Merge tag 'drm-fixes-for-v4.14-rc8' of git://people.freedesktop.org/~airlied/linux
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52         if (obj->cache_dirty)
53                 return false;
54
55         if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56                 return true;
57
58         return obj->pin_display;
59 }
60
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65         memset(node, 0, sizeof(*node));
66         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67                                            size, 0, I915_COLOR_UNEVICTABLE,
68                                            0, ggtt->mappable_end,
69                                            DRM_MM_INSERT_LOW);
70 }
71
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75         drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80                                   u64 size)
81 {
82         spin_lock(&dev_priv->mm.object_stat_lock);
83         dev_priv->mm.object_count++;
84         dev_priv->mm.object_memory += size;
85         spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89                                      u64 size)
90 {
91         spin_lock(&dev_priv->mm.object_stat_lock);
92         dev_priv->mm.object_count--;
93         dev_priv->mm.object_memory -= size;
94         spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100         int ret;
101
102         might_sleep();
103
104         /*
105          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106          * userspace. If it takes that long something really bad is going on and
107          * we should simply try to bail out and fail as gracefully as possible.
108          */
109         ret = wait_event_interruptible_timeout(error->reset_queue,
110                                                !i915_reset_backoff(error),
111                                                I915_RESET_TIMEOUT);
112         if (ret == 0) {
113                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114                 return -EIO;
115         } else if (ret < 0) {
116                 return ret;
117         } else {
118                 return 0;
119         }
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124         struct drm_i915_private *dev_priv = to_i915(dev);
125         int ret;
126
127         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128         if (ret)
129                 return ret;
130
131         ret = mutex_lock_interruptible(&dev->struct_mutex);
132         if (ret)
133                 return ret;
134
135         return 0;
136 }
137
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140                             struct drm_file *file)
141 {
142         struct drm_i915_private *dev_priv = to_i915(dev);
143         struct i915_ggtt *ggtt = &dev_priv->ggtt;
144         struct drm_i915_gem_get_aperture *args = data;
145         struct i915_vma *vma;
146         u64 pinned;
147
148         pinned = ggtt->base.reserved;
149         mutex_lock(&dev->struct_mutex);
150         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151                 if (i915_vma_is_pinned(vma))
152                         pinned += vma->node.size;
153         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154                 if (i915_vma_is_pinned(vma))
155                         pinned += vma->node.size;
156         mutex_unlock(&dev->struct_mutex);
157
158         args->aper_size = ggtt->base.total;
159         args->aper_available_size = args->aper_size - pinned;
160
161         return 0;
162 }
163
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167         struct address_space *mapping = obj->base.filp->f_mapping;
168         drm_dma_handle_t *phys;
169         struct sg_table *st;
170         struct scatterlist *sg;
171         char *vaddr;
172         int i;
173
174         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175                 return ERR_PTR(-EINVAL);
176
177         /* Always aligning to the object size, allows a single allocation
178          * to handle all possible callers, and given typical object sizes,
179          * the alignment of the buddy allocation will naturally match.
180          */
181         phys = drm_pci_alloc(obj->base.dev,
182                              obj->base.size,
183                              roundup_pow_of_two(obj->base.size));
184         if (!phys)
185                 return ERR_PTR(-ENOMEM);
186
187         vaddr = phys->vaddr;
188         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189                 struct page *page;
190                 char *src;
191
192                 page = shmem_read_mapping_page(mapping, i);
193                 if (IS_ERR(page)) {
194                         st = ERR_CAST(page);
195                         goto err_phys;
196                 }
197
198                 src = kmap_atomic(page);
199                 memcpy(vaddr, src, PAGE_SIZE);
200                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201                 kunmap_atomic(src);
202
203                 put_page(page);
204                 vaddr += PAGE_SIZE;
205         }
206
207         i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209         st = kmalloc(sizeof(*st), GFP_KERNEL);
210         if (!st) {
211                 st = ERR_PTR(-ENOMEM);
212                 goto err_phys;
213         }
214
215         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216                 kfree(st);
217                 st = ERR_PTR(-ENOMEM);
218                 goto err_phys;
219         }
220
221         sg = st->sgl;
222         sg->offset = 0;
223         sg->length = obj->base.size;
224
225         sg_dma_address(sg) = phys->busaddr;
226         sg_dma_len(sg) = obj->base.size;
227
228         obj->phys_handle = phys;
229         return st;
230
231 err_phys:
232         drm_pci_free(obj->base.dev, phys);
233         return st;
234 }
235
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240         if (cpu_write_needs_clflush(obj))
241                 obj->cache_dirty = true;
242 }
243
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246                                 struct sg_table *pages,
247                                 bool needs_clflush)
248 {
249         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251         if (obj->mm.madv == I915_MADV_DONTNEED)
252                 obj->mm.dirty = false;
253
254         if (needs_clflush &&
255             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256             !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257                 drm_clflush_sg(pages);
258
259         __start_cpu_write(obj);
260 }
261
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264                                struct sg_table *pages)
265 {
266         __i915_gem_object_release_shmem(obj, pages, false);
267
268         if (obj->mm.dirty) {
269                 struct address_space *mapping = obj->base.filp->f_mapping;
270                 char *vaddr = obj->phys_handle->vaddr;
271                 int i;
272
273                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274                         struct page *page;
275                         char *dst;
276
277                         page = shmem_read_mapping_page(mapping, i);
278                         if (IS_ERR(page))
279                                 continue;
280
281                         dst = kmap_atomic(page);
282                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
283                         memcpy(dst, vaddr, PAGE_SIZE);
284                         kunmap_atomic(dst);
285
286                         set_page_dirty(page);
287                         if (obj->mm.madv == I915_MADV_WILLNEED)
288                                 mark_page_accessed(page);
289                         put_page(page);
290                         vaddr += PAGE_SIZE;
291                 }
292                 obj->mm.dirty = false;
293         }
294
295         sg_free_table(pages);
296         kfree(pages);
297
298         drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304         i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308         .get_pages = i915_gem_object_get_pages_phys,
309         .put_pages = i915_gem_object_put_pages_phys,
310         .release = i915_gem_object_release_phys,
311 };
312
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317         struct i915_vma *vma;
318         LIST_HEAD(still_in_list);
319         int ret;
320
321         lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323         /* Closed vma are removed from the obj->vma_list - but they may
324          * still have an active binding on the object. To remove those we
325          * must wait for all rendering to complete to the object (as unbinding
326          * must anyway), and retire the requests.
327          */
328         ret = i915_gem_object_wait(obj,
329                                    I915_WAIT_INTERRUPTIBLE |
330                                    I915_WAIT_LOCKED |
331                                    I915_WAIT_ALL,
332                                    MAX_SCHEDULE_TIMEOUT,
333                                    NULL);
334         if (ret)
335                 return ret;
336
337         i915_gem_retire_requests(to_i915(obj->base.dev));
338
339         while ((vma = list_first_entry_or_null(&obj->vma_list,
340                                                struct i915_vma,
341                                                obj_link))) {
342                 list_move_tail(&vma->obj_link, &still_in_list);
343                 ret = i915_vma_unbind(vma);
344                 if (ret)
345                         break;
346         }
347         list_splice(&still_in_list, &obj->vma_list);
348
349         return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354                            unsigned int flags,
355                            long timeout,
356                            struct intel_rps_client *rps)
357 {
358         struct drm_i915_gem_request *rq;
359
360         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363                 return timeout;
364
365         if (!dma_fence_is_i915(fence))
366                 return dma_fence_wait_timeout(fence,
367                                               flags & I915_WAIT_INTERRUPTIBLE,
368                                               timeout);
369
370         rq = to_request(fence);
371         if (i915_gem_request_completed(rq))
372                 goto out;
373
374         /* This client is about to stall waiting for the GPU. In many cases
375          * this is undesirable and limits the throughput of the system, as
376          * many clients cannot continue processing user input/output whilst
377          * blocked. RPS autotuning may take tens of milliseconds to respond
378          * to the GPU load and thus incurs additional latency for the client.
379          * We can circumvent that by promoting the GPU frequency to maximum
380          * before we wait. This makes the GPU throttle up much more quickly
381          * (good for benchmarks and user experience, e.g. window animations),
382          * but at a cost of spending more power processing the workload
383          * (bad for battery). Not all clients even want their results
384          * immediately and for them we should just let the GPU select its own
385          * frequency to maximise efficiency. To prevent a single client from
386          * forcing the clocks too high for the whole system, we only allow
387          * each client to waitboost once in a busy period.
388          */
389         if (rps) {
390                 if (INTEL_GEN(rq->i915) >= 6)
391                         gen6_rps_boost(rq, rps);
392                 else
393                         rps = NULL;
394         }
395
396         timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400                 i915_gem_request_retire_upto(rq);
401
402         return timeout;
403 }
404
405 static long
406 i915_gem_object_wait_reservation(struct reservation_object *resv,
407                                  unsigned int flags,
408                                  long timeout,
409                                  struct intel_rps_client *rps)
410 {
411         unsigned int seq = __read_seqcount_begin(&resv->seq);
412         struct dma_fence *excl;
413         bool prune_fences = false;
414
415         if (flags & I915_WAIT_ALL) {
416                 struct dma_fence **shared;
417                 unsigned int count, i;
418                 int ret;
419
420                 ret = reservation_object_get_fences_rcu(resv,
421                                                         &excl, &count, &shared);
422                 if (ret)
423                         return ret;
424
425                 for (i = 0; i < count; i++) {
426                         timeout = i915_gem_object_wait_fence(shared[i],
427                                                              flags, timeout,
428                                                              rps);
429                         if (timeout < 0)
430                                 break;
431
432                         dma_fence_put(shared[i]);
433                 }
434
435                 for (; i < count; i++)
436                         dma_fence_put(shared[i]);
437                 kfree(shared);
438
439                 prune_fences = count && timeout >= 0;
440         } else {
441                 excl = reservation_object_get_excl_rcu(resv);
442         }
443
444         if (excl && timeout >= 0) {
445                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446                 prune_fences = timeout >= 0;
447         }
448
449         dma_fence_put(excl);
450
451         /* Oportunistically prune the fences iff we know they have *all* been
452          * signaled and that the reservation object has not been changed (i.e.
