Merge tag 'media/v4.9-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_mocs.h"
36 #include <linux/shmem_fs.h>
37 #include <linux/slab.h>
38 #include <linux/swap.h>
39 #include <linux/pci.h>
40 #include <linux/dma-buf.h>
41
42 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
43 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
44 static void
45 i915_gem_object_retire__write(struct drm_i915_gem_object *obj);
46 static void
47 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring);
48
49 static bool cpu_cache_is_coherent(struct drm_device *dev,
50                                   enum i915_cache_level level)
51 {
52         return HAS_LLC(dev) || level != I915_CACHE_NONE;
53 }
54
55 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
56 {
57         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
58                 return false;
59
60         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
61                 return true;
62
63         return obj->pin_display;
64 }
65
66 static int
67 insert_mappable_node(struct drm_i915_private *i915,
68                      struct drm_mm_node *node, u32 size)
69 {
70         memset(node, 0, sizeof(*node));
71         return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
72                                                    size, 0, 0, 0,
73                                                    i915->ggtt.mappable_end,
74                                                    DRM_MM_SEARCH_DEFAULT,
75                                                    DRM_MM_CREATE_DEFAULT);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81         drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86                                   size_t size)
87 {
88         spin_lock(&dev_priv->mm.object_stat_lock);
89         dev_priv->mm.object_count++;
90         dev_priv->mm.object_memory += size;
91         spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95                                      size_t size)
96 {
97         spin_lock(&dev_priv->mm.object_stat_lock);
98         dev_priv->mm.object_count--;
99         dev_priv->mm.object_memory -= size;
100         spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106         int ret;
107
108         if (!i915_reset_in_progress(error))
109                 return 0;
110
111         /*
112          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
113          * userspace. If it takes that long something really bad is going on and
114          * we should simply try to bail out and fail as gracefully as possible.
115          */
116         ret = wait_event_interruptible_timeout(error->reset_queue,
117                                                !i915_reset_in_progress(error),
118                                                10*HZ);
119         if (ret == 0) {
120                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
121                 return -EIO;
122         } else if (ret < 0) {
123                 return ret;
124         } else {
125                 return 0;
126         }
127 }
128
129 int i915_mutex_lock_interruptible(struct drm_device *dev)
130 {
131         struct drm_i915_private *dev_priv = to_i915(dev);
132         int ret;
133
134         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
135         if (ret)
136                 return ret;
137
138         ret = mutex_lock_interruptible(&dev->struct_mutex);
139         if (ret)
140                 return ret;
141
142         WARN_ON(i915_verify_lists(dev));
143         return 0;
144 }
145
146 int
147 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
148                             struct drm_file *file)
149 {
150         struct drm_i915_private *dev_priv = to_i915(dev);
151         struct i915_ggtt *ggtt = &dev_priv->ggtt;
152         struct drm_i915_gem_get_aperture *args = data;
153         struct i915_vma *vma;
154         size_t pinned;
155
156         pinned = 0;
157         mutex_lock(&dev->struct_mutex);
158         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
159                 if (vma->pin_count)
160                         pinned += vma->node.size;
161         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
162                 if (vma->pin_count)
163                         pinned += vma->node.size;
164         mutex_unlock(&dev->struct_mutex);
165
166         args->aper_size = ggtt->base.total;
167         args->aper_available_size = args->aper_size - pinned;
168
169         return 0;
170 }
171
172 static int
173 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
174 {
175         struct address_space *mapping = obj->base.filp->f_mapping;
176         char *vaddr = obj->phys_handle->vaddr;
177         struct sg_table *st;
178         struct scatterlist *sg;
179         int i;
180
181         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
182                 return -EINVAL;
183
184         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
185                 struct page *page;
186                 char *src;
187
188                 page = shmem_read_mapping_page(mapping, i);
189                 if (IS_ERR(page))
190                         return PTR_ERR(page);
191
192                 src = kmap_atomic(page);
193                 memcpy(vaddr, src, PAGE_SIZE);
194                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
195                 kunmap_atomic(src);
196
197                 put_page(page);
198                 vaddr += PAGE_SIZE;
199         }
200
201         i915_gem_chipset_flush(to_i915(obj->base.dev));
202
203         st = kmalloc(sizeof(*st), GFP_KERNEL);
204         if (st == NULL)
205                 return -ENOMEM;
206
207         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
208                 kfree(st);
209                 return -ENOMEM;
210         }
211
212         sg = st->sgl;
213         sg->offset = 0;
214         sg->length = obj->base.size;
215
216         sg_dma_address(sg) = obj->phys_handle->busaddr;
217         sg_dma_len(sg) = obj->base.size;
218
219         obj->pages = st;
220         return 0;
221 }
222
223 static void
224 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
225 {
226         int ret;
227
228         BUG_ON(obj->madv == __I915_MADV_PURGED);
229
230         ret = i915_gem_object_set_to_cpu_domain(obj, true);
231         if (WARN_ON(ret)) {
232                 /* In the event of a disaster, abandon all caches and
233                  * hope for the best.
234                  */
235                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
236         }
237
238         if (obj->madv == I915_MADV_DONTNEED)
239                 obj->dirty = 0;
240
241         if (obj->dirty) {
242                 struct address_space *mapping = obj->base.filp->f_mapping;
243                 char *vaddr = obj->phys_handle->vaddr;
244                 int i;
245
246                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
247                         struct page *page;
248                         char *dst;
249
250                         page = shmem_read_mapping_page(mapping, i);
251                         if (IS_ERR(page))
252                                 continue;
253
254                         dst = kmap_atomic(page);
255                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
256                         memcpy(dst, vaddr, PAGE_SIZE);
257                         kunmap_atomic(dst);
258
259                         set_page_dirty(page);
260                         if (obj->madv == I915_MADV_WILLNEED)
261                                 mark_page_accessed(page);
262                         put_page(page);
263                         vaddr += PAGE_SIZE;
264                 }
265                 obj->dirty = 0;
266         }
267
268         sg_free_table(obj->pages);
269         kfree(obj->pages);
270 }
271
272 static void
273 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
274 {
275         drm_pci_free(obj->base.dev, obj->phys_handle);
276 }
277
278 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
279         .get_pages = i915_gem_object_get_pages_phys,
280         .put_pages = i915_gem_object_put_pages_phys,
281         .release = i915_gem_object_release_phys,
282 };
283
284 static int
285 drop_pages(struct drm_i915_gem_object *obj)
286 {
287         struct i915_vma *vma, *next;
288         int ret;
289
290         drm_gem_object_reference(&obj->base);
291         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link)
292                 if (i915_vma_unbind(vma))
293                         break;
294
295         ret = i915_gem_object_put_pages(obj);
296         drm_gem_object_unreference(&obj->base);
297
298         return ret;
299 }
300
301 int
302 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
303                             int align)
304 {
305         drm_dma_handle_t *phys;
306         int ret;
307
308         if (obj->phys_handle) {
309                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
310                         return -EBUSY;
311
312                 return 0;
313         }
314
315         if (obj->madv != I915_MADV_WILLNEED)
316                 return -EFAULT;
317
318         if (obj->base.filp == NULL)
319                 return -EINVAL;
320
321         ret = drop_pages(obj);
322         if (ret)
323                 return ret;
324
325         /* create a new object */
326         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
327         if (!phys)
328                 return -ENOMEM;
329
330         obj->phys_handle = phys;
331         obj->ops = &i915_gem_phys_ops;
332
333         return i915_gem_object_get_pages(obj);
334 }
335
336 static int
337 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
338                      struct drm_i915_gem_pwrite *args,
339                      struct drm_file *file_priv)
340 {
341         struct drm_device *dev = obj->base.dev;
342         void *vaddr = obj->phys_handle->vaddr + args->offset;
343         char __user *user_data = u64_to_user_ptr(args->data_ptr);
344         int ret = 0;
345
346         /* We manually control the domain here and pretend that it
347          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
348          */
349         ret = i915_gem_object_wait_rendering(obj, false);
350         if (ret)
351                 return ret;
352
353         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
354         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
355                 unsigned long unwritten;
356
357                 /* The physical object once assigned is fixed for the lifetime
358                  * of the obj, so we can safely drop the lock and continue
359                  * to access vaddr.
360                  */
361                 mutex_unlock(&dev->struct_mutex);
362                 unwritten = copy_from_user(vaddr, user_data, args->size);
363                 mutex_lock(&dev->struct_mutex);
364                 if (unwritten) {
365                         ret = -EFAULT;
366                         goto out;
367                 }
368         }
369
370         drm_clflush_virt_range(vaddr, args->size);
371         i915_gem_chipset_flush(to_i915(dev));
372
373 out:
374         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
375         return ret;
376 }
377
378 void *i915_gem_object_alloc(struct drm_device *dev)
379 {
380         struct drm_i915_private *dev_priv = to_i915(dev);
381         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
382 }
383
384 void i915_gem_object_free(struct drm_i915_gem_object *obj)
385 {
386         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
387         kmem_cache_free(dev_priv->objects, obj);
388 }
389
390 static int
391 i915_gem_create(struct drm_file *file,
392                 struct drm_device *dev,
393                 uint64_t size,
394                 uint32_t *handle_p)
395 {
396         struct drm_i915_gem_object *obj;
397         int ret;
398         u32 handle;
399
400         size = roundup(size, PAGE_SIZE);
401         if (size == 0)
402                 return -EINVAL;
403
404         /* Allocate the new object */
405         obj = i915_gem_object_create(dev, size);
406         if (IS_ERR(obj))
407                 return PTR_ERR(obj);
408
409         ret = drm_gem_handle_create(file, &obj->base, &handle);
410         /* drop reference from allocate - handle holds it now */
411         drm_gem_object_unreference_unlocked(&obj->base);
412         if (ret)
413                 return ret;
414
415         *handle_p = handle;
416         return 0;
417 }
418
419 int
420 i915_gem_dumb_create(struct drm_file *file,
421                      struct drm_device *dev,
422                      struct drm_mode_create_dumb *args)
423 {
424         /* have to work out size/pitch and return them */
425         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
426         args->size = args->pitch * args->height;
427         return i915_gem_create(file, dev,
428                                args->size, &args->handle);
429 }
430
431 /**
432  * Creates a new mm object and returns a handle to it.
433  * @dev: drm device pointer
434  * @data: ioctl data blob
435  * @file: drm file pointer
436  */
437 int
438 i915_gem_create_ioctl(struct drm_device *dev, void *data,
439                       struct drm_file *file)
440 {
441         struct drm_i915_gem_create *args = data;
442
443         return i915_gem_create(file, dev,
444                                args->size, &args->handle);
445 }
446
447 static inline int
448 __copy_to_user_swizzled(char __user *cpu_vaddr,
449                         const char *gpu_vaddr, int gpu_offset,
450                         int length)
451 {
452         int ret, cpu_offset = 0;
453
454         while (length > 0) {
455                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
456                 int this_length = min(cacheline_end - gpu_offset, length);
457                 int swizzled_gpu_offset = gpu_offset ^ 64;
458
459                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
460                                      gpu_vaddr + swizzled_gpu_offset,
461                                      this_length);
462                 if (ret)
463                         return ret + length;
464
465                 cpu_offset += this_length;
466                 gpu_offset += this_length;
467                 length -= this_length;
468         }
469
470         return 0;
471 }
472
473 static inline int
474 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
475                           const char __user *cpu_vaddr,
476                           int length)
477 {
478         int ret, cpu_offset = 0;
479
480         while (length > 0) {
481                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
482                 int this_length = min(cacheline_end - gpu_offset, length);
483                 int swizzled_gpu_offset = gpu_offset ^ 64;
484
485                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
486                                        cpu_vaddr + cpu_offset,
487                                        this_length);
488                 if (ret)
489                         return ret + length;
490
491                 cpu_offset += this_length;
492                 gpu_offset += this_length;
493                 length -= this_length;
494         }
495
496         return 0;
497 }
498
499 /*
500  * Pins the specified object's pages and synchronizes the object with
501  * GPU accesses. Sets needs_clflush to non-zero if the caller should
502  * flush the object from the CPU cache.
503  */
504 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
505                                     int *needs_clflush)
506 {
507         int ret;
508
509         *needs_clflush = 0;
510
511         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
512                 return -EINVAL;
513
514         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
515                 /* If we're not in the cpu read domain, set ourself into the gtt
516                  * read domain and manually flush cachelines (if required). This
517                  * optimizes for the case when the gpu will dirty the data
518                  * anyway again before the next pread happens. */
519                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
520                                                         obj->cache_level);
521                 ret = i915_gem_object_wait_rendering(obj, true);
522                 if (ret)
523                         return ret;
524         }
525
526         ret = i915_gem_object_get_pages(obj);
527         if (ret)
528                 return ret;
529
530         i915_gem_object_pin_pages(obj);
531
532         return ret;
533 }
534
535 /* Per-page copy function for the shmem pread fastpath.
536  * Flushes invalid cachelines before reading the target if
537  * needs_clflush is set. */
538 static int
539 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
540                  char __user *user_data,
541                  bool page_do_bit17_swizzling, bool needs_clflush)
542 {
543         char *vaddr;
544         int ret;
545
546         if (unlikely(page_do_bit17_swizzling))
547                 return -EINVAL;
548
549         vaddr = kmap_atomic(page);
550         if (needs_clflush)
551                 drm_clflush_virt_range(vaddr + shmem_page_offset,
552                                        page_length);
553         ret = __copy_to_user_inatomic(user_data,
554                                       vaddr + shmem_page_offset,
555                                       page_length);
556         kunmap_atomic(vaddr);
557
558         return ret ? -EFAULT : 0;
559 }
560
561 static void
562 shmem_clflush_swizzled_range(char *addr, unsigned long length,
563                              bool swizzled)
564 {
565         if (unlikely(swizzled)) {
566                 unsigned long start = (unsigned long) addr;
567                 unsigned long end = (unsigned long) addr + length;
568
569                 /* For swizzling simply ensure that we always flush both
570                  * channels. Lame, but simple and it works. Swizzled
571                  * pwrite/pread is far from a hotpath - current userspace
572                  * doesn't use it at all. */
573                 start = round_down(start, 128);
574                 end = round_up(end, 128);
575
576                 drm_clflush_virt_range((void *)start, end - start);
577         } else {
578                 drm_clflush_virt_range(addr, length);
579         }
580
581 }
582
583 /* Only difference to the fast-path function is that this can handle bit17
584  * and uses non-atomic copy and kmap functions. */
585 static int
586 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
587                  char __user *user_data,
588                  bool page_do_bit17_swizzling, bool needs_clflush)
589 {
590         char *vaddr;
591         int ret;
592
593         vaddr = kmap(page);
594         if (needs_clflush)
595                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
596                                              page_length,
597                                              page_do_bit17_swizzling);
598
599         if (page_do_bit17_swizzling)
600                 ret = __copy_to_user_swizzled(user_data,
601                                               vaddr, shmem_page_offset,
602                                               page_length);
603         else
604                 ret = __copy_to_user(user_data,
605                                      vaddr + shmem_page_offset,
606                                      page_length);
607         kunmap(page);
608
609         return ret ? - EFAULT : 0;
610 }
611
612 static inline unsigned long
613 slow_user_access(struct io_mapping *mapping,
614                  uint64_t page_base, int page_offset,
615                  char __user *user_data,
616                  unsigned long length, bool pwrite)
617 {
618         void __iomem *ioaddr;
619         void *vaddr;
620         uint64_t unwritten;
621
622         ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
623         /* We can use the cpu mem copy function because this is X86. */
624         vaddr = (void __force *)ioaddr + page_offset;
625         if (pwrite)
626                 unwritten = __copy_from_user(vaddr, user_data, length);
627         else
628                 unwritten = __copy_to_user(user_data, vaddr, length);
629
630         io_mapping_unmap(ioaddr);
631         return unwritten;
632 }
633
634 static int
635 i915_gem_gtt_pread(struct drm_device *dev,
636                    struct drm_i915_gem_object *obj, uint64_t size,
637                    uint64_t data_offset, uint64_t data_ptr)
638 {
639         struct drm_i915_private *dev_priv = to_i915(dev);
640         struct i915_ggtt *ggtt = &dev_priv->ggtt;
641         struct drm_mm_node node;
642         char __user *user_data;
643         uint64_t remain;
644         uint64_t offset;
645         int ret;
646
647         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
648         if (ret) {
649                 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
650                 if (ret)
651                         goto out;
652
653                 ret = i915_gem_object_get_pages(obj);
654                 if (ret) {
655                         remove_mappable_node(&node);
656                         goto out;
657                 }
658
659                 i915_gem_object_pin_pages(obj);
660         } else {
661                 node.start = i915_gem_obj_ggtt_offset(obj);
662                 node.allocated = false;
663                 ret = i915_gem_object_put_fence(obj);
664                 if (ret)
665                         goto out_unpin;
666         }
667
668         ret = i915_gem_object_set_to_gtt_domain(obj, false);
669         if (ret)
670                 goto out_unpin;
671
672         user_data = u64_to_user_ptr(data_ptr);
673         remain = size;
674         offset = data_offset;
675
676         mutex_unlock(&dev->struct_mutex);
677         if (likely(!i915.prefault_disable)) {
678                 ret = fault_in_pages_writeable(user_data, remain);
679                 if (ret) {
680                         mutex_lock(&dev->struct_mutex);
681                         goto out_unpin;
682                 }
683         }
684
685         while (remain > 0) {
686                 /* Operation in this page
687                  *
688                  * page_base = page offset within aperture
689                  * page_offset = offset within page
690                  * page_length = bytes to copy for this page
691                  */
692                 u32 page_base = node.start;
693                 unsigned page_offset = offset_in_page(offset);
694                 unsigned page_length = PAGE_SIZE - page_offset;
695                 page_length = remain < page_length ? remain : page_length;
696                 if (node.allocated) {
697                         wmb();
698                         ggtt->base.insert_page(&ggtt->base,
699                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
700                                                node.start,
701                                                I915_CACHE_NONE, 0);
702                         wmb();
703                 } else {
704                         page_base += offset & PAGE_MASK;
705                 }
706                 /* This is a slow read/write as it tries to read from
707                  * and write to user memory which may result into page
708                  * faults, and so we cannot perform this under struct_mutex.
709                  */
710                 if (slow_user_access(ggtt->mappable, page_base,
711                                      page_offset, user_data,
712                                      page_length, false)) {
713                         ret = -EFAULT;
714                         break;
715                 }
716
717                 remain -= page_length;
718                 user_data += page_length;
719                 offset += page_length;
720         }
721
722         mutex_lock(&dev->struct_mutex);
723         if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
724                 /* The user has modified the object whilst we tried
725                  * reading from it, and we now have no idea what domain
726                  * the pages should be in. As we have just been touching
727                  * them directly, flush everything back to the GTT
728                  * domain.
729                  */
730                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
731         }
732
733 out_unpin:
734         if (node.allocated) {
735                 wmb();
736                 ggtt->base.clear_range(&ggtt->base,
737                                        node.start, node.size,
738                                        true);
739                 i915_gem_object_unpin_pages(obj);
740                 remove_mappable_node(&node);
741         } else {
742                 i915_gem_object_ggtt_unpin(obj);
743         }
744 out:
745         return ret;
746 }
747
748 static int
749 i915_gem_shmem_pread(struct drm_device *dev,
750                      struct drm_i915_gem_object *obj,
751                      struct drm_i915_gem_pread *args,
752                      struct drm_file *file)
753 {
754         char __user *user_data;
755         ssize_t remain;
756         loff_t offset;
757         int shmem_page_offset, page_length, ret = 0;
758         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
759         int prefaulted = 0;
760         int needs_clflush = 0;
761         struct sg_page_iter sg_iter;
762
763         if (!i915_gem_object_has_struct_page(obj))
764                 return -ENODEV;
765
766         user_data = u64_to_user_ptr(args->data_ptr);
767         remain = args->size;
768
769         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
770
771         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
772         if (ret)
773                 return ret;
774
775         offset = args->offset;
776
777         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
778                          offset >> PAGE_SHIFT) {
779                 struct page *page = sg_page_iter_page(&sg_iter);
780
781                 if (remain <= 0)
782                         break;
783
784                 /* Operation in this page
785                  *
786                  * shmem_page_offset = offset within page in shmem file
787                  * page_length = bytes to copy for this page
788                  */
789                 shmem_page_offset = offset_in_page(offset);
790                 page_length = remain;
791                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
792                         page_length = PAGE_SIZE - shmem_page_offset;
793
794                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
795                         (page_to_phys(page) & (1 << 17)) != 0;
796
797                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
798                                        user_data, page_do_bit17_swizzling,
799                                        needs_clflush);
800                 if (ret == 0)
801                         goto next_page;
802
803                 mutex_unlock(&dev->struct_mutex);
804
805                 if (likely(!i915.prefault_disable) && !prefaulted) {
806                         ret = fault_in_pages_writeable(user_data, remain);
807                         /* Userspace is tricking us, but we've already clobbered
808                          * its pages with the prefault and promised to write the
809                          * data up to the first fault. Hence ignore any errors
810                          * and just continue. */
811                         (void)ret;
812                         prefaulted = 1;
813                 }
814
815                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
816                                        user_data, page_do_bit17_swizzling,
817                                        needs_clflush);
818
819                 mutex_lock(&dev->struct_mutex);
820
821                 if (ret)
822                         goto out;
823
824 next_page:
825                 remain -= page_length;
826                 user_data += page_length;
827                 offset += page_length;
828         }
829
830 out:
831         i915_gem_object_unpin_pages(obj);
832
833         return ret;
834 }
835
836 /**
837  * Reads data from the object referenced by handle.
838  * @dev: drm device pointer
839  * @data: ioctl data blob
840  * @file: drm file pointer
841  *
842  * On error, the contents of *data are undefined.
