Merge branches 'acpi-wdat' and 'acpi-cppc'
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_dmabuf.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/swap.h>
42 #include <linux/pci.h>
43 #include <linux/dma-buf.h>
44
45 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
46 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
47
48 static bool cpu_cache_is_coherent(struct drm_device *dev,
49                                   enum i915_cache_level level)
50 {
51         return HAS_LLC(dev) || level != I915_CACHE_NONE;
52 }
53
54 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
55 {
56         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
57                 return false;
58
59         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
60                 return true;
61
62         return obj->pin_display;
63 }
64
65 static int
66 insert_mappable_node(struct drm_i915_private *i915,
67                      struct drm_mm_node *node, u32 size)
68 {
69         memset(node, 0, sizeof(*node));
70         return drm_mm_insert_node_in_range_generic(&i915->ggtt.base.mm, node,
71                                                    size, 0, 0, 0,
72                                                    i915->ggtt.mappable_end,
73                                                    DRM_MM_SEARCH_DEFAULT,
74                                                    DRM_MM_CREATE_DEFAULT);
75 }
76
77 static void
78 remove_mappable_node(struct drm_mm_node *node)
79 {
80         drm_mm_remove_node(node);
81 }
82
83 /* some bookkeeping */
84 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
85                                   size_t size)
86 {
87         spin_lock(&dev_priv->mm.object_stat_lock);
88         dev_priv->mm.object_count++;
89         dev_priv->mm.object_memory += size;
90         spin_unlock(&dev_priv->mm.object_stat_lock);
91 }
92
93 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
94                                      size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count--;
98         dev_priv->mm.object_memory -= size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static int
103 i915_gem_wait_for_error(struct i915_gpu_error *error)
104 {
105         int ret;
106
107         if (!i915_reset_in_progress(error))
108                 return 0;
109
110         /*
111          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
112          * userspace. If it takes that long something really bad is going on and
113          * we should simply try to bail out and fail as gracefully as possible.
114          */
115         ret = wait_event_interruptible_timeout(error->reset_queue,
116                                                !i915_reset_in_progress(error),
117                                                10*HZ);
118         if (ret == 0) {
119                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
120                 return -EIO;
121         } else if (ret < 0) {
122                 return ret;
123         } else {
124                 return 0;
125         }
126 }
127
128 int i915_mutex_lock_interruptible(struct drm_device *dev)
129 {
130         struct drm_i915_private *dev_priv = to_i915(dev);
131         int ret;
132
133         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
134         if (ret)
135                 return ret;
136
137         ret = mutex_lock_interruptible(&dev->struct_mutex);
138         if (ret)
139                 return ret;
140
141         return 0;
142 }
143
144 int
145 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
146                             struct drm_file *file)
147 {
148         struct drm_i915_private *dev_priv = to_i915(dev);
149         struct i915_ggtt *ggtt = &dev_priv->ggtt;
150         struct drm_i915_gem_get_aperture *args = data;
151         struct i915_vma *vma;
152         size_t pinned;
153
154         pinned = 0;
155         mutex_lock(&dev->struct_mutex);
156         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
157                 if (i915_vma_is_pinned(vma))
158                         pinned += vma->node.size;
159         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
160                 if (i915_vma_is_pinned(vma))
161                         pinned += vma->node.size;
162         mutex_unlock(&dev->struct_mutex);
163
164         args->aper_size = ggtt->base.total;
165         args->aper_available_size = args->aper_size - pinned;
166
167         return 0;
168 }
169
170 static int
171 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
172 {
173         struct address_space *mapping = obj->base.filp->f_mapping;
174         char *vaddr = obj->phys_handle->vaddr;
175         struct sg_table *st;
176         struct scatterlist *sg;
177         int i;
178
179         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
180                 return -EINVAL;
181
182         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
183                 struct page *page;
184                 char *src;
185
186                 page = shmem_read_mapping_page(mapping, i);
187                 if (IS_ERR(page))
188                         return PTR_ERR(page);
189
190                 src = kmap_atomic(page);
191                 memcpy(vaddr, src, PAGE_SIZE);
192                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
193                 kunmap_atomic(src);
194
195                 put_page(page);
196                 vaddr += PAGE_SIZE;
197         }
198
199         i915_gem_chipset_flush(to_i915(obj->base.dev));
200
201         st = kmalloc(sizeof(*st), GFP_KERNEL);
202         if (st == NULL)
203                 return -ENOMEM;
204
205         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
206                 kfree(st);
207                 return -ENOMEM;
208         }
209
210         sg = st->sgl;
211         sg->offset = 0;
212         sg->length = obj->base.size;
213
214         sg_dma_address(sg) = obj->phys_handle->busaddr;
215         sg_dma_len(sg) = obj->base.size;
216
217         obj->pages = st;
218         return 0;
219 }
220
221 static void
222 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj)
223 {
224         int ret;
225
226         BUG_ON(obj->madv == __I915_MADV_PURGED);
227
228         ret = i915_gem_object_set_to_cpu_domain(obj, true);
229         if (WARN_ON(ret)) {
230                 /* In the event of a disaster, abandon all caches and
231                  * hope for the best.
232                  */
233                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
234         }
235
236         if (obj->madv == I915_MADV_DONTNEED)
237                 obj->dirty = 0;
238
239         if (obj->dirty) {
240                 struct address_space *mapping = obj->base.filp->f_mapping;
241                 char *vaddr = obj->phys_handle->vaddr;
242                 int i;
243
244                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
245                         struct page *page;
246                         char *dst;
247
248                         page = shmem_read_mapping_page(mapping, i);
249                         if (IS_ERR(page))
250                                 continue;
251
252                         dst = kmap_atomic(page);
253                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
254                         memcpy(dst, vaddr, PAGE_SIZE);
255                         kunmap_atomic(dst);
256
257                         set_page_dirty(page);
258                         if (obj->madv == I915_MADV_WILLNEED)
259                                 mark_page_accessed(page);
260                         put_page(page);
261                         vaddr += PAGE_SIZE;
262                 }
263                 obj->dirty = 0;
264         }
265
266         sg_free_table(obj->pages);
267         kfree(obj->pages);
268 }
269
270 static void
271 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
272 {
273         drm_pci_free(obj->base.dev, obj->phys_handle);
274 }
275
276 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
277         .get_pages = i915_gem_object_get_pages_phys,
278         .put_pages = i915_gem_object_put_pages_phys,
279         .release = i915_gem_object_release_phys,
280 };
281
282 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
283 {
284         struct i915_vma *vma;
285         LIST_HEAD(still_in_list);
286         int ret;
287
288         lockdep_assert_held(&obj->base.dev->struct_mutex);
289
290         /* Closed vma are removed from the obj->vma_list - but they may
291          * still have an active binding on the object. To remove those we
292          * must wait for all rendering to complete to the object (as unbinding
293          * must anyway), and retire the requests.
294          */
295         ret = i915_gem_object_wait_rendering(obj, false);
296         if (ret)
297                 return ret;
298
299         i915_gem_retire_requests(to_i915(obj->base.dev));
300
301         while ((vma = list_first_entry_or_null(&obj->vma_list,
302                                                struct i915_vma,
303                                                obj_link))) {
304                 list_move_tail(&vma->obj_link, &still_in_list);
305                 ret = i915_vma_unbind(vma);
306                 if (ret)
307                         break;
308         }
309         list_splice(&still_in_list, &obj->vma_list);
310
311         return ret;
312 }
313
314 /**
315  * Ensures that all rendering to the object has completed and the object is
316  * safe to unbind from the GTT or access from the CPU.
317  * @obj: i915 gem object
318  * @readonly: waiting for just read access or read-write access
319  */
320 int
321 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
322                                bool readonly)
323 {
324         struct reservation_object *resv;
325         struct i915_gem_active *active;
326         unsigned long active_mask;
327         int idx;
328
329         lockdep_assert_held(&obj->base.dev->struct_mutex);
330
331         if (!readonly) {
332                 active = obj->last_read;
333                 active_mask = i915_gem_object_get_active(obj);
334         } else {
335                 active_mask = 1;
336                 active = &obj->last_write;
337         }
338
339         for_each_active(active_mask, idx) {
340                 int ret;
341
342                 ret = i915_gem_active_wait(&active[idx],
343                                            &obj->base.dev->struct_mutex);
344                 if (ret)
345                         return ret;
346         }
347
348         resv = i915_gem_object_get_dmabuf_resv(obj);
349         if (resv) {
350                 long err;
351
352                 err = reservation_object_wait_timeout_rcu(resv, !readonly, true,
353                                                           MAX_SCHEDULE_TIMEOUT);
354                 if (err < 0)
355                         return err;
356         }
357
358         return 0;
359 }
360
361 /* A nonblocking variant of the above wait. Must be called prior to
362  * acquiring the mutex for the object, as the object state may change
363  * during this call. A reference must be held by the caller for the object.
364  */
365 static __must_check int
366 __unsafe_wait_rendering(struct drm_i915_gem_object *obj,
367                         struct intel_rps_client *rps,
368                         bool readonly)
369 {
370         struct i915_gem_active *active;
371         unsigned long active_mask;
372         int idx;
373
374         active_mask = __I915_BO_ACTIVE(obj);
375         if (!active_mask)
376                 return 0;
377
378         if (!readonly) {
379                 active = obj->last_read;
380         } else {
381                 active_mask = 1;
382                 active = &obj->last_write;
383         }
384
385         for_each_active(active_mask, idx) {
386                 int ret;
387
388                 ret = i915_gem_active_wait_unlocked(&active[idx],
389                                                     I915_WAIT_INTERRUPTIBLE,
390                                                     NULL, rps);
391                 if (ret)
392                         return ret;
393         }
394
395         return 0;
396 }
397
398 static struct intel_rps_client *to_rps_client(struct drm_file *file)
399 {
400         struct drm_i915_file_private *fpriv = file->driver_priv;
401
402         return &fpriv->rps;
403 }
404
405 int
406 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
407                             int align)
408 {
409         drm_dma_handle_t *phys;
410         int ret;
411
412         if (obj->phys_handle) {
413                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
414                         return -EBUSY;
415
416                 return 0;
417         }
418
419         if (obj->madv != I915_MADV_WILLNEED)
420                 return -EFAULT;
421
422         if (obj->base.filp == NULL)
423                 return -EINVAL;
424
425         ret = i915_gem_object_unbind(obj);
426         if (ret)
427                 return ret;
428
429         ret = i915_gem_object_put_pages(obj);
430         if (ret)
431                 return ret;
432
433         /* create a new object */
434         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
435         if (!phys)
436                 return -ENOMEM;
437
438         obj->phys_handle = phys;
439         obj->ops = &i915_gem_phys_ops;
440
441         return i915_gem_object_get_pages(obj);
442 }
443
444 static int
445 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
446                      struct drm_i915_gem_pwrite *args,
447                      struct drm_file *file_priv)
448 {
449         struct drm_device *dev = obj->base.dev;
450         void *vaddr = obj->phys_handle->vaddr + args->offset;
451         char __user *user_data = u64_to_user_ptr(args->data_ptr);
452         int ret = 0;
453
454         /* We manually control the domain here and pretend that it
455          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
456          */
457         ret = i915_gem_object_wait_rendering(obj, false);
458         if (ret)
459                 return ret;
460
461         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
462         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
463                 unsigned long unwritten;
464
465                 /* The physical object once assigned is fixed for the lifetime
466                  * of the obj, so we can safely drop the lock and continue
467                  * to access vaddr.
468                  */
469                 mutex_unlock(&dev->struct_mutex);
470                 unwritten = copy_from_user(vaddr, user_data, args->size);
471                 mutex_lock(&dev->struct_mutex);
472                 if (unwritten) {
473                         ret = -EFAULT;
474                         goto out;
475                 }
476         }
477
478         drm_clflush_virt_range(vaddr, args->size);
479         i915_gem_chipset_flush(to_i915(dev));
480
481 out:
482         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
483         return ret;
484 }
485
486 void *i915_gem_object_alloc(struct drm_device *dev)
487 {
488         struct drm_i915_private *dev_priv = to_i915(dev);
489         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
490 }
491
492 void i915_gem_object_free(struct drm_i915_gem_object *obj)
493 {
494         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
495         kmem_cache_free(dev_priv->objects, obj);
496 }
497
498 static int
499 i915_gem_create(struct drm_file *file,
500                 struct drm_device *dev,
501                 uint64_t size,
502                 uint32_t *handle_p)
503 {
504         struct drm_i915_gem_object *obj;
505         int ret;
506         u32 handle;
507
508         size = roundup(size, PAGE_SIZE);
509         if (size == 0)
510                 return -EINVAL;
511
512         /* Allocate the new object */
513         obj = i915_gem_object_create(dev, size);
514         if (IS_ERR(obj))
515                 return PTR_ERR(obj);
516
517         ret = drm_gem_handle_create(file, &obj->base, &handle);
518         /* drop reference from allocate - handle holds it now */
519         i915_gem_object_put_unlocked(obj);
520         if (ret)
521                 return ret;
522
523         *handle_p = handle;
524         return 0;
525 }
526
527 int
528 i915_gem_dumb_create(struct drm_file *file,
529                      struct drm_device *dev,
530                      struct drm_mode_create_dumb *args)
531 {
532         /* have to work out size/pitch and return them */
533         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
534         args->size = args->pitch * args->height;
535         return i915_gem_create(file, dev,
536                                args->size, &args->handle);
537 }
538
539 /**
540  * Creates a new mm object and returns a handle to it.
541  * @dev: drm device pointer
542  * @data: ioctl data blob
543  * @file: drm file pointer
544  */
545 int
546 i915_gem_create_ioctl(struct drm_device *dev, void *data,
547                       struct drm_file *file)
548 {
549         struct drm_i915_gem_create *args = data;
550
551         return i915_gem_create(file, dev,
552                                args->size, &args->handle);
553 }
554
555 static inline int
556 __copy_to_user_swizzled(char __user *cpu_vaddr,
557                         const char *gpu_vaddr, int gpu_offset,
558                         int length)
559 {
560         int ret, cpu_offset = 0;
561
562         while (length > 0) {
563                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
564                 int this_length = min(cacheline_end - gpu_offset, length);
565                 int swizzled_gpu_offset = gpu_offset ^ 64;
566
567                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
568                                      gpu_vaddr + swizzled_gpu_offset,
569                                      this_length);
570                 if (ret)
571                         return ret + length;
572
573                 cpu_offset += this_length;
574                 gpu_offset += this_length;
575                 length -= this_length;
576         }
577
578         return 0;
579 }
580
581 static inline int
582 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
583                           const char __user *cpu_vaddr,
584                           int length)
585 {
586         int ret, cpu_offset = 0;
587
588         while (length > 0) {
589                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
590                 int this_length = min(cacheline_end - gpu_offset, length);
591                 int swizzled_gpu_offset = gpu_offset ^ 64;
592
593                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
594                                        cpu_vaddr + cpu_offset,
595                                        this_length);
596                 if (ret)
597                         return ret + length;
598
599                 cpu_offset += this_length;
600                 gpu_offset += this_length;
601                 length -= this_length;
602         }
603
604         return 0;
605 }
606
607 /*
608  * Pins the specified object's pages and synchronizes the object with
609  * GPU accesses. Sets needs_clflush to non-zero if the caller should
610  * flush the object from the CPU cache.
611  */
612 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
613                                     unsigned int *needs_clflush)
614 {
615         int ret;
616
617         *needs_clflush = 0;
618
619         if (!i915_gem_object_has_struct_page(obj))
620                 return -ENODEV;
621
622         ret = i915_gem_object_wait_rendering(obj, true);
623         if (ret)
624                 return ret;
625
626         ret = i915_gem_object_get_pages(obj);
627         if (ret)
628                 return ret;
629
630         i915_gem_object_pin_pages(obj);
631
632         i915_gem_object_flush_gtt_write_domain(obj);
633
634         /* If we're not in the cpu read domain, set ourself into the gtt
635          * read domain and manually flush cachelines (if required). This
636          * optimizes for the case when the gpu will dirty the data
637          * anyway again before the next pread happens.
638          */
639         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
640                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
641                                                         obj->cache_level);
642
643         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
644                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
645                 if (ret)
646                         goto err_unpin;
647
648                 *needs_clflush = 0;
649         }
650
651         /* return with the pages pinned */
652         return 0;
653
654 err_unpin:
655         i915_gem_object_unpin_pages(obj);
656         return ret;
657 }
658
659 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
660                                      unsigned int *needs_clflush)
661 {
662         int ret;
663
664         *needs_clflush = 0;
665         if (!i915_gem_object_has_struct_page(obj))
666                 return -ENODEV;
667
668         ret = i915_gem_object_wait_rendering(obj, false);
669         if (ret)
670                 return ret;
671
672         ret = i915_gem_object_get_pages(obj);
673         if (ret)
674                 return ret;
675
676         i915_gem_object_pin_pages(obj);
677
678         i915_gem_object_flush_gtt_write_domain(obj);
679
680         /* If we're not in the cpu write domain, set ourself into the
681          * gtt write domain and manually flush cachelines (as required).
682          * This optimizes for the case when the gpu will use the data
683          * right away and we therefore have to clflush anyway.
684          */
685         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
686                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
687
688         /* Same trick applies to invalidate partially written cachelines read
689          * before writing.
690          */
691         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
692                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
693                                                          obj->cache_level);
694
695         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
696                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
697                 if (ret)
698                         goto err_unpin;
699
700                 *needs_clflush = 0;
701         }
702
703         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
704                 obj->cache_dirty = true;
705
706         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
707         obj->dirty = 1;
708         /* return with the pages pinned */
709         return 0;
710
711 err_unpin:
712         i915_gem_object_unpin_pages(obj);
713         return ret;
714 }
715
716 /* Per-page copy function for the shmem pread fastpath.