453          * no new fences have been added).
454          */
455         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456                 if (reservation_object_trylock(resv)) {
457                         if (!__read_seqcount_retry(&resv->seq, seq))
458                                 reservation_object_add_excl_fence(resv, NULL);
459                         reservation_object_unlock(resv);
460                 }
461         }
462
463         return timeout;
464 }
465
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 {
468         struct drm_i915_gem_request *rq;
469         struct intel_engine_cs *engine;
470
471         if (!dma_fence_is_i915(fence))
472                 return;
473
474         rq = to_request(fence);
475         engine = rq->engine;
476         if (!engine->schedule)
477                 return;
478
479         engine->schedule(rq, prio);
480 }
481
482 static void fence_set_priority(struct dma_fence *fence, int prio)
483 {
484         /* Recurse once into a fence-array */
485         if (dma_fence_is_array(fence)) {
486                 struct dma_fence_array *array = to_dma_fence_array(fence);
487                 int i;
488
489                 for (i = 0; i < array->num_fences; i++)
490                         __fence_set_priority(array->fences[i], prio);
491         } else {
492                 __fence_set_priority(fence, prio);
493         }
494 }
495
496 int
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498                               unsigned int flags,
499                               int prio)
500 {
501         struct dma_fence *excl;
502
503         if (flags & I915_WAIT_ALL) {
504                 struct dma_fence **shared;
505                 unsigned int count, i;
506                 int ret;
507
508                 ret = reservation_object_get_fences_rcu(obj->resv,
509                                                         &excl, &count, &shared);
510                 if (ret)
511                         return ret;
512
513                 for (i = 0; i < count; i++) {
514                         fence_set_priority(shared[i], prio);
515                         dma_fence_put(shared[i]);
516                 }
517
518                 kfree(shared);
519         } else {
520                 excl = reservation_object_get_excl_rcu(obj->resv);
521         }
522
523         if (excl) {
524                 fence_set_priority(excl, prio);
525                 dma_fence_put(excl);
526         }
527         return 0;
528 }
529
530 /**
531  * Waits for rendering to the object to be completed
532  * @obj: i915 gem object
533  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534  * @timeout: how long to wait
535  * @rps: client (user process) to charge for any waitboosting
536  */
537 int
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539                      unsigned int flags,
540                      long timeout,
541                      struct intel_rps_client *rps)
542 {
543         might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545         GEM_BUG_ON(debug_locks &&
546                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547                    !!(flags & I915_WAIT_LOCKED));
548 #endif
549         GEM_BUG_ON(timeout < 0);
550
551         timeout = i915_gem_object_wait_reservation(obj->resv,
552                                                    flags, timeout,
553                                                    rps);
554         return timeout < 0 ? timeout : 0;
555 }
556
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 {
559         struct drm_i915_file_private *fpriv = file->driver_priv;
560
561         return &fpriv->rps;
562 }
563
564 static int
565 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
566                      struct drm_i915_gem_pwrite *args,
567                      struct drm_file *file)
568 {
569         void *vaddr = obj->phys_handle->vaddr + args->offset;
570         char __user *user_data = u64_to_user_ptr(args->data_ptr);
571
572         /* We manually control the domain here and pretend that it
573          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574          */
575         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576         if (copy_from_user(vaddr, user_data, args->size))
577                 return -EFAULT;
578
579         drm_clflush_virt_range(vaddr, args->size);
580         i915_gem_chipset_flush(to_i915(obj->base.dev));
581
582         intel_fb_obj_flush(obj, ORIGIN_CPU);
583         return 0;
584 }
585
586 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587 {
588         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 }
590
591 void i915_gem_object_free(struct drm_i915_gem_object *obj)
592 {
593         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594         kmem_cache_free(dev_priv->objects, obj);
595 }
596
597 static int
598 i915_gem_create(struct drm_file *file,
599                 struct drm_i915_private *dev_priv,
600                 uint64_t size,
601                 uint32_t *handle_p)
602 {
603         struct drm_i915_gem_object *obj;
604         int ret;
605         u32 handle;
606
607         size = roundup(size, PAGE_SIZE);
608         if (size == 0)
609                 return -EINVAL;
610
611         /* Allocate the new object */
612         obj = i915_gem_object_create(dev_priv, size);
613         if (IS_ERR(obj))
614                 return PTR_ERR(obj);
615
616         ret = drm_gem_handle_create(file, &obj->base, &handle);
617         /* drop reference from allocate - handle holds it now */
618         i915_gem_object_put(obj);
619         if (ret)
620                 return ret;
621
622         *handle_p = handle;
623         return 0;
624 }
625
626 int
627 i915_gem_dumb_create(struct drm_file *file,
628                      struct drm_device *dev,
629                      struct drm_mode_create_dumb *args)
630 {
631         /* have to work out size/pitch and return them */
632         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633         args->size = args->pitch * args->height;
634         return i915_gem_create(file, to_i915(dev),
635                                args->size, &args->handle);
636 }
637
638 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639 {
640         return !(obj->cache_level == I915_CACHE_NONE ||
641                  obj->cache_level == I915_CACHE_WT);
642 }
643
644 /**
645  * Creates a new mm object and returns a handle to it.
646  * @dev: drm device pointer
647  * @data: ioctl data blob
648  * @file: drm file pointer
649  */
650 int
651 i915_gem_create_ioctl(struct drm_device *dev, void *data,
652                       struct drm_file *file)
653 {
654         struct drm_i915_private *dev_priv = to_i915(dev);
655         struct drm_i915_gem_create *args = data;
656
657         i915_gem_flush_free_objects(dev_priv);
658
659         return i915_gem_create(file, dev_priv,
660                                args->size, &args->handle);
661 }
662
663 static inline enum fb_op_origin
664 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665 {
666         return (domain == I915_GEM_DOMAIN_GTT ?
667                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
668 }
669
670 static void
671 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
672 {
673         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
674
675         if (!(obj->base.write_domain & flush_domains))
676                 return;
677
678         /* No actual flushing is required for the GTT write domain.  Writes
679          * to it "immediately" go to main memory as far as we know, so there's
680          * no chipset flush.  It also doesn't land in render cache.
681          *
682          * However, we do have to enforce the order so that all writes through
683          * the GTT land before any writes to the device, such as updates to
684          * the GATT itself.
685          *
686          * We also have to wait a bit for the writes to land from the GTT.
687          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
688          * timing. This issue has only been observed when switching quickly
689          * between GTT writes and CPU reads from inside the kernel on recent hw,
690          * and it appears to only affect discrete GTT blocks (i.e. on LLC
691          * system agents we cannot reproduce this behaviour).
692          */
693         wmb();
694
695         switch (obj->base.write_domain) {
696         case I915_GEM_DOMAIN_GTT:
697                 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698                         intel_runtime_pm_get(dev_priv);
699                         spin_lock_irq(&dev_priv->uncore.lock);
700                         POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
701                         spin_unlock_irq(&dev_priv->uncore.lock);
702                         intel_runtime_pm_put(dev_priv);
703                 }
704
705                 intel_fb_obj_flush(obj,
706                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
707                 break;
708
709         case I915_GEM_DOMAIN_CPU:
710                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
711                 break;
712
713         case I915_GEM_DOMAIN_RENDER:
714                 if (gpu_write_needs_clflush(obj))
715                         obj->cache_dirty = true;
716                 break;
717         }
718
719         obj->base.write_domain = 0;
720 }
721
722 static inline int
723 __copy_to_user_swizzled(char __user *cpu_vaddr,
724                         const char *gpu_vaddr, int gpu_offset,
725                         int length)
726 {
727         int ret, cpu_offset = 0;
728
729         while (length > 0) {
730                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
731                 int this_length = min(cacheline_end - gpu_offset, length);
732                 int swizzled_gpu_offset = gpu_offset ^ 64;
733
734                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
735                                      gpu_vaddr + swizzled_gpu_offset,
736                                      this_length);
737                 if (ret)
738                         return ret + length;
739
740                 cpu_offset += this_length;
741                 gpu_offset += this_length;
742                 length -= this_length;
743         }
744
745         return 0;
746 }
747
748 static inline int
749 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
750                           const char __user *cpu_vaddr,
751                           int length)
752 {
753         int ret, cpu_offset = 0;
754
755         while (length > 0) {
756                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
757                 int this_length = min(cacheline_end - gpu_offset, length);
758                 int swizzled_gpu_offset = gpu_offset ^ 64;
759
760                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
761                                        cpu_vaddr + cpu_offset,
762                                        this_length);
763                 if (ret)
764                         return ret + length;
765
766                 cpu_offset += this_length;
767                 gpu_offset += this_length;
768                 length -= this_length;
769         }
770
771         return 0;
772 }
773
774 /*
775  * Pins the specified object's pages and synchronizes the object with
776  * GPU accesses. Sets needs_clflush to non-zero if the caller should
777  * flush the object from the CPU cache.
778  */
779 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
780                                     unsigned int *needs_clflush)
781 {
782         int ret;
783
784         lockdep_assert_held(&obj->base.dev->struct_mutex);
785
786         *needs_clflush = 0;
787         if (!i915_gem_object_has_struct_page(obj))
788                 return -ENODEV;
789
790         ret = i915_gem_object_wait(obj,
791                                    I915_WAIT_INTERRUPTIBLE |
792                                    I915_WAIT_LOCKED,
793                                    MAX_SCHEDULE_TIMEOUT,
794                                    NULL);
795         if (ret)
796                 return ret;
797
798         ret = i915_gem_object_pin_pages(obj);
799         if (ret)
800                 return ret;
801
802         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
803             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
804                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
805                 if (ret)
806                         goto err_unpin;
807                 else
808                         goto out;
809         }
810
811         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
812
813         /* If we're not in the cpu read domain, set ourself into the gtt
814          * read domain and manually flush cachelines (if required). This
815          * optimizes for the case when the gpu will dirty the data
816          * anyway again before the next pread happens.
