Merge tag 'drm-intel-next-2016-10-24' of git://anongit.freedesktop.org/drm-intel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/uaccess.h>
32
33 #include <drm/drmP.h>
34 #include <drm/i915_drm.h>
35
36 #include "i915_drv.h"
37 #include "i915_gem_dmabuf.h"
38 #include "i915_trace.h"
39 #include "intel_drv.h"
40 #include "intel_frontbuffer.h"
41
42 #define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
43
44 #define  __EXEC_OBJECT_HAS_PIN          (1<<31)
45 #define  __EXEC_OBJECT_HAS_FENCE        (1<<30)
46 #define  __EXEC_OBJECT_NEEDS_MAP        (1<<29)
47 #define  __EXEC_OBJECT_NEEDS_BIAS       (1<<28)
48 #define  __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
49
50 #define BATCH_OFFSET_BIAS (256*1024)
51
52 struct i915_execbuffer_params {
53         struct drm_device               *dev;
54         struct drm_file                 *file;
55         struct i915_vma                 *batch;
56         u32                             dispatch_flags;
57         u32                             args_batch_start_offset;
58         struct intel_engine_cs          *engine;
59         struct i915_gem_context         *ctx;
60         struct drm_i915_gem_request     *request;
61 };
62
63 struct eb_vmas {
64         struct drm_i915_private *i915;
65         struct list_head vmas;
66         int and;
67         union {
68                 struct i915_vma *lut[0];
69                 struct hlist_head buckets[0];
70         };
71 };
72
73 static struct eb_vmas *
74 eb_create(struct drm_i915_private *i915,
75           struct drm_i915_gem_execbuffer2 *args)
76 {
77         struct eb_vmas *eb = NULL;
78
79         if (args->flags & I915_EXEC_HANDLE_LUT) {
80                 unsigned size = args->buffer_count;
81                 size *= sizeof(struct i915_vma *);
82                 size += sizeof(struct eb_vmas);
83                 eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
84         }
85
86         if (eb == NULL) {
87                 unsigned size = args->buffer_count;
88                 unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
89                 BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
90                 while (count > 2*size)
91                         count >>= 1;
92                 eb = kzalloc(count*sizeof(struct hlist_head) +
93                              sizeof(struct eb_vmas),
94                              GFP_TEMPORARY);
95                 if (eb == NULL)
96                         return eb;
97
98                 eb->and = count - 1;
99         } else
100                 eb->and = -args->buffer_count;
101
102         eb->i915 = i915;
103         INIT_LIST_HEAD(&eb->vmas);
104         return eb;
105 }
106
107 static void
108 eb_reset(struct eb_vmas *eb)
109 {
110         if (eb->and >= 0)
111                 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
112 }
113
114 static struct i915_vma *
115 eb_get_batch(struct eb_vmas *eb)
116 {
117         struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
118
119         /*
120          * SNA is doing fancy tricks with compressing batch buffers, which leads
121          * to negative relocation deltas. Usually that works out ok since the
122          * relocate address is still positive, except when the batch is placed
123          * very low in the GTT. Ensure this doesn't happen.
124          *
125          * Note that actual hangs have only been observed on gen7, but for
126          * paranoia do it everywhere.
127          */
128         if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
129                 vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
130
131         return vma;
132 }
133
134 static int
135 eb_lookup_vmas(struct eb_vmas *eb,
136                struct drm_i915_gem_exec_object2 *exec,
137                const struct drm_i915_gem_execbuffer2 *args,
138                struct i915_address_space *vm,
139                struct drm_file *file)
140 {
141         struct drm_i915_gem_object *obj;
142         struct list_head objects;
143         int i, ret;
144
145         INIT_LIST_HEAD(&objects);
146         spin_lock(&file->table_lock);
147         /* Grab a reference to the object and release the lock so we can lookup
148          * or create the VMA without using GFP_ATOMIC */
149         for (i = 0; i < args->buffer_count; i++) {
150                 obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
151                 if (obj == NULL) {
152                         spin_unlock(&file->table_lock);
153                         DRM_DEBUG("Invalid object handle %d at index %d\n",
154                                    exec[i].handle, i);
155                         ret = -ENOENT;
156                         goto err;
157                 }
158
159                 if (!list_empty(&obj->obj_exec_link)) {
160                         spin_unlock(&file->table_lock);
161                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
162                                    obj, exec[i].handle, i);
163                         ret = -EINVAL;
164                         goto err;
165                 }
166
167                 i915_gem_object_get(obj);
168                 list_add_tail(&obj->obj_exec_link, &objects);
169         }
170         spin_unlock(&file->table_lock);
171
172         i = 0;
173         while (!list_empty(&objects)) {
174                 struct i915_vma *vma;
175
176                 obj = list_first_entry(&objects,
177                                        struct drm_i915_gem_object,
178                                        obj_exec_link);
179
180                 /*
181                  * NOTE: We can leak any vmas created here when something fails
182                  * later on. But that's no issue since vma_unbind can deal with
183                  * vmas which are not actually bound. And since only
184                  * lookup_or_create exists as an interface to get at the vma
185                  * from the (obj, vm) we don't run the risk of creating
186                  * duplicated vmas for the same vm.
187                  */
188                 vma = i915_gem_obj_lookup_or_create_vma(obj, vm, NULL);
189                 if (unlikely(IS_ERR(vma))) {
190                         DRM_DEBUG("Failed to lookup VMA\n");
191                         ret = PTR_ERR(vma);
192                         goto err;
193                 }
194
195                 /* Transfer ownership from the objects list to the vmas list. */
196                 list_add_tail(&vma->exec_list, &eb->vmas);
197                 list_del_init(&obj->obj_exec_link);
198
199                 vma->exec_entry = &exec[i];
200                 if (eb->and < 0) {
201                         eb->lut[i] = vma;
202                 } else {
203                         uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
204                         vma->exec_handle = handle;
205                         hlist_add_head(&vma->exec_node,
206                                        &eb->buckets[handle & eb->and]);
207                 }
208                 ++i;
209         }
210
211         return 0;
212
213
214 err:
215         while (!list_empty(&objects)) {
216                 obj = list_first_entry(&objects,
217                                        struct drm_i915_gem_object,
218                                        obj_exec_link);
219                 list_del_init(&obj->obj_exec_link);
220                 i915_gem_object_put(obj);
221         }
222         /*
223          * Objects already transfered to the vmas list will be unreferenced by
224          * eb_destroy.
225          */
226
227         return ret;
228 }
229
230 static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
231 {
232         if (eb->and < 0) {
233                 if (handle >= -eb->and)
234                         return NULL;
235                 return eb->lut[handle];
236         } else {
237                 struct hlist_head *head;
238                 struct i915_vma *vma;
239
240                 head = &eb->buckets[handle & eb->and];
241                 hlist_for_each_entry(vma, head, exec_node) {
242                         if (vma->exec_handle == handle)
243                                 return vma;
244                 }
245                 return NULL;
246         }
247 }
248
249 static void
250 i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
251 {
252         struct drm_i915_gem_exec_object2 *entry;
253
254         if (!drm_mm_node_allocated(&vma->node))
255                 return;
256
257         entry = vma->exec_entry;
258
259         if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
260                 i915_vma_unpin_fence(vma);
261
262         if (entry->flags & __EXEC_OBJECT_HAS_PIN)
263                 __i915_vma_unpin(vma);
264
265         entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
266 }
267
268 static void eb_destroy(struct eb_vmas *eb)
269 {
270         while (!list_empty(&eb->vmas)) {
271                 struct i915_vma *vma;
272
273                 vma = list_first_entry(&eb->vmas,
274                                        struct i915_vma,
275                                        exec_list);
276                 list_del_init(&vma->exec_list);
277                 i915_gem_execbuffer_unreserve_vma(vma);
278                 i915_vma_put(vma);
279         }
280         kfree(eb);
281 }
282
283 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
284 {
285         if (!i915_gem_object_has_struct_page(obj))
286                 return false;
287
288         if (DBG_USE_CPU_RELOC)
289                 return DBG_USE_CPU_RELOC > 0;
290
291         return (HAS_LLC(obj->base.dev) ||
292                 obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
293                 obj->cache_level != I915_CACHE_NONE);
294 }
295
296 /* Used to convert any address to canonical form.
