Merge remote-tracking branch 'asoc/topic/rcar' into asoc-next
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem_execbuffer.c
1 /*
2  * Copyright © 2008,2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Chris Wilson <chris@chris-wilson.co.uk>
26  *
27  */
28
29 #include <linux/dma_remapping.h>
30 #include <linux/reservation.h>
31 #include <linux/sync_file.h>
32 #include <linux/uaccess.h>
33
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36
37 #include "i915_drv.h"
38 #include "i915_gem_clflush.h"
39 #include "i915_trace.h"
40 #include "intel_drv.h"
41 #include "intel_frontbuffer.h"
42
43 #define DBG_USE_CPU_RELOC 0 /* -1 force GTT relocs; 1 force CPU relocs */
44
45 #define  __EXEC_OBJECT_HAS_PIN          (1<<31)
46 #define  __EXEC_OBJECT_HAS_FENCE        (1<<30)
47 #define  __EXEC_OBJECT_NEEDS_MAP        (1<<29)
48 #define  __EXEC_OBJECT_NEEDS_BIAS       (1<<28)
49 #define  __EXEC_OBJECT_INTERNAL_FLAGS (0xf<<28) /* all of the above */
50
51 #define BATCH_OFFSET_BIAS (256*1024)
52
53 struct i915_execbuffer_params {
54         struct drm_device               *dev;
55         struct drm_file                 *file;
56         struct i915_vma                 *batch;
57         u32                             dispatch_flags;
58         u32                             args_batch_start_offset;
59         struct intel_engine_cs          *engine;
60         struct i915_gem_context         *ctx;
61         struct drm_i915_gem_request     *request;
62 };
63
64 struct eb_vmas {
65         struct drm_i915_private *i915;
66         struct list_head vmas;
67         int and;
68         union {
69                 struct i915_vma *lut[0];
70                 struct hlist_head buckets[0];
71         };
72 };
73
74 static struct eb_vmas *
75 eb_create(struct drm_i915_private *i915,
76           struct drm_i915_gem_execbuffer2 *args)
77 {
78         struct eb_vmas *eb = NULL;
79
80         if (args->flags & I915_EXEC_HANDLE_LUT) {
81                 unsigned size = args->buffer_count;
82                 size *= sizeof(struct i915_vma *);
83                 size += sizeof(struct eb_vmas);
84                 eb = kmalloc(size, GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
85         }
86
87         if (eb == NULL) {
88                 unsigned size = args->buffer_count;
89                 unsigned count = PAGE_SIZE / sizeof(struct hlist_head) / 2;
90                 BUILD_BUG_ON_NOT_POWER_OF_2(PAGE_SIZE / sizeof(struct hlist_head));
91                 while (count > 2*size)
92                         count >>= 1;
93                 eb = kzalloc(count*sizeof(struct hlist_head) +
94                              sizeof(struct eb_vmas),
95                              GFP_TEMPORARY);
96                 if (eb == NULL)
97                         return eb;
98
99                 eb->and = count - 1;
100         } else
101                 eb->and = -args->buffer_count;
102
103         eb->i915 = i915;
104         INIT_LIST_HEAD(&eb->vmas);
105         return eb;
106 }
107
108 static void
109 eb_reset(struct eb_vmas *eb)
110 {
111         if (eb->and >= 0)
112                 memset(eb->buckets, 0, (eb->and+1)*sizeof(struct hlist_head));
113 }
114
115 static struct i915_vma *
116 eb_get_batch(struct eb_vmas *eb)
117 {
118         struct i915_vma *vma = list_entry(eb->vmas.prev, typeof(*vma), exec_list);
119
120         /*
121          * SNA is doing fancy tricks with compressing batch buffers, which leads
122          * to negative relocation deltas. Usually that works out ok since the
123          * relocate address is still positive, except when the batch is placed
124          * very low in the GTT. Ensure this doesn't happen.
125          *
126          * Note that actual hangs have only been observed on gen7, but for
127          * paranoia do it everywhere.
128          */
129         if ((vma->exec_entry->flags & EXEC_OBJECT_PINNED) == 0)
130                 vma->exec_entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
131
132         return vma;
133 }
134
135 static int
136 eb_lookup_vmas(struct eb_vmas *eb,
137                struct drm_i915_gem_exec_object2 *exec,
138                const struct drm_i915_gem_execbuffer2 *args,
139                struct i915_address_space *vm,
140                struct drm_file *file)
141 {
142         struct drm_i915_gem_object *obj;
143         struct list_head objects;
144         int i, ret;
145
146         INIT_LIST_HEAD(&objects);
147         spin_lock(&file->table_lock);
148         /* Grab a reference to the object and release the lock so we can lookup
149          * or create the VMA without using GFP_ATOMIC */
150         for (i = 0; i < args->buffer_count; i++) {
151                 obj = to_intel_bo(idr_find(&file->object_idr, exec[i].handle));
152                 if (obj == NULL) {
153                         spin_unlock(&file->table_lock);
154                         DRM_DEBUG("Invalid object handle %d at index %d\n",
155                                    exec[i].handle, i);
156                         ret = -ENOENT;
157                         goto err;
158                 }
159
160                 if (!list_empty(&obj->obj_exec_link)) {
161                         spin_unlock(&file->table_lock);
162                         DRM_DEBUG("Object %p [handle %d, index %d] appears more than once in object list\n",
163                                    obj, exec[i].handle, i);
164                         ret = -EINVAL;
165                         goto err;
166                 }
167
168                 i915_gem_object_get(obj);
169                 list_add_tail(&obj->obj_exec_link, &objects);
170         }
171         spin_unlock(&file->table_lock);
172
173         i = 0;
174         while (!list_empty(&objects)) {
175                 struct i915_vma *vma;
176
177                 obj = list_first_entry(&objects,
178                                        struct drm_i915_gem_object,
179                                        obj_exec_link);
180
181                 /*
182                  * NOTE: We can leak any vmas created here when something fails
183                  * later on. But that's no issue since vma_unbind can deal with
184                  * vmas which are not actually bound. And since only
185                  * lookup_or_create exists as an interface to get at the vma
186                  * from the (obj, vm) we don't run the risk of creating
187                  * duplicated vmas for the same vm.
188                  */
189                 vma = i915_vma_instance(obj, vm, NULL);
190                 if (unlikely(IS_ERR(vma))) {
191                         DRM_DEBUG("Failed to lookup VMA\n");
192                         ret = PTR_ERR(vma);
193                         goto err;
194                 }
195
196                 /* Transfer ownership from the objects list to the vmas list. */
197                 list_add_tail(&vma->exec_list, &eb->vmas);
198                 list_del_init(&obj->obj_exec_link);
199
200                 vma->exec_entry = &exec[i];
201                 if (eb->and < 0) {
202                         eb->lut[i] = vma;
203                 } else {
204                         uint32_t handle = args->flags & I915_EXEC_HANDLE_LUT ? i : exec[i].handle;
205                         vma->exec_handle = handle;
206                         hlist_add_head(&vma->exec_node,
207                                        &eb->buckets[handle & eb->and]);
208                 }
209                 ++i;
210         }
211
212         return 0;
213
214
215 err:
216         while (!list_empty(&objects)) {
217                 obj = list_first_entry(&objects,
218                                        struct drm_i915_gem_object,
219                                        obj_exec_link);
220                 list_del_init(&obj->obj_exec_link);
221                 i915_gem_object_put(obj);
222         }
223         /*
224          * Objects already transfered to the vmas list will be unreferenced by
225          * eb_destroy.
226          */
227
228         return ret;
229 }
230
231 static struct i915_vma *eb_get_vma(struct eb_vmas *eb, unsigned long handle)
232 {
233         if (eb->and < 0) {
234                 if (handle >= -eb->and)
235                         return NULL;
236                 return eb->lut[handle];
237         } else {
238                 struct hlist_head *head;
239                 struct i915_vma *vma;
240
241                 head = &eb->buckets[handle & eb->and];
242                 hlist_for_each_entry(vma, head, exec_node) {
243                         if (vma->exec_handle == handle)
244                                 return vma;
245                 }
246                 return NULL;
247         }
248 }
249
250 static void
251 i915_gem_execbuffer_unreserve_vma(struct i915_vma *vma)
252 {
253         struct drm_i915_gem_exec_object2 *entry;
254
255         if (!drm_mm_node_allocated(&vma->node))
256                 return;
257
258         entry = vma->exec_entry;
259
260         if (entry->flags & __EXEC_OBJECT_HAS_FENCE)
261                 i915_vma_unpin_fence(vma);
262
263         if (entry->flags & __EXEC_OBJECT_HAS_PIN)
264                 __i915_vma_unpin(vma);
265
266         entry->flags &= ~(__EXEC_OBJECT_HAS_FENCE | __EXEC_OBJECT_HAS_PIN);
267 }
268
269 static void eb_destroy(struct eb_vmas *eb)
270 {
271         while (!list_empty(&eb->vmas)) {
272                 struct i915_vma *vma;
273
274                 vma = list_first_entry(&eb->vmas,
275                                        struct i915_vma,
276                                        exec_list);
277                 list_del_init(&vma->exec_list);
278                 i915_gem_execbuffer_unreserve_vma(vma);
279                 vma->exec_entry = NULL;
280                 i915_vma_put(vma);
281         }
282         kfree(eb);
283 }
284
285 static inline int use_cpu_reloc(struct drm_i915_gem_object *obj)
286 {
287         if (!i915_gem_object_has_struct_page(obj))
288                 return false;
289
290         if (DBG_USE_CPU_RELOC)
291                 return DBG_USE_CPU_RELOC > 0;
292
293         return (HAS_LLC(to_i915(obj->base.dev)) ||
294                 obj->base.write_domain == I915_GEM_DOMAIN_CPU ||
295                 obj->cache_level != I915_CACHE_NONE);
296 }
297
298 /* Used to convert any address to canonical form.