817          */
818         if (!obj->cache_dirty &&
819             !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
820                 *needs_clflush = CLFLUSH_BEFORE;
821
822 out:
823         /* return with the pages pinned */
824         return 0;
825
826 err_unpin:
827         i915_gem_object_unpin_pages(obj);
828         return ret;
829 }
830
831 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
832                                      unsigned int *needs_clflush)
833 {
834         int ret;
835
836         lockdep_assert_held(&obj->base.dev->struct_mutex);
837
838         *needs_clflush = 0;
839         if (!i915_gem_object_has_struct_page(obj))
840                 return -ENODEV;
841
842         ret = i915_gem_object_wait(obj,
843                                    I915_WAIT_INTERRUPTIBLE |
844                                    I915_WAIT_LOCKED |
845                                    I915_WAIT_ALL,
846                                    MAX_SCHEDULE_TIMEOUT,
847                                    NULL);
848         if (ret)
849                 return ret;
850
851         ret = i915_gem_object_pin_pages(obj);
852         if (ret)
853                 return ret;
854
855         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
856             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
857                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
858                 if (ret)
859                         goto err_unpin;
860                 else
861                         goto out;
862         }
863
864         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
865
866         /* If we're not in the cpu write domain, set ourself into the
867          * gtt write domain and manually flush cachelines (as required).
868          * This optimizes for the case when the gpu will use the data
869          * right away and we therefore have to clflush anyway.
870          */
871         if (!obj->cache_dirty) {
872                 *needs_clflush |= CLFLUSH_AFTER;
873
874                 /*
875                  * Same trick applies to invalidate partially written
876                  * cachelines read before writing.
877                  */
878                 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
879                         *needs_clflush |= CLFLUSH_BEFORE;
880         }
881
882 out:
883         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
884         obj->mm.dirty = true;
885         /* return with the pages pinned */
886         return 0;
887
888 err_unpin:
889         i915_gem_object_unpin_pages(obj);
890         return ret;
891 }
892
893 static void
894 shmem_clflush_swizzled_range(char *addr, unsigned long length,
895                              bool swizzled)
896 {
897         if (unlikely(swizzled)) {
898                 unsigned long start = (unsigned long) addr;
899                 unsigned long end = (unsigned long) addr + length;
900
901                 /* For swizzling simply ensure that we always flush both
902                  * channels. Lame, but simple and it works. Swizzled
903                  * pwrite/pread is far from a hotpath - current userspace
904                  * doesn't use it at all. */
905                 start = round_down(start, 128);
906                 end = round_up(end, 128);
907
908                 drm_clflush_virt_range((void *)start, end - start);
909         } else {
910                 drm_clflush_virt_range(addr, length);
911         }
912
913 }
914
915 /* Only difference to the fast-path function is that this can handle bit17
916  * and uses non-atomic copy and kmap functions. */
917 static int
918 shmem_pread_slow(struct page *page, int offset, int length,
919                  char __user *user_data,
920                  bool page_do_bit17_swizzling, bool needs_clflush)
921 {
922         char *vaddr;
923         int ret;
924
925         vaddr = kmap(page);
926         if (needs_clflush)
927                 shmem_clflush_swizzled_range(vaddr + offset, length,
928                                              page_do_bit17_swizzling);
929
930         if (page_do_bit17_swizzling)
931                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
932         else
933                 ret = __copy_to_user(user_data, vaddr + offset, length);
934         kunmap(page);
935
936         return ret ? - EFAULT : 0;
937 }
938
939 static int
940 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
941             bool page_do_bit17_swizzling, bool needs_clflush)
942 {
943         int ret;
944
945         ret = -ENODEV;
946         if (!page_do_bit17_swizzling) {
947                 char *vaddr = kmap_atomic(page);
948
949                 if (needs_clflush)
950                         drm_clflush_virt_range(vaddr + offset, length);
951                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
952                 kunmap_atomic(vaddr);
953         }
954         if (ret == 0)
955                 return 0;
956
957         return shmem_pread_slow(page, offset, length, user_data,
958                                 page_do_bit17_swizzling, needs_clflush);
959 }
960
961 static int
962 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
963                      struct drm_i915_gem_pread *args)
964 {
965         char __user *user_data;
966         u64 remain;
967         unsigned int obj_do_bit17_swizzling;
968         unsigned int needs_clflush;
969         unsigned int idx, offset;
970         int ret;
971
972         obj_do_bit17_swizzling = 0;
973         if (i915_gem_object_needs_bit17_swizzle(obj))
974                 obj_do_bit17_swizzling = BIT(17);
975
976         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
977         if (ret)
978                 return ret;
979
980         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
981         mutex_unlock(&obj->base.dev->struct_mutex);
982         if (ret)
983                 return ret;
984
985         remain = args->size;
986         user_data = u64_to_user_ptr(args->data_ptr);
987         offset = offset_in_page(args->offset);
988         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
989                 struct page *page = i915_gem_object_get_page(obj, idx);
990                 int length;
991
992                 length = remain;
993                 if (offset + length > PAGE_SIZE)
994                         length = PAGE_SIZE - offset;
995
996                 ret = shmem_pread(page, offset, length, user_data,
997                                   page_to_phys(page) & obj_do_bit17_swizzling,
998                                   needs_clflush);
999                 if (ret)
1000                         break;
1001
1002                 remain -= length;
1003                 user_data += length;
1004                 offset = 0;
1005         }
1006
1007         i915_gem_obj_finish_shmem_access(obj);
1008         return ret;
1009 }
1010
1011 static inline bool
1012 gtt_user_read(struct io_mapping *mapping,
1013               loff_t base, int offset,
1014               char __user *user_data, int length)
1015 {
1016         void *vaddr;
1017         unsigned long unwritten;
1018
1019         /* We can use the cpu mem copy function because this is X86. */
1020         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1021         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1022         io_mapping_unmap_atomic(vaddr);
1023         if (unwritten) {
1024                 vaddr = (void __force *)
1025                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1026                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1027                 io_mapping_unmap(vaddr);
1028         }
1029         return unwritten;
1030 }
1031
1032 static int
1033 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1034                    const struct drm_i915_gem_pread *args)
1035 {
1036         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1037         struct i915_ggtt *ggtt = &i915->ggtt;
1038         struct drm_mm_node node;
1039         struct i915_vma *vma;
1040         void __user *user_data;
1041         u64 remain, offset;
1042         int ret;
1043
1044         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1045         if (ret)
1046                 return ret;
1047
1048         intel_runtime_pm_get(i915);
1049         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1050                                        PIN_MAPPABLE | PIN_NONBLOCK);
1051         if (!IS_ERR(vma)) {
1052                 node.start = i915_ggtt_offset(vma);
1053                 node.allocated = false;
1054                 ret = i915_vma_put_fence(vma);
1055                 if (ret) {
1056                         i915_vma_unpin(vma);
1057                         vma = ERR_PTR(ret);
1058                 }
1059         }
1060         if (IS_ERR(vma)) {
1061                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1062                 if (ret)
1063                         goto out_unlock;
1064                 GEM_BUG_ON(!node.allocated);
1065         }
1066
1067         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1068         if (ret)
1069                 goto out_unpin;
1070
1071         mutex_unlock(&i915->drm.struct_mutex);
1072
1073         user_data = u64_to_user_ptr(args->data_ptr);
1074         remain = args->size;
1075         offset = args->offset;
1076
1077         while (remain > 0) {
1078                 /* Operation in this page
1079                  *
1080                  * page_base = page offset within aperture
1081                  * page_offset = offset within page
1082                  * page_length = bytes to copy for this page
1083                  */
1084                 u32 page_base = node.start;
1085                 unsigned page_offset = offset_in_page(offset);
1086                 unsigned page_length = PAGE_SIZE - page_offset;
1087                 page_length = remain < page_length ? remain : page_length;
1088                 if (node.allocated) {
1089                         wmb();
1090                         ggtt->base.insert_page(&ggtt->base,
1091                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1092                                                node.start, I915_CACHE_NONE, 0);
1093                         wmb();
1094                 } else {
1095                         page_base += offset & PAGE_MASK;
1096                 }
1097
1098                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1099                                   user_data, page_length)) {
1100                         ret = -EFAULT;
1101                         break;
1102                 }
1103
1104                 remain -= page_length;
1105                 user_data += page_length;
1106                 offset += page_length;
1107         }
1108
1109         mutex_lock(&i915->drm.struct_mutex);
1110 out_unpin:
1111         if (node.allocated) {
1112                 wmb();
1113                 ggtt->base.clear_range(&ggtt->base,
1114                                        node.start, node.size);
1115                 remove_mappable_node(&node);
1116         } else {
1117                 i915_vma_unpin(vma);
1118         }
1119 out_unlock:
1120         intel_runtime_pm_put(i915);
1121         mutex_unlock(&i915->drm.struct_mutex);
1122
1123         return ret;
1124 }
1125
1126 /**
1127  * Reads data from the object referenced by handle.
1128  * @dev: drm device pointer
1129  * @data: ioctl data blob
1130  * @file: drm file pointer
1131  *
1132  * On error, the contents of *data are undefined.
