask);
525
526         WARN_ON(enabled_irq_mask & ~interrupt_mask);
527
528         lockdep_assert_held(&dev_priv->irq_lock);
529
530         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531                 return;
532
533         I915_WRITE(SDEIMR, sdeimr);
534         POSTING_READ(SDEIMR);
535 }
536
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539                        u32 enable_mask, u32 status_mask)
540 {
541         i915_reg_t reg = PIPESTAT(pipe);
542         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543
544         lockdep_assert_held(&dev_priv->irq_lock);
545         WARN_ON(!intel_irqs_enabled(dev_priv));
546
547         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
549                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550                       pipe_name(pipe), enable_mask, status_mask))
551                 return;
552
553         if ((pipestat & enable_mask) == enable_mask)
554                 return;
555
556         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557
558         /* Enable the interrupt, clear any pending status */
559         pipestat |= enable_mask | status_mask;
560         I915_WRITE(reg, pipestat);
561         POSTING_READ(reg);
562 }
563
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566                         u32 enable_mask, u32 status_mask)
567 {
568         i915_reg_t reg = PIPESTAT(pipe);
569         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570
571         lockdep_assert_held(&dev_priv->irq_lock);
572         WARN_ON(!intel_irqs_enabled(dev_priv));
573
574         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
576                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577                       pipe_name(pipe), enable_mask, status_mask))
578                 return;
579
580         if ((pipestat & enable_mask) == 0)
581                 return;
582
583         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584
585         pipestat &= ~enable_mask;
586         I915_WRITE(reg, pipestat);
587         POSTING_READ(reg);
588 }
589
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592         u32 enable_mask = status_mask << 16;
593
594         /*
595          * On pipe A we don't support the PSR interrupt yet,
596          * on pipe B and C the same bit MBZ.
597          */
598         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599                 return 0;
600         /*
601          * On pipe B and C we don't support the PSR interrupt yet, on pipe
602          * A the same bit is for perf counters which we don't use either.
603          */
604         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605                 return 0;
606
607         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608                          SPRITE0_FLIP_DONE_INT_EN_VLV |
609                          SPRITE1_FLIP_DONE_INT_EN_VLV);
610         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614
615         return enable_mask;
616 }
617
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620                      u32 status_mask)
621 {
622         u32 enable_mask;
623
624         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626                                                            status_mask);
627         else
628                 enable_mask = status_mask << 16;
629         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634                       u32 status_mask)
635 {
636         u32 enable_mask;
637
638         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640                                                            status_mask);
641         else
642                 enable_mask = status_mask << 16;
643         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645
646 /**
647  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648  * @dev_priv: i915 device private
649  */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653                 return;
654
655         spin_lock_irq(&dev_priv->irq_lock);
656
657         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658         if (INTEL_GEN(dev_priv) >= 4)
659                 i915_enable_pipestat(dev_priv, PIPE_A,
660                                      PIPE_LEGACY_BLC_EVENT_STATUS);
661
662         spin_unlock_irq(&dev_priv->irq_lock);
663 }
664
665 /*
666  * This timing diagram depicts the video signal in and
667  * around the vertical blanking period.
668  *
669  * Assumptions about the fictitious mode used in this example:
670  *  vblank_start >= 3
671  *  vsync_start = vblank_start + 1
672  *  vsync_end = vblank_start + 2
673  *  vtotal = vblank_start + 3
674  *
675  *           start of vblank:
676  *           latch double buffered registers
677  *           increment frame counter (ctg+)
678  *           generate start of vblank interrupt (gen4+)
679  *           |
680  *           |          frame start:
681  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
682  *           |          may be shifted forward 1-3 extra lines via PIPECONF
683  *           |          |
684  *           |          |  start of vsync:
685  *           |          |  generate vsync interrupt
686  *           |          |  |
687  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
688  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
689  * ----va---> <-----------------vb--------------------> <--------va-------------
690  *       |          |       <----vs----->                     |
691  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694  *       |          |                                         |
695  *       last visible pixel                                   first visible pixel
696  *                  |                                         increment frame counter (gen3/4)
697  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
698  *
699  * x  = horizontal active
700  * _  = horizontal blanking
701  * hs = horizontal sync
702  * va = vertical active
703  * vb = vertical blanking
704  * vs = vertical sync
705  * vbs = vblank_start (number)
706  *
707  * Summary:
708  * - most events happen at the start of horizontal sync
709  * - frame start happens at the start of horizontal blank, 1-4 lines
710  *   (depending on PIPECONF settings) after the start of vblank
711  * - gen3/4 pixel and frame counter are synchronized with the start
712  *   of horizontal active on the first line of vertical active
713  */
714
715 /* Called from drm generic code, passed a 'crtc', which
716  * we use as a pipe index
717  */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720         struct drm_i915_private *dev_priv = to_i915(dev);
721         i915_reg_t high_frame, low_frame;
722         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
724                                                                 pipe);
725         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
726         unsigned long irqflags;
727
728         htotal = mode->crtc_htotal;
729         hsync_start = mode->crtc_hsync_start;
730         vbl_start = mode->crtc_vblank_start;
731         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
732                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
733
734         /* Convert to pixel count */
735         vbl_start *= htotal;
736
737         /* Start of vblank event occurs at start of hsync */
738         vbl_start -= htotal - hsync_start;
739
740         high_frame = PIPEFRAME(pipe);
741         low_frame = PIPEFRAMEPIXEL(pipe);
742
743         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
744
745         /*
746          * High & low register fields aren't synchronized, so make sure
747          * we get a low value that's stable across two reads of the high
748          * register.
749          */
750         do {
751                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752                 low   = I915_READ_FW(low_frame);
753                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
754         } while (high1 != high2);
755
756         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
757
758         high1 >>= PIPE_FRAME_HIGH_SHIFT;
759         pixel = low & PIPE_PIXEL_MASK;
760         low >>= PIPE_FRAME_LOW_SHIFT;
761
762         /*
763          * The frame counter increments at beginning of active.
764          * Cook up a vblank counter by also checking the pixel
765          * counter against vblank start.
766          */
767         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768 }
769
770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771 {
772         struct drm_i915_private *dev_priv = to_i915(dev);
773
774         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775 }
776
777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         struct drm_i915_private *dev_priv = to_i915(dev);
782         const struct drm_display_mode *mode = &crtc->base.hwmode;
783         enum pipe pipe = crtc->pipe;
784         int position, vtotal;
785
786         if (!crtc->active)
787                 return -1;
788
789         vtotal = mode->crtc_vtotal;
790         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
791                 vtotal /= 2;
792
793         if (IS_GEN2(dev_priv))
794                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
795         else
796                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
797
798         /*
799          * On HSW, the DSL reg (0x70000) appears to return 0 if we
800          * read it just before the start of vblank.  So try it again
801          * so we don't accidentally end up spanning a vblank frame
802          * increment, causing the pipe_update_end() code to squak at us.
803          *
804          * The nature of this problem means we can't simply check the ISR
805          * bit and return the vblank start value; nor can we use the scanline
806          * debug register in the transcoder as it appears to have the same
807          * problem.  We may need to extend this to include other platforms,
808          * but so far testing only shows the problem on HSW.
809          */
810         if (HAS_DDI(dev_priv) && !position) {
811                 int i, temp;
812
813                 for (i = 0; i < 100; i++) {
814                         udelay(1);
815                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
816                         if (temp != position) {
817                                 position = temp;
818                                 break;
819                         }
820                 }
821         }
822
823         /*
824          * See update_scanline_offset() for the details on the
825          * scanline_offset adjustment.
826          */
827         return (position + crtc->scanline_offset) % vtotal;
828 }
829
830 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
831                                     unsigned int flags, int *vpos, int *hpos,
832                                     ktime_t *stime, ktime_t *etime,
833                                     const struct drm_display_mode *mode)
834 {
835         struct drm_i915_private *dev_priv = to_i915(dev);
836         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
837                                                                 pipe);
838         int position;
839         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
840         bool in_vbl = true;
841         int ret = 0;
842         unsigned long irqflags;
843
844         if (WARN_ON(!mode->crtc_clock)) {
845                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
846                                  "pipe %c\n", pipe_name(pipe));
847                 return 0;
848         }
849
850         htotal = mode->crtc_htotal;
851         hsync_start = mode->crtc_hsync_start;
852         vtotal = mode->crtc_vtotal;
853         vbl_start = mode->crtc_vblank_start;
854         vbl_end = mode->crtc_vblank_end;
855
856         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
857                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
858                 vbl_end /= 2;
859                 vtotal /= 2;
860         }
861
862         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
863
864         /*
865          * Lock uncore.lock, as we will do multiple timing critical raw
866          * register reads, potentially with preemption disabled, so the
867          * following code must not block on uncore.lock.
868          */
869         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
870
871         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
872
873         /* Get optional system timestamp before query. */
874         if (stime)
875                 *stime = ktime_get();
876
877         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
878                 /* No obvious pixelcount register. Only query vertical
879                  * scanout position from Display scan line register.
880                  */
881                 position = __intel_get_crtc_scanline(intel_crtc);
882         } else {
883                 /* Have access to pixelcount since start of frame.
884                  * We can split this into vertical and horizontal
885                  * scanout position.
886                  */
887                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
888
889                 /* convert to pixel counts */
890                 vbl_start *= htotal;
891                 vbl_end *= htotal;
892                 vtotal *= htotal;
893
894                 /*
895                  * In interlaced modes, the pixel counter counts all pixels,
896                  * so one field will have htotal more pixels. In order to avoid
897                  * the reported position from jumping backwards when the pixel
898                  * counter is beyond the length of the shorter field, just
899                  * clamp the position the length of the shorter field. This
900                  * matches how the scanline counter based position works since
901                  * the scanline counter doesn't count the two half lines.
902                  */
903                 if (position >= vtotal)
904                         position = vtotal - 1;
905
906                 /*
907                  * Start of vblank interrupt is triggered at start of hsync,
908                  * just prior to the first active line of vblank. However we
909                  * consider lines to start at the leading edge of horizontal
910                  * active. So, should we get here before we've crossed into
911                  * the horizontal active of the first line in vblank, we would
912                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
913                  * always add htotal-hsync_start to the current pixel position.
914                  */
915                 position = (position + htotal - hsync_start) % vtotal;
916         }
917
918         /* Get optional system timestamp after query. */
919         if (etime)
920                 *etime = ktime_get();
921
922         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
923
924         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
925
926         in_vbl = position >= vbl_start && position < vbl_end;
927
928         /*
929          * While in vblank, position will be negative
930          * counting up towards 0 at vbl_end. And outside
931          * vblank, position will be positive counting
932          * up since vbl_end.
933          */
934         if (position >= vbl_start)
935                 position -= vbl_end;
936         else
937                 position += vtotal - vbl_end;
938
939         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
940                 *vpos = position;
941                 *hpos = 0;
942         } else {
943                 *vpos = position / htotal;
944                 *hpos = position - (*vpos * htotal);
945         }
946
947         /* In vblank? */
948         if (in_vbl)
949                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
950
951         return ret;
952 }
953
954 int intel_get_crtc_scanline(struct intel_crtc *crtc)
955 {
956         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
957         unsigned long irqflags;
958         int position;
959
960         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
961         position = __intel_get_crtc_scanline(crtc);
962         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
963
964         return position;
965 }
966
967 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
968                               int *max_error,
969                               struct timeval *vblank_time,
970                               unsigned flags)
971 {
972         struct drm_i915_private *dev_priv = to_i915(dev);
973         struct intel_crtc *crtc;
974
975         if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
976                 DRM_ERROR("Invalid crtc %u\n", pipe);
977                 return -EINVAL;
978         }
979
980         /* Get drm_crtc to timestamp: */
981         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
982         if (crtc == NULL) {
983                 DRM_ERROR("Invalid crtc %u\n", pipe);
984                 return -EINVAL;
985         }
986
987         if (!crtc->base.hwmode.crtc_clock) {
988                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
989                 return -EBUSY;
990         }
991
992         /* Helper routine in DRM core does all the work: */
993         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
994                                                      vblank_time, flags,
995                                                      &crtc->base.hwmode);
996 }
997
998 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
999 {
1000         u32 busy_up, busy_down, max_avg, min_avg;
1001         u8 new_delay;
1002
1003         spin_lock(&mchdev_lock);
1004
1005         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1006
1007         new_delay = dev_priv->ips.cur_delay;
1008
1009         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1010         busy_up = I915_READ(RCPREVBSYTUPAVG);
1011         busy_down = I915_READ(RCPREVBSYTDNAVG);
1012         max_avg = I915_READ(RCBMAXAVG);
1013         min_avg = I915_READ(RCBMINAVG);
1014
1015         /* Handle RCS change request from hw */
1016         if (busy_up > max_avg) {
1017                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1018                         new_delay = dev_priv->ips.cur_delay - 1;
1019                 if (new_delay < dev_priv->ips.max_delay)
1020                         new_delay = dev_priv->ips.max_delay;
1021         } else if (busy_down < min_avg) {
1022                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1023                         new_delay = dev_priv->ips.cur_delay + 1;
1024                 if (new_delay > dev_priv->ips.min_delay)
1025                         new_delay = dev_priv->ips.min_delay;
1026         }
1027
1028         if (ironlake_set_drps(dev_priv, new_delay))
1029                 dev_priv->ips.cur_delay = new_delay;
1030
1031         spin_unlock(&mchdev_lock);
1032
1033         return;
1034 }
1035
1036 static void notify_ring(struct intel_engine_cs *engine)
1037 {
1038         struct drm_i915_gem_request *rq = NULL;
1039         struct intel_wait *wait;
1040
1041         atomic_inc(&engine->irq_count);
1042         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1043
1044         spin_lock(&engine->breadcrumbs.irq_lock);
1045         wait = engine->breadcrumbs.irq_wait;
1046         if (wait) {
1047                 /* We use a callback from the dma-fence to submit
1048                  * requests after waiting on our own requests. To
1049                  * ensure minimum delay in queuing the next request to
1050                  * hardware, signal the fence now rather than wait for
1051                  * the signaler to be woken up. We still wake up the
1052                  * waiter in order to handle the irq-seqno coherency
1053                  * issues (we may receive the interrupt before the
1054                  * seqno is written, see __i915_request_irq_complete())
1055                  * and to handle coalescing of multiple seqno updates
1056                  * and many waiters.