717  * Flushes invalid cachelines before reading the target if
718  * needs_clflush is set. */
719 static int
720 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
721                  char __user *user_data,
722                  bool page_do_bit17_swizzling, bool needs_clflush)
723 {
724         char *vaddr;
725         int ret;
726
727         if (unlikely(page_do_bit17_swizzling))
728                 return -EINVAL;
729
730         vaddr = kmap_atomic(page);
731         if (needs_clflush)
732                 drm_clflush_virt_range(vaddr + shmem_page_offset,
733                                        page_length);
734         ret = __copy_to_user_inatomic(user_data,
735                                       vaddr + shmem_page_offset,
736                                       page_length);
737         kunmap_atomic(vaddr);
738
739         return ret ? -EFAULT : 0;
740 }
741
742 static void
743 shmem_clflush_swizzled_range(char *addr, unsigned long length,
744                              bool swizzled)
745 {
746         if (unlikely(swizzled)) {
747                 unsigned long start = (unsigned long) addr;
748                 unsigned long end = (unsigned long) addr + length;
749
750                 /* For swizzling simply ensure that we always flush both
751                  * channels. Lame, but simple and it works. Swizzled
752                  * pwrite/pread is far from a hotpath - current userspace
753                  * doesn't use it at all. */
754                 start = round_down(start, 128);
755                 end = round_up(end, 128);
756
757                 drm_clflush_virt_range((void *)start, end - start);
758         } else {
759                 drm_clflush_virt_range(addr, length);
760         }
761
762 }
763
764 /* Only difference to the fast-path function is that this can handle bit17
765  * and uses non-atomic copy and kmap functions. */
766 static int
767 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
768                  char __user *user_data,
769                  bool page_do_bit17_swizzling, bool needs_clflush)
770 {
771         char *vaddr;
772         int ret;
773
774         vaddr = kmap(page);
775         if (needs_clflush)
776                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
777                                              page_length,
778                                              page_do_bit17_swizzling);
779
780         if (page_do_bit17_swizzling)
781                 ret = __copy_to_user_swizzled(user_data,
782                                               vaddr, shmem_page_offset,
783                                               page_length);
784         else
785                 ret = __copy_to_user(user_data,
786                                      vaddr + shmem_page_offset,
787                                      page_length);
788         kunmap(page);
789
790         return ret ? - EFAULT : 0;
791 }
792
793 static inline unsigned long
794 slow_user_access(struct io_mapping *mapping,
795                  uint64_t page_base, int page_offset,
796                  char __user *user_data,
797                  unsigned long length, bool pwrite)
798 {
799         void __iomem *ioaddr;
800         void *vaddr;
801         uint64_t unwritten;
802
803         ioaddr = io_mapping_map_wc(mapping, page_base, PAGE_SIZE);
804         /* We can use the cpu mem copy function because this is X86. */
805         vaddr = (void __force *)ioaddr + page_offset;
806         if (pwrite)
807                 unwritten = __copy_from_user(vaddr, user_data, length);
808         else
809                 unwritten = __copy_to_user(user_data, vaddr, length);
810
811         io_mapping_unmap(ioaddr);
812         return unwritten;
813 }
814
815 static int
816 i915_gem_gtt_pread(struct drm_device *dev,
817                    struct drm_i915_gem_object *obj, uint64_t size,
818                    uint64_t data_offset, uint64_t data_ptr)
819 {
820         struct drm_i915_private *dev_priv = to_i915(dev);
821         struct i915_ggtt *ggtt = &dev_priv->ggtt;
822         struct i915_vma *vma;
823         struct drm_mm_node node;
824         char __user *user_data;
825         uint64_t remain;
826         uint64_t offset;
827         int ret;
828
829         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, PIN_MAPPABLE);
830         if (!IS_ERR(vma)) {
831                 node.start = i915_ggtt_offset(vma);
832                 node.allocated = false;
833                 ret = i915_vma_put_fence(vma);
834                 if (ret) {
835                         i915_vma_unpin(vma);
836                         vma = ERR_PTR(ret);
837                 }
838         }
839         if (IS_ERR(vma)) {
840                 ret = insert_mappable_node(dev_priv, &node, PAGE_SIZE);
841                 if (ret)
842                         goto out;
843
844                 ret = i915_gem_object_get_pages(obj);
845                 if (ret) {
846                         remove_mappable_node(&node);
847                         goto out;
848                 }
849
850                 i915_gem_object_pin_pages(obj);
851         }
852
853         ret = i915_gem_object_set_to_gtt_domain(obj, false);
854         if (ret)
855                 goto out_unpin;
856
857         user_data = u64_to_user_ptr(data_ptr);
858         remain = size;
859         offset = data_offset;
860
861         mutex_unlock(&dev->struct_mutex);
862         if (likely(!i915.prefault_disable)) {
863                 ret = fault_in_pages_writeable(user_data, remain);
864                 if (ret) {
865                         mutex_lock(&dev->struct_mutex);
866                         goto out_unpin;
867                 }
868         }
869
870         while (remain > 0) {
871                 /* Operation in this page
872                  *
873                  * page_base = page offset within aperture
874                  * page_offset = offset within page
875                  * page_length = bytes to copy for this page
876                  */
877                 u32 page_base = node.start;
878                 unsigned page_offset = offset_in_page(offset);
879                 unsigned page_length = PAGE_SIZE - page_offset;
880                 page_length = remain < page_length ? remain : page_length;
881                 if (node.allocated) {
882                         wmb();
883                         ggtt->base.insert_page(&ggtt->base,
884                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
885                                                node.start,
886                                                I915_CACHE_NONE, 0);
887                         wmb();
888                 } else {
889                         page_base += offset & PAGE_MASK;
890                 }
891                 /* This is a slow read/write as it tries to read from
892                  * and write to user memory which may result into page
893                  * faults, and so we cannot perform this under struct_mutex.
894                  */
895                 if (slow_user_access(&ggtt->mappable, page_base,
896                                      page_offset, user_data,
897                                      page_length, false)) {
898                         ret = -EFAULT;
899                         break;
900                 }
901
902                 remain -= page_length;
903                 user_data += page_length;
904                 offset += page_length;
905         }
906
907         mutex_lock(&dev->struct_mutex);
908         if (ret == 0 && (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
909                 /* The user has modified the object whilst we tried
910                  * reading from it, and we now have no idea what domain
911                  * the pages should be in. As we have just been touching
912                  * them directly, flush everything back to the GTT
913                  * domain.
914                  */
915                 ret = i915_gem_object_set_to_gtt_domain(obj, false);
916         }
917
918 out_unpin:
919         if (node.allocated) {
920                 wmb();
921                 ggtt->base.clear_range(&ggtt->base,
922                                        node.start, node.size,
923                                        true);
924                 i915_gem_object_unpin_pages(obj);
925                 remove_mappable_node(&node);
926         } else {
927                 i915_vma_unpin(vma);
928         }
929 out:
930         return ret;
931 }
932
933 static int
934 i915_gem_shmem_pread(struct drm_device *dev,
935                      struct drm_i915_gem_object *obj,
936                      struct drm_i915_gem_pread *args,
937                      struct drm_file *file)
938 {
939         char __user *user_data;
940         ssize_t remain;
941         loff_t offset;
942         int shmem_page_offset, page_length, ret = 0;
943         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
944         int prefaulted = 0;
945         int needs_clflush = 0;
946         struct sg_page_iter sg_iter;
947
948         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
949         if (ret)
950                 return ret;
951
952         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
953         user_data = u64_to_user_ptr(args->data_ptr);
954         offset = args->offset;
955         remain = args->size;
956
957         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
958                          offset >> PAGE_SHIFT) {
959                 struct page *page = sg_page_iter_page(&sg_iter);
960
961                 if (remain <= 0)
962                         break;
963
964                 /* Operation in this page
965                  *
966                  * shmem_page_offset = offset within page in shmem file
967                  * page_length = bytes to copy for this page
968                  */
969                 shmem_page_offset = offset_in_page(offset);
970                 page_length = remain;
971                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
972                         page_length = PAGE_SIZE - shmem_page_offset;
973
974                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
975                         (page_to_phys(page) & (1 << 17)) != 0;
976
977                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
978                                        user_data, page_do_bit17_swizzling,
979                                        needs_clflush);
980                 if (ret == 0)
981                         goto next_page;
982
983                 mutex_unlock(&dev->struct_mutex);
984
985                 if (likely(!i915.prefault_disable) && !prefaulted) {
986                         ret = fault_in_pages_writeable(user_data, remain);
987                         /* Userspace is tricking us, but we've already clobbered
988                          * its pages with the prefault and promised to write the
989                          * data up to the first fault. Hence ignore any errors
990                          * and just continue. */
991                         (void)ret;
992                         prefaulted = 1;
993                 }
994
995                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
996                                        user_data, page_do_bit17_swizzling,
997                                        needs_clflush);
998
999                 mutex_lock(&dev->struct_mutex);
1000
1001                 if (ret)
1002                         goto out;
1003
1004 next_page:
1005                 remain -= page_length;
1006                 user_data += page_length;
1007                 offset += page_length;
1008         }
1009
1010 out:
1011         i915_gem_obj_finish_shmem_access(obj);
1012
1013         return ret;
1014 }
1015
1016 /**
1017  * Reads data from the object referenced by handle.
1018  * @dev: drm device pointer
1019  * @data: ioctl data blob
1020  * @file: drm file pointer
1021  *
1022  * On error, the contents of *data are undefined.
1023  */
1024 int
1025 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1026                      struct drm_file *file)
1027 {
1028         struct drm_i915_gem_pread *args = data;
1029         struct drm_i915_gem_object *obj;
1030         int ret = 0;
1031
1032         if (args->size == 0)
1033                 return 0;
1034
1035         if (!access_ok(VERIFY_WRITE,
1036                        u64_to_user_ptr(args->data_ptr),
1037                        args->size))
1038                 return -EFAULT;
1039
1040         obj = i915_gem_object_lookup(file, args->handle);
1041         if (!obj)
1042                 return -ENOENT;
1043
1044         /* Bounds check source.  */
1045         if (args->offset > obj->base.size ||
1046             args->size > obj->base.size - args->offset) {
1047                 ret = -EINVAL;
1048                 goto err;
1049         }
1050
1051         trace_i915_gem_object_pread(obj, args->offset, args->size);
1052
1053         ret = __unsafe_wait_rendering(obj, to_rps_client(file), true);
1054         if (ret)
1055                 goto err;
1056
1057         ret = i915_mutex_lock_interruptible(dev);
1058         if (ret)
1059                 goto err;
1060
1061         ret = i915_gem_shmem_pread(dev, obj, args, file);
1062
1063         /* pread for non shmem backed objects */
1064         if (ret == -EFAULT || ret == -ENODEV) {
1065                 intel_runtime_pm_get(to_i915(dev));
1066                 ret = i915_gem_gtt_pread(dev, obj, args->size,
1067                                         args->offset, args->data_ptr);
1068                 intel_runtime_pm_put(to_i915(dev));
1069         }
1070
1071         i915_gem_object_put(obj);
1072         mutex_unlock(&dev->struct_mutex);
1073
1074         return ret;
1075
1076 err:
1077         i915_gem_object_put_unlocked(obj);
1078         return ret;
1079 }
1080
1081 /* This is the fast write path which cannot handle
1082  * page faults in the source data
1083  */
1084
1085 static inline int
1086 fast_user_write(struct io_mapping *mapping,
1087                 loff_t page_base, int page_offset,
1088                 char __user *user_data,
1089                 int length)
1090 {
1091         void __iomem *vaddr_atomic;
1092         void *vaddr;
1093         unsigned long unwritten;
1094
1095         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
1096         /* We can use the cpu mem copy function because this is X86. */
1097         vaddr = (void __force*)vaddr_atomic + page_offset;
1098         unwritten = __copy_from_user_inatomic_nocache(vaddr,
1099                                                       user_data, length);
1100         io_mapping_unmap_atomic(vaddr_atomic);
1101         return unwritten;
1102 }
1103
1104 /**
1105  * This is the fast pwrite path, where we copy the data directly from the
1106  * user into the GTT, uncached.
1107  * @i915: i915 device private data
1108  * @obj: i915 gem object
1109  * @args: pwrite arguments structure
1110  * @file: drm file pointer
1111  */
1112 static int
1113 i915_gem_gtt_pwrite_fast(struct drm_i915_private *i915,
1114                          struct drm_i915_gem_object *obj,
1115                          struct drm_i915_gem_pwrite *args,
1116                          struct drm_file *file)
1117 {
1118         struct i915_ggtt *ggtt = &i915->ggtt;
1119         struct drm_device *dev = obj->base.dev;
1120         struct i915_vma *vma;
1121         struct drm_mm_node node;
1122         uint64_t remain, offset;
1123         char __user *user_data;
1124         int ret;
1125         bool hit_slow_path = false;
1126
1127         if (i915_gem_object_is_tiled(obj))
1128                 return -EFAULT;
1129
1130         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1131                                        PIN_MAPPABLE | PIN_NONBLOCK);
1132         if (!IS_ERR(vma)) {
1133                 node.start = i915_ggtt_offset(vma);
1134                 node.allocated = false;
1135                 ret = i915_vma_put_fence(vma);
1136                 if (ret) {
1137                         i915_vma_unpin(vma);
1138                         vma = ERR_PTR(ret);
1139                 }
1140         }
1141         if (IS_ERR(vma)) {
1142                 ret = insert_mappable_node(i915, &node, PAGE_SIZE);
1143                 if (ret)
1144                         goto out;
1145
1146                 ret = i915_gem_object_get_pages(obj);
1147                 if (ret) {
1148                         remove_mappable_node(&node);
1149                         goto out;
1150                 }
1151
1152                 i915_gem_object_pin_pages(obj);
1153         }
1154
1155         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1156         if (ret)
1157                 goto out_unpin;
1158
1159         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1160         obj->dirty = true;
1161
1162         user_data = u64_to_user_ptr(args->data_ptr);
1163         offset = args->offset;
1164         remain = args->size;
1165         while (remain) {
1166                 /* Operation in this page
1167                  *
1168                  * page_base = page offset within aperture
1169                  * page_offset = offset within page
1170                  * page_length = bytes to copy for this page
1171                  */
1172                 u32 page_base = node.start;
1173                 unsigned page_offset = offset_in_page(offset);
1174                 unsigned page_length = PAGE_SIZE - page_offset;
1175                 page_length = remain < page_length ? remain : page_length;
1176                 if (node.allocated) {
1177                         wmb(); /* flush the write before we modify the GGTT */
1178                         ggtt->base.insert_page(&ggtt->base,
1179                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1180                                                node.start, I915_CACHE_NONE, 0);
1181                         wmb(); /* flush modifications to the GGTT (insert_page) */
1182                 } else {
1183                         page_base += offset & PAGE_MASK;
1184                 }
1185                 /* If we get a fault while copying data, then (presumably) our
1186                  * source page isn't available.  Return the error and we'll
1187                  * retry in the slow path.
1188                  * If the object is non-shmem backed, we retry again with the
1189                  * path that handles page fault.
1190                  */
1191                 if (fast_user_write(&ggtt->mappable, page_base,
1192                                     page_offset, user_data, page_length)) {
1193                         hit_slow_path = true;
1194                         mutex_unlock(&dev->struct_mutex);
1195                         if (slow_user_access(&ggtt->mappable,
1196                                              page_base,
1197                                              page_offset, user_data,
1198                                              page_length, true)) {
1199                                 ret = -EFAULT;
1200                                 mutex_lock(&dev->struct_mutex);
1201                                 goto out_flush;
1202                         }
1203
1204                         mutex_lock(&dev->struct_mutex);
1205                 }
1206
1207                 remain -= page_length;
1208                 user_data += page_length;
1209                 offset += page_length;
1210         }
1211
1212 out_flush:
1213         if (hit_slow_path) {
1214                 if (ret == 0 &&
1215                     (obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0) {
1216                         /* The user has modified the object whilst we tried
1217                          * reading from it, and we now have no idea what domain
1218                          * the pages should be in. As we have just been touching
1219                          * them directly, flush everything back to the GTT
1220                          * domain.
1221                          */
1222                         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1223                 }
1224         }
1225
1226         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1227 out_unpin:
1228         if (node.allocated) {
1229                 wmb();
1230                 ggtt->base.clear_range(&ggtt->base,
1231                                        node.start, node.size,
1232                                        true);
1233                 i915_gem_object_unpin_pages(obj);
1234                 remove_mappable_node(&node);
1235         } else {
1236                 i915_vma_unpin(vma);
1237         }
1238 out:
1239         return ret;
1240 }
1241
1242 /* Per-page copy function for the shmem pwrite fastpath.
1243  * Flushes invalid cachelines before writing to the target if
1244  * needs_clflush_before is set and flushes out any written cachelines after
1245  * writing if needs_clflush is set. */
1246 static int
1247 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
1248                   char __user *user_data,
1249                   bool page_do_bit17_swizzling,
1250                   bool needs_clflush_before,
1251                   bool needs_clflush_after)
1252 {
1253         char *vaddr;
1254         int ret;
1255
1256         if (unlikely(page_do_bit17_swizzling))
1257                 return -EINVAL;
1258
1259         vaddr = kmap_atomic(page);
1260         if (needs_clflush_before)
1261                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1262                                        page_length);
1263         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
1264                                         user_data, page_length);
1265         if (needs_clflush_after)
1266                 drm_clflush_virt_range(vaddr + shmem_page_offset,
1267                                        page_length);
1268         kunmap_atomic(vaddr);
1269
1270         return ret ? -EFAULT : 0;
1271 }
1272
1273 /* Only difference to the fast-path function is that this can handle bit17
1274  * and uses non-atomic copy and kmap functions. */
1275 static int
1276 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
1277                   char __user *user_data,
1278                   bool page_do_bit17_swizzling,
1279                   bool needs_clflush_before,
1280                   bool needs_clflush_after)
1281 {
1282         char *vaddr;
1283         int ret;
1284
1285         vaddr = kmap(page);
1286         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1287                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1288                                              page_length,
1289                                              page_do_bit17_swizzling);
1290         if (page_do_bit17_swizzling)
1291                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
1292                                                 user_data,
1293                                                 page_length);
1294         else
1295                 ret = __copy_from_user(vaddr + shmem_page_offset,
1296                                        user_data,
1297                                        page_length);
1298         if (needs_clflush_after)
1299                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
1300                                              page_length,
1301                                              page_do_bit17_swizzling);
1302         kunmap(page);
1303
1304         return ret ? -EFAULT : 0;
1305 }
1306
1307 static int
1308 i915_gem_shmem_pwrite(struct drm_device *dev,
1309                       struct drm_i915_gem_object *obj,
1310                       struct drm_i915_gem_pwrite *args,
1311                       struct drm_file *file)
1312 {
1313         ssize_t remain;
1314         loff_t offset;
1315         char __user *user_data;
1316         int shmem_page_offset, page_length, ret = 0;
1317         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
1318         int hit_slowpath = 0;
1319         unsigned int needs_clflush;
1320         struct sg_page_iter sg_iter;
1321
1322         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1323         if (ret)
1324                 return ret;
1325
1326         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
1327         user_data = u64_to_user_ptr(args->data_ptr);
1328         offset = args->offset;
1329         remain = args->size;
1330
1331         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
1332                          offset >> PAGE_SHIFT) {
1333                 struct page *page = sg_page_iter_page(&sg_iter);
1334                 int partial_cacheline_write;
1335
1336                 if (remain <= 0)
1337                         break;
1338
1339                 /* Operation in this page
1340                  *
1341                  * shmem_page_offset = offset within page in shmem file
1342                  * page_length = bytes to copy for this page
1343                  */
1344                 shmem_page_offset = offset_in_page(offset);
1345
1346                 page_length = remain;
1347                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
1348                         page_length = PAGE_SIZE - shmem_page_offset;
1349
1350                 /* If we don't overwrite a cacheline completely we need to be
1351                  * careful to have up-to-date data by first clflushing. Don't
1352                  * overcomplicate things and flush the entire patch. */
1353                 partial_cacheline_write = needs_clflush & CLFLUSH_BEFORE &&
1354                         ((shmem_page_offset | page_length)
1355                                 & (boot_cpu_data.x86_clflush_size - 1));
1356
1357                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
1358                         (page_to_phys(page) & (1 << 17)) != 0;
1359
1360                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
1361                                         user_data, page_do_bit17_swizzling,
1362                                         partial_cacheline_write,
1363                                         needs_clflush & CLFLUSH_AFTER);
1364                 if (ret == 0)
1365                         goto next_page;
1366
1367                 hit_slowpath = 1;
1368                 mutex_unlock(&dev->struct_mutex);
1369                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
1370                                         user_data, page_do_bit17_swizzling,
1371                                         partial_cacheline_write,
1372                                         needs_clflush & CLFLUSH_AFTER);
1373
1374                 mutex_lock(&dev->struct_mutex);
1375
1376                 if (ret)
1377                         goto out;
1378
1379 next_page:
1380                 remain -= page_length;
1381                 user_data += page_length;
1382                 offset += page_length;
1383         }
1384
1385 out:
1386         i915_gem_obj_finish_shmem_access(obj);
1387
1388         if (hit_slowpath) {
1389                 /*
1390                  * Fixup: Flush cpu caches in case we didn't flush the dirty
1391                  * cachelines in-line while writing and the object moved
1392                  * out of the cpu write domain while we've dropped the lock.