843  */
844 int
845 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
846                      struct drm_file *file)
847 {
848         struct drm_i915_gem_pread *args = data;
849         struct drm_i915_gem_object *obj;
850         int ret = 0;
851
852         if (args->size == 0)
853                 return 0;
854
855         if (!access_ok(VERIFY_WRITE,
856                        u64_to_user_ptr(args->data_ptr),
857                        args->size))
858                 return -EFAULT;
859
860         ret = i915_mutex_lock_interruptible(dev);
861         if (ret)
862                 return ret;
863
864         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
865         if (&obj->base == NULL) {
866                 ret = -ENOENT;
867                 goto unlock;
868         }
869
870         /* Bounds check source.  */
871         if (args->offset > obj->base.size ||
872             args->size > obj->base.size - args->offset) {
873                 ret = -EINVAL;
874                 goto out;
875         }
876
877         trace_i915_gem_object_pread(obj, args->offset, args->size);
878
879         ret = i915_gem_shmem_pread(dev, obj, args, file);
880
881         /* pread for non shmem backed objects */
882         if (ret == -EFAULT || ret == -ENODEV) {
883                 intel_runtime_pm_get(to_i915(dev));
884                 ret = i915_gem_gtt_pread(dev, obj, args->size,
885                                         args->offset, args->data_ptr);
886                 intel_runtime_pm_put(to_i915(dev));
887         }
888
889 out:
890         drm_gem_object_unreference(&obj->base);
891 unlock:
892         mutex_unlock(&dev->struct_mutex);
893         return ret;
894 }
895
896 /* This is the fast write path which cannot handle
897  * page faults in the source data
898  */
899
900 static inline int
901 fast_user_write(struct io_mapping *mapping,
902                 loff_t page_base, int page_offset,
903                 char __user *user_data,
904                 int length)
905 {
906         void __iomem *vaddr_atomic;
907         void *vaddr;
908         unsigned long unwritten;
909
910         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
911         /* We can use the cpu mem copy function because this is X86. */
912         vaddr = (void __force*)vaddr_atomic + page_offset;
913         unwritten = __copy_from_user_inatomic_nocache(vaddr,
914                                                       user_data, length);
915         io_mapping_unmap_atomic(vaddr_atomic);
916         return unwritten;
917 }
918
919 /**
920  * This is the fast pwrite path, where we copy the data directly from the
921  * user into the GTT, uncached.
922  * @dev: drm device pointer
923  * @obj: i915 gem object
924  * @args: pwrite arguments structure
925  * @file: drm file pointer
926  */
927 static int
928 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
929                          struct drm_i915_gem_object *obj,
930                          struct drm_i915_gem_pwrite *args,
931                          struct drm_file *file)
932 {
933         struct i915_ggtt *ggtt = &i915->ggtt;
934         struct drm_device *dev = obj->base.dev;
935         struct drm_mm_node node;
936         uint64_t remain, offset;
937         char __user *user_data;
938         int ret;
939         bool hit_slow_path = false;
940
941         if (obj->tiling_mode != I915_TILING_NONE)
942                 return -EFAULT;
943
944         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
945         if (ret) {
946                 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
947                 if (ret)
948                         goto out;
949
950                 ret = i915_gem_object_get_pages(obj);
951                 if (ret) {
952                         remove_mappable_node(&node);
953                         goto out;
954                 }
955
956                 i915_gem_object_pin_pages(obj);
957         } else {
958                 node.start = i915_gem_obj_ggtt_offset(obj);
959                 node.allocated = false;
960                 ret = i915_gem_object_put_fence(obj);
961                 if (ret)
962                         goto out_unpin;
963         }
964
965         ret = i915_gem_object_set_to_gtt_domain(obj, true);
966         if (ret)
967                 goto out_unpin;
968
969         intel_fb_obj_invalidate(obj, ORIGIN_GTT);
970         obj->dirty = true;
971
972         user_data = u64_to_user_ptr(args->data_ptr);
973         offset = args->offset;
974         remain = args->size;
975         while (remain) {
976                 /* Operation in this page
977                  *
978                  * page_base = page offset within aperture
979                  * page_offset = offset within page
980                  * page_length = bytes to copy for this page
981                  */
982                 u32 page_base = node.start;
983                 unsigned page_offset = offset_in_page(offset);
984                 unsigned page_length = PAGE_SIZE - page_offset;
985                 page_length = remain < page_length ? remain : page_length;
986                 if (node.allocated) {
987                         wmb(); /* flush the write before we modify the GGTT */
988                         ggtt->base.insert_page(&ggtt->base,
989                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
990                                                node.start, I915_CACHE_NONE, 0);
991                         wmb(); /* flush modifications to the GGTT (insert_page) */
992                 } else {
993                         page_base += offset & PAGE_MASK;
994                 }
995                 /* If we get a fault while copying data, then (presumably) our
996                  * source page isn't available.  Return the error and we'll
997                  * retry in the slow path.
998                  * If the object is non-shmem backed, we retry again with the
999                  * path that handles page fault.
1000                  */
1001                 if (fast_user_write(ggtt->mappable, page_base,
1002                                     page_offset, user_data, page_length)) {
1003                         hit_slow_path = true;
1004                         mutex_unlock(&dev->struct_mutex);
1005                         if (slow_user_access(ggtt->mappable,
1006                                              page_base,
1007                                              page_offset, user_data,
1008                                              page_length, true)) {
1009                                 ret = -EFAULT;
1010                                 mutex_lock(&dev->struct_mutex);
1011                                 goto out_flush;
1012                         }
1013
1014                         mutex_lock(&dev->struct_mutex);
1015                 }
1016
1017                 remain -= page_length;
1018                 user_data += page_length;
1019                 offset += page_length;
1020         }
1021
1022 out_flush:
1023         if (hit_slow_path) {
1024                 if (ret == 0 &&
1025                     (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1026                         /* The user has modified the object whilst we tried
1027                          * reading from it, and we now have no idea what domain
1028                          * the pages should be in. As we have just been touching
1029                          * them directly, flush everything back to the GTT
1030                          * domain.
1031                          */
1032                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1033                 }
1034         }
1035
1036         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
1037 out_unpin:
1038         if (node.allocated) {
1039                 wmb();
1040                 ggtt->base.clear_range(&ggtt->base,
1041                                        node.start, node.size,
1042                                        true);
1043                 i915_gem_object_unpin_pages(obj);
1044                 remove_mappable_node(&node);
1045         } else {
1046                 i915_gem_object_ggtt_unpin(obj);
1047         }
1048 out:
1049         return ret;
1050 }
1051
1052 /* Per-page copy function for the shmem pwrite fastpath.
1053  * Flushes invalid cachelines before writing to the target if
1054  * needs_clflush_before is set and flushes out any written cachelines after
1055  * writing if needs_clflush is set. */
1056 static int
1057 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1058                   char __user *user_data,
1059                   bool page_do_bit17_swizzling,
1060                   bool needs_clflush_before,
1061                   bool needs_clflush_after)
1062 {
1063         char *vaddr;
1064         int ret;
1065
1066         if (unlikely(page_do_bit17_swizzling))
1067                 return -EINVAL;
1068
1069         vaddr = kmap_atomic(page);
1070         if (needs_clflush_before)
1071                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1072                                        page_length);
1073         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1074                                         user_data, page_length);
1075         if (needs_clflush_after)
1076                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1077                                        page_length);
1078         kunmap_atomic(vaddr);
1079
1080         return ret ? -EFAULT : 0;
1081 }
1082
1083 /* Only difference to the fast-path function is that this can handle bit17
1084  * and uses non-atomic copy and kmap functions. */
1085 static int
1086 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1087                   char __user *user_data,
1088                   bool page_do_bit17_swizzling,
1089                   bool needs_clflush_before,
1090                   bool needs_clflush_after)
1091 {
1092         char *vaddr;
1093         int ret;
1094
1095         vaddr = kmap(page);
1096         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1097                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1098                                              page_length,
1099                                              page_do_bit17_swizzling);
1100         if (page_do_bit17_swizzling)
1101                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1102                                                 user_data,
1103                                                 page_length);
1104         else
1105                 ret = __copy_from_user(vaddr + shmem_page_offset,
1106                                        user_data,
1107                                        page_length);
1108         if (needs_clflush_after)
1109                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1110                                              page_length,
1111                                              page_do_bit17_swizzling);
1112         kunmap(page);
1113
1114         return ret ? -EFAULT : 0;
1115 }
1116
1117 static int
1118 i915_gem_shmem_pwrite(struct drm_device *dev,
1119                       struct drm_i915_gem_object *obj,
1120                       struct drm_i915_gem_pwrite *args,
1121                       struct drm_file *file)
1122 {
1123         ssize_t remain;
1124         loff_t offset;
1125         char __user *user_data;
1126         int shmem_page_offset, page_length, ret = 0;
1127         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1128         int hit_slowpath = 0;
1129         int needs_clflush_after = 0;
1130         int needs_clflush_before = 0;
1131         struct sg_page_iter sg_iter;
1132
1133         user_data = u64_to_user_ptr(args->data_ptr);
1134         remain = args->size;
1135
1136         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1137
1138         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1139                 /* If we're not in the cpu write domain, set ourself into the gtt
1140                  * write domain and manually flush cachelines (if required). This
1141                  * optimizes for the case when the gpu will use the data
1142                  * right away and we therefore have to clflush anyway. */
1143                 needs_clflush_after = cpu_write_needs_clflush(obj);
1144                 ret = i915_gem_object_wait_rendering(obj, false);
1145                 if (ret)
1146                         return ret;
1147         }
1148         /* Same trick applies to invalidate partially written cachelines read
1149          * before writing. */
1150         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
1151                 needs_clflush_before =
1152                         !cpu_cache_is_coherent(dev, obj->cache_level);
1153
1154         ret = i915_gem_object_get_pages(obj);
1155         if (ret)
1156                 return ret;
1157
1158         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1159
1160         i915_gem_object_pin_pages(obj);
1161
1162         offset = args->offset;
1163         obj->dirty = 1;
1164
1165         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1166                          offset >> PAGE_SHIFT) {
1167                 struct page *page = sg_page_iter_page(&sg_iter);
1168                 int partial_cacheline_write;
1169
1170                 if (remain <= 0)
1171                         break;
1172
1173                 /* Operation in this page
1174                  *
1175                  * shmem_page_offset = offset within page in shmem file
1176                  * page_length = bytes to copy for this page
1177                  */
1178                 shmem_page_offset = offset_in_page(offset);
1179
1180                 page_length = remain;
1181                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1182                         page_length = PAGE_SIZE - shmem_page_offset;
1183
1184                 /* If we don't overwrite a cacheline completely we need to be
1185                  * careful to have up-to-date data by first clflushing. Don't
1186                  * overcomplicate things and flush the entire patch. */
1187                 partial_cacheline_write = needs_clflush_before &&
1188                         ((shmem_page_offset | page_length)
1189                                 & (boot_cpu_data.x86_clflush_size - 1));
1190
1191                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1192                         (page_to_phys(page) & (1 << 17)) != 0;
1193
1194                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1195                                         user_data, page_do_bit17_swizzling,
1196                                         partial_cacheline_write,
1197                                         needs_clflush_after);
1198                 if (ret == 0)
1199                         goto next_page;
1200
1201                 hit_slowpath = 1;
1202                 mutex_unlock(&dev->struct_mutex);
1203                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1204                                         user_data, page_do_bit17_swizzling,
1205                                         partial_cacheline_write,
1206                                         needs_clflush_after);
1207
1208                 mutex_lock(&dev->struct_mutex);
1209
1210                 if (ret)
1211                         goto out;
1212
1213 next_page:
1214                 remain -= page_length;
1215                 user_data += page_length;
1216                 offset += page_length;
1217         }
1218
1219 out:
1220         i915_gem_object_unpin_pages(obj);
1221
1222         if (hit_slowpath) {
1223                 /*
1224                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1225                  * cachelines in-line while writing and the object moved
1226                  * out of the cpu write domain while we've dropped the lock.
1227                  */
1228                 if (!needs_clflush_after &&
1229                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1230                         if (i915_gem_clflush_object(obj, obj->pin_display))
1231                                 needs_clflush_after = true;
1232                 }
1233         }
1234
1235         if (needs_clflush_after)
1236                 i915_gem_chipset_flush(to_i915(dev));
1237         else
1238                 obj->cache_dirty = true;
1239
1240         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1241         return ret;
1242 }
1243
1244 /**
1245  * Writes data to the object referenced by handle.
1246  * @dev: drm device
1247  * @data: ioctl data blob
1248  * @file: drm file
1249  *
1250  * On error, the contents of the buffer that were to be modified are undefined.
1251  */
1252 int
1253 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1254                       struct drm_file *file)
1255 {
1256         struct drm_i915_private *dev_priv = to_i915(dev);
1257         struct drm_i915_gem_pwrite *args = data;
1258         struct drm_i915_gem_object *obj;
1259         int ret;
1260
1261         if (args->size == 0)
1262                 return 0;
1263
1264         if (!access_ok(VERIFY_READ,
1265                        u64_to_user_ptr(args->data_ptr),
1266                        args->size))
1267                 return -EFAULT;
1268
1269         if (likely(!i915.prefault_disable)) {
1270                 ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr),
1271                                                    args->size);
1272                 if (ret)
1273                         return -EFAULT;
1274         }
1275
1276         intel_runtime_pm_get(dev_priv);
1277
1278         ret = i915_mutex_lock_interruptible(dev);
1279         if (ret)
1280                 goto put_rpm;
1281
1282         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1283         if (&obj->base == NULL) {
1284                 ret = -ENOENT;
1285                 goto unlock;
1286         }
1287
1288         /* Bounds check destination. */
1289         if (args->offset > obj->base.size ||
1290             args->size > obj->base.size - args->offset) {
1291                 ret = -EINVAL;
1292                 goto out;
1293         }
1294
1295         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1296
1297         ret = -EFAULT;
1298         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1299          * it would end up going through the fenced access, and we'll get
1300          * different detiling behavior between reading and writing.
1301          * pread/pwrite currently are reading and writing from the CPU
1302          * perspective, requiring manual detiling by the client.
1303          */
1304         if (!i915_gem_object_has_struct_page(obj) ||
1305             cpu_write_needs_clflush(obj)) {
1306                 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1307                 /* Note that the gtt paths might fail with non-page-backed user
1308                  * pointers (e.g. gtt mappings when moving data between
1309                  * textures). Fallback to the shmem path in that case. */
1310         }
1311
1312         if (ret == -EFAULT || ret == -ENOSPC) {
1313                 if (obj->phys_handle)
1314                         ret = i915_gem_phys_pwrite(obj, args, file);
1315                 else if (i915_gem_object_has_struct_page(obj))
1316                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1317                 else
1318                         ret = -ENODEV;
1319         }
1320
1321 out:
1322         drm_gem_object_unreference(&obj->base);
1323 unlock:
1324         mutex_unlock(&dev->struct_mutex);
1325 put_rpm:
1326         intel_runtime_pm_put(dev_priv);
1327
1328         return ret;
1329 }
1330
1331 static int
1332 i915_gem_check_wedge(unsigned reset_counter, bool interruptible)
1333 {
1334         if (__i915_terminally_wedged(reset_counter))
1335                 return -EIO;
1336
1337         if (__i915_reset_in_progress(reset_counter)) {
1338                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1339                  * -EIO unconditionally for these. */
1340                 if (!interruptible)
1341                         return -EIO;
1342
1343                 return -EAGAIN;
1344         }
1345
1346         return 0;
1347 }
1348
1349 static unsigned long local_clock_us(unsigned *cpu)
1350 {
1351         unsigned long t;
1352
1353         /* Cheaply and approximately convert from nanoseconds to microseconds.
1354          * The result and subsequent calculations are also defined in the same
1355          * approximate microseconds units. The principal source of timing
1356          * error here is from the simple truncation.
1357          *
1358          * Note that local_clock() is only defined wrt to the current CPU;
1359          * the comparisons are no longer valid if we switch CPUs. Instead of
1360          * blocking preemption for the entire busywait, we can detect the CPU
1361          * switch and use that as indicator of system load and a reason to
1362          * stop busywaiting, see busywait_stop().
1363          */
1364         *cpu = get_cpu();
1365         t = local_clock() >> 10;
1366         put_cpu();
1367
1368         return t;
1369 }
1370
1371 static bool busywait_stop(unsigned long timeout, unsigned cpu)
1372 {
1373         unsigned this_cpu;
1374
1375         if (time_after(local_clock_us(&this_cpu), timeout))
1376                 return true;
1377
1378         return this_cpu != cpu;
1379 }
1380
1381 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1382                          int state, unsigned long timeout_us)
1383 {
1384         unsigned cpu;
1385
1386         /* When waiting for high frequency requests, e.g. during synchronous
1387          * rendering split between the CPU and GPU, the finite amount of time
1388          * required to set up the irq and wait upon it limits the response
1389          * rate. By busywaiting on the request completion for a short while we
1390          * can service the high frequency waits as quick as possible. However,
1391          * if it is a slow request, we want to sleep as quickly as possible.
1392          * The tradeoff between waiting and sleeping is roughly the time it
1393          * takes to sleep on a request, on the order of a microsecond.
1394          */
1395
1396         timeout_us += local_clock_us(&cpu);
1397         do {
1398                 if (i915_gem_request_completed(req))
1399                         return true;
1400
1401                 if (signal_pending_state(state, current))
1402                         break;
1403
1404                 if (busywait_stop(timeout_us, cpu))
1405                         break;
1406
1407                 cpu_relax_lowlatency();
1408         } while (!need_resched());
1409
1410         return false;
1411 }
1412
1413 /**
1414  * __i915_wait_request - wait until execution of request has finished
1415  * @req: duh!
1416  * @interruptible: do an interruptible wait (normally yes)
1417  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1418  * @rps: RPS client
1419  *
1420  * Note: It is of utmost importance that the passed in seqno and reset_counter
1421  * values have been read by the caller in an smp safe manner. Where read-side
1422  * locks are involved, it is sufficient to read the reset_counter before
1423  * unlocking the lock that protects the seqno. For lockless tricks, the
1424  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1425  * inserted.
1426  *
1427  * Returns 0 if the request was found within the alloted time. Else returns the
1428  * errno with remaining time filled in timeout argument.
1429  */
1430 int __i915_wait_request(struct drm_i915_gem_request *req,
1431                         bool interruptible,
1432                         s64 *timeout,
1433                         struct intel_rps_client *rps)
1434 {
1435         int state = interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1436         DEFINE_WAIT(reset);
1437         struct intel_wait wait;
1438         unsigned long timeout_remain;
1439         s64 before = 0; /* Only to silence a compiler warning. */
1440         int ret = 0;
1441
1442         might_sleep();
1443
1444         if (list_empty(&req->list))
1445                 return 0;
1446
1447         if (i915_gem_request_completed(req))
1448                 return 0;
1449
1450         timeout_remain = MAX_SCHEDULE_TIMEOUT;
1451         if (timeout) {
1452                 if (WARN_ON(*timeout < 0))
1453                         return -EINVAL;
1454
1455                 if (*timeout == 0)
1456                         return -ETIME;
1457
1458                 timeout_remain = nsecs_to_jiffies_timeout(*timeout);
1459
1460                 /*
1461                  * Record current time in case interrupted by signal, or wedged.
1462                  */
1463                 before = ktime_get_raw_ns();
1464         }
1465
1466         trace_i915_gem_request_wait_begin(req);
1467
1468         /* This client is about to stall waiting for the GPU. In many cases
1469          * this is undesirable and limits the throughput of the system, as
1470          * many clients cannot continue processing user input/output whilst
1471          * blocked. RPS autotuning may take tens of milliseconds to respond
1472          * to the GPU load and thus incurs additional latency for the client.
1473          * We can circumvent that by promoting the GPU frequency to maximum
1474          * before we wait. This makes the GPU throttle up much more quickly
1475          * (good for benchmarks and user experience, e.g. window animations),
1476          * but at a cost of spending more power processing the workload
1477          * (bad for battery). Not all clients even want their results
1478          * immediately and for them we should just let the GPU select its own
1479          * frequency to maximise efficiency. To prevent a single client from
1480          * forcing the clocks too high for the whole system, we only allow
1481          * each client to waitboost once in a busy period.
1482          */
1483         if (INTEL_INFO(req->i915)->gen >= 6)
1484                 gen6_rps_boost(req->i915, rps, req->emitted_jiffies);
1485
1486         /* Optimistic spin for the next ~jiffie before touching IRQs */
1487         if (i915_spin_request(req, state, 5))
1488                 goto complete;
1489
1490         set_current_state(state);
1491         add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1492
1493         intel_wait_init(&wait, req->seqno);
1494         if (intel_engine_add_wait(req->engine, &wait))
1495                 /* In order to check that we haven't missed the interrupt
1496                  * as we enabled it, we need to kick ourselves to do a
1497                  * coherent check on the seqno before we sleep.
1498                  */
1499                 goto wakeup;
1500
1501         for (;;) {
1502                 if (signal_pending_state(state, current)) {
1503                         ret = -ERESTARTSYS;
1504                         break;
1505                 }
1506
1507                 timeout_remain = io_schedule_timeout(timeout_remain);
1508                 if (timeout_remain == 0) {
1509                         ret = -ETIME;
1510                         break;
1511                 }
1512
1513                 if (intel_wait_complete(&wait))
1514                         break;
1515
1516                 set_current_state(state);
1517
1518 wakeup:
1519                 /* Carefully check if the request is complete, giving time
1520                  * for the seqno to be visible following the interrupt.
1521                  * We also have to check in case we are kicked by the GPU
1522                  * reset in order to drop the struct_mutex.
1523                  */
1524                 if (__i915_request_irq_complete(req))
1525                         break;
1526
1527                 /* Only spin if we know the GPU is processing this request */
1528                 if (i915_spin_request(req, state, 2))
1529                         break;
1530         }
1531         remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1532
1533         intel_engine_remove_wait(req->engine, &wait);
1534         __set_current_state(TASK_RUNNING);
1535 complete:
1536         trace_i915_gem_request_wait_end(req);
1537
1538         if (timeout) {
1539                 s64 tres = *timeout - (ktime_get_raw_ns() - before);
1540
1541                 *timeout = tres < 0 ? 0 : tres;
1542
1543                 /*
1544                  * Apparently ktime isn't accurate enough and occasionally has a
1545                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
1546                  * things up to make the test happy. We allow up to 1 jiffy.