1057                  */
1058                 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1059                                       wait->seqno) &&
1060                     !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1061                               &wait->request->fence.flags))
1062                         rq = i915_gem_request_get(wait->request);
1063
1064                 wake_up_process(wait->tsk);
1065         } else {
1066                 __intel_engine_disarm_breadcrumbs(engine);
1067         }
1068         spin_unlock(&engine->breadcrumbs.irq_lock);
1069
1070         if (rq) {
1071                 dma_fence_signal(&rq->fence);
1072                 i915_gem_request_put(rq);
1073         }
1074
1075         trace_intel_engine_notify(engine, wait);
1076 }
1077
1078 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1079                         struct intel_rps_ei *ei)
1080 {
1081         ei->ktime = ktime_get_raw();
1082         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1083         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1084 }
1085
1086 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1087 {
1088         memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1089 }
1090
1091 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1092 {
1093         const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1094         struct intel_rps_ei now;
1095         u32 events = 0;
1096
1097         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1098                 return 0;
1099
1100         vlv_c0_read(dev_priv, &now);
1101
1102         if (prev->ktime) {
1103                 u64 time, c0;
1104                 u32 render, media;
1105
1106                 time = ktime_us_delta(now.ktime, prev->ktime);
1107
1108                 time *= dev_priv->czclk_freq;
1109
1110                 /* Workload can be split between render + media,
1111                  * e.g. SwapBuffers being blitted in X after being rendered in
1112                  * mesa. To account for this we need to combine both engines
1113                  * into our activity counter.
1114                  */
1115                 render = now.render_c0 - prev->render_c0;
1116                 media = now.media_c0 - prev->media_c0;
1117                 c0 = max(render, media);
1118                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1119
1120                 if (c0 > time * dev_priv->rps.up_threshold)
1121                         events = GEN6_PM_RP_UP_THRESHOLD;
1122                 else if (c0 < time * dev_priv->rps.down_threshold)
1123                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1124         }
1125
1126         dev_priv->rps.ei = now;
1127         return events;
1128 }
1129
1130 static bool any_waiters(struct drm_i915_private *dev_priv)
1131 {
1132         struct intel_engine_cs *engine;
1133         enum intel_engine_id id;
1134
1135         for_each_engine(engine, dev_priv, id)
1136                 if (intel_engine_has_waiter(engine))
1137                         return true;
1138
1139         return false;
1140 }
1141
1142 static void gen6_pm_rps_work(struct work_struct *work)
1143 {
1144         struct drm_i915_private *dev_priv =
1145                 container_of(work, struct drm_i915_private, rps.work);
1146         bool client_boost = false;
1147         int new_delay, adj, min, max;
1148         u32 pm_iir = 0;
1149
1150         spin_lock_irq(&dev_priv->irq_lock);
1151         if (dev_priv->rps.interrupts_enabled) {
1152                 pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1153                 client_boost = fetch_and_zero(&dev_priv->rps.client_boost);
1154         }
1155         spin_unlock_irq(&dev_priv->irq_lock);
1156
1157         /* Make sure we didn't queue anything we're not going to process. */
1158         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1159         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1160                 goto out;
1161
1162         mutex_lock(&dev_priv->rps.hw_lock);
1163
1164         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1165
1166         adj = dev_priv->rps.last_adj;
1167         new_delay = dev_priv->rps.cur_freq;
1168         min = dev_priv->rps.min_freq_softlimit;
1169         max = dev_priv->rps.max_freq_softlimit;
1170         if (client_boost || any_waiters(dev_priv))
1171                 max = dev_priv->rps.max_freq;
1172         if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1173                 new_delay = dev_priv->rps.boost_freq;
1174                 adj = 0;
1175         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1176                 if (adj > 0)
1177                         adj *= 2;
1178                 else /* CHV needs even encode values */
1179                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1180
1181                 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1182                         adj = 0;
1183         } else if (client_boost || any_waiters(dev_priv)) {
1184                 adj = 0;
1185         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1186                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1187                         new_delay = dev_priv->rps.efficient_freq;
1188                 else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1189                         new_delay = dev_priv->rps.min_freq_softlimit;
1190                 adj = 0;
1191         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1192                 if (adj < 0)
1193                         adj *= 2;
1194                 else /* CHV needs even encode values */
1195                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1196
1197                 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1198                         adj = 0;
1199         } else { /* unknown event */
1200                 adj = 0;
1201         }
1202
1203         dev_priv->rps.last_adj = adj;
1204
1205         /* sysfs frequency interfaces may have snuck in while servicing the
1206          * interrupt
1207          */
1208         new_delay += adj;
1209         new_delay = clamp_t(int, new_delay, min, max);
1210
1211         if (intel_set_rps(dev_priv, new_delay)) {
1212                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1213                 dev_priv->rps.last_adj = 0;
1214         }
1215
1216         mutex_unlock(&dev_priv->rps.hw_lock);
1217
1218 out:
1219         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1220         spin_lock_irq(&dev_priv->irq_lock);
1221         if (dev_priv->rps.interrupts_enabled)
1222                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1223         spin_unlock_irq(&dev_priv->irq_lock);
1224 }
1225
1226
1227 /**
1228  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1229  * occurred.
1230  * @work: workqueue struct
1231  *
1232  * Doesn't actually do anything except notify userspace. As a consequence of
1233  * this event, userspace should try to remap the bad rows since statistically
1234  * it is likely the same row is more likely to go bad again.
1235  */
1236 static void ivybridge_parity_work(struct work_struct *work)
1237 {
1238         struct drm_i915_private *dev_priv =
1239                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1240         u32 error_status, row, bank, subbank;
1241         char *parity_event[6];
1242         uint32_t misccpctl;
1243         uint8_t slice = 0;
1244
1245         /* We must turn off DOP level clock gating to access the L3 registers.
1246          * In order to prevent a get/put style interface, acquire struct mutex
1247          * any time we access those registers.
1248          */
1249         mutex_lock(&dev_priv->drm.struct_mutex);
1250
1251         /* If we've screwed up tracking, just let the interrupt fire again */
1252         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1253                 goto out;
1254
1255         misccpctl = I915_READ(GEN7_MISCCPCTL);
1256         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1257         POSTING_READ(GEN7_MISCCPCTL);
1258
1259         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1260                 i915_reg_t reg;
1261
1262                 slice--;
1263                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1264                         break;
1265
1266                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1267
1268                 reg = GEN7_L3CDERRST1(slice);
1269
1270                 error_status = I915_READ(reg);
1271                 row = GEN7_PARITY_ERROR_ROW(error_status);
1272                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1273                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1274
1275                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1276                 POSTING_READ(reg);
1277
1278                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1279                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1280                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1281                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1282                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1283                 parity_event[5] = NULL;
1284
1285                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1286                                    KOBJ_CHANGE, parity_event);
1287
1288                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1289                           slice, row, bank, subbank);
1290
1291                 kfree(parity_event[4]);
1292                 kfree(parity_event[3]);
1293                 kfree(parity_event[2]);
1294                 kfree(parity_event[1]);
1295         }
1296
1297         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1298
1299 out:
1300         WARN_ON(dev_priv->l3_parity.which_slice);
1301         spin_lock_irq(&dev_priv->irq_lock);
1302         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1303         spin_unlock_irq(&dev_priv->irq_lock);
1304
1305         mutex_unlock(&dev_priv->drm.struct_mutex);
1306 }
1307
1308 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1309                                                u32 iir)
1310 {
1311         if (!HAS_L3_DPF(dev_priv))
1312                 return;
1313
1314         spin_lock(&dev_priv->irq_lock);
1315         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1316         spin_unlock(&dev_priv->irq_lock);
1317
1318         iir &= GT_PARITY_ERROR(dev_priv);
1319         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1320                 dev_priv->l3_parity.which_slice |= 1 << 1;
1321
1322         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1323                 dev_priv->l3_parity.which_slice |= 1 << 0;
1324
1325         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1326 }
1327
1328 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1329                                u32 gt_iir)
1330 {
1331         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1332                 notify_ring(dev_priv->engine[RCS]);
1333         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1334                 notify_ring(dev_priv->engine[VCS]);
1335 }
1336
1337 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1338                                u32 gt_iir)
1339 {
1340         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1341                 notify_ring(dev_priv->engine[RCS]);
1342         if (gt_iir & GT_BSD_USER_INTERRUPT)
1343                 notify_ring(dev_priv->engine[VCS]);
1344         if (gt_iir & GT_BLT_USER_INTERRUPT)
1345                 notify_ring(dev_priv->engine[BCS]);
1346
1347         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1348                       GT_BSD_CS_ERROR_INTERRUPT |
1349                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1350                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1351
1352         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1353                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1354 }
1355
1356 static __always_inline void
1357 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1358 {
1359         bool tasklet = false;
1360
1361         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1362                 set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1363                 tasklet = true;
1364         }
1365
1366         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1367                 notify_ring(engine);
1368                 tasklet |= i915.enable_guc_submission;
1369         }
1370
1371         if (tasklet)
1372                 tasklet_hi_schedule(&engine->irq_tasklet);
1373 }
1374
1375 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1376                                    u32 master_ctl,
1377                                    u32 gt_iir[4])
1378 {
1379         irqreturn_t ret = IRQ_NONE;
1380
1381         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1382                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1383                 if (gt_iir[0]) {
1384                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1385                         ret = IRQ_HANDLED;
1386                 } else
1387                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1388         }
1389
1390         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1391                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1392                 if (gt_iir[1]) {
1393                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1394                         ret = IRQ_HANDLED;
1395                 } else
1396                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1397         }
1398
1399         if (master_ctl & GEN8_GT_VECS_IRQ) {
1400                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1401                 if (gt_iir[3]) {
1402                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1403                         ret = IRQ_HANDLED;
1404                 } else
1405                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1406         }
1407
1408         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1409                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1410                 if (gt_iir[2] & (dev_priv->pm_rps_events |
1411                                  dev_priv->pm_guc_events)) {
1412                         I915_WRITE_FW(GEN8_GT_IIR(2),
1413                                       gt_iir[2] & (dev_priv->pm_rps_events |
1414                                                    dev_priv->pm_guc_events));
1415                         ret = IRQ_HANDLED;
1416                 } else
1417                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1418         }
1419
1420         return ret;
1421 }
1422
1423 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1424                                 u32 gt_iir[4])
1425 {
1426         if (gt_iir[0]) {
1427                 gen8_cs_irq_handler(dev_priv->engine[RCS],
1428                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1429                 gen8_cs_irq_handler(dev_priv->engine[BCS],
1430                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1431         }
1432
1433         if (gt_iir[1]) {
1434                 gen8_cs_irq_handler(dev_priv->engine[VCS],
1435                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1436                 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1437                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1438         }
1439
1440         if (gt_iir[3])
1441                 gen8_cs_irq_handler(dev_priv->engine[VECS],
1442                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1443
1444         if (gt_iir[2] & dev_priv->pm_rps_events)
1445                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1446
1447         if (gt_iir[2] & dev_priv->pm_guc_events)
1448                 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1449 }
1450
1451 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1452 {
1453         switch (port) {
1454         case PORT_A:
1455                 return val & PORTA_HOTPLUG_LONG_DETECT;
1456         case PORT_B:
1457                 return val & PORTB_HOTPLUG_LONG_DETECT;
1458         case PORT_C:
1459                 return val & PORTC_HOTPLUG_LONG_DETECT;
1460         default:
1461                 return false;
1462         }
1463 }
1464
1465 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1466 {
1467         switch (port) {
1468         case PORT_E:
1469                 return val & PORTE_HOTPLUG_LONG_DETECT;
1470         default:
1471                 return false;
1472         }
1473 }
1474
1475 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1476 {
1477         switch (port) {
1478         case PORT_A:
1479                 return val & PORTA_HOTPLUG_LONG_DETECT;
1480         case PORT_B:
1481                 return val & PORTB_HOTPLUG_LONG_DETECT;
1482         case PORT_C:
1483                 return val & PORTC_HOTPLUG_LONG_DETECT;
1484         case PORT_D:
1485                 return val & PORTD_HOTPLUG_LONG_DETECT;
1486         default:
1487                 return false;
1488         }
1489 }
1490
1491 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1492 {
1493         switch (port) {
1494         case PORT_A:
1495                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1496         default:
1497                 return false;
1498         }
1499 }
1500
1501 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1502 {
1503         switch (port) {
1504         case PORT_B:
1505                 return val & PORTB_HOTPLUG_LONG_DETECT;
1506         case PORT_C:
1507                 return val & PORTC_HOTPLUG_LONG_DETECT;
1508         case PORT_D:
1509                 return val & PORTD_HOTPLUG_LONG_DETECT;
1510         default:
1511                 return false;
1512         }
1513 }
1514
1515 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1516 {
1517         switch (port) {
1518         case PORT_B:
1519                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1520         case PORT_C:
1521                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1522         case PORT_D:
1523                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1524         default:
1525                 return false;
1526         }
1527 }
1528
1529 /*
1530  * Get a bit mask of pins that have triggered, and which ones may be long.
1531  * This can be called multiple times with the same masks to accumulate
1532  * hotplug detection results from several registers.
1533  *
1534  * Note that the caller is expected to zero out the masks initially.
