Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/slab.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37
38 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
40 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
41 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
42                                              int write);
43 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
44                                                      uint64_t offset,
45                                                      uint64_t size);
46 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
47 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
48 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
49                                            unsigned alignment);
50 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
51 static int i915_gem_evict_something(struct drm_device *dev, int min_size);
52 static int i915_gem_evict_from_inactive_list(struct drm_device *dev);
53 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
54                                 struct drm_i915_gem_pwrite *args,
55                                 struct drm_file *file_priv);
56
57 static LIST_HEAD(shrink_list);
58 static DEFINE_SPINLOCK(shrink_list_lock);
59
60 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
61                      unsigned long end)
62 {
63         drm_i915_private_t *dev_priv = dev->dev_private;
64
65         if (start >= end ||
66             (start & (PAGE_SIZE - 1)) != 0 ||
67             (end & (PAGE_SIZE - 1)) != 0) {
68                 return -EINVAL;
69         }
70
71         drm_mm_init(&dev_priv->mm.gtt_space, start,
72                     end - start);
73
74         dev->gtt_total = (uint32_t) (end - start);
75
76         return 0;
77 }
78
79 int
80 i915_gem_init_ioctl(struct drm_device *dev, void *data,
81                     struct drm_file *file_priv)
82 {
83         struct drm_i915_gem_init *args = data;
84         int ret;
85
86         mutex_lock(&dev->struct_mutex);
87         ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
88         mutex_unlock(&dev->struct_mutex);
89
90         return ret;
91 }
92
93 int
94 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
95                             struct drm_file *file_priv)
96 {
97         struct drm_i915_gem_get_aperture *args = data;
98
99         if (!(dev->driver->driver_features & DRIVER_GEM))
100                 return -ENODEV;
101
102         args->aper_size = dev->gtt_total;
103         args->aper_available_size = (args->aper_size -
104                                      atomic_read(&dev->pin_memory));
105
106         return 0;
107 }
108
109
110 /**
111  * Creates a new mm object and returns a handle to it.
112  */
113 int
114 i915_gem_create_ioctl(struct drm_device *dev, void *data,
115                       struct drm_file *file_priv)
116 {
117         struct drm_i915_gem_create *args = data;
118         struct drm_gem_object *obj;
119         int ret;
120         u32 handle;
121
122         args->size = roundup(args->size, PAGE_SIZE);
123
124         /* Allocate the new object */
125         obj = i915_gem_alloc_object(dev, args->size);
126         if (obj == NULL)
127                 return -ENOMEM;
128
129         ret = drm_gem_handle_create(file_priv, obj, &handle);
130         drm_gem_object_handle_unreference_unlocked(obj);
131
132         if (ret)
133                 return ret;
134
135         args->handle = handle;
136
137         return 0;
138 }
139
140 static inline int
141 fast_shmem_read(struct page **pages,
142                 loff_t page_base, int page_offset,
143                 char __user *data,
144                 int length)
145 {
146         char __iomem *vaddr;
147         int unwritten;
148
149         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
150         if (vaddr == NULL)
151                 return -ENOMEM;
152         unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
153         kunmap_atomic(vaddr, KM_USER0);
154
155         if (unwritten)
156                 return -EFAULT;
157
158         return 0;
159 }
160
161 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
162 {
163         drm_i915_private_t *dev_priv = obj->dev->dev_private;
164         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
165
166         return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
167                 obj_priv->tiling_mode != I915_TILING_NONE;
168 }
169
170 static inline void
171 slow_shmem_copy(struct page *dst_page,
172                 int dst_offset,
173                 struct page *src_page,
174                 int src_offset,
175                 int length)
176 {
177         char *dst_vaddr, *src_vaddr;
178
179         dst_vaddr = kmap(dst_page);
180         src_vaddr = kmap(src_page);
181
182         memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
183
184         kunmap(src_page);
185         kunmap(dst_page);
186 }
187
188 static inline void
189 slow_shmem_bit17_copy(struct page *gpu_page,
190                       int gpu_offset,
191                       struct page *cpu_page,
192                       int cpu_offset,
193                       int length,
194                       int is_read)
195 {
196         char *gpu_vaddr, *cpu_vaddr;
197
198         /* Use the unswizzled path if this page isn't affected. */
199         if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
200                 if (is_read)
201                         return slow_shmem_copy(cpu_page, cpu_offset,
202                                                gpu_page, gpu_offset, length);
203                 else
204                         return slow_shmem_copy(gpu_page, gpu_offset,
205                                                cpu_page, cpu_offset, length);
206         }
207
208         gpu_vaddr = kmap(gpu_page);
209         cpu_vaddr = kmap(cpu_page);
210
211         /* Copy the data, XORing A6 with A17 (1). The user already knows he's
212          * XORing with the other bits (A9 for Y, A9 and A10 for X)
213          */
214         while (length > 0) {
215                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
216                 int this_length = min(cacheline_end - gpu_offset, length);
217                 int swizzled_gpu_offset = gpu_offset ^ 64;
218
219                 if (is_read) {
220                         memcpy(cpu_vaddr + cpu_offset,
221                                gpu_vaddr + swizzled_gpu_offset,
222                                this_length);
223                 } else {
224                         memcpy(gpu_vaddr + swizzled_gpu_offset,
225                                cpu_vaddr + cpu_offset,
226                                this_length);
227                 }
228                 cpu_offset += this_length;
229                 gpu_offset += this_length;
230                 length -= this_length;
231         }
232
233         kunmap(cpu_page);
234         kunmap(gpu_page);
235 }
236
237 /**
238  * This is the fast shmem pread path, which attempts to copy_from_user directly
239  * from the backing pages of the object to the user's address space.  On a
240  * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
241  */
242 static int
243 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
244                           struct drm_i915_gem_pread *args,
245                           struct drm_file *file_priv)
246 {
247         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
248         ssize_t remain;
249         loff_t offset, page_base;
250         char __user *user_data;
251         int page_offset, page_length;
252         int ret;
253
254         user_data = (char __user *) (uintptr_t) args->data_ptr;
255         remain = args->size;
256
257         mutex_lock(&dev->struct_mutex);
258
259         ret = i915_gem_object_get_pages(obj, 0);
260         if (ret != 0)
261                 goto fail_unlock;
262
263         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
264                                                         args->size);
265         if (ret != 0)
266                 goto fail_put_pages;
267
268         obj_priv = to_intel_bo(obj);
269         offset = args->offset;
270
271         while (remain > 0) {
272                 /* Operation in this page
273                  *
274                  * page_base = page offset within aperture
275                  * page_offset = offset within page
276                  * page_length = bytes to copy for this page
277                  */
278                 page_base = (offset & ~(PAGE_SIZE-1));
279                 page_offset = offset & (PAGE_SIZE-1);
280                 page_length = remain;
281                 if ((page_offset + remain) > PAGE_SIZE)
282                         page_length = PAGE_SIZE - page_offset;
283
284                 ret = fast_shmem_read(obj_priv->pages,
285                                       page_base, page_offset,
286                                       user_data, page_length);
287                 if (ret)
288                         goto fail_put_pages;
289
290                 remain -= page_length;
291                 user_data += page_length;
292                 offset += page_length;
293         }
294
295 fail_put_pages:
296         i915_gem_object_put_pages(obj);
297 fail_unlock:
298         mutex_unlock(&dev->struct_mutex);
299
300         return ret;
301 }
302
303 static int
304 i915_gem_object_get_pages_or_evict(struct drm_gem_object *obj)
305 {
306         int ret;
307
308         ret = i915_gem_object_get_pages(obj, __GFP_NORETRY | __GFP_NOWARN);
309
310         /* If we've insufficient memory to map in the pages, attempt
311          * to make some space by throwing out some old buffers.
312          */
313         if (ret == -ENOMEM) {
314                 struct drm_device *dev = obj->dev;
315
316                 ret = i915_gem_evict_something(dev, obj->size);
317                 if (ret)
318                         return ret;
319
320                 ret = i915_gem_object_get_pages(obj, 0);
321         }
322
323         return ret;
324 }
325
326 /**
327  * This is the fallback shmem pread path, which allocates temporary storage
328  * in kernel space to copy_to_user into outside of the struct_mutex, so we
329  * can copy out of the object's backing pages while holding the struct mutex
330  * and not take page faults.
331  */
332 static int
333 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
334                           struct drm_i915_gem_pread *args,
335                           struct drm_file *file_priv)
336 {
337         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
338         struct mm_struct *mm = current->mm;
339         struct page **user_pages;
340         ssize_t remain;
341         loff_t offset, pinned_pages, i;
342         loff_t first_data_page, last_data_page, num_pages;
343         int shmem_page_index, shmem_page_offset;
344         int data_page_index,  data_page_offset;
345         int page_length;
346         int ret;
347         uint64_t data_ptr = args->data_ptr;
348         int do_bit17_swizzling;
349
350         remain = args->size;
351
352         /* Pin the user pages containing the data.  We can't fault while
353          * holding the struct mutex, yet we want to hold it while
354          * dereferencing the user data.
355          */
356         first_data_page = data_ptr / PAGE_SIZE;
357         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
358         num_pages = last_data_page - first_data_page + 1;
359
360         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
361         if (user_pages == NULL)
362                 return -ENOMEM;
363
364         down_read(&mm->mmap_sem);
365         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
366                                       num_pages, 1, 0, user_pages, NULL);
367         up_read(&mm->mmap_sem);
368         if (pinned_pages < num_pages) {
369                 ret = -EFAULT;
370                 goto fail_put_user_pages;
371         }
372
373         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
374
375         mutex_lock(&dev->struct_mutex);
376
377         ret = i915_gem_object_get_pages_or_evict(obj);
378         if (ret)
379                 goto fail_unlock;
380
381         ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
382                                                         args->size);
383         if (ret != 0)
384                 goto fail_put_pages;
385
386         obj_priv = to_intel_bo(obj);
387         offset = args->offset;
388
389         while (remain > 0) {
390                 /* Operation in this page
391                  *
392                  * shmem_page_index = page number within shmem file
393                  * shmem_page_offset = offset within page in shmem file
394                  * data_page_index = page number in get_user_pages return
395                  * data_page_offset = offset with data_page_index page.
396                  * page_length = bytes to copy for this page
397                  */
398                 shmem_page_index = offset / PAGE_SIZE;
399                 shmem_page_offset = offset & ~PAGE_MASK;
400                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
401                 data_page_offset = data_ptr & ~PAGE_MASK;
402
403                 page_length = remain;
404                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
405                         page_length = PAGE_SIZE - shmem_page_offset;
406                 if ((data_page_offset + page_length) > PAGE_SIZE)
407                         page_length = PAGE_SIZE - data_page_offset;
408
409                 if (do_bit17_swizzling) {
410                         slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
411                                               shmem_page_offset,
412                                               user_pages[data_page_index],
413                                               data_page_offset,
414                                               page_length,
415                                               1);
416                 } else {
417                         slow_shmem_copy(user_pages[data_page_index],
418                                         data_page_offset,
419                                         obj_priv->pages[shmem_page_index],
420                                         shmem_page_offset,
421                                         page_length);
422                 }
423
424                 remain -= page_length;
425                 data_ptr += page_length;
426                 offset += page_length;
427         }
428
429 fail_put_pages:
430         i915_gem_object_put_pages(obj);
431 fail_unlock:
432         mutex_unlock(&dev->struct_mutex);
433 fail_put_user_pages:
434         for (i = 0; i < pinned_pages; i++) {
435                 SetPageDirty(user_pages[i]);
436                 page_cache_release(user_pages[i]);
437         }
438         drm_free_large(user_pages);
439
440         return ret;
441 }
442
443 /**
444  * Reads data from the object referenced by handle.
445  *
446  * On error, the contents of *data are undefined.
447  */
448 int
449 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
450                      struct drm_file *file_priv)
451 {
452         struct drm_i915_gem_pread *args = data;
453         struct drm_gem_object *obj;
454         struct drm_i915_gem_object *obj_priv;
455         int ret;
456
457         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
458         if (obj == NULL)
459                 return -EBADF;
460         obj_priv = to_intel_bo(obj);
461
462         /* Bounds check source.
463          *
464          * XXX: This could use review for overflow issues...
465          */
466         if (args->offset > obj->size || args->size > obj->size ||
467             args->offset + args->size > obj->size) {
468                 drm_gem_object_unreference_unlocked(obj);
469                 return -EINVAL;
470         }
471
472         if (i915_gem_object_needs_bit17_swizzle(obj)) {
473                 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
474         } else {
475                 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
476                 if (ret != 0)
477                         ret = i915_gem_shmem_pread_slow(dev, obj, args,
478                                                         file_priv);
479         }
480
481         drm_gem_object_unreference_unlocked(obj);
482
483         return ret;
484 }
485
486 /* This is the fast write path which cannot handle
487  * page faults in the source data
488  */
489
490 static inline int
491 fast_user_write(struct io_mapping *mapping,
492                 loff_t page_base, int page_offset,
493                 char __user *user_data,
494                 int length)
495 {
496         char *vaddr_atomic;
497         unsigned long unwritten;
498
499         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
500         unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
501                                                       user_data, length);
502         io_mapping_unmap_atomic(vaddr_atomic);
503         if (unwritten)
504                 return -EFAULT;
505         return 0;
506 }
507
508 /* Here's the write path which can sleep for
509  * page faults
510  */
511
512 static inline void
513 slow_kernel_write(struct io_mapping *mapping,
514                   loff_t gtt_base, int gtt_offset,
515                   struct page *user_page, int user_offset,
516                   int length)
517 {
518         char __iomem *dst_vaddr;
519         char *src_vaddr;
520
521         dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
522         src_vaddr = kmap(user_page);
523
524         memcpy_toio(dst_vaddr + gtt_offset,
525                     src_vaddr + user_offset,
526                     length);
527
528         kunmap(user_page);
529         io_mapping_unmap(dst_vaddr);
530 }
531
532 static inline int
533 fast_shmem_write(struct page **pages,
534                  loff_t page_base, int page_offset,
535                  char __user *data,
536                  int length)
537 {
538         char __iomem *vaddr;
539         unsigned long unwritten;
540
541         vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
542         if (vaddr == NULL)
543                 return -ENOMEM;
544         unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
545         kunmap_atomic(vaddr, KM_USER0);
546
547         if (unwritten)
548                 return -EFAULT;
549         return 0;
550 }
551
552 /**
553  * This is the fast pwrite path, where we copy the data directly from the
554  * user into the GTT, uncached.
555  */
556 static int
557 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
558                          struct drm_i915_gem_pwrite *args,
559                          struct drm_file *file_priv)
560 {
561         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
562         drm_i915_private_t *dev_priv = dev->dev_private;
563         ssize_t remain;
564         loff_t offset, page_base;
565         char __user *user_data;
566         int page_offset, page_length;
567         int ret;
568
569         user_data = (char __user *) (uintptr_t) args->data_ptr;
570         remain = args->size;
571         if (!access_ok(VERIFY_READ, user_data, remain))
572                 return -EFAULT;
573
574
575         mutex_lock(&dev->struct_mutex);
576         ret = i915_gem_object_pin(obj, 0);
577         if (ret) {
578                 mutex_unlock(&dev->struct_mutex);
579                 return ret;
580         }
581         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
582         if (ret)
583                 goto fail;
584
585         obj_priv = to_intel_bo(obj);
586         offset = obj_priv->gtt_offset + args->offset;
587
588         while (remain > 0) {
589                 /* Operation in this page
590                  *
591                  * page_base = page offset within aperture
592                  * page_offset = offset within page
593                  * page_length = bytes to copy for this page
594                  */
595                 page_base = (offset & ~(PAGE_SIZE-1));
596                 page_offset = offset & (PAGE_SIZE-1);
597                 page_length = remain;
598                 if ((page_offset + remain) > PAGE_SIZE)
599                         page_length = PAGE_SIZE - page_offset;
600
601                 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
602                                        page_offset, user_data, page_length);
603
604                 /* If we get a fault while copying data, then (presumably) our
605                  * source page isn't available.  Return the error and we'll
606                  * retry in the slow path.
607                  */
608                 if (ret)
609                         goto fail;
610
611                 remain -= page_length;
612                 user_data += page_length;
613                 offset += page_length;
614         }
615
616 fail:
617         i915_gem_object_unpin(obj);
618         mutex_unlock(&dev->struct_mutex);
619
620         return ret;
621 }
622
623 /**
624  * This is the fallback GTT pwrite path, which uses get_user_pages to pin
625  * the memory and maps it using kmap_atomic for copying.
626  *
627  * This code resulted in x11perf -rgb10text consuming about 10% more CPU
628  * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
629  */
630 static int
631 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
632                          struct drm_i915_gem_pwrite *args,
633                          struct drm_file *file_priv)
634 {
635         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
636         drm_i915_private_t *dev_priv = dev->dev_private;
637         ssize_t remain;
638         loff_t gtt_page_base, offset;
639         loff_t first_data_page, last_data_page, num_pages;
640         loff_t pinned_pages, i;
641         struct page **user_pages;
642         struct mm_struct *mm = current->mm;
643         int gtt_page_offset, data_page_offset, data_page_index, page_length;
644         int ret;
645         uint64_t data_ptr = args->data_ptr;
646
647         remain = args->size;
648
649         /* Pin the user pages containing the data.  We can't fault while
650          * holding the struct mutex, and all of the pwrite implementations
651          * want to hold it while dereferencing the user data.
652          */
653         first_data_page = data_ptr / PAGE_SIZE;
654         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
655         num_pages = last_data_page - first_data_page + 1;
656
657         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
658         if (user_pages == NULL)
659                 return -ENOMEM;
660
661         down_read(&mm->mmap_sem);
662         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
663                                       num_pages, 0, 0, user_pages, NULL);
664         up_read(&mm->mmap_sem);
665         if (pinned_pages < num_pages) {
666                 ret = -EFAULT;
667                 goto out_unpin_pages;
668         }
669
670         mutex_lock(&dev->struct_mutex);
671         ret = i915_gem_object_pin(obj, 0);
672         if (ret)
673                 goto out_unlock;
674
675         ret = i915_gem_object_set_to_gtt_domain(obj, 1);
676         if (ret)
677                 goto out_unpin_object;
678
679         obj_priv = to_intel_bo(obj);
680         offset = obj_priv->gtt_offset + args->offset;
681
682         while (remain > 0) {
683                 /* Operation in this page
684                  *
685                  * gtt_page_base = page offset within aperture
686                  * gtt_page_offset = offset within page in aperture
687                  * data_page_index = page number in get_user_pages return
688                  * data_page_offset = offset with data_page_index page.
689                  * page_length = bytes to copy for this page
690                  */
691                 gtt_page_base = offset & PAGE_MASK;
692                 gtt_page_offset = offset & ~PAGE_MASK;
693                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
694                 data_page_offset = data_ptr & ~PAGE_MASK;
695
696                 page_length = remain;
697                 if ((gtt_page_offset + page_length) > PAGE_SIZE)
698                         page_length = PAGE_SIZE - gtt_page_offset;
699                 if ((data_page_offset + page_length) > PAGE_SIZE)
700                         page_length = PAGE_SIZE - data_page_offset;
701
702                 slow_kernel_write(dev_priv->mm.gtt_mapping,
703                                   gtt_page_base, gtt_page_offset,
704                                   user_pages[data_page_index],
705                                   data_page_offset,
706                                   page_length);
707
708                 remain -= page_length;
709                 offset += page_length;
710                 data_ptr += page_length;
711         }
712
713 out_unpin_object:
714         i915_gem_object_unpin(obj);
715 out_unlock:
716         mutex_unlock(&dev->struct_mutex);
717 out_unpin_pages:
718         for (i = 0; i < pinned_pages; i++)
719                 page_cache_release(user_pages[i]);
720         drm_free_large(user_pages);
721
722         return ret;
723 }
724
725 /**
726  * This is the fast shmem pwrite path, which attempts to directly
727  * copy_from_user into the kmapped pages backing the object.