1133  */
1134 int
1135 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1136                      struct drm_file *file)
1137 {
1138         struct drm_i915_gem_pread *args = data;
1139         struct drm_i915_gem_object *obj;
1140         int ret;
1141
1142         if (args->size == 0)
1143                 return 0;
1144
1145         if (!access_ok(VERIFY_WRITE,
1146                        u64_to_user_ptr(args->data_ptr),
1147                        args->size))
1148                 return -EFAULT;
1149
1150         obj = i915_gem_object_lookup(file, args->handle);
1151         if (!obj)
1152                 return -ENOENT;
1153
1154         /* Bounds check source.  */
1155         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1156                 ret = -EINVAL;
1157                 goto out;
1158         }
1159
1160         trace_i915_gem_object_pread(obj, args->offset, args->size);
1161
1162         ret = i915_gem_object_wait(obj,
1163                                    I915_WAIT_INTERRUPTIBLE,
1164                                    MAX_SCHEDULE_TIMEOUT,
1165                                    to_rps_client(file));
1166         if (ret)
1167                 goto out;
1168
1169         ret = i915_gem_object_pin_pages(obj);
1170         if (ret)
1171                 goto out;
1172
1173         ret = i915_gem_shmem_pread(obj, args);
1174         if (ret == -EFAULT || ret == -ENODEV)
1175                 ret = i915_gem_gtt_pread(obj, args);
1176
1177         i915_gem_object_unpin_pages(obj);
1178 out:
1179         i915_gem_object_put(obj);
1180         return ret;
1181 }
1182
1183 /* This is the fast write path which cannot handle
1184  * page faults in the source data
1185  */
1186
1187 static inline bool
1188 ggtt_write(struct io_mapping *mapping,
1189            loff_t base, int offset,
1190            char __user *user_data, int length)
1191 {
1192         void *vaddr;
1193         unsigned long unwritten;
1194
1195         /* We can use the cpu mem copy function because this is X86. */
1196         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1197         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1198                                                       user_data, length);
1199         io_mapping_unmap_atomic(vaddr);
1200         if (unwritten) {
1201                 vaddr = (void __force *)
1202                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1203                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1204                 io_mapping_unmap(vaddr);
1205         }
1206
1207         return unwritten;
1208 }
1209
1210 /**
1211  * This is the fast pwrite path, where we copy the data directly from the
1212  * user into the GTT, uncached.
1213  * @obj: i915 GEM object
1214  * @args: pwrite arguments structure
1215  */
1216 static int
1217 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1218                          const struct drm_i915_gem_pwrite *args)
1219 {
1220         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1221         struct i915_ggtt *ggtt = &i915->ggtt;
1222         struct drm_mm_node node;
1223         struct i915_vma *vma;
1224         u64 remain, offset;
1225         void __user *user_data;
1226         int ret;
1227
1228         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1229         if (ret)
1230                 return ret;
1231
1232         intel_runtime_pm_get(i915);
1233         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1234                                        PIN_MAPPABLE | PIN_NONBLOCK);
1235         if (!IS_ERR(vma)) {
1236                 node.start = i915_ggtt_offset(vma);
1237                 node.allocated = false;
1238                 ret = i915_vma_put_fence(vma);
1239                 if (ret) {
1240                         i915_vma_unpin(vma);
1241                         vma = ERR_PTR(ret);
1242                 }
1243         }
1244         if (IS_ERR(vma)) {
1245                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1246                 if (ret)
1247                         goto out_unlock;
1248                 GEM_BUG_ON(!node.allocated);
1249         }
1250
1251         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1252         if (ret)
1253                 goto out_unpin;
1254
1255         mutex_unlock(&i915->drm.struct_mutex);
1256
1257         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1258
1259         user_data = u64_to_user_ptr(args->data_ptr);
1260         offset = args->offset;
1261         remain = args->size;
1262         while (remain) {
1263                 /* Operation in this page
1264                  *
1265                  * page_base = page offset within aperture
1266                  * page_offset = offset within page
1267                  * page_length = bytes to copy for this page
1268                  */
1269                 u32 page_base = node.start;
1270                 unsigned int page_offset = offset_in_page(offset);
1271                 unsigned int page_length = PAGE_SIZE - page_offset;
1272                 page_length = remain < page_length ? remain : page_length;
1273                 if (node.allocated) {
1274                         wmb(); /* flush the write before we modify the GGTT */
1275                         ggtt->base.insert_page(&ggtt->base,
1276                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1277                                                node.start, I915_CACHE_NONE, 0);
1278                         wmb(); /* flush modifications to the GGTT (insert_page) */
1279                 } else {
1280                         page_base += offset & PAGE_MASK;
1281                 }
1282                 /* If we get a fault while copying data, then (presumably) our
1283                  * source page isn't available.  Return the error and we'll
1284                  * retry in the slow path.
1285                  * If the object is non-shmem backed, we retry again with the
1286                  * path that handles page fault.
1287                  */
1288                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1289                                user_data, page_length)) {
1290                         ret = -EFAULT;
1291                         break;
1292                 }
1293
1294                 remain -= page_length;
1295                 user_data += page_length;
1296                 offset += page_length;
1297         }
1298         intel_fb_obj_flush(obj, ORIGIN_CPU);
1299
1300         mutex_lock(&i915->drm.struct_mutex);
1301 out_unpin:
1302         if (node.allocated) {
1303                 wmb();
1304                 ggtt->base.clear_range(&ggtt->base,
1305                                        node.start, node.size);
1306                 remove_mappable_node(&node);
1307         } else {
1308                 i915_vma_unpin(vma);
1309         }
1310 out_unlock:
1311         intel_runtime_pm_put(i915);
1312         mutex_unlock(&i915->drm.struct_mutex);
1313         return ret;
1314 }
1315
1316 static int
1317 shmem_pwrite_slow(struct page *page, int offset, int length,
1318                   char __user *user_data,
1319                   bool page_do_bit17_swizzling,
1320                   bool needs_clflush_before,
1321                   bool needs_clflush_after)
1322 {
1323         char *vaddr;
1324         int ret;
1325
1326         vaddr = kmap(page);
1327         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1328                 shmem_clflush_swizzled_range(vaddr + offset, length,
1329                                              page_do_bit17_swizzling);
1330         if (page_do_bit17_swizzling)
1331                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1332                                                 length);
1333         else
1334                 ret = __copy_from_user(vaddr + offset, user_data, length);
1335         if (needs_clflush_after)
1336                 shmem_clflush_swizzled_range(vaddr + offset, length,
1337                                              page_do_bit17_swizzling);
1338         kunmap(page);
1339
1340         return ret ? -EFAULT : 0;
1341 }
1342
1343 /* Per-page copy function for the shmem pwrite fastpath.
1344  * Flushes invalid cachelines before writing to the target if
1345  * needs_clflush_before is set and flushes out any written cachelines after
1346  * writing if needs_clflush is set.
1347  */
1348 static int
1349 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1350              bool page_do_bit17_swizzling,
1351              bool needs_clflush_before,
1352              bool needs_clflush_after)
1353 {
1354         int ret;
1355
1356         ret = -ENODEV;
1357         if (!page_do_bit17_swizzling) {
1358                 char *vaddr = kmap_atomic(page);
1359
1360                 if (needs_clflush_before)
1361                         drm_clflush_virt_range(vaddr + offset, len);
1362                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1363                 if (needs_clflush_after)
1364                         drm_clflush_virt_range(vaddr + offset, len);
1365
1366                 kunmap_atomic(vaddr);
1367         }
1368         if (ret == 0)
1369                 return ret;
1370
1371         return shmem_pwrite_slow(page, offset, len, user_data,
1372                                  page_do_bit17_swizzling,
1373                                  needs_clflush_before,
1374                                  needs_clflush_after);
1375 }
1376
1377 static int
1378 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1379                       const struct drm_i915_gem_pwrite *args)
1380 {
1381         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1382         void __user *user_data;
1383         u64 remain;
1384         unsigned int obj_do_bit17_swizzling;
1385         unsigned int partial_cacheline_write;
1386         unsigned int needs_clflush;
1387         unsigned int offset, idx;
1388         int ret;
1389
1390         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1391         if (ret)
1392                 return ret;
1393
1394         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1395         mutex_unlock(&i915->drm.struct_mutex);
1396         if (ret)
1397                 return ret;
1398
1399         obj_do_bit17_swizzling = 0;
1400         if (i915_gem_object_needs_bit17_swizzle(obj))
1401                 obj_do_bit17_swizzling = BIT(17);
1402
1403         /* If we don't overwrite a cacheline completely we need to be
1404          * careful to have up-to-date data by first clflushing. Don't
1405          * overcomplicate things and flush the entire patch.
1406          */
1407         partial_cacheline_write = 0;
1408         if (needs_clflush & CLFLUSH_BEFORE)
1409                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1410
1411         user_data = u64_to_user_ptr(args->data_ptr);
1412         remain = args->size;
1413         offset = offset_in_page(args->offset);
1414         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1415                 struct page *page = i915_gem_object_get_page(obj, idx);
1416                 int length;
1417
1418                 length = remain;
1419                 if (offset + length > PAGE_SIZE)
1420                         length = PAGE_SIZE - offset;
1421
1422                 ret = shmem_pwrite(page, offset, length, user_data,
1423                                    page_to_phys(page) & obj_do_bit17_swizzling,
1424                                    (offset | length) & partial_cacheline_write,
1425                                    needs_clflush & CLFLUSH_AFTER);
1426                 if (ret)
1427                         break;
1428
1429                 remain -= length;
1430                 user_data += length;
1431                 offset = 0;
1432         }
1433
1434         intel_fb_obj_flush(obj, ORIGIN_CPU);
1435         i915_gem_obj_finish_shmem_access(obj);
1436         return ret;
1437 }
1438
1439 /**
1440  * Writes data to the object referenced by handle.
1441  * @dev: drm device
1442  * @data: ioctl data blob
1443  * @file: drm file
1444  *
1445  * On error, the contents of the buffer that were to be modified are undefined.
1446  */
1447 int
1448 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1449                       struct drm_file *file)
1450 {
1451         struct drm_i915_gem_pwrite *args = data;
1452         struct drm_i915_gem_object *obj;
1453         int ret;
1454
1455         if (args->size == 0)
1456                 return 0;
1457
1458         if (!access_ok(VERIFY_READ,
1459                        u64_to_user_ptr(args->data_ptr),
1460                        args->size))
1461                 return -EFAULT;
1462
1463         obj = i915_gem_object_lookup(file, args->handle);
1464         if (!obj)
1465                 return -ENOENT;
1466
1467         /* Bounds check destination. */
1468         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1469                 ret = -EINVAL;
1470                 goto err;
1471         }
1472
1473         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1474
1475         ret = -ENODEV;
1476         if (obj->ops->pwrite)
1477                 ret = obj->ops->pwrite(obj, args);
1478         if (ret != -ENODEV)
1479                 goto err;
1480
1481         ret = i915_gem_object_wait(obj,
1482                                    I915_WAIT_INTERRUPTIBLE |
1483                                    I915_WAIT_ALL,
1484                                    MAX_SCHEDULE_TIMEOUT,
1485                                    to_rps_client(file));
1486         if (ret)
1487                 goto err;
1488
1489         ret = i915_gem_object_pin_pages(obj);
1490         if (ret)
1491                 goto err;
1492
1493         ret = -EFAULT;
1494         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1495          * it would end up going through the fenced access, and we'll get
1496          * different detiling behavior between reading and writing.