299  * Starting from gen8, some commands (e.g. STATE_BASE_ADDRESS,
300  * MI_LOAD_REGISTER_MEM and others, see Broadwell PRM Vol2a) require the
301  * addresses to be in a canonical form:
302  * "GraphicsAddress[63:48] are ignored by the HW and assumed to be in correct
303  * canonical form [63:48] == [47]."
304  */
305 #define GEN8_HIGH_ADDRESS_BIT 47
306 static inline uint64_t gen8_canonical_addr(uint64_t address)
307 {
308         return sign_extend64(address, GEN8_HIGH_ADDRESS_BIT);
309 }
310
311 static inline uint64_t gen8_noncanonical_addr(uint64_t address)
312 {
313         return address & ((1ULL << (GEN8_HIGH_ADDRESS_BIT + 1)) - 1);
314 }
315
316 static inline uint64_t
317 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
318                   uint64_t target_offset)
319 {
320         return gen8_canonical_addr((int)reloc->delta + target_offset);
321 }
322
323 struct reloc_cache {
324         struct drm_i915_private *i915;
325         struct drm_mm_node node;
326         unsigned long vaddr;
327         unsigned int page;
328         bool use_64bit_reloc;
329 };
330
331 static void reloc_cache_init(struct reloc_cache *cache,
332                              struct drm_i915_private *i915)
333 {
334         cache->page = -1;
335         cache->vaddr = 0;
336         cache->i915 = i915;
337         /* Must be a variable in the struct to allow GCC to unroll. */
338         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
339         cache->node.allocated = false;
340 }
341
342 static inline void *unmask_page(unsigned long p)
343 {
344         return (void *)(uintptr_t)(p & PAGE_MASK);
345 }
346
347 static inline unsigned int unmask_flags(unsigned long p)
348 {
349         return p & ~PAGE_MASK;
350 }
351
352 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
353
354 static void reloc_cache_fini(struct reloc_cache *cache)
355 {
356         void *vaddr;
357
358         if (!cache->vaddr)
359                 return;
360
361         vaddr = unmask_page(cache->vaddr);
362         if (cache->vaddr & KMAP) {
363                 if (cache->vaddr & CLFLUSH_AFTER)
364                         mb();
365
366                 kunmap_atomic(vaddr);
367                 i915_gem_obj_finish_shmem_access((struct drm_i915_gem_object *)cache->node.mm);
368         } else {
369                 wmb();
370                 io_mapping_unmap_atomic((void __iomem *)vaddr);
371                 if (cache->node.allocated) {
372                         struct i915_ggtt *ggtt = &cache->i915->ggtt;
373
374                         ggtt->base.clear_range(&ggtt->base,
375                                                cache->node.start,
376                                                cache->node.size);
377                         drm_mm_remove_node(&cache->node);
378                 } else {
379                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
380                 }
381         }
382 }
383
384 static void *reloc_kmap(struct drm_i915_gem_object *obj,
385                         struct reloc_cache *cache,
386                         int page)
387 {
388         void *vaddr;
389
390         if (cache->vaddr) {
391                 kunmap_atomic(unmask_page(cache->vaddr));
392         } else {
393                 unsigned int flushes;
394                 int ret;
395
396                 ret = i915_gem_obj_prepare_shmem_write(obj, &flushes);
397                 if (ret)
398                         return ERR_PTR(ret);
399
400                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
401                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
402
403                 cache->vaddr = flushes | KMAP;
404                 cache->node.mm = (void *)obj;
405                 if (flushes)
406                         mb();
407         }
408
409         vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
410         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
411         cache->page = page;
412
413         return vaddr;
414 }
415
416 static void *reloc_iomap(struct drm_i915_gem_object *obj,
417                          struct reloc_cache *cache,
418                          int page)
419 {
420         struct i915_ggtt *ggtt = &cache->i915->ggtt;
421         unsigned long offset;
422         void *vaddr;
423
424         if (cache->vaddr) {
425                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
426         } else {
427                 struct i915_vma *vma;
428                 int ret;
429
430                 if (use_cpu_reloc(obj))
431                         return NULL;
432
433                 ret = i915_gem_object_set_to_gtt_domain(obj, true);
434                 if (ret)
435                         return ERR_PTR(ret);
436
437                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
438                                                PIN_MAPPABLE | PIN_NONBLOCK);
439                 if (IS_ERR(vma)) {
440                         memset(&cache->node, 0, sizeof(cache->node));
441                         ret = drm_mm_insert_node_in_range
442                                 (&ggtt->base.mm, &cache->node,
443                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
444                                  0, ggtt->mappable_end,
445                                  DRM_MM_INSERT_LOW);
446                         if (ret) /* no inactive aperture space, use cpu reloc */
447                                 return NULL;
448                 } else {
449                         ret = i915_vma_put_fence(vma);
450                         if (ret) {
451                                 i915_vma_unpin(vma);
452                                 return ERR_PTR(ret);
453                         }
454
455                         cache->node.start = vma->node.start;
456                         cache->node.mm = (void *)vma;
457                 }
458         }
459
460         offset = cache->node.start;
461         if (cache->node.allocated) {
462                 wmb();
463                 ggtt->base.insert_page(&ggtt->base,
464                                        i915_gem_object_get_dma_address(obj, page),
465                                        offset, I915_CACHE_NONE, 0);
466         } else {
467                 offset += page << PAGE_SHIFT;
468         }
469
470         vaddr = (void __force *) io_mapping_map_atomic_wc(&cache->i915->ggtt.mappable, offset);
471         cache->page = page;
472         cache->vaddr = (unsigned long)vaddr;
473
474         return vaddr;
475 }
476
477 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
478                          struct reloc_cache *cache,
479                          int page)
480 {
481         void *vaddr;
482
483         if (cache->page == page) {
484                 vaddr = unmask_page(cache->vaddr);
485         } else {
486                 vaddr = NULL;
487                 if ((cache->vaddr & KMAP) == 0)
488                         vaddr = reloc_iomap(obj, cache, page);
489                 if (!vaddr)
490                         vaddr = reloc_kmap(obj, cache, page);
491         }
492
493         return vaddr;
494 }
495
496 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
497 {
498         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
499                 if (flushes & CLFLUSH_BEFORE) {
500                         clflushopt(addr);
501                         mb();
502                 }
503
504                 *addr = value;
505
506                 /* Writes to the same cacheline are serialised by the CPU
507                  * (including clflush). On the write path, we only require
508                  * that it hits memory in an orderly fashion and place
509                  * mb barriers at the start and end of the relocation phase
510                  * to ensure ordering of clflush wrt to the system.
511                  */
512                 if (flushes & CLFLUSH_AFTER)
513                         clflushopt(addr);
514         } else
515                 *addr = value;
516 }
517
518 static int
519 relocate_entry(struct drm_i915_gem_object *obj,
520                const struct drm_i915_gem_relocation_entry *reloc,
521                struct reloc_cache *cache,
522                u64 target_offset)
523 {
524         u64 offset = reloc->offset;
525         bool wide = cache->use_64bit_reloc;
526         void *vaddr;
527
528         target_offset = relocation_target(reloc, target_offset);
529 repeat:
530         vaddr = reloc_vaddr(obj, cache, offset >> PAGE_SHIFT);
531         if (IS_ERR(vaddr))
532                 return PTR_ERR(vaddr);
533
534         clflush_write32(vaddr + offset_in_page(offset),
535                         lower_32_bits(target_offset),
536                         cache->vaddr);
537
538         if (wide) {
539                 offset += sizeof(u32);
540                 target_offset >>= 32;
541                 wide = false;
542                 goto repeat;
543         }
544
545         return 0;
546 }
547
548 static int
549 i915_gem_execbuffer_relocate_entry(struct i915_vma *vma,
550                                    struct eb_vmas *eb,
551                                    struct drm_i915_gem_relocation_entry *reloc,
552                                    struct reloc_cache *cache)
553 {
554         struct drm_i915_gem_object *obj = vma->obj;
555         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
556         struct drm_gem_object *target_obj;
557         struct drm_i915_gem_object *target_i915_obj;
558         struct i915_vma *target_vma;
559         uint64_t target_offset;
560         int ret;
561
562         /* we've already hold a reference to all valid objects */
563         target_vma = eb_get_vma(eb, reloc->target_handle);
564         if (unlikely(target_vma == NULL))
565                 return -ENOENT;
566         target_i915_obj = target_vma->obj;
567         target_obj = &target_vma->obj->base;
568
569         target_offset = gen8_canonical_addr(target_vma->node.start);
570
571         /* Sandybridge PPGTT errata: We need a global gtt mapping for MI and
572          * pipe_control writes because the gpu doesn't properly redirect them
573          * through the ppgtt for non_secure batchbuffers. */
574         if (unlikely(IS_GEN6(dev_priv) &&
575             reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION)) {
576                 ret = i915_vma_bind(target_vma, target_i915_obj->cache_level,
577                                     PIN_GLOBAL);
578                 if (WARN_ONCE(ret, "Unexpected failure to bind target VMA!"))