728  */
729 static int
730 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
731                            struct drm_i915_gem_pwrite *args,
732                            struct drm_file *file_priv)
733 {
734         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
735         ssize_t remain;
736         loff_t offset, page_base;
737         char __user *user_data;
738         int page_offset, page_length;
739         int ret;
740
741         user_data = (char __user *) (uintptr_t) args->data_ptr;
742         remain = args->size;
743
744         mutex_lock(&dev->struct_mutex);
745
746         ret = i915_gem_object_get_pages(obj, 0);
747         if (ret != 0)
748                 goto fail_unlock;
749
750         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
751         if (ret != 0)
752                 goto fail_put_pages;
753
754         obj_priv = to_intel_bo(obj);
755         offset = args->offset;
756         obj_priv->dirty = 1;
757
758         while (remain > 0) {
759                 /* Operation in this page
760                  *
761                  * page_base = page offset within aperture
762                  * page_offset = offset within page
763                  * page_length = bytes to copy for this page
764                  */
765                 page_base = (offset & ~(PAGE_SIZE-1));
766                 page_offset = offset & (PAGE_SIZE-1);
767                 page_length = remain;
768                 if ((page_offset + remain) > PAGE_SIZE)
769                         page_length = PAGE_SIZE - page_offset;
770
771                 ret = fast_shmem_write(obj_priv->pages,
772                                        page_base, page_offset,
773                                        user_data, page_length);
774                 if (ret)
775                         goto fail_put_pages;
776
777                 remain -= page_length;
778                 user_data += page_length;
779                 offset += page_length;
780         }
781
782 fail_put_pages:
783         i915_gem_object_put_pages(obj);
784 fail_unlock:
785         mutex_unlock(&dev->struct_mutex);
786
787         return ret;
788 }
789
790 /**
791  * This is the fallback shmem pwrite path, which uses get_user_pages to pin
792  * the memory and maps it using kmap_atomic for copying.
793  *
794  * This avoids taking mmap_sem for faulting on the user's address while the
795  * struct_mutex is held.
796  */
797 static int
798 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
799                            struct drm_i915_gem_pwrite *args,
800                            struct drm_file *file_priv)
801 {
802         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
803         struct mm_struct *mm = current->mm;
804         struct page **user_pages;
805         ssize_t remain;
806         loff_t offset, pinned_pages, i;
807         loff_t first_data_page, last_data_page, num_pages;
808         int shmem_page_index, shmem_page_offset;
809         int data_page_index,  data_page_offset;
810         int page_length;
811         int ret;
812         uint64_t data_ptr = args->data_ptr;
813         int do_bit17_swizzling;
814
815         remain = args->size;
816
817         /* Pin the user pages containing the data.  We can't fault while
818          * holding the struct mutex, and all of the pwrite implementations
819          * want to hold it while dereferencing the user data.
820          */
821         first_data_page = data_ptr / PAGE_SIZE;
822         last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
823         num_pages = last_data_page - first_data_page + 1;
824
825         user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
826         if (user_pages == NULL)
827                 return -ENOMEM;
828
829         down_read(&mm->mmap_sem);
830         pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
831                                       num_pages, 0, 0, user_pages, NULL);
832         up_read(&mm->mmap_sem);
833         if (pinned_pages < num_pages) {
834                 ret = -EFAULT;
835                 goto fail_put_user_pages;
836         }
837
838         do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
839
840         mutex_lock(&dev->struct_mutex);
841
842         ret = i915_gem_object_get_pages_or_evict(obj);
843         if (ret)
844                 goto fail_unlock;
845
846         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
847         if (ret != 0)
848                 goto fail_put_pages;
849
850         obj_priv = to_intel_bo(obj);
851         offset = args->offset;
852         obj_priv->dirty = 1;
853
854         while (remain > 0) {
855                 /* Operation in this page
856                  *
857                  * shmem_page_index = page number within shmem file
858                  * shmem_page_offset = offset within page in shmem file
859                  * data_page_index = page number in get_user_pages return
860                  * data_page_offset = offset with data_page_index page.
861                  * page_length = bytes to copy for this page
862                  */
863                 shmem_page_index = offset / PAGE_SIZE;
864                 shmem_page_offset = offset & ~PAGE_MASK;
865                 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
866                 data_page_offset = data_ptr & ~PAGE_MASK;
867
868                 page_length = remain;
869                 if ((shmem_page_offset + page_length) > PAGE_SIZE)
870                         page_length = PAGE_SIZE - shmem_page_offset;
871                 if ((data_page_offset + page_length) > PAGE_SIZE)
872                         page_length = PAGE_SIZE - data_page_offset;
873
874                 if (do_bit17_swizzling) {
875                         slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
876                                               shmem_page_offset,
877                                               user_pages[data_page_index],
878                                               data_page_offset,
879                                               page_length,
880                                               0);
881                 } else {
882                         slow_shmem_copy(obj_priv->pages[shmem_page_index],
883                                         shmem_page_offset,
884                                         user_pages[data_page_index],
885                                         data_page_offset,
886                                         page_length);
887                 }
888
889                 remain -= page_length;
890                 data_ptr += page_length;
891                 offset += page_length;
892         }
893
894 fail_put_pages:
895         i915_gem_object_put_pages(obj);
896 fail_unlock:
897         mutex_unlock(&dev->struct_mutex);
898 fail_put_user_pages:
899         for (i = 0; i < pinned_pages; i++)
900                 page_cache_release(user_pages[i]);
901         drm_free_large(user_pages);
902
903         return ret;
904 }
905
906 /**
907  * Writes data to the object referenced by handle.
908  *
909  * On error, the contents of the buffer that were to be modified are undefined.
910  */
911 int
912 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
913                       struct drm_file *file_priv)
914 {
915         struct drm_i915_gem_pwrite *args = data;
916         struct drm_gem_object *obj;
917         struct drm_i915_gem_object *obj_priv;
918         int ret = 0;
919
920         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
921         if (obj == NULL)
922                 return -EBADF;
923         obj_priv = to_intel_bo(obj);
924
925         /* Bounds check destination.
926          *
927          * XXX: This could use review for overflow issues...
928          */
929         if (args->offset > obj->size || args->size > obj->size ||
930             args->offset + args->size > obj->size) {
931                 drm_gem_object_unreference_unlocked(obj);
932                 return -EINVAL;
933         }
934
935         /* We can only do the GTT pwrite on untiled buffers, as otherwise
936          * it would end up going through the fenced access, and we'll get
937          * different detiling behavior between reading and writing.
938          * pread/pwrite currently are reading and writing from the CPU
939          * perspective, requiring manual detiling by the client.
940          */
941         if (obj_priv->phys_obj)
942                 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
943         else if (obj_priv->tiling_mode == I915_TILING_NONE &&
944                  dev->gtt_total != 0 &&
945                  obj->write_domain != I915_GEM_DOMAIN_CPU) {
946                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
947                 if (ret == -EFAULT) {
948                         ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
949                                                        file_priv);
950                 }
951         } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
952                 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
953         } else {
954                 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
955                 if (ret == -EFAULT) {
956                         ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
957                                                          file_priv);
958                 }
959         }
960
961 #if WATCH_PWRITE
962         if (ret)
963                 DRM_INFO("pwrite failed %d\n", ret);
964 #endif
965
966         drm_gem_object_unreference_unlocked(obj);
967
968         return ret;
969 }
970
971 /**
972  * Called when user space prepares to use an object with the CPU, either
973  * through the mmap ioctl's mapping or a GTT mapping.
974  */
975 int
976 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
977                           struct drm_file *file_priv)
978 {
979         struct drm_i915_private *dev_priv = dev->dev_private;
980         struct drm_i915_gem_set_domain *args = data;
981         struct drm_gem_object *obj;
982         struct drm_i915_gem_object *obj_priv;
983         uint32_t read_domains = args->read_domains;
984         uint32_t write_domain = args->write_domain;
985         int ret;
986
987         if (!(dev->driver->driver_features & DRIVER_GEM))
988                 return -ENODEV;
989
990         /* Only handle setting domains to types used by the CPU. */
991         if (write_domain & I915_GEM_GPU_DOMAINS)
992                 return -EINVAL;
993
994         if (read_domains & I915_GEM_GPU_DOMAINS)
995                 return -EINVAL;
996
997         /* Having something in the write domain implies it's in the read
998          * domain, and only that read domain.  Enforce that in the request.
999          */
1000         if (write_domain != 0 && read_domains != write_domain)
1001                 return -EINVAL;
1002
1003         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1004         if (obj == NULL)
1005                 return -EBADF;
1006         obj_priv = to_intel_bo(obj);
1007
1008         mutex_lock(&dev->struct_mutex);
1009
1010         intel_mark_busy(dev, obj);
1011
1012 #if WATCH_BUF
1013         DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1014                  obj, obj->size, read_domains, write_domain);
1015 #endif
1016         if (read_domains & I915_GEM_DOMAIN_GTT) {
1017                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1018
1019                 /* Update the LRU on the fence for the CPU access that's
1020                  * about to occur.
1021                  */
1022                 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1023                         struct drm_i915_fence_reg *reg =
1024                                 &dev_priv->fence_regs[obj_priv->fence_reg];
1025                         list_move_tail(&reg->lru_list,
1026                                        &dev_priv->mm.fence_list);
1027                 }
1028
1029                 /* Silently promote "you're not bound, there was nothing to do"
1030                  * to success, since the client was just asking us to
1031                  * make sure everything was done.
1032                  */
1033                 if (ret == -EINVAL)
1034                         ret = 0;
1035         } else {
1036                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1037         }
1038
1039         drm_gem_object_unreference(obj);
1040         mutex_unlock(&dev->struct_mutex);
1041         return ret;
1042 }
1043
1044 /**
1045  * Called when user space has done writes to this buffer
1046  */
1047 int
1048 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1049                       struct drm_file *file_priv)
1050 {
1051         struct drm_i915_gem_sw_finish *args = data;
1052         struct drm_gem_object *obj;
1053         struct drm_i915_gem_object *obj_priv;
1054         int ret = 0;
1055
1056         if (!(dev->driver->driver_features & DRIVER_GEM))
1057                 return -ENODEV;
1058
1059         mutex_lock(&dev->struct_mutex);
1060         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1061         if (obj == NULL) {
1062                 mutex_unlock(&dev->struct_mutex);
1063                 return -EBADF;
1064         }
1065
1066 #if WATCH_BUF
1067         DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1068                  __func__, args->handle, obj, obj->size);
1069 #endif
1070         obj_priv = to_intel_bo(obj);
1071
1072         /* Pinned buffers may be scanout, so flush the cache */
1073         if (obj_priv->pin_count)
1074                 i915_gem_object_flush_cpu_write_domain(obj);
1075
1076         drm_gem_object_unreference(obj);
1077         mutex_unlock(&dev->struct_mutex);
1078         return ret;
1079 }
1080
1081 /**
1082  * Maps the contents of an object, returning the address it is mapped
1083  * into.
1084  *
1085  * While the mapping holds a reference on the contents of the object, it doesn't
1086  * imply a ref on the object itself.
1087  */
1088 int
1089 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1090                    struct drm_file *file_priv)
1091 {
1092         struct drm_i915_gem_mmap *args = data;
1093         struct drm_gem_object *obj;
1094         loff_t offset;
1095         unsigned long addr;
1096
1097         if (!(dev->driver->driver_features & DRIVER_GEM))
1098                 return -ENODEV;
1099
1100         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1101         if (obj == NULL)
1102                 return -EBADF;
1103
1104         offset = args->offset;
1105
1106         down_write(&current->mm->mmap_sem);
1107         addr = do_mmap(obj->filp, 0, args->size,
1108                        PROT_READ | PROT_WRITE, MAP_SHARED,
1109                        args->offset);
1110         up_write(&current->mm->mmap_sem);
1111         drm_gem_object_unreference_unlocked(obj);
1112         if (IS_ERR((void *)addr))
1113                 return addr;
1114
1115         args->addr_ptr = (uint64_t) addr;
1116
1117         return 0;
1118 }
1119
1120 /**
1121  * i915_gem_fault - fault a page into the GTT
1122  * vma: VMA in question
1123  * vmf: fault info
1124  *
1125  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1126  * from userspace.  The fault handler takes care of binding the object to
1127  * the GTT (if needed), allocating and programming a fence register (again,
1128  * only if needed based on whether the old reg is still valid or the object
1129  * is tiled) and inserting a new PTE into the faulting process.
1130  *
1131  * Note that the faulting process may involve evicting existing objects
1132  * from the GTT and/or fence registers to make room.  So performance may
1133  * suffer if the GTT working set is large or there are few fence registers
1134  * left.
1135  */
1136 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1137 {
1138         struct drm_gem_object *obj = vma->vm_private_data;
1139         struct drm_device *dev = obj->dev;
1140         struct drm_i915_private *dev_priv = dev->dev_private;
1141         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1142         pgoff_t page_offset;
1143         unsigned long pfn;
1144         int ret = 0;
1145         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1146
1147         /* We don't use vmf->pgoff since that has the fake offset */
1148         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1149                 PAGE_SHIFT;
1150
1151         /* Now bind it into the GTT if needed */
1152         mutex_lock(&dev->struct_mutex);
1153         if (!obj_priv->gtt_space) {
1154                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1155                 if (ret)
1156                         goto unlock;
1157
1158                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1159
1160                 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1161                 if (ret)
1162                         goto unlock;
1163         }
1164
1165         /* Need a new fence register? */
1166         if (obj_priv->tiling_mode != I915_TILING_NONE) {
1167                 ret = i915_gem_object_get_fence_reg(obj);
1168                 if (ret)
1169                         goto unlock;
1170         }
1171
1172         pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1173                 page_offset;
1174
1175         /* Finally, remap it using the new GTT offset */
1176         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1177 unlock:
1178         mutex_unlock(&dev->struct_mutex);
1179
1180         switch (ret) {
1181         case 0:
1182         case -ERESTARTSYS:
1183                 return VM_FAULT_NOPAGE;
1184         case -ENOMEM:
1185         case -EAGAIN:
1186                 return VM_FAULT_OOM;
1187         default:
1188                 return VM_FAULT_SIGBUS;
1189         }
1190 }
1191
1192 /**
1193  * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1194  * @obj: obj in question
1195  *
1196  * GEM memory mapping works by handing back to userspace a fake mmap offset
1197  * it can use in a subsequent mmap(2) call.  The DRM core code then looks
1198  * up the object based on the offset and sets up the various memory mapping
1199  * structures.
1200  *
1201  * This routine allocates and attaches a fake offset for @obj.
1202  */
1203 static int
1204 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1205 {
1206         struct drm_device *dev = obj->dev;
1207         struct drm_gem_mm *mm = dev->mm_private;
1208         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1209         struct drm_map_list *list;
1210         struct drm_local_map *map;
1211         int ret = 0;
1212
1213         /* Set the object up for mmap'ing */
1214         list = &obj->map_list;
1215         list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1216         if (!list->map)
1217                 return -ENOMEM;
1218
1219         map = list->map;
1220         map->type = _DRM_GEM;
1221         map->size = obj->size;
1222         map->handle = obj;
1223
1224         /* Get a DRM GEM mmap offset allocated... */
1225         list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1226                                                     obj->size / PAGE_SIZE, 0, 0);
1227         if (!list->file_offset_node) {
1228                 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1229                 ret = -ENOMEM;
1230                 goto out_free_list;
1231         }
1232
1233         list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1234                                                   obj->size / PAGE_SIZE, 0);
1235         if (!list->file_offset_node) {
1236                 ret = -ENOMEM;
1237                 goto out_free_list;
1238         }
1239
1240         list->hash.key = list->file_offset_node->start;
1241         if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1242                 DRM_ERROR("failed to add to map hash\n");
1243                 ret = -ENOMEM;
1244                 goto out_free_mm;
1245         }
1246
1247         /* By now we should be all set, any drm_mmap request on the offset
1248          * below will get to our mmap & fault handler */
1249         obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1250
1251         return 0;
1252
1253 out_free_mm:
1254         drm_mm_put_block(list->file_offset_node);
1255 out_free_list:
1256         kfree(list->map);
1257
1258         return ret;
1259 }
1260
1261 /**
1262  * i915_gem_release_mmap - remove physical page mappings
1263  * @obj: obj in question
1264  *
1265  * Preserve the reservation of the mmapping with the DRM core code, but
1266  * relinquish ownership of the pages back to the system.
1267  *
1268  * It is vital that we remove the page mapping if we have mapped a tiled
1269  * object through the GTT and then lose the fence register due to
1270  * resource pressure. Similarly if the object has been moved out of the
1271  * aperture, than pages mapped into userspace must be revoked. Removing the
1272  * mapping will then trigger a page fault on the next user access, allowing
1273  * fixup by i915_gem_fault().
1274  */
1275 void
1276 i915_gem_release_mmap(struct drm_gem_object *obj)
1277 {
1278         struct drm_device *dev = obj->dev;
1279         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1280
1281         if (dev->dev_mapping)
1282                 unmap_mapping_range(dev->dev_mapping,
1283                                     obj_priv->mmap_offset, obj->size, 1);
1284 }
1285
1286 static void
1287 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1288 {
1289         struct drm_device *dev = obj->dev;
1290         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1291         struct drm_gem_mm *mm = dev->mm_private;
1292         struct drm_map_list *list;
1293
1294         list = &obj->map_list;
1295         drm_ht_remove_item(&mm->offset_hash, &list->hash);
1296
1297         if (list->file_offset_node) {
1298                 drm_mm_put_block(list->file_offset_node);
1299                 list->file_offset_node = NULL;
1300         }
1301
1302         if (list->map) {
1303                 kfree(list->map);
1304                 list->map = NULL;
1305         }
1306
1307         obj_priv->mmap_offset = 0;
1308 }
1309
1310 /**
1311  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1312  * @obj: object to check
1313  *
1314  * Return the required GTT alignment for an object, taking into account
1315  * potential fence register mapping if needed.
1316  */
1317 static uint32_t
1318 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1319 {
1320         struct drm_device *dev = obj->dev;
1321         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1322         int start, i;
1323
1324         /*
1325          * Minimum alignment is 4k (GTT page size), but might be greater
1326          * if a fence register is needed for the object.
1327          */
1328         if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1329                 return 4096;
1330
1331         /*
1332          * Previous chips need to be aligned to the size of the smallest
1333          * fence register that can contain the object.
1334          */
1335         if (IS_I9XX(dev))
1336                 start = 1024*1024;
1337         else
1338                 start = 512*1024;
1339
1340         for (i = start; i < obj->size; i <<= 1)
1341                 ;
1342
1343         return i;
1344 }
1345
1346 /**
1347  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1348  * @dev: DRM device
1349  * @data: GTT mapping ioctl data
1350  * @file_priv: GEM object info
1351  *
1352  * Simply returns the fake offset to userspace so it can mmap it.
1353  * The mmap call will end up in drm_gem_mmap(), which will set things
1354  * up so we can get faults in the handler above.
1355  *
1356  * The fault handler will take care of binding the object into the GTT
1357  * (since it may have been evicted to make room for something), allocating
1358  * a fence register, and mapping the appropriate aperture address into
1359  * userspace.
1360  */
1361 int
1362 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1363                         struct drm_file *file_priv)
1364 {
1365         struct drm_i915_gem_mmap_gtt *args = data;
1366         struct drm_i915_private *dev_priv = dev->dev_private;
1367         struct drm_gem_object *obj;
1368         struct drm_i915_gem_object *obj_priv;
1369         int ret;
1370
1371         if (!(dev->driver->driver_features & DRIVER_GEM))
1372                 return -ENODEV;
1373
1374         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1375         if (obj == NULL)
1376                 return -EBADF;
1377
1378         mutex_lock(&dev->struct_mutex);
1379
1380         obj_priv = to_intel_bo(obj);
1381
1382         if (obj_priv->madv != I915_MADV_WILLNEED) {
1383                 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1384                 drm_gem_object_unreference(obj);
1385                 mutex_unlock(&dev->struct_mutex);
1386                 return -EINVAL;
1387         }
1388
1389
1390         if (!obj_priv->mmap_offset) {
1391                 ret = i915_gem_create_mmap_offset(obj);
1392                 if (ret) {
1393                         drm_gem_object_unreference(obj);
1394                         mutex_unlock(&dev->struct_mutex);
1395                         return ret;
1396                 }
1397         }
1398
1399         args->offset = obj_priv->mmap_offset;
1400
1401         /*
1402          * Pull it into the GTT so that we have a page list (makes the
1403          * initial fault faster and any subsequent flushing possible).