297  * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
298  * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
299  * addresses to be in a canonical form:
300  * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
301  * canonical form [63:48] == [47]."
302  */
303 #define GEN8_HIGH_ADDRESS_BIT 47
304 static inline uint64_t gen8_canonical_addr(uint64_t address)
305 {
306         return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
307 }
308
309 static inline uint64_t gen8_noncanonical_addr(uint64_t address)
310 {
311         return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
312 }
313
314 static inline uint64_t
315 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
316                   uint64_t target_offset)
317 {
318         return gen8_canonical_addr((int)reloc->delta + target_offset);
319 }
320
321 struct reloc_cache {
322         struct drm_i915_private *i915;
323         struct drm_mm_node node;
324         unsigned long vaddr;
325         unsigned int page;
326         bool use_64bit_reloc;
327 };
328
329 static void reloc_cache_init(struct reloc_cache *cache,
330                              struct drm_i915_private *i915)
331 {
332         cache->page = -1;
333         cache->vaddr = 0;
334         cache->i915 = i915;
335         cache->use_64bit_reloc = INTEL_GEN(cache->i915) >= 8;
336         cache->node.allocated = false;
337 }
338
339 static inline void *unmask_page(unsigned long p)
340 {
341         return (void *)(uintptr_t)(p & PAGE_MASK);
342 }
343
344 static inline unsigned int unmask_flags(unsigned long p)
345 {
346         return p & ~PAGE_MASK;
347 }
348
349 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
350
351 static void reloc_cache_fini(struct reloc_cache *cache)
352 {
353         void *vaddr;
354
355         if (!cache->vaddr)
356                 return;
357
358         vaddr = unmask_page(cache->vaddr);
359         if (cache->vaddr & KMAP) {
360                 if (cache->vaddr & CLFLUSH_AFTER)
361                         mb();
362
363                 kunmap_atomic(vaddr);
364                 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
365         } else {
366                 wmb();
367                 io_mapping_unmap_atomic((void __iomem *)vaddr);
368                 if (cache->node.allocated) {
369                         struct i915_ggtt *ggtt = &cache->i915->ggtt;
370
371                         ggtt->base.clear_range(&ggtt->base,
372                                                cache->node.start,
373                                                cache->node.size);
374                         drm_mm_remove_node(&cache->node);
375                 } else {
376                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
377                 }
378         }
379 }
380
381 static void *reloc_kmap(struct drm_i915_gem_object *obj,
382                         struct reloc_cache *cache,
383                         int page)
384 {
385         void *vaddr;
386
387         if (cache->vaddr) {
388                 kunmap_atomic(unmask_page(cache->vaddr));
389         } else {
390                 unsigned int flushes;
391                 int ret;
392
393                 ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
394                 if (ret)
395                         return ERR_PTR(ret);
396
397                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
398                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
399
400                 cache->vaddr = flushes | KMAP;
401                 cache->node.mm = (void *)obj;
402                 if (flushes)
403                         mb();
404         }
405
406         vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
407         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
408         cache->page = page;
409
410         return vaddr;
411 }
412
413 static void *reloc_iomap(struct drm_i915_gem_object *obj,
414                          struct reloc_cache *cache,
415                          int page)
416 {
417         struct i915_ggtt *ggtt = &cache->i915->ggtt;
418         unsigned long offset;
419         void *vaddr;
420
421         if (cache->node.allocated) {
422                 wmb();
423                 ggtt->base.insert_page(&ggtt->base,
424                                        i915_gem_object_get_dma_address(obj, page),
425                                        cache->node.start, I915_CACHE_NONE, 0);
426                 cache->page = page;
427                 return unmask_page(cache->vaddr);
428         }
429
430         if (cache->vaddr) {
431                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
432         } else {
433                 struct i915_vma *vma;
434                 int ret;
435
436                 if (use_cpu_reloc(obj))
437                         return NULL;
438
439                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
440                 if (ret)
441                         return ERR_PTR(ret);
442
443                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
444                                                PIN_MAPPABLE | PIN_NONBLOCK);
445                 if (IS_ERR(vma)) {
446                         memset(&cache->node, 0, sizeof(cache->node));
447                         ret = drm_mm_insert_node_in_range_generic
448                                 (&ggtt->base.mm, &cache->node,
449                                  4096, 0, 0,
450                                  0, ggtt->mappable_end,
451                                  DRM_MM_SEARCH_DEFAULT,
452                                  DRM_MM_CREATE_DEFAULT);
453                         if (ret) /* no inactive aperture space, use cpu reloc */
454                                 return NULL;
455                 } else {
456                         ret = i915_vma_put_fence(vma);
457                         if (ret) {
458                                 i915_vma_unpin(vma);
459                                 return ERR_PTR(ret);
460                         }
461
462                         cache->node.start = vma->node.start;
463                         cache->node.mm = (void *)vma;
464                 }
465         }
466
467         offset = cache->node.start;
468         if (cache->node.allocated) {
469                 ggtt->base.insert_page(&ggtt->base,
470                                        i915_gem_object_get_dma_address(obj, page),
471                                        offset, I915_CACHE_NONE, 0);
472         } else {
473                 offset += page << PAGE_SHIFT;
474         }
475
476         vaddr = (void __force *) io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
477         cache->page = page;
478         cache->vaddr = (unsigned long)vaddr;
479
480         return vaddr;
481 }
482
483 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
484                          struct reloc_cache *cache,
485                          int page)
486 {
487         void *vaddr;
488
489         if (cache->page == page) {
490                 vaddr = unmask_page(cache->vaddr);
491         } else {
492                 vaddr = NULL;
493                 if ((cache->vaddr & KMAP) == 0)
494                         vaddr = reloc_iomap(obj, cache, page);
495                 if (!vaddr)
496                         vaddr = reloc_kmap(obj, cache, page);
497         }
498
499         return vaddr;
500 }
501
502 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
503 {
504         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
505                 if (flushes & CLFLUSH_BEFORE) {
506                         clflushopt(addr);
507                         mb();
508                 }
509
510                 *addr = value;
511
512                 /* Writes to the same cacheline are serialised by the CPU
513                  * (including clflush). On the write path, we only require
514                  * that it hits memory in an orderly fashion and place
515                  * mb barriers at the start and end of the relocation phase
516                  * to ensure ordering of clflush wrt to the system.