1393                  */
1394                 if (!(needs_clflush & CLFLUSH_AFTER) &&
1395                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1396                         if (i915_gem_clflush_object(obj, obj->pin_display))
1397                                 needs_clflush |= CLFLUSH_AFTER;
1398                 }
1399         }
1400
1401         if (needs_clflush & CLFLUSH_AFTER)
1402                 i915_gem_chipset_flush(to_i915(dev));
1403
1404         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1405         return ret;
1406 }
1407
1408 /**
1409  * Writes data to the object referenced by handle.
1410  * @dev: drm device
1411  * @data: ioctl data blob
1412  * @file: drm file
1413  *
1414  * On error, the contents of the buffer that were to be modified are undefined.
1415  */
1416 int
1417 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1418                       struct drm_file *file)
1419 {
1420         struct drm_i915_private *dev_priv = to_i915(dev);
1421         struct drm_i915_gem_pwrite *args = data;
1422         struct drm_i915_gem_object *obj;
1423         int ret;
1424
1425         if (args->size == 0)
1426                 return 0;
1427
1428         if (!access_ok(VERIFY_READ,
1429                        u64_to_user_ptr(args->data_ptr),
1430                        args->size))
1431                 return -EFAULT;
1432
1433         if (likely(!i915.prefault_disable)) {
1434                 ret = fault_in_pages_readable(u64_to_user_ptr(args->data_ptr),
1435                                                    args->size);
1436                 if (ret)
1437                         return -EFAULT;
1438         }
1439
1440         obj = i915_gem_object_lookup(file, args->handle);
1441         if (!obj)
1442                 return -ENOENT;
1443
1444         /* Bounds check destination. */
1445         if (args->offset > obj->base.size ||
1446             args->size > obj->base.size - args->offset) {
1447                 ret = -EINVAL;
1448                 goto err;
1449         }
1450
1451         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1452
1453         ret = __unsafe_wait_rendering(obj, to_rps_client(file), false);
1454         if (ret)
1455                 goto err;
1456
1457         intel_runtime_pm_get(dev_priv);
1458
1459         ret = i915_mutex_lock_interruptible(dev);
1460         if (ret)
1461                 goto err_rpm;
1462
1463         ret = -EFAULT;
1464         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1465          * it would end up going through the fenced access, and we'll get
1466          * different detiling behavior between reading and writing.
1467          * pread/pwrite currently are reading and writing from the CPU
1468          * perspective, requiring manual detiling by the client.
1469          */
1470         if (!i915_gem_object_has_struct_page(obj) ||
1471             cpu_write_needs_clflush(obj)) {
1472                 ret = i915_gem_gtt_pwrite_fast(dev_priv, obj, args, file);
1473                 /* Note that the gtt paths might fail with non-page-backed user
1474                  * pointers (e.g. gtt mappings when moving data between
1475                  * textures). Fallback to the shmem path in that case. */
1476         }
1477
1478         if (ret == -EFAULT || ret == -ENOSPC) {
1479                 if (obj->phys_handle)
1480                         ret = i915_gem_phys_pwrite(obj, args, file);
1481                 else
1482                         ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1483         }
1484
1485         i915_gem_object_put(obj);
1486         mutex_unlock(&dev->struct_mutex);
1487         intel_runtime_pm_put(dev_priv);
1488
1489         return ret;
1490
1491 err_rpm:
1492         intel_runtime_pm_put(dev_priv);
1493 err:
1494         i915_gem_object_put_unlocked(obj);
1495         return ret;
1496 }
1497
1498 static inline enum fb_op_origin
1499 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1500 {
1501         return (domain == I915_GEM_DOMAIN_GTT ?
1502                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1503 }
1504
1505 /**
1506  * Called when user space prepares to use an object with the CPU, either
1507  * through the mmap ioctl's mapping or a GTT mapping.
1508  * @dev: drm device
1509  * @data: ioctl data blob
1510  * @file: drm file
1511  */
1512 int
1513 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1514                           struct drm_file *file)
1515 {
1516         struct drm_i915_gem_set_domain *args = data;
1517         struct drm_i915_gem_object *obj;
1518         uint32_t read_domains = args->read_domains;
1519         uint32_t write_domain = args->write_domain;
1520         int ret;
1521
1522         /* Only handle setting domains to types used by the CPU. */
1523         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1524                 return -EINVAL;
1525
1526         /* Having something in the write domain implies it's in the read
1527          * domain, and only that read domain.  Enforce that in the request.
1528          */
1529         if (write_domain != 0 && read_domains != write_domain)
1530                 return -EINVAL;
1531
1532         obj = i915_gem_object_lookup(file, args->handle);
1533         if (!obj)
1534                 return -ENOENT;
1535
1536         /* Try to flush the object off the GPU without holding the lock.
1537          * We will repeat the flush holding the lock in the normal manner
1538          * to catch cases where we are gazumped.
1539          */
1540         ret = __unsafe_wait_rendering(obj, to_rps_client(file), !write_domain);
1541         if (ret)
1542                 goto err;
1543
1544         ret = i915_mutex_lock_interruptible(dev);
1545         if (ret)
1546                 goto err;
1547
1548         if (read_domains & I915_GEM_DOMAIN_GTT)
1549                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1550         else
1551                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1552
1553         if (write_domain != 0)
1554                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1555
1556         i915_gem_object_put(obj);
1557         mutex_unlock(&dev->struct_mutex);
1558         return ret;
1559
1560 err:
1561         i915_gem_object_put_unlocked(obj);
1562         return ret;
1563 }
1564
1565 /**
1566  * Called when user space has done writes to this buffer
1567  * @dev: drm device
1568  * @data: ioctl data blob
1569  * @file: drm file
1570  */
1571 int
1572 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1573                          struct drm_file *file)
1574 {
1575         struct drm_i915_gem_sw_finish *args = data;
1576         struct drm_i915_gem_object *obj;
1577         int err = 0;
1578
1579         obj = i915_gem_object_lookup(file, args->handle);
1580         if (!obj)
1581                 return -ENOENT;
1582
1583         /* Pinned buffers may be scanout, so flush the cache */
1584         if (READ_ONCE(obj->pin_display)) {
1585                 err = i915_mutex_lock_interruptible(dev);
1586                 if (!err) {
1587                         i915_gem_object_flush_cpu_write_domain(obj);
1588                         mutex_unlock(&dev->struct_mutex);
1589                 }
1590         }
1591
1592         i915_gem_object_put_unlocked(obj);
1593         return err;
1594 }
1595
1596 /**
1597  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1598  *                       it is mapped to.
1599  * @dev: drm device
1600  * @data: ioctl data blob
1601  * @file: drm file
1602  *
1603  * While the mapping holds a reference on the contents of the object, it doesn't
1604  * imply a ref on the object itself.
1605  *
1606  * IMPORTANT:
1607  *
1608  * DRM driver writers who look a this function as an example for how to do GEM
1609  * mmap support, please don't implement mmap support like here. The modern way
1610  * to implement DRM mmap support is with an mmap offset ioctl (like
1611  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1612  * That way debug tooling like valgrind will understand what's going on, hiding
1613  * the mmap call in a driver private ioctl will break that. The i915 driver only
1614  * does cpu mmaps this way because we didn't know better.
1615  */
1616 int
1617 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1618                     struct drm_file *file)
1619 {
1620         struct drm_i915_gem_mmap *args = data;
1621         struct drm_i915_gem_object *obj;
1622         unsigned long addr;
1623
1624         if (args->flags & ~(I915_MMAP_WC))
1625                 return -EINVAL;
1626
1627         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1628                 return -ENODEV;
1629
1630         obj = i915_gem_object_lookup(file, args->handle);
1631         if (!obj)
1632                 return -ENOENT;
1633
1634         /* prime objects have no backing filp to GEM mmap
1635          * pages from.
1636          */
1637         if (!obj->base.filp) {
1638                 i915_gem_object_put_unlocked(obj);
1639                 return -EINVAL;
1640         }
1641
1642         addr = vm_mmap(obj->base.filp, 0, args->size,
1643                        PROT_READ | PROT_WRITE, MAP_SHARED,
1644                        args->offset);
1645         if (args->flags & I915_MMAP_WC) {
1646                 struct mm_struct *mm = current->mm;
1647                 struct vm_area_struct *vma;
1648
1649                 if (down_write_killable(&mm->mmap_sem)) {
1650                         i915_gem_object_put_unlocked(obj);
1651                         return -EINTR;
1652                 }
1653                 vma = find_vma(mm, addr);
1654                 if (vma)
1655                         vma->vm_page_prot =
1656                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1657                 else
1658                         addr = -ENOMEM;
1659                 up_write(&mm->mmap_sem);
1660
1661                 /* This may race, but that's ok, it only gets set */
1662                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1663         }
1664         i915_gem_object_put_unlocked(obj);
1665         if (IS_ERR((void *)addr))
1666                 return addr;
1667
1668         args->addr_ptr = (uint64_t) addr;
1669
1670         return 0;
1671 }
1672
1673 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1674 {
1675         u64 size;
1676
1677         size = i915_gem_object_get_stride(obj);
1678         size *= i915_gem_object_get_tiling(obj) == I915_TILING_Y ? 32 : 8;
1679
1680         return size >> PAGE_SHIFT;
1681 }
1682
1683 /**
1684  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1685  *
1686  * A history of the GTT mmap interface:
1687  *
1688  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1689  *     aligned and suitable for fencing, and still fit into the available
1690  *     mappable space left by the pinned display objects. A classic problem
1691  *     we called the page-fault-of-doom where we would ping-pong between
1692  *     two objects that could not fit inside the GTT and so the memcpy
1693  *     would page one object in at the expense of the other between every
1694  *     single byte.
1695  *
1696  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1697  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1698  *     object is too large for the available space (or simply too large
1699  *     for the mappable aperture!), a view is created instead and faulted
1700  *     into userspace. (This view is aligned and sized appropriately for
1701  *     fenced access.)
1702  *
1703  * Restrictions:
1704  *
1705  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1706  *    hangs on some architectures, corruption on others. An attempt to service
1707  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1708  *
1709  *  * the object must be able to fit into RAM (physical memory, though no
1710  *    limited to the mappable aperture).
1711  *
1712  *
1713  * Caveats:
1714  *
1715  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1716  *    all data to system memory. Subsequent access will not be synchronized.
1717  *
1718  *  * all mappings are revoked on runtime device suspend.
1719  *
1720  *  * there are only 8, 16 or 32 fence registers to share between all users
1721  *    (older machines require fence register for display and blitter access
1722  *    as well). Contention of the fence registers will cause the previous users
1723  *    to be unmapped and any new access will generate new page faults.
1724  *
1725  *  * running out of memory while servicing a fault may generate a SIGBUS,
1726  *    rather than the expected SIGSEGV.
1727  */
1728 int i915_gem_mmap_gtt_version(void)
1729 {
1730         return 1;
1731 }
1732
1733 /**
1734  * i915_gem_fault - fault a page into the GTT
1735  * @area: CPU VMA in question
1736  * @vmf: fault info
1737  *
1738  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1739  * from userspace.  The fault handler takes care of binding the object to
1740  * the GTT (if needed), allocating and programming a fence register (again,
1741  * only if needed based on whether the old reg is still valid or the object
1742  * is tiled) and inserting a new PTE into the faulting process.
1743  *
1744  * Note that the faulting process may involve evicting existing objects
1745  * from the GTT and/or fence registers to make room.  So performance may
1746  * suffer if the GTT working set is large or there are few fence registers
1747  * left.
1748  *
1749  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1750  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1751  */
1752 int i915_gem_fault(struct vm_area_struct *area, struct vm_fault *vmf)
1753 {
1754 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1755         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1756         struct drm_device *dev = obj->base.dev;
1757         struct drm_i915_private *dev_priv = to_i915(dev);
1758         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1759         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1760         struct i915_vma *vma;
1761         pgoff_t page_offset;
1762         unsigned int flags;
1763         int ret;
1764
1765         /* We don't use vmf->pgoff since that has the fake offset */
1766         page_offset = ((unsigned long)vmf->virtual_address - area->vm_start) >>
1767                 PAGE_SHIFT;
1768
1769         trace_i915_gem_object_fault(obj, page_offset, true, write);
1770
1771         /* Try to flush the object off the GPU first without holding the lock.
1772          * Upon acquiring the lock, we will perform our sanity checks and then
1773          * repeat the flush holding the lock in the normal manner to catch cases
1774          * where we are gazumped.
1775          */
1776         ret = __unsafe_wait_rendering(obj, NULL, !write);
1777         if (ret)
1778                 goto err;
1779
1780         intel_runtime_pm_get(dev_priv);
1781
1782         ret = i915_mutex_lock_interruptible(dev);
1783         if (ret)
1784                 goto err_rpm;
1785
1786         /* Access to snoopable pages through the GTT is incoherent. */
1787         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1788                 ret = -EFAULT;
1789                 goto err_unlock;
1790         }
1791
1792         /* If the object is smaller than a couple of partial vma, it is
1793          * not worth only creating a single partial vma - we may as well
1794          * clear enough space for the full object.
1795          */
1796         flags = PIN_MAPPABLE;
1797         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1798                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1799
1800         /* Now pin it into the GTT as needed */
1801         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1802         if (IS_ERR(vma)) {
1803                 struct i915_ggtt_view view;
1804                 unsigned int chunk_size;
1805
1806                 /* Use a partial view if it is bigger than available space */
1807                 chunk_size = MIN_CHUNK_PAGES;
1808                 if (i915_gem_object_is_tiled(obj))
1809                         chunk_size = max(chunk_size, tile_row_pages(obj));
1810
1811                 memset(&view, 0, sizeof(view));
1812                 view.type = I915_GGTT_VIEW_PARTIAL;
1813                 view.params.partial.offset = rounddown(page_offset, chunk_size);
1814                 view.params.partial.size =
1815                         min_t(unsigned int, chunk_size,
1816                               (area->vm_end - area->vm_start) / PAGE_SIZE -
1817                               view.params.partial.offset);
1818
1819                 /* If the partial covers the entire object, just create a
1820                  * normal VMA.
1821                  */
1822                 if (chunk_size >= obj->base.size >> PAGE_SHIFT)
1823                         view.type = I915_GGTT_VIEW_NORMAL;
1824
1825                 /* Userspace is now writing through an untracked VMA, abandon
1826                  * all hope that the hardware is able to track future writes.
1827                  */
1828                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1829
1830                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1831         }
1832         if (IS_ERR(vma)) {
1833                 ret = PTR_ERR(vma);
1834                 goto err_unlock;
1835         }
1836
1837         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1838         if (ret)
1839                 goto err_unpin;
1840
1841         ret = i915_vma_get_fence(vma);
1842         if (ret)
1843                 goto err_unpin;
1844
1845         /* Finally, remap it using the new GTT offset */
1846         ret = remap_io_mapping(area,
1847                                area->vm_start + (vma->ggtt_view.params.partial.offset << PAGE_SHIFT),
1848                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1849                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1850                                &ggtt->mappable);
1851         if (ret)
1852                 goto err_unpin;
1853
1854         obj->fault_mappable = true;
1855 err_unpin:
1856         __i915_vma_unpin(vma);
1857 err_unlock:
1858         mutex_unlock(&dev->struct_mutex);
1859 err_rpm:
1860         intel_runtime_pm_put(dev_priv);
1861 err:
1862         switch (ret) {
1863         case -EIO:
1864                 /*
1865                  * We eat errors when the gpu is terminally wedged to avoid
1866                  * userspace unduly crashing (gl has no provisions for mmaps to
1867                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1868                  * and so needs to be reported.
1869                  */
1870                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1871                         ret = VM_FAULT_SIGBUS;
1872                         break;
1873                 }
1874         case -EAGAIN:
1875                 /*
1876                  * EAGAIN means the gpu is hung and we'll wait for the error
1877                  * handler to reset everything when re-faulting in
1878                  * i915_mutex_lock_interruptible.
1879                  */
1880         case 0:
1881         case -ERESTARTSYS:
1882         case -EINTR:
1883         case -EBUSY:
1884                 /*
1885                  * EBUSY is ok: this just means that another thread
1886                  * already did the job.
1887                  */
1888                 ret = VM_FAULT_NOPAGE;
1889                 break;
1890         case -ENOMEM:
1891                 ret = VM_FAULT_OOM;
1892                 break;
1893         case -ENOSPC:
1894         case -EFAULT:
1895                 ret = VM_FAULT_SIGBUS;
1896                 break;
1897         default:
1898                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1899                 ret = VM_FAULT_SIGBUS;
1900                 break;
1901         }
1902         return ret;
1903 }
1904
1905 /**
1906  * i915_gem_release_mmap - remove physical page mappings
1907  * @obj: obj in question
1908  *
1909  * Preserve the reservation of the mmapping with the DRM core code, but
1910  * relinquish ownership of the pages back to the system.