1535  */
1536 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1537                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1538                              const u32 hpd[HPD_NUM_PINS],
1539                              bool long_pulse_detect(enum port port, u32 val))
1540 {
1541         enum port port;
1542         int i;
1543
1544         for_each_hpd_pin(i) {
1545                 if ((hpd[i] & hotplug_trigger) == 0)
1546                         continue;
1547
1548                 *pin_mask |= BIT(i);
1549
1550                 if (!intel_hpd_pin_to_port(i, &port))
1551                         continue;
1552
1553                 if (long_pulse_detect(port, dig_hotplug_reg))
1554                         *long_mask |= BIT(i);
1555         }
1556
1557         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1558                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1559
1560 }
1561
1562 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1563 {
1564         wake_up_all(&dev_priv->gmbus_wait_queue);
1565 }
1566
1567 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1568 {
1569         wake_up_all(&dev_priv->gmbus_wait_queue);
1570 }
1571
1572 #if defined(CONFIG_DEBUG_FS)
1573 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1574                                          enum pipe pipe,
1575                                          uint32_t crc0, uint32_t crc1,
1576                                          uint32_t crc2, uint32_t crc3,
1577                                          uint32_t crc4)
1578 {
1579         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1580         struct intel_pipe_crc_entry *entry;
1581         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1582         struct drm_driver *driver = dev_priv->drm.driver;
1583         uint32_t crcs[5];
1584         int head, tail;
1585
1586         spin_lock(&pipe_crc->lock);
1587         if (pipe_crc->source) {
1588                 if (!pipe_crc->entries) {
1589                         spin_unlock(&pipe_crc->lock);
1590                         DRM_DEBUG_KMS("spurious interrupt\n");
1591                         return;
1592                 }
1593
1594                 head = pipe_crc->head;
1595                 tail = pipe_crc->tail;
1596
1597                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1598                         spin_unlock(&pipe_crc->lock);
1599                         DRM_ERROR("CRC buffer overflowing\n");
1600                         return;
1601                 }
1602
1603                 entry = &pipe_crc->entries[head];
1604
1605                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1606                 entry->crc[0] = crc0;
1607                 entry->crc[1] = crc1;
1608                 entry->crc[2] = crc2;
1609                 entry->crc[3] = crc3;
1610                 entry->crc[4] = crc4;
1611
1612                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1613                 pipe_crc->head = head;
1614
1615                 spin_unlock(&pipe_crc->lock);
1616
1617                 wake_up_interruptible(&pipe_crc->wq);
1618         } else {
1619                 /*
1620                  * For some not yet identified reason, the first CRC is
1621                  * bonkers. So let's just wait for the next vblank and read
1622                  * out the buggy result.
1623                  *
1624                  * On CHV sometimes the second CRC is bonkers as well, so
1625                  * don't trust that one either.
1626                  */
1627                 if (pipe_crc->skipped == 0 ||
1628                     (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1629                         pipe_crc->skipped++;
1630                         spin_unlock(&pipe_crc->lock);
1631                         return;
1632                 }
1633                 spin_unlock(&pipe_crc->lock);
1634                 crcs[0] = crc0;
1635                 crcs[1] = crc1;
1636                 crcs[2] = crc2;
1637                 crcs[3] = crc3;
1638                 crcs[4] = crc4;
1639                 drm_crtc_add_crc_entry(&crtc->base, true,
1640                                        drm_accurate_vblank_count(&crtc->base),
1641                                        crcs);
1642         }
1643 }
1644 #else
1645 static inline void
1646 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1647                              enum pipe pipe,
1648                              uint32_t crc0, uint32_t crc1,
1649                              uint32_t crc2, uint32_t crc3,
1650                              uint32_t crc4) {}
1651 #endif
1652
1653
1654 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1655                                      enum pipe pipe)
1656 {
1657         display_pipe_crc_irq_handler(dev_priv, pipe,
1658                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1659                                      0, 0, 0, 0);
1660 }
1661
1662 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1663                                      enum pipe pipe)
1664 {
1665         display_pipe_crc_irq_handler(dev_priv, pipe,
1666                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1667                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1668                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1669                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1670                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1671 }
1672
1673 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1674                                       enum pipe pipe)
1675 {
1676         uint32_t res1, res2;
1677
1678         if (INTEL_GEN(dev_priv) >= 3)
1679                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1680         else
1681                 res1 = 0;
1682
1683         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1684                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1685         else
1686                 res2 = 0;
1687
1688         display_pipe_crc_irq_handler(dev_priv, pipe,
1689                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1690                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1691                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1692                                      res1, res2);
1693 }
1694
1695 /* The RPS events need forcewake, so we add them to a work queue and mask their
1696  * IMR bits until the work is done. Other interrupts can be processed without
1697  * the work queue. */
1698 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1699 {
1700         if (pm_iir & dev_priv->pm_rps_events) {
1701                 spin_lock(&dev_priv->irq_lock);
1702                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1703                 if (dev_priv->rps.interrupts_enabled) {
1704                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1705                         schedule_work(&dev_priv->rps.work);
1706                 }
1707                 spin_unlock(&dev_priv->irq_lock);
1708         }
1709
1710         if (INTEL_INFO(dev_priv)->gen >= 8)
1711                 return;
1712
1713         if (HAS_VEBOX(dev_priv)) {
1714                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1715                         notify_ring(dev_priv->engine[VECS]);
1716
1717                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1718                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1719         }
1720 }
1721
1722 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1723 {
1724         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1725                 /* Sample the log buffer flush related bits & clear them out now
1726                  * itself from the message identity register to minimize the
1727                  * probability of losing a flush interrupt, when there are back
1728                  * to back flush interrupts.
1729                  * There can be a new flush interrupt, for different log buffer
1730                  * type (like for ISR), whilst Host is handling one (for DPC).
1731                  * Since same bit is used in message register for ISR & DPC, it
1732                  * could happen that GuC sets the bit for 2nd interrupt but Host
1733                  * clears out the bit on handling the 1st interrupt.
1734                  */
1735                 u32 msg, flush;
1736
1737                 msg = I915_READ(SOFT_SCRATCH(15));
1738                 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1739                                INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1740                 if (flush) {
1741                         /* Clear the message bits that are handled */
1742                         I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1743
1744                         /* Handle flush interrupt in bottom half */
1745                         queue_work(dev_priv->guc.log.runtime.flush_wq,
1746                                    &dev_priv->guc.log.runtime.flush_work);
1747
1748                         dev_priv->guc.log.flush_interrupt_count++;
1749                 } else {
1750                         /* Not clearing of unhandled event bits won't result in
1751                          * re-triggering of the interrupt.
1752                          */
1753                 }
1754         }
1755 }
1756
1757 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1758                                      enum pipe pipe)
1759 {
1760         bool ret;
1761
1762         ret = drm_handle_vblank(&dev_priv->drm, pipe);
1763         if (ret)
1764                 intel_finish_page_flip_mmio(dev_priv, pipe);
1765
1766         return ret;
1767 }
1768
1769 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1770                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1771 {
1772         int pipe;
1773
1774         spin_lock(&dev_priv->irq_lock);
1775
1776         if (!dev_priv->display_irqs_enabled) {
1777                 spin_unlock(&dev_priv->irq_lock);
1778                 return;
1779         }
1780
1781         for_each_pipe(dev_priv, pipe) {
1782                 i915_reg_t reg;
1783                 u32 mask, iir_bit = 0;
1784
1785                 /*
1786                  * PIPESTAT bits get signalled even when the interrupt is
1787                  * disabled with the mask bits, and some of the status bits do
1788                  * not generate interrupts at all (like the underrun bit). Hence
1789                  * we need to be careful that we only handle what we want to
1790                  * handle.
1791                  */
1792
1793                 /* fifo underruns are filterered in the underrun handler. */
1794                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1795
1796                 switch (pipe) {
1797                 case PIPE_A:
1798                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1799                         break;
1800                 case PIPE_B:
1801                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1802                         break;
1803                 case PIPE_C:
1804                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1805                         break;
1806                 }
1807                 if (iir & iir_bit)
1808                         mask |= dev_priv->pipestat_irq_mask[pipe];
1809
1810                 if (!mask)
1811                         continue;
1812
1813                 reg = PIPESTAT(pipe);
1814                 mask |= PIPESTAT_INT_ENABLE_MASK;
1815                 pipe_stats[pipe] = I915_READ(reg) & mask;
1816
1817                 /*
1818                  * Clear the PIPE*STAT regs before the IIR
1819                  */
1820                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1821                                         PIPESTAT_INT_STATUS_MASK))
1822                         I915_WRITE(reg, pipe_stats[pipe]);
1823         }
1824         spin_unlock(&dev_priv->irq_lock);
1825 }
1826
1827 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1828                                             u32 pipe_stats[I915_MAX_PIPES])
1829 {
1830         enum pipe pipe;
1831
1832         for_each_pipe(dev_priv, pipe) {
1833                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1834                     intel_pipe_handle_vblank(dev_priv, pipe))
1835                         intel_check_page_flip(dev_priv, pipe);
1836
1837                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1838                         intel_finish_page_flip_cs(dev_priv, pipe);
1839
1840                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1841                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1842
1843                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1844                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1845         }
1846
1847         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1848                 gmbus_irq_handler(dev_priv);
1849 }
1850
1851 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1852 {
1853         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1854
1855         if (hotplug_status)
1856                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1857
1858         return hotplug_status;
1859 }
1860
1861 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1862                                  u32 hotplug_status)
1863 {
1864         u32 pin_mask = 0, long_mask = 0;
1865
1866         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1867             IS_CHERRYVIEW(dev_priv)) {
1868                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1869
1870                 if (hotplug_trigger) {
1871                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1872                                            hotplug_trigger, hpd_status_g4x,
1873                                            i9xx_port_hotplug_long_detect);
1874
1875                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1876                 }
1877
1878                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1879                         dp_aux_irq_handler(dev_priv);
1880         } else {
1881                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1882
1883                 if (hotplug_trigger) {
1884                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1885                                            hotplug_trigger, hpd_status_i915,
1886                                            i9xx_port_hotplug_long_detect);
1887                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1888                 }
1889         }
1890 }
1891
1892 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1893 {
1894         struct drm_device *dev = arg;
1895         struct drm_i915_private *dev_priv = to_i915(dev);
1896         irqreturn_t ret = IRQ_NONE;
1897
1898         if (!intel_irqs_enabled(dev_priv))
1899                 return IRQ_NONE;
1900
1901         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1902         disable_rpm_wakeref_asserts(dev_priv);
1903
1904         do {
1905                 u32 iir, gt_iir, pm_iir;
1906                 u32 pipe_stats[I915_MAX_PIPES] = {};
1907                 u32 hotplug_status = 0;
1908                 u32 ier = 0;
1909
1910                 gt_iir = I915_READ(GTIIR);
1911                 pm_iir = I915_READ(GEN6_PMIIR);
1912                 iir = I915_READ(VLV_IIR);
1913
1914                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1915                         break;
1916
1917                 ret = IRQ_HANDLED;
1918
1919                 /*
1920                  * Theory on interrupt generation, based on empirical evidence:
1921                  *
1922                  * x = ((VLV_IIR & VLV_IER) ||
1923                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1924                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1925                  *
1926                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1927                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1928                  * guarantee the CPU interrupt will be raised again even if we
1929                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1930                  * bits this time around.
1931                  */
1932                 I915_WRITE(VLV_MASTER_IER, 0);
1933                 ier = I915_READ(VLV_IER);
1934                 I915_WRITE(VLV_IER, 0);
1935
1936                 if (gt_iir)
1937                         I915_WRITE(GTIIR, gt_iir);
1938                 if (pm_iir)
1939                         I915_WRITE(GEN6_PMIIR, pm_iir);
1940
1941                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1942                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1943
1944                 /* Call regardless, as some status bits might not be
1945                  * signalled in iir */
1946                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1947
1948                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1949                            I915_LPE_PIPE_B_INTERRUPT))
1950                         intel_lpe_audio_irq_handler(dev_priv);
1951
1952                 /*
1953                  * VLV_IIR is single buffered, and reflects the level
1954                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1955                  */
1956                 if (iir)
1957                         I915_WRITE(VLV_IIR, iir);
1958
1959                 I915_WRITE(VLV_IER, ier);
1960                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1961                 POSTING_READ(VLV_MASTER_IER);
1962
1963                 if (gt_iir)
1964                         snb_gt_irq_handler(dev_priv, gt_iir);
1965                 if (pm_iir)
1966                         gen6_rps_irq_handler(dev_priv, pm_iir);
1967
1968                 if (hotplug_status)
1969                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1970
1971                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1972         } while (0);
1973
1974         enable_rpm_wakeref_asserts(dev_priv);
1975
1976         return ret;
1977 }
1978
1979 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1980 {
1981         struct drm_device *dev = arg;
1982         struct drm_i915_private *dev_priv = to_i915(dev);
1983         irqreturn_t ret = IRQ_NONE;
1984
1985         if (!intel_irqs_enabled(dev_priv))
1986                 return IRQ_NONE;
1987
1988         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1989         disable_rpm_wakeref_asserts(dev_priv);
1990
1991         do {
1992                 u32 master_ctl, iir;
1993                 u32 gt_iir[4] = {};
1994                 u32 pipe_stats[I915_MAX_PIPES] = {};
1995                 u32 hotplug_status = 0;
1996                 u32 ier = 0;
1997
1998                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1999                 iir = I915_READ(VLV_IIR);
2000
2001                 if (master_ctl == 0 && iir == 0)
2002                         break;
2003
2004                 ret = IRQ_HANDLED;
2005
2006                 /*
2007                  * Theory on interrupt generation, based on empirical evidence:
2008                  *
2009                  * x = ((VLV_IIR & VLV_IER) ||
2010                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2011                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2012                  *
2013                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2014                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2015                  * guarantee the CPU interrupt will be raised again even if we
2016                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2017                  * bits this time around.