1547                  *
1548                  * This is a regrssion from the timespec->ktime conversion.
1549                  */
1550                 if (ret == -ETIME && *timeout < jiffies_to_usecs(1)*1000)
1551                         *timeout = 0;
1552         }
1553
1554         if (rps && req->seqno == req->engine->last_submitted_seqno) {
1555                 /* The GPU is now idle and this client has stalled.
1556                  * Since no other client has submitted a request in the
1557                  * meantime, assume that this client is the only one
1558                  * supplying work to the GPU but is unable to keep that
1559                  * work supplied because it is waiting. Since the GPU is
1560                  * then never kept fully busy, RPS autoclocking will
1561                  * keep the clocks relatively low, causing further delays.
1562                  * Compensate by giving the synchronous client credit for
1563                  * a waitboost next time.
1564                  */
1565                 spin_lock(&req->i915->rps.client_lock);
1566                 list_del_init(&rps->link);
1567                 spin_unlock(&req->i915->rps.client_lock);
1568         }
1569
1570         return ret;
1571 }
1572
1573 int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
1574                                    struct drm_file *file)
1575 {
1576         struct drm_i915_file_private *file_priv;
1577
1578         WARN_ON(!req || !file || req->file_priv);
1579
1580         if (!req || !file)
1581                 return -EINVAL;
1582
1583         if (req->file_priv)
1584                 return -EINVAL;
1585
1586         file_priv = file->driver_priv;
1587
1588         spin_lock(&file_priv->mm.lock);
1589         req->file_priv = file_priv;
1590         list_add_tail(&req->client_list, &file_priv->mm.request_list);
1591         spin_unlock(&file_priv->mm.lock);
1592
1593         req->pid = get_pid(task_pid(current));
1594
1595         return 0;
1596 }
1597
1598 static inline void
1599 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1600 {
1601         struct drm_i915_file_private *file_priv = request->file_priv;
1602
1603         if (!file_priv)
1604                 return;
1605
1606         spin_lock(&file_priv->mm.lock);
1607         list_del(&request->client_list);
1608         request->file_priv = NULL;
1609         spin_unlock(&file_priv->mm.lock);
1610
1611         put_pid(request->pid);
1612         request->pid = NULL;
1613 }
1614
1615 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
1616 {
1617         trace_i915_gem_request_retire(request);
1618
1619         /* We know the GPU must have read the request to have
1620          * sent us the seqno + interrupt, so use the position
1621          * of tail of the request to update the last known position
1622          * of the GPU head.
1623          *
1624          * Note this requires that we are always called in request
1625          * completion order.
1626          */
1627         request->ringbuf->last_retired_head = request->postfix;
1628
1629         list_del_init(&request->list);
1630         i915_gem_request_remove_from_client(request);
1631
1632         if (request->previous_context) {
1633                 if (i915.enable_execlists)
1634                         intel_lr_context_unpin(request->previous_context,
1635                                                request->engine);
1636         }
1637
1638         i915_gem_context_unreference(request->ctx);
1639         i915_gem_request_unreference(request);
1640 }
1641
1642 static void
1643 __i915_gem_request_retire__upto(struct drm_i915_gem_request *req)
1644 {
1645         struct intel_engine_cs *engine = req->engine;
1646         struct drm_i915_gem_request *tmp;
1647
1648         lockdep_assert_held(&engine->i915->drm.struct_mutex);
1649
1650         if (list_empty(&req->list))
1651                 return;
1652
1653         do {
1654                 tmp = list_first_entry(&engine->request_list,
1655                                        typeof(*tmp), list);
1656
1657                 i915_gem_request_retire(tmp);
1658         } while (tmp != req);
1659
1660         WARN_ON(i915_verify_lists(engine->dev));
1661 }
1662
1663 /**
1664  * Waits for a request to be signaled, and cleans up the
1665  * request and object lists appropriately for that event.
1666  * @req: request to wait on
1667  */
1668 int
1669 i915_wait_request(struct drm_i915_gem_request *req)
1670 {
1671         struct drm_i915_private *dev_priv = req->i915;
1672         bool interruptible;
1673         int ret;
1674
1675         interruptible = dev_priv->mm.interruptible;
1676
1677         BUG_ON(!mutex_is_locked(&dev_priv->drm.struct_mutex));
1678
1679         ret = __i915_wait_request(req, interruptible, NULL, NULL);
1680         if (ret)
1681                 return ret;
1682
1683         /* If the GPU hung, we want to keep the requests to find the guilty. */
1684         if (!i915_reset_in_progress(&dev_priv->gpu_error))
1685                 __i915_gem_request_retire__upto(req);
1686
1687         return 0;
1688 }
1689
1690 /**
1691  * Ensures that all rendering to the object has completed and the object is
1692  * safe to unbind from the GTT or access from the CPU.
1693  * @obj: i915 gem object
1694  * @readonly: waiting for read access or write
1695  */
1696 int
1697 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1698                                bool readonly)
1699 {
1700         int ret, i;
1701
1702         if (!obj->active)
1703                 return 0;
1704
1705         if (readonly) {
1706                 if (obj->last_write_req != NULL) {
1707                         ret = i915_wait_request(obj->last_write_req);
1708                         if (ret)
1709                                 return ret;
1710
1711                         i = obj->last_write_req->engine->id;
1712                         if (obj->last_read_req[i] == obj->last_write_req)
1713                                 i915_gem_object_retire__read(obj, i);
1714                         else
1715                                 i915_gem_object_retire__write(obj);
1716                 }
1717         } else {
1718                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1719                         if (obj->last_read_req[i] == NULL)
1720                                 continue;
1721
1722                         ret = i915_wait_request(obj->last_read_req[i]);
1723                         if (ret)
1724                                 return ret;
1725
1726                         i915_gem_object_retire__read(obj, i);
1727                 }
1728                 GEM_BUG_ON(obj->active);
1729         }
1730
1731         return 0;
1732 }
1733
1734 static void
1735 i915_gem_object_retire_request(struct drm_i915_gem_object *obj,
1736                                struct drm_i915_gem_request *req)
1737 {
1738         int ring = req->engine->id;
1739
1740         if (obj->last_read_req[ring] == req)
1741                 i915_gem_object_retire__read(obj, ring);
1742         else if (obj->last_write_req == req)
1743                 i915_gem_object_retire__write(obj);
1744
1745         if (!i915_reset_in_progress(&req->i915->gpu_error))
1746                 __i915_gem_request_retire__upto(req);
1747 }
1748
1749 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1750  * as the object state may change during this call.
1751  */
1752 static __must_check int
1753 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1754                                             struct intel_rps_client *rps,
1755                                             bool readonly)
1756 {
1757         struct drm_device *dev = obj->base.dev;
1758         struct drm_i915_private *dev_priv = to_i915(dev);
1759         struct drm_i915_gem_request *requests[I915_NUM_ENGINES];
1760         int ret, i, n = 0;
1761
1762         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1763         BUG_ON(!dev_priv->mm.interruptible);
1764
1765         if (!obj->active)
1766                 return 0;
1767
1768         if (readonly) {
1769                 struct drm_i915_gem_request *req;
1770
1771                 req = obj->last_write_req;
1772                 if (req == NULL)
1773                         return 0;
1774
1775                 requests[n++] = i915_gem_request_reference(req);
1776         } else {
1777                 for (i = 0; i < I915_NUM_ENGINES; i++) {
1778                         struct drm_i915_gem_request *req;
1779
1780                         req = obj->last_read_req[i];
1781                         if (req == NULL)
1782                                 continue;
1783
1784                         requests[n++] = i915_gem_request_reference(req);
1785                 }
1786         }
1787
1788         mutex_unlock(&dev->struct_mutex);
1789         ret = 0;
1790         for (i = 0; ret == 0 && i < n; i++)
1791                 ret = __i915_wait_request(requests[i], true, NULL, rps);
1792         mutex_lock(&dev->struct_mutex);
1793
1794         for (i = 0; i < n; i++) {
1795                 if (ret == 0)
1796                         i915_gem_object_retire_request(obj, requests[i]);
1797                 i915_gem_request_unreference(requests[i]);
1798         }
1799
1800         return ret;
1801 }
1802
1803 static struct intel_rps_client *to_rps_client(struct drm_file *file)
1804 {
1805         struct drm_i915_file_private *fpriv = file->driver_priv;
1806         return &fpriv->rps;
1807 }
1808
1809 static enum fb_op_origin
1810 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1811 {
1812         return domain == I915_GEM_DOMAIN_GTT && !obj->has_wc_mmap ?
1813                ORIGIN_GTT : ORIGIN_CPU;
1814 }
1815
1816 /**
1817  * Called when user space prepares to use an object with the CPU, either
1818  * through the mmap ioctl's mapping or a GTT mapping.
1819  * @dev: drm device
1820  * @data: ioctl data blob
1821  * @file: drm file
1822  */
1823 int
1824 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1825                           struct drm_file *file)
1826 {
1827         struct drm_i915_gem_set_domain *args = data;
1828         struct drm_i915_gem_object *obj;
1829         uint32_t read_domains = args->read_domains;
1830         uint32_t write_domain = args->write_domain;
1831         int ret;
1832
1833         /* Only handle setting domains to types used by the CPU. */
1834         if (write_domain & I915_GEM_GPU_DOMAINS)
1835                 return -EINVAL;
1836
1837         if (read_domains & I915_GEM_GPU_DOMAINS)
1838                 return -EINVAL;
1839
1840         /* Having something in the write domain implies it's in the read
1841          * domain, and only that read domain.  Enforce that in the request.
1842          */
1843         if (write_domain != 0 && read_domains != write_domain)
1844                 return -EINVAL;
1845
1846         ret = i915_mutex_lock_interruptible(dev);
1847         if (ret)
1848                 return ret;
1849
1850         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1851         if (&obj->base == NULL) {
1852                 ret = -ENOENT;
1853                 goto unlock;
1854         }
1855
1856         /* Try to flush the object off the GPU without holding the lock.
1857          * We will repeat the flush holding the lock in the normal manner
1858          * to catch cases where we are gazumped.
1859          */
1860         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1861                                                           to_rps_client(file),
1862                                                           !write_domain);
1863         if (ret)
1864                 goto unref;
1865
1866         if (read_domains & I915_GEM_DOMAIN_GTT)
1867                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1868         else
1869                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1870
1871         if (write_domain != 0)
1872                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1873
1874 unref:
1875         drm_gem_object_unreference(&obj->base);
1876 unlock:
1877         mutex_unlock(&dev->struct_mutex);
1878         return ret;
1879 }
1880
1881 /**
1882  * Called when user space has done writes to this buffer
1883  * @dev: drm device
1884  * @data: ioctl data blob
1885  * @file: drm file
1886  */
1887 int
1888 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1889                          struct drm_file *file)
1890 {
1891         struct drm_i915_gem_sw_finish *args = data;
1892         struct drm_i915_gem_object *obj;
1893         int ret = 0;
1894
1895         ret = i915_mutex_lock_interruptible(dev);
1896         if (ret)
1897                 return ret;
1898
1899         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
1900         if (&obj->base == NULL) {
1901                 ret = -ENOENT;
1902                 goto unlock;
1903         }
1904
1905         /* Pinned buffers may be scanout, so flush the cache */
1906         if (obj->pin_display)
1907                 i915_gem_object_flush_cpu_write_domain(obj);
1908
1909         drm_gem_object_unreference(&obj->base);
1910 unlock:
1911         mutex_unlock(&dev->struct_mutex);
1912         return ret;
1913 }
1914
1915 /**
1916  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1917  *                       it is mapped to.
1918  * @dev: drm device
1919  * @data: ioctl data blob
1920  * @file: drm file
1921  *
1922  * While the mapping holds a reference on the contents of the object, it doesn't
1923  * imply a ref on the object itself.
1924  *
1925  * IMPORTANT:
1926  *
1927  * DRM driver writers who look a this function as an example for how to do GEM
1928  * mmap support, please don't implement mmap support like here. The modern way
1929  * to implement DRM mmap support is with an mmap offset ioctl (like
1930  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1931  * That way debug tooling like valgrind will understand what's going on, hiding
1932  * the mmap call in a driver private ioctl will break that. The i915 driver only
1933  * does cpu mmaps this way because we didn't know better.
1934  */
1935 int
1936 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1937                     struct drm_file *file)
1938 {
1939         struct drm_i915_gem_mmap *args = data;
1940         struct drm_gem_object *obj;
1941         unsigned long addr;
1942
1943         if (args->flags & ~(I915_MMAP_WC))
1944                 return -EINVAL;
1945
1946         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1947                 return -ENODEV;
1948
1949         obj = drm_gem_object_lookup(file, args->handle);
1950         if (obj == NULL)
1951                 return -ENOENT;
1952
1953         /* prime objects have no backing filp to GEM mmap
1954          * pages from.
1955          */
1956         if (!obj->filp) {
1957                 drm_gem_object_unreference_unlocked(obj);
1958                 return -EINVAL;
1959         }
1960
1961         addr = vm_mmap(obj->filp, 0, args->size,
1962                        PROT_READ | PROT_WRITE, MAP_SHARED,
1963                        args->offset);
1964         if (args->flags & I915_MMAP_WC) {
1965                 struct mm_struct *mm = current->mm;
1966                 struct vm_area_struct *vma;
1967
1968                 if (down_write_killable(&mm->mmap_sem)) {
1969                         drm_gem_object_unreference_unlocked(obj);
1970                         return -EINTR;
1971                 }
1972                 vma = find_vma(mm, addr);
1973                 if (vma)
1974                         vma->vm_page_prot =
1975                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1976                 else
1977                         addr = -ENOMEM;
1978                 up_write(&mm->mmap_sem);
1979
1980                 /* This may race, but that's ok, it only gets set */
1981                 WRITE_ONCE(to_intel_bo(obj)->has_wc_mmap, true);
1982         }
1983         drm_gem_object_unreference_unlocked(obj);
1984         if (IS_ERR((void *)addr))
1985                 return addr;
1986
1987         args->addr_ptr = (uint64_t) addr;
1988
1989         return 0;
1990 }
1991
1992 /**
1993  * i915_gem_fault - fault a page into the GTT
1994  * @vma: VMA in question
1995  * @vmf: fault info
1996  *
1997  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1998  * from userspace.  The fault handler takes care of binding the object to
1999  * the GTT (if needed), allocating and programming a fence register (again,
2000  * only if needed based on whether the old reg is still valid or the object
2001  * is tiled) and inserting a new PTE into the faulting process.
2002  *
2003  * Note that the faulting process may involve evicting existing objects
2004  * from the GTT and/or fence registers to make room.  So performance may
2005  * suffer if the GTT working set is large or there are few fence registers
2006  * left.
2007  */
2008 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2009 {
2010         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
2011         struct drm_device *dev = obj->base.dev;
2012         struct drm_i915_private *dev_priv = to_i915(dev);
2013         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2014         struct i915_ggtt_view view = i915_ggtt_view_normal;
2015         pgoff_t page_offset;
2016         unsigned long pfn;
2017         int ret = 0;
2018         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
2019
2020         intel_runtime_pm_get(dev_priv);
2021
2022         /* We don't use vmf->pgoff since that has the fake offset */
2023         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
2024                 PAGE_SHIFT;
2025
2026         ret = i915_mutex_lock_interruptible(dev);
2027         if (ret)
2028                 goto out;
2029
2030         trace_i915_gem_object_fault(obj, page_offset, true, write);
2031
2032         /* Try to flush the object off the GPU first without holding the lock.
2033          * Upon reacquiring the lock, we will perform our sanity checks and then
2034          * repeat the flush holding the lock in the normal manner to catch cases
2035          * where we are gazumped.
2036          */
2037         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
2038         if (ret)
2039                 goto unlock;
2040
2041         /* Access to snoopable pages through the GTT is incoherent. */
2042         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
2043                 ret = -EFAULT;
2044                 goto unlock;
2045         }
2046
2047         /* Use a partial view if the object is bigger than the aperture. */
2048         if (obj->base.size >= ggtt->mappable_end &&
2049             obj->tiling_mode == I915_TILING_NONE) {
2050                 static const unsigned int chunk_size = 256; // 1 MiB
2051
2052                 memset(&view, 0, sizeof(view));
2053                 view.type = I915_GGTT_VIEW_PARTIAL;
2054                 view.params.partial.offset = rounddown(page_offset, chunk_size);
2055                 view.params.partial.size =
2056                         min_t(unsigned int,
2057                               chunk_size,
2058                               (vma->vm_end - vma->vm_start)/PAGE_SIZE -
2059                               view.params.partial.offset);
2060         }
2061
2062         /* Now pin it into the GTT if needed */
2063         ret = i915_gem_object_ggtt_pin(obj, &view, 0, PIN_MAPPABLE);
2064         if (ret)
2065                 goto unlock;
2066
2067         ret = i915_gem_object_set_to_gtt_domain(obj, write);
2068         if (ret)
2069                 goto unpin;
2070
2071         ret = i915_gem_object_get_fence(obj);
2072         if (ret)
2073                 goto unpin;
2074
2075         /* Finally, remap it using the new GTT offset */
2076         pfn = ggtt->mappable_base +
2077                 i915_gem_obj_ggtt_offset_view(obj, &view);
2078         pfn >>= PAGE_SHIFT;
2079
2080         if (unlikely(view.type == I915_GGTT_VIEW_PARTIAL)) {
2081                 /* Overriding existing pages in partial view does not cause
2082                  * us any trouble as TLBs are still valid because the fault
2083                  * is due to userspace losing part of the mapping or never
2084                  * having accessed it before (at this partials' range).
2085                  */
2086                 unsigned long base = vma->vm_start +
2087                                      (view.params.partial.offset << PAGE_SHIFT);
2088                 unsigned int i;
2089
2090                 for (i = 0; i < view.params.partial.size; i++) {
2091                         ret = vm_insert_pfn(vma, base + i * PAGE_SIZE, pfn + i);
2092                         if (ret)
2093                                 break;
2094                 }
2095
2096                 obj->fault_mappable = true;
2097         } else {
2098                 if (!obj->fault_mappable) {
2099                         unsigned long size = min_t(unsigned long,
2100                                                    vma->vm_end - vma->vm_start,
2101                                                    obj->base.size);
2102                         int i;
2103
2104                         for (i = 0; i < size >> PAGE_SHIFT; i++) {
2105                                 ret = vm_insert_pfn(vma,
2106                                                     (unsigned long)vma->vm_start + i * PAGE_SIZE,
2107                                                     pfn + i);
2108                                 if (ret)
2109                                         break;
2110                         }
2111
2112                         obj->fault_mappable = true;
2113                 } else
2114                         ret = vm_insert_pfn(vma,
2115                                             (unsigned long)vmf->virtual_address,
2116                                             pfn + page_offset);
2117         }
2118 unpin:
2119         i915_gem_object_ggtt_unpin_view(obj, &view);
2120 unlock:
2121         mutex_unlock(&dev->struct_mutex);
2122 out:
2123         switch (ret) {
2124         case -EIO:
2125                 /*
2126                  * We eat errors when the gpu is terminally wedged to avoid
2127                  * userspace unduly crashing (gl has no provisions for mmaps to
2128                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
2129                  * and so needs to be reported.
2130                  */
2131                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
2132                         ret = VM_FAULT_SIGBUS;
2133                         break;
2134                 }
2135         case -EAGAIN:
2136                 /*
2137                  * EAGAIN means the gpu is hung and we'll wait for the error
2138                  * handler to reset everything when re-faulting in
2139                  * i915_mutex_lock_interruptible.
2140                  */
2141         case 0:
2142         case -ERESTARTSYS:
2143         case -EINTR:
2144         case -EBUSY:
2145                 /*
2146                  * EBUSY is ok: this just means that another thread
2147                  * already did the job.
2148                  */
2149                 ret = VM_FAULT_NOPAGE;
2150                 break;
2151         case -ENOMEM:
2152                 ret = VM_FAULT_OOM;
2153                 break;
2154         case -ENOSPC:
2155         case -EFAULT:
2156                 ret = VM_FAULT_SIGBUS;
2157                 break;
2158         default:
2159                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2160                 ret = VM_FAULT_SIGBUS;
2161                 break;
2162         }
2163
2164         intel_runtime_pm_put(dev_priv);
2165         return ret;
2166 }
2167
2168 /**
2169  * i915_gem_release_mmap - remove physical page mappings
2170  * @obj: obj in question
2171  *
2172  * Preserve the reservation of the mmapping with the DRM core code, but
2173  * relinquish ownership of the pages back to the system.
2174  *
2175  * It is vital that we remove the page mapping if we have mapped a tiled
2176  * object through the GTT and then lose the fence register due to
2177  * resource pressure. Similarly if the object has been moved out of the
2178  * aperture, than pages mapped into userspace must be revoked. Removing the
2179  * mapping will then trigger a page fault on the next user access, allowing
2180  * fixup by i915_gem_fault().
2181  */
2182 void
2183 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2184 {
2185         /* Serialisation between user GTT access and our code depends upon
2186          * revoking the CPU's PTE whilst the mutex is held. The next user
2187          * pagefault then has to wait until we release the mutex.
2188          */
2189         lockdep_assert_held(&obj->base.dev->struct_mutex);
2190
2191         if (!obj->fault_mappable)
2192                 return;
2193
2194         drm_vma_node_unmap(&obj->base.vma_node,
2195                            obj->base.dev->anon_inode->i_mapping);
2196
2197         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2198          * memory transactions from userspace before we return. The TLB
2199          * flushing implied above by changing the PTE above *should* be
2200          * sufficient, an extra barrier here just provides us with a bit
2201          * of paranoid documentation about our requirement to serialise
2202          * memory writes before touching registers / GSM.