1497          * pread/pwrite currently are reading and writing from the CPU
1498          * perspective, requiring manual detiling by the client.
1499          */
1500         if (!i915_gem_object_has_struct_page(obj) ||
1501             cpu_write_needs_clflush(obj))
1502                 /* Note that the gtt paths might fail with non-page-backed user
1503                  * pointers (e.g. gtt mappings when moving data between
1504                  * textures). Fallback to the shmem path in that case.
1505                  */
1506                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1507
1508         if (ret == -EFAULT || ret == -ENOSPC) {
1509                 if (obj->phys_handle)
1510                         ret = i915_gem_phys_pwrite(obj, args, file);
1511                 else
1512                         ret = i915_gem_shmem_pwrite(obj, args);
1513         }
1514
1515         i915_gem_object_unpin_pages(obj);
1516 err:
1517         i915_gem_object_put(obj);
1518         return ret;
1519 }
1520
1521 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1522 {
1523         struct drm_i915_private *i915;
1524         struct list_head *list;
1525         struct i915_vma *vma;
1526
1527         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1528                 if (!i915_vma_is_ggtt(vma))
1529                         break;
1530
1531                 if (i915_vma_is_active(vma))
1532                         continue;
1533
1534                 if (!drm_mm_node_allocated(&vma->node))
1535                         continue;
1536
1537                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1538         }
1539
1540         i915 = to_i915(obj->base.dev);
1541         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1542         list_move_tail(&obj->global_link, list);
1543 }
1544
1545 /**
1546  * Called when user space prepares to use an object with the CPU, either
1547  * through the mmap ioctl's mapping or a GTT mapping.
1548  * @dev: drm device
1549  * @data: ioctl data blob
1550  * @file: drm file
1551  */
1552 int
1553 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1554                           struct drm_file *file)
1555 {
1556         struct drm_i915_gem_set_domain *args = data;
1557         struct drm_i915_gem_object *obj;
1558         uint32_t read_domains = args->read_domains;
1559         uint32_t write_domain = args->write_domain;
1560         int err;
1561
1562         /* Only handle setting domains to types used by the CPU. */
1563         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1564                 return -EINVAL;
1565
1566         /* Having something in the write domain implies it's in the read
1567          * domain, and only that read domain.  Enforce that in the request.
1568          */
1569         if (write_domain != 0 && read_domains != write_domain)
1570                 return -EINVAL;
1571
1572         obj = i915_gem_object_lookup(file, args->handle);
1573         if (!obj)
1574                 return -ENOENT;
1575
1576         /* Try to flush the object off the GPU without holding the lock.
1577          * We will repeat the flush holding the lock in the normal manner
1578          * to catch cases where we are gazumped.
1579          */
1580         err = i915_gem_object_wait(obj,
1581                                    I915_WAIT_INTERRUPTIBLE |
1582                                    (write_domain ? I915_WAIT_ALL : 0),
1583                                    MAX_SCHEDULE_TIMEOUT,
1584                                    to_rps_client(file));
1585         if (err)
1586                 goto out;
1587
1588         /* Flush and acquire obj->pages so that we are coherent through
1589          * direct access in memory with previous cached writes through
1590          * shmemfs and that our cache domain tracking remains valid.
1591          * For example, if the obj->filp was moved to swap without us
1592          * being notified and releasing the pages, we would mistakenly
1593          * continue to assume that the obj remained out of the CPU cached
1594          * domain.
1595          */
1596         err = i915_gem_object_pin_pages(obj);
1597         if (err)
1598                 goto out;
1599
1600         err = i915_mutex_lock_interruptible(dev);
1601         if (err)
1602                 goto out_unpin;
1603
1604         if (read_domains & I915_GEM_DOMAIN_WC)
1605                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1606         else if (read_domains & I915_GEM_DOMAIN_GTT)
1607                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1608         else
1609                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1610
1611         /* And bump the LRU for this access */
1612         i915_gem_object_bump_inactive_ggtt(obj);
1613
1614         mutex_unlock(&dev->struct_mutex);
1615
1616         if (write_domain != 0)
1617                 intel_fb_obj_invalidate(obj,
1618                                         fb_write_origin(obj, write_domain));
1619
1620 out_unpin:
1621         i915_gem_object_unpin_pages(obj);
1622 out:
1623         i915_gem_object_put(obj);
1624         return err;
1625 }
1626
1627 /**
1628  * Called when user space has done writes to this buffer
1629  * @dev: drm device
1630  * @data: ioctl data blob
1631  * @file: drm file
1632  */
1633 int
1634 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1635                          struct drm_file *file)
1636 {
1637         struct drm_i915_gem_sw_finish *args = data;
1638         struct drm_i915_gem_object *obj;
1639
1640         obj = i915_gem_object_lookup(file, args->handle);
1641         if (!obj)
1642                 return -ENOENT;
1643
1644         /* Pinned buffers may be scanout, so flush the cache */
1645         i915_gem_object_flush_if_display(obj);
1646         i915_gem_object_put(obj);
1647
1648         return 0;
1649 }
1650
1651 /**
1652  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1653  *                       it is mapped to.
1654  * @dev: drm device
1655  * @data: ioctl data blob
1656  * @file: drm file
1657  *
1658  * While the mapping holds a reference on the contents of the object, it doesn't
1659  * imply a ref on the object itself.
1660  *
1661  * IMPORTANT:
1662  *
1663  * DRM driver writers who look a this function as an example for how to do GEM
1664  * mmap support, please don't implement mmap support like here. The modern way
1665  * to implement DRM mmap support is with an mmap offset ioctl (like
1666  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1667  * That way debug tooling like valgrind will understand what's going on, hiding
1668  * the mmap call in a driver private ioctl will break that. The i915 driver only
1669  * does cpu mmaps this way because we didn't know better.
1670  */
1671 int
1672 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1673                     struct drm_file *file)
1674 {
1675         struct drm_i915_gem_mmap *args = data;
1676         struct drm_i915_gem_object *obj;
1677         unsigned long addr;
1678
1679         if (args->flags & ~(I915_MMAP_WC))
1680                 return -EINVAL;
1681
1682         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1683                 return -ENODEV;
1684
1685         obj = i915_gem_object_lookup(file, args->handle);
1686         if (!obj)
1687                 return -ENOENT;
1688
1689         /* prime objects have no backing filp to GEM mmap
1690          * pages from.
1691          */
1692         if (!obj->base.filp) {
1693                 i915_gem_object_put(obj);
1694                 return -EINVAL;
1695         }
1696
1697         addr = vm_mmap(obj->base.filp, 0, args->size,
1698                        PROT_READ | PROT_WRITE, MAP_SHARED,
1699                        args->offset);
1700         if (args->flags & I915_MMAP_WC) {
1701                 struct mm_struct *mm = current->mm;
1702                 struct vm_area_struct *vma;
1703
1704                 if (down_write_killable(&mm->mmap_sem)) {
1705                         i915_gem_object_put(obj);
1706                         return -EINTR;
1707                 }
1708                 vma = find_vma(mm, addr);
1709                 if (vma)
1710                         vma->vm_page_prot =
1711                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1712                 else
1713                         addr = -ENOMEM;
1714                 up_write(&mm->mmap_sem);
1715
1716                 /* This may race, but that's ok, it only gets set */
1717                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1718         }
1719         i915_gem_object_put(obj);
1720         if (IS_ERR((void *)addr))
1721                 return addr;
1722
1723         args->addr_ptr = (uint64_t) addr;
1724
1725         return 0;
1726 }
1727
1728 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1729 {
1730         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1731 }
1732
1733 /**
1734  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1735  *
1736  * A history of the GTT mmap interface:
1737  *
1738  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1739  *     aligned and suitable for fencing, and still fit into the available
1740  *     mappable space left by the pinned display objects. A classic problem
1741  *     we called the page-fault-of-doom where we would ping-pong between
1742  *     two objects that could not fit inside the GTT and so the memcpy
1743  *     would page one object in at the expense of the other between every
1744  *     single byte.
1745  *
1746  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1747  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1748  *     object is too large for the available space (or simply too large
1749  *     for the mappable aperture!), a view is created instead and faulted
1750  *     into userspace. (This view is aligned and sized appropriately for
1751  *     fenced access.)
1752  *
1753  * 2 - Recognise WC as a separate cache domain so that we can flush the
1754  *     delayed writes via GTT before performing direct access via WC.
1755  *
1756  * Restrictions:
1757  *
1758  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1759  *    hangs on some architectures, corruption on others. An attempt to service
1760  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1761  *
1762  *  * the object must be able to fit into RAM (physical memory, though no
1763  *    limited to the mappable aperture).
1764  *
1765  *
1766  * Caveats:
1767  *
1768  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1769  *    all data to system memory. Subsequent access will not be synchronized.
1770  *
1771  *  * all mappings are revoked on runtime device suspend.
1772  *
1773  *  * there are only 8, 16 or 32 fence registers to share between all users
1774  *    (older machines require fence register for display and blitter access
1775  *    as well). Contention of the fence registers will cause the previous users
1776  *    to be unmapped and any new access will generate new page faults.
1777  *
1778  *  * running out of memory while servicing a fault may generate a SIGBUS,
1779  *    rather than the expected SIGSEGV.