1911  *
1912  * It is vital that we remove the page mapping if we have mapped a tiled
1913  * object through the GTT and then lose the fence register due to
1914  * resource pressure. Similarly if the object has been moved out of the
1915  * aperture, than pages mapped into userspace must be revoked. Removing the
1916  * mapping will then trigger a page fault on the next user access, allowing
1917  * fixup by i915_gem_fault().
1918  */
1919 void
1920 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1921 {
1922         /* Serialisation between user GTT access and our code depends upon
1923          * revoking the CPU's PTE whilst the mutex is held. The next user
1924          * pagefault then has to wait until we release the mutex.
1925          */
1926         lockdep_assert_held(&obj->base.dev->struct_mutex);
1927
1928         if (!obj->fault_mappable)
1929                 return;
1930
1931         drm_vma_node_unmap(&obj->base.vma_node,
1932                            obj->base.dev->anon_inode->i_mapping);
1933
1934         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1935          * memory transactions from userspace before we return. The TLB
1936          * flushing implied above by changing the PTE above *should* be
1937          * sufficient, an extra barrier here just provides us with a bit
1938          * of paranoid documentation about our requirement to serialise
1939          * memory writes before touching registers / GSM.
1940          */
1941         wmb();
1942
1943         obj->fault_mappable = false;
1944 }
1945
1946 void
1947 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1948 {
1949         struct drm_i915_gem_object *obj;
1950
1951         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1952                 i915_gem_release_mmap(obj);
1953 }
1954
1955 /**
1956  * i915_gem_get_ggtt_size - return required global GTT size for an object
1957  * @dev_priv: i915 device
1958  * @size: object size
1959  * @tiling_mode: tiling mode
1960  *
1961  * Return the required global GTT size for an object, taking into account
1962  * potential fence register mapping.
1963  */
1964 u64 i915_gem_get_ggtt_size(struct drm_i915_private *dev_priv,
1965                            u64 size, int tiling_mode)
1966 {
1967         u64 ggtt_size;
1968
1969         GEM_BUG_ON(size == 0);
1970
1971         if (INTEL_GEN(dev_priv) >= 4 ||
1972             tiling_mode == I915_TILING_NONE)
1973                 return size;
1974
1975         /* Previous chips need a power-of-two fence region when tiling */
1976         if (IS_GEN3(dev_priv))
1977                 ggtt_size = 1024*1024;
1978         else
1979                 ggtt_size = 512*1024;
1980
1981         while (ggtt_size < size)
1982                 ggtt_size <<= 1;
1983
1984         return ggtt_size;
1985 }
1986
1987 /**
1988  * i915_gem_get_ggtt_alignment - return required global GTT alignment
1989  * @dev_priv: i915 device
1990  * @size: object size
1991  * @tiling_mode: tiling mode
1992  * @fenced: is fenced alignment required or not
1993  *
1994  * Return the required global GTT alignment for an object, taking into account
1995  * potential fence register mapping.
1996  */
1997 u64 i915_gem_get_ggtt_alignment(struct drm_i915_private *dev_priv, u64 size,
1998                                 int tiling_mode, bool fenced)
1999 {
2000         GEM_BUG_ON(size == 0);
2001
2002         /*
2003          * Minimum alignment is 4k (GTT page size), but might be greater
2004          * if a fence register is needed for the object.
2005          */
2006         if (INTEL_GEN(dev_priv) >= 4 || (!fenced && IS_G33(dev_priv)) ||
2007             tiling_mode == I915_TILING_NONE)
2008                 return 4096;
2009
2010         /*
2011          * Previous chips need to be aligned to the size of the smallest
2012          * fence register that can contain the object.
2013          */
2014         return i915_gem_get_ggtt_size(dev_priv, size, tiling_mode);
2015 }
2016
2017 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2018 {
2019         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2020         int err;
2021
2022         err = drm_gem_create_mmap_offset(&obj->base);
2023         if (!err)
2024                 return 0;
2025
2026         /* We can idle the GPU locklessly to flush stale objects, but in order
2027          * to claim that space for ourselves, we need to take the big
2028          * struct_mutex to free the requests+objects and allocate our slot.
2029          */
2030         err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2031         if (err)
2032                 return err;
2033
2034         err = i915_mutex_lock_interruptible(&dev_priv->drm);
2035         if (!err) {
2036                 i915_gem_retire_requests(dev_priv);
2037                 err = drm_gem_create_mmap_offset(&obj->base);
2038                 mutex_unlock(&dev_priv->drm.struct_mutex);
2039         }
2040
2041         return err;
2042 }
2043
2044 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2045 {
2046         drm_gem_free_mmap_offset(&obj->base);
2047 }
2048
2049 int
2050 i915_gem_mmap_gtt(struct drm_file *file,
2051                   struct drm_device *dev,
2052                   uint32_t handle,
2053                   uint64_t *offset)
2054 {
2055         struct drm_i915_gem_object *obj;
2056         int ret;
2057
2058         obj = i915_gem_object_lookup(file, handle);
2059         if (!obj)
2060                 return -ENOENT;
2061
2062         ret = i915_gem_object_create_mmap_offset(obj);
2063         if (ret == 0)
2064                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2065
2066         i915_gem_object_put_unlocked(obj);
2067         return ret;
2068 }
2069
2070 /**
2071  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2072  * @dev: DRM device
2073  * @data: GTT mapping ioctl data
2074  * @file: GEM object info
2075  *
2076  * Simply returns the fake offset to userspace so it can mmap it.
2077  * The mmap call will end up in drm_gem_mmap(), which will set things
2078  * up so we can get faults in the handler above.
2079  *
2080  * The fault handler will take care of binding the object into the GTT
2081  * (since it may have been evicted to make room for something), allocating
2082  * a fence register, and mapping the appropriate aperture address into
2083  * userspace.
2084  */
2085 int
2086 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2087                         struct drm_file *file)
2088 {
2089         struct drm_i915_gem_mmap_gtt *args = data;
2090
2091         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2092 }
2093
2094 /* Immediately discard the backing storage */
2095 static void
2096 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2097 {
2098         i915_gem_object_free_mmap_offset(obj);
2099
2100         if (obj->base.filp == NULL)
2101                 return;
2102
2103         /* Our goal here is to return as much of the memory as
2104          * is possible back to the system as we are called from OOM.
2105          * To do this we must instruct the shmfs to drop all of its
2106          * backing pages, *now*.
2107          */
2108         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2109         obj->madv = __I915_MADV_PURGED;
2110 }
2111
2112 /* Try to discard unwanted pages */
2113 static void
2114 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2115 {
2116         struct address_space *mapping;
2117
2118         switch (obj->madv) {
2119         case I915_MADV_DONTNEED:
2120                 i915_gem_object_truncate(obj);
2121         case __I915_MADV_PURGED:
2122                 return;
2123         }
2124
2125         if (obj->base.filp == NULL)
2126                 return;
2127
2128         mapping = obj->base.filp->f_mapping,
2129         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2130 }
2131
2132 static void
2133 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
2134 {
2135         struct sgt_iter sgt_iter;
2136         struct page *page;
2137         int ret;
2138
2139         BUG_ON(obj->madv == __I915_MADV_PURGED);
2140
2141         ret = i915_gem_object_set_to_cpu_domain(obj, true);
2142         if (WARN_ON(ret)) {
2143                 /* In the event of a disaster, abandon all caches and
2144                  * hope for the best.
2145                  */
2146                 i915_gem_clflush_object(obj, true);
2147                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2148         }
2149
2150         i915_gem_gtt_finish_object(obj);
2151
2152         if (i915_gem_object_needs_bit17_swizzle(obj))
2153                 i915_gem_object_save_bit_17_swizzle(obj);
2154
2155         if (obj->madv == I915_MADV_DONTNEED)
2156                 obj->dirty = 0;
2157
2158         for_each_sgt_page(page, sgt_iter, obj->pages) {
2159                 if (obj->dirty)
2160                         set_page_dirty(page);
2161
2162                 if (obj->madv == I915_MADV_WILLNEED)
2163                         mark_page_accessed(page);
2164
2165                 put_page(page);
2166         }
2167         obj->dirty = 0;
2168
2169         sg_free_table(obj->pages);
2170         kfree(obj->pages);
2171 }
2172
2173 int
2174 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
2175 {
2176         const struct drm_i915_gem_object_ops *ops = obj->ops;
2177
2178         if (obj->pages == NULL)
2179                 return 0;
2180
2181         if (obj->pages_pin_count)
2182                 return -EBUSY;
2183
2184         GEM_BUG_ON(obj->bind_count);
2185
2186         /* ->put_pages might need to allocate memory for the bit17 swizzle
2187          * array, hence protect them from being reaped by removing them from gtt
2188          * lists early. */
2189         list_del(&obj->global_list);
2190
2191         if (obj->mapping) {
2192                 void *ptr;
2193
2194                 ptr = ptr_mask_bits(obj->mapping);
2195                 if (is_vmalloc_addr(ptr))
2196                         vunmap(ptr);
2197                 else
2198                         kunmap(kmap_to_page(ptr));
2199
2200                 obj->mapping = NULL;
2201         }
2202
2203         ops->put_pages(obj);
2204         obj->pages = NULL;
2205
2206         i915_gem_object_invalidate(obj);
2207
2208         return 0;
2209 }
2210
2211 static int
2212 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2213 {
2214         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2215         int page_count, i;
2216         struct address_space *mapping;
2217         struct sg_table *st;
2218         struct scatterlist *sg;
2219         struct sgt_iter sgt_iter;
2220         struct page *page;
2221         unsigned long last_pfn = 0;     /* suppress gcc warning */
2222         int ret;
2223         gfp_t gfp;
2224
2225         /* Assert that the object is not currently in any GPU domain. As it
2226          * wasn't in the GTT, there shouldn't be any way it could have been in
2227          * a GPU cache
2228          */
2229         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2230         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2231
2232         st = kmalloc(sizeof(*st), GFP_KERNEL);
2233         if (st == NULL)
2234                 return -ENOMEM;
2235
2236         page_count = obj->base.size / PAGE_SIZE;
2237         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2238                 kfree(st);
2239                 return -ENOMEM;
2240         }
2241
2242         /* Get the list of pages out of our struct file.  They'll be pinned
2243          * at this point until we release them.
2244          *
2245          * Fail silently without starting the shrinker
2246          */
2247         mapping = obj->base.filp->f_mapping;
2248         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2249         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2250         sg = st->sgl;
2251         st->nents = 0;
2252         for (i = 0; i < page_count; i++) {
2253                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2254                 if (IS_ERR(page)) {
2255                         i915_gem_shrink(dev_priv,
2256                                         page_count,
2257                                         I915_SHRINK_BOUND |
2258                                         I915_SHRINK_UNBOUND |
2259                                         I915_SHRINK_PURGEABLE);
2260                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2261                 }
2262                 if (IS_ERR(page)) {
2263                         /* We've tried hard to allocate the memory by reaping
2264                          * our own buffer, now let the real VM do its job and
2265                          * go down in flames if truly OOM.
2266                          */
2267                         i915_gem_shrink_all(dev_priv);
2268                         page = shmem_read_mapping_page(mapping, i);
2269                         if (IS_ERR(page)) {
2270                                 ret = PTR_ERR(page);
2271                                 goto err_pages;
2272                         }
2273                 }
2274 #ifdef CONFIG_SWIOTLB
2275                 if (swiotlb_nr_tbl()) {
2276                         st->nents++;
2277                         sg_set_page(sg, page, PAGE_SIZE, 0);
2278                         sg = sg_next(sg);
2279                         continue;
2280                 }
2281 #endif
2282                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2283                         if (i)
2284                                 sg = sg_next(sg);
2285                         st->nents++;
2286                         sg_set_page(sg, page, PAGE_SIZE, 0);
2287                 } else {
2288                         sg->length += PAGE_SIZE;
2289                 }
2290                 last_pfn = page_to_pfn(page);
2291
2292                 /* Check that the i965g/gm workaround works. */
2293                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2294         }
2295 #ifdef CONFIG_SWIOTLB
2296         if (!swiotlb_nr_tbl())
2297 #endif
2298                 sg_mark_end(sg);
2299         obj->pages = st;
2300
2301         ret = i915_gem_gtt_prepare_object(obj);
2302         if (ret)
2303                 goto err_pages;
2304
2305         if (i915_gem_object_needs_bit17_swizzle(obj))
2306                 i915_gem_object_do_bit_17_swizzle(obj);
2307
2308         if (i915_gem_object_is_tiled(obj) &&
2309             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2310                 i915_gem_object_pin_pages(obj);
2311
2312         return 0;
2313
2314 err_pages:
2315         sg_mark_end(sg);
2316         for_each_sgt_page(page, sgt_iter, st)
2317                 put_page(page);
2318         sg_free_table(st);
2319         kfree(st);
2320
2321         /* shmemfs first checks if there is enough memory to allocate the page
2322          * and reports ENOSPC should there be insufficient, along with the usual
2323          * ENOMEM for a genuine allocation failure.
2324          *
2325          * We use ENOSPC in our driver to mean that we have run out of aperture
2326          * space and so want to translate the error from shmemfs back to our
2327          * usual understanding of ENOMEM.
2328          */
2329         if (ret == -ENOSPC)
2330                 ret = -ENOMEM;
2331
2332         return ret;
2333 }
2334
2335 /* Ensure that the associated pages are gathered from the backing storage
2336  * and pinned into our object. i915_gem_object_get_pages() may be called
2337  * multiple times before they are released by a single call to
2338  * i915_gem_object_put_pages() - once the pages are no longer referenced
2339  * either as a result of memory pressure (reaping pages under the shrinker)
2340  * or as the object is itself released.
2341  */
2342 int
2343 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2344 {
2345         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2346         const struct drm_i915_gem_object_ops *ops = obj->ops;
2347         int ret;
2348
2349         if (obj->pages)
2350                 return 0;
2351
2352         if (obj->madv != I915_MADV_WILLNEED) {
2353                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2354                 return -EFAULT;
2355         }
2356
2357         BUG_ON(obj->pages_pin_count);
2358
2359         ret = ops->get_pages(obj);
2360         if (ret)
2361                 return ret;
2362
2363         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2364
2365         obj->get_page.sg = obj->pages->sgl;
2366         obj->get_page.last = 0;
2367
2368         return 0;
2369 }
2370
2371 /* The 'mapping' part of i915_gem_object_pin_map() below */
2372 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2373                                  enum i915_map_type type)
2374 {
2375         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2376         struct sg_table *sgt = obj->pages;
2377         struct sgt_iter sgt_iter;
2378         struct page *page;
2379         struct page *stack_pages[32];
2380         struct page **pages = stack_pages;
2381         unsigned long i = 0;
2382         pgprot_t pgprot;
2383         void *addr;
2384
2385         /* A single page can always be kmapped */
2386         if (n_pages == 1 && type == I915_MAP_WB)
2387                 return kmap(sg_page(sgt->sgl));
2388
2389         if (n_pages > ARRAY_SIZE(stack_pages)) {
2390                 /* Too big for stack -- allocate temporary array instead */
2391                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2392                 if (!pages)
2393                         return NULL;
2394         }
2395
2396         for_each_sgt_page(page, sgt_iter, sgt)
2397                 pages[i++] = page;
2398
2399         /* Check that we have the expected number of pages */
2400         GEM_BUG_ON(i != n_pages);
2401
2402         switch (type) {
2403         case I915_MAP_WB:
2404                 pgprot = PAGE_KERNEL;
2405                 break;
2406         case I915_MAP_WC:
2407                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2408                 break;
2409         }
2410         addr = vmap(pages, n_pages, 0, pgprot);
2411
2412         if (pages != stack_pages)
2413                 drm_free_large(pages);
2414
2415         return addr;
2416 }
2417
2418 /* get, pin, and map the pages of the object into kernel space */
2419 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2420                               enum i915_map_type type)
2421 {
2422         enum i915_map_type has_type;
2423         bool pinned;
2424         void *ptr;
2425         int ret;
2426
2427         lockdep_assert_held(&obj->base.dev->struct_mutex);
2428         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2429
2430         ret = i915_gem_object_get_pages(obj);
2431         if (ret)
2432                 return ERR_PTR(ret);
2433
2434         i915_gem_object_pin_pages(obj);
2435         pinned = obj->pages_pin_count > 1;
2436
2437         ptr = ptr_unpack_bits(obj->mapping, has_type);
2438         if (ptr && has_type != type) {
2439                 if (pinned) {
2440                         ret = -EBUSY;
2441                         goto err;
2442                 }
2443
2444                 if (is_vmalloc_addr(ptr))
2445                         vunmap(ptr);
2446                 else
2447                         kunmap(kmap_to_page(ptr));
2448
2449                 ptr = obj->mapping = NULL;
2450         }
2451
2452         if (!ptr) {
2453                 ptr = i915_gem_object_map(obj, type);
2454                 if (!ptr) {
2455                         ret = -ENOMEM;
2456                         goto err;
2457                 }
2458
2459                 obj->mapping = ptr_pack_bits(ptr, type);
2460         }
2461
2462         return ptr;
2463
2464 err:
2465         i915_gem_object_unpin_pages(obj);
2466         return ERR_PTR(ret);
2467 }
2468
2469 static void
2470 i915_gem_object_retire__write(struct i915_gem_active *active,
2471                               struct drm_i915_gem_request *request)
2472 {
2473         struct drm_i915_gem_object *obj =
2474                 container_of(active, struct drm_i915_gem_object, last_write);
2475
2476         intel_fb_obj_flush(obj, true, ORIGIN_CS);
2477 }
2478
2479 static void
2480 i915_gem_object_retire__read(struct i915_gem_active *active,
2481                              struct drm_i915_gem_request *request)
2482 {
2483         int idx = request->engine->id;
2484         struct drm_i915_gem_object *obj =
2485                 container_of(active, struct drm_i915_gem_object, last_read[idx]);
2486
2487         GEM_BUG_ON(!i915_gem_object_has_active_engine(obj, idx));
2488
2489         i915_gem_object_clear_active(obj, idx);
2490         if (i915_gem_object_is_active(obj))
2491                 return;
2492
2493         /* Bump our place on the bound list to keep it roughly in LRU order
2494          * so that we don't steal from recently used but inactive objects
2495          * (unless we are forced to ofc!)