2203          */
2204         wmb();
2205
2206         obj->fault_mappable = false;
2207 }
2208
2209 void
2210 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
2211 {
2212         struct drm_i915_gem_object *obj;
2213
2214         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
2215                 i915_gem_release_mmap(obj);
2216 }
2217
2218 uint32_t
2219 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
2220 {
2221         uint32_t gtt_size;
2222
2223         if (INTEL_INFO(dev)->gen >= 4 ||
2224             tiling_mode == I915_TILING_NONE)
2225                 return size;
2226
2227         /* Previous chips need a power-of-two fence region when tiling */
2228         if (IS_GEN3(dev))
2229                 gtt_size = 1024*1024;
2230         else
2231                 gtt_size = 512*1024;
2232
2233         while (gtt_size < size)
2234                 gtt_size <<= 1;
2235
2236         return gtt_size;
2237 }
2238
2239 /**
2240  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
2241  * @dev: drm device
2242  * @size: object size
2243  * @tiling_mode: tiling mode
2244  * @fenced: is fenced alignemned required or not
2245  *
2246  * Return the required GTT alignment for an object, taking into account
2247  * potential fence register mapping.
2248  */
2249 uint32_t
2250 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
2251                            int tiling_mode, bool fenced)
2252 {
2253         /*
2254          * Minimum alignment is 4k (GTT page size), but might be greater
2255          * if a fence register is needed for the object.
2256          */
2257         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
2258             tiling_mode == I915_TILING_NONE)
2259                 return 4096;
2260
2261         /*
2262          * Previous chips need to be aligned to the size of the smallest
2263          * fence register that can contain the object.
2264          */
2265         return i915_gem_get_gtt_size(dev, size, tiling_mode);
2266 }
2267
2268 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2269 {
2270         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2271         int ret;
2272
2273         dev_priv->mm.shrinker_no_lock_stealing = true;
2274
2275         ret = drm_gem_create_mmap_offset(&obj->base);
2276         if (ret != -ENOSPC)
2277                 goto out;
2278
2279         /* Badly fragmented mmap space? The only way we can recover
2280          * space is by destroying unwanted objects. We can't randomly release
2281          * mmap_offsets as userspace expects them to be persistent for the
2282          * lifetime of the objects. The closest we can is to release the
2283          * offsets on purgeable objects by truncating it and marking it purged,
2284          * which prevents userspace from ever using that object again.
2285          */
2286         i915_gem_shrink(dev_priv,
2287                         obj->base.size >> PAGE_SHIFT,
2288                         I915_SHRINK_BOUND |
2289                         I915_SHRINK_UNBOUND |
2290                         I915_SHRINK_PURGEABLE);
2291         ret = drm_gem_create_mmap_offset(&obj->base);
2292         if (ret != -ENOSPC)
2293                 goto out;
2294
2295         i915_gem_shrink_all(dev_priv);
2296         ret = drm_gem_create_mmap_offset(&obj->base);
2297 out:
2298         dev_priv->mm.shrinker_no_lock_stealing = false;
2299
2300         return ret;
2301 }
2302
2303 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2304 {
2305         drm_gem_free_mmap_offset(&obj->base);
2306 }
2307
2308 int
2309 i915_gem_mmap_gtt(struct drm_file *file,
2310                   struct drm_device *dev,
2311                   uint32_t handle,
2312                   uint64_t *offset)
2313 {
2314         struct drm_i915_gem_object *obj;
2315         int ret;
2316
2317         ret = i915_mutex_lock_interruptible(dev);
2318         if (ret)
2319                 return ret;
2320
2321         obj = to_intel_bo(drm_gem_object_lookup(file, handle));
2322         if (&obj->base == NULL) {
2323                 ret = -ENOENT;
2324                 goto unlock;
2325         }
2326
2327         if (obj->madv != I915_MADV_WILLNEED) {
2328                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
2329                 ret = -EFAULT;
2330                 goto out;
2331         }
2332
2333         ret = i915_gem_object_create_mmap_offset(obj);
2334         if (ret)
2335                 goto out;
2336
2337         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2338
2339 out:
2340         drm_gem_object_unreference(&obj->base);
2341 unlock:
2342         mutex_unlock(&dev->struct_mutex);
2343         return ret;
2344 }
2345
2346 /**
2347  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2348  * @dev: DRM device
2349  * @data: GTT mapping ioctl data
2350  * @file: GEM object info
2351  *
2352  * Simply returns the fake offset to userspace so it can mmap it.
2353  * The mmap call will end up in drm_gem_mmap(), which will set things
2354  * up so we can get faults in the handler above.
2355  *
2356  * The fault handler will take care of binding the object into the GTT
2357  * (since it may have been evicted to make room for something), allocating
2358  * a fence register, and mapping the appropriate aperture address into
2359  * userspace.
2360  */
2361 int
2362 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2363                         struct drm_file *file)
2364 {
2365         struct drm_i915_gem_mmap_gtt *args = data;
2366
2367         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2368 }
2369
2370 /* Immediately discard the backing storage */
2371 static void
2372 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2373 {
2374         i915_gem_object_free_mmap_offset(obj);
2375
2376         if (obj->base.filp == NULL)
2377                 return;
2378
2379         /* Our goal here is to return as much of the memory as
2380          * is possible back to the system as we are called from OOM.
2381          * To do this we must instruct the shmfs to drop all of its
2382          * backing pages, *now*.
2383          */
2384         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2385         obj->madv = __I915_MADV_PURGED;
2386 }
2387
2388 /* Try to discard unwanted pages */
2389 static void
2390 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2391 {
2392         struct address_space *mapping;
2393
2394         switch (obj->madv) {
2395         case I915_MADV_DONTNEED:
2396                 i915_gem_object_truncate(obj);
2397         case __I915_MADV_PURGED:
2398                 return;
2399         }
2400
2401         if (obj->base.filp == NULL)
2402                 return;
2403
2404         mapping = obj->base.filp->f_mapping,
2405         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2406 }
2407
2408 static void
2409 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2410 {
2411         struct sgt_iter sgt_iter;
2412         struct page *page;
2413         int ret;
2414
2415         BUG_ON(obj->madv == __I915_MADV_PURGED);
2416
2417         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2418         if (WARN_ON(ret)) {
2419                 /* In the event of a disaster, abandon all caches and
2420                  * hope for the best.
2421                  */
2422                 i915_gem_clflush_object(obj, true);
2423                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2424         }
2425
2426         i915_gem_gtt_finish_object(obj);
2427
2428         if (i915_gem_object_needs_bit17_swizzle(obj))
2429                 i915_gem_object_save_bit_17_swizzle(obj);
2430
2431         if (obj->madv == I915_MADV_DONTNEED)
2432                 obj->dirty = 0;
2433
2434         for_each_sgt_page(page, sgt_iter, obj->pages) {
2435                 if (obj->dirty)
2436                         set_page_dirty(page);
2437
2438                 if (obj->madv == I915_MADV_WILLNEED)
2439                         mark_page_accessed(page);
2440
2441                 put_page(page);
2442         }
2443         obj->dirty = 0;
2444
2445         sg_free_table(obj->pages);
2446         kfree(obj->pages);
2447 }
2448
2449 int
2450 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2451 {
2452         const struct drm_i915_gem_object_ops *ops = obj->ops;
2453
2454         if (obj->pages == NULL)
2455                 return 0;
2456
2457         if (obj->pages_pin_count)
2458                 return -EBUSY;
2459
2460         BUG_ON(i915_gem_obj_bound_any(obj));
2461
2462         /* ->put_pages might need to allocate memory for the bit17 swizzle
2463          * array, hence protect them from being reaped by removing them from gtt
2464          * lists early. */
2465         list_del(&obj->global_list);
2466
2467         if (obj->mapping) {
2468                 if (is_vmalloc_addr(obj->mapping))
2469                         vunmap(obj->mapping);
2470                 else
2471                         kunmap(kmap_to_page(obj->mapping));
2472                 obj->mapping = NULL;
2473         }
2474
2475         ops->put_pages(obj);
2476         obj->pages = NULL;
2477
2478         i915_gem_object_invalidate(obj);
2479
2480         return 0;
2481 }
2482
2483 static int
2484 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2485 {
2486         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2487         int page_count, i;
2488         struct address_space *mapping;
2489         struct sg_table *st;
2490         struct scatterlist *sg;
2491         struct sgt_iter sgt_iter;
2492         struct page *page;
2493         unsigned long last_pfn = 0;     /* suppress gcc warning */
2494         int ret;
2495         gfp_t gfp;
2496
2497         /* Assert that the object is not currently in any GPU domain. As it
2498          * wasn't in the GTT, there shouldn't be any way it could have been in
2499          * a GPU cache
2500          */
2501         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2502         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2503
2504         st = kmalloc(sizeof(*st), GFP_KERNEL);
2505         if (st == NULL)
2506                 return -ENOMEM;
2507
2508         page_count = obj->base.size / PAGE_SIZE;
2509         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2510                 kfree(st);
2511                 return -ENOMEM;
2512         }
2513
2514         /* Get the list of pages out of our struct file.  They'll be pinned
2515          * at this point until we release them.
2516          *
2517          * Fail silently without starting the shrinker
2518          */
2519         mapping = obj->base.filp->f_mapping;
2520         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2521         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2522         sg = st->sgl;
2523         st->nents = 0;
2524         for (i = 0; i < page_count; i++) {
2525                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2526                 if (IS_ERR(page)) {
2527                         i915_gem_shrink(dev_priv,
2528                                         page_count,
2529                                         I915_SHRINK_BOUND |
2530                                         I915_SHRINK_UNBOUND |
2531                                         I915_SHRINK_PURGEABLE);
2532                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2533                 }
2534                 if (IS_ERR(page)) {
2535                         /* We've tried hard to allocate the memory by reaping
2536                          * our own buffer, now let the real VM do its job and
2537                          * go down in flames if truly OOM.
2538                          */
2539                         i915_gem_shrink_all(dev_priv);
2540                         page = shmem_read_mapping_page(mapping, i);
2541                         if (IS_ERR(page)) {
2542                                 ret = PTR_ERR(page);
2543                                 goto err_pages;
2544                         }
2545                 }
2546 #ifdef CONFIG_SWIOTLB
2547                 if (swiotlb_nr_tbl()) {
2548                         st->nents++;
2549                         sg_set_page(sg, page, PAGE_SIZE, 0);
2550                         sg = sg_next(sg);
2551                         continue;
2552                 }
2553 #endif
2554                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2555                         if (i)
2556                                 sg = sg_next(sg);
2557                         st->nents++;
2558                         sg_set_page(sg, page, PAGE_SIZE, 0);
2559                 } else {
2560                         sg->length += PAGE_SIZE;
2561                 }
2562                 last_pfn = page_to_pfn(page);
2563
2564                 /* Check that the i965g/gm workaround works. */
2565                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2566         }
2567 #ifdef CONFIG_SWIOTLB
2568         if (!swiotlb_nr_tbl())
2569 #endif
2570                 sg_mark_end(sg);
2571         obj->pages = st;
2572
2573         ret = i915_gem_gtt_prepare_object(obj);
2574         if (ret)
2575                 goto err_pages;
2576
2577         if (i915_gem_object_needs_bit17_swizzle(obj))
2578                 i915_gem_object_do_bit_17_swizzle(obj);
2579
2580         if (obj->tiling_mode != I915_TILING_NONE &&
2581             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2582                 i915_gem_object_pin_pages(obj);
2583
2584         return 0;
2585
2586 err_pages:
2587         sg_mark_end(sg);
2588         for_each_sgt_page(page, sgt_iter, st)
2589                 put_page(page);
2590         sg_free_table(st);
2591         kfree(st);
2592
2593         /* shmemfs first checks if there is enough memory to allocate the page
2594          * and reports ENOSPC should there be insufficient, along with the usual
2595          * ENOMEM for a genuine allocation failure.
2596          *
2597          * We use ENOSPC in our driver to mean that we have run out of aperture
2598          * space and so want to translate the error from shmemfs back to our
2599          * usual understanding of ENOMEM.
2600          */
2601         if (ret == -ENOSPC)
2602                 ret = -ENOMEM;
2603
2604         return ret;
2605 }
2606
2607 /* Ensure that the associated pages are gathered from the backing storage
2608  * and pinned into our object. i915_gem_object_get_pages() may be called
2609  * multiple times before they are released by a single call to
2610  * i915_gem_object_put_pages() - once the pages are no longer referenced
2611  * either as a result of memory pressure (reaping pages under the shrinker)
2612  * or as the object is itself released.
2613  */
2614 int
2615 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2616 {
2617         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2618         const struct drm_i915_gem_object_ops *ops = obj->ops;
2619         int ret;
2620
2621         if (obj->pages)
2622                 return 0;
2623
2624         if (obj->madv != I915_MADV_WILLNEED) {
2625                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2626                 return -EFAULT;
2627         }
2628
2629         BUG_ON(obj->pages_pin_count);
2630
2631         ret = ops->get_pages(obj);
2632         if (ret)
2633                 return ret;
2634
2635         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2636
2637         obj->get_page.sg = obj->pages->sgl;
2638         obj->get_page.last = 0;
2639
2640         return 0;
2641 }
2642
2643 /* The 'mapping' part of i915_gem_object_pin_map() below */
2644 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj)
2645 {
2646         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2647         struct sg_table *sgt = obj->pages;
2648         struct sgt_iter sgt_iter;
2649         struct page *page;
2650         struct page *stack_pages[32];
2651         struct page **pages = stack_pages;
2652         unsigned long i = 0;
2653         void *addr;
2654
2655         /* A single page can always be kmapped */
2656         if (n_pages == 1)
2657                 return kmap(sg_page(sgt->sgl));
2658
2659         if (n_pages > ARRAY_SIZE(stack_pages)) {
2660                 /* Too big for stack -- allocate temporary array instead */
2661                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2662                 if (!pages)
2663                         return NULL;
2664         }
2665
2666         for_each_sgt_page(page, sgt_iter, sgt)
2667                 pages[i++] = page;
2668
2669         /* Check that we have the expected number of pages */
2670         GEM_BUG_ON(i != n_pages);
2671
2672         addr = vmap(pages, n_pages, 0, PAGE_KERNEL);
2673
2674         if (pages != stack_pages)
2675                 drm_free_large(pages);
2676
2677         return addr;
2678 }
2679
2680 /* get, pin, and map the pages of the object into kernel space */
2681 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj)
2682 {
2683         int ret;
2684
2685         lockdep_assert_held(&obj->base.dev->struct_mutex);
2686
2687         ret = i915_gem_object_get_pages(obj);
2688         if (ret)
2689                 return ERR_PTR(ret);
2690
2691         i915_gem_object_pin_pages(obj);
2692
2693         if (!obj->mapping) {
2694                 obj->mapping = i915_gem_object_map(obj);
2695                 if (!obj->mapping) {
2696                         i915_gem_object_unpin_pages(obj);
2697                         return ERR_PTR(-ENOMEM);
2698                 }
2699         }
2700
2701         return obj->mapping;
2702 }
2703
2704 void i915_vma_move_to_active(struct i915_vma *vma,
2705                              struct drm_i915_gem_request *req)
2706 {
2707         struct drm_i915_gem_object *obj = vma->obj;
2708         struct intel_engine_cs *engine;
2709
2710         engine = i915_gem_request_get_engine(req);
2711
2712         /* Add a reference if we're newly entering the active list. */
2713         if (obj->active == 0)
2714                 drm_gem_object_reference(&obj->base);
2715         obj->active |= intel_engine_flag(engine);
2716
2717         list_move_tail(&obj->engine_list[engine->id], &engine->active_list);
2718         i915_gem_request_assign(&obj->last_read_req[engine->id], req);
2719
2720         list_move_tail(&vma->vm_link, &vma->vm->active_list);
2721 }
2722
2723 static void
2724 i915_gem_object_retire__write(struct drm_i915_gem_object *obj)
2725 {
2726         GEM_BUG_ON(obj->last_write_req == NULL);
2727         GEM_BUG_ON(!(obj->active & intel_engine_flag(obj->last_write_req->engine)));
2728
2729         i915_gem_request_assign(&obj->last_write_req, NULL);
2730         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2731 }
2732
2733 static void
2734 i915_gem_object_retire__read(struct drm_i915_gem_object *obj, int ring)
2735 {
2736         struct i915_vma *vma;
2737
2738         GEM_BUG_ON(obj->last_read_req[ring] == NULL);
2739         GEM_BUG_ON(!(obj->active & (1 << ring)));
2740
2741         list_del_init(&obj->engine_list[ring]);
2742         i915_gem_request_assign(&obj->last_read_req[ring], NULL);
2743
2744         if (obj->last_write_req && obj->last_write_req->engine->id == ring)
2745                 i915_gem_object_retire__write(obj);
2746
2747         obj->active &= ~(1 << ring);
2748         if (obj->active)
2749                 return;
2750
2751         /* Bump our place on the bound list to keep it roughly in LRU order
2752          * so that we don't steal from recently used but inactive objects
2753          * (unless we are forced to ofc!)
2754          */
2755         list_move_tail(&obj->global_list,
2756                        &to_i915(obj->base.dev)->mm.bound_list);
2757
2758         list_for_each_entry(vma, &obj->vma_list, obj_link) {
2759                 if (!list_empty(&vma->vm_link))
2760                         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
2761         }
2762
2763         i915_gem_request_assign(&obj->last_fenced_req, NULL);
2764         drm_gem_object_unreference(&obj->base);
2765 }
2766
2767 static int
2768 i915_gem_init_seqno(struct drm_i915_private *dev_priv, u32 seqno)
2769 {
2770         struct intel_engine_cs *engine;
2771         int ret;
2772
2773         /* Carefully retire all requests without writing to the rings */
2774         for_each_engine(engine, dev_priv) {
2775                 ret = intel_engine_idle(engine);
2776                 if (ret)
2777                         return ret;
2778         }
2779         i915_gem_retire_requests(dev_priv);
2780
2781         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
2782         if (!i915_seqno_passed(seqno, dev_priv->next_seqno)) {
2783                 while (intel_kick_waiters(dev_priv) ||
2784                        intel_kick_signalers(dev_priv))
2785                         yield();
2786         }
2787
2788         /* Finally reset hw state */
2789         for_each_engine(engine, dev_priv)
2790                 intel_ring_init_seqno(engine, seqno);
2791
2792         return 0;
2793 }
2794
2795 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2796 {
2797         struct drm_i915_private *dev_priv = to_i915(dev);
2798         int ret;
2799
2800         if (seqno == 0)
2801                 return -EINVAL;
2802
2803         /* HWS page needs to be set less than what we
2804          * will inject to ring
2805          */
2806         ret = i915_gem_init_seqno(dev_priv, seqno - 1);
2807         if (ret)
2808                 return ret;
2809
2810         /* Carefully set the last_seqno value so that wrap
2811          * detection still works
2812          */
2813         dev_priv->next_seqno = seqno;
2814         dev_priv->last_seqno = seqno - 1;
2815         if (dev_priv->last_seqno == 0)
2816                 dev_priv->last_seqno--;
2817
2818         return 0;
2819 }
2820
2821 int
2822 i915_gem_get_seqno(struct drm_i915_private *dev_priv, u32 *seqno)
2823 {
2824         /* reserve 0 for non-seqno */
2825         if (dev_priv->next_seqno == 0) {
2826                 int ret = i915_gem_init_seqno(dev_priv, 0);
2827                 if (ret)
2828                         return ret;
2829
2830                 dev_priv->next_seqno = 1;
2831         }
2832
2833         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2834         return 0;
2835 }
2836
2837 static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
2838 {
2839         struct drm_i915_private *dev_priv = engine->i915;
2840
2841         dev_priv->gt.active_engines |= intel_engine_flag(engine);
2842         if (dev_priv->gt.awake)
2843                 return;
2844
2845         intel_runtime_pm_get_noresume(dev_priv);
2846         dev_priv->gt.awake = true;
2847
2848         i915_update_gfx_val(dev_priv);
2849         if (INTEL_GEN(dev_priv) >= 6)
2850                 gen6_rps_busy(dev_priv);
2851
2852         queue_delayed_work(dev_priv->wq,
2853                            &dev_priv->gt.retire_work,
2854                            round_jiffies_up_relative(HZ));
2855 }
2856
2857 /*
2858  * NB: This function is not allowed to fail. Doing so would mean the the
2859  * request is not being tracked for completion but the work itself is
2860  * going to happen on the hardware. This would be a Bad Thing(tm).
2861  */
2862 void __i915_add_request(struct drm_i915_gem_request *request,
2863                         struct drm_i915_gem_object *obj,
2864                         bool flush_caches)
2865 {
2866         struct intel_engine_cs *engine;
2867         struct intel_ringbuffer *ringbuf;
2868         u32 request_start;
2869         u32 reserved_tail;
2870         int ret;
2871
2872         if (WARN_ON(request == NULL))
2873                 return;
2874
2875         engine = request->engine;
2876         ringbuf = request->ringbuf;
2877
2878         /*
2879          * To ensure that this call will not fail, space for its emissions
2880          * should already have been reserved in the ring buffer. Let the ring
2881          * know that it is time to use that space up.
2882          */
2883         request_start = intel_ring_get_tail(ringbuf);
2884         reserved_tail = request->reserved_space;
2885         request->reserved_space = 0;
2886
2887         /*
2888          * Emit any outstanding flushes - execbuf can fail to emit the flush
2889          * after having emitted the batchbuffer command. Hence we need to fix
2890          * things up similar to emitting the lazy request. The difference here
2891          * is that the flush _must_ happen before the next request, no matter
2892          * what.