1780  */
1781 int i915_gem_mmap_gtt_version(void)
1782 {
1783         return 2;
1784 }
1785
1786 static inline struct i915_ggtt_view
1787 compute_partial_view(struct drm_i915_gem_object *obj,
1788                      pgoff_t page_offset,
1789                      unsigned int chunk)
1790 {
1791         struct i915_ggtt_view view;
1792
1793         if (i915_gem_object_is_tiled(obj))
1794                 chunk = roundup(chunk, tile_row_pages(obj));
1795
1796         view.type = I915_GGTT_VIEW_PARTIAL;
1797         view.partial.offset = rounddown(page_offset, chunk);
1798         view.partial.size =
1799                 min_t(unsigned int, chunk,
1800                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1801
1802         /* If the partial covers the entire object, just create a normal VMA. */
1803         if (chunk >= obj->base.size >> PAGE_SHIFT)
1804                 view.type = I915_GGTT_VIEW_NORMAL;
1805
1806         return view;
1807 }
1808
1809 /**
1810  * i915_gem_fault - fault a page into the GTT
1811  * @vmf: fault info
1812  *
1813  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1814  * from userspace.  The fault handler takes care of binding the object to
1815  * the GTT (if needed), allocating and programming a fence register (again,
1816  * only if needed based on whether the old reg is still valid or the object
1817  * is tiled) and inserting a new PTE into the faulting process.
1818  *
1819  * Note that the faulting process may involve evicting existing objects
1820  * from the GTT and/or fence registers to make room.  So performance may
1821  * suffer if the GTT working set is large or there are few fence registers
1822  * left.
1823  *
1824  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1825  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1826  */
1827 int i915_gem_fault(struct vm_fault *vmf)
1828 {
1829 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1830         struct vm_area_struct *area = vmf->vma;
1831         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1832         struct drm_device *dev = obj->base.dev;
1833         struct drm_i915_private *dev_priv = to_i915(dev);
1834         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1835         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1836         struct i915_vma *vma;
1837         pgoff_t page_offset;
1838         unsigned int flags;
1839         int ret;
1840
1841         /* We don't use vmf->pgoff since that has the fake offset */
1842         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1843
1844         trace_i915_gem_object_fault(obj, page_offset, true, write);
1845
1846         /* Try to flush the object off the GPU first without holding the lock.
1847          * Upon acquiring the lock, we will perform our sanity checks and then
1848          * repeat the flush holding the lock in the normal manner to catch cases
1849          * where we are gazumped.
1850          */
1851         ret = i915_gem_object_wait(obj,
1852                                    I915_WAIT_INTERRUPTIBLE,
1853                                    MAX_SCHEDULE_TIMEOUT,
1854                                    NULL);
1855         if (ret)
1856                 goto err;
1857
1858         ret = i915_gem_object_pin_pages(obj);
1859         if (ret)
1860                 goto err;
1861
1862         intel_runtime_pm_get(dev_priv);
1863
1864         ret = i915_mutex_lock_interruptible(dev);
1865         if (ret)
1866                 goto err_rpm;
1867
1868         /* Access to snoopable pages through the GTT is incoherent. */
1869         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1870                 ret = -EFAULT;
1871                 goto err_unlock;
1872         }
1873
1874         /* If the object is smaller than a couple of partial vma, it is
1875          * not worth only creating a single partial vma - we may as well
1876          * clear enough space for the full object.
1877          */
1878         flags = PIN_MAPPABLE;
1879         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1880                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1881
1882         /* Now pin it into the GTT as needed */
1883         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1884         if (IS_ERR(vma)) {
1885                 /* Use a partial view if it is bigger than available space */
1886                 struct i915_ggtt_view view =
1887                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1888
1889                 /* Userspace is now writing through an untracked VMA, abandon
1890                  * all hope that the hardware is able to track future writes.
1891                  */
1892                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1893
1894                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1895         }
1896         if (IS_ERR(vma)) {
1897                 ret = PTR_ERR(vma);
1898                 goto err_unlock;
1899         }
1900
1901         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1902         if (ret)
1903                 goto err_unpin;
1904
1905         ret = i915_vma_get_fence(vma);
1906         if (ret)
1907                 goto err_unpin;
1908
1909         /* Mark as being mmapped into userspace for later revocation */
1910         assert_rpm_wakelock_held(dev_priv);
1911         if (list_empty(&obj->userfault_link))
1912                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1913
1914         /* Finally, remap it using the new GTT offset */
1915         ret = remap_io_mapping(area,
1916                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1917                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1918                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1919                                &ggtt->mappable);
1920
1921 err_unpin:
1922         __i915_vma_unpin(vma);
1923 err_unlock:
1924         mutex_unlock(&dev->struct_mutex);
1925 err_rpm:
1926         intel_runtime_pm_put(dev_priv);
1927         i915_gem_object_unpin_pages(obj);
1928 err:
1929         switch (ret) {
1930         case -EIO:
1931                 /*
1932                  * We eat errors when the gpu is terminally wedged to avoid
1933                  * userspace unduly crashing (gl has no provisions for mmaps to
1934                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1935                  * and so needs to be reported.
1936                  */
1937                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1938                         ret = VM_FAULT_SIGBUS;
1939                         break;
1940                 }
1941         case -EAGAIN:
1942                 /*
1943                  * EAGAIN means the gpu is hung and we'll wait for the error
1944                  * handler to reset everything when re-faulting in
1945                  * i915_mutex_lock_interruptible.
1946                  */
1947         case 0:
1948         case -ERESTARTSYS:
1949         case -EINTR:
1950         case -EBUSY:
1951                 /*
1952                  * EBUSY is ok: this just means that another thread
1953                  * already did the job.
1954                  */
1955                 ret = VM_FAULT_NOPAGE;
1956                 break;
1957         case -ENOMEM:
1958                 ret = VM_FAULT_OOM;
1959                 break;
1960         case -ENOSPC:
1961         case -EFAULT:
1962                 ret = VM_FAULT_SIGBUS;
1963                 break;
1964         default:
1965                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1966                 ret = VM_FAULT_SIGBUS;
1967                 break;
1968         }
1969         return ret;
1970 }
1971
1972 /**
1973  * i915_gem_release_mmap - remove physical page mappings
1974  * @obj: obj in question
1975  *
1976  * Preserve the reservation of the mmapping with the DRM core code, but
1977  * relinquish ownership of the pages back to the system.
1978  *
1979  * It is vital that we remove the page mapping if we have mapped a tiled
1980  * object through the GTT and then lose the fence register due to
1981  * resource pressure. Similarly if the object has been moved out of the
1982  * aperture, than pages mapped into userspace must be revoked. Removing the
1983  * mapping will then trigger a page fault on the next user access, allowing
1984  * fixup by i915_gem_fault().
1985  */
1986 void
1987 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1988 {
1989         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1990
1991         /* Serialisation between user GTT access and our code depends upon
1992          * revoking the CPU's PTE whilst the mutex is held. The next user
1993          * pagefault then has to wait until we release the mutex.
1994          *
1995          * Note that RPM complicates somewhat by adding an additional
1996          * requirement that operations to the GGTT be made holding the RPM
1997          * wakeref.
1998          */
1999         lockdep_assert_held(&i915->drm.struct_mutex);
2000         intel_runtime_pm_get(i915);
2001
2002         if (list_empty(&obj->userfault_link))
2003                 goto out;
2004
2005         list_del_init(&obj->userfault_link);
2006         drm_vma_node_unmap(&obj->base.vma_node,
2007                            obj->base.dev->anon_inode->i_mapping);
2008
2009         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2010          * memory transactions from userspace before we return. The TLB
2011          * flushing implied above by changing the PTE above *should* be
2012          * sufficient, an extra barrier here just provides us with a bit
2013          * of paranoid documentation about our requirement to serialise
2014          * memory writes before touching registers / GSM.
2015          */
2016         wmb();
2017
2018 out:
2019         intel_runtime_pm_put(i915);
2020 }
2021
2022 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2023 {
2024         struct drm_i915_gem_object *obj, *on;
2025         int i;
2026
2027         /*
2028          * Only called during RPM suspend. All users of the userfault_list
2029          * must be holding an RPM wakeref to ensure that this can not
2030          * run concurrently with themselves (and use the struct_mutex for
2031          * protection between themselves).
2032          */
2033
2034         list_for_each_entry_safe(obj, on,
2035                                  &dev_priv->mm.userfault_list, userfault_link) {
2036                 list_del_init(&obj->userfault_link);
2037                 drm_vma_node_unmap(&obj->base.vma_node,
2038                                    obj->base.dev->anon_inode->i_mapping);
2039         }
2040
2041         /* The fence will be lost when the device powers down. If any were
2042          * in use by hardware (i.e. they are pinned), we should not be powering
2043          * down! All other fences will be reacquired by the user upon waking.
2044          */
2045         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2046                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2047
2048                 /* Ideally we want to assert that the fence register is not
2049                  * live at this point (i.e. that no piece of code will be
2050                  * trying to write through fence + GTT, as that both violates
2051                  * our tracking of activity and associated locking/barriers,
2052                  * but also is illegal given that the hw is powered down).
2053                  *
2054                  * Previously we used reg->pin_count as a "liveness" indicator.
2055                  * That is not sufficient, and we need a more fine-grained
2056                  * tool if we want to have a sanity check here.
2057                  */
2058
2059                 if (!reg->vma)
2060                         continue;
2061
2062                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2063                 reg->dirty = true;
2064         }
2065 }
2066
2067 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2068 {
2069         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2070         int err;
2071
2072         err = drm_gem_create_mmap_offset(&obj->base);
2073         if (likely(!err))
2074                 return 0;
2075
2076         /* Attempt to reap some mmap space from dead objects */
2077         do {
2078                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2079                 if (err)
2080                         break;
2081
2082                 i915_gem_drain_freed_objects(dev_priv);
2083                 err = drm_gem_create_mmap_offset(&obj->base);
2084                 if (!err)
2085                         break;
2086
2087         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2088
2089         return err;
2090 }
2091
2092 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2093 {
2094         drm_gem_free_mmap_offset(&obj->base);
2095 }
2096
2097 int
2098 i915_gem_mmap_gtt(struct drm_file *file,
2099                   struct drm_device *dev,
2100                   uint32_t handle,
2101                   uint64_t *offset)
2102 {
2103         struct drm_i915_gem_object *obj;
2104         int ret;
2105
2106         obj = i915_gem_object_lookup(file, handle);
2107         if (!obj)
2108                 return -ENOENT;
2109
2110         ret = i915_gem_object_create_mmap_offset(obj);
2111         if (ret == 0)
2112                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2113
2114         i915_gem_object_put(obj);
2115         return ret;
2116 }
2117
2118 /**
2119  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2120  * @dev: DRM device
2121  * @data: GTT mapping ioctl data
2122  * @file: GEM object info
2123  *
2124  * Simply returns the fake offset to userspace so it can mmap it.