579                         return ret;
580         }
581
582         /* Validate that the target is in a valid r/w GPU domain */
583         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
584                 DRM_DEBUG("reloc with multiple write domains: "
585                           "obj %p target %d offset %d "
586                           "read %08x write %08x",
587                           obj, reloc->target_handle,
588                           (int) reloc->offset,
589                           reloc->read_domains,
590                           reloc->write_domain);
591                 return -EINVAL;
592         }
593         if (unlikely((reloc->write_domain | reloc->read_domains)
594                      & ~I915_GEM_GPU_DOMAINS)) {
595                 DRM_DEBUG("reloc with read/write non-GPU domains: "
596                           "obj %p target %d offset %d "
597                           "read %08x write %08x",
598                           obj, reloc->target_handle,
599                           (int) reloc->offset,
600                           reloc->read_domains,
601                           reloc->write_domain);
602                 return -EINVAL;
603         }
604
605         target_obj->pending_read_domains |= reloc->read_domains;
606         target_obj->pending_write_domain |= reloc->write_domain;
607
608         /* If the relocation already has the right value in it, no
609          * more work needs to be done.
610          */
611         if (target_offset == reloc->presumed_offset)
612                 return 0;
613
614         /* Check that the relocation address is valid... */
615         if (unlikely(reloc->offset >
616                      obj->base.size - (cache->use_64bit_reloc ? 8 : 4))) {
617                 DRM_DEBUG("Relocation beyond object bounds: "
618                           "obj %p target %d offset %d size %d.\n",
619                           obj, reloc->target_handle,
620                           (int) reloc->offset,
621                           (int) obj->base.size);
622                 return -EINVAL;
623         }
624         if (unlikely(reloc->offset & 3)) {
625                 DRM_DEBUG("Relocation not 4-byte aligned: "
626                           "obj %p target %d offset %d.\n",
627                           obj, reloc->target_handle,
628                           (int) reloc->offset);
629                 return -EINVAL;
630         }
631
632         /*
633          * If we write into the object, we need to force the synchronisation
634          * barrier, either with an asynchronous clflush or if we executed the
635          * patching using the GPU (though that should be serialised by the
636          * timeline). To be completely sure, and since we are required to
637          * do relocations we are already stalling, disable the user's opt
638          * of our synchronisation.
639          */
640         vma->exec_entry->flags &= ~EXEC_OBJECT_ASYNC;
641
642         ret = relocate_entry(obj, reloc, cache, target_offset);
643         if (ret)
644                 return ret;
645
646         /* and update the user's relocation entry */
647         reloc->presumed_offset = target_offset;
648         return 0;
649 }
650
651 static int
652 i915_gem_execbuffer_relocate_vma(struct i915_vma *vma,
653                                  struct eb_vmas *eb)
654 {
655 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
656         struct drm_i915_gem_relocation_entry stack_reloc[N_RELOC(512)];
657         struct drm_i915_gem_relocation_entry __user *user_relocs;
658         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
659         struct reloc_cache cache;
660         int remain, ret = 0;
661
662         user_relocs = u64_to_user_ptr(entry->relocs_ptr);
663         reloc_cache_init(&cache, eb->i915);
664
665         remain = entry->relocation_count;
666         while (remain) {
667                 struct drm_i915_gem_relocation_entry *r = stack_reloc;
668                 unsigned long unwritten;
669                 unsigned int count;
670
671                 count = min_t(unsigned int, remain, ARRAY_SIZE(stack_reloc));
672                 remain -= count;
673
674                 /* This is the fast path and we cannot handle a pagefault
675                  * whilst holding the struct mutex lest the user pass in the
676                  * relocations contained within a mmaped bo. For in such a case
677                  * we, the page fault handler would call i915_gem_fault() and
678                  * we would try to acquire the struct mutex again. Obviously
679                  * this is bad and so lockdep complains vehemently.
680                  */
681                 pagefault_disable();
682                 unwritten = __copy_from_user_inatomic(r, user_relocs, count*sizeof(r[0]));
683                 pagefault_enable();
684                 if (unlikely(unwritten)) {
685                         ret = -EFAULT;
686                         goto out;
687                 }
688
689                 do {
690                         u64 offset = r->presumed_offset;
691
692                         ret = i915_gem_execbuffer_relocate_entry(vma, eb, r, &cache);
693                         if (ret)
694                                 goto out;
695
696                         if (r->presumed_offset != offset) {
697                                 pagefault_disable();
698                                 unwritten = __put_user(r->presumed_offset,
699                                                        &user_relocs->presumed_offset);
700                                 pagefault_enable();
701                                 if (unlikely(unwritten)) {
702                                         /* Note that reporting an error now
703                                          * leaves everything in an inconsistent
704                                          * state as we have *already* changed
705                                          * the relocation value inside the
706                                          * object. As we have not changed the
707                                          * reloc.presumed_offset or will not
708                                          * change the execobject.offset, on the
709                                          * call we may not rewrite the value
710                                          * inside the object, leaving it
711                                          * dangling and causing a GPU hang.
712                                          */
713                                         ret = -EFAULT;
714                                         goto out;
715                                 }
716                         }
717
718                         user_relocs++;
719                         r++;
720                 } while (--count);
721         }
722
723 out:
724         reloc_cache_fini(&cache);
725         return ret;
726 #undef N_RELOC
727 }
728
729 static int
730 i915_gem_execbuffer_relocate_vma_slow(struct i915_vma *vma,
731                                       struct eb_vmas *eb,
732                                       struct drm_i915_gem_relocation_entry *relocs)
733 {
734         const struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
735         struct reloc_cache cache;
736         int i, ret = 0;
737
738         reloc_cache_init(&cache, eb->i915);
739         for (i = 0; i < entry->relocation_count; i++) {
740                 ret = i915_gem_execbuffer_relocate_entry(vma, eb, &relocs[i], &cache);
741                 if (ret)
742                         break;
743         }
744         reloc_cache_fini(&cache);
745
746         return ret;
747 }
748
749 static int
750 i915_gem_execbuffer_relocate(struct eb_vmas *eb)
751 {
752         struct i915_vma *vma;
753         int ret = 0;
754
755         list_for_each_entry(vma, &eb->vmas, exec_list) {
756                 ret = i915_gem_execbuffer_relocate_vma(vma, eb);
757                 if (ret)
758                         break;
759         }
760
761         return ret;
762 }
763
764 static bool only_mappable_for_reloc(unsigned int flags)
765 {
766         return (flags & (EXEC_OBJECT_NEEDS_FENCE | __EXEC_OBJECT_NEEDS_MAP)) ==
767                 __EXEC_OBJECT_NEEDS_MAP;
768 }
769
770 static int
771 i915_gem_execbuffer_reserve_vma(struct i915_vma *vma,
772                                 struct intel_engine_cs *engine,
773                                 bool *need_reloc)
774 {
775         struct drm_i915_gem_object *obj = vma->obj;
776         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
777         uint64_t flags;
778         int ret;
779
780         flags = PIN_USER;
781         if (entry->flags & EXEC_OBJECT_NEEDS_GTT)
782                 flags |= PIN_GLOBAL;
783
784         if (!drm_mm_node_allocated(&vma->node)) {
785                 /* Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
786                  * limit address to the first 4GBs for unflagged objects.