517                  */
518                 if (flushes & CLFLUSH_AFTER)
519                         clflushopt(addr);
520         } else
521                 *addr = value;
522 }
523
524 static int
525 relocate_entry(struct drm_i915_gem_object *obj,
526                const struct drm_i915_gem_relocation_entry *reloc,
527                struct reloc_cache *cache,
528                u64 target_offset)
529 {
530         u64 offset = reloc->offset;
531         bool wide = cache->use_64bit_reloc;
532         void *vaddr;
533
534         target_offset = relocation_target(reloc, target_offset);
535 repeat:
536         vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
537         if (IS_ERR(vaddr))
538                 return PTR_ERR(vaddr);
539
540         clflush_write32(vaddr + offset_in_page(offset),
541                         lower_32_bits(target_offset),
542                         cache->vaddr);
543
544         if (wide) {
545                 offset += sizeof(u32);
546                 target_offset >>= 32;
547                 wide = false;
548                 goto repeat;
549         }
550
551         return 0;
552 }
553
554 static int
555 i915_gem_execbuffer_relocate_entry(struct drm_i915_gem_object *obj,
556                                    struct eb_vmas *eb,
557                                    struct drm_i915_gem_relocation_entry *reloc,
558                                    struct reloc_cache *cache)
559 {
560         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
561         struct drm_gem_object *target_obj;
562         struct drm_i915_gem_object *target_i915_obj;
563         struct i915_vma *target_vma;
564         uint64_t target_offset;
565         int ret;
566
567         /* we've already hold a reference to all valid objects */
568         target_vma = eb_get_vma(eb, reloc->target_handle);
569         if (unlikely(target_vma == NULL))
570                 return -ENOENT;
571         target_i915_obj = target_vma->obj;
572         target_obj = &target_vma->obj->base;
573
574         target_offset = gen8_canonical_addr(target_vma->node.start);
575
576         /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
577          * pipe_control writes because the gpu doesn't properly redirect them
578          * through the ppgtt for non_secure batchbuffers. */
579         if (unlikely(IS_GEN6(dev_priv) &&
580             reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
581                 ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
582                                     PIN_GLOBAL);
583                 if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
584                         return ret;
585         }
586
587         /* Validate that the target is in a valid r/w GPU domain */
588         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
589                 DRM_DEBUG("reloc with multiple write domains: "
590                           "obj %p target %d offset %d "
591                           "read %08x write %08x",
592                           obj, reloc->target_handle,
593                           (int) reloc->offset,
594                           reloc->read_domains,
595                           reloc->write_domain);
596                 return -EINVAL;
597         }
598         if (unlikely((reloc->write_domain | reloc->read_domains)
599                      & ~I915_GEM_GPU_DOMAINS)) {
600                 DRM_DEBUG("reloc with read/write non-GPU domains: "
601                           "obj %p target %d offset %d "
602                           "read %08x write %08x",
603                           obj, reloc->target_handle,
604                           (int) reloc->offset,
605                           reloc->read_domains,
606                           reloc->write_domain);
607                 return -EINVAL;
608         }
609
610         target_obj->pending_read_domains |= reloc->read_domains;
611         target_obj->pending_write_domain |= reloc->write_domain;
612
613         /* If the relocation already has the right value in it, no
614          * more work needs to be done.
615          */
616         if (target_offset == reloc->presumed_offset)
617                 return 0;
618
619         /* Check that the relocation address is valid... */
620         if (unlikely(reloc->offset >
621                      obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
622                 DRM_DEBUG("Relocation beyond object bounds: "
623                           "obj %p target %d offset %d size %d.\n",
624                           obj, reloc->target_handle,
625                           (int) reloc->offset,
626                           (int) obj->base.size);
627                 return -EINVAL;
628         }
629         if (unlikely(reloc->offset & 3)) {
630                 DRM_DEBUG("Relocation not 4-byte aligned: "
631                           "obj %p target %d offset %d.\n",
632                           obj, reloc->target_handle,
633                           (int) reloc->offset);
634                 return -EINVAL;
635         }
636
637         ret = relocate_entry(obj, reloc, cache, target_offset);
638         if (ret)
639                 return ret;
640
641         /* and update the user's relocation entry */
642         reloc->presumed_offset = target_offset;
643         return 0;
644 }
645
646 static int
647 i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
648                                  struct eb_vmas *eb)
649 {
650 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
651         struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
652         struct drm_i915_gem_relocation_entry __user *user_relocs;
653         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
654         struct reloc_cache cache;
655         int remain, ret = 0;
656
657         user_relocs = u64_to_user_ptr(entry->relocs_ptr);
658         reloc_cache_init(&cache, eb->i915);
659
660         remain = entry->relocation_count;
661         while (remain) {
662                 struct drm_i915_gem_relocation_entry *r = stack_reloc;
663                 unsigned long unwritten;
664                 unsigned int count;
665
666                 count = min_t(unsigned int, remain, ARRAY_SIZE(stack_reloc));
667                 remain -= count;
668
669                 /* This is the fast path and we cannot handle a pagefault
670                  * whilst holding the struct mutex lest the user pass in the
671                  * relocations contained within a mmaped bo. For in such a case
672                  * we, the page fault handler would call i915_gem_fault() and
673                  * we would try to acquire the struct mutex again. Obviously
674                  * this is bad and so lockdep complains vehemently.
675                  */
676                 pagefault_disable();
677                 unwritten = __copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]));
678                 pagefault_enable();
679                 if (unlikely(unwritten)) {
680                         ret = -EFAULT;
681                         goto out;
682                 }
683
684                 do {
685                         u64 offset = r->presumed_offset;
686
687                         ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, r, &cache);
688                         if (ret)
689                                 goto out;
690
691                         if (r->presumed_offset != offset) {
692                                 pagefault_disable();
693                                 unwritten = __put_user(r->presumed_offset,
694                                                        &user_relocs->presumed_offset);
695                                 pagefault_enable();
696                                 if (unlikely(unwritten)) {
697                                         /* Note that reporting an error now
698                                          * leaves everything in an inconsistent
699                                          * state as we have *already* changed
700                                          * the relocation value inside the
701                                          * object. As we have not changed the
702                                          * reloc.presumed_offset or will not
703                                          * change the execobject.offset, on the
704                                          * call we may not rewrite the value
705                                          * inside the object, leaving it
706                                          * dangling and causing a GPU hang.
707                                          */
708                                         ret = -EFAULT;
709                                         goto out;
710                                 }
711                         }
712
713                         user_relocs++;
714                         r++;
715                 } while (--count);
716         }
717
718 out:
719         reloc_cache_fini(&cache);
720         return ret;
721 #undef N_RELOC
722 }
723
724 static int
725 i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
726                                       struct eb_vmas *eb,
727                                       struct drm_i915_gem_relocation_entry *relocs)
728 {
729         const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
730         struct reloc_cache cache;
731         int i, ret = 0;
732
733         reloc_cache_init(&cache, eb->i915);
734         for (i = 0; i < entry->relocation_count; i++) {
735                 ret = i915_gem_execbuffer_relocate_entry(vma->obj, eb, &relocs[i], &cache);
736                 if (ret)
737                         break;
738         }
739         reloc_cache_fini(&cache);
740
741         return ret;
742 }
743
744 static int
745 i915_gem_execbuffer_relocate(struct eb_vmas *eb)
746 {
747         struct i915_vma *vma;
748         int ret = 0;
749
750         list_for_each_entry(vma, &eb->vmas, exec_list) {
751                 ret = i915_gem_execbuffer_relocate_vma(vma, eb);
752                 if (ret)
753                         break;
754         }
755
756         return ret;
757 }
758
759 static bool only_mappable_for_reloc(unsigned int flags)
760 {
761         return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
762                 __EXEC_OBJECT_NEEDS_MAP;
763 }
764
765 static int
766 i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
767                                 struct intel_engine_cs *engine,
768                                 bool *need_reloc)
769 {
770         struct drm_i915_gem_object *obj = vma->obj;
771         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
772         uint64_t flags;
773         int ret;
774
775         flags = PIN_USER;
776         if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
777                 flags |= PIN_GLOBAL;
778
779         if (!drm_mm_node_allocated(&vma->node)) {
780                 /* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
781                  * limit address to the first 4GBs for unflagged objects.