1404          */
1405         if (!obj_priv->agp_mem) {
1406                 ret = i915_gem_object_bind_to_gtt(obj, 0);
1407                 if (ret) {
1408                         drm_gem_object_unreference(obj);
1409                         mutex_unlock(&dev->struct_mutex);
1410                         return ret;
1411                 }
1412                 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1413         }
1414
1415         drm_gem_object_unreference(obj);
1416         mutex_unlock(&dev->struct_mutex);
1417
1418         return 0;
1419 }
1420
1421 void
1422 i915_gem_object_put_pages(struct drm_gem_object *obj)
1423 {
1424         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1425         int page_count = obj->size / PAGE_SIZE;
1426         int i;
1427
1428         BUG_ON(obj_priv->pages_refcount == 0);
1429         BUG_ON(obj_priv->madv == __I915_MADV_PURGED);
1430
1431         if (--obj_priv->pages_refcount != 0)
1432                 return;
1433
1434         if (obj_priv->tiling_mode != I915_TILING_NONE)
1435                 i915_gem_object_save_bit_17_swizzle(obj);
1436
1437         if (obj_priv->madv == I915_MADV_DONTNEED)
1438                 obj_priv->dirty = 0;
1439
1440         for (i = 0; i < page_count; i++) {
1441                 if (obj_priv->dirty)
1442                         set_page_dirty(obj_priv->pages[i]);
1443
1444                 if (obj_priv->madv == I915_MADV_WILLNEED)
1445                         mark_page_accessed(obj_priv->pages[i]);
1446
1447                 page_cache_release(obj_priv->pages[i]);
1448         }
1449         obj_priv->dirty = 0;
1450
1451         drm_free_large(obj_priv->pages);
1452         obj_priv->pages = NULL;
1453 }
1454
1455 static void
1456 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno,
1457                                struct intel_ring_buffer *ring)
1458 {
1459         struct drm_device *dev = obj->dev;
1460         drm_i915_private_t *dev_priv = dev->dev_private;
1461         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1462         BUG_ON(ring == NULL);
1463         obj_priv->ring = ring;
1464
1465         /* Add a reference if we're newly entering the active list. */
1466         if (!obj_priv->active) {
1467                 drm_gem_object_reference(obj);
1468                 obj_priv->active = 1;
1469         }
1470         /* Move from whatever list we were on to the tail of execution. */
1471         spin_lock(&dev_priv->mm.active_list_lock);
1472         list_move_tail(&obj_priv->list, &ring->active_list);
1473         spin_unlock(&dev_priv->mm.active_list_lock);
1474         obj_priv->last_rendering_seqno = seqno;
1475 }
1476
1477 static void
1478 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1479 {
1480         struct drm_device *dev = obj->dev;
1481         drm_i915_private_t *dev_priv = dev->dev_private;
1482         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1483
1484         BUG_ON(!obj_priv->active);
1485         list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1486         obj_priv->last_rendering_seqno = 0;
1487 }
1488
1489 /* Immediately discard the backing storage */
1490 static void
1491 i915_gem_object_truncate(struct drm_gem_object *obj)
1492 {
1493         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1494         struct inode *inode;
1495
1496         inode = obj->filp->f_path.dentry->d_inode;
1497         if (inode->i_op->truncate)
1498                 inode->i_op->truncate (inode);
1499
1500         obj_priv->madv = __I915_MADV_PURGED;
1501 }
1502
1503 static inline int
1504 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj_priv)
1505 {
1506         return obj_priv->madv == I915_MADV_DONTNEED;
1507 }
1508
1509 static void
1510 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1511 {
1512         struct drm_device *dev = obj->dev;
1513         drm_i915_private_t *dev_priv = dev->dev_private;
1514         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1515
1516         i915_verify_inactive(dev, __FILE__, __LINE__);
1517         if (obj_priv->pin_count != 0)
1518                 list_del_init(&obj_priv->list);
1519         else
1520                 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1521
1522         BUG_ON(!list_empty(&obj_priv->gpu_write_list));
1523
1524         obj_priv->last_rendering_seqno = 0;
1525         obj_priv->ring = NULL;
1526         if (obj_priv->active) {
1527                 obj_priv->active = 0;
1528                 drm_gem_object_unreference(obj);
1529         }
1530         i915_verify_inactive(dev, __FILE__, __LINE__);
1531 }
1532
1533 static void
1534 i915_gem_process_flushing_list(struct drm_device *dev,
1535                                uint32_t flush_domains, uint32_t seqno,
1536                                struct intel_ring_buffer *ring)
1537 {
1538         drm_i915_private_t *dev_priv = dev->dev_private;
1539         struct drm_i915_gem_object *obj_priv, *next;
1540
1541         list_for_each_entry_safe(obj_priv, next,
1542                                  &dev_priv->mm.gpu_write_list,
1543                                  gpu_write_list) {
1544                 struct drm_gem_object *obj = &obj_priv->base;
1545
1546                 if ((obj->write_domain & flush_domains) ==
1547                     obj->write_domain &&
1548                     obj_priv->ring->ring_flag == ring->ring_flag) {
1549                         uint32_t old_write_domain = obj->write_domain;
1550
1551                         obj->write_domain = 0;
1552                         list_del_init(&obj_priv->gpu_write_list);
1553                         i915_gem_object_move_to_active(obj, seqno, ring);
1554
1555                         /* update the fence lru list */
1556                         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1557                                 struct drm_i915_fence_reg *reg =
1558                                         &dev_priv->fence_regs[obj_priv->fence_reg];
1559                                 list_move_tail(&reg->lru_list,
1560                                                 &dev_priv->mm.fence_list);
1561                         }
1562
1563                         trace_i915_gem_object_change_domain(obj,
1564                                                             obj->read_domains,
1565                                                             old_write_domain);
1566                 }
1567         }
1568 }
1569
1570 uint32_t
1571 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1572                  uint32_t flush_domains, struct intel_ring_buffer *ring)
1573 {
1574         drm_i915_private_t *dev_priv = dev->dev_private;
1575         struct drm_i915_file_private *i915_file_priv = NULL;
1576         struct drm_i915_gem_request *request;
1577         uint32_t seqno;
1578         int was_empty;
1579
1580         if (file_priv != NULL)
1581                 i915_file_priv = file_priv->driver_priv;
1582
1583         request = kzalloc(sizeof(*request), GFP_KERNEL);
1584         if (request == NULL)
1585                 return 0;
1586
1587         seqno = ring->add_request(dev, ring, file_priv, flush_domains);
1588
1589         request->seqno = seqno;
1590         request->ring = ring;
1591         request->emitted_jiffies = jiffies;
1592         was_empty = list_empty(&ring->request_list);
1593         list_add_tail(&request->list, &ring->request_list);
1594
1595         if (i915_file_priv) {
1596                 list_add_tail(&request->client_list,
1597                               &i915_file_priv->mm.request_list);
1598         } else {
1599                 INIT_LIST_HEAD(&request->client_list);
1600         }
1601
1602         /* Associate any objects on the flushing list matching the write
1603          * domain we're flushing with our flush.
1604          */
1605         if (flush_domains != 0) 
1606                 i915_gem_process_flushing_list(dev, flush_domains, seqno, ring);
1607
1608         if (!dev_priv->mm.suspended) {
1609                 mod_timer(&dev_priv->hangcheck_timer, jiffies + DRM_I915_HANGCHECK_PERIOD);
1610                 if (was_empty)
1611                         queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1612         }
1613         return seqno;
1614 }
1615
1616 /**
1617  * Command execution barrier
1618  *
1619  * Ensures that all commands in the ring are finished
1620  * before signalling the CPU
1621  */
1622 static uint32_t
1623 i915_retire_commands(struct drm_device *dev, struct intel_ring_buffer *ring)
1624 {
1625         uint32_t flush_domains = 0;
1626
1627         /* The sampler always gets flushed on i965 (sigh) */
1628         if (IS_I965G(dev))
1629                 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1630
1631         ring->flush(dev, ring,
1632                         I915_GEM_DOMAIN_COMMAND, flush_domains);
1633         return flush_domains;
1634 }
1635
1636 /**
1637  * Moves buffers associated only with the given active seqno from the active
1638  * to inactive list, potentially freeing them.
1639  */
1640 static void
1641 i915_gem_retire_request(struct drm_device *dev,
1642                         struct drm_i915_gem_request *request)
1643 {
1644         drm_i915_private_t *dev_priv = dev->dev_private;
1645
1646         trace_i915_gem_request_retire(dev, request->seqno);
1647
1648         /* Move any buffers on the active list that are no longer referenced
1649          * by the ringbuffer to the flushing/inactive lists as appropriate.
1650          */
1651         spin_lock(&dev_priv->mm.active_list_lock);
1652         while (!list_empty(&request->ring->active_list)) {
1653                 struct drm_gem_object *obj;
1654                 struct drm_i915_gem_object *obj_priv;
1655
1656                 obj_priv = list_first_entry(&request->ring->active_list,
1657                                             struct drm_i915_gem_object,
1658                                             list);
1659                 obj = &obj_priv->base;
1660
1661                 /* If the seqno being retired doesn't match the oldest in the
1662                  * list, then the oldest in the list must still be newer than
1663                  * this seqno.
1664                  */
1665                 if (obj_priv->last_rendering_seqno != request->seqno)
1666                         goto out;
1667
1668 #if WATCH_LRU
1669                 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1670                          __func__, request->seqno, obj);
1671 #endif
1672
1673                 if (obj->write_domain != 0)
1674                         i915_gem_object_move_to_flushing(obj);
1675                 else {
1676                         /* Take a reference on the object so it won't be
1677                          * freed while the spinlock is held.  The list
1678                          * protection for this spinlock is safe when breaking
1679                          * the lock like this since the next thing we do
1680                          * is just get the head of the list again.
1681                          */
1682                         drm_gem_object_reference(obj);
1683                         i915_gem_object_move_to_inactive(obj);
1684                         spin_unlock(&dev_priv->mm.active_list_lock);
1685                         drm_gem_object_unreference(obj);
1686                         spin_lock(&dev_priv->mm.active_list_lock);
1687                 }
1688         }
1689 out:
1690         spin_unlock(&dev_priv->mm.active_list_lock);
1691 }
1692
1693 /**
1694  * Returns true if seq1 is later than seq2.
1695  */
1696 bool
1697 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1698 {
1699         return (int32_t)(seq1 - seq2) >= 0;
1700 }
1701
1702 uint32_t
1703 i915_get_gem_seqno(struct drm_device *dev,
1704                    struct intel_ring_buffer *ring)
1705 {
1706         return ring->get_gem_seqno(dev, ring);
1707 }
1708
1709 /**
1710  * This function clears the request list as sequence numbers are passed.
1711  */
1712 void
1713 i915_gem_retire_requests(struct drm_device *dev,
1714                 struct intel_ring_buffer *ring)
1715 {
1716         drm_i915_private_t *dev_priv = dev->dev_private;
1717         uint32_t seqno;
1718
1719         if (!ring->status_page.page_addr
1720                         || list_empty(&ring->request_list))
1721                 return;
1722
1723         seqno = i915_get_gem_seqno(dev, ring);
1724
1725         while (!list_empty(&ring->request_list)) {
1726                 struct drm_i915_gem_request *request;
1727                 uint32_t retiring_seqno;
1728
1729                 request = list_first_entry(&ring->request_list,
1730                                            struct drm_i915_gem_request,
1731                                            list);
1732                 retiring_seqno = request->seqno;
1733
1734                 if (i915_seqno_passed(seqno, retiring_seqno) ||
1735                     atomic_read(&dev_priv->mm.wedged)) {
1736                         i915_gem_retire_request(dev, request);
1737
1738                         list_del(&request->list);
1739                         list_del(&request->client_list);
1740                         kfree(request);
1741                 } else
1742                         break;
1743         }
1744
1745         if (unlikely (dev_priv->trace_irq_seqno &&
1746                       i915_seqno_passed(dev_priv->trace_irq_seqno, seqno))) {
1747
1748                 ring->user_irq_put(dev, ring);
1749                 dev_priv->trace_irq_seqno = 0;
1750         }
1751 }
1752
1753 void
1754 i915_gem_retire_work_handler(struct work_struct *work)
1755 {
1756         drm_i915_private_t *dev_priv;
1757         struct drm_device *dev;
1758
1759         dev_priv = container_of(work, drm_i915_private_t,
1760                                 mm.retire_work.work);
1761         dev = dev_priv->dev;
1762
1763         mutex_lock(&dev->struct_mutex);
1764         i915_gem_retire_requests(dev, &dev_priv->render_ring);
1765
1766         if (HAS_BSD(dev))
1767                 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
1768
1769         if (!dev_priv->mm.suspended &&
1770                 (!list_empty(&dev_priv->render_ring.request_list) ||
1771                         (HAS_BSD(dev) &&
1772                          !list_empty(&dev_priv->bsd_ring.request_list))))
1773                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1774         mutex_unlock(&dev->struct_mutex);
1775 }
1776
1777 int
1778 i915_do_wait_request(struct drm_device *dev, uint32_t seqno,
1779                 int interruptible, struct intel_ring_buffer *ring)
1780 {
1781         drm_i915_private_t *dev_priv = dev->dev_private;
1782         u32 ier;
1783         int ret = 0;
1784
1785         BUG_ON(seqno == 0);
1786
1787         if (atomic_read(&dev_priv->mm.wedged))
1788                 return -EIO;
1789
1790         if (!i915_seqno_passed(ring->get_gem_seqno(dev, ring), seqno)) {
1791                 if (HAS_PCH_SPLIT(dev))
1792                         ier = I915_READ(DEIER) | I915_READ(GTIER);
1793                 else
1794                         ier = I915_READ(IER);
1795                 if (!ier) {
1796                         DRM_ERROR("something (likely vbetool) disabled "
1797                                   "interrupts, re-enabling\n");
1798                         i915_driver_irq_preinstall(dev);
1799                         i915_driver_irq_postinstall(dev);
1800                 }
1801
1802                 trace_i915_gem_request_wait_begin(dev, seqno);
1803
1804                 ring->waiting_gem_seqno = seqno;
1805                 ring->user_irq_get(dev, ring);
1806                 if (interruptible)
1807                         ret = wait_event_interruptible(ring->irq_queue,
1808                                 i915_seqno_passed(
1809                                         ring->get_gem_seqno(dev, ring), seqno)
1810                                 || atomic_read(&dev_priv->mm.wedged));
1811                 else
1812                         wait_event(ring->irq_queue,
1813                                 i915_seqno_passed(
1814                                         ring->get_gem_seqno(dev, ring), seqno)
1815                                 || atomic_read(&dev_priv->mm.wedged));
1816
1817                 ring->user_irq_put(dev, ring);
1818                 ring->waiting_gem_seqno = 0;
1819
1820                 trace_i915_gem_request_wait_end(dev, seqno);
1821         }
1822         if (atomic_read(&dev_priv->mm.wedged))
1823                 ret = -EIO;
1824
1825         if (ret && ret != -ERESTARTSYS)
1826                 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1827                           __func__, ret, seqno, ring->get_gem_seqno(dev, ring));
1828
1829         /* Directly dispatch request retiring.  While we have the work queue
1830          * to handle this, the waiter on a request often wants an associated
1831          * buffer to have made it to the inactive list, and we would need
1832          * a separate wait queue to handle that.
1833          */
1834         if (ret == 0)
1835                 i915_gem_retire_requests(dev, ring);
1836
1837         return ret;
1838 }
1839
1840 /**
1841  * Waits for a sequence number to be signaled, and cleans up the
1842  * request and object lists appropriately for that event.
1843  */
1844 static int
1845 i915_wait_request(struct drm_device *dev, uint32_t seqno,
1846                 struct intel_ring_buffer *ring)
1847 {
1848         return i915_do_wait_request(dev, seqno, 1, ring);
1849 }
1850
1851 static void
1852 i915_gem_flush(struct drm_device *dev,
1853                uint32_t invalidate_domains,
1854                uint32_t flush_domains)
1855 {
1856         drm_i915_private_t *dev_priv = dev->dev_private;
1857         if (flush_domains & I915_GEM_DOMAIN_CPU)
1858                 drm_agp_chipset_flush(dev);
1859         dev_priv->render_ring.flush(dev, &dev_priv->render_ring,
1860                         invalidate_domains,
1861                         flush_domains);
1862
1863         if (HAS_BSD(dev))
1864                 dev_priv->bsd_ring.flush(dev, &dev_priv->bsd_ring,
1865                                 invalidate_domains,
1866                                 flush_domains);
1867 }
1868
1869 static void
1870 i915_gem_flush_ring(struct drm_device *dev,
1871                uint32_t invalidate_domains,
1872                uint32_t flush_domains,
1873                struct intel_ring_buffer *ring)
1874 {
1875         if (flush_domains & I915_GEM_DOMAIN_CPU)
1876                 drm_agp_chipset_flush(dev);
1877         ring->flush(dev, ring,
1878                         invalidate_domains,
1879                         flush_domains);
1880 }
1881
1882 /**
1883  * Ensures that all rendering to the object has completed and the object is
1884  * safe to unbind from the GTT or access from the CPU.
1885  */
1886 static int
1887 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1888 {
1889         struct drm_device *dev = obj->dev;
1890         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1891         int ret;
1892
1893         /* This function only exists to support waiting for existing rendering,
1894          * not for emitting required flushes.
1895          */
1896         BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1897
1898         /* If there is rendering queued on the buffer being evicted, wait for
1899          * it.
1900          */
1901         if (obj_priv->active) {
1902 #if WATCH_BUF
1903                 DRM_INFO("%s: object %p wait for seqno %08x\n",
1904                           __func__, obj, obj_priv->last_rendering_seqno);
1905 #endif
1906                 ret = i915_wait_request(dev,
1907                                 obj_priv->last_rendering_seqno, obj_priv->ring);
1908                 if (ret != 0)
1909                         return ret;
1910         }
1911
1912         return 0;
1913 }
1914
1915 /**
1916  * Unbinds an object from the GTT aperture.
1917  */
1918 int
1919 i915_gem_object_unbind(struct drm_gem_object *obj)
1920 {
1921         struct drm_device *dev = obj->dev;
1922         drm_i915_private_t *dev_priv = dev->dev_private;
1923         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1924         int ret = 0;
1925
1926 #if WATCH_BUF
1927         DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1928         DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1929 #endif
1930         if (obj_priv->gtt_space == NULL)
1931                 return 0;
1932
1933         if (obj_priv->pin_count != 0) {
1934                 DRM_ERROR("Attempting to unbind pinned buffer\n");
1935                 return -EINVAL;
1936         }
1937
1938         /* blow away mappings if mapped through GTT */
1939         i915_gem_release_mmap(obj);
1940
1941         /* Move the object to the CPU domain to ensure that
1942          * any possible CPU writes while it's not in the GTT
1943          * are flushed when we go to remap it. This will
1944          * also ensure that all pending GPU writes are finished
1945          * before we unbind.
1946          */
1947         ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1948         if (ret) {
1949                 if (ret != -ERESTARTSYS)
1950                         DRM_ERROR("set_domain failed: %d\n", ret);
1951                 return ret;
1952         }
1953
1954         BUG_ON(obj_priv->active);
1955
1956         /* release the fence reg _after_ flushing */
1957         if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1958                 i915_gem_clear_fence_reg(obj);
1959
1960         if (obj_priv->agp_mem != NULL) {
1961                 drm_unbind_agp(obj_priv->agp_mem);
1962                 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1963                 obj_priv->agp_mem = NULL;
1964         }
1965
1966         i915_gem_object_put_pages(obj);
1967         BUG_ON(obj_priv->pages_refcount);
1968
1969         if (obj_priv->gtt_space) {
1970                 atomic_dec(&dev->gtt_count);
1971                 atomic_sub(obj->size, &dev->gtt_memory);
1972
1973                 drm_mm_put_block(obj_priv->gtt_space);
1974                 obj_priv->gtt_space = NULL;
1975         }
1976
1977         /* Remove ourselves from the LRU list if present. */
1978         spin_lock(&dev_priv->mm.active_list_lock);
1979         if (!list_empty(&obj_priv->list))
1980                 list_del_init(&obj_priv->list);
1981         spin_unlock(&dev_priv->mm.active_list_lock);
1982
1983         if (i915_gem_object_is_purgeable(obj_priv))
1984                 i915_gem_object_truncate(obj);
1985
1986         trace_i915_gem_object_unbind(obj);
1987
1988         return 0;
1989 }
1990
1991 static struct drm_gem_object *
1992 i915_gem_find_inactive_object(struct drm_device *dev, int min_size)
1993 {
1994         drm_i915_private_t *dev_priv = dev->dev_private;
1995         struct drm_i915_gem_object *obj_priv;
1996         struct drm_gem_object *best = NULL;
1997         struct drm_gem_object *first = NULL;
1998
1999         /* Try to find the smallest clean object */
2000         list_for_each_entry(obj_priv, &dev_priv->mm.inactive_list, list) {
2001                 struct drm_gem_object *obj = &obj_priv->base;
2002                 if (obj->size >= min_size) {
2003                         if ((!obj_priv->dirty ||
2004                              i915_gem_object_is_purgeable(obj_priv)) &&
2005                             (!best || obj->size < best->size)) {
2006                                 best = obj;
2007                                 if (best->size == min_size)
2008                                         return best;
2009                         }
2010                         if (!first)
2011                             first = obj;
2012                 }
2013         }
2014
2015         return best ? best : first;
2016 }
2017
2018 static int
2019 i915_gpu_idle(struct drm_device *dev)
2020 {
2021         drm_i915_private_t *dev_priv = dev->dev_private;
2022         bool lists_empty;
2023         uint32_t seqno1, seqno2;
2024         int ret;
2025
2026         spin_lock(&dev_priv->mm.active_list_lock);
2027         lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2028                        list_empty(&dev_priv->render_ring.active_list) &&
2029                        (!HAS_BSD(dev) ||
2030                         list_empty(&dev_priv->bsd_ring.active_list)));
2031         spin_unlock(&dev_priv->mm.active_list_lock);
2032
2033         if (lists_empty)
2034                 return 0;
2035
2036         /* Flush everything onto the inactive list. */
2037         i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2038         seqno1 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2039                         &dev_priv->render_ring);
2040         if (seqno1 == 0)
2041                 return -ENOMEM;
2042         ret = i915_wait_request(dev, seqno1, &dev_priv->render_ring);
2043
2044         if (HAS_BSD(dev)) {
2045                 seqno2 = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS,
2046                                 &dev_priv->bsd_ring);
2047                 if (seqno2 == 0)
2048                         return -ENOMEM;
2049
2050                 ret = i915_wait_request(dev, seqno2, &dev_priv->bsd_ring);
2051                 if (ret)
2052                         return ret;
2053         }
2054
2055
2056         return ret;
2057 }
2058
2059 static int
2060 i915_gem_evict_everything(struct drm_device *dev)
2061 {
2062         drm_i915_private_t *dev_priv = dev->dev_private;
2063         int ret;
2064         bool lists_empty;
2065
2066         spin_lock(&dev_priv->mm.active_list_lock);
2067         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2068                        list_empty(&dev_priv->mm.flushing_list) &&
2069                        list_empty(&dev_priv->render_ring.active_list) &&
2070                        (!HAS_BSD(dev)
2071                         || list_empty(&dev_priv->bsd_ring.active_list)));
2072         spin_unlock(&dev_priv->mm.active_list_lock);
2073
2074         if (lists_empty)
2075                 return -ENOSPC;
2076
2077         /* Flush everything (on to the inactive lists) and evict */
2078         ret = i915_gpu_idle(dev);
2079         if (ret)
2080                 return ret;
2081
2082         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2083
2084         ret = i915_gem_evict_from_inactive_list(dev);
2085         if (ret)
2086                 return ret;
2087
2088         spin_lock(&dev_priv->mm.active_list_lock);
2089         lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2090                        list_empty(&dev_priv->mm.flushing_list) &&
2091                        list_empty(&dev_priv->render_ring.active_list) &&
2092                        (!HAS_BSD(dev)
2093                         || list_empty(&dev_priv->bsd_ring.active_list)));
2094         spin_unlock(&dev_priv->mm.active_list_lock);
2095         BUG_ON(!lists_empty);
2096
2097         return 0;
2098 }
2099
2100 static int
2101 i915_gem_evict_something(struct drm_device *dev, int min_size)
2102 {
2103         drm_i915_private_t *dev_priv = dev->dev_private;
2104         struct drm_gem_object *obj;
2105         int ret;
2106
2107         struct intel_ring_buffer *render_ring = &dev_priv->render_ring;
2108         struct intel_ring_buffer *bsd_ring = &dev_priv->bsd_ring;
2109         for (;;) {
2110                 i915_gem_retire_requests(dev, render_ring);
2111
2112                 if (HAS_BSD(dev))
2113                         i915_gem_retire_requests(dev, bsd_ring);
2114
2115                 /* If there's an inactive buffer available now, grab it
2116                  * and be done.