2018                  */
2019                 I915_WRITE(GEN8_MASTER_IRQ, 0);
2020                 ier = I915_READ(VLV_IER);
2021                 I915_WRITE(VLV_IER, 0);
2022
2023                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2024
2025                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
2026                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
2027
2028                 /* Call regardless, as some status bits might not be
2029                  * signalled in iir */
2030                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2031
2032                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2033                            I915_LPE_PIPE_B_INTERRUPT |
2034                            I915_LPE_PIPE_C_INTERRUPT))
2035                         intel_lpe_audio_irq_handler(dev_priv);
2036
2037                 /*
2038                  * VLV_IIR is single buffered, and reflects the level
2039                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2040                  */
2041                 if (iir)
2042                         I915_WRITE(VLV_IIR, iir);
2043
2044                 I915_WRITE(VLV_IER, ier);
2045                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2046                 POSTING_READ(GEN8_MASTER_IRQ);
2047
2048                 gen8_gt_irq_handler(dev_priv, gt_iir);
2049
2050                 if (hotplug_status)
2051                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2052
2053                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2054         } while (0);
2055
2056         enable_rpm_wakeref_asserts(dev_priv);
2057
2058         return ret;
2059 }
2060
2061 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2062                                 u32 hotplug_trigger,
2063                                 const u32 hpd[HPD_NUM_PINS])
2064 {
2065         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2066
2067         /*
2068          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2069          * unless we touch the hotplug register, even if hotplug_trigger is
2070          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2071          * errors.
2072          */
2073         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2074         if (!hotplug_trigger) {
2075                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2076                         PORTD_HOTPLUG_STATUS_MASK |
2077                         PORTC_HOTPLUG_STATUS_MASK |
2078                         PORTB_HOTPLUG_STATUS_MASK;
2079                 dig_hotplug_reg &= ~mask;
2080         }
2081
2082         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2083         if (!hotplug_trigger)
2084                 return;
2085
2086         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2087                            dig_hotplug_reg, hpd,
2088                            pch_port_hotplug_long_detect);
2089
2090         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2091 }
2092
2093 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2094 {
2095         int pipe;
2096         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2097
2098         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2099
2100         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2101                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2102                                SDE_AUDIO_POWER_SHIFT);
2103                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2104                                  port_name(port));
2105         }
2106
2107         if (pch_iir & SDE_AUX_MASK)
2108                 dp_aux_irq_handler(dev_priv);
2109
2110         if (pch_iir & SDE_GMBUS)
2111                 gmbus_irq_handler(dev_priv);
2112
2113         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2114                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2115
2116         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2117                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2118
2119         if (pch_iir & SDE_POISON)
2120                 DRM_ERROR("PCH poison interrupt\n");
2121
2122         if (pch_iir & SDE_FDI_MASK)
2123                 for_each_pipe(dev_priv, pipe)
2124                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2125                                          pipe_name(pipe),
2126                                          I915_READ(FDI_RX_IIR(pipe)));
2127
2128         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2129                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2130
2131         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2132                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2133
2134         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2135                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2136
2137         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2138                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2139 }
2140
2141 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2142 {
2143         u32 err_int = I915_READ(GEN7_ERR_INT);
2144         enum pipe pipe;
2145
2146         if (err_int & ERR_INT_POISON)
2147                 DRM_ERROR("Poison interrupt\n");
2148
2149         for_each_pipe(dev_priv, pipe) {
2150                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2151                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2152
2153                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2154                         if (IS_IVYBRIDGE(dev_priv))
2155                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2156                         else
2157                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2158                 }
2159         }
2160
2161         I915_WRITE(GEN7_ERR_INT, err_int);
2162 }
2163
2164 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2165 {
2166         u32 serr_int = I915_READ(SERR_INT);
2167
2168         if (serr_int & SERR_INT_POISON)
2169                 DRM_ERROR("PCH poison interrupt\n");
2170
2171         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2172                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2173
2174         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2175                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2176
2177         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2178                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2179
2180         I915_WRITE(SERR_INT, serr_int);
2181 }
2182
2183 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2184 {
2185         int pipe;
2186         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2187
2188         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2189
2190         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2191                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2192                                SDE_AUDIO_POWER_SHIFT_CPT);
2193                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2194                                  port_name(port));
2195         }
2196
2197         if (pch_iir & SDE_AUX_MASK_CPT)
2198                 dp_aux_irq_handler(dev_priv);
2199
2200         if (pch_iir & SDE_GMBUS_CPT)
2201                 gmbus_irq_handler(dev_priv);
2202
2203         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2204                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2205
2206         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2207                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2208
2209         if (pch_iir & SDE_FDI_MASK_CPT)
2210                 for_each_pipe(dev_priv, pipe)
2211                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2212                                          pipe_name(pipe),
2213                                          I915_READ(FDI_RX_IIR(pipe)));
2214
2215         if (pch_iir & SDE_ERROR_CPT)
2216                 cpt_serr_int_handler(dev_priv);
2217 }
2218
2219 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2220 {
2221         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2222                 ~SDE_PORTE_HOTPLUG_SPT;
2223         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2224         u32 pin_mask = 0, long_mask = 0;
2225
2226         if (hotplug_trigger) {
2227                 u32 dig_hotplug_reg;
2228
2229                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2230                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2231
2232                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2233                                    dig_hotplug_reg, hpd_spt,
2234                                    spt_port_hotplug_long_detect);
2235         }
2236
2237         if (hotplug2_trigger) {
2238                 u32 dig_hotplug_reg;
2239
2240                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2241                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2242
2243                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2244                                    dig_hotplug_reg, hpd_spt,
2245                                    spt_port_hotplug2_long_detect);
2246         }
2247
2248         if (pin_mask)
2249                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2250
2251         if (pch_iir & SDE_GMBUS_CPT)
2252                 gmbus_irq_handler(dev_priv);
2253 }
2254
2255 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2256                                 u32 hotplug_trigger,
2257                                 const u32 hpd[HPD_NUM_PINS])
2258 {
2259         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2260
2261         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2262         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2263
2264         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2265                            dig_hotplug_reg, hpd,
2266                            ilk_port_hotplug_long_detect);
2267
2268         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2269 }
2270
2271 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2272                                     u32 de_iir)
2273 {
2274         enum pipe pipe;
2275         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2276
2277         if (hotplug_trigger)
2278                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2279
2280         if (de_iir & DE_AUX_CHANNEL_A)
2281                 dp_aux_irq_handler(dev_priv);
2282
2283         if (de_iir & DE_GSE)
2284                 intel_opregion_asle_intr(dev_priv);
2285
2286         if (de_iir & DE_POISON)
2287                 DRM_ERROR("Poison interrupt\n");
2288
2289         for_each_pipe(dev_priv, pipe) {
2290                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2291                     intel_pipe_handle_vblank(dev_priv, pipe))
2292                         intel_check_page_flip(dev_priv, pipe);
2293
2294                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2295                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2296
2297                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2298                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2299
2300                 /* plane/pipes map 1:1 on ilk+ */
2301                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2302                         intel_finish_page_flip_cs(dev_priv, pipe);
2303         }
2304
2305         /* check event from PCH */
2306         if (de_iir & DE_PCH_EVENT) {
2307                 u32 pch_iir = I915_READ(SDEIIR);
2308
2309                 if (HAS_PCH_CPT(dev_priv))
2310                         cpt_irq_handler(dev_priv, pch_iir);
2311                 else
2312                         ibx_irq_handler(dev_priv, pch_iir);
2313
2314                 /* should clear PCH hotplug event before clear CPU irq */
2315                 I915_WRITE(SDEIIR, pch_iir);
2316         }
2317
2318         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2319                 ironlake_rps_change_irq_handler(dev_priv);
2320 }
2321
2322 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2323                                     u32 de_iir)
2324 {
2325         enum pipe pipe;
2326         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2327
2328         if (hotplug_trigger)
2329                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2330
2331         if (de_iir & DE_ERR_INT_IVB)
2332                 ivb_err_int_handler(dev_priv);
2333
2334         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2335                 dp_aux_irq_handler(dev_priv);
2336
2337         if (de_iir & DE_GSE_IVB)
2338                 intel_opregion_asle_intr(dev_priv);
2339
2340         for_each_pipe(dev_priv, pipe) {
2341                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2342                     intel_pipe_handle_vblank(dev_priv, pipe))
2343                         intel_check_page_flip(dev_priv, pipe);
2344
2345                 /* plane/pipes map 1:1 on ilk+ */
2346                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2347                         intel_finish_page_flip_cs(dev_priv, pipe);
2348         }
2349
2350         /* check event from PCH */
2351         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2352                 u32 pch_iir = I915_READ(SDEIIR);
2353
2354                 cpt_irq_handler(dev_priv, pch_iir);
2355
2356                 /* clear PCH hotplug event before clear CPU irq */
2357                 I915_WRITE(SDEIIR, pch_iir);
2358         }
2359 }
2360
2361 /*
2362  * To handle irqs with the minimum potential races with fresh interrupts, we:
2363  * 1 - Disable Master Interrupt Control.
2364  * 2 - Find the source(s) of the interrupt.
2365  * 3 - Clear the Interrupt Identity bits (IIR).
2366  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2367  * 5 - Re-enable Master Interrupt Control.
2368  */
2369 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2370 {
2371         struct drm_device *dev = arg;
2372         struct drm_i915_private *dev_priv = to_i915(dev);
2373         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2374         irqreturn_t ret = IRQ_NONE;
2375
2376         if (!intel_irqs_enabled(dev_priv))
2377                 return IRQ_NONE;
2378
2379         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2380         disable_rpm_wakeref_asserts(dev_priv);
2381
2382         /* disable master interrupt before clearing iir  */
2383         de_ier = I915_READ(DEIER);
2384         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2385         POSTING_READ(DEIER);
2386
2387         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2388          * interrupts will will be stored on its back queue, and then we'll be
2389          * able to process them after we restore SDEIER (as soon as we restore
2390          * it, we'll get an interrupt if SDEIIR still has something to process
2391          * due to its back queue). */
2392         if (!HAS_PCH_NOP(dev_priv)) {
2393                 sde_ier = I915_READ(SDEIER);
2394                 I915_WRITE(SDEIER, 0);
2395                 POSTING_READ(SDEIER);
2396         }
2397
2398         /* Find, clear, then process each source of interrupt */
2399
2400         gt_iir = I915_READ(GTIIR);
2401         if (gt_iir) {
2402                 I915_WRITE(GTIIR, gt_iir);
2403                 ret = IRQ_HANDLED;
2404                 if (INTEL_GEN(dev_priv) >= 6)
2405                         snb_gt_irq_handler(dev_priv, gt_iir);
2406                 else
2407                         ilk_gt_irq_handler(dev_priv, gt_iir);
2408         }
2409
2410         de_iir = I915_READ(DEIIR);
2411         if (de_iir) {
2412                 I915_WRITE(DEIIR, de_iir);
2413                 ret = IRQ_HANDLED;
2414                 if (INTEL_GEN(dev_priv) >= 7)
2415                         ivb_display_irq_handler(dev_priv, de_iir);
2416                 else
2417                         ilk_display_irq_handler(dev_priv, de_iir);
2418         }
2419
2420         if (INTEL_GEN(dev_priv) >= 6) {
2421                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2422                 if (pm_iir) {
2423                         I915_WRITE(GEN6_PMIIR, pm_iir);
2424                         ret = IRQ_HANDLED;
2425                         gen6_rps_irq_handler(dev_priv, pm_iir);
2426                 }
2427         }
2428
2429         I915_WRITE(DEIER, de_ier);
2430         POSTING_READ(DEIER);
2431         if (!HAS_PCH_NOP(dev_priv)) {
2432                 I915_WRITE(SDEIER, sde_ier);
2433                 POSTING_READ(SDEIER);
2434         }
2435
2436         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2437         enable_rpm_wakeref_asserts(dev_priv);
2438
2439         return ret;
2440 }
2441
2442 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2443                                 u32 hotplug_trigger,
2444                                 const u32 hpd[HPD_NUM_PINS])
2445 {
2446         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2447
2448         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2449         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2450
2451         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2452                            dig_hotplug_reg, hpd,
2453                            bxt_port_hotplug_long_detect);
2454
2455         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2456 }
2457
2458 static irqreturn_t
2459 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2460 {
2461         irqreturn_t ret = IRQ_NONE;
2462         u32 iir;
2463         enum pipe pipe;
2464
2465         if (master_ctl & GEN8_DE_MISC_IRQ) {
2466                 iir = I915_READ(GEN8_DE_MISC_IIR);
2467                 if (iir) {
2468                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2469                         ret = IRQ_HANDLED;
2470                         if (iir & GEN8_DE_MISC_GSE)
2471                                 intel_opregion_asle_intr(dev_priv);
2472                         else
2473                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2474                 }
2475                 else
2476                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2477         }
2478
2479         if (master_ctl & GEN8_DE_PORT_IRQ) {
2480                 iir = I915_READ(GEN8_DE_PORT_IIR);
2481                 if (iir) {
2482                         u32 tmp_mask;
2483                         bool found = false;
2484
2485                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2486                         ret = IRQ_HANDLED;
2487
2488                         tmp_mask = GEN8_AUX_CHANNEL_A;
2489                         if (INTEL_INFO(dev_priv)->gen >= 9)
2490                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2491                                             GEN9_AUX_CHANNEL_C |
2492                                             GEN9_AUX_CHANNEL_D;
2493
2494                         if (iir & tmp_mask) {
2495                                 dp_aux_irq_handler(dev_priv);
2496                                 found = true;
2497                         }
2498
2499                         if (IS_GEN9_LP(dev_priv)) {
2500                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2501                                 if (tmp_mask) {
2502                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2503                                                             hpd_bxt);
2504                                         found = true;
2505                                 }
2506                         } else if (IS_BROADWELL(dev_priv)) {
2507                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2508                                 if (tmp_mask) {
2509                                         ilk_hpd_irq_handler(dev_priv,
2510                                                             tmp_mask, hpd_bdw);
2511                                         found = true;
2512                                 }
2513                         }
2514
2515                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2516                                 gmbus_irq_handler(dev_priv);
2517                                 found = true;
2518                         }
2519
2520                         if (!found)
2521                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2522                 }
2523                 else
2524                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2525         }
2526
2527         for_each_pipe(dev_priv, pipe) {
2528                 u32 flip_done, fault_errors;
2529
2530                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2531                         continue;
2532
2533                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2534                 if (!iir) {
2535                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2536                         continue;
2537                 }
2538
2539                 ret = IRQ_HANDLED;
2540                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2541
2542                 if (iir & GEN8_PIPE_VBLANK &&
2543                     intel_pipe_handle_vblank(dev_priv, pipe))
2544                         intel_check_page_flip(dev_priv, pipe);
2545
2546                 flip_done = iir;
2547                 if (INTEL_INFO(dev_priv)->gen >= 9)
2548                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2549                 else
2550                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2551
2552                 if (flip_done)
2553                         intel_finish_page_flip_cs(dev_priv, pipe);
2554
2555                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2556                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2557
2558                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2559                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2560
2561                 fault_errors = iir;
2562                 if (INTEL_INFO(dev_priv)->gen >= 9)
2563                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2564                 else
2565                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2566
2567                 if (fault_errors)
2568                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2569                                   pipe_name(pipe),
2570                                   fault_errors);
2571         }
2572
2573         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2574             master_ctl & GEN8_DE_PCH_IRQ) {
2575                 /*
2576                  * FIXME(BDW): Assume for now that the new interrupt handling
2577                  * scheme also closed the SDE interrupt handling race we've seen
2578                  * on older pch-split platforms. But this needs testing.