787                  */
788                 if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0)
789                         flags |= PIN_ZONE_4G;
790                 if (entry->flags & __EXEC_OBJECT_NEEDS_MAP)
791                         flags |= PIN_GLOBAL | PIN_MAPPABLE;
792                 if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS)
793                         flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
794                 if (entry->flags & EXEC_OBJECT_PINNED)
795                         flags |= entry->offset | PIN_OFFSET_FIXED;
796                 if ((flags & PIN_MAPPABLE) == 0)
797                         flags |= PIN_HIGH;
798         }
799
800         ret = i915_vma_pin(vma,
801                            entry->pad_to_size,
802                            entry->alignment,
803                            flags);
804         if ((ret == -ENOSPC || ret == -E2BIG) &&
805             only_mappable_for_reloc(entry->flags))
806                 ret = i915_vma_pin(vma,
807                                    entry->pad_to_size,
808                                    entry->alignment,
809                                    flags & ~PIN_MAPPABLE);
810         if (ret)
811                 return ret;
812
813         entry->flags |= __EXEC_OBJECT_HAS_PIN;
814
815         if (entry->flags & EXEC_OBJECT_NEEDS_FENCE) {
816                 ret = i915_vma_get_fence(vma);
817                 if (ret)
818                         return ret;
819
820                 if (i915_vma_pin_fence(vma))
821                         entry->flags |= __EXEC_OBJECT_HAS_FENCE;
822         }
823
824         if (entry->offset != vma->node.start) {
825                 entry->offset = vma->node.start;
826                 *need_reloc = true;
827         }
828
829         if (entry->flags & EXEC_OBJECT_WRITE) {
830                 obj->base.pending_read_domains = I915_GEM_DOMAIN_RENDER;
831                 obj->base.pending_write_domain = I915_GEM_DOMAIN_RENDER;
832         }
833
834         return 0;
835 }
836
837 static bool
838 need_reloc_mappable(struct i915_vma *vma)
839 {
840         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
841
842         if (entry->relocation_count == 0)
843                 return false;
844
845         if (!i915_vma_is_ggtt(vma))
846                 return false;
847
848         /* See also use_cpu_reloc() */
849         if (HAS_LLC(to_i915(vma->obj->base.dev)))
850                 return false;
851
852         if (vma->obj->base.write_domain == I915_GEM_DOMAIN_CPU)
853                 return false;
854
855         return true;
856 }
857
858 static bool
859 eb_vma_misplaced(struct i915_vma *vma)
860 {
861         struct drm_i915_gem_exec_object2 *entry = vma->exec_entry;
862
863         WARN_ON(entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
864                 !i915_vma_is_ggtt(vma));
865
866         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
867                 return true;
868
869         if (vma->node.size < entry->pad_to_size)
870                 return true;
871
872         if (entry->flags & EXEC_OBJECT_PINNED &&
873             vma->node.start != entry->offset)
874                 return true;
875
876         if (entry->flags & __EXEC_OBJECT_NEEDS_BIAS &&
877             vma->node.start < BATCH_OFFSET_BIAS)
878                 return true;
879
880         /* avoid costly ping-pong once a batch bo ended up non-mappable */
881         if (entry->flags & __EXEC_OBJECT_NEEDS_MAP &&
882             !i915_vma_is_map_and_fenceable(vma))
883                 return !only_mappable_for_reloc(entry->flags);
884
885         if ((entry->flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) == 0 &&
886             (vma->node.start + vma->node.size - 1) >> 32)
887                 return true;
888
889         return false;
890 }
891
892 static int
893 i915_gem_execbuffer_reserve(struct intel_engine_cs *engine,
894                             struct list_head *vmas,
895                             struct i915_gem_context *ctx,
896                             bool *need_relocs)
897 {
898         struct drm_i915_gem_object *obj;
899         struct i915_vma *vma;
900         struct i915_address_space *vm;
901         struct list_head ordered_vmas;
902         struct list_head pinned_vmas;
903         bool has_fenced_gpu_access = INTEL_GEN(engine->i915) < 4;
904         bool needs_unfenced_map = INTEL_INFO(engine->i915)->unfenced_needs_alignment;
905         int retry;
906
907         vm = list_first_entry(vmas, struct i915_vma, exec_list)->vm;
908
909         INIT_LIST_HEAD(&ordered_vmas);
910         INIT_LIST_HEAD(&pinned_vmas);
911         while (!list_empty(vmas)) {
912                 struct drm_i915_gem_exec_object2 *entry;
913                 bool need_fence, need_mappable;
914
915                 vma = list_first_entry(vmas, struct i915_vma, exec_list);
916                 obj = vma->obj;
917                 entry = vma->exec_entry;
918
919                 if (ctx->flags & CONTEXT_NO_ZEROMAP)
920                         entry->flags |= __EXEC_OBJECT_NEEDS_BIAS;
921
922                 if (!has_fenced_gpu_access)
923                         entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
924                 need_fence =
925                         (entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
926                          needs_unfenced_map) &&
927                         i915_gem_object_is_tiled(obj);
928                 need_mappable = need_fence || need_reloc_mappable(vma);
929
930                 if (entry->flags & EXEC_OBJECT_PINNED)
931                         list_move_tail(&vma->exec_list, &pinned_vmas);
932                 else if (need_mappable) {
933                         entry->flags |= __EXEC_OBJECT_NEEDS_MAP;
934                         list_move(&vma->exec_list, &ordered_vmas);
935                 } else
936                         list_move_tail(&vma->exec_list, &ordered_vmas);
937
938                 obj->base.pending_read_domains = I915_GEM_GPU_DOMAINS & ~I915_GEM_DOMAIN_COMMAND;
939                 obj->base.pending_write_domain = 0;
940         }
941         list_splice(&ordered_vmas, vmas);
942         list_splice(&pinned_vmas, vmas);
943
944         /* Attempt to pin all of the buffers into the GTT.
945          * This is done in 3 phases:
946          *
947          * 1a. Unbind all objects that do not match the GTT constraints for
948          *     the execbuffer (fenceable, mappable, alignment etc).
949          * 1b. Increment pin count for already bound objects.
950          * 2.  Bind new objects.
951          * 3.  Decrement pin count.
952          *
953          * This avoid unnecessary unbinding of later objects in order to make
954          * room for the earlier objects *unless* we need to defragment.
955          */
956         retry = 0;
957         do {
958                 int ret = 0;
959
960                 /* Unbind any ill-fitting objects or pin. */
961                 list_for_each_entry(vma, vmas, exec_list) {
962                         if (!drm_mm_node_allocated(&vma->node))
963                                 continue;
964
965                         if (eb_vma_misplaced(vma))
966                                 ret = i915_vma_unbind(vma);
967                         else
968                                 ret = i915_gem_execbuffer_reserve_vma(vma,
969                                                                       engine,
970                                                                       need_relocs);
971                         if (ret)
972                                 goto err;
973                 }
974
975                 /* Bind fresh objects */
976                 list_for_each_entry(vma, vmas, exec_list) {
977                         if (drm_mm_node_allocated(&vma->node))
978                                 continue;
979
980                         ret = i915_gem_execbuffer_reserve_vma(vma, engine,
981                                                               need_relocs);
982                         if (ret)
983                                 goto err;
984                 }
985
986 err:
987                 if (ret != -ENOSPC || retry++)
988                         return ret;
989
990                 /* Decrement pin count for bound objects */
991                 list_for_each_entry(vma, vmas, exec_list)
992                         i915_gem_execbuffer_unreserve_vma(vma);
993
994                 ret = i915_gem_evict_vm(vm, true);
995                 if (ret)
996                         return ret;
997         } while (1);
998 }
999
1000 static int
1001 i915_gem_execbuffer_relocate_slow(struct drm_device *dev,
1002                                   struct drm_i915_gem_execbuffer2 *args,
1003                                   struct drm_file *file,
1004                                   struct intel_engine_cs *engine,
1005                                   struct eb_vmas *eb,
1006                                   struct drm_i915_gem_exec_object2 *exec,
1007                                   struct i915_gem_context *ctx)
1008 {
1009         struct drm_i915_gem_relocation_entry *reloc;
1010         struct i915_address_space *vm;
1011         struct i915_vma *vma;
1012         bool need_relocs;
1013         int *reloc_offset;
1014         int i, total, ret;
1015         unsigned count = args->buffer_count;
1016
1017         vm = list_first_entry(&eb->vmas, struct i915_vma, exec_list)->vm;
1018
1019         /* We may process another execbuffer during the unlock... */
1020         while (!list_empty(&eb->vmas)) {
1021                 vma = list_first_entry(&eb->vmas, struct i915_vma, exec_list);
1022                 list_del_init(&vma->exec_list);
1023                 i915_gem_execbuffer_unreserve_vma(vma);
1024                 i915_vma_put(vma);
1025         }
1026
1027         mutex_unlock(&dev->struct_mutex);
1028
1029         total = 0;
1030         for (i = 0; i < count; i++)
1031                 total += exec[i].relocation_count;
1032
1033         reloc_offset = drm_malloc_ab(count, sizeof(*reloc_offset));
1034         reloc = drm_malloc_ab(total, sizeof(*reloc));
1035         if (reloc == NULL || reloc_offset == NULL) {
1036                 drm_free_large(reloc);
1037                 drm_free_large(reloc_offset);
1038                 mutex_lock(&dev->struct_mutex);
1039                 return -ENOMEM;
1040         }
1041
1042         total = 0;
1043         for (i = 0; i < count; i++) {
1044                 struct drm_i915_gem_relocation_entry __user *user_relocs;
1045                 u64 invalid_offset = (u64)-1;
1046                 int j;
1047
1048                 user_relocs = u64_to_user_ptr(exec[i].relocs_ptr);
1049
1050                 if (copy_from_user(reloc+total, user_relocs,
1051                                    exec[i].relocation_count * sizeof(*reloc))) {
1052                         ret = -EFAULT;
1053                         mutex_lock(&dev->struct_mutex);
1054                         goto err;
1055                 }
1056
1057                 /* As we do not update the known relocation offsets after
1058                  * relocating (due to the complexities in lock handling),
1059                  * we need to mark them as invalid now so that we force the
1060                  * relocation processing next time. Just in case the target
1061                  * object is evicted and then rebound into its old
1062                  * presumed_offset before the next execbuffer - if that
1063                  * happened we would make the mistake of assuming that the
1064                  * relocations were valid.