2893          */
2894         if (flush_caches) {
2895                 if (i915.enable_execlists)
2896                         ret = logical_ring_flush_all_caches(request);
2897                 else
2898                         ret = intel_ring_flush_all_caches(request);
2899                 /* Not allowed to fail! */
2900                 WARN(ret, "*_ring_flush_all_caches failed: %d!\n", ret);
2901         }
2902
2903         trace_i915_gem_request_add(request);
2904
2905         request->head = request_start;
2906
2907         /* Whilst this request exists, batch_obj will be on the
2908          * active_list, and so will hold the active reference. Only when this
2909          * request is retired will the the batch_obj be moved onto the
2910          * inactive_list and lose its active reference. Hence we do not need
2911          * to explicitly hold another reference here.
2912          */
2913         request->batch_obj = obj;
2914
2915         /* Seal the request and mark it as pending execution. Note that
2916          * we may inspect this state, without holding any locks, during
2917          * hangcheck. Hence we apply the barrier to ensure that we do not
2918          * see a more recent value in the hws than we are tracking.
2919          */
2920         request->emitted_jiffies = jiffies;
2921         request->previous_seqno = engine->last_submitted_seqno;
2922         smp_store_mb(engine->last_submitted_seqno, request->seqno);
2923         list_add_tail(&request->list, &engine->request_list);
2924
2925         /* Record the position of the start of the request so that
2926          * should we detect the updated seqno part-way through the
2927          * GPU processing the request, we never over-estimate the
2928          * position of the head.
2929          */
2930         request->postfix = intel_ring_get_tail(ringbuf);
2931
2932         if (i915.enable_execlists)
2933                 ret = engine->emit_request(request);
2934         else {
2935                 ret = engine->add_request(request);
2936
2937                 request->tail = intel_ring_get_tail(ringbuf);
2938         }
2939         /* Not allowed to fail! */
2940         WARN(ret, "emit|add_request failed: %d!\n", ret);
2941         /* Sanity check that the reserved size was large enough. */
2942         ret = intel_ring_get_tail(ringbuf) - request_start;
2943         if (ret < 0)
2944                 ret += ringbuf->size;
2945         WARN_ONCE(ret > reserved_tail,
2946                   "Not enough space reserved (%d bytes) "
2947                   "for adding the request (%d bytes)\n",
2948                   reserved_tail, ret);
2949
2950         i915_gem_mark_busy(engine);
2951 }
2952
2953 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2954 {
2955         unsigned long elapsed;
2956
2957         if (ctx->hang_stats.banned)
2958                 return true;
2959
2960         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2961         if (ctx->hang_stats.ban_period_seconds &&
2962             elapsed <= ctx->hang_stats.ban_period_seconds) {
2963                 DRM_DEBUG("context hanging too fast, banning!\n");
2964                 return true;
2965         }
2966
2967         return false;
2968 }
2969
2970 static void i915_set_reset_status(struct i915_gem_context *ctx,
2971                                   const bool guilty)
2972 {
2973         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2974
2975         if (guilty) {
2976                 hs->banned = i915_context_is_banned(ctx);
2977                 hs->batch_active++;
2978                 hs->guilty_ts = get_seconds();
2979         } else {
2980                 hs->batch_pending++;
2981         }
2982 }
2983
2984 void i915_gem_request_free(struct kref *req_ref)
2985 {
2986         struct drm_i915_gem_request *req = container_of(req_ref,
2987                                                  typeof(*req), ref);
2988         kmem_cache_free(req->i915->requests, req);
2989 }
2990
2991 static inline int
2992 __i915_gem_request_alloc(struct intel_engine_cs *engine,
2993                          struct i915_gem_context *ctx,
2994                          struct drm_i915_gem_request **req_out)
2995 {
2996         struct drm_i915_private *dev_priv = engine->i915;
2997         unsigned reset_counter = i915_reset_counter(&dev_priv->gpu_error);
2998         struct drm_i915_gem_request *req;
2999         int ret;
3000
3001         if (!req_out)
3002                 return -EINVAL;
3003
3004         *req_out = NULL;
3005
3006         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
3007          * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
3008          * and restart.
3009          */
3010         ret = i915_gem_check_wedge(reset_counter, dev_priv->mm.interruptible);
3011         if (ret)
3012                 return ret;
3013
3014         req = kmem_cache_zalloc(dev_priv->requests, GFP_KERNEL);
3015         if (req == NULL)
3016                 return -ENOMEM;
3017
3018         ret = i915_gem_get_seqno(engine->i915, &req->seqno);
3019         if (ret)
3020                 goto err;
3021
3022         kref_init(&req->ref);
3023         req->i915 = dev_priv;
3024         req->engine = engine;
3025         req->ctx  = ctx;
3026         i915_gem_context_reference(req->ctx);
3027
3028         /*
3029          * Reserve space in the ring buffer for all the commands required to
3030          * eventually emit this request. This is to guarantee that the
3031          * i915_add_request() call can't fail. Note that the reserve may need
3032          * to be redone if the request is not actually submitted straight
3033          * away, e.g. because a GPU scheduler has deferred it.
3034          */
3035         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
3036
3037         if (i915.enable_execlists)
3038                 ret = intel_logical_ring_alloc_request_extras(req);
3039         else
3040                 ret = intel_ring_alloc_request_extras(req);
3041         if (ret)
3042                 goto err_ctx;
3043
3044         *req_out = req;
3045         return 0;
3046
3047 err_ctx:
3048         i915_gem_context_unreference(ctx);
3049 err:
3050         kmem_cache_free(dev_priv->requests, req);
3051         return ret;
3052 }
3053
3054 /**
3055  * i915_gem_request_alloc - allocate a request structure
3056  *
3057  * @engine: engine that we wish to issue the request on.
3058  * @ctx: context that the request will be associated with.
3059  *       This can be NULL if the request is not directly related to
3060  *       any specific user context, in which case this function will
3061  *       choose an appropriate context to use.
3062  *
3063  * Returns a pointer to the allocated request if successful,
3064  * or an error code if not.
3065  */
3066 struct drm_i915_gem_request *
3067 i915_gem_request_alloc(struct intel_engine_cs *engine,
3068                        struct i915_gem_context *ctx)
3069 {
3070         struct drm_i915_gem_request *req;
3071         int err;
3072
3073         if (ctx == NULL)
3074                 ctx = engine->i915->kernel_context;
3075         err = __i915_gem_request_alloc(engine, ctx, &req);
3076         return err ? ERR_PTR(err) : req;
3077 }
3078
3079 struct drm_i915_gem_request *
3080 i915_gem_find_active_request(struct intel_engine_cs *engine)
3081 {
3082         struct drm_i915_gem_request *request;
3083
3084         /* We are called by the error capture and reset at a random
3085          * point in time. In particular, note that neither is crucially
3086          * ordered with an interrupt. After a hang, the GPU is dead and we
3087          * assume that no more writes can happen (we waited long enough for
3088          * all writes that were in transaction to be flushed) - adding an
3089          * extra delay for a recent interrupt is pointless. Hence, we do
3090          * not need an engine->irq_seqno_barrier() before the seqno reads.
3091          */
3092         list_for_each_entry(request, &engine->request_list, list) {
3093                 if (i915_gem_request_completed(request))
3094                         continue;
3095
3096                 return request;
3097         }
3098
3099         return NULL;
3100 }
3101
3102 static void i915_gem_reset_engine_status(struct intel_engine_cs *engine)
3103 {
3104         struct drm_i915_gem_request *request;
3105         bool ring_hung;
3106
3107         request = i915_gem_find_active_request(engine);
3108         if (request == NULL)
3109                 return;
3110
3111         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
3112
3113         i915_set_reset_status(request->ctx, ring_hung);
3114         list_for_each_entry_continue(request, &engine->request_list, list)
3115                 i915_set_reset_status(request->ctx, false);
3116 }
3117
3118 static void i915_gem_reset_engine_cleanup(struct intel_engine_cs *engine)
3119 {
3120         struct intel_ringbuffer *buffer;
3121
3122         while (!list_empty(&engine->active_list)) {
3123                 struct drm_i915_gem_object *obj;
3124
3125                 obj = list_first_entry(&engine->active_list,
3126                                        struct drm_i915_gem_object,
3127                                        engine_list[engine->id]);
3128
3129                 i915_gem_object_retire__read(obj, engine->id);
3130         }
3131
3132         /*
3133          * Clear the execlists queue up before freeing the requests, as those
3134          * are the ones that keep the context and ringbuffer backing objects
3135          * pinned in place.
3136          */
3137
3138         if (i915.enable_execlists) {
3139                 /* Ensure irq handler finishes or is cancelled. */
3140                 tasklet_kill(&engine->irq_tasklet);
3141
3142                 intel_execlists_cancel_requests(engine);
3143         }
3144
3145         /*
3146          * We must free the requests after all the corresponding objects have
3147          * been moved off active lists. Which is the same order as the normal
3148          * retire_requests function does. This is important if object hold
3149          * implicit references on things like e.g. ppgtt address spaces through
3150          * the request.
3151          */
3152         while (!list_empty(&engine->request_list)) {
3153                 struct drm_i915_gem_request *request;
3154
3155                 request = list_first_entry(&engine->request_list,
3156                                            struct drm_i915_gem_request,
3157                                            list);
3158
3159                 i915_gem_request_retire(request);
3160         }
3161
3162         /* Having flushed all requests from all queues, we know that all
3163          * ringbuffers must now be empty. However, since we do not reclaim
3164          * all space when retiring the request (to prevent HEADs colliding
3165          * with rapid ringbuffer wraparound) the amount of available space
3166          * upon reset is less than when we start. Do one more pass over
3167          * all the ringbuffers to reset last_retired_head.
3168          */
3169         list_for_each_entry(buffer, &engine->buffers, link) {
3170                 buffer->last_retired_head = buffer->tail;
3171                 intel_ring_update_space(buffer);
3172         }
3173
3174         intel_ring_init_seqno(engine, engine->last_submitted_seqno);
3175
3176         engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
3177 }
3178
3179 void i915_gem_reset(struct drm_device *dev)
3180 {
3181         struct drm_i915_private *dev_priv = to_i915(dev);
3182         struct intel_engine_cs *engine;
3183
3184         /*
3185          * Before we free the objects from the requests, we need to inspect
3186          * them for finding the guilty party. As the requests only borrow
3187          * their reference to the objects, the inspection must be done first.
3188          */
3189         for_each_engine(engine, dev_priv)
3190                 i915_gem_reset_engine_status(engine);
3191
3192         for_each_engine(engine, dev_priv)
3193                 i915_gem_reset_engine_cleanup(engine);
3194         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3195
3196         i915_gem_context_reset(dev);
3197
3198         i915_gem_restore_fences(dev);
3199
3200         WARN_ON(i915_verify_lists(dev));
3201 }
3202
3203 /**
3204  * This function clears the request list as sequence numbers are passed.
3205  * @engine: engine to retire requests on
3206  */
3207 void
3208 i915_gem_retire_requests_ring(struct intel_engine_cs *engine)
3209 {
3210         WARN_ON(i915_verify_lists(engine->dev));
3211
3212         /* Retire requests first as we use it above for the early return.
3213          * If we retire requests last, we may use a later seqno and so clear
3214          * the requests lists without clearing the active list, leading to
3215          * confusion.
3216          */
3217         while (!list_empty(&engine->request_list)) {
3218                 struct drm_i915_gem_request *request;
3219
3220                 request = list_first_entry(&engine->request_list,
3221                                            struct drm_i915_gem_request,
3222                                            list);
3223
3224                 if (!i915_gem_request_completed(request))
3225                         break;
3226
3227                 i915_gem_request_retire(request);
3228         }
3229
3230         /* Move any buffers on the active list that are no longer referenced
3231          * by the ringbuffer to the flushing/inactive lists as appropriate,
3232          * before we free the context associated with the requests.
3233          */
3234         while (!list_empty(&engine->active_list)) {
3235                 struct drm_i915_gem_object *obj;
3236
3237                 obj = list_first_entry(&engine->active_list,
3238                                        struct drm_i915_gem_object,
3239                                        engine_list[engine->id]);
3240
3241                 if (!list_empty(&obj->last_read_req[engine->id]->list))
3242                         break;
3243
3244                 i915_gem_object_retire__read(obj, engine->id);
3245         }
3246
3247         WARN_ON(i915_verify_lists(engine->dev));
3248 }
3249
3250 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
3251 {
3252         struct intel_engine_cs *engine;
3253
3254         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3255
3256         if (dev_priv->gt.active_engines == 0)
3257                 return;
3258
3259         GEM_BUG_ON(!dev_priv->gt.awake);
3260
3261         for_each_engine(engine, dev_priv) {
3262                 i915_gem_retire_requests_ring(engine);
3263                 if (list_empty(&engine->request_list))
3264                         dev_priv->gt.active_engines &= ~intel_engine_flag(engine);
3265         }
3266
3267         if (dev_priv->gt.active_engines == 0)
3268                 queue_delayed_work(dev_priv->wq,
3269                                    &dev_priv->gt.idle_work,
3270                                    msecs_to_jiffies(100));
3271 }
3272
3273 static void
3274 i915_gem_retire_work_handler(struct work_struct *work)
3275 {
3276         struct drm_i915_private *dev_priv =
3277                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3278         struct drm_device *dev = &dev_priv->drm;
3279
3280         /* Come back later if the device is busy... */
3281         if (mutex_trylock(&dev->struct_mutex)) {
3282                 i915_gem_retire_requests(dev_priv);
3283                 mutex_unlock(&dev->struct_mutex);
3284         }
3285
3286         /* Keep the retire handler running until we are finally idle.
3287          * We do not need to do this test under locking as in the worst-case
3288          * we queue the retire worker once too often.
3289          */
3290         if (READ_ONCE(dev_priv->gt.awake))
3291                 queue_delayed_work(dev_priv->wq,
3292                                    &dev_priv->gt.retire_work,
3293                                    round_jiffies_up_relative(HZ));
3294 }
3295
3296 static void
3297 i915_gem_idle_work_handler(struct work_struct *work)
3298 {
3299         struct drm_i915_private *dev_priv =
3300                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3301         struct drm_device *dev = &dev_priv->drm;
3302         struct intel_engine_cs *engine;
3303         unsigned int stuck_engines;
3304         bool rearm_hangcheck;
3305
3306         if (!READ_ONCE(dev_priv->gt.awake))
3307                 return;
3308
3309         if (READ_ONCE(dev_priv->gt.active_engines))
3310                 return;
3311
3312         rearm_hangcheck =
3313                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3314
3315         if (!mutex_trylock(&dev->struct_mutex)) {
3316                 /* Currently busy, come back later */
3317                 mod_delayed_work(dev_priv->wq,
3318                                  &dev_priv->gt.idle_work,
3319                                  msecs_to_jiffies(50));
3320                 goto out_rearm;
3321         }
3322
3323         if (dev_priv->gt.active_engines)
3324                 goto out_unlock;
3325
3326         for_each_engine(engine, dev_priv)
3327                 i915_gem_batch_pool_fini(&engine->batch_pool);
3328
3329         GEM_BUG_ON(!dev_priv->gt.awake);
3330         dev_priv->gt.awake = false;
3331         rearm_hangcheck = false;
3332
3333         stuck_engines = intel_kick_waiters(dev_priv);
3334         if (unlikely(stuck_engines)) {
3335                 DRM_DEBUG_DRIVER("kicked stuck waiters...missed irq\n");
3336                 dev_priv->gpu_error.missed_irq_rings |= stuck_engines;
3337         }
3338
3339         if (INTEL_GEN(dev_priv) >= 6)
3340                 gen6_rps_idle(dev_priv);
3341         intel_runtime_pm_put(dev_priv);
3342 out_unlock:
3343         mutex_unlock(&dev->struct_mutex);
3344
3345 out_rearm:
3346         if (rearm_hangcheck) {
3347                 GEM_BUG_ON(!dev_priv->gt.awake);
3348                 i915_queue_hangcheck(dev_priv);
3349         }
3350 }
3351
3352 /**
3353  * Ensures that an object will eventually get non-busy by flushing any required
3354  * write domains, emitting any outstanding lazy request and retiring and
3355  * completed requests.
3356  * @obj: object to flush
3357  */
3358 static int
3359 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
3360 {
3361         int i;
3362
3363         if (!obj->active)
3364                 return 0;
3365
3366         for (i = 0; i < I915_NUM_ENGINES; i++) {
3367                 struct drm_i915_gem_request *req;
3368
3369                 req = obj->last_read_req[i];
3370                 if (req == NULL)
3371                         continue;
3372
3373                 if (i915_gem_request_completed(req))
3374                         i915_gem_object_retire__read(obj, i);
3375         }
3376
3377         return 0;
3378 }
3379
3380 /**
3381  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3382  * @dev: drm device pointer
3383  * @data: ioctl data blob
3384  * @file: drm file pointer
3385  *
3386  * Returns 0 if successful, else an error is returned with the remaining time in
3387  * the timeout parameter.
3388  *  -ETIME: object is still busy after timeout
3389  *  -ERESTARTSYS: signal interrupted the wait
3390  *  -ENONENT: object doesn't exist
3391  * Also possible, but rare:
3392  *  -EAGAIN: GPU wedged
3393  *  -ENOMEM: damn
3394  *  -ENODEV: Internal IRQ fail
3395  *  -E?: The add request failed
3396  *
3397  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3398  * non-zero timeout parameter the wait ioctl will wait for the given number of
3399  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3400  * without holding struct_mutex the object may become re-busied before this
3401  * function completes. A similar but shorter * race condition exists in the busy
3402  * ioctl
3403  */
3404 int
3405 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3406 {
3407         struct drm_i915_gem_wait *args = data;
3408         struct drm_i915_gem_object *obj;
3409         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3410         int i, n = 0;
3411         int ret;
3412
3413         if (args->flags != 0)
3414                 return -EINVAL;
3415
3416         ret = i915_mutex_lock_interruptible(dev);
3417         if (ret)
3418                 return ret;
3419
3420         obj = to_intel_bo(drm_gem_object_lookup(file, args->bo_handle));
3421         if (&obj->base == NULL) {
3422                 mutex_unlock(&dev->struct_mutex);
3423                 return -ENOENT;
3424         }
3425
3426         /* Need to make sure the object gets inactive eventually. */
3427         ret = i915_gem_object_flush_active(obj);
3428         if (ret)
3429                 goto out;
3430
3431         if (!obj->active)
3432                 goto out;
3433
3434         /* Do this after OLR check to make sure we make forward progress polling
3435          * on this IOCTL with a timeout == 0 (like busy ioctl)
3436          */
3437         if (args->timeout_ns == 0) {
3438                 ret = -ETIME;
3439                 goto out;
3440         }
3441
3442         drm_gem_object_unreference(&obj->base);
3443
3444         for (i = 0; i < I915_NUM_ENGINES; i++) {
3445                 if (obj->last_read_req[i] == NULL)
3446                         continue;
3447
3448                 req[n++] = i915_gem_request_reference(obj->last_read_req[i]);
3449         }
3450
3451         mutex_unlock(&dev->struct_mutex);
3452
3453         for (i = 0; i < n; i++) {
3454                 if (ret == 0)
3455                         ret = __i915_wait_request(req[i], true,
3456                                                   args->timeout_ns > 0 ? &args->timeout_ns : NULL,
3457                                                   to_rps_client(file));
3458                 i915_gem_request_unreference(req[i]);
3459         }
3460         return ret;
3461
3462 out:
3463         drm_gem_object_unreference(&obj->base);
3464         mutex_unlock(&dev->struct_mutex);
3465         return ret;
3466 }
3467
3468 static int
3469 __i915_gem_object_sync(struct drm_i915_gem_object *obj,
3470                        struct intel_engine_cs *to,
3471                        struct drm_i915_gem_request *from_req,
3472                        struct drm_i915_gem_request **to_req)
3473 {
3474         struct intel_engine_cs *from;
3475         int ret;
3476
3477         from = i915_gem_request_get_engine(from_req);
3478         if (to == from)
3479                 return 0;
3480
3481         if (i915_gem_request_completed(from_req))
3482                 return 0;
3483
3484         if (!i915_semaphore_is_enabled(to_i915(obj->base.dev))) {
3485                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3486                 ret = __i915_wait_request(from_req,
3487                                           i915->mm.interruptible,
3488                                           NULL,
3489                                           &i915->rps.semaphores);
3490                 if (ret)
3491                         return ret;
3492
3493                 i915_gem_object_retire_request(obj, from_req);
3494         } else {
3495                 int idx = intel_ring_sync_index(from, to);
3496                 u32 seqno = i915_gem_request_get_seqno(from_req);
3497
3498                 WARN_ON(!to_req);
3499
3500                 if (seqno <= from->semaphore.sync_seqno[idx])
3501                         return 0;
3502
3503                 if (*to_req == NULL) {
3504                         struct drm_i915_gem_request *req;
3505
3506                         req = i915_gem_request_alloc(to, NULL);
3507                         if (IS_ERR(req))
3508                                 return PTR_ERR(req);
3509
3510                         *to_req = req;
3511                 }
3512
3513                 trace_i915_gem_ring_sync_to(*to_req, from, from_req);
3514                 ret = to->semaphore.sync_to(*to_req, from, seqno);
3515                 if (ret)
3516                         return ret;
3517
3518                 /* We use last_read_req because sync_to()
3519                  * might have just caused seqno wrap under
3520                  * the radar.
3521                  */
3522                 from->semaphore.sync_seqno[idx] =
3523                         i915_gem_request_get_seqno(obj->last_read_req[from->id]);
3524         }
3525
3526         return 0;
3527 }
3528
3529 /**
3530  * i915_gem_object_sync - sync an object to a ring.
3531  *
3532  * @obj: object which may be in use on another ring.
3533  * @to: ring we wish to use the object on. May be NULL.
3534  * @to_req: request we wish to use the object for. See below.
3535  *          This will be allocated and returned if a request is
3536  *          required but not passed in.
3537  *
3538  * This code is meant to abstract object synchronization with the GPU.