2117                  */
2118                 obj = i915_gem_find_inactive_object(dev, min_size);
2119                 if (obj) {
2120                         struct drm_i915_gem_object *obj_priv;
2121
2122 #if WATCH_LRU
2123                         DRM_INFO("%s: evicting %p\n", __func__, obj);
2124 #endif
2125                         obj_priv = to_intel_bo(obj);
2126                         BUG_ON(obj_priv->pin_count != 0);
2127                         BUG_ON(obj_priv->active);
2128
2129                         /* Wait on the rendering and unbind the buffer. */
2130                         return i915_gem_object_unbind(obj);
2131                 }
2132
2133                 /* If we didn't get anything, but the ring is still processing
2134                  * things, wait for the next to finish and hopefully leave us
2135                  * a buffer to evict.
2136                  */
2137                 if (!list_empty(&render_ring->request_list)) {
2138                         struct drm_i915_gem_request *request;
2139
2140                         request = list_first_entry(&render_ring->request_list,
2141                                                    struct drm_i915_gem_request,
2142                                                    list);
2143
2144                         ret = i915_wait_request(dev,
2145                                         request->seqno, request->ring);
2146                         if (ret)
2147                                 return ret;
2148
2149                         continue;
2150                 }
2151
2152                 if (HAS_BSD(dev) && !list_empty(&bsd_ring->request_list)) {
2153                         struct drm_i915_gem_request *request;
2154
2155                         request = list_first_entry(&bsd_ring->request_list,
2156                                                    struct drm_i915_gem_request,
2157                                                    list);
2158
2159                         ret = i915_wait_request(dev,
2160                                         request->seqno, request->ring);
2161                         if (ret)
2162                                 return ret;
2163
2164                         continue;
2165                 }
2166
2167                 /* If we didn't have anything on the request list but there
2168                  * are buffers awaiting a flush, emit one and try again.
2169                  * When we wait on it, those buffers waiting for that flush
2170                  * will get moved to inactive.
2171                  */
2172                 if (!list_empty(&dev_priv->mm.flushing_list)) {
2173                         struct drm_i915_gem_object *obj_priv;
2174
2175                         /* Find an object that we can immediately reuse */
2176                         list_for_each_entry(obj_priv, &dev_priv->mm.flushing_list, list) {
2177                                 obj = &obj_priv->base;
2178                                 if (obj->size >= min_size)
2179                                         break;
2180
2181                                 obj = NULL;
2182                         }
2183
2184                         if (obj != NULL) {
2185                                 uint32_t seqno;
2186
2187                                 i915_gem_flush_ring(dev,
2188                                                obj->write_domain,
2189                                                obj->write_domain,
2190                                                obj_priv->ring);
2191                                 seqno = i915_add_request(dev, NULL,
2192                                                 obj->write_domain,
2193                                                 obj_priv->ring);
2194                                 if (seqno == 0)
2195                                         return -ENOMEM;
2196                                 continue;
2197                         }
2198                 }
2199
2200                 /* If we didn't do any of the above, there's no single buffer
2201                  * large enough to swap out for the new one, so just evict
2202                  * everything and start again. (This should be rare.)
2203                  */
2204                 if (!list_empty (&dev_priv->mm.inactive_list))
2205                         return i915_gem_evict_from_inactive_list(dev);
2206                 else
2207                         return i915_gem_evict_everything(dev);
2208         }
2209 }
2210
2211 int
2212 i915_gem_object_get_pages(struct drm_gem_object *obj,
2213                           gfp_t gfpmask)
2214 {
2215         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2216         int page_count, i;
2217         struct address_space *mapping;
2218         struct inode *inode;
2219         struct page *page;
2220
2221         BUG_ON(obj_priv->pages_refcount
2222                         == DRM_I915_GEM_OBJECT_MAX_PAGES_REFCOUNT);
2223
2224         if (obj_priv->pages_refcount++ != 0)
2225                 return 0;
2226
2227         /* Get the list of pages out of our struct file.  They'll be pinned
2228          * at this point until we release them.
2229          */
2230         page_count = obj->size / PAGE_SIZE;
2231         BUG_ON(obj_priv->pages != NULL);
2232         obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2233         if (obj_priv->pages == NULL) {
2234                 obj_priv->pages_refcount--;
2235                 return -ENOMEM;
2236         }
2237
2238         inode = obj->filp->f_path.dentry->d_inode;
2239         mapping = inode->i_mapping;
2240         for (i = 0; i < page_count; i++) {
2241                 page = read_cache_page_gfp(mapping, i,
2242                                            mapping_gfp_mask (mapping) |
2243                                            __GFP_COLD |
2244                                            gfpmask);
2245                 if (IS_ERR(page))
2246                         goto err_pages;
2247
2248                 obj_priv->pages[i] = page;
2249         }
2250
2251         if (obj_priv->tiling_mode != I915_TILING_NONE)
2252                 i915_gem_object_do_bit_17_swizzle(obj);
2253
2254         return 0;
2255
2256 err_pages:
2257         while (i--)
2258                 page_cache_release(obj_priv->pages[i]);
2259
2260         drm_free_large(obj_priv->pages);
2261         obj_priv->pages = NULL;
2262         obj_priv->pages_refcount--;
2263         return PTR_ERR(page);
2264 }
2265
2266 static void sandybridge_write_fence_reg(struct drm_i915_fence_reg *reg)
2267 {
2268         struct drm_gem_object *obj = reg->obj;
2269         struct drm_device *dev = obj->dev;
2270         drm_i915_private_t *dev_priv = dev->dev_private;
2271         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2272         int regnum = obj_priv->fence_reg;
2273         uint64_t val;
2274
2275         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2276                     0xfffff000) << 32;
2277         val |= obj_priv->gtt_offset & 0xfffff000;
2278         val |= (uint64_t)((obj_priv->stride / 128) - 1) <<
2279                 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2280
2281         if (obj_priv->tiling_mode == I915_TILING_Y)
2282                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2283         val |= I965_FENCE_REG_VALID;
2284
2285         I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + (regnum * 8), val);
2286 }
2287
2288 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2289 {
2290         struct drm_gem_object *obj = reg->obj;
2291         struct drm_device *dev = obj->dev;
2292         drm_i915_private_t *dev_priv = dev->dev_private;
2293         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2294         int regnum = obj_priv->fence_reg;
2295         uint64_t val;
2296
2297         val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2298                     0xfffff000) << 32;
2299         val |= obj_priv->gtt_offset & 0xfffff000;
2300         val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2301         if (obj_priv->tiling_mode == I915_TILING_Y)
2302                 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2303         val |= I965_FENCE_REG_VALID;
2304
2305         I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2306 }
2307
2308 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2309 {
2310         struct drm_gem_object *obj = reg->obj;
2311         struct drm_device *dev = obj->dev;
2312         drm_i915_private_t *dev_priv = dev->dev_private;
2313         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2314         int regnum = obj_priv->fence_reg;
2315         int tile_width;
2316         uint32_t fence_reg, val;
2317         uint32_t pitch_val;
2318
2319         if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2320             (obj_priv->gtt_offset & (obj->size - 1))) {
2321                 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2322                      __func__, obj_priv->gtt_offset, obj->size);
2323                 return;
2324         }
2325
2326         if (obj_priv->tiling_mode == I915_TILING_Y &&
2327             HAS_128_BYTE_Y_TILING(dev))
2328                 tile_width = 128;
2329         else
2330                 tile_width = 512;
2331
2332         /* Note: pitch better be a power of two tile widths */
2333         pitch_val = obj_priv->stride / tile_width;
2334         pitch_val = ffs(pitch_val) - 1;
2335
2336         if (obj_priv->tiling_mode == I915_TILING_Y &&
2337             HAS_128_BYTE_Y_TILING(dev))
2338                 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2339         else
2340                 WARN_ON(pitch_val > I915_FENCE_MAX_PITCH_VAL);
2341
2342         val = obj_priv->gtt_offset;
2343         if (obj_priv->tiling_mode == I915_TILING_Y)
2344                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2345         val |= I915_FENCE_SIZE_BITS(obj->size);
2346         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2347         val |= I830_FENCE_REG_VALID;
2348
2349         if (regnum < 8)
2350                 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2351         else
2352                 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2353         I915_WRITE(fence_reg, val);
2354 }
2355
2356 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2357 {
2358         struct drm_gem_object *obj = reg->obj;
2359         struct drm_device *dev = obj->dev;
2360         drm_i915_private_t *dev_priv = dev->dev_private;
2361         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2362         int regnum = obj_priv->fence_reg;
2363         uint32_t val;
2364         uint32_t pitch_val;
2365         uint32_t fence_size_bits;
2366
2367         if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2368             (obj_priv->gtt_offset & (obj->size - 1))) {
2369                 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2370                      __func__, obj_priv->gtt_offset);
2371                 return;
2372         }
2373
2374         pitch_val = obj_priv->stride / 128;
2375         pitch_val = ffs(pitch_val) - 1;
2376         WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2377
2378         val = obj_priv->gtt_offset;
2379         if (obj_priv->tiling_mode == I915_TILING_Y)
2380                 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2381         fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2382         WARN_ON(fence_size_bits & ~0x00000f00);
2383         val |= fence_size_bits;
2384         val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2385         val |= I830_FENCE_REG_VALID;
2386
2387         I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2388 }
2389
2390 static int i915_find_fence_reg(struct drm_device *dev)
2391 {
2392         struct drm_i915_fence_reg *reg = NULL;
2393         struct drm_i915_gem_object *obj_priv = NULL;
2394         struct drm_i915_private *dev_priv = dev->dev_private;
2395         struct drm_gem_object *obj = NULL;
2396         int i, avail, ret;
2397
2398         /* First try to find a free reg */
2399         avail = 0;
2400         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2401                 reg = &dev_priv->fence_regs[i];
2402                 if (!reg->obj)
2403                         return i;
2404
2405                 obj_priv = to_intel_bo(reg->obj);
2406                 if (!obj_priv->pin_count)
2407                     avail++;
2408         }
2409
2410         if (avail == 0)
2411                 return -ENOSPC;
2412
2413         /* None available, try to steal one or wait for a user to finish */
2414         i = I915_FENCE_REG_NONE;
2415         list_for_each_entry(reg, &dev_priv->mm.fence_list,
2416                             lru_list) {
2417                 obj = reg->obj;
2418                 obj_priv = to_intel_bo(obj);
2419
2420                 if (obj_priv->pin_count)
2421                         continue;
2422
2423                 /* found one! */
2424                 i = obj_priv->fence_reg;
2425                 break;
2426         }
2427
2428         BUG_ON(i == I915_FENCE_REG_NONE);
2429
2430         /* We only have a reference on obj from the active list. put_fence_reg
2431          * might drop that one, causing a use-after-free in it. So hold a
2432          * private reference to obj like the other callers of put_fence_reg
2433          * (set_tiling ioctl) do. */
2434         drm_gem_object_reference(obj);
2435         ret = i915_gem_object_put_fence_reg(obj);
2436         drm_gem_object_unreference(obj);
2437         if (ret != 0)
2438                 return ret;
2439
2440         return i;
2441 }
2442
2443 /**
2444  * i915_gem_object_get_fence_reg - set up a fence reg for an object
2445  * @obj: object to map through a fence reg
2446  *
2447  * When mapping objects through the GTT, userspace wants to be able to write
2448  * to them without having to worry about swizzling if the object is tiled.
2449  *
2450  * This function walks the fence regs looking for a free one for @obj,
2451  * stealing one if it can't find any.
2452  *
2453  * It then sets up the reg based on the object's properties: address, pitch
2454  * and tiling format.
2455  */
2456 int
2457 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2458 {
2459         struct drm_device *dev = obj->dev;
2460         struct drm_i915_private *dev_priv = dev->dev_private;
2461         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2462         struct drm_i915_fence_reg *reg = NULL;
2463         int ret;
2464
2465         /* Just update our place in the LRU if our fence is getting used. */
2466         if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2467                 reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2468                 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2469                 return 0;
2470         }
2471
2472         switch (obj_priv->tiling_mode) {
2473         case I915_TILING_NONE:
2474                 WARN(1, "allocating a fence for non-tiled object?\n");
2475                 break;
2476         case I915_TILING_X:
2477                 if (!obj_priv->stride)
2478                         return -EINVAL;
2479                 WARN((obj_priv->stride & (512 - 1)),
2480                      "object 0x%08x is X tiled but has non-512B pitch\n",
2481                      obj_priv->gtt_offset);
2482                 break;
2483         case I915_TILING_Y:
2484                 if (!obj_priv->stride)
2485                         return -EINVAL;
2486                 WARN((obj_priv->stride & (128 - 1)),
2487                      "object 0x%08x is Y tiled but has non-128B pitch\n",
2488                      obj_priv->gtt_offset);
2489                 break;
2490         }
2491
2492         ret = i915_find_fence_reg(dev);
2493         if (ret < 0)
2494                 return ret;
2495
2496         obj_priv->fence_reg = ret;
2497         reg = &dev_priv->fence_regs[obj_priv->fence_reg];
2498         list_add_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2499
2500         reg->obj = obj;
2501
2502         if (IS_GEN6(dev))
2503                 sandybridge_write_fence_reg(reg);
2504         else if (IS_I965G(dev))
2505                 i965_write_fence_reg(reg);
2506         else if (IS_I9XX(dev))
2507                 i915_write_fence_reg(reg);
2508         else
2509                 i830_write_fence_reg(reg);
2510
2511         trace_i915_gem_object_get_fence(obj, obj_priv->fence_reg,
2512                         obj_priv->tiling_mode);
2513
2514         return 0;
2515 }
2516
2517 /**
2518  * i915_gem_clear_fence_reg - clear out fence register info
2519  * @obj: object to clear
2520  *
2521  * Zeroes out the fence register itself and clears out the associated
2522  * data structures in dev_priv and obj_priv.
2523  */
2524 static void
2525 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2526 {
2527         struct drm_device *dev = obj->dev;
2528         drm_i915_private_t *dev_priv = dev->dev_private;
2529         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2530         struct drm_i915_fence_reg *reg =
2531                 &dev_priv->fence_regs[obj_priv->fence_reg];
2532
2533         if (IS_GEN6(dev)) {
2534                 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 +
2535                              (obj_priv->fence_reg * 8), 0);
2536         } else if (IS_I965G(dev)) {
2537                 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2538         } else {
2539                 uint32_t fence_reg;
2540
2541                 if (obj_priv->fence_reg < 8)
2542                         fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2543                 else
2544                         fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2545                                                        8) * 4;
2546
2547                 I915_WRITE(fence_reg, 0);
2548         }
2549
2550         reg->obj = NULL;
2551         obj_priv->fence_reg = I915_FENCE_REG_NONE;
2552         list_del_init(&reg->lru_list);
2553 }
2554
2555 /**
2556  * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2557  * to the buffer to finish, and then resets the fence register.
2558  * @obj: tiled object holding a fence register.
2559  *
2560  * Zeroes out the fence register itself and clears out the associated
2561  * data structures in dev_priv and obj_priv.
2562  */
2563 int
2564 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2565 {
2566         struct drm_device *dev = obj->dev;
2567         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2568
2569         if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2570                 return 0;
2571
2572         /* If we've changed tiling, GTT-mappings of the object
2573          * need to re-fault to ensure that the correct fence register
2574          * setup is in place.
2575          */
2576         i915_gem_release_mmap(obj);
2577
2578         /* On the i915, GPU access to tiled buffers is via a fence,
2579          * therefore we must wait for any outstanding access to complete
2580          * before clearing the fence.
2581          */
2582         if (!IS_I965G(dev)) {
2583                 int ret;
2584
2585                 i915_gem_object_flush_gpu_write_domain(obj);
2586                 ret = i915_gem_object_wait_rendering(obj);
2587                 if (ret != 0)
2588                         return ret;
2589         }
2590
2591         i915_gem_object_flush_gtt_write_domain(obj);
2592         i915_gem_clear_fence_reg (obj);
2593
2594         return 0;
2595 }
2596
2597 /**
2598  * Finds free space in the GTT aperture and binds the object there.
2599  */
2600 static int
2601 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2602 {
2603         struct drm_device *dev = obj->dev;
2604         drm_i915_private_t *dev_priv = dev->dev_private;
2605         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2606         struct drm_mm_node *free_space;
2607         gfp_t gfpmask =  __GFP_NORETRY | __GFP_NOWARN;
2608         int ret;
2609
2610         if (obj_priv->madv != I915_MADV_WILLNEED) {
2611                 DRM_ERROR("Attempting to bind a purgeable object\n");
2612                 return -EINVAL;
2613         }
2614
2615         if (alignment == 0)
2616                 alignment = i915_gem_get_gtt_alignment(obj);
2617         if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2618                 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2619                 return -EINVAL;
2620         }
2621
2622         /* If the object is bigger than the entire aperture, reject it early
2623          * before evicting everything in a vain attempt to find space.
2624          */
2625         if (obj->size > dev->gtt_total) {
2626                 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2627                 return -E2BIG;
2628         }
2629
2630  search_free:
2631         free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2632                                         obj->size, alignment, 0);
2633         if (free_space != NULL) {
2634                 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2635                                                        alignment);
2636                 if (obj_priv->gtt_space != NULL) {
2637                         obj_priv->gtt_space->private = obj;
2638                         obj_priv->gtt_offset = obj_priv->gtt_space->start;
2639                 }
2640         }
2641         if (obj_priv->gtt_space == NULL) {
2642                 /* If the gtt is empty and we're still having trouble
2643                  * fitting our object in, we're out of memory.