2125  * The mmap call will end up in drm_gem_mmap(), which will set things
2126  * up so we can get faults in the handler above.
2127  *
2128  * The fault handler will take care of binding the object into the GTT
2129  * (since it may have been evicted to make room for something), allocating
2130  * a fence register, and mapping the appropriate aperture address into
2131  * userspace.
2132  */
2133 int
2134 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2135                         struct drm_file *file)
2136 {
2137         struct drm_i915_gem_mmap_gtt *args = data;
2138
2139         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2140 }
2141
2142 /* Immediately discard the backing storage */
2143 static void
2144 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2145 {
2146         i915_gem_object_free_mmap_offset(obj);
2147
2148         if (obj->base.filp == NULL)
2149                 return;
2150
2151         /* Our goal here is to return as much of the memory as
2152          * is possible back to the system as we are called from OOM.
2153          * To do this we must instruct the shmfs to drop all of its
2154          * backing pages, *now*.
2155          */
2156         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2157         obj->mm.madv = __I915_MADV_PURGED;
2158         obj->mm.pages = ERR_PTR(-EFAULT);
2159 }
2160
2161 /* Try to discard unwanted pages */
2162 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2163 {
2164         struct address_space *mapping;
2165
2166         lockdep_assert_held(&obj->mm.lock);
2167         GEM_BUG_ON(obj->mm.pages);
2168
2169         switch (obj->mm.madv) {
2170         case I915_MADV_DONTNEED:
2171                 i915_gem_object_truncate(obj);
2172         case __I915_MADV_PURGED:
2173                 return;
2174         }
2175
2176         if (obj->base.filp == NULL)
2177                 return;
2178
2179         mapping = obj->base.filp->f_mapping,
2180         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2181 }
2182
2183 static void
2184 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2185                               struct sg_table *pages)
2186 {
2187         struct sgt_iter sgt_iter;
2188         struct page *page;
2189
2190         __i915_gem_object_release_shmem(obj, pages, true);
2191
2192         i915_gem_gtt_finish_pages(obj, pages);
2193
2194         if (i915_gem_object_needs_bit17_swizzle(obj))
2195                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2196
2197         for_each_sgt_page(page, sgt_iter, pages) {
2198                 if (obj->mm.dirty)
2199                         set_page_dirty(page);
2200
2201                 if (obj->mm.madv == I915_MADV_WILLNEED)
2202                         mark_page_accessed(page);
2203
2204                 put_page(page);
2205         }
2206         obj->mm.dirty = false;
2207
2208         sg_free_table(pages);
2209         kfree(pages);
2210 }
2211
2212 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2213 {
2214         struct radix_tree_iter iter;
2215         void __rcu **slot;
2216
2217         rcu_read_lock();
2218         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2219                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2220         rcu_read_unlock();
2221 }
2222
2223 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2224                                  enum i915_mm_subclass subclass)
2225 {
2226         struct sg_table *pages;
2227
2228         if (i915_gem_object_has_pinned_pages(obj))
2229                 return;
2230
2231         GEM_BUG_ON(obj->bind_count);
2232         if (!READ_ONCE(obj->mm.pages))
2233                 return;
2234
2235         /* May be called by shrinker from within get_pages() (on another bo) */
2236         mutex_lock_nested(&obj->mm.lock, subclass);
2237         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2238                 goto unlock;
2239
2240         /* ->put_pages might need to allocate memory for the bit17 swizzle
2241          * array, hence protect them from being reaped by removing them from gtt
2242          * lists early. */
2243         pages = fetch_and_zero(&obj->mm.pages);
2244         GEM_BUG_ON(!pages);
2245
2246         if (obj->mm.mapping) {
2247                 void *ptr;
2248
2249                 ptr = page_mask_bits(obj->mm.mapping);
2250                 if (is_vmalloc_addr(ptr))
2251                         vunmap(ptr);
2252                 else
2253                         kunmap(kmap_to_page(ptr));
2254
2255                 obj->mm.mapping = NULL;
2256         }
2257
2258         __i915_gem_object_reset_page_iter(obj);
2259
2260         if (!IS_ERR(pages))
2261                 obj->ops->put_pages(obj, pages);
2262
2263 unlock:
2264         mutex_unlock(&obj->mm.lock);
2265 }
2266
2267 static bool i915_sg_trim(struct sg_table *orig_st)
2268 {
2269         struct sg_table new_st;
2270         struct scatterlist *sg, *new_sg;
2271         unsigned int i;
2272
2273         if (orig_st->nents == orig_st->orig_nents)
2274                 return false;
2275
2276         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2277                 return false;
2278
2279         new_sg = new_st.sgl;
2280         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2281                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2282                 /* called before being DMA mapped, no need to copy sg->dma_* */
2283                 new_sg = sg_next(new_sg);
2284         }
2285         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2286
2287         sg_free_table(orig_st);
2288
2289         *orig_st = new_st;
2290         return true;
2291 }
2292
2293 static struct sg_table *
2294 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2295 {
2296         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2297         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2298         unsigned long i;
2299         struct address_space *mapping;
2300         struct sg_table *st;
2301         struct scatterlist *sg;
2302         struct sgt_iter sgt_iter;
2303         struct page *page;
2304         unsigned long last_pfn = 0;     /* suppress gcc warning */
2305         unsigned int max_segment;
2306         gfp_t noreclaim;
2307         int ret;
2308
2309         /* Assert that the object is not currently in any GPU domain. As it
2310          * wasn't in the GTT, there shouldn't be any way it could have been in
2311          * a GPU cache
2312          */
2313         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2314         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2315
2316         max_segment = swiotlb_max_segment();
2317         if (!max_segment)
2318                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2319
2320         st = kmalloc(sizeof(*st), GFP_KERNEL);
2321         if (st == NULL)
2322                 return ERR_PTR(-ENOMEM);
2323
2324 rebuild_st:
2325         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2326                 kfree(st);
2327                 return ERR_PTR(-ENOMEM);
2328         }
2329
2330         /* Get the list of pages out of our struct file.  They'll be pinned
2331          * at this point until we release them.
2332          *
2333          * Fail silently without starting the shrinker
2334          */
2335         mapping = obj->base.filp->f_mapping;
2336         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2337         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2338
2339         sg = st->sgl;
2340         st->nents = 0;
2341         for (i = 0; i < page_count; i++) {
2342                 const unsigned int shrink[] = {
2343                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2344                         0,
2345                 }, *s = shrink;
2346                 gfp_t gfp = noreclaim;
2347
2348                 do {
2349                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2350                         if (likely(!IS_ERR(page)))
2351                                 break;
2352
2353                         if (!*s) {
2354                                 ret = PTR_ERR(page);
2355                                 goto err_sg;
2356                         }
2357
2358                         i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2359                         cond_resched();
2360
2361                         /* We've tried hard to allocate the memory by reaping
2362                          * our own buffer, now let the real VM do its job and
2363                          * go down in flames if truly OOM.
2364                          *
2365                          * However, since graphics tend to be disposable,
2366                          * defer the oom here by reporting the ENOMEM back
2367                          * to userspace.
2368                          */
2369                         if (!*s) {
2370                                 /* reclaim and warn, but no oom */
2371                                 gfp = mapping_gfp_mask(mapping);
2372
2373                                 /* Our bo are always dirty and so we require
2374                                  * kswapd to reclaim our pages (direct reclaim
2375                                  * does not effectively begin pageout of our
2376                                  * buffers on its own). However, direct reclaim
2377                                  * only waits for kswapd when under allocation
2378                                  * congestion. So as a result __GFP_RECLAIM is
2379                                  * unreliable and fails to actually reclaim our
2380                                  * dirty pages -- unless you try over and over
2381                                  * again with !__GFP_NORETRY. However, we still
2382                                  * want to fail this allocation rather than
2383                                  * trigger the out-of-memory killer and for
2384                                  * this we want __GFP_RETRY_MAYFAIL.
2385                                  */
2386                                 gfp |= __GFP_RETRY_MAYFAIL;
2387                         }
2388                 } while (1);
2389
2390                 if (!i ||
2391                     sg->length >= max_segment ||
2392                     page_to_pfn(page) != last_pfn + 1) {
2393                         if (i)
2394                                 sg = sg_next(sg);
2395                         st->nents++;
2396                         sg_set_page(sg, page, PAGE_SIZE, 0);
2397                 } else {
2398                         sg->length += PAGE_SIZE;
2399                 }
2400                 last_pfn = page_to_pfn(page);
2401
2402                 /* Check that the i965g/gm workaround works. */
2403                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2404         }
2405         if (sg) /* loop terminated early; short sg table */
2406                 sg_mark_end(sg);
2407
2408         /* Trim unused sg entries to avoid wasting memory. */
2409         i915_sg_trim(st);
2410
2411         ret = i915_gem_gtt_prepare_pages(obj, st);
2412         if (ret) {
2413                 /* DMA remapping failed? One possible cause is that
2414                  * it could not reserve enough large entries, asking
2415                  * for PAGE_SIZE chunks instead may be helpful.