3539  * Calling with NULL implies synchronizing the object with the CPU
3540  * rather than a particular GPU ring. Conceptually we serialise writes
3541  * between engines inside the GPU. We only allow one engine to write
3542  * into a buffer at any time, but multiple readers. To ensure each has
3543  * a coherent view of memory, we must:
3544  *
3545  * - If there is an outstanding write request to the object, the new
3546  *   request must wait for it to complete (either CPU or in hw, requests
3547  *   on the same ring will be naturally ordered).
3548  *
3549  * - If we are a write request (pending_write_domain is set), the new
3550  *   request must wait for outstanding read requests to complete.
3551  *
3552  * For CPU synchronisation (NULL to) no request is required. For syncing with
3553  * rings to_req must be non-NULL. However, a request does not have to be
3554  * pre-allocated. If *to_req is NULL and sync commands will be emitted then a
3555  * request will be allocated automatically and returned through *to_req. Note
3556  * that it is not guaranteed that commands will be emitted (because the system
3557  * might already be idle). Hence there is no need to create a request that
3558  * might never have any work submitted. Note further that if a request is
3559  * returned in *to_req, it is the responsibility of the caller to submit
3560  * that request (after potentially adding more work to it).
3561  *
3562  * Returns 0 if successful, else propagates up the lower layer error.
3563  */
3564 int
3565 i915_gem_object_sync(struct drm_i915_gem_object *obj,
3566                      struct intel_engine_cs *to,
3567                      struct drm_i915_gem_request **to_req)
3568 {
3569         const bool readonly = obj->base.pending_write_domain == 0;
3570         struct drm_i915_gem_request *req[I915_NUM_ENGINES];
3571         int ret, i, n;
3572
3573         if (!obj->active)
3574                 return 0;
3575
3576         if (to == NULL)
3577                 return i915_gem_object_wait_rendering(obj, readonly);
3578
3579         n = 0;
3580         if (readonly) {
3581                 if (obj->last_write_req)
3582                         req[n++] = obj->last_write_req;
3583         } else {
3584                 for (i = 0; i < I915_NUM_ENGINES; i++)
3585                         if (obj->last_read_req[i])
3586                                 req[n++] = obj->last_read_req[i];
3587         }
3588         for (i = 0; i < n; i++) {
3589                 ret = __i915_gem_object_sync(obj, to, req[i], to_req);
3590                 if (ret)
3591                         return ret;
3592         }
3593
3594         return 0;
3595 }
3596
3597 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
3598 {
3599         u32 old_write_domain, old_read_domains;
3600
3601         /* Force a pagefault for domain tracking on next user access */
3602         i915_gem_release_mmap(obj);
3603
3604         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3605                 return;
3606
3607         old_read_domains = obj->base.read_domains;
3608         old_write_domain = obj->base.write_domain;
3609
3610         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
3611         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
3612
3613         trace_i915_gem_object_change_domain(obj,
3614                                             old_read_domains,
3615                                             old_write_domain);
3616 }
3617
3618 static void __i915_vma_iounmap(struct i915_vma *vma)
3619 {
3620         GEM_BUG_ON(vma->pin_count);
3621
3622         if (vma->iomap == NULL)
3623                 return;
3624
3625         io_mapping_unmap(vma->iomap);
3626         vma->iomap = NULL;
3627 }
3628
3629 static int __i915_vma_unbind(struct i915_vma *vma, bool wait)
3630 {
3631         struct drm_i915_gem_object *obj = vma->obj;
3632         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3633         int ret;
3634
3635         if (list_empty(&vma->obj_link))
3636                 return 0;
3637
3638         if (!drm_mm_node_allocated(&vma->node)) {
3639                 i915_gem_vma_destroy(vma);
3640                 return 0;
3641         }
3642
3643         if (vma->pin_count)
3644                 return -EBUSY;
3645
3646         BUG_ON(obj->pages == NULL);
3647
3648         if (wait) {
3649                 ret = i915_gem_object_wait_rendering(obj, false);
3650                 if (ret)
3651                         return ret;
3652         }
3653
3654         if (vma->is_ggtt && vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3655                 i915_gem_object_finish_gtt(obj);
3656
3657                 /* release the fence reg _after_ flushing */
3658                 ret = i915_gem_object_put_fence(obj);
3659                 if (ret)
3660                         return ret;
3661
3662                 __i915_vma_iounmap(vma);
3663         }
3664
3665         trace_i915_vma_unbind(vma);
3666
3667         vma->vm->unbind_vma(vma);
3668         vma->bound = 0;
3669
3670         list_del_init(&vma->vm_link);
3671         if (vma->is_ggtt) {
3672                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL) {
3673                         obj->map_and_fenceable = false;
3674                 } else if (vma->ggtt_view.pages) {
3675                         sg_free_table(vma->ggtt_view.pages);
3676                         kfree(vma->ggtt_view.pages);
3677                 }
3678                 vma->ggtt_view.pages = NULL;
3679         }
3680
3681         drm_mm_remove_node(&vma->node);
3682         i915_gem_vma_destroy(vma);
3683
3684         /* Since the unbound list is global, only move to that list if
3685          * no more VMAs exist. */
3686         if (list_empty(&obj->vma_list))
3687                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
3688
3689         /* And finally now the object is completely decoupled from this vma,
3690          * we can drop its hold on the backing storage and allow it to be
3691          * reaped by the shrinker.
3692          */
3693         i915_gem_object_unpin_pages(obj);
3694
3695         return 0;
3696 }
3697
3698 int i915_vma_unbind(struct i915_vma *vma)
3699 {
3700         return __i915_vma_unbind(vma, true);
3701 }
3702
3703 int __i915_vma_unbind_no_wait(struct i915_vma *vma)
3704 {
3705         return __i915_vma_unbind(vma, false);
3706 }
3707
3708 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv)
3709 {
3710         struct intel_engine_cs *engine;
3711         int ret;
3712
3713         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3714
3715         for_each_engine(engine, dev_priv) {
3716                 if (engine->last_context == NULL)
3717                         continue;
3718
3719                 ret = intel_engine_idle(engine);
3720                 if (ret)
3721                         return ret;
3722         }
3723
3724         WARN_ON(i915_verify_lists(dev));
3725         return 0;
3726 }
3727
3728 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
3729                                      unsigned long cache_level)
3730 {
3731         struct drm_mm_node *gtt_space = &vma->node;
3732         struct drm_mm_node *other;
3733
3734         /*
3735          * On some machines we have to be careful when putting differing types
3736          * of snoopable memory together to avoid the prefetcher crossing memory
3737          * domains and dying. During vm initialisation, we decide whether or not
3738          * these constraints apply and set the drm_mm.color_adjust
3739          * appropriately.
3740          */
3741         if (vma->vm->mm.color_adjust == NULL)
3742                 return true;
3743
3744         if (!drm_mm_node_allocated(gtt_space))
3745                 return true;
3746
3747         if (list_empty(&gtt_space->node_list))
3748                 return true;
3749
3750         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3751         if (other->allocated && !other->hole_follows && other->color != cache_level)
3752                 return false;
3753
3754         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3755         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3756                 return false;
3757
3758         return true;
3759 }
3760
3761 /**
3762  * Finds free space in the GTT aperture and binds the object or a view of it
3763  * there.
3764  * @obj: object to bind
3765  * @vm: address space to bind into
3766  * @ggtt_view: global gtt view if applicable
3767  * @alignment: requested alignment
3768  * @flags: mask of PIN_* flags to use
3769  */
3770 static struct i915_vma *
3771 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3772                            struct i915_address_space *vm,
3773                            const struct i915_ggtt_view *ggtt_view,
3774                            unsigned alignment,
3775                            uint64_t flags)
3776 {
3777         struct drm_device *dev = obj->base.dev;
3778         struct drm_i915_private *dev_priv = to_i915(dev);
3779         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3780         u32 fence_alignment, unfenced_alignment;
3781         u32 search_flag, alloc_flag;
3782         u64 start, end;
3783         u64 size, fence_size;
3784         struct i915_vma *vma;
3785         int ret;
3786
3787         if (i915_is_ggtt(vm)) {
3788                 u32 view_size;
3789
3790                 if (WARN_ON(!ggtt_view))
3791                         return ERR_PTR(-EINVAL);
3792
3793                 view_size = i915_ggtt_view_size(obj, ggtt_view);
3794
3795                 fence_size = i915_gem_get_gtt_size(dev,
3796                                                    view_size,
3797                                                    obj->tiling_mode);
3798                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3799                                                              view_size,
3800                                                              obj->tiling_mode,
3801                                                              true);
3802                 unfenced_alignment = i915_gem_get_gtt_alignment(dev,
3803                                                                 view_size,
3804                                                                 obj->tiling_mode,
3805                                                                 false);
3806                 size = flags & PIN_MAPPABLE ? fence_size : view_size;
3807         } else {
3808                 fence_size = i915_gem_get_gtt_size(dev,
3809                                                    obj->base.size,
3810                                                    obj->tiling_mode);
3811                 fence_alignment = i915_gem_get_gtt_alignment(dev,
3812                                                              obj->base.size,
3813                                                              obj->tiling_mode,
3814                                                              true);
3815                 unfenced_alignment =
3816                         i915_gem_get_gtt_alignment(dev,
3817                                                    obj->base.size,
3818                                                    obj->tiling_mode,
3819                                                    false);
3820                 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3821         }
3822
3823         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3824         end = vm->total;
3825         if (flags & PIN_MAPPABLE)
3826                 end = min_t(u64, end, ggtt->mappable_end);
3827         if (flags & PIN_ZONE_4G)
3828                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3829
3830         if (alignment == 0)
3831                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3832                                                 unfenced_alignment;
3833         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3834                 DRM_DEBUG("Invalid object (view type=%u) alignment requested %u\n",
3835                           ggtt_view ? ggtt_view->type : 0,
3836                           alignment);
3837                 return ERR_PTR(-EINVAL);
3838         }
3839
3840         /* If binding the object/GGTT view requires more space than the entire
3841          * aperture has, reject it early before evicting everything in a vain
3842          * attempt to find space.
3843          */
3844         if (size > end) {
3845                 DRM_DEBUG("Attempting to bind an object (view type=%u) larger than the aperture: size=%llu > %s aperture=%llu\n",
3846                           ggtt_view ? ggtt_view->type : 0,
3847                           size,
3848                           flags & PIN_MAPPABLE ? "mappable" : "total",
3849                           end);
3850                 return ERR_PTR(-E2BIG);
3851         }
3852
3853         ret = i915_gem_object_get_pages(obj);
3854         if (ret)
3855                 return ERR_PTR(ret);
3856
3857         i915_gem_object_pin_pages(obj);
3858
3859         vma = ggtt_view ? i915_gem_obj_lookup_or_create_ggtt_vma(obj, ggtt_view) :
3860                           i915_gem_obj_lookup_or_create_vma(obj, vm);
3861
3862         if (IS_ERR(vma))
3863                 goto err_unpin;
3864
3865         if (flags & PIN_OFFSET_FIXED) {
3866                 uint64_t offset = flags & PIN_OFFSET_MASK;
3867
3868                 if (offset & (alignment - 1) || offset + size > end) {
3869                         ret = -EINVAL;
3870                         goto err_free_vma;
3871                 }
3872                 vma->node.start = offset;
3873                 vma->node.size = size;
3874                 vma->node.color = obj->cache_level;
3875                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3876                 if (ret) {
3877                         ret = i915_gem_evict_for_vma(vma);
3878                         if (ret == 0)
3879                                 ret = drm_mm_reserve_node(&vm->mm, &vma->node);
3880                 }
3881                 if (ret)
3882                         goto err_free_vma;
3883         } else {
3884                 if (flags & PIN_HIGH) {
3885                         search_flag = DRM_MM_SEARCH_BELOW;
3886                         alloc_flag = DRM_MM_CREATE_TOP;
3887                 } else {
3888                         search_flag = DRM_MM_SEARCH_DEFAULT;
3889                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3890                 }
3891
3892 search_free:
3893                 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3894                                                           size, alignment,
3895                                                           obj->cache_level,
3896                                                           start, end,
3897                                                           search_flag,
3898                                                           alloc_flag);
3899                 if (ret) {
3900                         ret = i915_gem_evict_something(dev, vm, size, alignment,
3901                                                        obj->cache_level,
3902                                                        start, end,
3903                                                        flags);
3904                         if (ret == 0)
3905                                 goto search_free;
3906
3907                         goto err_free_vma;
3908                 }
3909         }
3910         if (WARN_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level))) {
3911                 ret = -EINVAL;
3912                 goto err_remove_node;
3913         }
3914
3915         trace_i915_vma_bind(vma, flags);
3916         ret = i915_vma_bind(vma, obj->cache_level, flags);
3917         if (ret)
3918                 goto err_remove_node;
3919
3920         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3921         list_add_tail(&vma->vm_link, &vm->inactive_list);
3922
3923         return vma;
3924
3925 err_remove_node:
3926         drm_mm_remove_node(&vma->node);
3927 err_free_vma:
3928         i915_gem_vma_destroy(vma);
3929         vma = ERR_PTR(ret);
3930 err_unpin:
3931         i915_gem_object_unpin_pages(obj);
3932         return vma;
3933 }
3934
3935 bool
3936 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3937                         bool force)
3938 {
3939         /* If we don't have a page list set up, then we're not pinned
3940          * to GPU, and we can ignore the cache flush because it'll happen
3941          * again at bind time.
3942          */
3943         if (obj->pages == NULL)
3944                 return false;
3945
3946         /*
3947          * Stolen memory is always coherent with the GPU as it is explicitly
3948          * marked as wc by the system, or the system is cache-coherent.
3949          */
3950         if (obj->stolen || obj->phys_handle)
3951                 return false;
3952
3953         /* If the GPU is snooping the contents of the CPU cache,
3954          * we do not need to manually clear the CPU cache lines.  However,
3955          * the caches are only snooped when the render cache is
3956          * flushed/invalidated.  As we always have to emit invalidations
3957          * and flushes when moving into and out of the RENDER domain, correct
3958          * snooping behaviour occurs naturally as the result of our domain
3959          * tracking.
3960          */
3961         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3962                 obj->cache_dirty = true;
3963                 return false;
3964         }
3965
3966         trace_i915_gem_object_clflush(obj);
3967         drm_clflush_sg(obj->pages);
3968         obj->cache_dirty = false;
3969
3970         return true;
3971 }
3972
3973 /** Flushes the GTT write domain for the object if it's dirty. */
3974 static void
3975 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3976 {
3977         uint32_t old_write_domain;
3978
3979         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3980                 return;
3981
3982         /* No actual flushing is required for the GTT write domain.  Writes
3983          * to it immediately go to main memory as far as we know, so there's
3984          * no chipset flush.  It also doesn't land in render cache.
3985          *
3986          * However, we do have to enforce the order so that all writes through
3987          * the GTT land before any writes to the device, such as updates to
3988          * the GATT itself.
3989          */
3990         wmb();
3991
3992         old_write_domain = obj->base.write_domain;
3993         obj->base.write_domain = 0;
3994
3995         intel_fb_obj_flush(obj, false, ORIGIN_GTT);
3996
3997         trace_i915_gem_object_change_domain(obj,
3998                                             obj->base.read_domains,
3999                                             old_write_domain);
4000 }
4001
4002 /** Flushes the CPU write domain for the object if it's dirty. */
4003 static void
4004 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
4005 {
4006         uint32_t old_write_domain;
4007
4008         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
4009                 return;
4010
4011         if (i915_gem_clflush_object(obj, obj->pin_display))
4012                 i915_gem_chipset_flush(to_i915(obj->base.dev));
4013
4014         old_write_domain = obj->base.write_domain;
4015         obj->base.write_domain = 0;
4016
4017         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
4018
4019         trace_i915_gem_object_change_domain(obj,
4020                                             obj->base.read_domains,
4021                                             old_write_domain);
4022 }
4023
4024 /**
4025  * Moves a single object to the GTT read, and possibly write domain.
4026  * @obj: object to act on
4027  * @write: ask for write access or read only
4028  *
4029  * This function returns when the move is complete, including waiting on
4030  * flushes to occur.
4031  */
4032 int
4033 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
4034 {
4035         struct drm_device *dev = obj->base.dev;
4036         struct drm_i915_private *dev_priv = to_i915(dev);
4037         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4038         uint32_t old_write_domain, old_read_domains;
4039         struct i915_vma *vma;
4040         int ret;
4041
4042         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
4043                 return 0;
4044
4045         ret = i915_gem_object_wait_rendering(obj, !write);
4046         if (ret)
4047                 return ret;
4048
4049         /* Flush and acquire obj->pages so that we are coherent through
4050          * direct access in memory with previous cached writes through
4051          * shmemfs and that our cache domain tracking remains valid.
4052          * For example, if the obj->filp was moved to swap without us
4053          * being notified and releasing the pages, we would mistakenly
4054          * continue to assume that the obj remained out of the CPU cached
4055          * domain.
4056          */
4057         ret = i915_gem_object_get_pages(obj);
4058         if (ret)
4059                 return ret;
4060
4061         i915_gem_object_flush_cpu_write_domain(obj);
4062
4063         /* Serialise direct access to this object with the barriers for
4064          * coherent writes from the GPU, by effectively invalidating the
4065          * GTT domain upon first access.
4066          */
4067         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
4068                 mb();
4069
4070         old_write_domain = obj->base.write_domain;
4071         old_read_domains = obj->base.read_domains;
4072
4073         /* It should now be out of any other write domains, and we can update
4074          * the domain values for our changes.
4075          */
4076         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
4077         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4078         if (write) {
4079                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
4080                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
4081                 obj->dirty = 1;
4082         }
4083
4084         trace_i915_gem_object_change_domain(obj,
4085                                             old_read_domains,
4086                                             old_write_domain);
4087
4088         /* And bump the LRU for this access */
4089         vma = i915_gem_obj_to_ggtt(obj);
4090         if (vma && drm_mm_node_allocated(&vma->node) && !obj->active)
4091                 list_move_tail(&vma->vm_link,
4092                                &ggtt->base.inactive_list);
4093
4094         return 0;
4095 }
4096
4097 /**
4098  * Changes the cache-level of an object across all VMA.
4099  * @obj: object to act on
4100  * @cache_level: new cache level to set for the object
4101  *
4102  * After this function returns, the object will be in the new cache-level
4103  * across all GTT and the contents of the backing storage will be coherent,
4104  * with respect to the new cache-level. In order to keep the backing storage
4105  * coherent for all users, we only allow a single cache level to be set
4106  * globally on the object and prevent it from being changed whilst the
4107  * hardware is reading from the object. That is if the object is currently
4108  * on the scanout it will be set to uncached (or equivalent display
4109  * cache coherency) and all non-MOCS GPU access will also be uncached so
4110  * that all direct access to the scanout remains coherent.
4111  */
4112 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
4113                                     enum i915_cache_level cache_level)
4114 {
4115         struct drm_device *dev = obj->base.dev;
4116         struct i915_vma *vma, *next;
4117         bool bound = false;
4118         int ret = 0;
4119
4120         if (obj->cache_level == cache_level)
4121                 goto out;
4122
4123         /* Inspect the list of currently bound VMA and unbind any that would
4124          * be invalid given the new cache-level. This is principally to
4125          * catch the issue of the CS prefetch crossing page boundaries and
4126          * reading an invalid PTE on older architectures.
4127          */
4128         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4129                 if (!drm_mm_node_allocated(&vma->node))
4130                         continue;
4131
4132                 if (vma->pin_count) {
4133                         DRM_DEBUG("can not change the cache level of pinned objects\n");
4134                         return -EBUSY;
4135                 }
4136
4137                 if (!i915_gem_valid_gtt_space(vma, cache_level)) {
4138                         ret = i915_vma_unbind(vma);
4139                         if (ret)
4140                                 return ret;
4141                 } else
4142                         bound = true;
4143         }
4144
4145         /* We can reuse the existing drm_mm nodes but need to change the
4146          * cache-level on the PTE. We could simply unbind them all and
4147          * rebind with the correct cache-level on next use. However since
4148          * we already have a valid slot, dma mapping, pages etc, we may as
4149          * rewrite the PTE in the belief that doing so tramples upon less
4150          * state and so involves less work.
4151          */
4152         if (bound) {
4153                 /* Before we change the PTE, the GPU must not be accessing it.
4154                  * If we wait upon the object, we know that all the bound
4155                  * VMA are no longer active.
4156                  */
4157                 ret = i915_gem_object_wait_rendering(obj, false);
4158                 if (ret)
4159                         return ret;
4160
4161                 if (!HAS_LLC(dev) && cache_level != I915_CACHE_NONE) {
4162                         /* Access to snoopable pages through the GTT is
4163                          * incoherent and on some machines causes a hard
4164                          * lockup. Relinquish the CPU mmaping to force
4165                          * userspace to refault in the pages and we can
4166                          * then double check if the GTT mapping is still
4167                          * valid for that pointer access.
4168                          */
4169                         i915_gem_release_mmap(obj);
4170
4171                         /* As we no longer need a fence for GTT access,
4172                          * we can relinquish it now (and so prevent having
4173                          * to steal a fence from someone else on the next
4174                          * fence request). Note GPU activity would have
4175                          * dropped the fence as all snoopable access is
4176                          * supposed to be linear.
4177                          */
4178                         ret = i915_gem_object_put_fence(obj);
4179                         if (ret)
4180                                 return ret;
4181                 } else {
4182                         /* We either have incoherent backing store and
4183                          * so no GTT access or the architecture is fully
4184                          * coherent. In such cases, existing GTT mmaps
4185                          * ignore the cache bit in the PTE and we can
4186                          * rewrite it without confusing the GPU or having
4187                          * to force userspace to fault back in its mmaps.
4188                          */
4189                 }
4190
4191                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
4192                         if (!drm_mm_node_allocated(&vma->node))
4193                                 continue;
4194
4195                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
4196                         if (ret)
4197                                 return ret;
4198                 }
4199         }
4200
4201         list_for_each_entry(vma, &obj->vma_list, obj_link)
4202                 vma->node.color = cache_level;
4203         obj->cache_level = cache_level;
4204
4205 out:
4206         /* Flush the dirty CPU caches to the backing storage so that the
4207          * object is now coherent at its new cache level (with respect
4208          * to the access domain).