2579                  */
2580                 iir = I915_READ(SDEIIR);
2581                 if (iir) {
2582                         I915_WRITE(SDEIIR, iir);
2583                         ret = IRQ_HANDLED;
2584
2585                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2586                                 spt_irq_handler(dev_priv, iir);
2587                         else
2588                                 cpt_irq_handler(dev_priv, iir);
2589                 } else {
2590                         /*
2591                          * Like on previous PCH there seems to be something
2592                          * fishy going on with forwarding PCH interrupts.
2593                          */
2594                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2595                 }
2596         }
2597
2598         return ret;
2599 }
2600
2601 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2602 {
2603         struct drm_device *dev = arg;
2604         struct drm_i915_private *dev_priv = to_i915(dev);
2605         u32 master_ctl;
2606         u32 gt_iir[4] = {};
2607         irqreturn_t ret;
2608
2609         if (!intel_irqs_enabled(dev_priv))
2610                 return IRQ_NONE;
2611
2612         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2613         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2614         if (!master_ctl)
2615                 return IRQ_NONE;
2616
2617         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2618
2619         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2620         disable_rpm_wakeref_asserts(dev_priv);
2621
2622         /* Find, clear, then process each source of interrupt */
2623         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2624         gen8_gt_irq_handler(dev_priv, gt_iir);
2625         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2626
2627         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2628         POSTING_READ_FW(GEN8_MASTER_IRQ);
2629
2630         enable_rpm_wakeref_asserts(dev_priv);
2631
2632         return ret;
2633 }
2634
2635 /**
2636  * i915_reset_and_wakeup - do process context error handling work
2637  * @dev_priv: i915 device private
2638  *
2639  * Fire an error uevent so userspace can see that a hang or error
2640  * was detected.
2641  */
2642 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2643 {
2644         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2645         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2646         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2647         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2648
2649         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2650
2651         DRM_DEBUG_DRIVER("resetting chip\n");
2652         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2653
2654         intel_prepare_reset(dev_priv);
2655
2656         set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2657         wake_up_all(&dev_priv->gpu_error.wait_queue);
2658
2659         do {
2660                 /*
2661                  * All state reset _must_ be completed before we update the
2662                  * reset counter, for otherwise waiters might miss the reset
2663                  * pending state and not properly drop locks, resulting in
2664                  * deadlocks with the reset work.
2665                  */
2666                 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2667                         i915_reset(dev_priv);
2668                         mutex_unlock(&dev_priv->drm.struct_mutex);
2669                 }
2670
2671                 /* We need to wait for anyone holding the lock to wakeup */
2672         } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2673                                      I915_RESET_HANDOFF,
2674                                      TASK_UNINTERRUPTIBLE,
2675                                      HZ));
2676
2677         intel_finish_reset(dev_priv);
2678
2679         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2680                 kobject_uevent_env(kobj,
2681                                    KOBJ_CHANGE, reset_done_event);
2682
2683         /*
2684          * Note: The wake_up also serves as a memory barrier so that
2685          * waiters see the updated value of the dev_priv->gpu_error.
2686          */
2687         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2688         wake_up_all(&dev_priv->gpu_error.reset_queue);
2689 }
2690
2691 static inline void
2692 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2693                         struct intel_instdone *instdone)
2694 {
2695         int slice;
2696         int subslice;
2697
2698         pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2699
2700         if (INTEL_GEN(dev_priv) <= 3)
2701                 return;
2702
2703         pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2704
2705         if (INTEL_GEN(dev_priv) <= 6)
2706                 return;
2707
2708         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2709                 pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2710                        slice, subslice, instdone->sampler[slice][subslice]);
2711
2712         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2713                 pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2714                        slice, subslice, instdone->row[slice][subslice]);
2715 }
2716
2717 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2718 {
2719         u32 eir;
2720
2721         if (!IS_GEN2(dev_priv))
2722                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2723
2724         if (INTEL_GEN(dev_priv) < 4)
2725                 I915_WRITE(IPEIR, I915_READ(IPEIR));
2726         else
2727                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2728
2729         I915_WRITE(EIR, I915_READ(EIR));
2730         eir = I915_READ(EIR);
2731         if (eir) {
2732                 /*
2733                  * some errors might have become stuck,
2734                  * mask them.
2735                  */
2736                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2737                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2738                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2739         }
2740 }
2741
2742 /**
2743  * i915_handle_error - handle a gpu error
2744  * @dev_priv: i915 device private
2745  * @engine_mask: mask representing engines that are hung
2746  * @fmt: Error message format string
2747  *
2748  * Do some basic checking of register state at error time and
2749  * dump it to the syslog.  Also call i915_capture_error_state() to make
2750  * sure we get a record and make it available in debugfs.  Fire a uevent
2751  * so userspace knows something bad happened (should trigger collection
2752  * of a ring dump etc.).
2753  */
2754 void i915_handle_error(struct drm_i915_private *dev_priv,
2755                        u32 engine_mask,
2756                        const char *fmt, ...)
2757 {
2758         va_list args;
2759         char error_msg[80];
2760
2761         va_start(args, fmt);
2762         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2763         va_end(args);
2764
2765         /*
2766          * In most cases it's guaranteed that we get here with an RPM
2767          * reference held, for example because there is a pending GPU
2768          * request that won't finish until the reset is done. This
2769          * isn't the case at least when we get here by doing a
2770          * simulated reset via debugfs, so get an RPM reference.
2771          */
2772         intel_runtime_pm_get(dev_priv);
2773
2774         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2775         i915_clear_error_registers(dev_priv);
2776
2777         if (!engine_mask)
2778                 goto out;
2779
2780         if (test_and_set_bit(I915_RESET_BACKOFF,
2781                              &dev_priv->gpu_error.flags))
2782                 goto out;
2783
2784         i915_reset_and_wakeup(dev_priv);
2785
2786 out:
2787         intel_runtime_pm_put(dev_priv);
2788 }
2789
2790 /* Called from drm generic code, passed 'crtc' which
2791  * we use as a pipe index
2792  */
2793 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2794 {
2795         struct drm_i915_private *dev_priv = to_i915(dev);
2796         unsigned long irqflags;
2797
2798         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2799         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2800         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2801
2802         return 0;
2803 }
2804
2805 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2806 {
2807         struct drm_i915_private *dev_priv = to_i915(dev);
2808         unsigned long irqflags;
2809
2810         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2811         i915_enable_pipestat(dev_priv, pipe,
2812                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2813         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2814
2815         return 0;
2816 }
2817
2818 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2819 {
2820         struct drm_i915_private *dev_priv = to_i915(dev);
2821         unsigned long irqflags;
2822         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2823                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2824
2825         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2826         ilk_enable_display_irq(dev_priv, bit);
2827         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2828
2829         return 0;
2830 }
2831
2832 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2833 {
2834         struct drm_i915_private *dev_priv = to_i915(dev);
2835         unsigned long irqflags;
2836
2837         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2838         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2839         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2840
2841         return 0;
2842 }
2843
2844 /* Called from drm generic code, passed 'crtc' which
2845  * we use as a pipe index
2846  */
2847 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2848 {
2849         struct drm_i915_private *dev_priv = to_i915(dev);
2850         unsigned long irqflags;
2851
2852         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2853         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2854         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2855 }
2856
2857 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2858 {
2859         struct drm_i915_private *dev_priv = to_i915(dev);
2860         unsigned long irqflags;
2861
2862         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2863         i915_disable_pipestat(dev_priv, pipe,
2864                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2865         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2866 }
2867
2868 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2869 {
2870         struct drm_i915_private *dev_priv = to_i915(dev);
2871         unsigned long irqflags;
2872         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2873                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2874
2875         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2876         ilk_disable_display_irq(dev_priv, bit);
2877         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2878 }
2879
2880 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2881 {
2882         struct drm_i915_private *dev_priv = to_i915(dev);
2883         unsigned long irqflags;
2884
2885         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2886         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2887         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2888 }
2889
2890 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2891 {
2892         if (HAS_PCH_NOP(dev_priv))
2893                 return;
2894
2895         GEN5_IRQ_RESET(SDE);
2896
2897         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2898                 I915_WRITE(SERR_INT, 0xffffffff);
2899 }
2900
2901 /*
2902  * SDEIER is also touched by the interrupt handler to work around missed PCH
2903  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2904  * instead we unconditionally enable all PCH interrupt sources here, but then
2905  * only unmask them as needed with SDEIMR.
2906  *
2907  * This function needs to be called before interrupts are enabled.
2908  */
2909 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2910 {
2911         struct drm_i915_private *dev_priv = to_i915(dev);
2912
2913         if (HAS_PCH_NOP(dev_priv))
2914                 return;
2915
2916         WARN_ON(I915_READ(SDEIER) != 0);
2917         I915_WRITE(SDEIER, 0xffffffff);
2918         POSTING_READ(SDEIER);
2919 }
2920
2921 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2922 {
2923         GEN5_IRQ_RESET(GT);
2924         if (INTEL_GEN(dev_priv) >= 6)
2925                 GEN5_IRQ_RESET(GEN6_PM);
2926 }
2927
2928 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2929 {
2930         enum pipe pipe;
2931
2932         if (IS_CHERRYVIEW(dev_priv))
2933                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2934         else
2935                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2936
2937         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2938         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2939
2940         for_each_pipe(dev_priv, pipe) {
2941                 I915_WRITE(PIPESTAT(pipe),
2942                            PIPE_FIFO_UNDERRUN_STATUS |
2943                            PIPESTAT_INT_STATUS_MASK);
2944                 dev_priv->pipestat_irq_mask[pipe] = 0;
2945         }
2946
2947         GEN5_IRQ_RESET(VLV_);
2948         dev_priv->irq_mask = ~0;
2949 }
2950
2951 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2952 {
2953         u32 pipestat_mask;
2954         u32 enable_mask;
2955         enum pipe pipe;
2956
2957         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2958                         PIPE_CRC_DONE_INTERRUPT_STATUS;
2959
2960         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2961         for_each_pipe(dev_priv, pipe)
2962                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2963
2964         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2965                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2966                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2967                 I915_LPE_PIPE_A_INTERRUPT |
2968                 I915_LPE_PIPE_B_INTERRUPT;
2969
2970         if (IS_CHERRYVIEW(dev_priv))
2971                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2972                         I915_LPE_PIPE_C_INTERRUPT;
2973
2974         WARN_ON(dev_priv->irq_mask != ~0);
2975
2976         dev_priv->irq_mask = ~enable_mask;
2977
2978         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2979 }
2980
2981 /* drm_dma.h hooks
2982 */
2983 static void ironlake_irq_reset(struct drm_device *dev)
2984 {
2985         struct drm_i915_private *dev_priv = to_i915(dev);
2986
2987         I915_WRITE(HWSTAM, 0xffffffff);
2988
2989         GEN5_IRQ_RESET(DE);
2990         if (IS_GEN7(dev_priv))
2991                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2992
2993         gen5_gt_irq_reset(dev_priv);
2994
2995         ibx_irq_reset(dev_priv);
2996 }
2997
2998 static void valleyview_irq_preinstall(struct drm_device *dev)
2999 {
3000         struct drm_i915_private *dev_priv = to_i915(dev);
3001
3002         I915_WRITE(VLV_MASTER_IER, 0);
3003         POSTING_READ(VLV_MASTER_IER);
3004
3005         gen5_gt_irq_reset(dev_priv);
3006
3007         spin_lock_irq(&dev_priv->irq_lock);
3008         if (dev_priv->display_irqs_enabled)
3009                 vlv_display_irq_reset(dev_priv);
3010         spin_unlock_irq(&dev_priv->irq_lock);
3011 }
3012
3013 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3014 {
3015         GEN8_IRQ_RESET_NDX(GT, 0);
3016         GEN8_IRQ_RESET_NDX(GT, 1);
3017         GEN8_IRQ_RESET_NDX(GT, 2);
3018         GEN8_IRQ_RESET_NDX(GT, 3);
3019 }
3020
3021 static void gen8_irq_reset(struct drm_device *dev)
3022 {
3023         struct drm_i915_private *dev_priv = to_i915(dev);
3024         int pipe;
3025
3026         I915_WRITE(GEN8_MASTER_IRQ, 0);
3027         POSTING_READ(GEN8_MASTER_IRQ);
3028
3029         gen8_gt_irq_reset(dev_priv);
3030
3031         for_each_pipe(dev_priv, pipe)
3032                 if (intel_display_power_is_enabled(dev_priv,
3033                                                    POWER_DOMAIN_PIPE(pipe)))
3034                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3035
3036         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3037         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3038         GEN5_IRQ_RESET(GEN8_PCU_);
3039
3040         if (HAS_PCH_SPLIT(dev_priv))
3041                 ibx_irq_reset(dev_priv);
3042 }
3043
3044 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3045                                      unsigned int pipe_mask)
3046 {
3047         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3048         enum pipe pipe;
3049
3050         spin_lock_irq(&dev_priv->irq_lock);
3051         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3052                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3053                                   dev_priv->de_irq_mask[pipe],
3054                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3055         spin_unlock_irq(&dev_priv->irq_lock);
3056 }
3057
3058 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3059                                      unsigned int pipe_mask)
3060 {
3061         enum pipe pipe;
3062
3063         spin_lock_irq(&dev_priv->irq_lock);
3064         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3065                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3066         spin_unlock_irq(&dev_priv->irq_lock);
3067
3068         /* make sure we're done processing display irqs */
3069         synchronize_irq(dev_priv->drm.irq);
3070 }
3071
3072 static void cherryview_irq_preinstall(struct drm_device *dev)
3073 {
3074         struct drm_i915_private *dev_priv = to_i915(dev);
3075
3076         I915_WRITE(GEN8_MASTER_IRQ, 0);
3077         POSTING_READ(GEN8_MASTER_IRQ);
3078
3079         gen8_gt_irq_reset(dev_priv);
3080
3081         GEN5_IRQ_RESET(GEN8_PCU_);
3082
3083         spin_lock_irq(&dev_priv->irq_lock);
3084         if (dev_priv->display_irqs_enabled)
3085                 vlv_display_irq_reset(dev_priv);
3086         spin_unlock_irq(&dev_priv->irq_lock);
3087 }
3088
3089 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3090                                   const u32 hpd[HPD_NUM_PINS])
3091 {
3092         struct intel_encoder *encoder;
3093         u32 enabled_irqs = 0;
3094
3095         for_each_intel_encoder(&dev_priv->drm, encoder)
3096                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3097                         enabled_irqs |= hpd[encoder->hpd_pin];
3098
3099         return enabled_irqs;
3100 }
3101
3102 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3103 {
3104         u32 hotplug;
3105
3106         /*
3107          * Enable digital hotplug on the PCH, and configure the DP short pulse
3108          * duration to 2ms (which is the minimum in the Display Port spec).