2644                  */
2645 #if WATCH_LRU
2646                 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2647 #endif
2648                 ret = i915_gem_evict_something(dev, obj->size);
2649                 if (ret)
2650                         return ret;
2651
2652                 goto search_free;
2653         }
2654
2655 #if WATCH_BUF
2656         DRM_INFO("Binding object of size %zd at 0x%08x\n",
2657                  obj->size, obj_priv->gtt_offset);
2658 #endif
2659         ret = i915_gem_object_get_pages(obj, gfpmask);
2660         if (ret) {
2661                 drm_mm_put_block(obj_priv->gtt_space);
2662                 obj_priv->gtt_space = NULL;
2663
2664                 if (ret == -ENOMEM) {
2665                         /* first try to clear up some space from the GTT */
2666                         ret = i915_gem_evict_something(dev, obj->size);
2667                         if (ret) {
2668                                 /* now try to shrink everyone else */
2669                                 if (gfpmask) {
2670                                         gfpmask = 0;
2671                                         goto search_free;
2672                                 }
2673
2674                                 return ret;
2675                         }
2676
2677                         goto search_free;
2678                 }
2679
2680                 return ret;
2681         }
2682
2683         /* Create an AGP memory structure pointing at our pages, and bind it
2684          * into the GTT.
2685          */
2686         obj_priv->agp_mem = drm_agp_bind_pages(dev,
2687                                                obj_priv->pages,
2688                                                obj->size >> PAGE_SHIFT,
2689                                                obj_priv->gtt_offset,
2690                                                obj_priv->agp_type);
2691         if (obj_priv->agp_mem == NULL) {
2692                 i915_gem_object_put_pages(obj);
2693                 drm_mm_put_block(obj_priv->gtt_space);
2694                 obj_priv->gtt_space = NULL;
2695
2696                 ret = i915_gem_evict_something(dev, obj->size);
2697                 if (ret)
2698                         return ret;
2699
2700                 goto search_free;
2701         }
2702         atomic_inc(&dev->gtt_count);
2703         atomic_add(obj->size, &dev->gtt_memory);
2704
2705         /* Assert that the object is not currently in any GPU domain. As it
2706          * wasn't in the GTT, there shouldn't be any way it could have been in
2707          * a GPU cache
2708          */
2709         BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2710         BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2711
2712         trace_i915_gem_object_bind(obj, obj_priv->gtt_offset);
2713
2714         return 0;
2715 }
2716
2717 void
2718 i915_gem_clflush_object(struct drm_gem_object *obj)
2719 {
2720         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
2721
2722         /* If we don't have a page list set up, then we're not pinned
2723          * to GPU, and we can ignore the cache flush because it'll happen
2724          * again at bind time.
2725          */
2726         if (obj_priv->pages == NULL)
2727                 return;
2728
2729         trace_i915_gem_object_clflush(obj);
2730
2731         drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2732 }
2733
2734 /** Flushes any GPU write domain for the object if it's dirty. */
2735 static void
2736 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2737 {
2738         struct drm_device *dev = obj->dev;
2739         uint32_t old_write_domain;
2740         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2741
2742         if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2743                 return;
2744
2745         /* Queue the GPU write cache flushing we need. */
2746         old_write_domain = obj->write_domain;
2747         i915_gem_flush(dev, 0, obj->write_domain);
2748         (void) i915_add_request(dev, NULL, obj->write_domain, obj_priv->ring);
2749         BUG_ON(obj->write_domain);
2750
2751         trace_i915_gem_object_change_domain(obj,
2752                                             obj->read_domains,
2753                                             old_write_domain);
2754 }
2755
2756 /** Flushes the GTT write domain for the object if it's dirty. */
2757 static void
2758 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2759 {
2760         uint32_t old_write_domain;
2761
2762         if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2763                 return;
2764
2765         /* No actual flushing is required for the GTT write domain.   Writes
2766          * to it immediately go to main memory as far as we know, so there's
2767          * no chipset flush.  It also doesn't land in render cache.
2768          */
2769         old_write_domain = obj->write_domain;
2770         obj->write_domain = 0;
2771
2772         trace_i915_gem_object_change_domain(obj,
2773                                             obj->read_domains,
2774                                             old_write_domain);
2775 }
2776
2777 /** Flushes the CPU write domain for the object if it's dirty. */
2778 static void
2779 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2780 {
2781         struct drm_device *dev = obj->dev;
2782         uint32_t old_write_domain;
2783
2784         if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2785                 return;
2786
2787         i915_gem_clflush_object(obj);
2788         drm_agp_chipset_flush(dev);
2789         old_write_domain = obj->write_domain;
2790         obj->write_domain = 0;
2791
2792         trace_i915_gem_object_change_domain(obj,
2793                                             obj->read_domains,
2794                                             old_write_domain);
2795 }
2796
2797 void
2798 i915_gem_object_flush_write_domain(struct drm_gem_object *obj)
2799 {
2800         switch (obj->write_domain) {
2801         case I915_GEM_DOMAIN_GTT:
2802                 i915_gem_object_flush_gtt_write_domain(obj);
2803                 break;
2804         case I915_GEM_DOMAIN_CPU:
2805                 i915_gem_object_flush_cpu_write_domain(obj);
2806                 break;
2807         default:
2808                 i915_gem_object_flush_gpu_write_domain(obj);
2809                 break;
2810         }
2811 }
2812
2813 /**
2814  * Moves a single object to the GTT read, and possibly write domain.
2815  *
2816  * This function returns when the move is complete, including waiting on
2817  * flushes to occur.
2818  */
2819 int
2820 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2821 {
2822         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2823         uint32_t old_write_domain, old_read_domains;
2824         int ret;
2825
2826         /* Not valid to be called on unbound objects. */
2827         if (obj_priv->gtt_space == NULL)
2828                 return -EINVAL;
2829
2830         i915_gem_object_flush_gpu_write_domain(obj);
2831         /* Wait on any GPU rendering and flushing to occur. */
2832         ret = i915_gem_object_wait_rendering(obj);
2833         if (ret != 0)
2834                 return ret;
2835
2836         old_write_domain = obj->write_domain;
2837         old_read_domains = obj->read_domains;
2838
2839         /* If we're writing through the GTT domain, then CPU and GPU caches
2840          * will need to be invalidated at next use.
2841          */
2842         if (write)
2843                 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2844
2845         i915_gem_object_flush_cpu_write_domain(obj);
2846
2847         /* It should now be out of any other write domains, and we can update
2848          * the domain values for our changes.
2849          */
2850         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2851         obj->read_domains |= I915_GEM_DOMAIN_GTT;
2852         if (write) {
2853                 obj->write_domain = I915_GEM_DOMAIN_GTT;
2854                 obj_priv->dirty = 1;
2855         }
2856
2857         trace_i915_gem_object_change_domain(obj,
2858                                             old_read_domains,
2859                                             old_write_domain);
2860
2861         return 0;
2862 }
2863
2864 /*
2865  * Prepare buffer for display plane. Use uninterruptible for possible flush
2866  * wait, as in modesetting process we're not supposed to be interrupted.
2867  */
2868 int
2869 i915_gem_object_set_to_display_plane(struct drm_gem_object *obj)
2870 {
2871         struct drm_device *dev = obj->dev;
2872         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
2873         uint32_t old_write_domain, old_read_domains;
2874         int ret;
2875
2876         /* Not valid to be called on unbound objects. */
2877         if (obj_priv->gtt_space == NULL)
2878                 return -EINVAL;
2879
2880         i915_gem_object_flush_gpu_write_domain(obj);
2881
2882         /* Wait on any GPU rendering and flushing to occur. */
2883         if (obj_priv->active) {
2884 #if WATCH_BUF
2885                 DRM_INFO("%s: object %p wait for seqno %08x\n",
2886                           __func__, obj, obj_priv->last_rendering_seqno);
2887 #endif
2888                 ret = i915_do_wait_request(dev,
2889                                 obj_priv->last_rendering_seqno,
2890                                 0,
2891                                 obj_priv->ring);
2892                 if (ret != 0)
2893                         return ret;
2894         }
2895
2896         i915_gem_object_flush_cpu_write_domain(obj);
2897
2898         old_write_domain = obj->write_domain;
2899         old_read_domains = obj->read_domains;
2900
2901         /* It should now be out of any other write domains, and we can update
2902          * the domain values for our changes.
2903          */
2904         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2905         obj->read_domains = I915_GEM_DOMAIN_GTT;
2906         obj->write_domain = I915_GEM_DOMAIN_GTT;
2907         obj_priv->dirty = 1;
2908
2909         trace_i915_gem_object_change_domain(obj,
2910                                             old_read_domains,
2911                                             old_write_domain);
2912
2913         return 0;
2914 }
2915
2916 /**
2917  * Moves a single object to the CPU read, and possibly write domain.
2918  *
2919  * This function returns when the move is complete, including waiting on
2920  * flushes to occur.
2921  */
2922 static int
2923 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2924 {
2925         uint32_t old_write_domain, old_read_domains;
2926         int ret;
2927
2928         i915_gem_object_flush_gpu_write_domain(obj);
2929         /* Wait on any GPU rendering and flushing to occur. */
2930         ret = i915_gem_object_wait_rendering(obj);
2931         if (ret != 0)
2932                 return ret;
2933
2934         i915_gem_object_flush_gtt_write_domain(obj);
2935
2936         /* If we have a partially-valid cache of the object in the CPU,
2937          * finish invalidating it and free the per-page flags.
2938          */
2939         i915_gem_object_set_to_full_cpu_read_domain(obj);
2940
2941         old_write_domain = obj->write_domain;
2942         old_read_domains = obj->read_domains;
2943
2944         /* Flush the CPU cache if it's still invalid. */
2945         if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2946                 i915_gem_clflush_object(obj);
2947
2948                 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2949         }
2950
2951         /* It should now be out of any other write domains, and we can update
2952          * the domain values for our changes.
2953          */
2954         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2955
2956         /* If we're writing through the CPU, then the GPU read domains will
2957          * need to be invalidated at next use.
2958          */
2959         if (write) {
2960                 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2961                 obj->write_domain = I915_GEM_DOMAIN_CPU;
2962         }
2963
2964         trace_i915_gem_object_change_domain(obj,
2965                                             old_read_domains,
2966                                             old_write_domain);
2967
2968         return 0;
2969 }
2970
2971 /*
2972  * Set the next domain for the specified object. This
2973  * may not actually perform the necessary flushing/invaliding though,
2974  * as that may want to be batched with other set_domain operations
2975  *
2976  * This is (we hope) the only really tricky part of gem. The goal
2977  * is fairly simple -- track which caches hold bits of the object
2978  * and make sure they remain coherent. A few concrete examples may
2979  * help to explain how it works. For shorthand, we use the notation
2980  * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2981  * a pair of read and write domain masks.
2982  *
2983  * Case 1: the batch buffer
2984  *
2985  *      1. Allocated
2986  *      2. Written by CPU
2987  *      3. Mapped to GTT
2988  *      4. Read by GPU
2989  *      5. Unmapped from GTT
2990  *      6. Freed
2991  *
2992  *      Let's take these a step at a time
2993  *
2994  *      1. Allocated
2995  *              Pages allocated from the kernel may still have
2996  *              cache contents, so we set them to (CPU, CPU) always.
2997  *      2. Written by CPU (using pwrite)
2998  *              The pwrite function calls set_domain (CPU, CPU) and
2999  *              this function does nothing (as nothing changes)
3000  *      3. Mapped by GTT
3001  *              This function asserts that the object is not
3002  *              currently in any GPU-based read or write domains
3003  *      4. Read by GPU
3004  *              i915_gem_execbuffer calls set_domain (COMMAND, 0).
3005  *              As write_domain is zero, this function adds in the
3006  *              current read domains (CPU+COMMAND, 0).
3007  *              flush_domains is set to CPU.
3008  *              invalidate_domains is set to COMMAND
3009  *              clflush is run to get data out of the CPU caches
3010  *              then i915_dev_set_domain calls i915_gem_flush to
3011  *              emit an MI_FLUSH and drm_agp_chipset_flush
3012  *      5. Unmapped from GTT
3013  *              i915_gem_object_unbind calls set_domain (CPU, CPU)
3014  *              flush_domains and invalidate_domains end up both zero
3015  *              so no flushing/invalidating happens
3016  *      6. Freed
3017  *              yay, done
3018  *
3019  * Case 2: The shared render buffer
3020  *
3021  *      1. Allocated
3022  *      2. Mapped to GTT
3023  *      3. Read/written by GPU
3024  *      4. set_domain to (CPU,CPU)
3025  *      5. Read/written by CPU
3026  *      6. Read/written by GPU
3027  *
3028  *      1. Allocated
3029  *              Same as last example, (CPU, CPU)
3030  *      2. Mapped to GTT
3031  *              Nothing changes (assertions find that it is not in the GPU)
3032  *      3. Read/written by GPU
3033  *              execbuffer calls set_domain (RENDER, RENDER)
3034  *              flush_domains gets CPU
3035  *              invalidate_domains gets GPU
3036  *              clflush (obj)
3037  *              MI_FLUSH and drm_agp_chipset_flush
3038  *      4. set_domain (CPU, CPU)
3039  *              flush_domains gets GPU
3040  *              invalidate_domains gets CPU
3041  *              wait_rendering (obj) to make sure all drawing is complete.
3042  *              This will include an MI_FLUSH to get the data from GPU
3043  *              to memory
3044  *              clflush (obj) to invalidate the CPU cache
3045  *              Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
3046  *      5. Read/written by CPU
3047  *              cache lines are loaded and dirtied
3048  *      6. Read written by GPU
3049  *              Same as last GPU access
3050  *
3051  * Case 3: The constant buffer
3052  *
3053  *      1. Allocated
3054  *      2. Written by CPU
3055  *      3. Read by GPU
3056  *      4. Updated (written) by CPU again
3057  *      5. Read by GPU
3058  *
3059  *      1. Allocated
3060  *              (CPU, CPU)
3061  *      2. Written by CPU
3062  *              (CPU, CPU)
3063  *      3. Read by GPU
3064  *              (CPU+RENDER, 0)
3065  *              flush_domains = CPU
3066  *              invalidate_domains = RENDER
3067  *              clflush (obj)
3068  *              MI_FLUSH
3069  *              drm_agp_chipset_flush
3070  *      4. Updated (written) by CPU again
3071  *              (CPU, CPU)
3072  *              flush_domains = 0 (no previous write domain)
3073  *              invalidate_domains = 0 (no new read domains)
3074  *      5. Read by GPU
3075  *              (CPU+RENDER, 0)
3076  *              flush_domains = CPU
3077  *              invalidate_domains = RENDER
3078  *              clflush (obj)
3079  *              MI_FLUSH
3080  *              drm_agp_chipset_flush
3081  */
3082 static void
3083 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
3084 {
3085         struct drm_device               *dev = obj->dev;
3086         struct drm_i915_gem_object      *obj_priv = to_intel_bo(obj);
3087         uint32_t                        invalidate_domains = 0;
3088         uint32_t                        flush_domains = 0;
3089         uint32_t                        old_read_domains;
3090
3091         BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
3092         BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
3093
3094         intel_mark_busy(dev, obj);
3095
3096 #if WATCH_BUF
3097         DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
3098                  __func__, obj,
3099                  obj->read_domains, obj->pending_read_domains,
3100                  obj->write_domain, obj->pending_write_domain);
3101 #endif
3102         /*
3103          * If the object isn't moving to a new write domain,
3104          * let the object stay in multiple read domains
3105          */
3106         if (obj->pending_write_domain == 0)
3107                 obj->pending_read_domains |= obj->read_domains;
3108         else
3109                 obj_priv->dirty = 1;
3110
3111         /*
3112          * Flush the current write domain if
3113          * the new read domains don't match. Invalidate
3114          * any read domains which differ from the old
3115          * write domain
3116          */
3117         if (obj->write_domain &&
3118             obj->write_domain != obj->pending_read_domains) {
3119                 flush_domains |= obj->write_domain;
3120                 invalidate_domains |=
3121                         obj->pending_read_domains & ~obj->write_domain;
3122         }
3123         /*
3124          * Invalidate any read caches which may have
3125          * stale data. That is, any new read domains.
3126          */
3127         invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
3128         if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
3129 #if WATCH_BUF
3130                 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
3131                          __func__, flush_domains, invalidate_domains);
3132 #endif
3133                 i915_gem_clflush_object(obj);
3134         }
3135
3136         old_read_domains = obj->read_domains;
3137
3138         /* The actual obj->write_domain will be updated with
3139          * pending_write_domain after we emit the accumulated flush for all
3140          * of our domain changes in execbuffers (which clears objects'
3141          * write_domains).  So if we have a current write domain that we
3142          * aren't changing, set pending_write_domain to that.
3143          */
3144         if (flush_domains == 0 && obj->pending_write_domain == 0)
3145                 obj->pending_write_domain = obj->write_domain;
3146         obj->read_domains = obj->pending_read_domains;
3147
3148         dev->invalidate_domains |= invalidate_domains;
3149         dev->flush_domains |= flush_domains;
3150 #if WATCH_BUF
3151         DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
3152                  __func__,
3153                  obj->read_domains, obj->write_domain,
3154                  dev->invalidate_domains, dev->flush_domains);
3155 #endif
3156
3157         trace_i915_gem_object_change_domain(obj,
3158                                             old_read_domains,
3159                                             obj->write_domain);
3160 }
3161
3162 /**
3163  * Moves the object from a partially CPU read to a full one.
3164  *
3165  * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3166  * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3167  */
3168 static void
3169 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
3170 {
3171         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3172
3173         if (!obj_priv->page_cpu_valid)
3174                 return;
3175
3176         /* If we're partially in the CPU read domain, finish moving it in.
3177          */
3178         if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
3179                 int i;
3180
3181                 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
3182                         if (obj_priv->page_cpu_valid[i])
3183                                 continue;
3184                         drm_clflush_pages(obj_priv->pages + i, 1);
3185                 }
3186         }
3187
3188         /* Free the page_cpu_valid mappings which are now stale, whether
3189          * or not we've got I915_GEM_DOMAIN_CPU.
3190          */
3191         kfree(obj_priv->page_cpu_valid);
3192         obj_priv->page_cpu_valid = NULL;
3193 }
3194
3195 /**
3196  * Set the CPU read domain on a range of the object.
3197  *
3198  * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3199  * not entirely valid.  The page_cpu_valid member of the object flags which
3200  * pages have been flushed, and will be respected by
3201  * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3202  * of the whole object.
3203  *
3204  * This function returns when the move is complete, including waiting on
3205  * flushes to occur.
3206  */
3207 static int
3208 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
3209                                           uint64_t offset, uint64_t size)
3210 {
3211         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3212         uint32_t old_read_domains;
3213         int i, ret;
3214
3215         if (offset == 0 && size == obj->size)
3216                 return i915_gem_object_set_to_cpu_domain(obj, 0);
3217
3218         i915_gem_object_flush_gpu_write_domain(obj);
3219         /* Wait on any GPU rendering and flushing to occur. */
3220         ret = i915_gem_object_wait_rendering(obj);
3221         if (ret != 0)
3222                 return ret;
3223         i915_gem_object_flush_gtt_write_domain(obj);
3224
3225         /* If we're already fully in the CPU read domain, we're done. */
3226         if (obj_priv->page_cpu_valid == NULL &&
3227             (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
3228                 return 0;
3229
3230         /* Otherwise, create/clear the per-page CPU read domain flag if we're
3231          * newly adding I915_GEM_DOMAIN_CPU
3232          */
3233         if (obj_priv->page_cpu_valid == NULL) {
3234                 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
3235                                                    GFP_KERNEL);
3236                 if (obj_priv->page_cpu_valid == NULL)
3237                         return -ENOMEM;
3238         } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
3239                 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
3240
3241         /* Flush the cache on any pages that are still invalid from the CPU's
3242          * perspective.
3243          */
3244         for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3245              i++) {
3246                 if (obj_priv->page_cpu_valid[i])
3247                         continue;
3248
3249                 drm_clflush_pages(obj_priv->pages + i, 1);
3250
3251                 obj_priv->page_cpu_valid[i] = 1;
3252         }
3253
3254         /* It should now be out of any other write domains, and we can update
3255          * the domain values for our changes.
3256          */
3257         BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3258
3259         old_read_domains = obj->read_domains;
3260         obj->read_domains |= I915_GEM_DOMAIN_CPU;
3261
3262         trace_i915_gem_object_change_domain(obj,
3263                                             old_read_domains,
3264                                             obj->write_domain);
3265
3266         return 0;
3267 }
3268
3269 /**
3270  * Pin an object to the GTT and evaluate the relocations landing in it.