4209          */
4210         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
4211                 if (i915_gem_clflush_object(obj, true))
4212                         i915_gem_chipset_flush(to_i915(obj->base.dev));
4213         }
4214
4215         return 0;
4216 }
4217
4218 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
4219                                struct drm_file *file)
4220 {
4221         struct drm_i915_gem_caching *args = data;
4222         struct drm_i915_gem_object *obj;
4223
4224         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4225         if (&obj->base == NULL)
4226                 return -ENOENT;
4227
4228         switch (obj->cache_level) {
4229         case I915_CACHE_LLC:
4230         case I915_CACHE_L3_LLC:
4231                 args->caching = I915_CACHING_CACHED;
4232                 break;
4233
4234         case I915_CACHE_WT:
4235                 args->caching = I915_CACHING_DISPLAY;
4236                 break;
4237
4238         default:
4239                 args->caching = I915_CACHING_NONE;
4240                 break;
4241         }
4242
4243         drm_gem_object_unreference_unlocked(&obj->base);
4244         return 0;
4245 }
4246
4247 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
4248                                struct drm_file *file)
4249 {
4250         struct drm_i915_private *dev_priv = to_i915(dev);
4251         struct drm_i915_gem_caching *args = data;
4252         struct drm_i915_gem_object *obj;
4253         enum i915_cache_level level;
4254         int ret;
4255
4256         switch (args->caching) {
4257         case I915_CACHING_NONE:
4258                 level = I915_CACHE_NONE;
4259                 break;
4260         case I915_CACHING_CACHED:
4261                 /*
4262                  * Due to a HW issue on BXT A stepping, GPU stores via a
4263                  * snooped mapping may leave stale data in a corresponding CPU
4264                  * cacheline, whereas normally such cachelines would get
4265                  * invalidated.
4266                  */
4267                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
4268                         return -ENODEV;
4269
4270                 level = I915_CACHE_LLC;
4271                 break;
4272         case I915_CACHING_DISPLAY:
4273                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
4274                 break;
4275         default:
4276                 return -EINVAL;
4277         }
4278
4279         intel_runtime_pm_get(dev_priv);
4280
4281         ret = i915_mutex_lock_interruptible(dev);
4282         if (ret)
4283                 goto rpm_put;
4284
4285         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4286         if (&obj->base == NULL) {
4287                 ret = -ENOENT;
4288                 goto unlock;
4289         }
4290
4291         ret = i915_gem_object_set_cache_level(obj, level);
4292
4293         drm_gem_object_unreference(&obj->base);
4294 unlock:
4295         mutex_unlock(&dev->struct_mutex);
4296 rpm_put:
4297         intel_runtime_pm_put(dev_priv);
4298
4299         return ret;
4300 }
4301
4302 /*
4303  * Prepare buffer for display plane (scanout, cursors, etc).
4304  * Can be called from an uninterruptible phase (modesetting) and allows
4305  * any flushes to be pipelined (for pageflips).
4306  */
4307 int
4308 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
4309                                      u32 alignment,
4310                                      const struct i915_ggtt_view *view)
4311 {
4312         u32 old_read_domains, old_write_domain;
4313         int ret;
4314
4315         /* Mark the pin_display early so that we account for the
4316          * display coherency whilst setting up the cache domains.
4317          */
4318         obj->pin_display++;
4319
4320         /* The display engine is not coherent with the LLC cache on gen6.  As
4321          * a result, we make sure that the pinning that is about to occur is
4322          * done with uncached PTEs. This is lowest common denominator for all
4323          * chipsets.
4324          *
4325          * However for gen6+, we could do better by using the GFDT bit instead
4326          * of uncaching, which would allow us to flush all the LLC-cached data
4327          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
4328          */
4329         ret = i915_gem_object_set_cache_level(obj,
4330                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
4331         if (ret)
4332                 goto err_unpin_display;
4333
4334         /* As the user may map the buffer once pinned in the display plane
4335          * (e.g. libkms for the bootup splash), we have to ensure that we
4336          * always use map_and_fenceable for all scanout buffers.
4337          */
4338         ret = i915_gem_object_ggtt_pin(obj, view, alignment,
4339                                        view->type == I915_GGTT_VIEW_NORMAL ?
4340                                        PIN_MAPPABLE : 0);
4341         if (ret)
4342                 goto err_unpin_display;
4343
4344         i915_gem_object_flush_cpu_write_domain(obj);
4345
4346         old_write_domain = obj->base.write_domain;
4347         old_read_domains = obj->base.read_domains;
4348
4349         /* It should now be out of any other write domains, and we can update
4350          * the domain values for our changes.
4351          */
4352         obj->base.write_domain = 0;
4353         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
4354
4355         trace_i915_gem_object_change_domain(obj,
4356                                             old_read_domains,
4357                                             old_write_domain);
4358
4359         return 0;
4360
4361 err_unpin_display:
4362         obj->pin_display--;
4363         return ret;
4364 }
4365
4366 void
4367 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj,
4368                                          const struct i915_ggtt_view *view)
4369 {
4370         if (WARN_ON(obj->pin_display == 0))
4371                 return;
4372
4373         i915_gem_object_ggtt_unpin_view(obj, view);
4374
4375         obj->pin_display--;
4376 }
4377
4378 /**
4379  * Moves a single object to the CPU read, and possibly write domain.
4380  * @obj: object to act on
4381  * @write: requesting write or read-only access
4382  *
4383  * This function returns when the move is complete, including waiting on
4384  * flushes to occur.
4385  */
4386 int
4387 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
4388 {
4389         uint32_t old_write_domain, old_read_domains;
4390         int ret;
4391
4392         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
4393                 return 0;
4394
4395         ret = i915_gem_object_wait_rendering(obj, !write);
4396         if (ret)
4397                 return ret;
4398
4399         i915_gem_object_flush_gtt_write_domain(obj);
4400
4401         old_write_domain = obj->base.write_domain;
4402         old_read_domains = obj->base.read_domains;
4403
4404         /* Flush the CPU cache if it's still invalid. */
4405         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4406                 i915_gem_clflush_object(obj, false);
4407
4408                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4409         }
4410
4411         /* It should now be out of any other write domains, and we can update
4412          * the domain values for our changes.
4413          */
4414         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
4415
4416         /* If we're writing through the CPU, then the GPU read domains will
4417          * need to be invalidated at next use.
4418          */
4419         if (write) {
4420                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4421                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4422         }
4423
4424         trace_i915_gem_object_change_domain(obj,
4425                                             old_read_domains,
4426                                             old_write_domain);
4427
4428         return 0;
4429 }
4430
4431 /* Throttle our rendering by waiting until the ring has completed our requests
4432  * emitted over 20 msec ago.
4433  *
4434  * Note that if we were to use the current jiffies each time around the loop,
4435  * we wouldn't escape the function with any frames outstanding if the time to
4436  * render a frame was over 20ms.
4437  *
4438  * This should get us reasonable parallelism between CPU and GPU but also
4439  * relatively low latency when blocking on a particular request to finish.
4440  */
4441 static int
4442 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4443 {
4444         struct drm_i915_private *dev_priv = to_i915(dev);
4445         struct drm_i915_file_private *file_priv = file->driver_priv;
4446         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4447         struct drm_i915_gem_request *request, *target = NULL;
4448         int ret;
4449
4450         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
4451         if (ret)
4452                 return ret;
4453
4454         /* ABI: return -EIO if already wedged */
4455         if (i915_terminally_wedged(&dev_priv->gpu_error))
4456                 return -EIO;
4457
4458         spin_lock(&file_priv->mm.lock);
4459         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4460                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4461                         break;
4462
4463                 /*
4464                  * Note that the request might not have been submitted yet.
4465                  * In which case emitted_jiffies will be zero.
4466                  */
4467                 if (!request->emitted_jiffies)
4468                         continue;
4469
4470                 target = request;
4471         }
4472         if (target)
4473                 i915_gem_request_reference(target);
4474         spin_unlock(&file_priv->mm.lock);
4475
4476         if (target == NULL)
4477                 return 0;
4478
4479         ret = __i915_wait_request(target, true, NULL, NULL);
4480         i915_gem_request_unreference(target);
4481
4482         return ret;
4483 }
4484
4485 static bool
4486 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4487 {
4488         struct drm_i915_gem_object *obj = vma->obj;
4489
4490         if (alignment &&
4491             vma->node.start & (alignment - 1))
4492                 return true;
4493
4494         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4495                 return true;
4496
4497         if (flags & PIN_OFFSET_BIAS &&
4498             vma->node.start < (flags & PIN_OFFSET_MASK))
4499                 return true;
4500
4501         if (flags & PIN_OFFSET_FIXED &&
4502             vma->node.start != (flags & PIN_OFFSET_MASK))
4503                 return true;
4504
4505         return false;
4506 }
4507
4508 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
4509 {
4510         struct drm_i915_gem_object *obj = vma->obj;
4511         bool mappable, fenceable;
4512         u32 fence_size, fence_alignment;
4513
4514         fence_size = i915_gem_get_gtt_size(obj->base.dev,
4515                                            obj->base.size,
4516                                            obj->tiling_mode);
4517         fence_alignment = i915_gem_get_gtt_alignment(obj->base.dev,
4518                                                      obj->base.size,
4519                                                      obj->tiling_mode,
4520                                                      true);
4521
4522         fenceable = (vma->node.size == fence_size &&
4523                      (vma->node.start & (fence_alignment - 1)) == 0);
4524
4525         mappable = (vma->node.start + fence_size <=
4526                     to_i915(obj->base.dev)->ggtt.mappable_end);
4527
4528         obj->map_and_fenceable = mappable && fenceable;
4529 }
4530
4531 static int
4532 i915_gem_object_do_pin(struct drm_i915_gem_object *obj,
4533                        struct i915_address_space *vm,
4534                        const struct i915_ggtt_view *ggtt_view,
4535                        uint32_t alignment,
4536                        uint64_t flags)
4537 {
4538         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4539         struct i915_vma *vma;
4540         unsigned bound;
4541         int ret;
4542
4543         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4544                 return -ENODEV;
4545
4546         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4547                 return -EINVAL;
4548
4549         if (WARN_ON((flags & (PIN_MAPPABLE | PIN_GLOBAL)) == PIN_MAPPABLE))
4550                 return -EINVAL;
4551
4552         if (WARN_ON(i915_is_ggtt(vm) != !!ggtt_view))
4553                 return -EINVAL;
4554
4555         vma = ggtt_view ? i915_gem_obj_to_ggtt_view(obj, ggtt_view) :
4556                           i915_gem_obj_to_vma(obj, vm);
4557
4558         if (vma) {
4559                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4560                         return -EBUSY;
4561
4562                 if (i915_vma_misplaced(vma, alignment, flags)) {
4563                         WARN(vma->pin_count,
4564                              "bo is already pinned in %s with incorrect alignment:"
4565                              " offset=%08x %08x, req.alignment=%x, req.map_and_fenceable=%d,"
4566                              " obj->map_and_fenceable=%d\n",
4567                              ggtt_view ? "ggtt" : "ppgtt",
4568                              upper_32_bits(vma->node.start),
4569                              lower_32_bits(vma->node.start),
4570                              alignment,
4571                              !!(flags & PIN_MAPPABLE),
4572                              obj->map_and_fenceable);
4573                         ret = i915_vma_unbind(vma);
4574                         if (ret)
4575                                 return ret;
4576
4577                         vma = NULL;
4578                 }
4579         }
4580
4581         bound = vma ? vma->bound : 0;
4582         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4583                 vma = i915_gem_object_bind_to_vm(obj, vm, ggtt_view, alignment,
4584                                                  flags);
4585                 if (IS_ERR(vma))
4586                         return PTR_ERR(vma);
4587         } else {
4588                 ret = i915_vma_bind(vma, obj->cache_level, flags);
4589                 if (ret)
4590                         return ret;
4591         }
4592
4593         if (ggtt_view && ggtt_view->type == I915_GGTT_VIEW_NORMAL &&
4594             (bound ^ vma->bound) & GLOBAL_BIND) {
4595                 __i915_vma_set_map_and_fenceable(vma);
4596                 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
4597         }
4598
4599         vma->pin_count++;
4600         return 0;
4601 }
4602
4603 int
4604 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4605                     struct i915_address_space *vm,
4606                     uint32_t alignment,
4607                     uint64_t flags)
4608 {
4609         return i915_gem_object_do_pin(obj, vm,
4610                                       i915_is_ggtt(vm) ? &i915_ggtt_view_normal : NULL,
4611                                       alignment, flags);
4612 }
4613
4614 int
4615 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4616                          const struct i915_ggtt_view *view,
4617                          uint32_t alignment,
4618                          uint64_t flags)
4619 {
4620         struct drm_device *dev = obj->base.dev;
4621         struct drm_i915_private *dev_priv = to_i915(dev);
4622         struct i915_ggtt *ggtt = &dev_priv->ggtt;
4623
4624         BUG_ON(!view);
4625
4626         return i915_gem_object_do_pin(obj, &ggtt->base, view,
4627                                       alignment, flags | PIN_GLOBAL);
4628 }
4629
4630 void
4631 i915_gem_object_ggtt_unpin_view(struct drm_i915_gem_object *obj,
4632                                 const struct i915_ggtt_view *view)
4633 {
4634         struct i915_vma *vma = i915_gem_obj_to_ggtt_view(obj, view);
4635
4636         WARN_ON(vma->pin_count == 0);
4637         WARN_ON(!i915_gem_obj_ggtt_bound_view(obj, view));
4638
4639         --vma->pin_count;
4640 }
4641
4642 int
4643 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4644                     struct drm_file *file)
4645 {
4646         struct drm_i915_gem_busy *args = data;
4647         struct drm_i915_gem_object *obj;
4648         int ret;
4649
4650         ret = i915_mutex_lock_interruptible(dev);
4651         if (ret)
4652                 return ret;
4653
4654         obj = to_intel_bo(drm_gem_object_lookup(file, args->handle));
4655         if (&obj->base == NULL) {
4656                 ret = -ENOENT;
4657                 goto unlock;
4658         }
4659
4660         /* Count all active objects as busy, even if they are currently not used
4661          * by the gpu. Users of this interface expect objects to eventually
4662          * become non-busy without any further actions, therefore emit any
4663          * necessary flushes here.
4664          */
4665         ret = i915_gem_object_flush_active(obj);
4666         if (ret)
4667                 goto unref;
4668
4669         args->busy = 0;
4670         if (obj->active) {
4671                 int i;
4672
4673                 for (i = 0; i < I915_NUM_ENGINES; i++) {
4674                         struct drm_i915_gem_request *req;
4675
4676                         req = obj->last_read_req[i];
4677                         if (req)
4678                                 args->busy |= 1 << (16 + req->engine->exec_id);
4679                 }
4680                 if (obj->last_write_req)
4681                         args->busy |= obj->last_write_req->engine->exec_id;
4682         }
4683
4684 unref:
4685         drm_gem_object_unreference(&obj->base);
4686 unlock:
4687         mutex_unlock(&dev->struct_mutex);
4688         return ret;
4689 }
4690
4691 int
4692 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4693                         struct drm_file *file_priv)
4694 {
4695         return i915_gem_ring_throttle(dev, file_priv);
4696 }
4697
4698 int
4699 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4700                        struct drm_file *file_priv)
4701 {
4702         struct drm_i915_private *dev_priv = to_i915(dev);
4703         struct drm_i915_gem_madvise *args = data;
4704         struct drm_i915_gem_object *obj;
4705         int ret;
4706
4707         switch (args->madv) {
4708         case I915_MADV_DONTNEED:
4709         case I915_MADV_WILLNEED:
4710             break;
4711         default:
4712             return -EINVAL;
4713         }
4714
4715         ret = i915_mutex_lock_interruptible(dev);
4716         if (ret)
4717                 return ret;
4718
4719         obj = to_intel_bo(drm_gem_object_lookup(file_priv, args->handle));
4720         if (&obj->base == NULL) {
4721                 ret = -ENOENT;
4722                 goto unlock;
4723         }
4724
4725         if (i915_gem_obj_is_pinned(obj)) {
4726                 ret = -EINVAL;
4727                 goto out;
4728         }
4729
4730         if (obj->pages &&
4731             obj->tiling_mode != I915_TILING_NONE &&
4732             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4733                 if (obj->madv == I915_MADV_WILLNEED)
4734                         i915_gem_object_unpin_pages(obj);
4735                 if (args->madv == I915_MADV_WILLNEED)
4736                         i915_gem_object_pin_pages(obj);
4737         }
4738
4739         if (obj->madv != __I915_MADV_PURGED)
4740                 obj->madv = args->madv;
4741
4742         /* if the object is no longer attached, discard its backing storage */
4743         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4744                 i915_gem_object_truncate(obj);
4745
4746         args->retained = obj->madv != __I915_MADV_PURGED;
4747
4748 out:
4749         drm_gem_object_unreference(&obj->base);
4750 unlock:
4751         mutex_unlock(&dev->struct_mutex);
4752         return ret;
4753 }
4754
4755 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4756                           const struct drm_i915_gem_object_ops *ops)
4757 {
4758         int i;
4759
4760         INIT_LIST_HEAD(&obj->global_list);
4761         for (i = 0; i < I915_NUM_ENGINES; i++)
4762                 INIT_LIST_HEAD(&obj->engine_list[i]);
4763         INIT_LIST_HEAD(&obj->obj_exec_link);
4764         INIT_LIST_HEAD(&obj->vma_list);
4765         INIT_LIST_HEAD(&obj->batch_pool_link);
4766
4767         obj->ops = ops;
4768
4769         obj->fence_reg = I915_FENCE_REG_NONE;
4770         obj->madv = I915_MADV_WILLNEED;
4771
4772         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4773 }
4774
4775 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4776         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4777         .get_pages = i915_gem_object_get_pages_gtt,
4778         .put_pages = i915_gem_object_put_pages_gtt,
4779 };
4780
4781 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4782                                                   size_t size)
4783 {
4784         struct drm_i915_gem_object *obj;
4785         struct address_space *mapping;
4786         gfp_t mask;
4787         int ret;
4788
4789         obj = i915_gem_object_alloc(dev);
4790         if (obj == NULL)
4791                 return ERR_PTR(-ENOMEM);
4792
4793         ret = drm_gem_object_init(dev, &obj->base, size);
4794         if (ret)
4795                 goto fail;
4796
4797         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4798         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4799                 /* 965gm cannot relocate objects above 4GiB. */
4800                 mask &= ~__GFP_HIGHMEM;
4801                 mask |= __GFP_DMA32;
4802         }
4803
4804         mapping = obj->base.filp->f_mapping;
4805         mapping_set_gfp_mask(mapping, mask);
4806
4807         i915_gem_object_init(obj, &i915_gem_object_ops);
4808
4809         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4810         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4811
4812         if (HAS_LLC(dev)) {
4813                 /* On some devices, we can have the GPU use the LLC (the CPU
4814                  * cache) for about a 10% performance improvement
4815                  * compared to uncached.  Graphics requests other than
4816                  * display scanout are coherent with the CPU in
4817                  * accessing this cache.  This means in this mode we
4818                  * don't need to clflush on the CPU side, and on the
4819                  * GPU side we only need to flush internal caches to
4820                  * get data visible to the CPU.
4821                  *
4822                  * However, we maintain the display planes as UC, and so
4823                  * need to rebind when first used as such.
4824                  */
4825                 obj->cache_level = I915_CACHE_LLC;
4826         } else
4827                 obj->cache_level = I915_CACHE_NONE;
4828
4829         trace_i915_gem_object_create(obj);
4830
4831         return obj;
4832
4833 fail:
4834         i915_gem_object_free(obj);
4835
4836         return ERR_PTR(ret);
4837 }
4838
4839 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4840 {
4841         /* If we are the last user of the backing storage (be it shmemfs
4842          * pages or stolen etc), we know that the pages are going to be
4843          * immediately released. In this case, we can then skip copying
4844          * back the contents from the GPU.
4845          */
4846
4847         if (obj->madv != I915_MADV_WILLNEED)
4848                 return false;
4849
4850         if (obj->base.filp == NULL)
4851                 return true;
4852
4853         /* At first glance, this looks racy, but then again so would be
4854          * userspace racing mmap against close. However, the first external
4855          * reference to the filp can only be obtained through the
4856          * i915_gem_mmap_ioctl() which safeguards us against the user
4857          * acquiring such a reference whilst we are in the middle of
4858          * freeing the object.