782                  */
783                 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
784                         flags |= PIN_ZONE_4G;
785                 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
786                         flags |= PIN_GLOBAL | PIN_MAPPABLE;
787                 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
788                         flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
789                 if (entry->flags & EXEC_OBJECT_PINNED)
790                         flags |= entry->offset | PIN_OFFSET_FIXED;
791                 if ((flags & PIN_MAPPABLE) == 0)
792                         flags |= PIN_HIGH;
793         }
794
795         ret = i915_vma_pin(vma,
796                            entry->pad_to_size,
797                            entry->alignment,
798                            flags);
799         if ((ret == -ENOSPC || ret == -E2BIG) &&
800             only_mappable_for_reloc(entry->flags))
801                 ret = i915_vma_pin(vma,
802                                    entry->pad_to_size,
803                                    entry->alignment,
804                                    flags & ~PIN_MAPPABLE);
805         if (ret)
806                 return ret;
807
808         entry->flags |= __EXEC_OBJECT_HAS_PIN;
809
810         if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
811                 ret = i915_vma_get_fence(vma);
812                 if (ret)
813                         return ret;
814
815                 if (i915_vma_pin_fence(vma))
816                         entry->flags |= __EXEC_OBJECT_HAS_FENCE;
817         }
818
819         if (entry->offset != vma->node.start) {
820                 entry->offset = vma->node.start;
821                 *need_reloc = true;
822         }
823
824         if (entry->flags & EXEC_OBJECT_WRITE) {
825                 obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
826                 obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
827         }
828
829         return 0;
830 }
831
832 static bool
833 need_reloc_mappable(struct i915_vma *vma)
834 {
835         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
836
837         if (entry->relocation_count == 0)
838                 return false;
839
840         if (!i915_vma_is_ggtt(vma))
841                 return false;
842
843         /* See also use_cpu_reloc() */
844         if (HAS_LLC(vma->obj->base.dev))
845                 return false;
846
847         if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
848                 return false;
849
850         return true;
851 }
852
853 static bool
854 eb_vma_misplaced(struct i915_vma *vma)
855 {
856         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
857
858         WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
859                 !i915_vma_is_ggtt(vma));
860
861         if (entry->alignment &&
862             vma->node.start & (entry->alignment - 1))
863                 return true;
864
865         if (vma->node.size < entry->pad_to_size)
866                 return true;
867
868         if (entry->flags & EXEC_OBJECT_PINNED &&
869             vma->node.start != entry->offset)
870                 return true;
871
872         if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
873             vma->node.start < BATCH_OFFSET_BIAS)
874                 return true;
875
876         /* avoid costly ping-pong once a batch bo ended up non-mappable */
877         if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
878             !i915_vma_is_map_and_fenceable(vma))
879                 return !only_mappable_for_reloc(entry->flags);
880
881         if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
882             (vma->node.start + vma->node.size - 1) >> 32)
883                 return true;
884
885         return false;
886 }
887
888 static int
889 i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
890                             struct list_head *vmas,
891                             struct i915_gem_context *ctx,
892                             bool *need_relocs)
893 {
894         struct drm_i915_gem_object *obj;
895         struct i915_vma *vma;
896         struct i915_address_space *vm;
897         struct list_head ordered_vmas;
898         struct list_head pinned_vmas;
899         bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
900         int retry;
901
902         vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
903
904         INIT_LIST_HEAD(&ordered_vmas);
905         INIT_LIST_HEAD(&pinned_vmas);
906         while (!list_empty(vmas)) {
907                 struct drm_i915_gem_exec_object2 *entry;
908                 bool need_fence, need_mappable;
909
910                 vma = list_first_entry(vmas, struct i915_vma, exec_list);
911                 obj = vma->obj;
912                 entry = vma->exec_entry;
913
914                 if (ctx->flags & CONTEXT_NO_ZEROMAP)
915                         entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
916
917                 if (!has_fenced_gpu_access)
918                         entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
919                 need_fence =
920                         entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
921                         i915_gem_object_is_tiled(obj);
922                 need_mappable = need_fence || need_reloc_mappable(vma);
923
924                 if (entry->flags & EXEC_OBJECT_PINNED)
925                         list_move_tail(&vma->exec_list, &pinned_vmas);
926                 else if (need_mappable) {
927                         entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
928                         list_move(&vma->exec_list, &ordered_vmas);
929                 } else
930                         list_move_tail(&vma->exec_list, &ordered_vmas);
931
932                 obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
933                 obj->base.pending_write_domain = 0;
934         }
935         list_splice(&ordered_vmas, vmas);
936         list_splice(&pinned_vmas, vmas);
937
938         /* Attempt to pin all of the buffers into the GTT.
939          * This is done in 3 phases:
940          *
941          * 1a. Unbind all objects that do not match the GTT constraints for
942          *     the execbuffer (fenceable, mappable, alignment etc).
943          * 1b. Increment pin count for already bound objects.
944          * 2.  Bind new objects.
945          * 3.  Decrement pin count.
946          *
947          * This avoid unnecessary unbinding of later objects in order to make
948          * room for the earlier objects *unless* we need to defragment.
949          */
950         retry = 0;
951         do {
952                 int ret = 0;
953
954                 /* Unbind any ill-fitting objects or pin. */
955                 list_for_each_entry(vma, vmas, exec_list) {
956                         if (!drm_mm_node_allocated(&vma->node))
957                                 continue;
958
959                         if (eb_vma_misplaced(vma))
960                                 ret = i915_vma_unbind(vma);
961                         else
962                                 ret = i915_gem_execbuffer_reserve_vma(vma,
963                                                                       engine,
964                                                                       need_relocs);
965                         if (ret)
966                                 goto err;
967                 }
968
969                 /* Bind fresh objects */
970                 list_for_each_entry(vma, vmas, exec_list) {
971                         if (drm_mm_node_allocated(&vma->node))
972                                 continue;
973
974                         ret = i915_gem_execbuffer_reserve_vma(vma, engine,
975                                                               need_relocs);
976                         if (ret)
977                                 goto err;
978                 }
979
980 err:
981                 if (ret != -ENOSPC || retry++)
982                         return ret;
983
984                 /* Decrement pin count for bound objects */
985                 list_for_each_entry(vma, vmas, exec_list)
986                         i915_gem_execbuffer_unreserve_vma(vma);
987
988                 ret = i915_gem_evict_vm(vm, true);
989                 if (ret)
990                         return ret;
991         } while (1);
992 }
993
994 static int
995 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
996                                   struct drm_i915_gem_execbuffer2 *args,
997                                   struct drm_file *file,
998                                   struct intel_engine_cs *engine,
999                                   struct eb_vmas *eb,
1000                                   struct drm_i915_gem_exec_object2 *exec,
1001                                   struct i915_gem_context *ctx)
1002 {
1003         struct drm_i915_gem_relocation_entry *reloc;
1004         struct i915_address_space *vm;
1005         struct i915_vma *vma;
1006         bool need_relocs;
1007         int *reloc_offset;
1008         int i, total, ret;
1009         unsigned count = args->buffer_count;
1010
1011         vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
1012
1013         /* We may process another execbuffer during the unlock... */
1014         while (!list_empty(&eb->vmas)) {
1015                 vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
1016                 list_del_init(&vma->exec_list);
1017                 i915_gem_execbuffer_unreserve_vma(vma);
1018                 i915_vma_put(vma);
1019         }
1020
1021         mutex_unlock(&dev->struct_mutex);
1022
1023         total = 0;
1024         for (i = 0; i < count; i++)
1025                 total += exec[i].relocation_count;
1026
1027         reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
1028         reloc = drm_malloc_ab(total, sizeof(*reloc));
1029         if (reloc == NULL || reloc_offset == NULL) {
1030                 drm_free_large(reloc);
1031                 drm_free_large(reloc_offset);
1032                 mutex_lock(&dev->struct_mutex);
1033                 return -ENOMEM;
1034         }
1035
1036         total = 0;
1037         for (i = 0; i < count; i++) {
1038                 struct drm_i915_gem_relocation_entry __user *user_relocs;
1039                 u64 invalid_offset = (u64)-1;
1040                 int j;
1041
1042                 user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
1043
1044                 if (copy_from_user(reloc+total, user_relocs,
1045                                    exec[i].relocation_count * sizeof(*reloc))) {
1046                         ret = -EFAULT;
1047                         mutex_lock(&dev->struct_mutex);
1048                         goto err;
1049                 }
1050
1051                 /* As we do not update the known relocation offsets after
1052                  * relocating (due to the complexities in lock handling),
1053                  * we need to mark them as invalid now so that we force the
1054                  * relocation processing next time. Just in case the target
1055                  * object is evicted and then rebound into its old
1056                  * presumed_offset before the next execbuffer - if that
1057                  * happened we would make the mistake of assuming that the
1058                  * relocations were valid.