2496          */
2497         if (obj->bind_count)
2498                 list_move_tail(&obj->global_list,
2499                                &request->i915->mm.bound_list);
2500
2501         i915_gem_object_put(obj);
2502 }
2503
2504 static bool i915_context_is_banned(const struct i915_gem_context *ctx)
2505 {
2506         unsigned long elapsed;
2507
2508         if (ctx->hang_stats.banned)
2509                 return true;
2510
2511         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2512         if (ctx->hang_stats.ban_period_seconds &&
2513             elapsed <= ctx->hang_stats.ban_period_seconds) {
2514                 DRM_DEBUG("context hanging too fast, banning!\n");
2515                 return true;
2516         }
2517
2518         return false;
2519 }
2520
2521 static void i915_set_reset_status(struct i915_gem_context *ctx,
2522                                   const bool guilty)
2523 {
2524         struct i915_ctx_hang_stats *hs = &ctx->hang_stats;
2525
2526         if (guilty) {
2527                 hs->banned = i915_context_is_banned(ctx);
2528                 hs->batch_active++;
2529                 hs->guilty_ts = get_seconds();
2530         } else {
2531                 hs->batch_pending++;
2532         }
2533 }
2534
2535 struct drm_i915_gem_request *
2536 i915_gem_find_active_request(struct intel_engine_cs *engine)
2537 {
2538         struct drm_i915_gem_request *request;
2539
2540         /* We are called by the error capture and reset at a random
2541          * point in time. In particular, note that neither is crucially
2542          * ordered with an interrupt. After a hang, the GPU is dead and we
2543          * assume that no more writes can happen (we waited long enough for
2544          * all writes that were in transaction to be flushed) - adding an
2545          * extra delay for a recent interrupt is pointless. Hence, we do
2546          * not need an engine->irq_seqno_barrier() before the seqno reads.
2547          */
2548         list_for_each_entry(request, &engine->request_list, link) {
2549                 if (i915_gem_request_completed(request))
2550                         continue;
2551
2552                 if (!i915_sw_fence_done(&request->submit))
2553                         break;
2554
2555                 return request;
2556         }
2557
2558         return NULL;
2559 }
2560
2561 static void reset_request(struct drm_i915_gem_request *request)
2562 {
2563         void *vaddr = request->ring->vaddr;
2564         u32 head;
2565
2566         /* As this request likely depends on state from the lost
2567          * context, clear out all the user operations leaving the
2568          * breadcrumb at the end (so we get the fence notifications).
2569          */
2570         head = request->head;
2571         if (request->postfix < head) {
2572                 memset(vaddr + head, 0, request->ring->size - head);
2573                 head = 0;
2574         }
2575         memset(vaddr + head, 0, request->postfix - head);
2576 }
2577
2578 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2579 {
2580         struct drm_i915_gem_request *request;
2581         struct i915_gem_context *incomplete_ctx;
2582         bool ring_hung;
2583
2584         /* Ensure irq handler finishes, and not run again. */
2585         tasklet_kill(&engine->irq_tasklet);
2586         if (engine->irq_seqno_barrier)
2587                 engine->irq_seqno_barrier(engine);
2588
2589         request = i915_gem_find_active_request(engine);
2590         if (!request)
2591                 return;
2592
2593         ring_hung = engine->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2594         i915_set_reset_status(request->ctx, ring_hung);
2595         if (!ring_hung)
2596                 return;
2597
2598         DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2599                          engine->name, request->fence.seqno);
2600
2601         /* Setup the CS to resume from the breadcrumb of the hung request */
2602         engine->reset_hw(engine, request);
2603
2604         /* Users of the default context do not rely on logical state
2605          * preserved between batches. They have to emit full state on
2606          * every batch and so it is safe to execute queued requests following
2607          * the hang.
2608          *
2609          * Other contexts preserve state, now corrupt. We want to skip all
2610          * queued requests that reference the corrupt context.
2611          */
2612         incomplete_ctx = request->ctx;
2613         if (i915_gem_context_is_default(incomplete_ctx))
2614                 return;
2615
2616         list_for_each_entry_continue(request, &engine->request_list, link)
2617                 if (request->ctx == incomplete_ctx)
2618                         reset_request(request);
2619 }
2620
2621 void i915_gem_reset(struct drm_i915_private *dev_priv)
2622 {
2623         struct intel_engine_cs *engine;
2624
2625         i915_gem_retire_requests(dev_priv);
2626
2627         for_each_engine(engine, dev_priv)
2628                 i915_gem_reset_engine(engine);
2629
2630         i915_gem_restore_fences(&dev_priv->drm);
2631
2632         if (dev_priv->gt.awake) {
2633                 intel_sanitize_gt_powersave(dev_priv);
2634                 intel_enable_gt_powersave(dev_priv);
2635                 if (INTEL_GEN(dev_priv) >= 6)
2636                         gen6_rps_busy(dev_priv);
2637         }
2638 }
2639
2640 static void nop_submit_request(struct drm_i915_gem_request *request)
2641 {
2642 }
2643
2644 static void i915_gem_cleanup_engine(struct intel_engine_cs *engine)
2645 {
2646         engine->submit_request = nop_submit_request;
2647
2648         /* Mark all pending requests as complete so that any concurrent
2649          * (lockless) lookup doesn't try and wait upon the request as we
2650          * reset it.
2651          */
2652         intel_engine_init_seqno(engine, engine->last_submitted_seqno);
2653
2654         /*
2655          * Clear the execlists queue up before freeing the requests, as those
2656          * are the ones that keep the context and ringbuffer backing objects
2657          * pinned in place.
2658          */
2659
2660         if (i915.enable_execlists) {
2661                 spin_lock(&engine->execlist_lock);
2662                 INIT_LIST_HEAD(&engine->execlist_queue);
2663                 i915_gem_request_put(engine->execlist_port[0].request);
2664                 i915_gem_request_put(engine->execlist_port[1].request);
2665                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2666                 spin_unlock(&engine->execlist_lock);
2667         }
2668
2669         engine->i915->gt.active_engines &= ~intel_engine_flag(engine);
2670 }
2671
2672 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2673 {
2674         struct intel_engine_cs *engine;
2675
2676         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2677         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2678
2679         i915_gem_context_lost(dev_priv);
2680         for_each_engine(engine, dev_priv)
2681                 i915_gem_cleanup_engine(engine);
2682         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2683
2684         i915_gem_retire_requests(dev_priv);
2685 }
2686
2687 static void
2688 i915_gem_retire_work_handler(struct work_struct *work)
2689 {
2690         struct drm_i915_private *dev_priv =
2691                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2692         struct drm_device *dev = &dev_priv->drm;
2693
2694         /* Come back later if the device is busy... */
2695         if (mutex_trylock(&dev->struct_mutex)) {
2696                 i915_gem_retire_requests(dev_priv);
2697                 mutex_unlock(&dev->struct_mutex);
2698         }
2699
2700         /* Keep the retire handler running until we are finally idle.
2701          * We do not need to do this test under locking as in the worst-case
2702          * we queue the retire worker once too often.
2703          */
2704         if (READ_ONCE(dev_priv->gt.awake)) {
2705                 i915_queue_hangcheck(dev_priv);
2706                 queue_delayed_work(dev_priv->wq,
2707                                    &dev_priv->gt.retire_work,
2708                                    round_jiffies_up_relative(HZ));
2709         }
2710 }
2711
2712 static void
2713 i915_gem_idle_work_handler(struct work_struct *work)
2714 {
2715         struct drm_i915_private *dev_priv =
2716                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2717         struct drm_device *dev = &dev_priv->drm;
2718         struct intel_engine_cs *engine;
2719         bool rearm_hangcheck;
2720
2721         if (!READ_ONCE(dev_priv->gt.awake))
2722                 return;
2723
2724         if (READ_ONCE(dev_priv->gt.active_engines))
2725                 return;
2726
2727         rearm_hangcheck =
2728                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
2729
2730         if (!mutex_trylock(&dev->struct_mutex)) {
2731                 /* Currently busy, come back later */
2732                 mod_delayed_work(dev_priv->wq,
2733                                  &dev_priv->gt.idle_work,
2734                                  msecs_to_jiffies(50));
2735                 goto out_rearm;
2736         }
2737
2738         if (dev_priv->gt.active_engines)
2739                 goto out_unlock;
2740
2741         for_each_engine(engine, dev_priv)
2742                 i915_gem_batch_pool_fini(&engine->batch_pool);
2743
2744         GEM_BUG_ON(!dev_priv->gt.awake);
2745         dev_priv->gt.awake = false;
2746         rearm_hangcheck = false;
2747
2748         if (INTEL_GEN(dev_priv) >= 6)
2749                 gen6_rps_idle(dev_priv);
2750         intel_runtime_pm_put(dev_priv);
2751 out_unlock:
2752         mutex_unlock(&dev->struct_mutex);
2753
2754 out_rearm:
2755         if (rearm_hangcheck) {
2756                 GEM_BUG_ON(!dev_priv->gt.awake);
2757                 i915_queue_hangcheck(dev_priv);
2758         }
2759 }
2760
2761 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
2762 {
2763         struct drm_i915_gem_object *obj = to_intel_bo(gem);
2764         struct drm_i915_file_private *fpriv = file->driver_priv;
2765         struct i915_vma *vma, *vn;
2766
2767         mutex_lock(&obj->base.dev->struct_mutex);
2768         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
2769                 if (vma->vm->file == fpriv)
2770                         i915_vma_close(vma);
2771         mutex_unlock(&obj->base.dev->struct_mutex);
2772 }
2773
2774 /**
2775  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2776  * @dev: drm device pointer
2777  * @data: ioctl data blob
2778  * @file: drm file pointer
2779  *
2780  * Returns 0 if successful, else an error is returned with the remaining time in
2781  * the timeout parameter.
2782  *  -ETIME: object is still busy after timeout
2783  *  -ERESTARTSYS: signal interrupted the wait
2784  *  -ENONENT: object doesn't exist
2785  * Also possible, but rare:
2786  *  -EAGAIN: GPU wedged
2787  *  -ENOMEM: damn
2788  *  -ENODEV: Internal IRQ fail
2789  *  -E?: The add request failed
2790  *
2791  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2792  * non-zero timeout parameter the wait ioctl will wait for the given number of
2793  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2794  * without holding struct_mutex the object may become re-busied before this
2795  * function completes. A similar but shorter * race condition exists in the busy
2796  * ioctl
2797  */
2798 int
2799 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2800 {
2801         struct drm_i915_gem_wait *args = data;
2802         struct intel_rps_client *rps = to_rps_client(file);
2803         struct drm_i915_gem_object *obj;
2804         unsigned long active;
2805         int idx, ret = 0;
2806
2807         if (args->flags != 0)
2808                 return -EINVAL;
2809
2810         obj = i915_gem_object_lookup(file, args->bo_handle);
2811         if (!obj)
2812                 return -ENOENT;
2813
2814         active = __I915_BO_ACTIVE(obj);
2815         for_each_active(active, idx) {
2816                 s64 *timeout = args->timeout_ns >= 0 ? &args->timeout_ns : NULL;
2817                 ret = i915_gem_active_wait_unlocked(&obj->last_read[idx],
2818                                                     I915_WAIT_INTERRUPTIBLE,
2819                                                     timeout, rps);
2820                 if (ret)
2821                         break;
2822         }
2823
2824         i915_gem_object_put_unlocked(obj);
2825         return ret;
2826 }
2827
2828 static void __i915_vma_iounmap(struct i915_vma *vma)
2829 {
2830         GEM_BUG_ON(i915_vma_is_pinned(vma));
2831
2832         if (vma->iomap == NULL)
2833                 return;
2834
2835         io_mapping_unmap(vma->iomap);
2836         vma->iomap = NULL;
2837 }
2838
2839 int i915_vma_unbind(struct i915_vma *vma)
2840 {
2841         struct drm_i915_gem_object *obj = vma->obj;
2842         unsigned long active;
2843         int ret;
2844
2845         /* First wait upon any activity as retiring the request may
2846          * have side-effects such as unpinning or even unbinding this vma.
2847          */
2848         active = i915_vma_get_active(vma);
2849         if (active) {
2850                 int idx;
2851
2852                 /* When a closed VMA is retired, it is unbound - eek.
2853                  * In order to prevent it from being recursively closed,
2854                  * take a pin on the vma so that the second unbind is
2855                  * aborted.
2856                  */
2857                 __i915_vma_pin(vma);
2858
2859                 for_each_active(active, idx) {
2860                         ret = i915_gem_active_retire(&vma->last_read[idx],
2861                                                    &vma->vm->dev->struct_mutex);
2862                         if (ret)
2863                                 break;
2864                 }
2865
2866                 __i915_vma_unpin(vma);
2867                 if (ret)
2868                         return ret;
2869
2870                 GEM_BUG_ON(i915_vma_is_active(vma));
2871         }
2872
2873         if (i915_vma_is_pinned(vma))
2874                 return -EBUSY;
2875
2876         if (!drm_mm_node_allocated(&vma->node))
2877                 goto destroy;
2878
2879         GEM_BUG_ON(obj->bind_count == 0);
2880         GEM_BUG_ON(!obj->pages);
2881
2882         if (i915_vma_is_map_and_fenceable(vma)) {
2883                 /* release the fence reg _after_ flushing */
2884                 ret = i915_vma_put_fence(vma);
2885                 if (ret)
2886                         return ret;
2887
2888                 /* Force a pagefault for domain tracking on next user access */
2889                 i915_gem_release_mmap(obj);
2890
2891                 __i915_vma_iounmap(vma);
2892                 vma->flags &= ~I915_VMA_CAN_FENCE;
2893         }
2894
2895         if (likely(!vma->vm->closed)) {
2896                 trace_i915_vma_unbind(vma);
2897                 vma->vm->unbind_vma(vma);
2898         }
2899         vma->flags &= ~(I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND);
2900
2901         drm_mm_remove_node(&vma->node);
2902         list_move_tail(&vma->vm_link, &vma->vm->unbound_list);
2903
2904         if (vma->pages != obj->pages) {
2905                 GEM_BUG_ON(!vma->pages);
2906                 sg_free_table(vma->pages);
2907                 kfree(vma->pages);
2908         }
2909         vma->pages = NULL;
2910
2911         /* Since the unbound list is global, only move to that list if
2912          * no more VMAs exist. */
2913         if (--obj->bind_count == 0)
2914                 list_move_tail(&obj->global_list,
2915                                &to_i915(obj->base.dev)->mm.unbound_list);
2916
2917         /* And finally now the object is completely decoupled from this vma,
2918          * we can drop its hold on the backing storage and allow it to be
2919          * reaped by the shrinker.
2920          */
2921         i915_gem_object_unpin_pages(obj);
2922
2923 destroy:
2924         if (unlikely(i915_vma_is_closed(vma)))
2925                 i915_vma_destroy(vma);
2926
2927         return 0;
2928 }
2929
2930 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
2931                            unsigned int flags)
2932 {
2933         struct intel_engine_cs *engine;
2934         int ret;
2935
2936         for_each_engine(engine, dev_priv) {
2937                 if (engine->last_context == NULL)
2938                         continue;
2939
2940                 ret = intel_engine_idle(engine, flags);
2941                 if (ret)
2942                         return ret;
2943         }
2944
2945         return 0;
2946 }
2947
2948 static bool i915_gem_valid_gtt_space(struct i915_vma *vma,
2949                                      unsigned long cache_level)
2950 {
2951         struct drm_mm_node *gtt_space = &vma->node;
2952         struct drm_mm_node *other;
2953
2954         /*
2955          * On some machines we have to be careful when putting differing types
2956          * of snoopable memory together to avoid the prefetcher crossing memory
2957          * domains and dying. During vm initialisation, we decide whether or not
2958          * these constraints apply and set the drm_mm.color_adjust
2959          * appropriately.
2960          */
2961         if (vma->vm->mm.color_adjust == NULL)
2962                 return true;
2963
2964         if (!drm_mm_node_allocated(gtt_space))
2965                 return true;
2966
2967         if (list_empty(&gtt_space->node_list))
2968                 return true;
2969
2970         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
2971         if (other->allocated && !other->hole_follows && other->color != cache_level)
2972                 return false;
2973
2974         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
2975         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
2976                 return false;
2977
2978         return true;
2979 }
2980
2981 /**
2982  * i915_vma_insert - finds a slot for the vma in its address space
2983  * @vma: the vma
2984  * @size: requested size in bytes (can be larger than the VMA)
2985  * @alignment: required alignment
2986  * @flags: mask of PIN_* flags to use
2987  *
2988  * First we try to allocate some free space that meets the requirements for
2989  * the VMA. Failiing that, if the flags permit, it will evict an old VMA,
2990  * preferrably the oldest idle entry to make room for the new VMA.
2991  *
2992  * Returns:
2993  * 0 on success, negative error code otherwise.
2994  */
2995 static int
2996 i915_vma_insert(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
2997 {
2998         struct drm_i915_private *dev_priv = to_i915(vma->vm->dev);
2999         struct drm_i915_gem_object *obj = vma->obj;
3000         u64 start, end;
3001         int ret;
3002
3003         GEM_BUG_ON(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND));
3004         GEM_BUG_ON(drm_mm_node_allocated(&vma->node));
3005
3006         size = max(size, vma->size);
3007         if (flags & PIN_MAPPABLE)
3008                 size = i915_gem_get_ggtt_size(dev_priv, size,
3009                                               i915_gem_object_get_tiling(obj));
3010
3011         alignment = max(max(alignment, vma->display_alignment),
3012                         i915_gem_get_ggtt_alignment(dev_priv, size,
3013                                                     i915_gem_object_get_tiling(obj),
3014                                                     flags & PIN_MAPPABLE));
3015
3016         start = flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3017
3018         end = vma->vm->total;
3019         if (flags & PIN_MAPPABLE)
3020                 end = min_t(u64, end, dev_priv->ggtt.mappable_end);
3021         if (flags & PIN_ZONE_4G)
3022                 end = min_t(u64, end, (1ULL << 32) - PAGE_SIZE);
3023
3024         /* If binding the object/GGTT view requires more space than the entire
3025          * aperture has, reject it early before evicting everything in a vain
3026          * attempt to find space.
3027          */
3028         if (size > end) {
3029                 DRM_DEBUG("Attempting to bind an object larger than the aperture: request=%llu [object=%zd] > %s aperture=%llu\n",
3030                           size, obj->base.size,
3031                           flags & PIN_MAPPABLE ? "mappable" : "total",
3032                           end);
3033                 return -E2BIG;
3034         }
3035
3036         ret = i915_gem_object_get_pages(obj);
3037         if (ret)
3038                 return ret;
3039
3040         i915_gem_object_pin_pages(obj);
3041
3042         if (flags & PIN_OFFSET_FIXED) {
3043                 u64 offset = flags & PIN_OFFSET_MASK;
3044                 if (offset & (alignment - 1) || offset > end - size) {
3045                         ret = -EINVAL;
3046                         goto err_unpin;
3047                 }
3048
3049                 vma->node.start = offset;
3050                 vma->node.size = size;
3051                 vma->node.color = obj->cache_level;
3052                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3053                 if (ret) {
3054                         ret = i915_gem_evict_for_vma(vma);
3055                         if (ret == 0)
3056                                 ret = drm_mm_reserve_node(&vma->vm->mm, &vma->node);
3057                         if (ret)
3058                                 goto err_unpin;
3059                 }
3060         } else {
3061                 u32 search_flag, alloc_flag;
3062
3063                 if (flags & PIN_HIGH) {
3064                         search_flag = DRM_MM_SEARCH_BELOW;
3065                         alloc_flag = DRM_MM_CREATE_TOP;
3066                 } else {
3067                         search_flag = DRM_MM_SEARCH_DEFAULT;
3068                         alloc_flag = DRM_MM_CREATE_DEFAULT;
3069                 }
3070
3071                 /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3072                  * so we know that we always have a minimum alignment of 4096.