3271  */
3272 static int
3273 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
3274                                  struct drm_file *file_priv,
3275                                  struct drm_i915_gem_exec_object2 *entry,
3276                                  struct drm_i915_gem_relocation_entry *relocs)
3277 {
3278         struct drm_device *dev = obj->dev;
3279         drm_i915_private_t *dev_priv = dev->dev_private;
3280         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3281         int i, ret;
3282         void __iomem *reloc_page;
3283         bool need_fence;
3284
3285         need_fence = entry->flags & EXEC_OBJECT_NEEDS_FENCE &&
3286                      obj_priv->tiling_mode != I915_TILING_NONE;
3287
3288         /* Check fence reg constraints and rebind if necessary */
3289         if (need_fence &&
3290             !i915_gem_object_fence_offset_ok(obj,
3291                                              obj_priv->tiling_mode)) {
3292                 ret = i915_gem_object_unbind(obj);
3293                 if (ret)
3294                         return ret;
3295         }
3296
3297         /* Choose the GTT offset for our buffer and put it there. */
3298         ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
3299         if (ret)
3300                 return ret;
3301
3302         /*
3303          * Pre-965 chips need a fence register set up in order to
3304          * properly handle blits to/from tiled surfaces.
3305          */
3306         if (need_fence) {
3307                 ret = i915_gem_object_get_fence_reg(obj);
3308                 if (ret != 0) {
3309                         i915_gem_object_unpin(obj);
3310                         return ret;
3311                 }
3312         }
3313
3314         entry->offset = obj_priv->gtt_offset;
3315
3316         /* Apply the relocations, using the GTT aperture to avoid cache
3317          * flushing requirements.
3318          */
3319         for (i = 0; i < entry->relocation_count; i++) {
3320                 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
3321                 struct drm_gem_object *target_obj;
3322                 struct drm_i915_gem_object *target_obj_priv;
3323                 uint32_t reloc_val, reloc_offset;
3324                 uint32_t __iomem *reloc_entry;
3325
3326                 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
3327                                                    reloc->target_handle);
3328                 if (target_obj == NULL) {
3329                         i915_gem_object_unpin(obj);
3330                         return -EBADF;
3331                 }
3332                 target_obj_priv = to_intel_bo(target_obj);
3333
3334 #if WATCH_RELOC
3335                 DRM_INFO("%s: obj %p offset %08x target %d "
3336                          "read %08x write %08x gtt %08x "
3337                          "presumed %08x delta %08x\n",
3338                          __func__,
3339                          obj,
3340                          (int) reloc->offset,
3341                          (int) reloc->target_handle,
3342                          (int) reloc->read_domains,
3343                          (int) reloc->write_domain,
3344                          (int) target_obj_priv->gtt_offset,
3345                          (int) reloc->presumed_offset,
3346                          reloc->delta);
3347 #endif
3348
3349                 /* The target buffer should have appeared before us in the
3350                  * exec_object list, so it should have a GTT space bound by now.
3351                  */
3352                 if (target_obj_priv->gtt_space == NULL) {
3353                         DRM_ERROR("No GTT space found for object %d\n",
3354                                   reloc->target_handle);
3355                         drm_gem_object_unreference(target_obj);
3356                         i915_gem_object_unpin(obj);
3357                         return -EINVAL;
3358                 }
3359
3360                 /* Validate that the target is in a valid r/w GPU domain */
3361                 if (reloc->write_domain & (reloc->write_domain - 1)) {
3362                         DRM_ERROR("reloc with multiple write domains: "
3363                                   "obj %p target %d offset %d "
3364                                   "read %08x write %08x",
3365                                   obj, reloc->target_handle,
3366                                   (int) reloc->offset,
3367                                   reloc->read_domains,
3368                                   reloc->write_domain);
3369                         return -EINVAL;
3370                 }
3371                 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3372                     reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3373                         DRM_ERROR("reloc with read/write CPU domains: "
3374                                   "obj %p target %d offset %d "
3375                                   "read %08x write %08x",
3376                                   obj, reloc->target_handle,
3377                                   (int) reloc->offset,
3378                                   reloc->read_domains,
3379                                   reloc->write_domain);
3380                         drm_gem_object_unreference(target_obj);
3381                         i915_gem_object_unpin(obj);
3382                         return -EINVAL;
3383                 }
3384                 if (reloc->write_domain && target_obj->pending_write_domain &&
3385                     reloc->write_domain != target_obj->pending_write_domain) {
3386                         DRM_ERROR("Write domain conflict: "
3387                                   "obj %p target %d offset %d "
3388                                   "new %08x old %08x\n",
3389                                   obj, reloc->target_handle,
3390                                   (int) reloc->offset,
3391                                   reloc->write_domain,
3392                                   target_obj->pending_write_domain);
3393                         drm_gem_object_unreference(target_obj);
3394                         i915_gem_object_unpin(obj);
3395                         return -EINVAL;
3396                 }
3397
3398                 target_obj->pending_read_domains |= reloc->read_domains;
3399                 target_obj->pending_write_domain |= reloc->write_domain;
3400
3401                 /* If the relocation already has the right value in it, no
3402                  * more work needs to be done.
3403                  */
3404                 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3405                         drm_gem_object_unreference(target_obj);
3406                         continue;
3407                 }
3408
3409                 /* Check that the relocation address is valid... */
3410                 if (reloc->offset > obj->size - 4) {
3411                         DRM_ERROR("Relocation beyond object bounds: "
3412                                   "obj %p target %d offset %d size %d.\n",
3413                                   obj, reloc->target_handle,
3414                                   (int) reloc->offset, (int) obj->size);
3415                         drm_gem_object_unreference(target_obj);
3416                         i915_gem_object_unpin(obj);
3417                         return -EINVAL;
3418                 }
3419                 if (reloc->offset & 3) {
3420                         DRM_ERROR("Relocation not 4-byte aligned: "
3421                                   "obj %p target %d offset %d.\n",
3422                                   obj, reloc->target_handle,
3423                                   (int) reloc->offset);
3424                         drm_gem_object_unreference(target_obj);
3425                         i915_gem_object_unpin(obj);
3426                         return -EINVAL;
3427                 }
3428
3429                 /* and points to somewhere within the target object. */
3430                 if (reloc->delta >= target_obj->size) {
3431                         DRM_ERROR("Relocation beyond target object bounds: "
3432                                   "obj %p target %d delta %d size %d.\n",
3433                                   obj, reloc->target_handle,
3434                                   (int) reloc->delta, (int) target_obj->size);
3435                         drm_gem_object_unreference(target_obj);
3436                         i915_gem_object_unpin(obj);
3437                         return -EINVAL;
3438                 }
3439
3440                 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3441                 if (ret != 0) {
3442                         drm_gem_object_unreference(target_obj);
3443                         i915_gem_object_unpin(obj);
3444                         return -EINVAL;
3445                 }
3446
3447                 /* Map the page containing the relocation we're going to
3448                  * perform.
3449                  */
3450                 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3451                 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3452                                                       (reloc_offset &
3453                                                        ~(PAGE_SIZE - 1)));
3454                 reloc_entry = (uint32_t __iomem *)(reloc_page +
3455                                                    (reloc_offset & (PAGE_SIZE - 1)));
3456                 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3457
3458 #if WATCH_BUF
3459                 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3460                           obj, (unsigned int) reloc->offset,
3461                           readl(reloc_entry), reloc_val);
3462 #endif
3463                 writel(reloc_val, reloc_entry);
3464                 io_mapping_unmap_atomic(reloc_page);
3465
3466                 /* The updated presumed offset for this entry will be
3467                  * copied back out to the user.
3468                  */
3469                 reloc->presumed_offset = target_obj_priv->gtt_offset;
3470
3471                 drm_gem_object_unreference(target_obj);
3472         }
3473
3474 #if WATCH_BUF
3475         if (0)
3476                 i915_gem_dump_object(obj, 128, __func__, ~0);
3477 #endif
3478         return 0;
3479 }
3480
3481 /* Throttle our rendering by waiting until the ring has completed our requests
3482  * emitted over 20 msec ago.
3483  *
3484  * Note that if we were to use the current jiffies each time around the loop,
3485  * we wouldn't escape the function with any frames outstanding if the time to
3486  * render a frame was over 20ms.
3487  *
3488  * This should get us reasonable parallelism between CPU and GPU but also
3489  * relatively low latency when blocking on a particular request to finish.
3490  */
3491 static int
3492 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3493 {
3494         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3495         int ret = 0;
3496         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3497
3498         mutex_lock(&dev->struct_mutex);
3499         while (!list_empty(&i915_file_priv->mm.request_list)) {
3500                 struct drm_i915_gem_request *request;
3501
3502                 request = list_first_entry(&i915_file_priv->mm.request_list,
3503                                            struct drm_i915_gem_request,
3504                                            client_list);
3505
3506                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3507                         break;
3508
3509                 ret = i915_wait_request(dev, request->seqno, request->ring);
3510                 if (ret != 0)
3511                         break;
3512         }
3513         mutex_unlock(&dev->struct_mutex);
3514
3515         return ret;
3516 }
3517
3518 static int
3519 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object2 *exec_list,
3520                               uint32_t buffer_count,
3521                               struct drm_i915_gem_relocation_entry **relocs)
3522 {
3523         uint32_t reloc_count = 0, reloc_index = 0, i;
3524         int ret;
3525
3526         *relocs = NULL;
3527         for (i = 0; i < buffer_count; i++) {
3528                 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3529                         return -EINVAL;
3530                 reloc_count += exec_list[i].relocation_count;
3531         }
3532
3533         *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3534         if (*relocs == NULL) {
3535                 DRM_ERROR("failed to alloc relocs, count %d\n", reloc_count);
3536                 return -ENOMEM;
3537         }
3538
3539         for (i = 0; i < buffer_count; i++) {
3540                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3541
3542                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3543
3544                 ret = copy_from_user(&(*relocs)[reloc_index],
3545                                      user_relocs,
3546                                      exec_list[i].relocation_count *
3547                                      sizeof(**relocs));
3548                 if (ret != 0) {
3549                         drm_free_large(*relocs);
3550                         *relocs = NULL;
3551                         return -EFAULT;
3552                 }
3553
3554                 reloc_index += exec_list[i].relocation_count;
3555         }
3556
3557         return 0;
3558 }
3559
3560 static int
3561 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object2 *exec_list,
3562                             uint32_t buffer_count,
3563                             struct drm_i915_gem_relocation_entry *relocs)
3564 {
3565         uint32_t reloc_count = 0, i;
3566         int ret = 0;
3567
3568         if (relocs == NULL)
3569             return 0;
3570
3571         for (i = 0; i < buffer_count; i++) {
3572                 struct drm_i915_gem_relocation_entry __user *user_relocs;
3573                 int unwritten;
3574
3575                 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3576
3577                 unwritten = copy_to_user(user_relocs,
3578                                          &relocs[reloc_count],
3579                                          exec_list[i].relocation_count *
3580                                          sizeof(*relocs));
3581
3582                 if (unwritten) {
3583                         ret = -EFAULT;
3584                         goto err;
3585                 }
3586
3587                 reloc_count += exec_list[i].relocation_count;
3588         }
3589
3590 err:
3591         drm_free_large(relocs);
3592
3593         return ret;
3594 }
3595
3596 static int
3597 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer2 *exec,
3598                            uint64_t exec_offset)
3599 {
3600         uint32_t exec_start, exec_len;
3601
3602         exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3603         exec_len = (uint32_t) exec->batch_len;
3604
3605         if ((exec_start | exec_len) & 0x7)
3606                 return -EINVAL;
3607
3608         if (!exec_start)
3609                 return -EINVAL;
3610
3611         return 0;
3612 }
3613
3614 static int
3615 i915_gem_wait_for_pending_flip(struct drm_device *dev,
3616                                struct drm_gem_object **object_list,
3617                                int count)
3618 {
3619         drm_i915_private_t *dev_priv = dev->dev_private;
3620         struct drm_i915_gem_object *obj_priv;
3621         DEFINE_WAIT(wait);
3622         int i, ret = 0;
3623
3624         for (;;) {
3625                 prepare_to_wait(&dev_priv->pending_flip_queue,
3626                                 &wait, TASK_INTERRUPTIBLE);
3627                 for (i = 0; i < count; i++) {
3628                         obj_priv = to_intel_bo(object_list[i]);
3629                         if (atomic_read(&obj_priv->pending_flip) > 0)
3630                                 break;
3631                 }
3632                 if (i == count)
3633                         break;
3634
3635                 if (!signal_pending(current)) {
3636                         mutex_unlock(&dev->struct_mutex);
3637                         schedule();
3638                         mutex_lock(&dev->struct_mutex);
3639                         continue;
3640                 }
3641                 ret = -ERESTARTSYS;
3642                 break;
3643         }
3644         finish_wait(&dev_priv->pending_flip_queue, &wait);
3645
3646         return ret;
3647 }
3648
3649 int
3650 i915_gem_do_execbuffer(struct drm_device *dev, void *data,
3651                        struct drm_file *file_priv,
3652                        struct drm_i915_gem_execbuffer2 *args,
3653                        struct drm_i915_gem_exec_object2 *exec_list)
3654 {
3655         drm_i915_private_t *dev_priv = dev->dev_private;
3656         struct drm_gem_object **object_list = NULL;
3657         struct drm_gem_object *batch_obj;
3658         struct drm_i915_gem_object *obj_priv;
3659         struct drm_clip_rect *cliprects = NULL;
3660         struct drm_i915_gem_relocation_entry *relocs = NULL;
3661         int ret = 0, ret2, i, pinned = 0;
3662         uint64_t exec_offset;
3663         uint32_t seqno, flush_domains, reloc_index;
3664         int pin_tries, flips;
3665
3666         struct intel_ring_buffer *ring = NULL;
3667
3668 #if WATCH_EXEC
3669         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3670                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3671 #endif
3672         if (args->flags & I915_EXEC_BSD) {
3673                 if (!HAS_BSD(dev)) {
3674                         DRM_ERROR("execbuf with wrong flag\n");
3675                         return -EINVAL;
3676                 }
3677                 ring = &dev_priv->bsd_ring;
3678         } else {
3679                 ring = &dev_priv->render_ring;
3680         }
3681
3682
3683         if (args->buffer_count < 1) {
3684                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3685                 return -EINVAL;
3686         }
3687         object_list = drm_malloc_ab(sizeof(*object_list), args->buffer_count);
3688         if (object_list == NULL) {
3689                 DRM_ERROR("Failed to allocate object list for %d buffers\n",
3690                           args->buffer_count);
3691                 ret = -ENOMEM;
3692                 goto pre_mutex_err;
3693         }
3694
3695         if (args->num_cliprects != 0) {
3696                 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3697                                     GFP_KERNEL);
3698                 if (cliprects == NULL) {
3699                         ret = -ENOMEM;
3700                         goto pre_mutex_err;
3701                 }
3702
3703                 ret = copy_from_user(cliprects,
3704                                      (struct drm_clip_rect __user *)
3705                                      (uintptr_t) args->cliprects_ptr,
3706                                      sizeof(*cliprects) * args->num_cliprects);
3707                 if (ret != 0) {
3708                         DRM_ERROR("copy %d cliprects failed: %d\n",
3709                                   args->num_cliprects, ret);
3710                         goto pre_mutex_err;
3711                 }
3712         }
3713
3714         ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3715                                             &relocs);
3716         if (ret != 0)
3717                 goto pre_mutex_err;
3718
3719         mutex_lock(&dev->struct_mutex);
3720
3721         i915_verify_inactive(dev, __FILE__, __LINE__);
3722
3723         if (atomic_read(&dev_priv->mm.wedged)) {
3724                 mutex_unlock(&dev->struct_mutex);
3725                 ret = -EIO;
3726                 goto pre_mutex_err;
3727         }
3728
3729         if (dev_priv->mm.suspended) {
3730                 mutex_unlock(&dev->struct_mutex);
3731                 ret = -EBUSY;
3732                 goto pre_mutex_err;
3733         }
3734
3735         /* Look up object handles */
3736         flips = 0;
3737         for (i = 0; i < args->buffer_count; i++) {
3738                 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3739                                                        exec_list[i].handle);
3740                 if (object_list[i] == NULL) {
3741                         DRM_ERROR("Invalid object handle %d at index %d\n",
3742                                    exec_list[i].handle, i);
3743                         /* prevent error path from reading uninitialized data */
3744                         args->buffer_count = i + 1;
3745                         ret = -EBADF;
3746                         goto err;
3747                 }
3748
3749                 obj_priv = to_intel_bo(object_list[i]);
3750                 if (obj_priv->in_execbuffer) {
3751                         DRM_ERROR("Object %p appears more than once in object list\n",
3752                                    object_list[i]);
3753                         /* prevent error path from reading uninitialized data */
3754                         args->buffer_count = i + 1;
3755                         ret = -EBADF;
3756                         goto err;
3757                 }
3758                 obj_priv->in_execbuffer = true;
3759                 flips += atomic_read(&obj_priv->pending_flip);
3760         }
3761
3762         if (flips > 0) {
3763                 ret = i915_gem_wait_for_pending_flip(dev, object_list,
3764                                                      args->buffer_count);
3765                 if (ret)
3766                         goto err;
3767         }
3768
3769         /* Pin and relocate */
3770         for (pin_tries = 0; ; pin_tries++) {
3771                 ret = 0;
3772                 reloc_index = 0;
3773
3774                 for (i = 0; i < args->buffer_count; i++) {
3775                         object_list[i]->pending_read_domains = 0;
3776                         object_list[i]->pending_write_domain = 0;
3777                         ret = i915_gem_object_pin_and_relocate(object_list[i],
3778                                                                file_priv,
3779                                                                &exec_list[i],
3780                                                                &relocs[reloc_index]);
3781                         if (ret)
3782                                 break;
3783                         pinned = i + 1;
3784                         reloc_index += exec_list[i].relocation_count;
3785                 }
3786                 /* success */
3787                 if (ret == 0)
3788                         break;
3789
3790                 /* error other than GTT full, or we've already tried again */
3791                 if (ret != -ENOSPC || pin_tries >= 1) {
3792                         if (ret != -ERESTARTSYS) {
3793                                 unsigned long long total_size = 0;
3794                                 int num_fences = 0;
3795                                 for (i = 0; i < args->buffer_count; i++) {
3796                                         obj_priv = object_list[i]->driver_private;
3797
3798                                         total_size += object_list[i]->size;
3799                                         num_fences +=
3800                                                 exec_list[i].flags & EXEC_OBJECT_NEEDS_FENCE &&
3801                                                 obj_priv->tiling_mode != I915_TILING_NONE;
3802                                 }
3803                                 DRM_ERROR("Failed to pin buffer %d of %d, total %llu bytes, %d fences: %d\n",
3804                                           pinned+1, args->buffer_count,
3805                                           total_size, num_fences,
3806                                           ret);
3807                                 DRM_ERROR("%d objects [%d pinned], "
3808                                           "%d object bytes [%d pinned], "
3809                                           "%d/%d gtt bytes\n",
3810                                           atomic_read(&dev->object_count),
3811                                           atomic_read(&dev->pin_count),
3812                                           atomic_read(&dev->object_memory),
3813                                           atomic_read(&dev->pin_memory),
3814                                           atomic_read(&dev->gtt_memory),
3815                                           dev->gtt_total);
3816                         }
3817                         goto err;
3818                 }
3819
3820                 /* unpin all of our buffers */
3821                 for (i = 0; i < pinned; i++)
3822                         i915_gem_object_unpin(object_list[i]);
3823                 pinned = 0;
3824
3825                 /* evict everyone we can from the aperture */
3826                 ret = i915_gem_evict_everything(dev);
3827                 if (ret && ret != -ENOSPC)
3828                         goto err;
3829         }
3830
3831         /* Set the pending read domains for the batch buffer to COMMAND */
3832         batch_obj = object_list[args->buffer_count-1];
3833         if (batch_obj->pending_write_domain) {
3834                 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3835                 ret = -EINVAL;
3836                 goto err;
3837         }
3838         batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3839
3840         /* Sanity check the batch buffer, prior to moving objects */
3841         exec_offset = exec_list[args->buffer_count - 1].offset;
3842         ret = i915_gem_check_execbuffer (args, exec_offset);
3843         if (ret != 0) {
3844                 DRM_ERROR("execbuf with invalid offset/length\n");
3845                 goto err;
3846         }
3847
3848         i915_verify_inactive(dev, __FILE__, __LINE__);
3849
3850         /* Zero the global flush/invalidate flags. These
3851          * will be modified as new domains are computed
3852          * for each object
3853          */
3854         dev->invalidate_domains = 0;
3855         dev->flush_domains = 0;
3856
3857         for (i = 0; i < args->buffer_count; i++) {
3858                 struct drm_gem_object *obj = object_list[i];
3859
3860                 /* Compute new gpu domains and update invalidate/flush */
3861                 i915_gem_object_set_to_gpu_domain(obj);
3862         }
3863
3864         i915_verify_inactive(dev, __FILE__, __LINE__);
3865
3866         if (dev->invalidate_domains | dev->flush_domains) {
3867 #if WATCH_EXEC
3868                 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3869                           __func__,
3870                          dev->invalidate_domains,
3871                          dev->flush_domains);
3872 #endif
3873                 i915_gem_flush(dev,
3874                                dev->invalidate_domains,
3875                                dev->flush_domains);
3876                 if (dev->flush_domains & I915_GEM_GPU_DOMAINS) {
3877                         (void)i915_add_request(dev, file_priv,
3878                                         dev->flush_domains,
3879                                         &dev_priv->render_ring);
3880
3881                         if (HAS_BSD(dev))
3882                                 (void)i915_add_request(dev, file_priv,
3883                                                 dev->flush_domains,
3884                                                 &dev_priv->bsd_ring);
3885                 }
3886         }
3887
3888         for (i = 0; i < args->buffer_count; i++) {
3889                 struct drm_gem_object *obj = object_list[i];
3890                 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
3891                 uint32_t old_write_domain = obj->write_domain;
3892
3893                 obj->write_domain = obj->pending_write_domain;
3894                 if (obj->write_domain)
3895                         list_move_tail(&obj_priv->gpu_write_list,
3896                                        &dev_priv->mm.gpu_write_list);
3897                 else
3898                         list_del_init(&obj_priv->gpu_write_list);
3899
3900                 trace_i915_gem_object_change_domain(obj,
3901                                                     obj->read_domains,
3902                                                     old_write_domain);
3903         }
3904
3905         i915_verify_inactive(dev, __FILE__, __LINE__);
3906
3907 #if WATCH_COHERENCY
3908         for (i = 0; i < args->buffer_count; i++) {
3909                 i915_gem_object_check_coherency(object_list[i],
3910                                                 exec_list[i].handle);
3911         }
3912 #endif
3913
3914 #if WATCH_EXEC
3915         i915_gem_dump_object(batch_obj,
3916                               args->batch_len,
3917                               __func__,
3918                               ~0);
3919 #endif
3920
3921         /* Exec the batchbuffer */
3922         ret = ring->dispatch_gem_execbuffer(dev, ring, args,
3923                         cliprects, exec_offset);
3924         if (ret) {
3925                 DRM_ERROR("dispatch failed %d\n", ret);
3926                 goto err;
3927         }
3928
3929         /*
3930          * Ensure that the commands in the batch buffer are
3931          * finished before the interrupt fires
3932          */
3933         flush_domains = i915_retire_commands(dev, ring);
3934
3935         i915_verify_inactive(dev, __FILE__, __LINE__);
3936
3937         /*
3938          * Get a seqno representing the execution of the current buffer,
3939          * which we can wait on.  We would like to mitigate these interrupts,
3940          * likely by only creating seqnos occasionally (so that we have
3941          * *some* interrupts representing completion of buffers that we can
3942          * wait on when trying to clear up gtt space).