3109          * The pulse duration bits are reserved on LPT+.
3110          */
3111         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3112         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3113                      PORTC_PULSE_DURATION_MASK |
3114                      PORTD_PULSE_DURATION_MASK);
3115         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3116         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3117         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3118         /*
3119          * When CPU and PCH are on the same package, port A
3120          * HPD must be enabled in both north and south.
3121          */
3122         if (HAS_PCH_LPT_LP(dev_priv))
3123                 hotplug |= PORTA_HOTPLUG_ENABLE;
3124         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3125 }
3126
3127 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3128 {
3129         u32 hotplug_irqs, enabled_irqs;
3130
3131         if (HAS_PCH_IBX(dev_priv)) {
3132                 hotplug_irqs = SDE_HOTPLUG_MASK;
3133                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3134         } else {
3135                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3136                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3137         }
3138
3139         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3140
3141         ibx_hpd_detection_setup(dev_priv);
3142 }
3143
3144 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3145 {
3146         u32 hotplug;
3147
3148         /* Enable digital hotplug on the PCH */
3149         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3150         hotplug |= PORTA_HOTPLUG_ENABLE |
3151                    PORTB_HOTPLUG_ENABLE |
3152                    PORTC_HOTPLUG_ENABLE |
3153                    PORTD_HOTPLUG_ENABLE;
3154         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3155
3156         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3157         hotplug |= PORTE_HOTPLUG_ENABLE;
3158         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3159 }
3160
3161 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3162 {
3163         u32 hotplug_irqs, enabled_irqs;
3164
3165         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3166         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3167
3168         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3169
3170         spt_hpd_detection_setup(dev_priv);
3171 }
3172
3173 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3174 {
3175         u32 hotplug;
3176
3177         /*
3178          * Enable digital hotplug on the CPU, and configure the DP short pulse
3179          * duration to 2ms (which is the minimum in the Display Port spec)
3180          * The pulse duration bits are reserved on HSW+.
3181          */
3182         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3183         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3184         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3185                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3186         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3187 }
3188
3189 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3190 {
3191         u32 hotplug_irqs, enabled_irqs;
3192
3193         if (INTEL_GEN(dev_priv) >= 8) {
3194                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3195                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3196
3197                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3198         } else if (INTEL_GEN(dev_priv) >= 7) {
3199                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3200                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3201
3202                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3203         } else {
3204                 hotplug_irqs = DE_DP_A_HOTPLUG;
3205                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3206
3207                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3208         }
3209
3210         ilk_hpd_detection_setup(dev_priv);
3211
3212         ibx_hpd_irq_setup(dev_priv);
3213 }
3214
3215 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3216                                       u32 enabled_irqs)
3217 {
3218         u32 hotplug;
3219
3220         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3221         hotplug |= PORTA_HOTPLUG_ENABLE |
3222                    PORTB_HOTPLUG_ENABLE |
3223                    PORTC_HOTPLUG_ENABLE;
3224
3225         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3226                       hotplug, enabled_irqs);
3227         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3228
3229         /*
3230          * For BXT invert bit has to be set based on AOB design
3231          * for HPD detection logic, update it based on VBT fields.
3232          */
3233         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3234             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3235                 hotplug |= BXT_DDIA_HPD_INVERT;
3236         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3237             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3238                 hotplug |= BXT_DDIB_HPD_INVERT;
3239         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3240             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3241                 hotplug |= BXT_DDIC_HPD_INVERT;
3242
3243         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3244 }
3245
3246 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3247 {
3248         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3249 }
3250
3251 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3252 {
3253         u32 hotplug_irqs, enabled_irqs;
3254
3255         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3256         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3257
3258         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3259
3260         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3261 }
3262
3263 static void ibx_irq_postinstall(struct drm_device *dev)
3264 {
3265         struct drm_i915_private *dev_priv = to_i915(dev);
3266         u32 mask;
3267
3268         if (HAS_PCH_NOP(dev_priv))
3269                 return;
3270
3271         if (HAS_PCH_IBX(dev_priv))
3272                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3273         else
3274                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3275
3276         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3277         I915_WRITE(SDEIMR, ~mask);
3278
3279         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3280             HAS_PCH_LPT(dev_priv))
3281                 ibx_hpd_detection_setup(dev_priv);
3282         else
3283                 spt_hpd_detection_setup(dev_priv);
3284 }
3285
3286 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3287 {
3288         struct drm_i915_private *dev_priv = to_i915(dev);
3289         u32 pm_irqs, gt_irqs;
3290
3291         pm_irqs = gt_irqs = 0;
3292
3293         dev_priv->gt_irq_mask = ~0;
3294         if (HAS_L3_DPF(dev_priv)) {
3295                 /* L3 parity interrupt is always unmasked. */
3296                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3297                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3298         }
3299
3300         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3301         if (IS_GEN5(dev_priv)) {
3302                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3303         } else {
3304                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3305         }
3306
3307         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3308
3309         if (INTEL_GEN(dev_priv) >= 6) {
3310                 /*
3311                  * RPS interrupts will get enabled/disabled on demand when RPS
3312                  * itself is enabled/disabled.
3313                  */
3314                 if (HAS_VEBOX(dev_priv)) {
3315                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3316                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3317                 }
3318
3319                 dev_priv->pm_imr = 0xffffffff;
3320                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3321         }
3322 }
3323
3324 static int ironlake_irq_postinstall(struct drm_device *dev)
3325 {
3326         struct drm_i915_private *dev_priv = to_i915(dev);
3327         u32 display_mask, extra_mask;
3328
3329         if (INTEL_GEN(dev_priv) >= 7) {
3330                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3331                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3332                                 DE_PLANEB_FLIP_DONE_IVB |
3333                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3334                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3335                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3336                               DE_DP_A_HOTPLUG_IVB);
3337         } else {
3338                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3339                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3340                                 DE_AUX_CHANNEL_A |
3341                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3342                                 DE_POISON);
3343                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3344                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3345                               DE_DP_A_HOTPLUG);
3346         }
3347
3348         dev_priv->irq_mask = ~display_mask;
3349
3350         I915_WRITE(HWSTAM, 0xeffe);
3351
3352         ibx_irq_pre_postinstall(dev);
3353
3354         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3355
3356         gen5_gt_irq_postinstall(dev);
3357
3358         ilk_hpd_detection_setup(dev_priv);
3359
3360         ibx_irq_postinstall(dev);
3361
3362         if (IS_IRONLAKE_M(dev_priv)) {
3363                 /* Enable PCU event interrupts
3364                  *
3365                  * spinlocking not required here for correctness since interrupt
3366                  * setup is guaranteed to run in single-threaded context. But we
3367                  * need it to make the assert_spin_locked happy. */
3368                 spin_lock_irq(&dev_priv->irq_lock);
3369                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3370                 spin_unlock_irq(&dev_priv->irq_lock);
3371         }
3372
3373         return 0;
3374 }
3375
3376 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3377 {
3378         lockdep_assert_held(&dev_priv->irq_lock);
3379
3380         if (dev_priv->display_irqs_enabled)
3381                 return;
3382
3383         dev_priv->display_irqs_enabled = true;
3384
3385         if (intel_irqs_enabled(dev_priv)) {
3386                 vlv_display_irq_reset(dev_priv);
3387                 vlv_display_irq_postinstall(dev_priv);
3388         }
3389 }
3390
3391 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3392 {
3393         lockdep_assert_held(&dev_priv->irq_lock);
3394
3395         if (!dev_priv->display_irqs_enabled)
3396                 return;
3397
3398         dev_priv->display_irqs_enabled = false;
3399
3400         if (intel_irqs_enabled(dev_priv))
3401                 vlv_display_irq_reset(dev_priv);
3402 }
3403
3404
3405 static int valleyview_irq_postinstall(struct drm_device *dev)
3406 {
3407         struct drm_i915_private *dev_priv = to_i915(dev);
3408
3409         gen5_gt_irq_postinstall(dev);
3410
3411         spin_lock_irq(&dev_priv->irq_lock);
3412         if (dev_priv->display_irqs_enabled)
3413                 vlv_display_irq_postinstall(dev_priv);
3414         spin_unlock_irq(&dev_priv->irq_lock);
3415
3416         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3417         POSTING_READ(VLV_MASTER_IER);
3418
3419         return 0;
3420 }
3421
3422 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3423 {
3424         /* These are interrupts we'll toggle with the ring mask register */
3425         uint32_t gt_interrupts[] = {
3426                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3427                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3428                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3429                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3430                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3431                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3432                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3433                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3434                 0,
3435                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3436                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3437                 };
3438
3439         if (HAS_L3_DPF(dev_priv))
3440                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3441
3442         dev_priv->pm_ier = 0x0;
3443         dev_priv->pm_imr = ~dev_priv->pm_ier;
3444         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3445         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3446         /*
3447          * RPS interrupts will get enabled/disabled on demand when RPS itself
3448          * is enabled/disabled. Same wil be the case for GuC interrupts.
3449          */
3450         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3451         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3452 }
3453
3454 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3455 {
3456         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3457         uint32_t de_pipe_enables;
3458         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3459         u32 de_port_enables;
3460         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3461         enum pipe pipe;
3462
3463         if (INTEL_INFO(dev_priv)->gen >= 9) {
3464                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3465                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3466                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3467                                   GEN9_AUX_CHANNEL_D;
3468                 if (IS_GEN9_LP(dev_priv))
3469                         de_port_masked |= BXT_DE_PORT_GMBUS;
3470         } else {
3471                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3472                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3473         }
3474
3475         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3476                                            GEN8_PIPE_FIFO_UNDERRUN;
3477
3478         de_port_enables = de_port_masked;
3479         if (IS_GEN9_LP(dev_priv))
3480                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3481         else if (IS_BROADWELL(dev_priv))
3482                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3483
3484         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3485         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3486         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3487
3488         for_each_pipe(dev_priv, pipe)
3489                 if (intel_display_power_is_enabled(dev_priv,
3490                                 POWER_DOMAIN_PIPE(pipe)))
3491                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3492                                           dev_priv->de_irq_mask[pipe],
3493                                           de_pipe_enables);
3494
3495         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3496         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3497
3498         if (IS_GEN9_LP(dev_priv))
3499                 bxt_hpd_detection_setup(dev_priv);
3500         else if (IS_BROADWELL(dev_priv))
3501                 ilk_hpd_detection_setup(dev_priv);
3502 }
3503
3504 static int gen8_irq_postinstall(struct drm_device *dev)
3505 {
3506         struct drm_i915_private *dev_priv = to_i915(dev);
3507
3508         if (HAS_PCH_SPLIT(dev_priv))
3509                 ibx_irq_pre_postinstall(dev);
3510
3511         gen8_gt_irq_postinstall(dev_priv);
3512         gen8_de_irq_postinstall(dev_priv);
3513
3514         if (HAS_PCH_SPLIT(dev_priv))
3515                 ibx_irq_postinstall(dev);
3516
3517         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3518         POSTING_READ(GEN8_MASTER_IRQ);
3519
3520         return 0;
3521 }
3522
3523 static int cherryview_irq_postinstall(struct drm_device *dev)
3524 {
3525         struct drm_i915_private *dev_priv = to_i915(dev);
3526
3527         gen8_gt_irq_postinstall(dev_priv);
3528
3529         spin_lock_irq(&dev_priv->irq_lock);
3530         if (dev_priv->display_irqs_enabled)
3531                 vlv_display_irq_postinstall(dev_priv);
3532         spin_unlock_irq(&dev_priv->irq_lock);
3533
3534         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3535         POSTING_READ(GEN8_MASTER_IRQ);
3536
3537         return 0;
3538 }
3539
3540 static void gen8_irq_uninstall(struct drm_device *dev)
3541 {
3542         struct drm_i915_private *dev_priv = to_i915(dev);
3543
3544         if (!dev_priv)
3545                 return;
3546
3547         gen8_irq_reset(dev);
3548 }
3549
3550 static void valleyview_irq_uninstall(struct drm_device *dev)
3551 {
3552         struct drm_i915_private *dev_priv = to_i915(dev);
3553
3554         if (!dev_priv)
3555                 return;
3556
3557         I915_WRITE(VLV_MASTER_IER, 0);
3558         POSTING_READ(VLV_MASTER_IER);
3559
3560         gen5_gt_irq_reset(dev_priv);
3561
3562         I915_WRITE(HWSTAM, 0xffffffff);
3563
3564         spin_lock_irq(&dev_priv->irq_lock);
3565         if (dev_priv->display_irqs_enabled)
3566                 vlv_display_irq_reset(dev_priv);
3567         spin_unlock_irq(&dev_priv->irq_lock);
3568 }
3569
3570 static void cherryview_irq_uninstall(struct drm_device *dev)
3571 {
3572         struct drm_i915_private *dev_priv = to_i915(dev);
3573
3574         if (!dev_priv)
3575                 return;
3576
3577         I915_WRITE(GEN8_MASTER_IRQ, 0);
3578         POSTING_READ(GEN8_MASTER_IRQ);
3579
3580         gen8_gt_irq_reset(dev_priv);
3581
3582         GEN5_IRQ_RESET(GEN8_PCU_);
3583
3584         spin_lock_irq(&dev_priv->irq_lock);
3585         if (dev_priv->display_irqs_enabled)
3586                 vlv_display_irq_reset(dev_priv);
3587         spin_unlock_irq(&dev_priv->irq_lock);
3588 }
3589
3590 static void ironlake_irq_uninstall(struct drm_device *dev)
3591 {
3592         struct drm_i915_private *dev_priv = to_i915(dev);
3593
3594         if (!dev_priv)
3595                 return;
3596
3597         ironlake_irq_reset(dev);
3598 }
3599
3600 static void i8xx_irq_preinstall(struct drm_device * dev)
3601 {
3602         struct drm_i915_private *dev_priv = to_i915(dev);
3603         int pipe;
3604
3605         for_each_pipe(dev_priv, pipe)
3606                 I915_WRITE(PIPESTAT(pipe), 0);
3607         I915_WRITE16(IMR, 0xffff);
3608         I915_WRITE16(IER, 0x0);
3609         POSTING_READ16(IER);
3610 }
3611
3612 static int i8xx_irq_postinstall(struct drm_device *dev)
3613 {
3614         struct drm_i915_private *dev_priv = to_i915(dev);
3615
3616         I915_WRITE16(EMR,
3617                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3618
3619         /* Unmask the interrupts that we always want on. */
3620         dev_priv->irq_mask =
3621                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3622                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3623                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3624                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3625         I915_WRITE16(IMR, dev_priv->irq_mask);
3626
3627         I915_WRITE16(IER,
3628                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3629                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3630                      I915_USER_INTERRUPT);
3631         POSTING_READ16(IER);
3632
3633         /* Interrupt setup is already guaranteed to be single-threaded, this is
3634          * just to make the assert_spin_locked check happy. */
3635         spin_lock_irq(&dev_priv->irq_lock);
3636         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3637         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3638         spin_unlock_irq(&dev_priv->irq_lock);
3639
3640         return 0;
3641 }
3642
3643 /*
3644  * Returns true when a page flip has completed.