1059                  */
1060                 for (j = 0; j < exec[i].relocation_count; j++) {
1061                         if (__copy_to_user(&user_relocs[j].presumed_offset,
1062                                            &invalid_offset,
1063                                            sizeof(invalid_offset))) {
1064                                 ret = -EFAULT;
1065                                 mutex_lock(&dev->struct_mutex);
1066                                 goto err;
1067                         }
1068                 }
1069
1070                 reloc_offset[i] = total;
1071                 total += exec[i].relocation_count;
1072         }
1073
1074         ret = i915_mutex_lock_interruptible(dev);
1075         if (ret) {
1076                 mutex_lock(&dev->struct_mutex);
1077                 goto err;
1078         }
1079
1080         /* reacquire the objects */
1081         eb_reset(eb);
1082         ret = eb_lookup_vmas(eb, exec, args, vm, file);
1083         if (ret)
1084                 goto err;
1085
1086         need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1087         ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1088                                           &need_relocs);
1089         if (ret)
1090                 goto err;
1091
1092         list_for_each_entry(vma, &eb->vmas, exec_list) {
1093                 int offset = vma->exec_entry - exec;
1094                 ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
1095                                                             reloc + reloc_offset[offset]);
1096                 if (ret)
1097                         goto err;
1098         }
1099
1100         /* Leave the user relocations as are, this is the painfully slow path,
1101          * and we want to avoid the complication of dropping the lock whilst
1102          * having buffers reserved in the aperture and so causing spurious
1103          * ENOSPC for random operations.
1104          */
1105
1106 err:
1107         drm_free_large(reloc);
1108         drm_free_large(reloc_offset);
1109         return ret;
1110 }
1111
1112 static unsigned int eb_other_engines(struct drm_i915_gem_request *req)
1113 {
1114         unsigned int mask;
1115
1116         mask = ~intel_engine_flag(req->engine) & I915_BO_ACTIVE_MASK;
1117         mask <<= I915_BO_ACTIVE_SHIFT;
1118
1119         return mask;
1120 }
1121
1122 static int
1123 i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
1124                                 struct list_head *vmas)
1125 {
1126         const unsigned int other_rings = eb_other_engines(req);
1127         struct i915_vma *vma;
1128         int ret;
1129
1130         list_for_each_entry(vma, vmas, exec_list) {
1131                 struct drm_i915_gem_object *obj = vma->obj;
1132                 struct reservation_object *resv;
1133
1134                 if (obj->flags & other_rings) {
1135                         ret = i915_gem_request_await_object
1136                                 (req, obj, obj->base.pending_write_domain);
1137                         if (ret)
1138                                 return ret;
1139                 }
1140
1141                 resv = i915_gem_object_get_dmabuf_resv(obj);
1142                 if (resv) {
1143                         ret = i915_sw_fence_await_reservation
1144                                 (&req->submit, resv, &i915_fence_ops,
1145                                  obj->base.pending_write_domain, 10*HZ,
1146                                  GFP_KERNEL | __GFP_NOWARN);
1147                         if (ret < 0)
1148                                 return ret;
1149                 }
1150
1151                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
1152                         i915_gem_clflush_object(obj, false);
1153         }
1154
1155         /* Unconditionally flush any chipset caches (for streaming writes). */
1156         i915_gem_chipset_flush(req->engine->i915);
1157
1158         /* Unconditionally invalidate GPU caches and TLBs. */
1159         return req->engine->emit_flush(req, EMIT_INVALIDATE);
1160 }
1161
1162 static bool
1163 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1164 {
1165         if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
1166                 return false;
1167
1168         /* Kernel clipping was a DRI1 misfeature */
1169         if (exec->num_cliprects || exec->cliprects_ptr)
1170                 return false;
1171
1172         if (exec->DR4 == 0xffffffff) {
1173                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1174                 exec->DR4 = 0;
1175         }
1176         if (exec->DR1 || exec->DR4)
1177                 return false;
1178
1179         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1180                 return false;
1181
1182         return true;
1183 }
1184
1185 static int
1186 validate_exec_list(struct drm_device *dev,
1187                    struct drm_i915_gem_exec_object2 *exec,
1188                    int count)
1189 {
1190         unsigned relocs_total = 0;
1191         unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1192         unsigned invalid_flags;
1193         int i;
1194
1195         /* INTERNAL flags must not overlap with external ones */
1196         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1197
1198         invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1199         if (USES_FULL_PPGTT(dev))
1200                 invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1201
1202         for (i = 0; i < count; i++) {
1203                 char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1204                 int length; /* limited by fault_in_pages_readable() */
1205
1206                 if (exec[i].flags & invalid_flags)
1207                         return -EINVAL;
1208
1209                 /* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1210                  * any non-page-aligned or non-canonical addresses.
1211                  */
1212                 if (exec[i].flags & EXEC_OBJECT_PINNED) {
1213                         if (exec[i].offset !=
1214                             gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1215                                 return -EINVAL;
1216
1217                         /* From drm_mm perspective address space is continuous,
1218                          * so from this point we're always using non-canonical
1219                          * form internally.
1220                          */
1221                         exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1222                 }
1223
1224                 if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1225                         return -EINVAL;
1226
1227                 /* pad_to_size was once a reserved field, so sanitize it */
1228                 if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
1229                         if (offset_in_page(exec[i].pad_to_size))
1230                                 return -EINVAL;
1231                 } else {
1232                         exec[i].pad_to_size = 0;
1233                 }
1234
1235                 /* First check for malicious input causing overflow in
1236                  * the worst case where we need to allocate the entire
1237                  * relocation tree as a single array.
1238                  */
1239                 if (exec[i].relocation_count > relocs_max - relocs_total)
1240                         return -EINVAL;
1241                 relocs_total += exec[i].relocation_count;
1242
1243                 length = exec[i].relocation_count *
1244                         sizeof(struct drm_i915_gem_relocation_entry);
1245                 /*
1246                  * We must check that the entire relocation array is safe
1247                  * to read, but since we may need to update the presumed
1248                  * offsets during execution, check for full write access.
1249                  */
1250                 if (!access_ok(VERIFY_WRITE, ptr, length))
1251                         return -EFAULT;
1252
1253                 if (likely(!i915.prefault_disable)) {
1254                         if (fault_in_pages_readable(ptr, length))
1255                                 return -EFAULT;
1256                 }
1257         }
1258
1259         return 0;
1260 }
1261
1262 static struct i915_gem_context *
1263 i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1264                           struct intel_engine_cs *engine, const u32 ctx_id)
1265 {
1266         struct i915_gem_context *ctx;
1267         struct i915_ctx_hang_stats *hs;
1268
1269         ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
1270         if (IS_ERR(ctx))
1271                 return ctx;
1272
1273         hs = &ctx->hang_stats;
1274         if (hs->banned) {
1275                 DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1276                 return ERR_PTR(-EIO);
1277         }
1278
1279         return ctx;
1280 }
1281
1282 void i915_vma_move_to_active(struct i915_vma *vma,
1283                              struct drm_i915_gem_request *req,
1284                              unsigned int flags)
1285 {
1286         struct drm_i915_gem_object *obj = vma->obj;
1287         const unsigned int idx = req->engine->id;
1288
1289         GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1290
1291         obj->dirty = 1; /* be paranoid  */
1292
1293         /* Add a reference if we're newly entering the active list.
1294          * The order in which we add operations to the retirement queue is
1295          * vital here: mark_active adds to the start of the callback list,
1296          * such that subsequent callbacks are called first. Therefore we
1297          * add the active reference first and queue for it to be dropped
1298          * *last*.