4859          */
4860         return atomic_long_read(&obj->base.filp->f_count) == 1;
4861 }
4862
4863 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4864 {
4865         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4866         struct drm_device *dev = obj->base.dev;
4867         struct drm_i915_private *dev_priv = to_i915(dev);
4868         struct i915_vma *vma, *next;
4869
4870         intel_runtime_pm_get(dev_priv);
4871
4872         trace_i915_gem_object_destroy(obj);
4873
4874         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4875                 int ret;
4876
4877                 vma->pin_count = 0;
4878                 ret = i915_vma_unbind(vma);
4879                 if (WARN_ON(ret == -ERESTARTSYS)) {
4880                         bool was_interruptible;
4881
4882                         was_interruptible = dev_priv->mm.interruptible;
4883                         dev_priv->mm.interruptible = false;
4884
4885                         WARN_ON(i915_vma_unbind(vma));
4886
4887                         dev_priv->mm.interruptible = was_interruptible;
4888                 }
4889         }
4890
4891         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4892          * before progressing. */
4893         if (obj->stolen)
4894                 i915_gem_object_unpin_pages(obj);
4895
4896         WARN_ON(obj->frontbuffer_bits);
4897
4898         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4899             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4900             obj->tiling_mode != I915_TILING_NONE)
4901                 i915_gem_object_unpin_pages(obj);
4902
4903         if (WARN_ON(obj->pages_pin_count))
4904                 obj->pages_pin_count = 0;
4905         if (discard_backing_storage(obj))
4906                 obj->madv = I915_MADV_DONTNEED;
4907         i915_gem_object_put_pages(obj);
4908         i915_gem_object_free_mmap_offset(obj);
4909
4910         BUG_ON(obj->pages);
4911
4912         if (obj->base.import_attach)
4913                 drm_prime_gem_destroy(&obj->base, NULL);
4914
4915         if (obj->ops->release)
4916                 obj->ops->release(obj);
4917
4918         drm_gem_object_release(&obj->base);
4919         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4920
4921         kfree(obj->bit_17);
4922         i915_gem_object_free(obj);
4923
4924         intel_runtime_pm_put(dev_priv);
4925 }
4926
4927 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4928                                      struct i915_address_space *vm)
4929 {
4930         struct i915_vma *vma;
4931         list_for_each_entry(vma, &obj->vma_list, obj_link) {
4932                 if (vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL &&
4933                     vma->vm == vm)
4934                         return vma;
4935         }
4936         return NULL;
4937 }
4938
4939 struct i915_vma *i915_gem_obj_to_ggtt_view(struct drm_i915_gem_object *obj,
4940                                            const struct i915_ggtt_view *view)
4941 {
4942         struct i915_vma *vma;
4943
4944         GEM_BUG_ON(!view);
4945
4946         list_for_each_entry(vma, &obj->vma_list, obj_link)
4947                 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
4948                         return vma;
4949         return NULL;
4950 }
4951
4952 void i915_gem_vma_destroy(struct i915_vma *vma)
4953 {
4954         WARN_ON(vma->node.allocated);
4955
4956         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4957         if (!list_empty(&vma->exec_list))
4958                 return;
4959
4960         if (!vma->is_ggtt)
4961                 i915_ppgtt_put(i915_vm_to_ppgtt(vma->vm));
4962
4963         list_del(&vma->obj_link);
4964
4965         kmem_cache_free(to_i915(vma->obj->base.dev)->vmas, vma);
4966 }
4967
4968 static void
4969 i915_gem_stop_engines(struct drm_device *dev)
4970 {
4971         struct drm_i915_private *dev_priv = to_i915(dev);
4972         struct intel_engine_cs *engine;
4973
4974         for_each_engine(engine, dev_priv)
4975                 dev_priv->gt.stop_engine(engine);
4976 }
4977
4978 int
4979 i915_gem_suspend(struct drm_device *dev)
4980 {
4981         struct drm_i915_private *dev_priv = to_i915(dev);
4982         int ret = 0;
4983
4984         mutex_lock(&dev->struct_mutex);
4985         ret = i915_gem_wait_for_idle(dev_priv);
4986         if (ret)
4987                 goto err;
4988
4989         i915_gem_retire_requests(dev_priv);
4990
4991         i915_gem_stop_engines(dev);
4992         i915_gem_context_lost(dev_priv);
4993         mutex_unlock(&dev->struct_mutex);
4994
4995         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4996         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4997         flush_delayed_work(&dev_priv->gt.idle_work);
4998
4999         /* Assert that we sucessfully flushed all the work and
5000          * reset the GPU back to its idle, low power state.
5001          */
5002         WARN_ON(dev_priv->gt.awake);
5003
5004         return 0;
5005
5006 err:
5007         mutex_unlock(&dev->struct_mutex);
5008         return ret;
5009 }
5010
5011 void i915_gem_init_swizzling(struct drm_device *dev)
5012 {
5013         struct drm_i915_private *dev_priv = to_i915(dev);
5014
5015         if (INTEL_INFO(dev)->gen < 5 ||
5016             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
5017                 return;
5018
5019         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
5020                                  DISP_TILE_SURFACE_SWIZZLING);
5021
5022         if (IS_GEN5(dev))
5023                 return;
5024
5025         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
5026         if (IS_GEN6(dev))
5027                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
5028         else if (IS_GEN7(dev))
5029                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
5030         else if (IS_GEN8(dev))
5031                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
5032         else
5033                 BUG();
5034 }
5035
5036 static void init_unused_ring(struct drm_device *dev, u32 base)
5037 {
5038         struct drm_i915_private *dev_priv = to_i915(dev);
5039
5040         I915_WRITE(RING_CTL(base), 0);
5041         I915_WRITE(RING_HEAD(base), 0);
5042         I915_WRITE(RING_TAIL(base), 0);
5043         I915_WRITE(RING_START(base), 0);
5044 }
5045
5046 static void init_unused_rings(struct drm_device *dev)
5047 {
5048         if (IS_I830(dev)) {
5049                 init_unused_ring(dev, PRB1_BASE);
5050                 init_unused_ring(dev, SRB0_BASE);
5051                 init_unused_ring(dev, SRB1_BASE);
5052                 init_unused_ring(dev, SRB2_BASE);
5053                 init_unused_ring(dev, SRB3_BASE);
5054         } else if (IS_GEN2(dev)) {
5055                 init_unused_ring(dev, SRB0_BASE);
5056                 init_unused_ring(dev, SRB1_BASE);
5057         } else if (IS_GEN3(dev)) {
5058                 init_unused_ring(dev, PRB1_BASE);
5059                 init_unused_ring(dev, PRB2_BASE);
5060         }
5061 }
5062
5063 int i915_gem_init_engines(struct drm_device *dev)
5064 {
5065         struct drm_i915_private *dev_priv = to_i915(dev);
5066         int ret;
5067
5068         ret = intel_init_render_ring_buffer(dev);
5069         if (ret)
5070                 return ret;
5071
5072         if (HAS_BSD(dev)) {
5073                 ret = intel_init_bsd_ring_buffer(dev);
5074                 if (ret)
5075                         goto cleanup_render_ring;
5076         }
5077
5078         if (HAS_BLT(dev)) {
5079                 ret = intel_init_blt_ring_buffer(dev);
5080                 if (ret)
5081                         goto cleanup_bsd_ring;
5082         }
5083
5084         if (HAS_VEBOX(dev)) {
5085                 ret = intel_init_vebox_ring_buffer(dev);
5086                 if (ret)
5087                         goto cleanup_blt_ring;
5088         }
5089
5090         if (HAS_BSD2(dev)) {
5091                 ret = intel_init_bsd2_ring_buffer(dev);
5092                 if (ret)
5093                         goto cleanup_vebox_ring;
5094         }
5095
5096         return 0;
5097
5098 cleanup_vebox_ring:
5099         intel_cleanup_engine(&dev_priv->engine[VECS]);
5100 cleanup_blt_ring:
5101         intel_cleanup_engine(&dev_priv->engine[BCS]);
5102 cleanup_bsd_ring:
5103         intel_cleanup_engine(&dev_priv->engine[VCS]);
5104 cleanup_render_ring:
5105         intel_cleanup_engine(&dev_priv->engine[RCS]);
5106
5107         return ret;
5108 }
5109
5110 int
5111 i915_gem_init_hw(struct drm_device *dev)
5112 {
5113         struct drm_i915_private *dev_priv = to_i915(dev);
5114         struct intel_engine_cs *engine;
5115         int ret;
5116
5117         /* Double layer security blanket, see i915_gem_init() */
5118         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5119
5120         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
5121                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
5122
5123         if (IS_HASWELL(dev))
5124                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
5125                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
5126
5127         if (HAS_PCH_NOP(dev)) {
5128                 if (IS_IVYBRIDGE(dev)) {
5129                         u32 temp = I915_READ(GEN7_MSG_CTL);
5130                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
5131                         I915_WRITE(GEN7_MSG_CTL, temp);
5132                 } else if (INTEL_INFO(dev)->gen >= 7) {
5133                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
5134                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
5135                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
5136                 }
5137         }
5138
5139         i915_gem_init_swizzling(dev);
5140
5141         /*
5142          * At least 830 can leave some of the unused rings
5143          * "active" (ie. head != tail) after resume which
5144          * will prevent c3 entry. Makes sure all unused rings
5145          * are totally idle.
5146          */
5147         init_unused_rings(dev);
5148
5149         BUG_ON(!dev_priv->kernel_context);
5150
5151         ret = i915_ppgtt_init_hw(dev);
5152         if (ret) {
5153                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
5154                 goto out;
5155         }
5156
5157         /* Need to do basic initialisation of all rings first: */
5158         for_each_engine(engine, dev_priv) {
5159                 ret = engine->init_hw(engine);
5160                 if (ret)
5161                         goto out;
5162         }
5163
5164         intel_mocs_init_l3cc_table(dev);
5165
5166         /* We can't enable contexts until all firmware is loaded */
5167         ret = intel_guc_setup(dev);
5168         if (ret)
5169                 goto out;
5170
5171 out:
5172         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5173         return ret;
5174 }
5175
5176 int i915_gem_init(struct drm_device *dev)
5177 {
5178         struct drm_i915_private *dev_priv = to_i915(dev);
5179         int ret;
5180
5181         mutex_lock(&dev->struct_mutex);
5182
5183         if (!i915.enable_execlists) {
5184                 dev_priv->gt.execbuf_submit = i915_gem_ringbuffer_submission;
5185                 dev_priv->gt.init_engines = i915_gem_init_engines;
5186                 dev_priv->gt.cleanup_engine = intel_cleanup_engine;
5187                 dev_priv->gt.stop_engine = intel_stop_engine;
5188         } else {
5189                 dev_priv->gt.execbuf_submit = intel_execlists_submission;
5190                 dev_priv->gt.init_engines = intel_logical_rings_init;
5191                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
5192                 dev_priv->gt.stop_engine = intel_logical_ring_stop;
5193         }
5194
5195         /* This is just a security blanket to placate dragons.
5196          * On some systems, we very sporadically observe that the first TLBs
5197          * used by the CS may be stale, despite us poking the TLB reset. If
5198          * we hold the forcewake during initialisation these problems
5199          * just magically go away.
5200          */
5201         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5202
5203         i915_gem_init_userptr(dev_priv);
5204         i915_gem_init_ggtt(dev);
5205
5206         ret = i915_gem_context_init(dev);
5207         if (ret)
5208                 goto out_unlock;
5209
5210         ret = dev_priv->gt.init_engines(dev);
5211         if (ret)
5212                 goto out_unlock;
5213
5214         ret = i915_gem_init_hw(dev);
5215         if (ret == -EIO) {
5216                 /* Allow ring initialisation to fail by marking the GPU as
5217                  * wedged. But we only want to do this where the GPU is angry,
5218                  * for all other failure, such as an allocation failure, bail.
5219                  */
5220                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5221                 atomic_or(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
5222                 ret = 0;
5223         }
5224
5225 out_unlock:
5226         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5227         mutex_unlock(&dev->struct_mutex);
5228
5229         return ret;
5230 }
5231
5232 void
5233 i915_gem_cleanup_engines(struct drm_device *dev)
5234 {
5235         struct drm_i915_private *dev_priv = to_i915(dev);
5236         struct intel_engine_cs *engine;
5237
5238         for_each_engine(engine, dev_priv)
5239                 dev_priv->gt.cleanup_engine(engine);
5240 }
5241
5242 static void
5243 init_engine_lists(struct intel_engine_cs *engine)
5244 {
5245         INIT_LIST_HEAD(&engine->active_list);
5246         INIT_LIST_HEAD(&engine->request_list);
5247 }
5248
5249 void
5250 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5251 {
5252         struct drm_device *dev = &dev_priv->drm;
5253
5254         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5255             !IS_CHERRYVIEW(dev_priv))
5256                 dev_priv->num_fence_regs = 32;
5257         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
5258                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
5259                 dev_priv->num_fence_regs = 16;
5260         else
5261                 dev_priv->num_fence_regs = 8;
5262
5263         if (intel_vgpu_active(dev_priv))
5264                 dev_priv->num_fence_regs =
5265                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5266
5267         /* Initialize fence registers to zero */
5268         i915_gem_restore_fences(dev);
5269
5270         i915_gem_detect_bit_6_swizzle(dev);
5271 }
5272
5273 void
5274 i915_gem_load_init(struct drm_device *dev)
5275 {
5276         struct drm_i915_private *dev_priv = to_i915(dev);
5277         int i;
5278
5279         dev_priv->objects =
5280                 kmem_cache_create("i915_gem_object",
5281                                   sizeof(struct drm_i915_gem_object), 0,
5282                                   SLAB_HWCACHE_ALIGN,
5283                                   NULL);
5284         dev_priv->vmas =
5285                 kmem_cache_create("i915_gem_vma",
5286                                   sizeof(struct i915_vma), 0,
5287                                   SLAB_HWCACHE_ALIGN,
5288                                   NULL);
5289         dev_priv->requests =
5290                 kmem_cache_create("i915_gem_request",
5291                                   sizeof(struct drm_i915_gem_request), 0,
5292                                   SLAB_HWCACHE_ALIGN,
5293                                   NULL);
5294
5295         INIT_LIST_HEAD(&dev_priv->vm_list);
5296         INIT_LIST_HEAD(&dev_priv->context_list);
5297         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5298         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5299         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5300         for (i = 0; i < I915_NUM_ENGINES; i++)
5301                 init_engine_lists(&dev_priv->engine[i]);
5302         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
5303                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
5304         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5305                           i915_gem_retire_work_handler);
5306         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5307                           i915_gem_idle_work_handler);
5308         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5309         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5310
5311         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
5312
5313         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5314
5315         init_waitqueue_head(&dev_priv->pending_flip_queue);
5316
5317         dev_priv->mm.interruptible = true;
5318
5319         mutex_init(&dev_priv->fb_tracking.lock);
5320 }
5321
5322 void i915_gem_load_cleanup(struct drm_device *dev)
5323 {
5324         struct drm_i915_private *dev_priv = to_i915(dev);
5325
5326         kmem_cache_destroy(dev_priv->requests);
5327         kmem_cache_destroy(dev_priv->vmas);
5328         kmem_cache_destroy(dev_priv->objects);
5329 }
5330
5331 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5332 {
5333         struct drm_i915_gem_object *obj;
5334
5335         /* Called just before we write the hibernation image.
5336          *
5337          * We need to update the domain tracking to reflect that the CPU
5338          * will be accessing all the pages to create and restore from the
5339          * hibernation, and so upon restoration those pages will be in the
5340          * CPU domain.
5341          *
5342          * To make sure the hibernation image contains the latest state,
5343          * we update that state just before writing out the image.
5344          */
5345
5346         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5347                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5348                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5349         }
5350
5351         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5352                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
5353                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
5354         }
5355
5356         return 0;
5357 }
5358
5359 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5360 {
5361         struct drm_i915_file_private *file_priv = file->driver_priv;
5362
5363         /* Clean up our request list when the client is going away, so that
5364          * later retire_requests won't dereference our soon-to-be-gone
5365          * file_priv.
5366          */
5367         spin_lock(&file_priv->mm.lock);
5368         while (!list_empty(&file_priv->mm.request_list)) {
5369                 struct drm_i915_gem_request *request;
5370
5371                 request = list_first_entry(&file_priv->mm.request_list,
5372                                            struct drm_i915_gem_request,
5373                                            client_list);
5374                 list_del(&request->client_list);
5375                 request->file_priv = NULL;
5376         }
5377         spin_unlock(&file_priv->mm.lock);
5378
5379         if (!list_empty(&file_priv->rps.link)) {
5380                 spin_lock(&to_i915(dev)->rps.client_lock);
5381                 list_del(&file_priv->rps.link);
5382                 spin_unlock(&to_i915(dev)->rps.client_lock);
5383         }
5384 }
5385
5386 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
5387 {
5388         struct drm_i915_file_private *file_priv;
5389         int ret;
5390
5391         DRM_DEBUG_DRIVER("\n");
5392
5393         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5394         if (!file_priv)
5395                 return -ENOMEM;
5396
5397         file->driver_priv = file_priv;
5398         file_priv->dev_priv = to_i915(dev);
5399         file_priv->file = file;
5400         INIT_LIST_HEAD(&file_priv->rps.link);
5401
5402         spin_lock_init(&file_priv->mm.lock);
5403         INIT_LIST_HEAD(&file_priv->mm.request_list);
5404
5405         file_priv->bsd_ring = -1;
5406
5407         ret = i915_gem_context_open(dev, file);
5408         if (ret)
5409                 kfree(file_priv);
5410
5411         return ret;
5412 }
5413
5414 /**
5415  * i915_gem_track_fb - update frontbuffer tracking
5416  * @old: current GEM buffer for the frontbuffer slots
5417  * @new: new GEM buffer for the frontbuffer slots
5418  * @frontbuffer_bits: bitmask of frontbuffer slots
5419  *
5420  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5421  * from @old and setting them in @new. Both @old and @new can be NULL.
5422  */
5423 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5424                        struct drm_i915_gem_object *new,
5425                        unsigned frontbuffer_bits)
5426 {
5427         if (old) {
5428                 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5429                 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5430                 old->frontbuffer_bits &= ~frontbuffer_bits;
5431         }
5432
5433         if (new) {
5434                 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5435                 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5436                 new->frontbuffer_bits |= frontbuffer_bits;
5437         }
5438 }
5439
5440 /* All the new VM stuff */
5441 u64 i915_gem_obj_offset(struct drm_i915_gem_object *o,
5442                         struct i915_address_space *vm)
5443 {
5444         struct drm_i915_private *dev_priv = to_i915(o->base.dev);
5445         struct i915_vma *vma;
5446
5447         WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5448
5449         list_for_each_entry(vma, &o->vma_list, obj_link) {
5450                 if (vma->is_ggtt &&
5451                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5452                         continue;
5453                 if (vma->vm == vm)
5454                         return vma->node.start;
5455         }
5456
5457         WARN(1, "%s vma for this object not found.\n",
5458              i915_is_ggtt(vm) ? "global" : "ppgtt");
5459         return -1;
5460 }
5461
5462 u64 i915_gem_obj_ggtt_offset_view(struct drm_i915_gem_object *o,
5463                                   const struct i915_ggtt_view *view)
5464 {
5465         struct i915_vma *vma;
5466
5467         list_for_each_entry(vma, &o->vma_list, obj_link)
5468                 if (vma->is_ggtt && i915_ggtt_view_equal(&vma->ggtt_view, view))
5469                         return vma->node.start;
5470
5471         WARN(1, "global vma for this object not found. (view=%u)\n", view->type);
5472         return -1;
5473 }
5474
5475 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5476                         struct i915_address_space *vm)
5477 {
5478         struct i915_vma *vma;
5479
5480         list_for_each_entry(vma, &o->vma_list, obj_link) {
5481                 if (vma->is_ggtt &&
5482                     vma->ggtt_view.type != I915_GGTT_VIEW_NORMAL)
5483                         continue;
5484                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5485                         return true;
5486         }
5487
5488         return false;
5489 }
5490
5491 bool i915_gem_obj_ggtt_bound_view(struct drm_i915_gem_object *o,
5492                                   const struct i915_ggtt_view *view)
5493 {
5494         struct i915_vma *vma;
5495
5496         list_for_each_entry(vma, &o->vma_list, obj_link)
5497                 if (vma->is_ggtt &&
5498                     i915_ggtt_view_equal(&vma->ggtt_view, view) &&
5499                     drm_mm_node_allocated(&vma->node))
5500                         return true;
5501
5502         return false;
5503 }
5504
5505 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5506 {
5507         struct i915_vma *vma;
5508
5509         list_for_each_entry(vma, &o->vma_list, obj_link)
5510                 if (drm_mm_node_allocated(&vma->node))
5511                         return true;
5512
5513         return false;
5514 }
5515
5516 unsigned long i915_gem_obj_ggtt_size(struct drm_i915_gem_object *o)
5517 {
5518         struct i915_vma *vma;
5519
5520         GEM_BUG_ON(list_empty(&o->vma_list));
5521
5522         list_for_each_entry(vma, &o->vma_list, obj_link) {
5523                 if (vma->is_ggtt &&
5524                     vma->ggtt_view.type == I915_GGTT_VIEW_NORMAL)
5525                         return vma->node.size;
5526         }
5527
5528         return 0;
5529 }
5530
5531 bool i915_gem_obj_is_pinned(struct drm_i915_gem_object *obj)
5532 {
5533         struct i915_vma *vma;
5534         list_for_each_entry(vma, &obj->vma_list, obj_link)
5535                 if (vma->pin_count > 0)
5536                         return true;
5537
5538         return false;
5539 }
5540
5541 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5542 struct page *
5543 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
5544 {
5545         struct page *page;
5546
5547         /* Only default objects have per-page dirty tracking */
5548         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
5549                 return NULL;
5550
5551         page = i915_gem_object_get_page(obj, n);
5552         set_page_dirty(page);
5553         return page;
5554 }
5555
5556 /* Allocate a new GEM object and fill it with the supplied data */
5557 struct drm_i915_gem_object *
5558 i915_gem_object_create_from_data(struct drm_device *dev,
5559                                  const void *data, size_t size)
5560 {
5561         struct drm_i915_gem_object *obj;
5562         struct sg_table *sg;
5563         size_t bytes;
5564         int ret;
5565
5566         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
5567         if (IS_ERR(obj))
5568                 return obj;
5569
5570         ret = i915_gem_object_set_to_cpu_domain(obj, true);
5571         if (ret)
5572                 goto fail;
5573
5574         ret = i915_gem_object_get_pages(obj);
5575         if (ret)
5576                 goto fail;
5577
5578         i915_gem_object_pin_pages(obj);
5579         sg = obj->pages;
5580         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
5581         obj->dirty = 1;         /* Backing store is now out of date */
5582         i915_gem_object_unpin_pages(obj);
5583
5584         if (WARN_ON(bytes != size)) {
5585                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
5586                 ret = -EFAULT;
5587                 goto fail;
5588         }
5589
5590         return obj;
5591
5592 fail:
5593         drm_gem_object_unreference(&obj->base);
5594         return ERR_PTR(ret);
5595 }