1065                  */
1066                 for (j = 0; j < exec[i].relocation_count; j++) {
1067                         if (__copy_to_user(&user_relocs[j].presumed_offset,
1068                                            &invalid_offset,
1069                                            sizeof(invalid_offset))) {
1070                                 ret = -EFAULT;
1071                                 mutex_lock(&dev->struct_mutex);
1072                                 goto err;
1073                         }
1074                 }
1075
1076                 reloc_offset[i] = total;
1077                 total += exec[i].relocation_count;
1078         }
1079
1080         ret = i915_mutex_lock_interruptible(dev);
1081         if (ret) {
1082                 mutex_lock(&dev->struct_mutex);
1083                 goto err;
1084         }
1085
1086         /* reacquire the objects */
1087         eb_reset(eb);
1088         ret = eb_lookup_vmas(eb, exec, args, vm, file);
1089         if (ret)
1090                 goto err;
1091
1092         need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1093         ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1094                                           &need_relocs);
1095         if (ret)
1096                 goto err;
1097
1098         list_for_each_entry(vma, &eb->vmas, exec_list) {
1099                 int offset = vma->exec_entry - exec;
1100                 ret = i915_gem_execbuffer_relocate_vma_slow(vma, eb,
1101                                                             reloc + reloc_offset[offset]);
1102                 if (ret)
1103                         goto err;
1104         }
1105
1106         /* Leave the user relocations as are, this is the painfully slow path,
1107          * and we want to avoid the complication of dropping the lock whilst
1108          * having buffers reserved in the aperture and so causing spurious
1109          * ENOSPC for random operations.
1110          */
1111
1112 err:
1113         drm_free_large(reloc);
1114         drm_free_large(reloc_offset);
1115         return ret;
1116 }
1117
1118 static int
1119 i915_gem_execbuffer_move_to_gpu(struct drm_i915_gem_request *req,
1120                                 struct list_head *vmas)
1121 {
1122         struct i915_vma *vma;
1123         int ret;
1124
1125         list_for_each_entry(vma, vmas, exec_list) {
1126                 struct drm_i915_gem_object *obj = vma->obj;
1127
1128                 if (vma->exec_entry->flags & EXEC_OBJECT_ASYNC)
1129                         continue;
1130
1131                 if (obj->base.write_domain & I915_GEM_DOMAIN_CPU) {
1132                         i915_gem_clflush_object(obj, 0);
1133                         obj->base.write_domain = 0;
1134                 }
1135
1136                 ret = i915_gem_request_await_object
1137                         (req, obj, obj->base.pending_write_domain);
1138                 if (ret)
1139                         return ret;
1140         }
1141
1142         /* Unconditionally flush any chipset caches (for streaming writes). */
1143         i915_gem_chipset_flush(req->engine->i915);
1144
1145         /* Unconditionally invalidate GPU caches and TLBs. */
1146         return req->engine->emit_flush(req, EMIT_INVALIDATE);
1147 }
1148
1149 static bool
1150 i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1151 {
1152         if (exec->flags & __I915_EXEC_UNKNOWN_FLAGS)
1153                 return false;
1154
1155         /* Kernel clipping was a DRI1 misfeature */
1156         if (exec->num_cliprects || exec->cliprects_ptr)
1157                 return false;
1158
1159         if (exec->DR4 == 0xffffffff) {
1160                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1161                 exec->DR4 = 0;
1162         }
1163         if (exec->DR1 || exec->DR4)
1164                 return false;
1165
1166         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1167                 return false;
1168
1169         return true;
1170 }
1171
1172 static int
1173 validate_exec_list(struct drm_device *dev,
1174                    struct drm_i915_gem_exec_object2 *exec,
1175                    int count)
1176 {
1177         unsigned relocs_total = 0;
1178         unsigned relocs_max = UINT_MAX / sizeof(struct drm_i915_gem_relocation_entry);
1179         unsigned invalid_flags;
1180         int i;
1181
1182         /* INTERNAL flags must not overlap with external ones */
1183         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & ~__EXEC_OBJECT_UNKNOWN_FLAGS);
1184
1185         invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
1186         if (USES_FULL_PPGTT(dev))
1187                 invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
1188
1189         for (i = 0; i < count; i++) {
1190                 char __user *ptr = u64_to_user_ptr(exec[i].relocs_ptr);
1191                 int length; /* limited by fault_in_pages_readable() */
1192
1193                 if (exec[i].flags & invalid_flags)
1194                         return -EINVAL;
1195
1196                 /* Offset can be used as input (EXEC_OBJECT_PINNED), reject
1197                  * any non-page-aligned or non-canonical addresses.
1198                  */
1199                 if (exec[i].flags & EXEC_OBJECT_PINNED) {
1200                         if (exec[i].offset !=
1201                             gen8_canonical_addr(exec[i].offset & PAGE_MASK))
1202                                 return -EINVAL;
1203                 }
1204
1205                 /* From drm_mm perspective address space is continuous,
1206                  * so from this point we're always using non-canonical
1207                  * form internally.
1208                  */
1209                 exec[i].offset = gen8_noncanonical_addr(exec[i].offset);
1210
1211                 if (exec[i].alignment && !is_power_of_2(exec[i].alignment))
1212                         return -EINVAL;
1213
1214                 /* pad_to_size was once a reserved field, so sanitize it */
1215                 if (exec[i].flags & EXEC_OBJECT_PAD_TO_SIZE) {
1216                         if (offset_in_page(exec[i].pad_to_size))
1217                                 return -EINVAL;
1218                 } else {
1219                         exec[i].pad_to_size = 0;
1220                 }
1221
1222                 /* First check for malicious input causing overflow in
1223                  * the worst case where we need to allocate the entire
1224                  * relocation tree as a single array.
1225                  */
1226                 if (exec[i].relocation_count > relocs_max - relocs_total)
1227                         return -EINVAL;
1228                 relocs_total += exec[i].relocation_count;
1229
1230                 length = exec[i].relocation_count *
1231                         sizeof(struct drm_i915_gem_relocation_entry);
1232                 /*
1233                  * We must check that the entire relocation array is safe
1234                  * to read, but since we may need to update the presumed
1235                  * offsets during execution, check for full write access.
1236                  */
1237                 if (!access_ok(VERIFY_WRITE, ptr, length))
1238                         return -EFAULT;
1239
1240                 if (likely(!i915.prefault_disable)) {
1241                         if (fault_in_pages_readable(ptr, length))
1242                                 return -EFAULT;
1243                 }
1244         }
1245
1246         return 0;
1247 }
1248
1249 static struct i915_gem_context *
1250 i915_gem_validate_context(struct drm_device *dev, struct drm_file *file,
1251                           struct intel_engine_cs *engine, const u32 ctx_id)
1252 {
1253         struct i915_gem_context *ctx;
1254
1255         ctx = i915_gem_context_lookup(file->driver_priv, ctx_id);
1256         if (IS_ERR(ctx))
1257                 return ctx;
1258
1259         if (i915_gem_context_is_banned(ctx)) {
1260                 DRM_DEBUG("Context %u tried to submit while banned\n", ctx_id);
1261                 return ERR_PTR(-EIO);
1262         }
1263
1264         return ctx;
1265 }
1266
1267 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
1268 {
1269         return !(obj->cache_level == I915_CACHE_NONE ||
1270                  obj->cache_level == I915_CACHE_WT);
1271 }
1272
1273 void i915_vma_move_to_active(struct i915_vma *vma,
1274                              struct drm_i915_gem_request *req,
1275                              unsigned int flags)
1276 {
1277         struct drm_i915_gem_object *obj = vma->obj;
1278         const unsigned int idx = req->engine->id;
1279
1280         lockdep_assert_held(&req->i915->drm.struct_mutex);
1281         GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
1282
1283         /* Add a reference if we're newly entering the active list.
1284          * The order in which we add operations to the retirement queue is
1285          * vital here: mark_active adds to the start of the callback list,
1286          * such that subsequent callbacks are called first. Therefore we
1287          * add the active reference first and queue for it to be dropped
1288          * *last*.