1299          */
1300         if (!i915_gem_object_is_active(obj))
1301                 i915_gem_object_get(obj);
1302         i915_gem_object_set_active(obj, idx);
1303         i915_gem_active_set(&obj->last_read[idx], req);
1304
1305         if (flags & EXEC_OBJECT_WRITE) {
1306                 i915_gem_active_set(&obj->last_write, req);
1307
1308                 intel_fb_obj_invalidate(obj, ORIGIN_CS);
1309
1310                 /* update for the implicit flush after a batch */
1311                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1312         }
1313
1314         if (flags & EXEC_OBJECT_NEEDS_FENCE)
1315                 i915_gem_active_set(&vma->last_fence, req);
1316
1317         i915_vma_set_active(vma, idx);
1318         i915_gem_active_set(&vma->last_read[idx], req);
1319         list_move_tail(&vma->vm_link, &vma->vm->active_list);
1320 }
1321
1322 static void eb_export_fence(struct drm_i915_gem_object *obj,
1323                             struct drm_i915_gem_request *req,
1324                             unsigned int flags)
1325 {
1326         struct reservation_object *resv;
1327
1328         resv = i915_gem_object_get_dmabuf_resv(obj);
1329         if (!resv)
1330                 return;
1331
1332         /* Ignore errors from failing to allocate the new fence, we can't
1333          * handle an error right now. Worst case should be missed
1334          * synchronisation leading to rendering corruption.
1335          */
1336         ww_mutex_lock(&resv->lock, NULL);
1337         if (flags & EXEC_OBJECT_WRITE)
1338                 reservation_object_add_excl_fence(resv, &req->fence);
1339         else if (reservation_object_reserve_shared(resv) == 0)
1340                 reservation_object_add_shared_fence(resv, &req->fence);
1341         ww_mutex_unlock(&resv->lock);
1342 }
1343
1344 static void
1345 i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1346                                    struct drm_i915_gem_request *req)
1347 {
1348         struct i915_vma *vma;
1349
1350         list_for_each_entry(vma, vmas, exec_list) {
1351                 struct drm_i915_gem_object *obj = vma->obj;
1352                 u32 old_read = obj->base.read_domains;
1353                 u32 old_write = obj->base.write_domain;
1354
1355                 obj->base.write_domain = obj->base.pending_write_domain;
1356                 if (obj->base.write_domain)
1357                         vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
1358                 else
1359                         obj->base.pending_read_domains |= obj->base.read_domains;
1360                 obj->base.read_domains = obj->base.pending_read_domains;
1361
1362                 i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
1363                 eb_export_fence(obj, req, vma->exec_entry->flags);
1364                 trace_i915_gem_object_change_domain(obj, old_read, old_write);
1365         }
1366 }
1367
1368 static int
1369 i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1370 {
1371         struct intel_ring *ring = req->ring;
1372         int ret, i;
1373
1374         if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1375                 DRM_DEBUG("sol reset is gen7/rcs only\n");
1376                 return -EINVAL;
1377         }
1378
1379         ret = intel_ring_begin(req, 4 * 3);
1380         if (ret)
1381                 return ret;
1382
1383         for (i = 0; i < 4; i++) {
1384                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1385                 intel_ring_emit_reg(ring, GEN7_SO_WRITE_OFFSET(i));
1386                 intel_ring_emit(ring, 0);
1387         }
1388
1389         intel_ring_advance(ring);
1390
1391         return 0;
1392 }
1393
1394 static struct i915_vma *
1395 i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1396                           struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1397                           struct drm_i915_gem_object *batch_obj,
1398                           struct eb_vmas *eb,
1399                           u32 batch_start_offset,
1400                           u32 batch_len,
1401                           bool is_master)
1402 {
1403         struct drm_i915_gem_object *shadow_batch_obj;
1404         struct i915_vma *vma;
1405         int ret;
1406
1407         shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1408                                                    PAGE_ALIGN(batch_len));
1409         if (IS_ERR(shadow_batch_obj))
1410                 return ERR_CAST(shadow_batch_obj);
1411
1412         ret = intel_engine_cmd_parser(engine,
1413                                       batch_obj,
1414                                       shadow_batch_obj,
1415                                       batch_start_offset,
1416                                       batch_len,
1417                                       is_master);
1418         if (ret) {
1419                 if (ret == -EACCES) /* unhandled chained batch */
1420                         vma = NULL;
1421                 else
1422                         vma = ERR_PTR(ret);
1423                 goto out;
1424         }
1425
1426         vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1427         if (IS_ERR(vma))
1428                 goto out;
1429
1430         memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1431
1432         vma->exec_entry = shadow_exec_entry;
1433         vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1434         i915_gem_object_get(shadow_batch_obj);
1435         list_add_tail(&vma->exec_list, &eb->vmas);
1436
1437 out:
1438         i915_gem_object_unpin_pages(shadow_batch_obj);
1439         return vma;
1440 }
1441
1442 static int
1443 execbuf_submit(struct i915_execbuffer_params *params,
1444                struct drm_i915_gem_execbuffer2 *args,
1445                struct list_head *vmas)
1446 {
1447         struct drm_i915_private *dev_priv = params->request->i915;
1448         u64 exec_start, exec_len;
1449         int instp_mode;
1450         u32 instp_mask;
1451         int ret;
1452
1453         ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1454         if (ret)
1455                 return ret;
1456
1457         ret = i915_switch_context(params->request);
1458         if (ret)
1459                 return ret;
1460
1461         instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
1462         instp_mask = I915_EXEC_CONSTANTS_MASK;
1463         switch (instp_mode) {
1464         case I915_EXEC_CONSTANTS_REL_GENERAL:
1465         case I915_EXEC_CONSTANTS_ABSOLUTE:
1466         case I915_EXEC_CONSTANTS_REL_SURFACE:
1467                 if (instp_mode != 0 && params->engine->id != RCS) {
1468                         DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
1469                         return -EINVAL;
1470                 }
1471
1472                 if (instp_mode != dev_priv->relative_constants_mode) {
1473                         if (INTEL_INFO(dev_priv)->gen < 4) {
1474                                 DRM_DEBUG("no rel constants on pre-gen4\n");
1475                                 return -EINVAL;
1476                         }
1477
1478                         if (INTEL_INFO(dev_priv)->gen > 5 &&
1479                             instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
1480                                 DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
1481                                 return -EINVAL;
1482                         }
1483
1484                         /* The HW changed the meaning on this bit on gen6 */
1485                         if (INTEL_INFO(dev_priv)->gen >= 6)
1486                                 instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
1487                 }
1488                 break;
1489         default:
1490                 DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
1491                 return -EINVAL;
1492         }
1493
1494         if (params->engine->id == RCS &&
1495             instp_mode != dev_priv->relative_constants_mode) {
1496                 struct intel_ring *ring = params->request->ring;
1497
1498                 ret = intel_ring_begin(params->request, 4);
1499                 if (ret)
1500                         return ret;
1501
1502                 intel_ring_emit(ring, MI_NOOP);
1503                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
1504                 intel_ring_emit_reg(ring, INSTPM);
1505                 intel_ring_emit(ring, instp_mask << 16 | instp_mode);
1506                 intel_ring_advance(ring);
1507
1508                 dev_priv->relative_constants_mode = instp_mode;
1509         }
1510
1511         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1512                 ret = i915_reset_gen7_sol_offsets(params->request);
1513                 if (ret)
1514                         return ret;
1515         }
1516
1517         exec_len   = args->batch_len;
1518         exec_start = params->batch->node.start +
1519                      params->args_batch_start_offset;
1520
1521         if (exec_len == 0)
1522                 exec_len = params->batch->size - params->args_batch_start_offset;
1523
1524         ret = params->engine->emit_bb_start(params->request,
1525                                             exec_start, exec_len,
1526                                             params->dispatch_flags);
1527         if (ret)
1528                 return ret;
1529
1530         trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
1531
1532         i915_gem_execbuffer_move_to_active(vmas, params->request);
1533
1534         return 0;
1535 }
1536
1537 /**
1538  * Find one BSD ring to dispatch the corresponding BSD command.
1539  * The engine index is returned.