3645  */
3646 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3647                                int plane, int pipe, u32 iir)
3648 {
3649         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3650
3651         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3652                 return false;
3653
3654         if ((iir & flip_pending) == 0)
3655                 goto check_page_flip;
3656
3657         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3658          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3659          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3660          * the flip is completed (no longer pending). Since this doesn't raise
3661          * an interrupt per se, we watch for the change at vblank.
3662          */
3663         if (I915_READ16(ISR) & flip_pending)
3664                 goto check_page_flip;
3665
3666         intel_finish_page_flip_cs(dev_priv, pipe);
3667         return true;
3668
3669 check_page_flip:
3670         intel_check_page_flip(dev_priv, pipe);
3671         return false;
3672 }
3673
3674 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3675 {
3676         struct drm_device *dev = arg;
3677         struct drm_i915_private *dev_priv = to_i915(dev);
3678         u16 iir, new_iir;
3679         u32 pipe_stats[2];
3680         int pipe;
3681         u16 flip_mask =
3682                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3683                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3684         irqreturn_t ret;
3685
3686         if (!intel_irqs_enabled(dev_priv))
3687                 return IRQ_NONE;
3688
3689         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3690         disable_rpm_wakeref_asserts(dev_priv);
3691
3692         ret = IRQ_NONE;
3693         iir = I915_READ16(IIR);
3694         if (iir == 0)
3695                 goto out;
3696
3697         while (iir & ~flip_mask) {
3698                 /* Can't rely on pipestat interrupt bit in iir as it might
3699                  * have been cleared after the pipestat interrupt was received.
3700                  * It doesn't set the bit in iir again, but it still produces
3701                  * interrupts (for non-MSI).
3702                  */
3703                 spin_lock(&dev_priv->irq_lock);
3704                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3705                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3706
3707                 for_each_pipe(dev_priv, pipe) {
3708                         i915_reg_t reg = PIPESTAT(pipe);
3709                         pipe_stats[pipe] = I915_READ(reg);
3710
3711                         /*
3712                          * Clear the PIPE*STAT regs before the IIR
3713                          */
3714                         if (pipe_stats[pipe] & 0x8000ffff)
3715                                 I915_WRITE(reg, pipe_stats[pipe]);
3716                 }
3717                 spin_unlock(&dev_priv->irq_lock);
3718
3719                 I915_WRITE16(IIR, iir & ~flip_mask);
3720                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3721
3722                 if (iir & I915_USER_INTERRUPT)
3723                         notify_ring(dev_priv->engine[RCS]);
3724
3725                 for_each_pipe(dev_priv, pipe) {
3726                         int plane = pipe;
3727                         if (HAS_FBC(dev_priv))
3728                                 plane = !plane;
3729
3730                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3731                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3732                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3733
3734                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3735                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3736
3737                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3738                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3739                                                                     pipe);
3740                 }
3741
3742                 iir = new_iir;
3743         }
3744         ret = IRQ_HANDLED;
3745
3746 out:
3747         enable_rpm_wakeref_asserts(dev_priv);
3748
3749         return ret;
3750 }
3751
3752 static void i8xx_irq_uninstall(struct drm_device * dev)
3753 {
3754         struct drm_i915_private *dev_priv = to_i915(dev);
3755         int pipe;
3756
3757         for_each_pipe(dev_priv, pipe) {
3758                 /* Clear enable bits; then clear status bits */
3759                 I915_WRITE(PIPESTAT(pipe), 0);
3760                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3761         }
3762         I915_WRITE16(IMR, 0xffff);
3763         I915_WRITE16(IER, 0x0);
3764         I915_WRITE16(IIR, I915_READ16(IIR));
3765 }
3766
3767 static void i915_irq_preinstall(struct drm_device * dev)
3768 {
3769         struct drm_i915_private *dev_priv = to_i915(dev);
3770         int pipe;
3771
3772         if (I915_HAS_HOTPLUG(dev_priv)) {
3773                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3774                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3775         }
3776
3777         I915_WRITE16(HWSTAM, 0xeffe);
3778         for_each_pipe(dev_priv, pipe)
3779                 I915_WRITE(PIPESTAT(pipe), 0);
3780         I915_WRITE(IMR, 0xffffffff);
3781         I915_WRITE(IER, 0x0);
3782         POSTING_READ(IER);
3783 }
3784
3785 static int i915_irq_postinstall(struct drm_device *dev)
3786 {
3787         struct drm_i915_private *dev_priv = to_i915(dev);
3788         u32 enable_mask;
3789
3790         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3791
3792         /* Unmask the interrupts that we always want on. */
3793         dev_priv->irq_mask =
3794                 ~(I915_ASLE_INTERRUPT |
3795                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3796                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3797                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3798                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3799
3800         enable_mask =
3801                 I915_ASLE_INTERRUPT |
3802                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3803                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3804                 I915_USER_INTERRUPT;
3805
3806         if (I915_HAS_HOTPLUG(dev_priv)) {
3807                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3808                 POSTING_READ(PORT_HOTPLUG_EN);
3809
3810                 /* Enable in IER... */
3811                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3812                 /* and unmask in IMR */
3813                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3814         }
3815
3816         I915_WRITE(IMR, dev_priv->irq_mask);
3817         I915_WRITE(IER, enable_mask);
3818         POSTING_READ(IER);
3819
3820         i915_enable_asle_pipestat(dev_priv);
3821
3822         /* Interrupt setup is already guaranteed to be single-threaded, this is
3823          * just to make the assert_spin_locked check happy. */
3824         spin_lock_irq(&dev_priv->irq_lock);
3825         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3826         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3827         spin_unlock_irq(&dev_priv->irq_lock);
3828
3829         return 0;
3830 }
3831
3832 /*
3833  * Returns true when a page flip has completed.
3834  */
3835 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3836                                int plane, int pipe, u32 iir)
3837 {
3838         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3839
3840         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3841                 return false;
3842
3843         if ((iir & flip_pending) == 0)
3844                 goto check_page_flip;
3845
3846         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3847          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3848          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3849          * the flip is completed (no longer pending). Since this doesn't raise
3850          * an interrupt per se, we watch for the change at vblank.
3851          */
3852         if (I915_READ(ISR) & flip_pending)
3853                 goto check_page_flip;
3854
3855         intel_finish_page_flip_cs(dev_priv, pipe);
3856         return true;
3857
3858 check_page_flip:
3859         intel_check_page_flip(dev_priv, pipe);
3860         return false;
3861 }
3862
3863 static irqreturn_t i915_irq_handler(int irq, void *arg)
3864 {
3865         struct drm_device *dev = arg;
3866         struct drm_i915_private *dev_priv = to_i915(dev);
3867         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3868         u32 flip_mask =
3869                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3870                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3871         int pipe, ret = IRQ_NONE;
3872
3873         if (!intel_irqs_enabled(dev_priv))
3874                 return IRQ_NONE;
3875
3876         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3877         disable_rpm_wakeref_asserts(dev_priv);
3878
3879         iir = I915_READ(IIR);
3880         do {
3881                 bool irq_received = (iir & ~flip_mask) != 0;
3882                 bool blc_event = false;
3883
3884                 /* Can't rely on pipestat interrupt bit in iir as it might
3885                  * have been cleared after the pipestat interrupt was received.
3886                  * It doesn't set the bit in iir again, but it still produces
3887                  * interrupts (for non-MSI).
3888                  */
3889                 spin_lock(&dev_priv->irq_lock);
3890                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3891                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3892
3893                 for_each_pipe(dev_priv, pipe) {
3894                         i915_reg_t reg = PIPESTAT(pipe);
3895                         pipe_stats[pipe] = I915_READ(reg);
3896
3897                         /* Clear the PIPE*STAT regs before the IIR */
3898                         if (pipe_stats[pipe] & 0x8000ffff) {
3899                                 I915_WRITE(reg, pipe_stats[pipe]);
3900                                 irq_received = true;
3901                         }
3902                 }
3903                 spin_unlock(&dev_priv->irq_lock);
3904
3905                 if (!irq_received)
3906                         break;
3907
3908                 /* Consume port.  Then clear IIR or we'll miss events */
3909                 if (I915_HAS_HOTPLUG(dev_priv) &&
3910                     iir & I915_DISPLAY_PORT_INTERRUPT) {
3911                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3912                         if (hotplug_status)
3913                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3914                 }
3915
3916                 I915_WRITE(IIR, iir & ~flip_mask);
3917                 new_iir = I915_READ(IIR); /* Flush posted writes */
3918
3919                 if (iir & I915_USER_INTERRUPT)
3920                         notify_ring(dev_priv->engine[RCS]);
3921
3922                 for_each_pipe(dev_priv, pipe) {
3923                         int plane = pipe;
3924                         if (HAS_FBC(dev_priv))
3925                                 plane = !plane;
3926
3927                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3928                             i915_handle_vblank(dev_priv, plane, pipe, iir))
3929                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3930
3931                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3932                                 blc_event = true;
3933
3934                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3935                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3936
3937                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3938                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3939                                                                     pipe);
3940                 }
3941
3942                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3943                         intel_opregion_asle_intr(dev_priv);
3944
3945                 /* With MSI, interrupts are only generated when iir
3946                  * transitions from zero to nonzero.  If another bit got
3947                  * set while we were handling the existing iir bits, then
3948                  * we would never get another interrupt.
3949                  *
3950                  * This is fine on non-MSI as well, as if we hit this path
3951                  * we avoid exiting the interrupt handler only to generate
3952                  * another one.
3953                  *
3954                  * Note that for MSI this could cause a stray interrupt report
3955                  * if an interrupt landed in the time between writing IIR and
3956                  * the posting read.  This should be rare enough to never
3957                  * trigger the 99% of 100,000 interrupts test for disabling
3958                  * stray interrupts.
3959                  */
3960                 ret = IRQ_HANDLED;
3961                 iir = new_iir;
3962         } while (iir & ~flip_mask);
3963
3964         enable_rpm_wakeref_asserts(dev_priv);
3965
3966         return ret;
3967 }
3968
3969 static void i915_irq_uninstall(struct drm_device * dev)
3970 {
3971         struct drm_i915_private *dev_priv = to_i915(dev);
3972         int pipe;
3973
3974         if (I915_HAS_HOTPLUG(dev_priv)) {
3975                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3976                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3977         }
3978
3979         I915_WRITE16(HWSTAM, 0xffff);
3980         for_each_pipe(dev_priv, pipe) {
3981                 /* Clear enable bits; then clear status bits */
3982                 I915_WRITE(PIPESTAT(pipe), 0);
3983                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3984         }
3985         I915_WRITE(IMR, 0xffffffff);
3986         I915_WRITE(IER, 0x0);
3987
3988         I915_WRITE(IIR, I915_READ(IIR));
3989 }
3990
3991 static void i965_irq_preinstall(struct drm_device * dev)
3992 {
3993         struct drm_i915_private *dev_priv = to_i915(dev);
3994         int pipe;
3995
3996         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3997         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3998
3999         I915_WRITE(HWSTAM, 0xeffe);
4000         for_each_pipe(dev_priv, pipe)
4001                 I915_WRITE(PIPESTAT(pipe), 0);
4002         I915_WRITE(IMR, 0xffffffff);
4003         I915_WRITE(IER, 0x0);
4004         POSTING_READ(IER);
4005 }
4006
4007 static int i965_irq_postinstall(struct drm_device *dev)
4008 {
4009         struct drm_i915_private *dev_priv = to_i915(dev);
4010         u32 enable_mask;
4011         u32 error_mask;
4012
4013         /* Unmask the interrupts that we always want on. */
4014         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4015                                I915_DISPLAY_PORT_INTERRUPT |
4016                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4017                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4018                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4019                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4020                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4021
4022         enable_mask = ~dev_priv->irq_mask;
4023         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4024                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4025         enable_mask |= I915_USER_INTERRUPT;
4026
4027         if (IS_G4X(dev_priv))
4028                 enable_mask |= I915_BSD_USER_INTERRUPT;
4029
4030         /* Interrupt setup is already guaranteed to be single-threaded, this is
4031          * just to make the assert_spin_locked check happy. */
4032         spin_lock_irq(&dev_priv->irq_lock);
4033         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4034         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4035         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4036         spin_unlock_irq(&dev_priv->irq_lock);
4037
4038         /*
4039          * Enable some error detection, note the instruction error mask
4040          * bit is reserved, so we leave it masked.