1289          */
1290         if (!i915_vma_is_active(vma))
1291                 obj->active_count++;
1292         i915_vma_set_active(vma, idx);
1293         i915_gem_active_set(&vma->last_read[idx], req);
1294         list_move_tail(&vma->vm_link, &vma->vm->active_list);
1295
1296         if (flags & EXEC_OBJECT_WRITE) {
1297                 if (intel_fb_obj_invalidate(obj, ORIGIN_CS))
1298                         i915_gem_active_set(&obj->frontbuffer_write, req);
1299
1300                 /* update for the implicit flush after a batch */
1301                 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1302                 if (!obj->cache_dirty && gpu_write_needs_clflush(obj))
1303                         obj->cache_dirty = true;
1304         }
1305
1306         if (flags & EXEC_OBJECT_NEEDS_FENCE)
1307                 i915_gem_active_set(&vma->last_fence, req);
1308 }
1309
1310 static void eb_export_fence(struct drm_i915_gem_object *obj,
1311                             struct drm_i915_gem_request *req,
1312                             unsigned int flags)
1313 {
1314         struct reservation_object *resv = obj->resv;
1315
1316         /* Ignore errors from failing to allocate the new fence, we can't
1317          * handle an error right now. Worst case should be missed
1318          * synchronisation leading to rendering corruption.
1319          */
1320         reservation_object_lock(resv, NULL);
1321         if (flags & EXEC_OBJECT_WRITE)
1322                 reservation_object_add_excl_fence(resv, &req->fence);
1323         else if (reservation_object_reserve_shared(resv) == 0)
1324                 reservation_object_add_shared_fence(resv, &req->fence);
1325         reservation_object_unlock(resv);
1326 }
1327
1328 static void
1329 i915_gem_execbuffer_move_to_active(struct list_head *vmas,
1330                                    struct drm_i915_gem_request *req)
1331 {
1332         struct i915_vma *vma;
1333
1334         list_for_each_entry(vma, vmas, exec_list) {
1335                 struct drm_i915_gem_object *obj = vma->obj;
1336
1337                 obj->base.write_domain = obj->base.pending_write_domain;
1338                 if (obj->base.write_domain)
1339                         vma->exec_entry->flags |= EXEC_OBJECT_WRITE;
1340                 else
1341                         obj->base.pending_read_domains |= obj->base.read_domains;
1342                 obj->base.read_domains = obj->base.pending_read_domains;
1343
1344                 i915_vma_move_to_active(vma, req, vma->exec_entry->flags);
1345                 eb_export_fence(obj, req, vma->exec_entry->flags);
1346         }
1347 }
1348
1349 static int
1350 i915_reset_gen7_sol_offsets(struct drm_i915_gem_request *req)
1351 {
1352         u32 *cs;
1353         int i;
1354
1355         if (!IS_GEN7(req->i915) || req->engine->id != RCS) {
1356                 DRM_DEBUG("sol reset is gen7/rcs only\n");
1357                 return -EINVAL;
1358         }
1359
1360         cs = intel_ring_begin(req, 4 * 3);
1361         if (IS_ERR(cs))
1362                 return PTR_ERR(cs);
1363
1364         for (i = 0; i < 4; i++) {
1365                 *cs++ = MI_LOAD_REGISTER_IMM(1);
1366                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1367                 *cs++ = 0;
1368         }
1369
1370         intel_ring_advance(req, cs);
1371
1372         return 0;
1373 }
1374
1375 static struct i915_vma *
1376 i915_gem_execbuffer_parse(struct intel_engine_cs *engine,
1377                           struct drm_i915_gem_exec_object2 *shadow_exec_entry,
1378                           struct drm_i915_gem_object *batch_obj,
1379                           struct eb_vmas *eb,
1380                           u32 batch_start_offset,
1381                           u32 batch_len,
1382                           bool is_master)
1383 {
1384         struct drm_i915_gem_object *shadow_batch_obj;
1385         struct i915_vma *vma;
1386         int ret;
1387
1388         shadow_batch_obj = i915_gem_batch_pool_get(&engine->batch_pool,
1389                                                    PAGE_ALIGN(batch_len));
1390         if (IS_ERR(shadow_batch_obj))
1391                 return ERR_CAST(shadow_batch_obj);
1392
1393         ret = intel_engine_cmd_parser(engine,
1394                                       batch_obj,
1395                                       shadow_batch_obj,
1396                                       batch_start_offset,
1397                                       batch_len,
1398                                       is_master);
1399         if (ret) {
1400                 if (ret == -EACCES) /* unhandled chained batch */
1401                         vma = NULL;
1402                 else
1403                         vma = ERR_PTR(ret);
1404                 goto out;
1405         }
1406
1407         vma = i915_gem_object_ggtt_pin(shadow_batch_obj, NULL, 0, 0, 0);
1408         if (IS_ERR(vma))
1409                 goto out;
1410
1411         memset(shadow_exec_entry, 0, sizeof(*shadow_exec_entry));
1412
1413         vma->exec_entry = shadow_exec_entry;
1414         vma->exec_entry->flags = __EXEC_OBJECT_HAS_PIN;
1415         i915_gem_object_get(shadow_batch_obj);
1416         list_add_tail(&vma->exec_list, &eb->vmas);
1417
1418 out:
1419         i915_gem_object_unpin_pages(shadow_batch_obj);
1420         return vma;
1421 }
1422
1423 static void
1424 add_to_client(struct drm_i915_gem_request *req,
1425               struct drm_file *file)
1426 {
1427         req->file_priv = file->driver_priv;
1428         list_add_tail(&req->client_link, &req->file_priv->mm.request_list);
1429 }
1430
1431 static int
1432 execbuf_submit(struct i915_execbuffer_params *params,
1433                struct drm_i915_gem_execbuffer2 *args,
1434                struct list_head *vmas)
1435 {
1436         u64 exec_start, exec_len;
1437         int ret;
1438
1439         ret = i915_gem_execbuffer_move_to_gpu(params->request, vmas);
1440         if (ret)
1441                 return ret;
1442
1443         ret = i915_switch_context(params->request);
1444         if (ret)
1445                 return ret;
1446
1447         if (args->flags & I915_EXEC_CONSTANTS_MASK) {
1448                 DRM_DEBUG("I915_EXEC_CONSTANTS_* unsupported\n");
1449                 return -EINVAL;
1450         }
1451
1452         if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
1453                 ret = i915_reset_gen7_sol_offsets(params->request);
1454                 if (ret)
1455                         return ret;
1456         }
1457
1458         exec_len   = args->batch_len;
1459         exec_start = params->batch->node.start +
1460                      params->args_batch_start_offset;
1461
1462         if (exec_len == 0)
1463                 exec_len = params->batch->size - params->args_batch_start_offset;
1464
1465         ret = params->engine->emit_bb_start(params->request,
1466                                             exec_start, exec_len,
1467                                             params->dispatch_flags);
1468         if (ret)
1469                 return ret;
1470
1471         i915_gem_execbuffer_move_to_active(vmas, params->request);
1472
1473         return 0;
1474 }
1475
1476 /**
1477  * Find one BSD ring to dispatch the corresponding BSD command.
1478  * The engine index is returned.