3073                  * The drm_mm range manager is optimised to return results
3074                  * with zero alignment, so where possible use the optimal
3075                  * path.
3076                  */
3077                 if (alignment <= 4096)
3078                         alignment = 0;
3079
3080 search_free:
3081                 ret = drm_mm_insert_node_in_range_generic(&vma->vm->mm,
3082                                                           &vma->node,
3083                                                           size, alignment,
3084                                                           obj->cache_level,
3085                                                           start, end,
3086                                                           search_flag,
3087                                                           alloc_flag);
3088                 if (ret) {
3089                         ret = i915_gem_evict_something(vma->vm, size, alignment,
3090                                                        obj->cache_level,
3091                                                        start, end,
3092                                                        flags);
3093                         if (ret == 0)
3094                                 goto search_free;
3095
3096                         goto err_unpin;
3097                 }
3098         }
3099         GEM_BUG_ON(!i915_gem_valid_gtt_space(vma, obj->cache_level));
3100
3101         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3102         list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3103         obj->bind_count++;
3104
3105         return 0;
3106
3107 err_unpin:
3108         i915_gem_object_unpin_pages(obj);
3109         return ret;
3110 }
3111
3112 bool
3113 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3114                         bool force)
3115 {
3116         /* If we don't have a page list set up, then we're not pinned
3117          * to GPU, and we can ignore the cache flush because it'll happen
3118          * again at bind time.
3119          */
3120         if (obj->pages == NULL)
3121                 return false;
3122
3123         /*
3124          * Stolen memory is always coherent with the GPU as it is explicitly
3125          * marked as wc by the system, or the system is cache-coherent.
3126          */
3127         if (obj->stolen || obj->phys_handle)
3128                 return false;
3129
3130         /* If the GPU is snooping the contents of the CPU cache,
3131          * we do not need to manually clear the CPU cache lines.  However,
3132          * the caches are only snooped when the render cache is
3133          * flushed/invalidated.  As we always have to emit invalidations
3134          * and flushes when moving into and out of the RENDER domain, correct
3135          * snooping behaviour occurs naturally as the result of our domain
3136          * tracking.
3137          */
3138         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3139                 obj->cache_dirty = true;
3140                 return false;
3141         }
3142
3143         trace_i915_gem_object_clflush(obj);
3144         drm_clflush_sg(obj->pages);
3145         obj->cache_dirty = false;
3146
3147         return true;
3148 }
3149
3150 /** Flushes the GTT write domain for the object if it's dirty. */
3151 static void
3152 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3153 {
3154         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3155
3156         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3157                 return;
3158
3159         /* No actual flushing is required for the GTT write domain.  Writes
3160          * to it "immediately" go to main memory as far as we know, so there's
3161          * no chipset flush.  It also doesn't land in render cache.
3162          *
3163          * However, we do have to enforce the order so that all writes through
3164          * the GTT land before any writes to the device, such as updates to
3165          * the GATT itself.
3166          *
3167          * We also have to wait a bit for the writes to land from the GTT.
3168          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3169          * timing. This issue has only been observed when switching quickly
3170          * between GTT writes and CPU reads from inside the kernel on recent hw,
3171          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3172          * system agents we cannot reproduce this behaviour).
3173          */
3174         wmb();
3175         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3176                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS].mmio_base));
3177
3178         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3179
3180         obj->base.write_domain = 0;
3181         trace_i915_gem_object_change_domain(obj,
3182                                             obj->base.read_domains,
3183                                             I915_GEM_DOMAIN_GTT);
3184 }
3185
3186 /** Flushes the CPU write domain for the object if it's dirty. */
3187 static void
3188 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3189 {
3190         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3191                 return;
3192
3193         if (i915_gem_clflush_object(obj, obj->pin_display))
3194                 i915_gem_chipset_flush(to_i915(obj->base.dev));
3195
3196         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3197
3198         obj->base.write_domain = 0;
3199         trace_i915_gem_object_change_domain(obj,
3200                                             obj->base.read_domains,
3201                                             I915_GEM_DOMAIN_CPU);
3202 }
3203
3204 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
3205 {
3206         struct i915_vma *vma;
3207
3208         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3209                 if (!i915_vma_is_ggtt(vma))
3210                         continue;
3211
3212                 if (i915_vma_is_active(vma))
3213                         continue;
3214
3215                 if (!drm_mm_node_allocated(&vma->node))
3216                         continue;
3217
3218                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3219         }
3220 }
3221
3222 /**
3223  * Moves a single object to the GTT read, and possibly write domain.
3224  * @obj: object to act on
3225  * @write: ask for write access or read only
3226  *
3227  * This function returns when the move is complete, including waiting on
3228  * flushes to occur.
3229  */
3230 int
3231 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3232 {
3233         uint32_t old_write_domain, old_read_domains;
3234         int ret;
3235
3236         ret = i915_gem_object_wait_rendering(obj, !write);
3237         if (ret)
3238                 return ret;
3239
3240         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3241                 return 0;
3242
3243         /* Flush and acquire obj->pages so that we are coherent through
3244          * direct access in memory with previous cached writes through
3245          * shmemfs and that our cache domain tracking remains valid.
3246          * For example, if the obj->filp was moved to swap without us
3247          * being notified and releasing the pages, we would mistakenly
3248          * continue to assume that the obj remained out of the CPU cached
3249          * domain.
3250          */
3251         ret = i915_gem_object_get_pages(obj);
3252         if (ret)
3253                 return ret;
3254
3255         i915_gem_object_flush_cpu_write_domain(obj);
3256
3257         /* Serialise direct access to this object with the barriers for
3258          * coherent writes from the GPU, by effectively invalidating the
3259          * GTT domain upon first access.
3260          */
3261         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3262                 mb();
3263
3264         old_write_domain = obj->base.write_domain;
3265         old_read_domains = obj->base.read_domains;
3266
3267         /* It should now be out of any other write domains, and we can update
3268          * the domain values for our changes.
3269          */
3270         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3271         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3272         if (write) {
3273                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3274                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3275                 obj->dirty = 1;
3276         }
3277
3278         trace_i915_gem_object_change_domain(obj,
3279                                             old_read_domains,
3280                                             old_write_domain);
3281
3282         /* And bump the LRU for this access */
3283         i915_gem_object_bump_inactive_ggtt(obj);
3284
3285         return 0;
3286 }
3287
3288 /**
3289  * Changes the cache-level of an object across all VMA.
3290  * @obj: object to act on
3291  * @cache_level: new cache level to set for the object
3292  *
3293  * After this function returns, the object will be in the new cache-level
3294  * across all GTT and the contents of the backing storage will be coherent,
3295  * with respect to the new cache-level. In order to keep the backing storage
3296  * coherent for all users, we only allow a single cache level to be set
3297  * globally on the object and prevent it from being changed whilst the
3298  * hardware is reading from the object. That is if the object is currently
3299  * on the scanout it will be set to uncached (or equivalent display
3300  * cache coherency) and all non-MOCS GPU access will also be uncached so
3301  * that all direct access to the scanout remains coherent.
3302  */
3303 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3304                                     enum i915_cache_level cache_level)
3305 {
3306         struct i915_vma *vma;
3307         int ret = 0;
3308
3309         if (obj->cache_level == cache_level)
3310                 goto out;
3311
3312         /* Inspect the list of currently bound VMA and unbind any that would
3313          * be invalid given the new cache-level. This is principally to
3314          * catch the issue of the CS prefetch crossing page boundaries and
3315          * reading an invalid PTE on older architectures.
3316          */
3317 restart:
3318         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3319                 if (!drm_mm_node_allocated(&vma->node))
3320                         continue;
3321
3322                 if (i915_vma_is_pinned(vma)) {
3323                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3324                         return -EBUSY;
3325                 }
3326
3327                 if (i915_gem_valid_gtt_space(vma, cache_level))
3328                         continue;
3329
3330                 ret = i915_vma_unbind(vma);
3331                 if (ret)
3332                         return ret;
3333
3334                 /* As unbinding may affect other elements in the
3335                  * obj->vma_list (due to side-effects from retiring
3336                  * an active vma), play safe and restart the iterator.
3337                  */
3338                 goto restart;
3339         }
3340
3341         /* We can reuse the existing drm_mm nodes but need to change the
3342          * cache-level on the PTE. We could simply unbind them all and
3343          * rebind with the correct cache-level on next use. However since
3344          * we already have a valid slot, dma mapping, pages etc, we may as
3345          * rewrite the PTE in the belief that doing so tramples upon less
3346          * state and so involves less work.
3347          */
3348         if (obj->bind_count) {
3349                 /* Before we change the PTE, the GPU must not be accessing it.
3350                  * If we wait upon the object, we know that all the bound
3351                  * VMA are no longer active.
3352                  */
3353                 ret = i915_gem_object_wait_rendering(obj, false);
3354                 if (ret)
3355                         return ret;
3356
3357                 if (!HAS_LLC(obj->base.dev) && cache_level != I915_CACHE_NONE) {
3358                         /* Access to snoopable pages through the GTT is
3359                          * incoherent and on some machines causes a hard
3360                          * lockup. Relinquish the CPU mmaping to force
3361                          * userspace to refault in the pages and we can
3362                          * then double check if the GTT mapping is still
3363                          * valid for that pointer access.
3364                          */
3365                         i915_gem_release_mmap(obj);
3366
3367                         /* As we no longer need a fence for GTT access,
3368                          * we can relinquish it now (and so prevent having
3369                          * to steal a fence from someone else on the next
3370                          * fence request). Note GPU activity would have
3371                          * dropped the fence as all snoopable access is
3372                          * supposed to be linear.
3373                          */
3374                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3375                                 ret = i915_vma_put_fence(vma);
3376                                 if (ret)
3377                                         return ret;
3378                         }
3379                 } else {
3380                         /* We either have incoherent backing store and
3381                          * so no GTT access or the architecture is fully
3382                          * coherent. In such cases, existing GTT mmaps
3383                          * ignore the cache bit in the PTE and we can
3384                          * rewrite it without confusing the GPU or having
3385                          * to force userspace to fault back in its mmaps.
3386                          */
3387                 }
3388
3389                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3390                         if (!drm_mm_node_allocated(&vma->node))
3391                                 continue;
3392
3393                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3394                         if (ret)
3395                                 return ret;
3396                 }
3397         }
3398
3399         list_for_each_entry(vma, &obj->vma_list, obj_link)
3400                 vma->node.color = cache_level;
3401         obj->cache_level = cache_level;
3402
3403 out:
3404         /* Flush the dirty CPU caches to the backing storage so that the
3405          * object is now coherent at its new cache level (with respect
3406          * to the access domain).
3407          */
3408         if (obj->cache_dirty && cpu_write_needs_clflush(obj)) {
3409                 if (i915_gem_clflush_object(obj, true))
3410                         i915_gem_chipset_flush(to_i915(obj->base.dev));
3411         }
3412
3413         return 0;
3414 }
3415
3416 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3417                                struct drm_file *file)
3418 {
3419         struct drm_i915_gem_caching *args = data;
3420         struct drm_i915_gem_object *obj;
3421
3422         obj = i915_gem_object_lookup(file, args->handle);
3423         if (!obj)
3424                 return -ENOENT;
3425
3426         switch (obj->cache_level) {
3427         case I915_CACHE_LLC:
3428         case I915_CACHE_L3_LLC:
3429                 args->caching = I915_CACHING_CACHED;
3430                 break;
3431
3432         case I915_CACHE_WT:
3433                 args->caching = I915_CACHING_DISPLAY;
3434                 break;
3435
3436         default:
3437                 args->caching = I915_CACHING_NONE;
3438                 break;
3439         }
3440
3441         i915_gem_object_put_unlocked(obj);
3442         return 0;
3443 }
3444
3445 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3446                                struct drm_file *file)
3447 {
3448         struct drm_i915_private *dev_priv = to_i915(dev);
3449         struct drm_i915_gem_caching *args = data;
3450         struct drm_i915_gem_object *obj;
3451         enum i915_cache_level level;
3452         int ret;
3453
3454         switch (args->caching) {
3455         case I915_CACHING_NONE:
3456                 level = I915_CACHE_NONE;
3457                 break;
3458         case I915_CACHING_CACHED:
3459                 /*
3460                  * Due to a HW issue on BXT A stepping, GPU stores via a
3461                  * snooped mapping may leave stale data in a corresponding CPU
3462                  * cacheline, whereas normally such cachelines would get
3463                  * invalidated.
3464                  */
3465                 if (!HAS_LLC(dev) && !HAS_SNOOP(dev))
3466                         return -ENODEV;
3467
3468                 level = I915_CACHE_LLC;
3469                 break;
3470         case I915_CACHING_DISPLAY:
3471                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3472                 break;
3473         default:
3474                 return -EINVAL;
3475         }
3476
3477         intel_runtime_pm_get(dev_priv);
3478
3479         ret = i915_mutex_lock_interruptible(dev);
3480         if (ret)
3481                 goto rpm_put;
3482
3483         obj = i915_gem_object_lookup(file, args->handle);
3484         if (!obj) {
3485                 ret = -ENOENT;
3486                 goto unlock;
3487         }
3488
3489         ret = i915_gem_object_set_cache_level(obj, level);
3490
3491         i915_gem_object_put(obj);
3492 unlock:
3493         mutex_unlock(&dev->struct_mutex);
3494 rpm_put:
3495         intel_runtime_pm_put(dev_priv);
3496
3497         return ret;
3498 }
3499
3500 /*
3501  * Prepare buffer for display plane (scanout, cursors, etc).
3502  * Can be called from an uninterruptible phase (modesetting) and allows
3503  * any flushes to be pipelined (for pageflips).
3504  */
3505 struct i915_vma *
3506 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3507                                      u32 alignment,
3508                                      const struct i915_ggtt_view *view)
3509 {
3510         struct i915_vma *vma;
3511         u32 old_read_domains, old_write_domain;
3512         int ret;
3513
3514         /* Mark the pin_display early so that we account for the
3515          * display coherency whilst setting up the cache domains.
3516          */
3517         obj->pin_display++;
3518
3519         /* The display engine is not coherent with the LLC cache on gen6.  As
3520          * a result, we make sure that the pinning that is about to occur is
3521          * done with uncached PTEs. This is lowest common denominator for all
3522          * chipsets.
3523          *
3524          * However for gen6+, we could do better by using the GFDT bit instead
3525          * of uncaching, which would allow us to flush all the LLC-cached data
3526          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3527          */
3528         ret = i915_gem_object_set_cache_level(obj,
3529                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3530         if (ret) {
3531                 vma = ERR_PTR(ret);
3532                 goto err_unpin_display;
3533         }
3534
3535         /* As the user may map the buffer once pinned in the display plane
3536          * (e.g. libkms for the bootup splash), we have to ensure that we
3537          * always use map_and_fenceable for all scanout buffers. However,
3538          * it may simply be too big to fit into mappable, in which case
3539          * put it anyway and hope that userspace can cope (but always first
3540          * try to preserve the existing ABI).
3541          */
3542         vma = ERR_PTR(-ENOSPC);
3543         if (view->type == I915_GGTT_VIEW_NORMAL)
3544                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3545                                                PIN_MAPPABLE | PIN_NONBLOCK);
3546         if (IS_ERR(vma))
3547                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, 0);
3548         if (IS_ERR(vma))
3549                 goto err_unpin_display;
3550
3551         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3552
3553         WARN_ON(obj->pin_display > i915_vma_pin_count(vma));
3554
3555         i915_gem_object_flush_cpu_write_domain(obj);
3556
3557         old_write_domain = obj->base.write_domain;
3558         old_read_domains = obj->base.read_domains;
3559
3560         /* It should now be out of any other write domains, and we can update
3561          * the domain values for our changes.
3562          */
3563         obj->base.write_domain = 0;
3564         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3565
3566         trace_i915_gem_object_change_domain(obj,
3567                                             old_read_domains,
3568                                             old_write_domain);
3569
3570         return vma;
3571
3572 err_unpin_display:
3573         obj->pin_display--;
3574         return vma;
3575 }
3576
3577 void
3578 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3579 {
3580         if (WARN_ON(vma->obj->pin_display == 0))
3581                 return;
3582
3583         if (--vma->obj->pin_display == 0)
3584                 vma->display_alignment = 0;
3585
3586         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3587         if (!i915_vma_is_active(vma))
3588                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
3589
3590         i915_vma_unpin(vma);
3591         WARN_ON(vma->obj->pin_display > i915_vma_pin_count(vma));
3592 }
3593
3594 /**
3595  * Moves a single object to the CPU read, and possibly write domain.
3596  * @obj: object to act on
3597  * @write: requesting write or read-only access
3598  *
3599  * This function returns when the move is complete, including waiting on
3600  * flushes to occur.
3601  */
3602 int
3603 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3604 {
3605         uint32_t old_write_domain, old_read_domains;
3606         int ret;
3607
3608         ret = i915_gem_object_wait_rendering(obj, !write);
3609         if (ret)
3610                 return ret;
3611
3612         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3613                 return 0;
3614
3615         i915_gem_object_flush_gtt_write_domain(obj);
3616
3617         old_write_domain = obj->base.write_domain;
3618         old_read_domains = obj->base.read_domains;
3619
3620         /* Flush the CPU cache if it's still invalid. */
3621         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3622                 i915_gem_clflush_object(obj, false);
3623
3624                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3625         }
3626
3627         /* It should now be out of any other write domains, and we can update
3628          * the domain values for our changes.
3629          */
3630         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3631
3632         /* If we're writing through the CPU, then the GPU read domains will
3633          * need to be invalidated at next use.
3634          */
3635         if (write) {
3636                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3637                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3638         }
3639
3640         trace_i915_gem_object_change_domain(obj,
3641                                             old_read_domains,
3642                                             old_write_domain);
3643
3644         return 0;
3645 }
3646
3647 /* Throttle our rendering by waiting until the ring has completed our requests
3648  * emitted over 20 msec ago.
3649  *
3650  * Note that if we were to use the current jiffies each time around the loop,
3651  * we wouldn't escape the function with any frames outstanding if the time to
3652  * render a frame was over 20ms.