3943          */
3944         seqno = i915_add_request(dev, file_priv, flush_domains, ring);
3945         BUG_ON(seqno == 0);
3946         for (i = 0; i < args->buffer_count; i++) {
3947                 struct drm_gem_object *obj = object_list[i];
3948                 obj_priv = to_intel_bo(obj);
3949
3950                 i915_gem_object_move_to_active(obj, seqno, ring);
3951 #if WATCH_LRU
3952                 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3953 #endif
3954         }
3955 #if WATCH_LRU
3956         i915_dump_lru(dev, __func__);
3957 #endif
3958
3959         i915_verify_inactive(dev, __FILE__, __LINE__);
3960
3961 err:
3962         for (i = 0; i < pinned; i++)
3963                 i915_gem_object_unpin(object_list[i]);
3964
3965         for (i = 0; i < args->buffer_count; i++) {
3966                 if (object_list[i]) {
3967                         obj_priv = to_intel_bo(object_list[i]);
3968                         obj_priv->in_execbuffer = false;
3969                 }
3970                 drm_gem_object_unreference(object_list[i]);
3971         }
3972
3973         mutex_unlock(&dev->struct_mutex);
3974
3975 pre_mutex_err:
3976         /* Copy the updated relocations out regardless of current error
3977          * state.  Failure to update the relocs would mean that the next
3978          * time userland calls execbuf, it would do so with presumed offset
3979          * state that didn't match the actual object state.
3980          */
3981         ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3982                                            relocs);
3983         if (ret2 != 0) {
3984                 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3985
3986                 if (ret == 0)
3987                         ret = ret2;
3988         }
3989
3990         drm_free_large(object_list);
3991         kfree(cliprects);
3992
3993         return ret;
3994 }
3995
3996 /*
3997  * Legacy execbuffer just creates an exec2 list from the original exec object
3998  * list array and passes it to the real function.
3999  */
4000 int
4001 i915_gem_execbuffer(struct drm_device *dev, void *data,
4002                     struct drm_file *file_priv)
4003 {
4004         struct drm_i915_gem_execbuffer *args = data;
4005         struct drm_i915_gem_execbuffer2 exec2;
4006         struct drm_i915_gem_exec_object *exec_list = NULL;
4007         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4008         int ret, i;
4009
4010 #if WATCH_EXEC
4011         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4012                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4013 #endif
4014
4015         if (args->buffer_count < 1) {
4016                 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
4017                 return -EINVAL;
4018         }
4019
4020         /* Copy in the exec list from userland */
4021         exec_list = drm_malloc_ab(sizeof(*exec_list), args->buffer_count);
4022         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4023         if (exec_list == NULL || exec2_list == NULL) {
4024                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4025                           args->buffer_count);
4026                 drm_free_large(exec_list);
4027                 drm_free_large(exec2_list);
4028                 return -ENOMEM;
4029         }
4030         ret = copy_from_user(exec_list,
4031                              (struct drm_i915_relocation_entry __user *)
4032                              (uintptr_t) args->buffers_ptr,
4033                              sizeof(*exec_list) * args->buffer_count);
4034         if (ret != 0) {
4035                 DRM_ERROR("copy %d exec entries failed %d\n",
4036                           args->buffer_count, ret);
4037                 drm_free_large(exec_list);
4038                 drm_free_large(exec2_list);
4039                 return -EFAULT;
4040         }
4041
4042         for (i = 0; i < args->buffer_count; i++) {
4043                 exec2_list[i].handle = exec_list[i].handle;
4044                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
4045                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
4046                 exec2_list[i].alignment = exec_list[i].alignment;
4047                 exec2_list[i].offset = exec_list[i].offset;
4048                 if (!IS_I965G(dev))
4049                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
4050                 else
4051                         exec2_list[i].flags = 0;
4052         }
4053
4054         exec2.buffers_ptr = args->buffers_ptr;
4055         exec2.buffer_count = args->buffer_count;
4056         exec2.batch_start_offset = args->batch_start_offset;
4057         exec2.batch_len = args->batch_len;
4058         exec2.DR1 = args->DR1;
4059         exec2.DR4 = args->DR4;
4060         exec2.num_cliprects = args->num_cliprects;
4061         exec2.cliprects_ptr = args->cliprects_ptr;
4062         exec2.flags = I915_EXEC_RENDER;
4063
4064         ret = i915_gem_do_execbuffer(dev, data, file_priv, &exec2, exec2_list);
4065         if (!ret) {
4066                 /* Copy the new buffer offsets back to the user's exec list. */
4067                 for (i = 0; i < args->buffer_count; i++)
4068                         exec_list[i].offset = exec2_list[i].offset;
4069                 /* ... and back out to userspace */
4070                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4071                                    (uintptr_t) args->buffers_ptr,
4072                                    exec_list,
4073                                    sizeof(*exec_list) * args->buffer_count);
4074                 if (ret) {
4075                         ret = -EFAULT;
4076                         DRM_ERROR("failed to copy %d exec entries "
4077                                   "back to user (%d)\n",
4078                                   args->buffer_count, ret);
4079                 }
4080         }
4081
4082         drm_free_large(exec_list);
4083         drm_free_large(exec2_list);
4084         return ret;
4085 }
4086
4087 int
4088 i915_gem_execbuffer2(struct drm_device *dev, void *data,
4089                      struct drm_file *file_priv)
4090 {
4091         struct drm_i915_gem_execbuffer2 *args = data;
4092         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
4093         int ret;
4094
4095 #if WATCH_EXEC
4096         DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
4097                   (int) args->buffers_ptr, args->buffer_count, args->batch_len);
4098 #endif
4099
4100         if (args->buffer_count < 1) {
4101                 DRM_ERROR("execbuf2 with %d buffers\n", args->buffer_count);
4102                 return -EINVAL;
4103         }
4104
4105         exec2_list = drm_malloc_ab(sizeof(*exec2_list), args->buffer_count);
4106         if (exec2_list == NULL) {
4107                 DRM_ERROR("Failed to allocate exec list for %d buffers\n",
4108                           args->buffer_count);
4109                 return -ENOMEM;
4110         }
4111         ret = copy_from_user(exec2_list,
4112                              (struct drm_i915_relocation_entry __user *)
4113                              (uintptr_t) args->buffers_ptr,
4114                              sizeof(*exec2_list) * args->buffer_count);
4115         if (ret != 0) {
4116                 DRM_ERROR("copy %d exec entries failed %d\n",
4117                           args->buffer_count, ret);
4118                 drm_free_large(exec2_list);
4119                 return -EFAULT;
4120         }
4121
4122         ret = i915_gem_do_execbuffer(dev, data, file_priv, args, exec2_list);
4123         if (!ret) {
4124                 /* Copy the new buffer offsets back to the user's exec list. */
4125                 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
4126                                    (uintptr_t) args->buffers_ptr,
4127                                    exec2_list,
4128                                    sizeof(*exec2_list) * args->buffer_count);
4129                 if (ret) {
4130                         ret = -EFAULT;
4131                         DRM_ERROR("failed to copy %d exec entries "
4132                                   "back to user (%d)\n",
4133                                   args->buffer_count, ret);
4134                 }
4135         }
4136
4137         drm_free_large(exec2_list);
4138         return ret;
4139 }
4140
4141 int
4142 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
4143 {
4144         struct drm_device *dev = obj->dev;
4145         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4146         int ret;
4147
4148         BUG_ON(obj_priv->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
4149
4150         i915_verify_inactive(dev, __FILE__, __LINE__);
4151
4152         if (obj_priv->gtt_space != NULL) {
4153                 if (alignment == 0)
4154                         alignment = i915_gem_get_gtt_alignment(obj);
4155                 if (obj_priv->gtt_offset & (alignment - 1)) {
4156                         ret = i915_gem_object_unbind(obj);
4157                         if (ret)
4158                                 return ret;
4159                 }
4160         }
4161
4162         if (obj_priv->gtt_space == NULL) {
4163                 ret = i915_gem_object_bind_to_gtt(obj, alignment);
4164                 if (ret)
4165                         return ret;
4166         }
4167
4168         obj_priv->pin_count++;
4169
4170         /* If the object is not active and not pending a flush,
4171          * remove it from the inactive list
4172          */
4173         if (obj_priv->pin_count == 1) {
4174                 atomic_inc(&dev->pin_count);
4175                 atomic_add(obj->size, &dev->pin_memory);
4176                 if (!obj_priv->active &&
4177                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
4178                     !list_empty(&obj_priv->list))
4179                         list_del_init(&obj_priv->list);
4180         }
4181         i915_verify_inactive(dev, __FILE__, __LINE__);
4182
4183         return 0;
4184 }
4185
4186 void
4187 i915_gem_object_unpin(struct drm_gem_object *obj)
4188 {
4189         struct drm_device *dev = obj->dev;
4190         drm_i915_private_t *dev_priv = dev->dev_private;
4191         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4192
4193         i915_verify_inactive(dev, __FILE__, __LINE__);
4194         obj_priv->pin_count--;
4195         BUG_ON(obj_priv->pin_count < 0);
4196         BUG_ON(obj_priv->gtt_space == NULL);
4197
4198         /* If the object is no longer pinned, and is
4199          * neither active nor being flushed, then stick it on
4200          * the inactive list
4201          */
4202         if (obj_priv->pin_count == 0) {
4203                 if (!obj_priv->active &&
4204                     (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
4205                         list_move_tail(&obj_priv->list,
4206                                        &dev_priv->mm.inactive_list);
4207                 atomic_dec(&dev->pin_count);
4208                 atomic_sub(obj->size, &dev->pin_memory);
4209         }
4210         i915_verify_inactive(dev, __FILE__, __LINE__);
4211 }
4212
4213 int
4214 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4215                    struct drm_file *file_priv)
4216 {
4217         struct drm_i915_gem_pin *args = data;
4218         struct drm_gem_object *obj;
4219         struct drm_i915_gem_object *obj_priv;
4220         int ret;
4221
4222         mutex_lock(&dev->struct_mutex);
4223
4224         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4225         if (obj == NULL) {
4226                 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
4227                           args->handle);
4228                 mutex_unlock(&dev->struct_mutex);
4229                 return -EBADF;
4230         }
4231         obj_priv = to_intel_bo(obj);
4232
4233         if (obj_priv->madv != I915_MADV_WILLNEED) {
4234                 DRM_ERROR("Attempting to pin a purgeable buffer\n");
4235                 drm_gem_object_unreference(obj);
4236                 mutex_unlock(&dev->struct_mutex);
4237                 return -EINVAL;
4238         }
4239
4240         if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
4241                 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
4242                           args->handle);
4243                 drm_gem_object_unreference(obj);
4244                 mutex_unlock(&dev->struct_mutex);
4245                 return -EINVAL;
4246         }
4247
4248         obj_priv->user_pin_count++;
4249         obj_priv->pin_filp = file_priv;
4250         if (obj_priv->user_pin_count == 1) {
4251                 ret = i915_gem_object_pin(obj, args->alignment);
4252                 if (ret != 0) {
4253                         drm_gem_object_unreference(obj);
4254                         mutex_unlock(&dev->struct_mutex);
4255                         return ret;
4256                 }
4257         }
4258
4259         /* XXX - flush the CPU caches for pinned objects
4260          * as the X server doesn't manage domains yet
4261          */
4262         i915_gem_object_flush_cpu_write_domain(obj);
4263         args->offset = obj_priv->gtt_offset;
4264         drm_gem_object_unreference(obj);
4265         mutex_unlock(&dev->struct_mutex);
4266
4267         return 0;
4268 }
4269
4270 int
4271 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4272                      struct drm_file *file_priv)
4273 {
4274         struct drm_i915_gem_pin *args = data;
4275         struct drm_gem_object *obj;
4276         struct drm_i915_gem_object *obj_priv;
4277
4278         mutex_lock(&dev->struct_mutex);
4279
4280         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4281         if (obj == NULL) {
4282                 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
4283                           args->handle);
4284                 mutex_unlock(&dev->struct_mutex);
4285                 return -EBADF;
4286         }
4287
4288         obj_priv = to_intel_bo(obj);
4289         if (obj_priv->pin_filp != file_priv) {
4290                 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4291                           args->handle);
4292                 drm_gem_object_unreference(obj);
4293                 mutex_unlock(&dev->struct_mutex);
4294                 return -EINVAL;
4295         }
4296         obj_priv->user_pin_count--;
4297         if (obj_priv->user_pin_count == 0) {
4298                 obj_priv->pin_filp = NULL;
4299                 i915_gem_object_unpin(obj);
4300         }
4301
4302         drm_gem_object_unreference(obj);
4303         mutex_unlock(&dev->struct_mutex);
4304         return 0;
4305 }
4306
4307 int
4308 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4309                     struct drm_file *file_priv)
4310 {
4311         struct drm_i915_gem_busy *args = data;
4312         struct drm_gem_object *obj;
4313         struct drm_i915_gem_object *obj_priv;
4314         drm_i915_private_t *dev_priv = dev->dev_private;
4315
4316         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4317         if (obj == NULL) {
4318                 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
4319                           args->handle);
4320                 return -EBADF;
4321         }
4322
4323         mutex_lock(&dev->struct_mutex);
4324         /* Update the active list for the hardware's current position.
4325          * Otherwise this only updates on a delayed timer or when irqs are
4326          * actually unmasked, and our working set ends up being larger than
4327          * required.
4328          */
4329         i915_gem_retire_requests(dev, &dev_priv->render_ring);
4330
4331         if (HAS_BSD(dev))
4332                 i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
4333
4334         obj_priv = to_intel_bo(obj);
4335         /* Don't count being on the flushing list against the object being
4336          * done.  Otherwise, a buffer left on the flushing list but not getting
4337          * flushed (because nobody's flushing that domain) won't ever return
4338          * unbusy and get reused by libdrm's bo cache.  The other expected
4339          * consumer of this interface, OpenGL's occlusion queries, also specs
4340          * that the objects get unbusy "eventually" without any interference.
4341          */
4342         args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
4343
4344         drm_gem_object_unreference(obj);
4345         mutex_unlock(&dev->struct_mutex);
4346         return 0;
4347 }
4348
4349 int
4350 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4351                         struct drm_file *file_priv)
4352 {
4353     return i915_gem_ring_throttle(dev, file_priv);
4354 }
4355
4356 int
4357 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4358                        struct drm_file *file_priv)
4359 {
4360         struct drm_i915_gem_madvise *args = data;
4361         struct drm_gem_object *obj;
4362         struct drm_i915_gem_object *obj_priv;
4363
4364         switch (args->madv) {
4365         case I915_MADV_DONTNEED:
4366         case I915_MADV_WILLNEED:
4367             break;
4368         default:
4369             return -EINVAL;
4370         }
4371
4372         obj = drm_gem_object_lookup(dev, file_priv, args->handle);
4373         if (obj == NULL) {
4374                 DRM_ERROR("Bad handle in i915_gem_madvise_ioctl(): %d\n",
4375                           args->handle);
4376                 return -EBADF;
4377         }
4378
4379         mutex_lock(&dev->struct_mutex);
4380         obj_priv = to_intel_bo(obj);
4381
4382         if (obj_priv->pin_count) {
4383                 drm_gem_object_unreference(obj);
4384                 mutex_unlock(&dev->struct_mutex);
4385
4386                 DRM_ERROR("Attempted i915_gem_madvise_ioctl() on a pinned object\n");
4387                 return -EINVAL;
4388         }
4389
4390         if (obj_priv->madv != __I915_MADV_PURGED)
4391                 obj_priv->madv = args->madv;
4392
4393         /* if the object is no longer bound, discard its backing storage */
4394         if (i915_gem_object_is_purgeable(obj_priv) &&
4395             obj_priv->gtt_space == NULL)
4396                 i915_gem_object_truncate(obj);
4397
4398         args->retained = obj_priv->madv != __I915_MADV_PURGED;
4399
4400         drm_gem_object_unreference(obj);
4401         mutex_unlock(&dev->struct_mutex);
4402
4403         return 0;
4404 }
4405
4406 struct drm_gem_object * i915_gem_alloc_object(struct drm_device *dev,
4407                                               size_t size)
4408 {
4409         struct drm_i915_gem_object *obj;
4410
4411         obj = kzalloc(sizeof(*obj), GFP_KERNEL);
4412         if (obj == NULL)
4413                 return NULL;
4414
4415         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4416                 kfree(obj);
4417                 return NULL;
4418         }
4419
4420         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4421         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4422
4423         obj->agp_type = AGP_USER_MEMORY;
4424         obj->base.driver_private = NULL;
4425         obj->fence_reg = I915_FENCE_REG_NONE;
4426         INIT_LIST_HEAD(&obj->list);
4427         INIT_LIST_HEAD(&obj->gpu_write_list);
4428         obj->madv = I915_MADV_WILLNEED;
4429
4430         trace_i915_gem_object_create(&obj->base);
4431
4432         return &obj->base;
4433 }
4434
4435 int i915_gem_init_object(struct drm_gem_object *obj)
4436 {
4437         BUG();
4438
4439         return 0;
4440 }
4441
4442 void i915_gem_free_object(struct drm_gem_object *obj)
4443 {
4444         struct drm_device *dev = obj->dev;
4445         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4446
4447         trace_i915_gem_object_destroy(obj);
4448
4449         while (obj_priv->pin_count > 0)
4450                 i915_gem_object_unpin(obj);
4451
4452         if (obj_priv->phys_obj)
4453                 i915_gem_detach_phys_object(dev, obj);
4454
4455         i915_gem_object_unbind(obj);
4456
4457         if (obj_priv->mmap_offset)
4458                 i915_gem_free_mmap_offset(obj);
4459
4460         drm_gem_object_release(obj);
4461
4462         kfree(obj_priv->page_cpu_valid);
4463         kfree(obj_priv->bit_17);
4464         kfree(obj_priv);
4465 }
4466
4467 /** Unbinds all inactive objects. */
4468 static int
4469 i915_gem_evict_from_inactive_list(struct drm_device *dev)
4470 {
4471         drm_i915_private_t *dev_priv = dev->dev_private;
4472
4473         while (!list_empty(&dev_priv->mm.inactive_list)) {
4474                 struct drm_gem_object *obj;
4475                 int ret;
4476
4477                 obj = &list_first_entry(&dev_priv->mm.inactive_list,
4478                                         struct drm_i915_gem_object,
4479                                         list)->base;
4480
4481                 ret = i915_gem_object_unbind(obj);
4482                 if (ret != 0) {
4483                         DRM_ERROR("Error unbinding object: %d\n", ret);
4484                         return ret;
4485                 }
4486         }
4487
4488         return 0;
4489 }
4490
4491 int
4492 i915_gem_idle(struct drm_device *dev)
4493 {
4494         drm_i915_private_t *dev_priv = dev->dev_private;
4495         int ret;
4496
4497         mutex_lock(&dev->struct_mutex);
4498
4499         if (dev_priv->mm.suspended ||
4500                         (dev_priv->render_ring.gem_object == NULL) ||
4501                         (HAS_BSD(dev) &&
4502                          dev_priv->bsd_ring.gem_object == NULL)) {
4503                 mutex_unlock(&dev->struct_mutex);
4504                 return 0;
4505         }
4506
4507         ret = i915_gpu_idle(dev);
4508         if (ret) {
4509                 mutex_unlock(&dev->struct_mutex);
4510                 return ret;
4511         }
4512
4513         /* Under UMS, be paranoid and evict. */
4514         if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
4515                 ret = i915_gem_evict_from_inactive_list(dev);
4516                 if (ret) {
4517                         mutex_unlock(&dev->struct_mutex);
4518                         return ret;
4519                 }
4520         }
4521
4522         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4523          * We need to replace this with a semaphore, or something.