1479  */
1480 static unsigned int
1481 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1482                          struct drm_file *file)
1483 {
1484         struct drm_i915_file_private *file_priv = file->driver_priv;
1485
1486         /* Check whether the file_priv has already selected one ring. */
1487         if ((int)file_priv->bsd_engine < 0)
1488                 file_priv->bsd_engine = atomic_fetch_xor(1,
1489                          &dev_priv->mm.bsd_engine_dispatch_index);
1490
1491         return file_priv->bsd_engine;
1492 }
1493
1494 #define I915_USER_RINGS (4)
1495
1496 static const enum intel_engine_id user_ring_map[I915_USER_RINGS + 1] = {
1497         [I915_EXEC_DEFAULT]     = RCS,
1498         [I915_EXEC_RENDER]      = RCS,
1499         [I915_EXEC_BLT]         = BCS,
1500         [I915_EXEC_BSD]         = VCS,
1501         [I915_EXEC_VEBOX]       = VECS
1502 };
1503
1504 static struct intel_engine_cs *
1505 eb_select_engine(struct drm_i915_private *dev_priv,
1506                  struct drm_file *file,
1507                  struct drm_i915_gem_execbuffer2 *args)
1508 {
1509         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
1510         struct intel_engine_cs *engine;
1511
1512         if (user_ring_id > I915_USER_RINGS) {
1513                 DRM_DEBUG("execbuf with unknown ring: %u\n", user_ring_id);
1514                 return NULL;
1515         }
1516
1517         if ((user_ring_id != I915_EXEC_BSD) &&
1518             ((args->flags & I915_EXEC_BSD_MASK) != 0)) {
1519                 DRM_DEBUG("execbuf with non bsd ring but with invalid "
1520                           "bsd dispatch flags: %d\n", (int)(args->flags));
1521                 return NULL;
1522         }
1523
1524         if (user_ring_id == I915_EXEC_BSD && HAS_BSD2(dev_priv)) {
1525                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
1526
1527                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
1528                         bsd_idx = gen8_dispatch_bsd_engine(dev_priv, file);
1529                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
1530                            bsd_idx <= I915_EXEC_BSD_RING2) {
1531                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
1532                         bsd_idx--;
1533                 } else {
1534                         DRM_DEBUG("execbuf with unknown bsd ring: %u\n",
1535                                   bsd_idx);
1536                         return NULL;
1537                 }
1538
1539                 engine = dev_priv->engine[_VCS(bsd_idx)];
1540         } else {
1541                 engine = dev_priv->engine[user_ring_map[user_ring_id]];
1542         }
1543
1544         if (!engine) {
1545                 DRM_DEBUG("execbuf with invalid ring: %u\n", user_ring_id);
1546                 return NULL;
1547         }
1548
1549         return engine;
1550 }
1551
1552 static int
1553 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
1554                        struct drm_file *file,
1555                        struct drm_i915_gem_execbuffer2 *args,
1556                        struct drm_i915_gem_exec_object2 *exec)
1557 {
1558         struct drm_i915_private *dev_priv = to_i915(dev);
1559         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1560         struct eb_vmas *eb;
1561         struct drm_i915_gem_exec_object2 shadow_exec_entry;
1562         struct intel_engine_cs *engine;
1563         struct i915_gem_context *ctx;
1564         struct i915_address_space *vm;
1565         struct i915_execbuffer_params params_master; /* XXX: will be removed later */
1566         struct i915_execbuffer_params *params = &params_master;
1567         const u32 ctx_id = i915_execbuffer2_get_context_id(*args);
1568         u32 dispatch_flags;
1569         struct dma_fence *in_fence = NULL;
1570         struct sync_file *out_fence = NULL;
1571         int out_fence_fd = -1;
1572         int ret;
1573         bool need_relocs;
1574
1575         if (!i915_gem_check_execbuffer(args))
1576                 return -EINVAL;
1577
1578         ret = validate_exec_list(dev, exec, args->buffer_count);
1579         if (ret)
1580                 return ret;
1581
1582         dispatch_flags = 0;
1583         if (args->flags & I915_EXEC_SECURE) {
1584                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
1585                     return -EPERM;
1586
1587                 dispatch_flags |= I915_DISPATCH_SECURE;
1588         }
1589         if (args->flags & I915_EXEC_IS_PINNED)
1590                 dispatch_flags |= I915_DISPATCH_PINNED;
1591
1592         engine = eb_select_engine(dev_priv, file, args);
1593         if (!engine)
1594                 return -EINVAL;
1595
1596         if (args->buffer_count < 1) {
1597                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1598                 return -EINVAL;
1599         }
1600
1601         if (args->flags & I915_EXEC_RESOURCE_STREAMER) {
1602                 if (!HAS_RESOURCE_STREAMER(dev_priv)) {
1603                         DRM_DEBUG("RS is only allowed for Haswell, Gen8 and above\n");
1604                         return -EINVAL;
1605                 }
1606                 if (engine->id != RCS) {
1607                         DRM_DEBUG("RS is not available on %s\n",
1608                                  engine->name);
1609                         return -EINVAL;
1610                 }
1611
1612                 dispatch_flags |= I915_DISPATCH_RS;
1613         }
1614
1615         if (args->flags & I915_EXEC_FENCE_IN) {
1616                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
1617                 if (!in_fence)
1618                         return -EINVAL;
1619         }
1620
1621         if (args->flags & I915_EXEC_FENCE_OUT) {
1622                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
1623                 if (out_fence_fd < 0) {
1624                         ret = out_fence_fd;
1625                         goto err_in_fence;
1626                 }
1627         }
1628
1629         /* Take a local wakeref for preparing to dispatch the execbuf as
1630          * we expect to access the hardware fairly frequently in the
1631          * process. Upon first dispatch, we acquire another prolonged
1632          * wakeref that we hold until the GPU has been idle for at least
1633          * 100ms.
1634          */
1635         intel_runtime_pm_get(dev_priv);
1636
1637         ret = i915_mutex_lock_interruptible(dev);
1638         if (ret)
1639                 goto pre_mutex_err;
1640
1641         ctx = i915_gem_validate_context(dev, file, engine, ctx_id);
1642         if (IS_ERR(ctx)) {
1643                 mutex_unlock(&dev->struct_mutex);
1644                 ret = PTR_ERR(ctx);
1645                 goto pre_mutex_err;
1646         }
1647
1648         i915_gem_context_get(ctx);
1649
1650         if (ctx->ppgtt)
1651                 vm = &ctx->ppgtt->base;
1652         else
1653                 vm = &ggtt->base;
1654
1655         memset(&params_master, 0x00, sizeof(params_master));
1656
1657         eb = eb_create(dev_priv, args);
1658         if (eb == NULL) {
1659                 i915_gem_context_put(ctx);
1660                 mutex_unlock(&dev->struct_mutex);
1661                 ret = -ENOMEM;
1662                 goto pre_mutex_err;
1663         }
1664
1665         /* Look up object handles */
1666         ret = eb_lookup_vmas(eb, exec, args, vm, file);
1667         if (ret)
1668                 goto err;
1669
1670         /* take note of the batch buffer before we might reorder the lists */
1671         params->batch = eb_get_batch(eb);
1672
1673         /* Move the objects en-masse into the GTT, evicting if necessary. */
1674         need_relocs = (args->flags & I915_EXEC_NO_RELOC) == 0;
1675         ret = i915_gem_execbuffer_reserve(engine, &eb->vmas, ctx,
1676                                           &need_relocs);
1677         if (ret)
1678                 goto err;
1679
1680         /* The objects are in their final locations, apply the relocations. */
1681         if (need_relocs)
1682                 ret = i915_gem_execbuffer_relocate(eb);
1683         if (ret) {
1684                 if (ret == -EFAULT) {
1685                         ret = i915_gem_execbuffer_relocate_slow(dev, args, file,
1686                                                                 engine,
1687                                                                 eb, exec, ctx);
1688                         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1689                 }
1690                 if (ret)
1691                         goto err;
1692         }
1693
1694         /* Set the pending read domains for the batch buffer to COMMAND */
1695         if (params->batch->obj->base.pending_write_domain) {
1696                 DRM_DEBUG("Attempting to use self-modifying batch buffer\n");
1697                 ret = -EINVAL;
1698                 goto err;
1699         }
1700         if (args->batch_start_offset > params->batch->size ||
1701             args->batch_len > params->batch->size - args->batch_start_offset) {
1702                 DRM_DEBUG("Attempting to use out-of-bounds batch\n");
1703                 ret = -EINVAL;
1704                 goto err;
1705         }
1706
1707         params->args_batch_start_offset = args->batch_start_offset;
1708         if (engine->needs_cmd_parser && args->batch_len) {
1709                 struct i915_vma *vma;
1710
1711                 vma = i915_gem_execbuffer_parse(engine, &shadow_exec_entry,
1712                                                 params->batch->obj,
1713                                                 eb,
1714                                                 args->batch_start_offset,
1715                                                 args->batch_len,
1716                                                 drm_is_current_master(file));
1717                 if (IS_ERR(vma)) {
1718                         ret = PTR_ERR(vma);
1719                         goto err;
1720                 }
1721
1722                 if (vma) {
1723                         /*
1724                          * Batch parsed and accepted:
1725                          *
1726                          * Set the DISPATCH_SECURE bit to remove the NON_SECURE
1727                          * bit from MI_BATCH_BUFFER_START commands issued in
1728                          * the dispatch_execbuffer implementations. We
1729                          * specifically don't want that set on batches the
1730                          * command parser has accepted.
1731                          */
1732                         dispatch_flags |= I915_DISPATCH_SECURE;
1733                         params->args_batch_start_offset = 0;
1734                         params->batch = vma;
1735                 }
1736         }
1737
1738         params->batch->obj->base.pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
1739
1740         /* snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
1741          * batch" bit. Hence we need to pin secure batches into the global gtt.
1742          * hsw should have this fixed, but bdw mucks it up again. */
1743         if (dispatch_flags & I915_DISPATCH_SECURE) {
1744                 struct drm_i915_gem_object *obj = params->batch->obj;
1745                 struct i915_vma *vma;
1746
1747                 /*
1748                  * So on first glance it looks freaky that we pin the batch here
1749                  * outside of the reservation loop. But:
1750                  * - The batch is already pinned into the relevant ppgtt, so we
1751                  *   already have the backing storage fully allocated.
1752                  * - No other BO uses the global gtt (well contexts, but meh),
1753                  *   so we don't really have issues with multiple objects not
1754                  *   fitting due to fragmentation.
1755                  * So this is actually safe.