3653  *
3654  * This should get us reasonable parallelism between CPU and GPU but also
3655  * relatively low latency when blocking on a particular request to finish.
3656  */
3657 static int
3658 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3659 {
3660         struct drm_i915_private *dev_priv = to_i915(dev);
3661         struct drm_i915_file_private *file_priv = file->driver_priv;
3662         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3663         struct drm_i915_gem_request *request, *target = NULL;
3664         int ret;
3665
3666         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3667         if (ret)
3668                 return ret;
3669
3670         /* ABI: return -EIO if already wedged */
3671         if (i915_terminally_wedged(&dev_priv->gpu_error))
3672                 return -EIO;
3673
3674         spin_lock(&file_priv->mm.lock);
3675         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3676                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3677                         break;
3678
3679                 /*
3680                  * Note that the request might not have been submitted yet.
3681                  * In which case emitted_jiffies will be zero.
3682                  */
3683                 if (!request->emitted_jiffies)
3684                         continue;
3685
3686                 target = request;
3687         }
3688         if (target)
3689                 i915_gem_request_get(target);
3690         spin_unlock(&file_priv->mm.lock);
3691
3692         if (target == NULL)
3693                 return 0;
3694
3695         ret = i915_wait_request(target, I915_WAIT_INTERRUPTIBLE, NULL, NULL);
3696         i915_gem_request_put(target);
3697
3698         return ret;
3699 }
3700
3701 static bool
3702 i915_vma_misplaced(struct i915_vma *vma, u64 size, u64 alignment, u64 flags)
3703 {
3704         if (!drm_mm_node_allocated(&vma->node))
3705                 return false;
3706
3707         if (vma->node.size < size)
3708                 return true;
3709
3710         if (alignment && vma->node.start & (alignment - 1))
3711                 return true;
3712
3713         if (flags & PIN_MAPPABLE && !i915_vma_is_map_and_fenceable(vma))
3714                 return true;
3715
3716         if (flags & PIN_OFFSET_BIAS &&
3717             vma->node.start < (flags & PIN_OFFSET_MASK))
3718                 return true;
3719
3720         if (flags & PIN_OFFSET_FIXED &&
3721             vma->node.start != (flags & PIN_OFFSET_MASK))
3722                 return true;
3723
3724         return false;
3725 }
3726
3727 void __i915_vma_set_map_and_fenceable(struct i915_vma *vma)
3728 {
3729         struct drm_i915_gem_object *obj = vma->obj;
3730         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3731         bool mappable, fenceable;
3732         u32 fence_size, fence_alignment;
3733
3734         fence_size = i915_gem_get_ggtt_size(dev_priv,
3735                                             vma->size,
3736                                             i915_gem_object_get_tiling(obj));
3737         fence_alignment = i915_gem_get_ggtt_alignment(dev_priv,
3738                                                       vma->size,
3739                                                       i915_gem_object_get_tiling(obj),
3740                                                       true);
3741
3742         fenceable = (vma->node.size == fence_size &&
3743                      (vma->node.start & (fence_alignment - 1)) == 0);
3744
3745         mappable = (vma->node.start + fence_size <=
3746                     dev_priv->ggtt.mappable_end);
3747
3748         if (mappable && fenceable)
3749                 vma->flags |= I915_VMA_CAN_FENCE;
3750         else
3751                 vma->flags &= ~I915_VMA_CAN_FENCE;
3752 }
3753
3754 int __i915_vma_do_pin(struct i915_vma *vma,
3755                       u64 size, u64 alignment, u64 flags)
3756 {
3757         unsigned int bound = vma->flags;
3758         int ret;
3759
3760         GEM_BUG_ON((flags & (PIN_GLOBAL | PIN_USER)) == 0);
3761         GEM_BUG_ON((flags & PIN_GLOBAL) && !i915_vma_is_ggtt(vma));
3762
3763         if (WARN_ON(bound & I915_VMA_PIN_OVERFLOW)) {
3764                 ret = -EBUSY;
3765                 goto err;
3766         }
3767
3768         if ((bound & I915_VMA_BIND_MASK) == 0) {
3769                 ret = i915_vma_insert(vma, size, alignment, flags);
3770                 if (ret)
3771                         goto err;
3772         }
3773
3774         ret = i915_vma_bind(vma, vma->obj->cache_level, flags);
3775         if (ret)
3776                 goto err;
3777
3778         if ((bound ^ vma->flags) & I915_VMA_GLOBAL_BIND)
3779                 __i915_vma_set_map_and_fenceable(vma);
3780
3781         GEM_BUG_ON(i915_vma_misplaced(vma, size, alignment, flags));
3782         return 0;
3783
3784 err:
3785         __i915_vma_unpin(vma);
3786         return ret;
3787 }
3788
3789 struct i915_vma *
3790 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3791                          const struct i915_ggtt_view *view,
3792                          u64 size,
3793                          u64 alignment,
3794                          u64 flags)
3795 {
3796         struct i915_address_space *vm = &to_i915(obj->base.dev)->ggtt.base;
3797         struct i915_vma *vma;
3798         int ret;
3799
3800         vma = i915_gem_obj_lookup_or_create_vma(obj, vm, view);
3801         if (IS_ERR(vma))
3802                 return vma;
3803
3804         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3805                 if (flags & PIN_NONBLOCK &&
3806                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3807                         return ERR_PTR(-ENOSPC);
3808
3809                 WARN(i915_vma_is_pinned(vma),
3810                      "bo is already pinned in ggtt with incorrect alignment:"
3811                      " offset=%08x, req.alignment=%llx,"
3812                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3813                      i915_ggtt_offset(vma), alignment,
3814                      !!(flags & PIN_MAPPABLE),
3815                      i915_vma_is_map_and_fenceable(vma));
3816                 ret = i915_vma_unbind(vma);
3817                 if (ret)
3818                         return ERR_PTR(ret);
3819         }
3820
3821         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3822         if (ret)
3823                 return ERR_PTR(ret);
3824
3825         return vma;
3826 }
3827
3828 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3829 {
3830         /* Note that we could alias engines in the execbuf API, but
3831          * that would be very unwise as it prevents userspace from
3832          * fine control over engine selection. Ahem.
3833          *
3834          * This should be something like EXEC_MAX_ENGINE instead of
3835          * I915_NUM_ENGINES.
3836          */
3837         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3838         return 0x10000 << id;
3839 }
3840
3841 static __always_inline unsigned int __busy_write_id(unsigned int id)
3842 {
3843         /* The uABI guarantees an active writer is also amongst the read
3844          * engines. This would be true if we accessed the activity tracking
3845          * under the lock, but as we perform the lookup of the object and
3846          * its activity locklessly we can not guarantee that the last_write
3847          * being active implies that we have set the same engine flag from
3848          * last_read - hence we always set both read and write busy for
3849          * last_write.
3850          */
3851         return id | __busy_read_flag(id);
3852 }
3853
3854 static __always_inline unsigned int
3855 __busy_set_if_active(const struct i915_gem_active *active,
3856                      unsigned int (*flag)(unsigned int id))
3857 {
3858         struct drm_i915_gem_request *request;
3859
3860         request = rcu_dereference(active->request);
3861         if (!request || i915_gem_request_completed(request))
3862                 return 0;
3863
3864         /* This is racy. See __i915_gem_active_get_rcu() for an in detail
3865          * discussion of how to handle the race correctly, but for reporting
3866          * the busy state we err on the side of potentially reporting the
3867          * wrong engine as being busy (but we guarantee that the result
3868          * is at least self-consistent).
3869          *
3870          * As we use SLAB_DESTROY_BY_RCU, the request may be reallocated
3871          * whilst we are inspecting it, even under the RCU read lock as we are.
3872          * This means that there is a small window for the engine and/or the
3873          * seqno to have been overwritten. The seqno will always be in the
3874          * future compared to the intended, and so we know that if that
3875          * seqno is idle (on whatever engine) our request is idle and the
3876          * return 0 above is correct.
3877          *
3878          * The issue is that if the engine is switched, it is just as likely
3879          * to report that it is busy (but since the switch happened, we know
3880          * the request should be idle). So there is a small chance that a busy
3881          * result is actually the wrong engine.
3882          *
3883          * So why don't we care?
3884          *
3885          * For starters, the busy ioctl is a heuristic that is by definition
3886          * racy. Even with perfect serialisation in the driver, the hardware
3887          * state is constantly advancing - the state we report to the user
3888          * is stale.
3889          *
3890          * The critical information for the busy-ioctl is whether the object
3891          * is idle as userspace relies on that to detect whether its next
3892          * access will stall, or if it has missed submitting commands to
3893          * the hardware allowing the GPU to stall. We never generate a
3894          * false-positive for idleness, thus busy-ioctl is reliable at the
3895          * most fundamental level, and we maintain the guarantee that a
3896          * busy object left to itself will eventually become idle (and stay
3897          * idle!).
3898          *
3899          * We allow ourselves the leeway of potentially misreporting the busy
3900          * state because that is an optimisation heuristic that is constantly
3901          * in flux. Being quickly able to detect the busy/idle state is much
3902          * more important than accurate logging of exactly which engines were
3903          * busy.
3904          *
3905          * For accuracy in reporting the engine, we could use
3906          *
3907          *      result = 0;
3908          *      request = __i915_gem_active_get_rcu(active);
3909          *      if (request) {
3910          *              if (!i915_gem_request_completed(request))
3911          *                      result = flag(request->engine->exec_id);
3912          *              i915_gem_request_put(request);
3913          *      }
3914          *
3915          * but that still remains susceptible to both hardware and userspace
3916          * races. So we accept making the result of that race slightly worse,
3917          * given the rarity of the race and its low impact on the result.
3918          */
3919         return flag(READ_ONCE(request->engine->exec_id));
3920 }
3921
3922 static __always_inline unsigned int
3923 busy_check_reader(const struct i915_gem_active *active)
3924 {
3925         return __busy_set_if_active(active, __busy_read_flag);
3926 }
3927
3928 static __always_inline unsigned int
3929 busy_check_writer(const struct i915_gem_active *active)
3930 {
3931         return __busy_set_if_active(active, __busy_write_id);
3932 }
3933
3934 int
3935 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3936                     struct drm_file *file)
3937 {
3938         struct drm_i915_gem_busy *args = data;
3939         struct drm_i915_gem_object *obj;
3940         unsigned long active;
3941
3942         obj = i915_gem_object_lookup(file, args->handle);
3943         if (!obj)
3944                 return -ENOENT;
3945
3946         args->busy = 0;
3947         active = __I915_BO_ACTIVE(obj);
3948         if (active) {
3949                 int idx;
3950
3951                 /* Yes, the lookups are intentionally racy.
3952                  *
3953                  * First, we cannot simply rely on __I915_BO_ACTIVE. We have
3954                  * to regard the value as stale and as our ABI guarantees
3955                  * forward progress, we confirm the status of each active
3956                  * request with the hardware.
3957                  *
3958                  * Even though we guard the pointer lookup by RCU, that only
3959                  * guarantees that the pointer and its contents remain
3960                  * dereferencable and does *not* mean that the request we
3961                  * have is the same as the one being tracked by the object.
3962                  *
3963                  * Consider that we lookup the request just as it is being
3964                  * retired and freed. We take a local copy of the pointer,
3965                  * but before we add its engine into the busy set, the other
3966                  * thread reallocates it and assigns it to a task on another
3967                  * engine with a fresh and incomplete seqno. Guarding against
3968                  * that requires careful serialisation and reference counting,
3969                  * i.e. using __i915_gem_active_get_request_rcu(). We don't,
3970                  * instead we expect that if the result is busy, which engines
3971                  * are busy is not completely reliable - we only guarantee
3972                  * that the object was busy.
3973                  */
3974                 rcu_read_lock();
3975
3976                 for_each_active(active, idx)
3977                         args->busy |= busy_check_reader(&obj->last_read[idx]);
3978
3979                 /* For ABI sanity, we only care that the write engine is in
3980                  * the set of read engines. This should be ensured by the
3981                  * ordering of setting last_read/last_write in
3982                  * i915_vma_move_to_active(), and then in reverse in retire.
3983                  * However, for good measure, we always report the last_write
3984                  * request as a busy read as well as being a busy write.
3985                  *
3986                  * We don't care that the set of active read/write engines
3987                  * may change during construction of the result, as it is
3988                  * equally liable to change before userspace can inspect
3989                  * the result.
3990                  */
3991                 args->busy |= busy_check_writer(&obj->last_write);
3992
3993                 rcu_read_unlock();
3994         }
3995
3996         i915_gem_object_put_unlocked(obj);
3997         return 0;
3998 }
3999
4000 int
4001 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4002                         struct drm_file *file_priv)
4003 {
4004         return i915_gem_ring_throttle(dev, file_priv);
4005 }
4006
4007 int
4008 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4009                        struct drm_file *file_priv)
4010 {
4011         struct drm_i915_private *dev_priv = to_i915(dev);
4012         struct drm_i915_gem_madvise *args = data;
4013         struct drm_i915_gem_object *obj;
4014         int ret;
4015
4016         switch (args->madv) {
4017         case I915_MADV_DONTNEED:
4018         case I915_MADV_WILLNEED:
4019             break;
4020         default:
4021             return -EINVAL;
4022         }
4023
4024         ret = i915_mutex_lock_interruptible(dev);
4025         if (ret)
4026                 return ret;
4027
4028         obj = i915_gem_object_lookup(file_priv, args->handle);
4029         if (!obj) {
4030                 ret = -ENOENT;
4031                 goto unlock;
4032         }
4033
4034         if (obj->pages &&
4035             i915_gem_object_is_tiled(obj) &&
4036             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4037                 if (obj->madv == I915_MADV_WILLNEED)
4038                         i915_gem_object_unpin_pages(obj);
4039                 if (args->madv == I915_MADV_WILLNEED)
4040                         i915_gem_object_pin_pages(obj);
4041         }
4042
4043         if (obj->madv != __I915_MADV_PURGED)
4044                 obj->madv = args->madv;
4045
4046         /* if the object is no longer attached, discard its backing storage */
4047         if (obj->madv == I915_MADV_DONTNEED && obj->pages == NULL)
4048                 i915_gem_object_truncate(obj);
4049
4050         args->retained = obj->madv != __I915_MADV_PURGED;
4051
4052         i915_gem_object_put(obj);
4053 unlock:
4054         mutex_unlock(&dev->struct_mutex);
4055         return ret;
4056 }
4057
4058 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4059                           const struct drm_i915_gem_object_ops *ops)
4060 {
4061         int i;
4062
4063         INIT_LIST_HEAD(&obj->global_list);
4064         for (i = 0; i < I915_NUM_ENGINES; i++)
4065                 init_request_active(&obj->last_read[i],
4066                                     i915_gem_object_retire__read);
4067         init_request_active(&obj->last_write,
4068                             i915_gem_object_retire__write);
4069         INIT_LIST_HEAD(&obj->obj_exec_link);
4070         INIT_LIST_HEAD(&obj->vma_list);
4071         INIT_LIST_HEAD(&obj->batch_pool_link);
4072
4073         obj->ops = ops;
4074
4075         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4076         obj->madv = I915_MADV_WILLNEED;
4077
4078         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4079 }
4080
4081 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4082         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE,
4083         .get_pages = i915_gem_object_get_pages_gtt,
4084         .put_pages = i915_gem_object_put_pages_gtt,
4085 };
4086
4087 struct drm_i915_gem_object *i915_gem_object_create(struct drm_device *dev,
4088                                                   size_t size)
4089 {
4090         struct drm_i915_gem_object *obj;
4091         struct address_space *mapping;
4092         gfp_t mask;
4093         int ret;
4094
4095         obj = i915_gem_object_alloc(dev);
4096         if (obj == NULL)
4097                 return ERR_PTR(-ENOMEM);
4098
4099         ret = drm_gem_object_init(dev, &obj->base, size);
4100         if (ret)
4101                 goto fail;
4102
4103         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4104         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4105                 /* 965gm cannot relocate objects above 4GiB. */
4106                 mask &= ~__GFP_HIGHMEM;
4107                 mask |= __GFP_DMA32;
4108         }
4109
4110         mapping = obj->base.filp->f_mapping;
4111         mapping_set_gfp_mask(mapping, mask);
4112
4113         i915_gem_object_init(obj, &i915_gem_object_ops);
4114
4115         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4116         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4117
4118         if (HAS_LLC(dev)) {
4119                 /* On some devices, we can have the GPU use the LLC (the CPU
4120                  * cache) for about a 10% performance improvement
4121                  * compared to uncached.  Graphics requests other than
4122                  * display scanout are coherent with the CPU in
4123                  * accessing this cache.  This means in this mode we
4124                  * don't need to clflush on the CPU side, and on the
4125                  * GPU side we only need to flush internal caches to
4126                  * get data visible to the CPU.
4127                  *
4128                  * However, we maintain the display planes as UC, and so
4129                  * need to rebind when first used as such.
4130                  */
4131                 obj->cache_level = I915_CACHE_LLC;
4132         } else
4133                 obj->cache_level = I915_CACHE_NONE;
4134
4135         trace_i915_gem_object_create(obj);
4136
4137         return obj;
4138
4139 fail:
4140         i915_gem_object_free(obj);
4141
4142         return ERR_PTR(ret);
4143 }
4144
4145 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4146 {
4147         /* If we are the last user of the backing storage (be it shmemfs
4148          * pages or stolen etc), we know that the pages are going to be
4149          * immediately released. In this case, we can then skip copying
4150          * back the contents from the GPU.
4151          */
4152
4153         if (obj->madv != I915_MADV_WILLNEED)
4154                 return false;
4155
4156         if (obj->base.filp == NULL)
4157                 return true;
4158
4159         /* At first glance, this looks racy, but then again so would be
4160          * userspace racing mmap against close. However, the first external
4161          * reference to the filp can only be obtained through the
4162          * i915_gem_mmap_ioctl() which safeguards us against the user
4163          * acquiring such a reference whilst we are in the middle of
4164          * freeing the object.
4165          */
4166         return atomic_long_read(&obj->base.filp->f_count) == 1;
4167 }
4168
4169 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4170 {
4171         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4172         struct drm_device *dev = obj->base.dev;
4173         struct drm_i915_private *dev_priv = to_i915(dev);
4174         struct i915_vma *vma, *next;
4175
4176         intel_runtime_pm_get(dev_priv);
4177
4178         trace_i915_gem_object_destroy(obj);
4179
4180         /* All file-owned VMA should have been released by this point through
4181          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4182          * However, the object may also be bound into the global GTT (e.g.
4183          * older GPUs without per-process support, or for direct access through
4184          * the GTT either for the user or for scanout). Those VMA still need to
4185          * unbound now.