1540  */
1541 static unsigned int
1542 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1543                          struct drm_file *file)
1544 {
1545         struct drm_i915_file_private *file_priv = file->driver_priv;
1546
1547         /* Check whether the file_priv has already selected one ring. */
1548         if ((int)file_priv->bsd_engine < 0)
1549                 file_priv->bsd_engine = atomic_fetch_xor(1,
1550                          &dev_priv->mm.bsd_engine_dispatch_index);
1551
1552         return file_priv->bsd_engine;
1553 }
1554
1555 #define I915_USER_RINGS (4)
1556
1557 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1558         [I915_EXEC_DEFAULT]     = RCS,
1559         [I915_EXEC_RENDER]      = RCS,
1560         [I915_EXEC_BLT]         = BCS,
1561         [I915_EXEC_BSD]         = VCS,
1562         [I915_EXEC_VEBOX]       = VECS
1563 };
1564
1565 static struct intel_engine_cs *
1566 eb_select_engine(struct drm_i915_private *dev_priv,
1567                  struct drm_file *file,
1568                  struct drm_i915_gem_execbuffer2 *args)
1569 {
1570         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1571         struct intel_engine_cs *engine;
1572
1573         if (user_ring_id > I915_USER_RINGS) {
1574                 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1575                 return NULL;
1576         }
1577
1578         if ((user_ring_id != I915_EXEC_BSD) &&
1579             ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1580                 DRM_DEBUG("execbuf with non bsd ring but with invalid "
1581                           "bsd dispatch flags: %d\n", (int)(args->flags));
1582                 return NULL;
1583         }
1584
1585         if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1586                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1587
1588                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1589                         bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1590                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1591                            bsd_idx <= I915_EXEC_BSD_RING2) {
1592                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
1593                         bsd_idx--;
1594                 } else {
1595                         DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1596                                   bsd_idx);
1597                         return NULL;
1598                 }
1599
1600                 engine = dev_priv->engine[_VCS(bsd_idx)];
1601         } else {
1602                 engine = dev_priv->engine[user_ring_map[user_ring_id]];
1603         }
1604
1605         if (!engine) {
1606                 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1607                 return NULL;
1608         }
1609
1610         return engine;
1611 }
1612
1613 static int
1614 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1615                        struct drm_file *file,
1616                        struct drm_i915_gem_execbuffer2 *args,
1617                        struct drm_i915_gem_exec_object2 *exec)
1618 {
1619         struct drm_i915_private *dev_priv = to_i915(dev);
1620         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1621         struct eb_vmas *eb;
1622         struct drm_i915_gem_exec_object2 shadow_exec_entry;
1623         struct intel_engine_cs *engine;
1624         struct i915_gem_context *ctx;
1625         struct i915_address_space *vm;
1626         struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1627         struct i915_execbuffer_params *params = &params_master;
1628         const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1629         u32 dispatch_flags;
1630         int ret;
1631         bool need_relocs;
1632
1633         if (!i915_gem_check_execbuffer(args))
1634                 return -EINVAL;
1635
1636         ret = validate_exec_list(dev, exec, args->buffer_count);
1637         if (ret)
1638                 return ret;
1639
1640         dispatch_flags = 0;
1641         if (args->flags & I915_EXEC_SECURE) {
1642                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1643                     return -EPERM;
1644
1645                 dispatch_flags |= I915_DISPATCH_SECURE;
1646         }
1647         if (args->flags & I915_EXEC_IS_PINNED)
1648                 dispatch_flags |= I915_DISPATCH_PINNED;
1649
1650         engine = eb_select_engine(dev_priv, file, args);
1651         if (!engine)
1652                 return -EINVAL;
1653
1654         if (args->buffer_count < 1) {
1655                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1656                 return -EINVAL;
1657         }
1658
1659         if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1660                 if (!HAS_RESOURCE_STREAMER(dev)) {
1661                         DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1662                         return -EINVAL;
1663                 }
1664                 if (engine->id != RCS) {
1665                         DRM_DEBUG("RS is not available on %s\n",
1666                                  engine->name);
1667                         return -EINVAL;
1668                 }
1669
1670                 dispatch_flags |= I915_DISPATCH_RS;
1671         }
1672
1673         /* Take a local wakeref for preparing to dispatch the execbuf as
1674          * we expect to access the hardware fairly frequently in the
1675          * process. Upon first dispatch, we acquire another prolonged
1676          * wakeref that we hold until the GPU has been idle for at least
1677          * 100ms.
1678          */
1679         intel_runtime_pm_get(dev_priv);
1680
1681         ret = i915_mutex_lock_interruptible(dev);
1682         if (ret)
1683                 goto pre_mutex_err;
1684
1685         ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1686         if (IS_ERR(ctx)) {
1687                 mutex_unlock(&dev->struct_mutex);
1688                 ret = PTR_ERR(ctx);
1689                 goto pre_mutex_err;
1690         }
1691
1692         i915_gem_context_get(ctx);
1693
1694         if (ctx->ppgtt)
1695                 vm = &ctx->ppgtt->base;
1696         else
1697                 vm = &ggtt->base;
1698
1699         memset(&params_master, 0x00, sizeof(params_master));
1700
1701         eb = eb_create(dev_priv, args);
1702         if (eb == NULL) {
1703                 i915_gem_context_put(ctx);
1704                 mutex_unlock(&dev->struct_mutex);
1705                 ret = -ENOMEM;
1706                 goto pre_mutex_err;
1707         }
1708
1709         /* Look up object handles */
1710         ret = eb_lookup_vmas(eb, exec, args, vm, file);
1711         if (ret)
1712                 goto err;
1713
1714         /* take note of the batch buffer before we might reorder the lists */
1715         params->batch = eb_get_batch(eb);
1716
1717         /* Move the objects en-masse into the GTT, evicting if necessary. */
1718         need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1719         ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1720                                           &need_relocs);
1721         if (ret)
1722                 goto err;
1723
1724         /* The objects are in their final locations, apply the relocations. */
1725         if (need_relocs)
1726                 ret = i915_gem_execbuffer_relocate(eb);
1727         if (ret) {
1728                 if (ret == -EFAULT) {
1729                         ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1730                                                                 engine,
1731                                                                 eb, exec, ctx);
1732                         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1733                 }
1734                 if (ret)
1735                         goto err;
1736         }
1737
1738         /* Set the pending read domains for the batch buffer to COMMAND */
1739         if (params->batch->obj->base.pending_write_domain) {
1740                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1741                 ret = -EINVAL;
1742                 goto err;
1743         }
1744         if (args->batch_start_offset > params->batch->size ||
1745             args->batch_len > params->batch->size - args->batch_start_offset) {
1746                 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1747                 ret = -EINVAL;
1748                 goto err;
1749         }
1750
1751         params->args_batch_start_offset = args->batch_start_offset;
1752         if (intel_engine_needs_cmd_parser(engine) && args->batch_len) {
1753                 struct i915_vma *vma;
1754
1755                 vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
1756                                                 params->batch->obj,
1757                                                 eb,
1758                                                 args->batch_start_offset,
1759                                                 args->batch_len,
1760                                                 drm_is_current_master(file));
1761                 if (IS_ERR(vma)) {
1762                         ret = PTR_ERR(vma);
1763                         goto err;
1764                 }
1765
1766                 if (vma) {
1767                         /*
1768                          * Batch parsed and accepted:
1769                          *
1770                          * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1771                          * bit from MI_BATCH_BUFFER_START commands issued in
1772                          * the dispatch_execbuffer implementations. We
1773                          * specifically don't want that set on batches the
1774                          * command parser has accepted.
1775                          */
1776                         dispatch_flags |= I915_DISPATCH_SECURE;
1777                         params->args_batch_start_offset = 0;
1778                         params->batch = vma;
1779                 }
1780         }
1781
1782         params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1783
1784         /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1785          * batch" bit. Hence we need to pin secure batches into the global gtt.
1786          * hsw should have this fixed, but bdw mucks it up again. */
1787         if (dispatch_flags & I915_DISPATCH_SECURE) {
1788                 struct drm_i915_gem_object *obj = params->batch->obj;
1789                 struct i915_vma *vma;
1790
1791                 /*
1792                  * So on first glance it looks freaky that we pin the batch here
1793                  * outside of the reservation loop. But:
1794                  * - The batch is already pinned into the relevant ppgtt, so we
1795                  *   already have the backing storage fully allocated.