1756                  */
1757                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0);
1758                 if (IS_ERR(vma)) {
1759                         ret = PTR_ERR(vma);
1760                         goto err;
1761                 }
1762
1763                 params->batch = vma;
1764         }
1765
1766         /* Allocate a request for this batch buffer nice and early. */
1767         params->request = i915_gem_request_alloc(engine, ctx);
1768         if (IS_ERR(params->request)) {
1769                 ret = PTR_ERR(params->request);
1770                 goto err_batch_unpin;
1771         }
1772
1773         if (in_fence) {
1774                 ret = i915_gem_request_await_dma_fence(params->request,
1775                                                        in_fence);
1776                 if (ret < 0)
1777                         goto err_request;
1778         }
1779
1780         if (out_fence_fd != -1) {
1781                 out_fence = sync_file_create(&params->request->fence);
1782                 if (!out_fence) {
1783                         ret = -ENOMEM;
1784                         goto err_request;
1785                 }
1786         }
1787
1788         /* Whilst this request exists, batch_obj will be on the
1789          * active_list, and so will hold the active reference. Only when this
1790          * request is retired will the the batch_obj be moved onto the
1791          * inactive_list and lose its active reference. Hence we do not need
1792          * to explicitly hold another reference here.
1793          */
1794         params->request->batch = params->batch;
1795
1796         /*
1797          * Save assorted stuff away to pass through to *_submission().
1798          * NB: This data should be 'persistent' and not local as it will
1799          * kept around beyond the duration of the IOCTL once the GPU
1800          * scheduler arrives.
1801          */
1802         params->dev                     = dev;
1803         params->file                    = file;
1804         params->engine                    = engine;
1805         params->dispatch_flags          = dispatch_flags;
1806         params->ctx                     = ctx;
1807
1808         trace_i915_gem_request_queue(params->request, dispatch_flags);
1809
1810         ret = execbuf_submit(params, args, &eb->vmas);
1811 err_request:
1812         __i915_add_request(params->request, ret == 0);
1813         add_to_client(params->request, file);
1814
1815         if (out_fence) {
1816                 if (ret == 0) {
1817                         fd_install(out_fence_fd, out_fence->file);
1818                         args->rsvd2 &= GENMASK_ULL(0, 31); /* keep in-fence */
1819                         args->rsvd2 |= (u64)out_fence_fd << 32;
1820                         out_fence_fd = -1;
1821                 } else {
1822                         fput(out_fence->file);
1823                 }
1824         }
1825
1826 err_batch_unpin:
1827         /*
1828          * FIXME: We crucially rely upon the active tracking for the (ppgtt)
1829          * batch vma for correctness. For less ugly and less fragility this
1830          * needs to be adjusted to also track the ggtt batch vma properly as
1831          * active.
1832          */
1833         if (dispatch_flags & I915_DISPATCH_SECURE)
1834                 i915_vma_unpin(params->batch);
1835 err:
1836         /* the request owns the ref now */
1837         i915_gem_context_put(ctx);
1838         eb_destroy(eb);
1839
1840         mutex_unlock(&dev->struct_mutex);
1841
1842 pre_mutex_err:
1843         /* intel_gpu_busy should also get a ref, so it will free when the device
1844          * is really idle. */
1845         intel_runtime_pm_put(dev_priv);
1846         if (out_fence_fd != -1)
1847                 put_unused_fd(out_fence_fd);
1848 err_in_fence:
1849         dma_fence_put(in_fence);
1850         return ret;
1851 }
1852
1853 /*
1854  * Legacy execbuffer just creates an exec2 list from the original exec object
1855  * list array and passes it to the real function.
1856  */
1857 int
1858 i915_gem_execbuffer(struct drm_device *dev, void *data,
1859                     struct drm_file *file)
1860 {
1861         struct drm_i915_gem_execbuffer *args = data;
1862         struct drm_i915_gem_execbuffer2 exec2;
1863         struct drm_i915_gem_exec_object *exec_list = NULL;
1864         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1865         int ret, i;
1866
1867         if (args->buffer_count < 1) {
1868                 DRM_DEBUG("execbuf with %d buffers\n", args->buffer_count);
1869                 return -EINVAL;
1870         }
1871
1872         /* Copy in the exec list from userland */
1873         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
1874         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
1875         if (exec_list == NULL || exec2_list == NULL) {
1876                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1877                           args->buffer_count);
1878                 drm_free_large(exec_list);
1879                 drm_free_large(exec2_list);
1880                 return -ENOMEM;
1881         }
1882         ret = copy_from_user(exec_list,
1883                              u64_to_user_ptr(args->buffers_ptr),
1884                              sizeof(*exec_list) * args->buffer_count);
1885         if (ret != 0) {
1886                 DRM_DEBUG("copy %d exec entries failed %d\n",
1887                           args->buffer_count, ret);
1888                 drm_free_large(exec_list);
1889                 drm_free_large(exec2_list);
1890                 return -EFAULT;
1891         }
1892
1893         for (i = 0; i < args->buffer_count; i++) {
1894                 exec2_list[i].handle = exec_list[i].handle;
1895                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
1896                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
1897                 exec2_list[i].alignment = exec_list[i].alignment;
1898                 exec2_list[i].offset = exec_list[i].offset;
1899                 if (INTEL_GEN(to_i915(dev)) < 4)
1900                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
1901                 else
1902                         exec2_list[i].flags = 0;
1903         }
1904
1905         exec2.buffers_ptr = args->buffers_ptr;
1906         exec2.buffer_count = args->buffer_count;
1907         exec2.batch_start_offset = args->batch_start_offset;
1908         exec2.batch_len = args->batch_len;
1909         exec2.DR1 = args->DR1;
1910         exec2.DR4 = args->DR4;
1911         exec2.num_cliprects = args->num_cliprects;
1912         exec2.cliprects_ptr = args->cliprects_ptr;
1913         exec2.flags = I915_EXEC_RENDER;
1914         i915_execbuffer2_set_context_id(exec2, 0);
1915
1916         ret = i915_gem_do_execbuffer(dev, data, file, &exec2, exec2_list);
1917         if (!ret) {
1918                 struct drm_i915_gem_exec_object __user *user_exec_list =
1919                         u64_to_user_ptr(args->buffers_ptr);
1920
1921                 /* Copy the new buffer offsets back to the user's exec list. */
1922                 for (i = 0; i < args->buffer_count; i++) {
1923                         exec2_list[i].offset =
1924                                 gen8_canonical_addr(exec2_list[i].offset);
1925                         ret = __copy_to_user(&user_exec_list[i].offset,
1926                                              &exec2_list[i].offset,
1927                                              sizeof(user_exec_list[i].offset));
1928                         if (ret) {
1929                                 ret = -EFAULT;
1930                                 DRM_DEBUG("failed to copy %d exec entries "
1931                                           "back to user (%d)\n",
1932                                           args->buffer_count, ret);
1933                                 break;
1934                         }
1935                 }
1936         }
1937
1938         drm_free_large(exec_list);
1939         drm_free_large(exec2_list);
1940         return ret;
1941 }
1942
1943 int
1944 i915_gem_execbuffer2(struct drm_device *dev, void *data,
1945                      struct drm_file *file)
1946 {
1947         struct drm_i915_gem_execbuffer2 *args = data;
1948         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
1949         int ret;
1950
1951         if (args->buffer_count < 1 ||
1952             args->buffer_count > UINT_MAX / sizeof(*exec2_list)) {
1953                 DRM_DEBUG("execbuf2 with %d buffers\n", args->buffer_count);
1954                 return -EINVAL;
1955         }
1956
1957         exec2_list = drm_malloc_gfp(args->buffer_count,
1958                                     sizeof(*exec2_list),
1959                                     GFP_TEMPORARY);
1960         if (exec2_list == NULL) {
1961                 DRM_DEBUG("Failed to allocate exec list for %d buffers\n",
1962                           args->buffer_count);
1963                 return -ENOMEM;
1964         }
1965         ret = copy_from_user(exec2_list,
1966                              u64_to_user_ptr(args->buffers_ptr),
1967                              sizeof(*exec2_list) * args->buffer_count);
1968         if (ret != 0) {
1969                 DRM_DEBUG("copy %d exec entries failed %d\n",
1970                           args->buffer_count, ret);
1971                 drm_free_large(exec2_list);
1972                 return -EFAULT;
1973         }
1974
1975         ret = i915_gem_do_execbuffer(dev, data, file, args, exec2_list);
1976         if (!ret) {
1977                 /* Copy the new buffer offsets back to the user's exec list. */
1978                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
1979                                    u64_to_user_ptr(args->buffers_ptr);
1980                 int i;
1981
1982                 for (i = 0; i < args->buffer_count; i++) {
1983                         exec2_list[i].offset =
1984                                 gen8_canonical_addr(exec2_list[i].offset);
1985                         ret = __copy_to_user(&user_exec_list[i].offset,
1986                                              &exec2_list[i].offset,
1987                                              sizeof(user_exec_list[i].offset));
1988                         if (ret) {
1989                                 ret = -EFAULT;
1990                                 DRM_DEBUG("failed to copy %d exec entries "
1991                                           "back to user\n",
1992                                           args->buffer_count);
1993                                 break;
1994                         }
1995                 }
1996         }
1997
1998         drm_free_large(exec2_list);
1999         return ret;
2000 }