4186          */
4187         list_for_each_entry_safe(vma, next, &obj->vma_list, obj_link) {
4188                 GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4189                 GEM_BUG_ON(i915_vma_is_active(vma));
4190                 vma->flags &= ~I915_VMA_PIN_MASK;
4191                 i915_vma_close(vma);
4192         }
4193         GEM_BUG_ON(obj->bind_count);
4194
4195         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4196          * before progressing. */
4197         if (obj->stolen)
4198                 i915_gem_object_unpin_pages(obj);
4199
4200         WARN_ON(atomic_read(&obj->frontbuffer_bits));
4201
4202         if (obj->pages && obj->madv == I915_MADV_WILLNEED &&
4203             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES &&
4204             i915_gem_object_is_tiled(obj))
4205                 i915_gem_object_unpin_pages(obj);
4206
4207         if (WARN_ON(obj->pages_pin_count))
4208                 obj->pages_pin_count = 0;
4209         if (discard_backing_storage(obj))
4210                 obj->madv = I915_MADV_DONTNEED;
4211         i915_gem_object_put_pages(obj);
4212
4213         BUG_ON(obj->pages);
4214
4215         if (obj->base.import_attach)
4216                 drm_prime_gem_destroy(&obj->base, NULL);
4217
4218         if (obj->ops->release)
4219                 obj->ops->release(obj);
4220
4221         drm_gem_object_release(&obj->base);
4222         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4223
4224         kfree(obj->bit_17);
4225         i915_gem_object_free(obj);
4226
4227         intel_runtime_pm_put(dev_priv);
4228 }
4229
4230 int i915_gem_suspend(struct drm_device *dev)
4231 {
4232         struct drm_i915_private *dev_priv = to_i915(dev);
4233         int ret;
4234
4235         intel_suspend_gt_powersave(dev_priv);
4236
4237         mutex_lock(&dev->struct_mutex);
4238
4239         /* We have to flush all the executing contexts to main memory so
4240          * that they can saved in the hibernation image. To ensure the last
4241          * context image is coherent, we have to switch away from it. That
4242          * leaves the dev_priv->kernel_context still active when
4243          * we actually suspend, and its image in memory may not match the GPU
4244          * state. Fortunately, the kernel_context is disposable and we do
4245          * not rely on its state.
4246          */
4247         ret = i915_gem_switch_to_kernel_context(dev_priv);
4248         if (ret)
4249                 goto err;
4250
4251         ret = i915_gem_wait_for_idle(dev_priv,
4252                                      I915_WAIT_INTERRUPTIBLE |
4253                                      I915_WAIT_LOCKED);
4254         if (ret)
4255                 goto err;
4256
4257         i915_gem_retire_requests(dev_priv);
4258
4259         i915_gem_context_lost(dev_priv);
4260         mutex_unlock(&dev->struct_mutex);
4261
4262         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4263         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4264         flush_delayed_work(&dev_priv->gt.idle_work);
4265
4266         /* Assert that we sucessfully flushed all the work and
4267          * reset the GPU back to its idle, low power state.
4268          */
4269         WARN_ON(dev_priv->gt.awake);
4270
4271         return 0;
4272
4273 err:
4274         mutex_unlock(&dev->struct_mutex);
4275         return ret;
4276 }
4277
4278 void i915_gem_resume(struct drm_device *dev)
4279 {
4280         struct drm_i915_private *dev_priv = to_i915(dev);
4281
4282         mutex_lock(&dev->struct_mutex);
4283         i915_gem_restore_gtt_mappings(dev);
4284
4285         /* As we didn't flush the kernel context before suspend, we cannot
4286          * guarantee that the context image is complete. So let's just reset
4287          * it and start again.
4288          */
4289         dev_priv->gt.resume(dev_priv);
4290
4291         mutex_unlock(&dev->struct_mutex);
4292 }
4293
4294 void i915_gem_init_swizzling(struct drm_device *dev)
4295 {
4296         struct drm_i915_private *dev_priv = to_i915(dev);
4297
4298         if (INTEL_INFO(dev)->gen < 5 ||
4299             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4300                 return;
4301
4302         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4303                                  DISP_TILE_SURFACE_SWIZZLING);
4304
4305         if (IS_GEN5(dev))
4306                 return;
4307
4308         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4309         if (IS_GEN6(dev))
4310                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4311         else if (IS_GEN7(dev))
4312                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4313         else if (IS_GEN8(dev))
4314                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4315         else
4316                 BUG();
4317 }
4318
4319 static void init_unused_ring(struct drm_device *dev, u32 base)
4320 {
4321         struct drm_i915_private *dev_priv = to_i915(dev);
4322
4323         I915_WRITE(RING_CTL(base), 0);
4324         I915_WRITE(RING_HEAD(base), 0);
4325         I915_WRITE(RING_TAIL(base), 0);
4326         I915_WRITE(RING_START(base), 0);
4327 }
4328
4329 static void init_unused_rings(struct drm_device *dev)
4330 {
4331         if (IS_I830(dev)) {
4332                 init_unused_ring(dev, PRB1_BASE);
4333                 init_unused_ring(dev, SRB0_BASE);
4334                 init_unused_ring(dev, SRB1_BASE);
4335                 init_unused_ring(dev, SRB2_BASE);
4336                 init_unused_ring(dev, SRB3_BASE);
4337         } else if (IS_GEN2(dev)) {
4338                 init_unused_ring(dev, SRB0_BASE);
4339                 init_unused_ring(dev, SRB1_BASE);
4340         } else if (IS_GEN3(dev)) {
4341                 init_unused_ring(dev, PRB1_BASE);
4342                 init_unused_ring(dev, PRB2_BASE);
4343         }
4344 }
4345
4346 int
4347 i915_gem_init_hw(struct drm_device *dev)
4348 {
4349         struct drm_i915_private *dev_priv = to_i915(dev);
4350         struct intel_engine_cs *engine;
4351         int ret;
4352
4353         /* Double layer security blanket, see i915_gem_init() */
4354         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4355
4356         if (HAS_EDRAM(dev) && INTEL_GEN(dev_priv) < 9)
4357                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4358
4359         if (IS_HASWELL(dev))
4360                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4361                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4362
4363         if (HAS_PCH_NOP(dev)) {
4364                 if (IS_IVYBRIDGE(dev)) {
4365                         u32 temp = I915_READ(GEN7_MSG_CTL);
4366                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4367                         I915_WRITE(GEN7_MSG_CTL, temp);
4368                 } else if (INTEL_INFO(dev)->gen >= 7) {
4369                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4370                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4371                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4372                 }
4373         }
4374
4375         i915_gem_init_swizzling(dev);
4376
4377         /*
4378          * At least 830 can leave some of the unused rings
4379          * "active" (ie. head != tail) after resume which
4380          * will prevent c3 entry. Makes sure all unused rings
4381          * are totally idle.
4382          */
4383         init_unused_rings(dev);
4384
4385         BUG_ON(!dev_priv->kernel_context);
4386
4387         ret = i915_ppgtt_init_hw(dev);
4388         if (ret) {
4389                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4390                 goto out;
4391         }
4392
4393         /* Need to do basic initialisation of all rings first: */
4394         for_each_engine(engine, dev_priv) {
4395                 ret = engine->init_hw(engine);
4396                 if (ret)
4397                         goto out;
4398         }
4399
4400         intel_mocs_init_l3cc_table(dev);
4401
4402         /* We can't enable contexts until all firmware is loaded */
4403         ret = intel_guc_setup(dev);
4404         if (ret)
4405                 goto out;
4406
4407 out:
4408         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4409         return ret;
4410 }
4411
4412 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4413 {
4414         if (INTEL_INFO(dev_priv)->gen < 6)
4415                 return false;
4416
4417         /* TODO: make semaphores and Execlists play nicely together */
4418         if (i915.enable_execlists)
4419                 return false;
4420
4421         if (value >= 0)
4422                 return value;
4423
4424 #ifdef CONFIG_INTEL_IOMMU
4425         /* Enable semaphores on SNB when IO remapping is off */
4426         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4427                 return false;
4428 #endif
4429
4430         return true;
4431 }
4432
4433 int i915_gem_init(struct drm_device *dev)
4434 {
4435         struct drm_i915_private *dev_priv = to_i915(dev);
4436         int ret;
4437
4438         mutex_lock(&dev->struct_mutex);
4439
4440         if (!i915.enable_execlists) {
4441                 dev_priv->gt.resume = intel_legacy_submission_resume;
4442                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4443         } else {
4444                 dev_priv->gt.resume = intel_lr_context_resume;
4445                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4446         }
4447
4448         /* This is just a security blanket to placate dragons.
4449          * On some systems, we very sporadically observe that the first TLBs
4450          * used by the CS may be stale, despite us poking the TLB reset. If
4451          * we hold the forcewake during initialisation these problems
4452          * just magically go away.
4453          */
4454         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4455
4456         i915_gem_init_userptr(dev_priv);
4457
4458         ret = i915_gem_init_ggtt(dev_priv);
4459         if (ret)
4460                 goto out_unlock;
4461
4462         ret = i915_gem_context_init(dev);
4463         if (ret)
4464                 goto out_unlock;
4465
4466         ret = intel_engines_init(dev);
4467         if (ret)
4468                 goto out_unlock;
4469
4470         ret = i915_gem_init_hw(dev);
4471         if (ret == -EIO) {
4472                 /* Allow engine initialisation to fail by marking the GPU as
4473                  * wedged. But we only want to do this where the GPU is angry,
4474                  * for all other failure, such as an allocation failure, bail.
4475                  */
4476                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4477                 i915_gem_set_wedged(dev_priv);
4478                 ret = 0;
4479         }
4480
4481 out_unlock:
4482         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4483         mutex_unlock(&dev->struct_mutex);
4484
4485         return ret;
4486 }
4487
4488 void
4489 i915_gem_cleanup_engines(struct drm_device *dev)
4490 {
4491         struct drm_i915_private *dev_priv = to_i915(dev);
4492         struct intel_engine_cs *engine;
4493
4494         for_each_engine(engine, dev_priv)
4495                 dev_priv->gt.cleanup_engine(engine);
4496 }
4497
4498 static void
4499 init_engine_lists(struct intel_engine_cs *engine)
4500 {
4501         INIT_LIST_HEAD(&engine->request_list);
4502 }
4503
4504 void
4505 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4506 {
4507         struct drm_device *dev = &dev_priv->drm;
4508         int i;
4509
4510         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4511             !IS_CHERRYVIEW(dev_priv))
4512                 dev_priv->num_fence_regs = 32;
4513         else if (INTEL_INFO(dev_priv)->gen >= 4 || IS_I945G(dev_priv) ||
4514                  IS_I945GM(dev_priv) || IS_G33(dev_priv))
4515                 dev_priv->num_fence_regs = 16;
4516         else
4517                 dev_priv->num_fence_regs = 8;
4518
4519         if (intel_vgpu_active(dev_priv))
4520                 dev_priv->num_fence_regs =
4521                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4522
4523         /* Initialize fence registers to zero */
4524         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4525                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4526
4527                 fence->i915 = dev_priv;
4528                 fence->id = i;
4529                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4530         }
4531         i915_gem_restore_fences(dev);
4532
4533         i915_gem_detect_bit_6_swizzle(dev);
4534 }
4535
4536 void
4537 i915_gem_load_init(struct drm_device *dev)
4538 {
4539         struct drm_i915_private *dev_priv = to_i915(dev);
4540         int i;
4541
4542         dev_priv->objects =
4543                 kmem_cache_create("i915_gem_object",
4544                                   sizeof(struct drm_i915_gem_object), 0,
4545                                   SLAB_HWCACHE_ALIGN,
4546                                   NULL);
4547         dev_priv->vmas =
4548                 kmem_cache_create("i915_gem_vma",
4549                                   sizeof(struct i915_vma), 0,
4550                                   SLAB_HWCACHE_ALIGN,
4551                                   NULL);
4552         dev_priv->requests =
4553                 kmem_cache_create("i915_gem_request",
4554                                   sizeof(struct drm_i915_gem_request), 0,
4555                                   SLAB_HWCACHE_ALIGN |
4556                                   SLAB_RECLAIM_ACCOUNT |
4557                                   SLAB_DESTROY_BY_RCU,
4558                                   NULL);
4559
4560         INIT_LIST_HEAD(&dev_priv->context_list);
4561         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4562         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4563         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4564         for (i = 0; i < I915_NUM_ENGINES; i++)
4565                 init_engine_lists(&dev_priv->engine[i]);
4566         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4567                           i915_gem_retire_work_handler);
4568         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4569                           i915_gem_idle_work_handler);
4570         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4571         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4572
4573         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4574
4575         init_waitqueue_head(&dev_priv->pending_flip_queue);
4576
4577         dev_priv->mm.interruptible = true;
4578
4579         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4580
4581         spin_lock_init(&dev_priv->fb_tracking.lock);
4582 }
4583
4584 void i915_gem_load_cleanup(struct drm_device *dev)
4585 {
4586         struct drm_i915_private *dev_priv = to_i915(dev);
4587
4588         kmem_cache_destroy(dev_priv->requests);
4589         kmem_cache_destroy(dev_priv->vmas);
4590         kmem_cache_destroy(dev_priv->objects);
4591
4592         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4593         rcu_barrier();
4594 }
4595
4596 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4597 {
4598         intel_runtime_pm_get(dev_priv);
4599
4600         mutex_lock(&dev_priv->drm.struct_mutex);
4601         i915_gem_shrink_all(dev_priv);
4602         mutex_unlock(&dev_priv->drm.struct_mutex);
4603
4604         intel_runtime_pm_put(dev_priv);
4605
4606         return 0;
4607 }
4608
4609 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4610 {
4611         struct drm_i915_gem_object *obj;
4612         struct list_head *phases[] = {
4613                 &dev_priv->mm.unbound_list,
4614                 &dev_priv->mm.bound_list,
4615                 NULL
4616         }, **p;
4617
4618         /* Called just before we write the hibernation image.
4619          *
4620          * We need to update the domain tracking to reflect that the CPU
4621          * will be accessing all the pages to create and restore from the
4622          * hibernation, and so upon restoration those pages will be in the
4623          * CPU domain.
4624          *
4625          * To make sure the hibernation image contains the latest state,
4626          * we update that state just before writing out the image.
4627          *
4628          * To try and reduce the hibernation image, we manually shrink
4629          * the objects as well.
4630          */
4631
4632         mutex_lock(&dev_priv->drm.struct_mutex);
4633         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4634
4635         for (p = phases; *p; p++) {
4636                 list_for_each_entry(obj, *p, global_list) {
4637                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4638                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4639                 }
4640         }
4641         mutex_unlock(&dev_priv->drm.struct_mutex);
4642
4643         return 0;
4644 }
4645
4646 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4647 {
4648         struct drm_i915_file_private *file_priv = file->driver_priv;
4649         struct drm_i915_gem_request *request;
4650
4651         /* Clean up our request list when the client is going away, so that
4652          * later retire_requests won't dereference our soon-to-be-gone
4653          * file_priv.
4654          */
4655         spin_lock(&file_priv->mm.lock);
4656         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4657                 request->file_priv = NULL;
4658         spin_unlock(&file_priv->mm.lock);
4659
4660         if (!list_empty(&file_priv->rps.link)) {
4661                 spin_lock(&to_i915(dev)->rps.client_lock);
4662                 list_del(&file_priv->rps.link);
4663                 spin_unlock(&to_i915(dev)->rps.client_lock);
4664         }
4665 }
4666
4667 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4668 {
4669         struct drm_i915_file_private *file_priv;
4670         int ret;
4671
4672         DRM_DEBUG_DRIVER("\n");
4673
4674         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4675         if (!file_priv)
4676                 return -ENOMEM;
4677
4678         file->driver_priv = file_priv;
4679         file_priv->dev_priv = to_i915(dev);
4680         file_priv->file = file;
4681         INIT_LIST_HEAD(&file_priv->rps.link);
4682
4683         spin_lock_init(&file_priv->mm.lock);
4684         INIT_LIST_HEAD(&file_priv->mm.request_list);
4685
4686         file_priv->bsd_engine = -1;
4687
4688         ret = i915_gem_context_open(dev, file);
4689         if (ret)
4690                 kfree(file_priv);
4691
4692         return ret;
4693 }
4694
4695 /**
4696  * i915_gem_track_fb - update frontbuffer tracking
4697  * @old: current GEM buffer for the frontbuffer slots
4698  * @new: new GEM buffer for the frontbuffer slots
4699  * @frontbuffer_bits: bitmask of frontbuffer slots
4700  *
4701  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4702  * from @old and setting them in @new. Both @old and @new can be NULL.
4703  */
4704 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4705                        struct drm_i915_gem_object *new,
4706                        unsigned frontbuffer_bits)
4707 {
4708         /* Control of individual bits within the mask are guarded by
4709          * the owning plane->mutex, i.e. we can never see concurrent
4710          * manipulation of individual bits. But since the bitfield as a whole
4711          * is updated using RMW, we need to use atomics in order to update
4712          * the bits.
4713          */
4714         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4715                      sizeof(atomic_t) * BITS_PER_BYTE);
4716
4717         if (old) {
4718                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4719                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4720         }
4721
4722         if (new) {
4723                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4724                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4725         }
4726 }
4727
4728 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
4729 struct page *
4730 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj, int n)
4731 {
4732         struct page *page;
4733
4734         /* Only default objects have per-page dirty tracking */
4735         if (WARN_ON(!i915_gem_object_has_struct_page(obj)))
4736                 return NULL;
4737
4738         page = i915_gem_object_get_page(obj, n);
4739         set_page_dirty(page);
4740         return page;
4741 }
4742
4743 /* Allocate a new GEM object and fill it with the supplied data */
4744 struct drm_i915_gem_object *
4745 i915_gem_object_create_from_data(struct drm_device *dev,
4746                                  const void *data, size_t size)
4747 {
4748         struct drm_i915_gem_object *obj;
4749         struct sg_table *sg;
4750         size_t bytes;
4751         int ret;
4752
4753         obj = i915_gem_object_create(dev, round_up(size, PAGE_SIZE));
4754         if (IS_ERR(obj))
4755                 return obj;
4756
4757         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4758         if (ret)
4759                 goto fail;
4760
4761         ret = i915_gem_object_get_pages(obj);
4762         if (ret)
4763                 goto fail;
4764
4765         i915_gem_object_pin_pages(obj);
4766         sg = obj->pages;
4767         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4768         obj->dirty = 1;         /* Backing store is now out of date */
4769         i915_gem_object_unpin_pages(obj);
4770
4771         if (WARN_ON(bytes != size)) {
4772                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4773                 ret = -EFAULT;
4774                 goto fail;
4775         }
4776
4777         return obj;
4778
4779 fail:
4780         i915_gem_object_put(obj);
4781         return ERR_PTR(ret);
4782 }