1796                  * - No other BO uses the global gtt (well contexts, but meh),
1797                  *   so we don't really have issues with multiple objects not
1798                  *   fitting due to fragmentation.
1799                  * So this is actually safe.
1800                  */
1801                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
1802                 if (IS_ERR(vma)) {
1803                         ret = PTR_ERR(vma);
1804                         goto err;
1805                 }
1806
1807                 params->batch = vma;
1808         }
1809
1810         /* Allocate a request for this batch buffer nice and early. */
1811         params->request = i915_gem_request_alloc(engine, ctx);
1812         if (IS_ERR(params->request)) {
1813                 ret = PTR_ERR(params->request);
1814                 goto err_batch_unpin;
1815         }
1816
1817         /* Whilst this request exists, batch_obj will be on the
1818          * active_list, and so will hold the active reference. Only when this
1819          * request is retired will the the batch_obj be moved onto the
1820          * inactive_list and lose its active reference. Hence we do not need
1821          * to explicitly hold another reference here.
1822          */
1823         params->request->batch = params->batch;
1824
1825         ret = i915_gem_request_add_to_client(params->request, file);
1826         if (ret)
1827                 goto err_request;
1828
1829         /*
1830          * Save assorted stuff away to pass through to *_submission().
1831          * NB: This data should be 'persistent' and not local as it will
1832          * kept around beyond the duration of the IOCTL once the GPU
1833          * scheduler arrives.
1834          */
1835         params->dev                     = dev;
1836         params->file                    = file;
1837         params->engine                    = engine;
1838         params->dispatch_flags          = dispatch_flags;
1839         params->ctx                     = ctx;
1840
1841         ret = execbuf_submit(params, args, &eb->vmas);
1842 err_request:
1843         __i915_add_request(params->request, ret == 0);
1844
1845 err_batch_unpin:
1846         /*
1847          * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1848          * batch vma for correctness. For less ugly and less fragility this
1849          * needs to be adjusted to also track the ggtt batch vma properly as
1850          * active.
1851          */
1852         if (dispatch_flags & I915_DISPATCH_SECURE)
1853                 i915_vma_unpin(params->batch);
1854 err:
1855         /* the request owns the ref now */
1856         i915_gem_context_put(ctx);
1857         eb_destroy(eb);
1858
1859         mutex_unlock(&dev->struct_mutex);
1860
1861 pre_mutex_err:
1862         /* intel_gpu_busy should also get a ref, so it will free when the device
1863          * is really idle. */
1864         intel_runtime_pm_put(dev_priv);
1865         return ret;
1866 }
1867
1868 /*
1869  * Legacy execbuffer just creates an exec2 list from the original exec object
1870  * list array and passes it to the real function.
1871  */
1872 int
1873 i915_gem_execbuffer(struct drm_device *dev, void *data,
1874                     struct drm_file *file)
1875 {
1876         struct drm_i915_gem_execbuffer *args = data;
1877         struct drm_i915_gem_execbuffer2 exec2;
1878         struct drm_i915_gem_exec_object *exec_list = NULL;
1879         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1880         int ret, i;
1881
1882         if (args->buffer_count < 1) {
1883                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1884                 return -EINVAL;
1885         }
1886
1887         /* Copy in the exec list from userland */
1888         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1889         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1890         if (exec_list == NULL || exec2_list == NULL) {
1891                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1892                           args->buffer_count);
1893                 drm_free_large(exec_list);
1894                 drm_free_large(exec2_list);
1895                 return -ENOMEM;
1896         }
1897         ret = copy_from_user(exec_list,
1898                              u64_to_user_ptr(args->buffers_ptr),
1899                              sizeof(*exec_list) * args->buffer_count);
1900         if (ret != 0) {
1901                 DRM_DEBUG("copy %d exec entries failed %d\n",
1902                           args->buffer_count, ret);
1903                 drm_free_large(exec_list);
1904                 drm_free_large(exec2_list);
1905                 return -EFAULT;
1906         }
1907
1908         for (i = 0; i < args->buffer_count; i++) {
1909                 exec2_list[i].handle = exec_list[i].handle;
1910                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1911                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1912                 exec2_list[i].alignment = exec_list[i].alignment;
1913                 exec2_list[i].offset = exec_list[i].offset;
1914                 if (INTEL_INFO(dev)->gen < 4)
1915                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1916                 else
1917                         exec2_list[i].flags = 0;
1918         }
1919
1920         exec2.buffers_ptr = args->buffers_ptr;
1921         exec2.buffer_count = args->buffer_count;
1922         exec2.batch_start_offset = args->batch_start_offset;
1923         exec2.batch_len = args->batch_len;
1924         exec2.DR1 = args->DR1;
1925         exec2.DR4 = args->DR4;
1926         exec2.num_cliprects = args->num_cliprects;
1927         exec2.cliprects_ptr = args->cliprects_ptr;
1928         exec2.flags = I915_EXEC_RENDER;
1929         i915_execbuffer2_set_context_id(exec2, 0);
1930
1931         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1932         if (!ret) {
1933                 struct drm_i915_gem_exec_object __user *user_exec_list =
1934                         u64_to_user_ptr(args->buffers_ptr);
1935
1936                 /* Copy the new buffer offsets back to the user's exec list. */
1937                 for (i = 0; i < args->buffer_count; i++) {
1938                         exec2_list[i].offset =
1939                                 gen8_canonical_addr(exec2_list[i].offset);
1940                         ret = __copy_to_user(&user_exec_list[i].offset,
1941                                              &exec2_list[i].offset,
1942                                              sizeof(user_exec_list[i].offset));
1943                         if (ret) {
1944                                 ret = -EFAULT;
1945                                 DRM_DEBUG("failed to copy %d exec entries "
1946                                           "back to user (%d)\n",
1947                                           args->buffer_count, ret);
1948                                 break;
1949                         }
1950                 }
1951         }
1952
1953         drm_free_large(exec_list);
1954         drm_free_large(exec2_list);
1955         return ret;
1956 }
1957
1958 int
1959 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1960                      struct drm_file *file)
1961 {
1962         struct drm_i915_gem_execbuffer2 *args = data;
1963         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1964         int ret;
1965
1966         if (args->buffer_count < 1 ||
1967             args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1968                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1969                 return -EINVAL;
1970         }
1971
1972         if (args->rsvd2 != 0) {
1973                 DRM_DEBUG("dirty rvsd2 field\n");
1974                 return -EINVAL;
1975         }
1976
1977         exec2_list = drm_malloc_gfp(args->buffer_count,
1978                                     sizeof(*exec2_list),
1979                                     GFP_TEMPORARY);
1980         if (exec2_list == NULL) {
1981                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1982                           args->buffer_count);
1983                 return -ENOMEM;
1984         }
1985         ret = copy_from_user(exec2_list,
1986                              u64_to_user_ptr(args->buffers_ptr),
1987                              sizeof(*exec2_list) * args->buffer_count);
1988         if (ret != 0) {
1989                 DRM_DEBUG("copy %d exec entries failed %d\n",
1990                           args->buffer_count, ret);
1991                 drm_free_large(exec2_list);
1992                 return -EFAULT;
1993         }
1994
1995         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1996         if (!ret) {
1997                 /* Copy the new buffer offsets back to the user's exec list. */
1998                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
1999                                    u64_to_user_ptr(args->buffers_ptr);
2000                 int i;
2001
2002                 for (i = 0; i < args->buffer_count; i++) {
2003                         exec2_list[i].offset =
2004                                 gen8_canonical_addr(exec2_list[i].offset);
2005                         ret = __copy_to_user(&user_exec_list[i].offset,
2006                                              &exec2_list[i].offset,
2007                                              sizeof(user_exec_list[i].offset));
2008                         if (ret) {
2009                                 ret = -EFAULT;
2010                                 DRM_DEBUG("failed to copy %d exec entries "
2011                                           "back to user\n",
2012                                           args->buffer_count);
2013                                 break;
2014                         }
2015                 }
2016         }
2017
2018         drm_free_large(exec2_list);
2019         return ret;
2020 }