4524          * And not confound mm.suspended!
4525          */
4526         dev_priv->mm.suspended = 1;
4527         del_timer(&dev_priv->hangcheck_timer);
4528
4529         i915_kernel_lost_context(dev);
4530         i915_gem_cleanup_ringbuffer(dev);
4531
4532         mutex_unlock(&dev->struct_mutex);
4533
4534         /* Cancel the retire work handler, which should be idle now. */
4535         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4536
4537         return 0;
4538 }
4539
4540 /*
4541  * 965+ support PIPE_CONTROL commands, which provide finer grained control
4542  * over cache flushing.
4543  */
4544 static int
4545 i915_gem_init_pipe_control(struct drm_device *dev)
4546 {
4547         drm_i915_private_t *dev_priv = dev->dev_private;
4548         struct drm_gem_object *obj;
4549         struct drm_i915_gem_object *obj_priv;
4550         int ret;
4551
4552         obj = i915_gem_alloc_object(dev, 4096);
4553         if (obj == NULL) {
4554                 DRM_ERROR("Failed to allocate seqno page\n");
4555                 ret = -ENOMEM;
4556                 goto err;
4557         }
4558         obj_priv = to_intel_bo(obj);
4559         obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4560
4561         ret = i915_gem_object_pin(obj, 4096);
4562         if (ret)
4563                 goto err_unref;
4564
4565         dev_priv->seqno_gfx_addr = obj_priv->gtt_offset;
4566         dev_priv->seqno_page =  kmap(obj_priv->pages[0]);
4567         if (dev_priv->seqno_page == NULL)
4568                 goto err_unpin;
4569
4570         dev_priv->seqno_obj = obj;
4571         memset(dev_priv->seqno_page, 0, PAGE_SIZE);
4572
4573         return 0;
4574
4575 err_unpin:
4576         i915_gem_object_unpin(obj);
4577 err_unref:
4578         drm_gem_object_unreference(obj);
4579 err:
4580         return ret;
4581 }
4582
4583
4584 static void
4585 i915_gem_cleanup_pipe_control(struct drm_device *dev)
4586 {
4587         drm_i915_private_t *dev_priv = dev->dev_private;
4588         struct drm_gem_object *obj;
4589         struct drm_i915_gem_object *obj_priv;
4590
4591         obj = dev_priv->seqno_obj;
4592         obj_priv = to_intel_bo(obj);
4593         kunmap(obj_priv->pages[0]);
4594         i915_gem_object_unpin(obj);
4595         drm_gem_object_unreference(obj);
4596         dev_priv->seqno_obj = NULL;
4597
4598         dev_priv->seqno_page = NULL;
4599 }
4600
4601 int
4602 i915_gem_init_ringbuffer(struct drm_device *dev)
4603 {
4604         drm_i915_private_t *dev_priv = dev->dev_private;
4605         int ret;
4606
4607         dev_priv->render_ring = render_ring;
4608
4609         if (!I915_NEED_GFX_HWS(dev)) {
4610                 dev_priv->render_ring.status_page.page_addr
4611                         = dev_priv->status_page_dmah->vaddr;
4612                 memset(dev_priv->render_ring.status_page.page_addr,
4613                                 0, PAGE_SIZE);
4614         }
4615
4616         if (HAS_PIPE_CONTROL(dev)) {
4617                 ret = i915_gem_init_pipe_control(dev);
4618                 if (ret)
4619                         return ret;
4620         }
4621
4622         ret = intel_init_ring_buffer(dev, &dev_priv->render_ring);
4623         if (ret)
4624                 goto cleanup_pipe_control;
4625
4626         if (HAS_BSD(dev)) {
4627                 dev_priv->bsd_ring = bsd_ring;
4628                 ret = intel_init_ring_buffer(dev, &dev_priv->bsd_ring);
4629                 if (ret)
4630                         goto cleanup_render_ring;
4631         }
4632
4633         return 0;
4634
4635 cleanup_render_ring:
4636         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4637 cleanup_pipe_control:
4638         if (HAS_PIPE_CONTROL(dev))
4639                 i915_gem_cleanup_pipe_control(dev);
4640         return ret;
4641 }
4642
4643 void
4644 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4645 {
4646         drm_i915_private_t *dev_priv = dev->dev_private;
4647
4648         intel_cleanup_ring_buffer(dev, &dev_priv->render_ring);
4649         if (HAS_BSD(dev))
4650                 intel_cleanup_ring_buffer(dev, &dev_priv->bsd_ring);
4651         if (HAS_PIPE_CONTROL(dev))
4652                 i915_gem_cleanup_pipe_control(dev);
4653 }
4654
4655 int
4656 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4657                        struct drm_file *file_priv)
4658 {
4659         drm_i915_private_t *dev_priv = dev->dev_private;
4660         int ret;
4661
4662         if (drm_core_check_feature(dev, DRIVER_MODESET))
4663                 return 0;
4664
4665         if (atomic_read(&dev_priv->mm.wedged)) {
4666                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4667                 atomic_set(&dev_priv->mm.wedged, 0);
4668         }
4669
4670         mutex_lock(&dev->struct_mutex);
4671         dev_priv->mm.suspended = 0;
4672
4673         ret = i915_gem_init_ringbuffer(dev);
4674         if (ret != 0) {
4675                 mutex_unlock(&dev->struct_mutex);
4676                 return ret;
4677         }
4678
4679         spin_lock(&dev_priv->mm.active_list_lock);
4680         BUG_ON(!list_empty(&dev_priv->render_ring.active_list));
4681         BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.active_list));
4682         spin_unlock(&dev_priv->mm.active_list_lock);
4683
4684         BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4685         BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4686         BUG_ON(!list_empty(&dev_priv->render_ring.request_list));
4687         BUG_ON(HAS_BSD(dev) && !list_empty(&dev_priv->bsd_ring.request_list));
4688         mutex_unlock(&dev->struct_mutex);
4689
4690         drm_irq_install(dev);
4691
4692         return 0;
4693 }
4694
4695 int
4696 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4697                        struct drm_file *file_priv)
4698 {
4699         if (drm_core_check_feature(dev, DRIVER_MODESET))
4700                 return 0;
4701
4702         drm_irq_uninstall(dev);
4703         return i915_gem_idle(dev);
4704 }
4705
4706 void
4707 i915_gem_lastclose(struct drm_device *dev)
4708 {
4709         int ret;
4710
4711         if (drm_core_check_feature(dev, DRIVER_MODESET))
4712                 return;
4713
4714         ret = i915_gem_idle(dev);
4715         if (ret)
4716                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4717 }
4718
4719 void
4720 i915_gem_load(struct drm_device *dev)
4721 {
4722         int i;
4723         drm_i915_private_t *dev_priv = dev->dev_private;
4724
4725         spin_lock_init(&dev_priv->mm.active_list_lock);
4726         INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4727         INIT_LIST_HEAD(&dev_priv->mm.gpu_write_list);
4728         INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4729         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4730         INIT_LIST_HEAD(&dev_priv->render_ring.active_list);
4731         INIT_LIST_HEAD(&dev_priv->render_ring.request_list);
4732         if (HAS_BSD(dev)) {
4733                 INIT_LIST_HEAD(&dev_priv->bsd_ring.active_list);
4734                 INIT_LIST_HEAD(&dev_priv->bsd_ring.request_list);
4735         }
4736         for (i = 0; i < 16; i++)
4737                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4738         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4739                           i915_gem_retire_work_handler);
4740         spin_lock(&shrink_list_lock);
4741         list_add(&dev_priv->mm.shrink_list, &shrink_list);
4742         spin_unlock(&shrink_list_lock);
4743
4744         /* Old X drivers will take 0-2 for front, back, depth buffers */
4745         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4746                 dev_priv->fence_reg_start = 3;
4747
4748         if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4749                 dev_priv->num_fence_regs = 16;
4750         else
4751                 dev_priv->num_fence_regs = 8;
4752
4753         /* Initialize fence registers to zero */
4754         if (IS_I965G(dev)) {
4755                 for (i = 0; i < 16; i++)
4756                         I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4757         } else {
4758                 for (i = 0; i < 8; i++)
4759                         I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4760                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4761                         for (i = 0; i < 8; i++)
4762                                 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4763         }
4764         i915_gem_detect_bit_6_swizzle(dev);
4765         init_waitqueue_head(&dev_priv->pending_flip_queue);
4766 }
4767
4768 /*
4769  * Create a physically contiguous memory object for this object
4770  * e.g. for cursor + overlay regs
4771  */
4772 int i915_gem_init_phys_object(struct drm_device *dev,
4773                               int id, int size)
4774 {
4775         drm_i915_private_t *dev_priv = dev->dev_private;
4776         struct drm_i915_gem_phys_object *phys_obj;
4777         int ret;
4778
4779         if (dev_priv->mm.phys_objs[id - 1] || !size)
4780                 return 0;
4781
4782         phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4783         if (!phys_obj)
4784                 return -ENOMEM;
4785
4786         phys_obj->id = id;
4787
4788         phys_obj->handle = drm_pci_alloc(dev, size, 0);
4789         if (!phys_obj->handle) {
4790                 ret = -ENOMEM;
4791                 goto kfree_obj;
4792         }
4793 #ifdef CONFIG_X86
4794         set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4795 #endif
4796
4797         dev_priv->mm.phys_objs[id - 1] = phys_obj;
4798
4799         return 0;
4800 kfree_obj:
4801         kfree(phys_obj);
4802         return ret;
4803 }
4804
4805 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4806 {
4807         drm_i915_private_t *dev_priv = dev->dev_private;
4808         struct drm_i915_gem_phys_object *phys_obj;
4809
4810         if (!dev_priv->mm.phys_objs[id - 1])
4811                 return;
4812
4813         phys_obj = dev_priv->mm.phys_objs[id - 1];
4814         if (phys_obj->cur_obj) {
4815                 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4816         }
4817
4818 #ifdef CONFIG_X86
4819         set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4820 #endif
4821         drm_pci_free(dev, phys_obj->handle);
4822         kfree(phys_obj);
4823         dev_priv->mm.phys_objs[id - 1] = NULL;
4824 }
4825
4826 void i915_gem_free_all_phys_object(struct drm_device *dev)
4827 {
4828         int i;
4829
4830         for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4831                 i915_gem_free_phys_object(dev, i);
4832 }
4833
4834 void i915_gem_detach_phys_object(struct drm_device *dev,
4835                                  struct drm_gem_object *obj)
4836 {
4837         struct drm_i915_gem_object *obj_priv;
4838         int i;
4839         int ret;
4840         int page_count;
4841
4842         obj_priv = to_intel_bo(obj);
4843         if (!obj_priv->phys_obj)
4844                 return;
4845
4846         ret = i915_gem_object_get_pages(obj, 0);
4847         if (ret)
4848                 goto out;
4849
4850         page_count = obj->size / PAGE_SIZE;
4851
4852         for (i = 0; i < page_count; i++) {
4853                 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4854                 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4855
4856                 memcpy(dst, src, PAGE_SIZE);
4857                 kunmap_atomic(dst, KM_USER0);
4858         }
4859         drm_clflush_pages(obj_priv->pages, page_count);
4860         drm_agp_chipset_flush(dev);
4861
4862         i915_gem_object_put_pages(obj);
4863 out:
4864         obj_priv->phys_obj->cur_obj = NULL;
4865         obj_priv->phys_obj = NULL;
4866 }
4867
4868 int
4869 i915_gem_attach_phys_object(struct drm_device *dev,
4870                             struct drm_gem_object *obj, int id)
4871 {
4872         drm_i915_private_t *dev_priv = dev->dev_private;
4873         struct drm_i915_gem_object *obj_priv;
4874         int ret = 0;
4875         int page_count;
4876         int i;
4877
4878         if (id > I915_MAX_PHYS_OBJECT)
4879                 return -EINVAL;
4880
4881         obj_priv = to_intel_bo(obj);
4882
4883         if (obj_priv->phys_obj) {
4884                 if (obj_priv->phys_obj->id == id)
4885                         return 0;
4886                 i915_gem_detach_phys_object(dev, obj);
4887         }
4888
4889
4890         /* create a new object */
4891         if (!dev_priv->mm.phys_objs[id - 1]) {
4892                 ret = i915_gem_init_phys_object(dev, id,
4893                                                 obj->size);
4894                 if (ret) {
4895                         DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4896                         goto out;
4897                 }
4898         }
4899
4900         /* bind to the object */
4901         obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4902         obj_priv->phys_obj->cur_obj = obj;
4903
4904         ret = i915_gem_object_get_pages(obj, 0);
4905         if (ret) {
4906                 DRM_ERROR("failed to get page list\n");
4907                 goto out;
4908         }
4909
4910         page_count = obj->size / PAGE_SIZE;
4911
4912         for (i = 0; i < page_count; i++) {
4913                 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4914                 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4915
4916                 memcpy(dst, src, PAGE_SIZE);
4917                 kunmap_atomic(src, KM_USER0);
4918         }
4919
4920         i915_gem_object_put_pages(obj);
4921
4922         return 0;
4923 out:
4924         return ret;
4925 }
4926
4927 static int
4928 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4929                      struct drm_i915_gem_pwrite *args,
4930                      struct drm_file *file_priv)
4931 {
4932         struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
4933         void *obj_addr;
4934         int ret;
4935         char __user *user_data;
4936
4937         user_data = (char __user *) (uintptr_t) args->data_ptr;
4938         obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4939
4940         DRM_DEBUG_DRIVER("obj_addr %p, %lld\n", obj_addr, args->size);
4941         ret = copy_from_user(obj_addr, user_data, args->size);
4942         if (ret)
4943                 return -EFAULT;
4944
4945         drm_agp_chipset_flush(dev);
4946         return 0;
4947 }
4948
4949 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4950 {
4951         struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4952
4953         /* Clean up our request list when the client is going away, so that
4954          * later retire_requests won't dereference our soon-to-be-gone
4955          * file_priv.
4956          */
4957         mutex_lock(&dev->struct_mutex);
4958         while (!list_empty(&i915_file_priv->mm.request_list))
4959                 list_del_init(i915_file_priv->mm.request_list.next);
4960         mutex_unlock(&dev->struct_mutex);
4961 }
4962
4963 static int
4964 i915_gpu_is_active(struct drm_device *dev)
4965 {
4966         drm_i915_private_t *dev_priv = dev->dev_private;
4967         int lists_empty;
4968
4969         spin_lock(&dev_priv->mm.active_list_lock);
4970         lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4971                       list_empty(&dev_priv->render_ring.active_list);
4972         if (HAS_BSD(dev))
4973                 lists_empty &= list_empty(&dev_priv->bsd_ring.active_list);
4974         spin_unlock(&dev_priv->mm.active_list_lock);
4975
4976         return !lists_empty;
4977 }
4978
4979 static int
4980 i915_gem_shrink(int nr_to_scan, gfp_t gfp_mask)
4981 {
4982         drm_i915_private_t *dev_priv, *next_dev;
4983         struct drm_i915_gem_object *obj_priv, *next_obj;
4984         int cnt = 0;
4985         int would_deadlock = 1;
4986
4987         /* "fast-path" to count number of available objects */
4988         if (nr_to_scan == 0) {
4989                 spin_lock(&shrink_list_lock);
4990                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
4991                         struct drm_device *dev = dev_priv->dev;
4992
4993                         if (mutex_trylock(&dev->struct_mutex)) {
4994                                 list_for_each_entry(obj_priv,
4995                                                     &dev_priv->mm.inactive_list,
4996                                                     list)
4997                                         cnt++;
4998                                 mutex_unlock(&dev->struct_mutex);
4999                         }
5000                 }
5001                 spin_unlock(&shrink_list_lock);
5002
5003                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5004         }
5005
5006         spin_lock(&shrink_list_lock);
5007
5008 rescan:
5009         /* first scan for clean buffers */
5010         list_for_each_entry_safe(dev_priv, next_dev,
5011                                  &shrink_list, mm.shrink_list) {
5012                 struct drm_device *dev = dev_priv->dev;
5013
5014                 if (! mutex_trylock(&dev->struct_mutex))
5015                         continue;
5016
5017                 spin_unlock(&shrink_list_lock);
5018                 i915_gem_retire_requests(dev, &dev_priv->render_ring);
5019
5020                 if (HAS_BSD(dev))
5021                         i915_gem_retire_requests(dev, &dev_priv->bsd_ring);
5022
5023                 list_for_each_entry_safe(obj_priv, next_obj,
5024                                          &dev_priv->mm.inactive_list,
5025                                          list) {
5026                         if (i915_gem_object_is_purgeable(obj_priv)) {
5027                                 i915_gem_object_unbind(&obj_priv->base);
5028                                 if (--nr_to_scan <= 0)
5029                                         break;
5030                         }
5031                 }
5032
5033                 spin_lock(&shrink_list_lock);
5034                 mutex_unlock(&dev->struct_mutex);
5035
5036                 would_deadlock = 0;
5037
5038                 if (nr_to_scan <= 0)
5039                         break;
5040         }
5041
5042         /* second pass, evict/count anything still on the inactive list */
5043         list_for_each_entry_safe(dev_priv, next_dev,
5044                                  &shrink_list, mm.shrink_list) {
5045                 struct drm_device *dev = dev_priv->dev;
5046
5047                 if (! mutex_trylock(&dev->struct_mutex))
5048                         continue;
5049
5050                 spin_unlock(&shrink_list_lock);
5051
5052                 list_for_each_entry_safe(obj_priv, next_obj,
5053                                          &dev_priv->mm.inactive_list,
5054                                          list) {
5055                         if (nr_to_scan > 0) {
5056                                 i915_gem_object_unbind(&obj_priv->base);
5057                                 nr_to_scan--;
5058                         } else
5059                                 cnt++;
5060                 }
5061
5062                 spin_lock(&shrink_list_lock);
5063                 mutex_unlock(&dev->struct_mutex);
5064
5065                 would_deadlock = 0;
5066         }
5067
5068         if (nr_to_scan) {
5069                 int active = 0;
5070
5071                 /*
5072                  * We are desperate for pages, so as a last resort, wait
5073                  * for the GPU to finish and discard whatever we can.
5074                  * This has a dramatic impact to reduce the number of
5075                  * OOM-killer events whilst running the GPU aggressively.
5076                  */
5077                 list_for_each_entry(dev_priv, &shrink_list, mm.shrink_list) {
5078                         struct drm_device *dev = dev_priv->dev;
5079
5080                         if (!mutex_trylock(&dev->struct_mutex))
5081                                 continue;
5082
5083                         spin_unlock(&shrink_list_lock);
5084
5085                         if (i915_gpu_is_active(dev)) {
5086                                 i915_gpu_idle(dev);
5087                                 active++;
5088                         }
5089
5090                         spin_lock(&shrink_list_lock);
5091                         mutex_unlock(&dev->struct_mutex);
5092                 }
5093
5094                 if (active)
5095                         goto rescan;
5096         }
5097
5098         spin_unlock(&shrink_list_lock);
5099
5100         if (would_deadlock)
5101                 return -1;
5102         else if (cnt > 0)
5103                 return (cnt / 100) * sysctl_vfs_cache_pressure;
5104         else
5105                 return 0;
5106 }
5107
5108 static struct shrinker shrinker = {
5109         .shrink = i915_gem_shrink,
5110         .seeks = DEFAULT_SEEKS,
5111 };
5112
5113 __init void
5114 i915_gem_shrinker_init(void)
5115 {
5116     register_shrinker(&shrinker);
5117 }
5118
5119 __exit void
5120 i915_gem_shrinker_exit(void)
5121 {
5122     unregister_shrinker(&shrinker);
5123 }