4041          */
4042         if (IS_G4X(dev_priv)) {
4043                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4044                                GM45_ERROR_MEM_PRIV |
4045                                GM45_ERROR_CP_PRIV |
4046                                I915_ERROR_MEMORY_REFRESH);
4047         } else {
4048                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4049                                I915_ERROR_MEMORY_REFRESH);
4050         }
4051         I915_WRITE(EMR, error_mask);
4052
4053         I915_WRITE(IMR, dev_priv->irq_mask);
4054         I915_WRITE(IER, enable_mask);
4055         POSTING_READ(IER);
4056
4057         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4058         POSTING_READ(PORT_HOTPLUG_EN);
4059
4060         i915_enable_asle_pipestat(dev_priv);
4061
4062         return 0;
4063 }
4064
4065 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4066 {
4067         u32 hotplug_en;
4068
4069         lockdep_assert_held(&dev_priv->irq_lock);
4070
4071         /* Note HDMI and DP share hotplug bits */
4072         /* enable bits are the same for all generations */
4073         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4074         /* Programming the CRT detection parameters tends
4075            to generate a spurious hotplug event about three
4076            seconds later.  So just do it once.
4077         */
4078         if (IS_G4X(dev_priv))
4079                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4080         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4081
4082         /* Ignore TV since it's buggy */
4083         i915_hotplug_interrupt_update_locked(dev_priv,
4084                                              HOTPLUG_INT_EN_MASK |
4085                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4086                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4087                                              hotplug_en);
4088 }
4089
4090 static irqreturn_t i965_irq_handler(int irq, void *arg)
4091 {
4092         struct drm_device *dev = arg;
4093         struct drm_i915_private *dev_priv = to_i915(dev);
4094         u32 iir, new_iir;
4095         u32 pipe_stats[I915_MAX_PIPES];
4096         int ret = IRQ_NONE, pipe;
4097         u32 flip_mask =
4098                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4099                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4100
4101         if (!intel_irqs_enabled(dev_priv))
4102                 return IRQ_NONE;
4103
4104         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4105         disable_rpm_wakeref_asserts(dev_priv);
4106
4107         iir = I915_READ(IIR);
4108
4109         for (;;) {
4110                 bool irq_received = (iir & ~flip_mask) != 0;
4111                 bool blc_event = false;
4112
4113                 /* Can't rely on pipestat interrupt bit in iir as it might
4114                  * have been cleared after the pipestat interrupt was received.
4115                  * It doesn't set the bit in iir again, but it still produces
4116                  * interrupts (for non-MSI).
4117                  */
4118                 spin_lock(&dev_priv->irq_lock);
4119                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4120                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4121
4122                 for_each_pipe(dev_priv, pipe) {
4123                         i915_reg_t reg = PIPESTAT(pipe);
4124                         pipe_stats[pipe] = I915_READ(reg);
4125
4126                         /*
4127                          * Clear the PIPE*STAT regs before the IIR
4128                          */
4129                         if (pipe_stats[pipe] & 0x8000ffff) {
4130                                 I915_WRITE(reg, pipe_stats[pipe]);
4131                                 irq_received = true;
4132                         }
4133                 }
4134                 spin_unlock(&dev_priv->irq_lock);
4135
4136                 if (!irq_received)
4137                         break;
4138
4139                 ret = IRQ_HANDLED;
4140
4141                 /* Consume port.  Then clear IIR or we'll miss events */
4142                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4143                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4144                         if (hotplug_status)
4145                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4146                 }
4147
4148                 I915_WRITE(IIR, iir & ~flip_mask);
4149                 new_iir = I915_READ(IIR); /* Flush posted writes */
4150
4151                 if (iir & I915_USER_INTERRUPT)
4152                         notify_ring(dev_priv->engine[RCS]);
4153                 if (iir & I915_BSD_USER_INTERRUPT)
4154                         notify_ring(dev_priv->engine[VCS]);
4155
4156                 for_each_pipe(dev_priv, pipe) {
4157                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4158                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4159                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4160
4161                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4162                                 blc_event = true;
4163
4164                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4165                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4166
4167                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4168                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4169                 }
4170
4171                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4172                         intel_opregion_asle_intr(dev_priv);
4173
4174                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4175                         gmbus_irq_handler(dev_priv);
4176
4177                 /* With MSI, interrupts are only generated when iir
4178                  * transitions from zero to nonzero.  If another bit got
4179                  * set while we were handling the existing iir bits, then
4180                  * we would never get another interrupt.
4181                  *
4182                  * This is fine on non-MSI as well, as if we hit this path
4183                  * we avoid exiting the interrupt handler only to generate
4184                  * another one.
4185                  *
4186                  * Note that for MSI this could cause a stray interrupt report
4187                  * if an interrupt landed in the time between writing IIR and
4188                  * the posting read.  This should be rare enough to never
4189                  * trigger the 99% of 100,000 interrupts test for disabling
4190                  * stray interrupts.
4191                  */
4192                 iir = new_iir;
4193         }
4194
4195         enable_rpm_wakeref_asserts(dev_priv);
4196
4197         return ret;
4198 }
4199
4200 static void i965_irq_uninstall(struct drm_device * dev)
4201 {
4202         struct drm_i915_private *dev_priv = to_i915(dev);
4203         int pipe;
4204
4205         if (!dev_priv)
4206                 return;
4207
4208         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4209         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4210
4211         I915_WRITE(HWSTAM, 0xffffffff);
4212         for_each_pipe(dev_priv, pipe)
4213                 I915_WRITE(PIPESTAT(pipe), 0);
4214         I915_WRITE(IMR, 0xffffffff);
4215         I915_WRITE(IER, 0x0);
4216
4217         for_each_pipe(dev_priv, pipe)
4218                 I915_WRITE(PIPESTAT(pipe),
4219                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4220         I915_WRITE(IIR, I915_READ(IIR));
4221 }
4222
4223 /**
4224  * intel_irq_init - initializes irq support
4225  * @dev_priv: i915 device instance
4226  *
4227  * This function initializes all the irq support including work items, timers
4228  * and all the vtables. It does not setup the interrupt itself though.
4229  */
4230 void intel_irq_init(struct drm_i915_private *dev_priv)
4231 {
4232         struct drm_device *dev = &dev_priv->drm;
4233
4234         intel_hpd_init_work(dev_priv);
4235
4236         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4237         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4238
4239         if (HAS_GUC_SCHED(dev_priv))
4240                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4241
4242         /* Let's track the enabled rps events */
4243         if (IS_VALLEYVIEW(dev_priv))
4244                 /* WaGsvRC0ResidencyMethod:vlv */
4245                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4246         else
4247                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4248
4249         dev_priv->rps.pm_intrmsk_mbz = 0;
4250
4251         /*
4252          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4253          * if GEN6_PM_UP_EI_EXPIRED is masked.
4254          *
4255          * TODO: verify if this can be reproduced on VLV,CHV.
4256          */
4257         if (INTEL_INFO(dev_priv)->gen <= 7)
4258                 dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4259
4260         if (INTEL_INFO(dev_priv)->gen >= 8)
4261                 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4262
4263         if (IS_GEN2(dev_priv)) {
4264                 /* Gen2 doesn't have a hardware frame counter */
4265                 dev->max_vblank_count = 0;
4266         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4267                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4268                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4269         } else {
4270                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4271                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4272         }
4273
4274         /*
4275          * Opt out of the vblank disable timer on everything except gen2.
4276          * Gen2 doesn't have a hardware frame counter and so depends on
4277          * vblank interrupts to produce sane vblank seuquence numbers.
4278          */
4279         if (!IS_GEN2(dev_priv))
4280                 dev->vblank_disable_immediate = true;
4281
4282         /* Most platforms treat the display irq block as an always-on
4283          * power domain. vlv/chv can disable it at runtime and need
4284          * special care to avoid writing any of the display block registers
4285          * outside of the power domain. We defer setting up the display irqs
4286          * in this case to the runtime pm.
4287          */
4288         dev_priv->display_irqs_enabled = true;
4289         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4290                 dev_priv->display_irqs_enabled = false;
4291
4292         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4293
4294         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4295         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4296
4297         if (IS_CHERRYVIEW(dev_priv)) {
4298                 dev->driver->irq_handler = cherryview_irq_handler;
4299                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4300                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4301                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4302                 dev->driver->enable_vblank = i965_enable_vblank;
4303                 dev->driver->disable_vblank = i965_disable_vblank;
4304                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4305         } else if (IS_VALLEYVIEW(dev_priv)) {
4306                 dev->driver->irq_handler = valleyview_irq_handler;
4307                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4308                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4309                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4310                 dev->driver->enable_vblank = i965_enable_vblank;
4311                 dev->driver->disable_vblank = i965_disable_vblank;
4312                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4313         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4314                 dev->driver->irq_handler = gen8_irq_handler;
4315                 dev->driver->irq_preinstall = gen8_irq_reset;
4316                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4317                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4318                 dev->driver->enable_vblank = gen8_enable_vblank;
4319                 dev->driver->disable_vblank = gen8_disable_vblank;
4320                 if (IS_GEN9_LP(dev_priv))
4321                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4322                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4323                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4324                 else
4325                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4326         } else if (HAS_PCH_SPLIT(dev_priv)) {
4327                 dev->driver->irq_handler = ironlake_irq_handler;
4328                 dev->driver->irq_preinstall = ironlake_irq_reset;
4329                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4330                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4331                 dev->driver->enable_vblank = ironlake_enable_vblank;
4332                 dev->driver->disable_vblank = ironlake_disable_vblank;
4333                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4334         } else {
4335                 if (IS_GEN2(dev_priv)) {
4336                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4337                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4338                         dev->driver->irq_handler = i8xx_irq_handler;
4339                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4340                         dev->driver->enable_vblank = i8xx_enable_vblank;
4341                         dev->driver->disable_vblank = i8xx_disable_vblank;
4342                 } else if (IS_GEN3(dev_priv)) {
4343                         dev->driver->irq_preinstall = i915_irq_preinstall;
4344                         dev->driver->irq_postinstall = i915_irq_postinstall;
4345                         dev->driver->irq_uninstall = i915_irq_uninstall;
4346                         dev->driver->irq_handler = i915_irq_handler;
4347                         dev->driver->enable_vblank = i8xx_enable_vblank;
4348                         dev->driver->disable_vblank = i8xx_disable_vblank;
4349                 } else {
4350                         dev->driver->irq_preinstall = i965_irq_preinstall;
4351                         dev->driver->irq_postinstall = i965_irq_postinstall;
4352                         dev->driver->irq_uninstall = i965_irq_uninstall;
4353                         dev->driver->irq_handler = i965_irq_handler;
4354                         dev->driver->enable_vblank = i965_enable_vblank;
4355                         dev->driver->disable_vblank = i965_disable_vblank;
4356                 }
4357                 if (I915_HAS_HOTPLUG(dev_priv))
4358                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4359         }
4360 }
4361
4362 /**
4363  * intel_irq_install - enables the hardware interrupt
4364  * @dev_priv: i915 device instance
4365  *
4366  * This function enables the hardware interrupt handling, but leaves the hotplug
4367  * handling still disabled. It is called after intel_irq_init().
4368  *
4369  * In the driver load and resume code we need working interrupts in a few places
4370  * but don't want to deal with the hassle of concurrent probe and hotplug
4371  * workers. Hence the split into this two-stage approach.
4372  */
4373 int intel_irq_install(struct drm_i915_private *dev_priv)
4374 {
4375         /*
4376          * We enable some interrupt sources in our postinstall hooks, so mark
4377          * interrupts as enabled _before_ actually enabling them to avoid
4378          * special cases in our ordering checks.
4379          */
4380         dev_priv->pm.irqs_enabled = true;
4381
4382         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4383 }
4384
4385 /**
4386  * intel_irq_uninstall - finilizes all irq handling
4387  * @dev_priv: i915 device instance
4388  *
4389  * This stops interrupt and hotplug handling and unregisters and frees all
4390  * resources acquired in the init functions.
4391  */
4392 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4393 {
4394         drm_irq_uninstall(&dev_priv->drm);
4395         intel_hpd_cancel_work(dev_priv);
4396         dev_priv->pm.irqs_enabled = false;
4397 }
4398
4399 /**
4400  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4401  * @dev_priv: i915 device instance
4402  *
4403  * This function is used to disable interrupts at runtime, both in the runtime
4404  * pm and the system suspend/resume code.
4405  */
4406 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4407 {
4408         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4409         dev_priv->pm.irqs_enabled = false;
4410         synchronize_irq(dev_priv->drm.irq);
4411 }
4412
4413 /**
4414  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4415  * @dev_priv: i915 device instance
4416  *
4417  * This function is used to enable interrupts at runtime, both in the runtime
4418  * pm and the system suspend/resume code.
4419  */
4420 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4421 {
4422         dev_priv->pm.irqs_enabled = true;
4423         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4424         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4425 }