2416                  */
2417                 if (max_segment > PAGE_SIZE) {
2418                         for_each_sgt_page(page, sgt_iter, st)
2419                                 put_page(page);
2420                         sg_free_table(st);
2421
2422                         max_segment = PAGE_SIZE;
2423                         goto rebuild_st;
2424                 } else {
2425                         dev_warn(&dev_priv->drm.pdev->dev,
2426                                  "Failed to DMA remap %lu pages\n",
2427                                  page_count);
2428                         goto err_pages;
2429                 }
2430         }
2431
2432         if (i915_gem_object_needs_bit17_swizzle(obj))
2433                 i915_gem_object_do_bit_17_swizzle(obj, st);
2434
2435         return st;
2436
2437 err_sg:
2438         sg_mark_end(sg);
2439 err_pages:
2440         for_each_sgt_page(page, sgt_iter, st)
2441                 put_page(page);
2442         sg_free_table(st);
2443         kfree(st);
2444
2445         /* shmemfs first checks if there is enough memory to allocate the page
2446          * and reports ENOSPC should there be insufficient, along with the usual
2447          * ENOMEM for a genuine allocation failure.
2448          *
2449          * We use ENOSPC in our driver to mean that we have run out of aperture
2450          * space and so want to translate the error from shmemfs back to our
2451          * usual understanding of ENOMEM.
2452          */
2453         if (ret == -ENOSPC)
2454                 ret = -ENOMEM;
2455
2456         return ERR_PTR(ret);
2457 }
2458
2459 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2460                                  struct sg_table *pages)
2461 {
2462         lockdep_assert_held(&obj->mm.lock);
2463
2464         obj->mm.get_page.sg_pos = pages->sgl;
2465         obj->mm.get_page.sg_idx = 0;
2466
2467         obj->mm.pages = pages;
2468
2469         if (i915_gem_object_is_tiled(obj) &&
2470             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2471                 GEM_BUG_ON(obj->mm.quirked);
2472                 __i915_gem_object_pin_pages(obj);
2473                 obj->mm.quirked = true;
2474         }
2475 }
2476
2477 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2478 {
2479         struct sg_table *pages;
2480
2481         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2482
2483         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2484                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2485                 return -EFAULT;
2486         }
2487
2488         pages = obj->ops->get_pages(obj);
2489         if (unlikely(IS_ERR(pages)))
2490                 return PTR_ERR(pages);
2491
2492         __i915_gem_object_set_pages(obj, pages);
2493         return 0;
2494 }
2495
2496 /* Ensure that the associated pages are gathered from the backing storage
2497  * and pinned into our object. i915_gem_object_pin_pages() may be called
2498  * multiple times before they are released by a single call to
2499  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2500  * either as a result of memory pressure (reaping pages under the shrinker)
2501  * or as the object is itself released.
2502  */
2503 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2504 {
2505         int err;
2506
2507         err = mutex_lock_interruptible(&obj->mm.lock);
2508         if (err)
2509                 return err;
2510
2511         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2512                 err = ____i915_gem_object_get_pages(obj);
2513                 if (err)
2514                         goto unlock;
2515
2516                 smp_mb__before_atomic();
2517         }
2518         atomic_inc(&obj->mm.pages_pin_count);
2519
2520 unlock:
2521         mutex_unlock(&obj->mm.lock);
2522         return err;
2523 }
2524
2525 /* The 'mapping' part of i915_gem_object_pin_map() below */
2526 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2527                                  enum i915_map_type type)
2528 {
2529         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2530         struct sg_table *sgt = obj->mm.pages;
2531         struct sgt_iter sgt_iter;
2532         struct page *page;
2533         struct page *stack_pages[32];
2534         struct page **pages = stack_pages;
2535         unsigned long i = 0;
2536         pgprot_t pgprot;
2537         void *addr;
2538
2539         /* A single page can always be kmapped */
2540         if (n_pages == 1 && type == I915_MAP_WB)
2541                 return kmap(sg_page(sgt->sgl));
2542
2543         if (n_pages > ARRAY_SIZE(stack_pages)) {
2544                 /* Too big for stack -- allocate temporary array instead */
2545                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2546                 if (!pages)
2547                         return NULL;
2548         }
2549
2550         for_each_sgt_page(page, sgt_iter, sgt)
2551                 pages[i++] = page;
2552
2553         /* Check that we have the expected number of pages */
2554         GEM_BUG_ON(i != n_pages);
2555
2556         switch (type) {
2557         default:
2558                 MISSING_CASE(type);
2559                 /* fallthrough to use PAGE_KERNEL anyway */
2560         case I915_MAP_WB:
2561                 pgprot = PAGE_KERNEL;
2562                 break;
2563         case I915_MAP_WC:
2564                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2565                 break;
2566         }
2567         addr = vmap(pages, n_pages, 0, pgprot);
2568
2569         if (pages != stack_pages)
2570                 kvfree(pages);
2571
2572         return addr;
2573 }
2574
2575 /* get, pin, and map the pages of the object into kernel space */
2576 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2577                               enum i915_map_type type)
2578 {
2579         enum i915_map_type has_type;
2580         bool pinned;
2581         void *ptr;
2582         int ret;
2583
2584         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2585
2586         ret = mutex_lock_interruptible(&obj->mm.lock);
2587         if (ret)
2588                 return ERR_PTR(ret);
2589
2590         pinned = !(type & I915_MAP_OVERRIDE);
2591         type &= ~I915_MAP_OVERRIDE;
2592
2593         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2594                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2595                         ret = ____i915_gem_object_get_pages(obj);
2596                         if (ret)
2597                                 goto err_unlock;
2598
2599                         smp_mb__before_atomic();
2600                 }
2601                 atomic_inc(&obj->mm.pages_pin_count);
2602                 pinned = false;
2603         }
2604         GEM_BUG_ON(!obj->mm.pages);
2605
2606         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2607         if (ptr && has_type != type) {
2608                 if (pinned) {
2609                         ret = -EBUSY;
2610                         goto err_unpin;
2611                 }
2612
2613                 if (is_vmalloc_addr(ptr))
2614                         vunmap(ptr);
2615                 else
2616                         kunmap(kmap_to_page(ptr));
2617
2618                 ptr = obj->mm.mapping = NULL;
2619         }
2620
2621         if (!ptr) {
2622                 ptr = i915_gem_object_map(obj, type);
2623                 if (!ptr) {
2624                         ret = -ENOMEM;
2625                         goto err_unpin;
2626                 }
2627
2628                 obj->mm.mapping = page_pack_bits(ptr, type);
2629         }
2630
2631 out_unlock:
2632         mutex_unlock(&obj->mm.lock);
2633         return ptr;
2634
2635 err_unpin:
2636         atomic_dec(&obj->mm.pages_pin_count);
2637 err_unlock:
2638         ptr = ERR_PTR(ret);
2639         goto out_unlock;
2640 }
2641
2642 static int
2643 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2644                            const struct drm_i915_gem_pwrite *arg)
2645 {
2646         struct address_space *mapping = obj->base.filp->f_mapping;
2647         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2648         u64 remain, offset;
2649         unsigned int pg;
2650
2651         /* Before we instantiate/pin the backing store for our use, we
2652          * can prepopulate the shmemfs filp efficiently using a write into
2653          * the pagecache. We avoid the penalty of instantiating all the
2654          * pages, important if the user is just writing to a few and never
2655          * uses the object on the GPU, and using a direct write into shmemfs
2656          * allows it to avoid the cost of retrieving a page (either swapin
2657          * or clearing-before-use) before it is overwritten.
2658          */
2659         if (READ_ONCE(obj->mm.pages))
2660                 return -ENODEV;
2661
2662         if (obj->mm.madv != I915_MADV_WILLNEED)
2663                 return -EFAULT;
2664
2665         /* Before the pages are instantiated the object is treated as being
2666          * in the CPU domain. The pages will be clflushed as required before
2667          * use, and we can freely write into the pages directly. If userspace
2668          * races pwrite with any other operation; corruption will ensue -
2669          * that is userspace's prerogative!
2670          */
2671
2672         remain = arg->size;
2673         offset = arg->offset;
2674         pg = offset_in_page(offset);
2675
2676         do {
2677                 unsigned int len, unwritten;
2678                 struct page *page;
2679                 void *data, *vaddr;
2680                 int err;
2681
2682                 len = PAGE_SIZE - pg;
2683                 if (len > remain)
2684                         len = remain;
2685
2686                 err = pagecache_write_begin(obj->base.filp, mapping,
2687                                             offset, len, 0,
2688                                             &page, &data);
2689                 if (err < 0)
2690                         return err;
2691
2692                 vaddr = kmap(page);
2693                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2694                 kunmap(page);
2695
2696                 err = pagecache_write_end(obj->base.filp, mapping,
2697                                           offset, len, len - unwritten,
2698                                           page, data);
2699                 if (err < 0)
2700                         return err;
2701
2702                 if (unwritten)
2703                         return -EFAULT;
2704
2705                 remain -= len;
2706                 user_data += len;
2707                 offset += len;
2708                 pg = 0;
2709         } while (remain);
2710
2711         return 0;
2712 }
2713
2714 static bool ban_context(const struct i915_gem_context *ctx,
2715                         unsigned int score)
2716 {
2717         return (i915_gem_context_is_bannable(ctx) &&
2718                 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2719 }
2720
2721 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2722 {
2723         unsigned int score;
2724         bool banned;
2725
2726         atomic_inc(&ctx->guilty_count);
2727
2728         score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2729         banned = ban_context(ctx, score);
2730         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2731                          ctx->name, score, yesno(banned));
2732         if (!banned)
2733                 return;
2734
2735         i915_gem_context_set_banned(ctx);
2736         if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2737                 atomic_inc(&ctx->file_priv->context_bans);
2738                 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2739                                  ctx->name, atomic_read(&ctx->file_priv->context_bans));
2740         }
2741 }
2742
2743 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2744 {
2745         atomic_inc(&ctx->active_count);
2746 }
2747
2748 struct drm_i915_gem_request *
2749 i915_gem_find_active_request(struct intel_engine_cs *engine)
2750 {
2751         struct drm_i915_gem_request *request, *active = NULL;
2752         unsigned long flags;
2753
2754         /* We are called by the error capture and reset at a random
2755          * point in time. In particular, note that neither is crucially
2756          * ordered with an interrupt. After a hang, the GPU is dead and we
2757          * assume that no more writes can happen (we waited long enough for
2758          * all writes that were in transaction to be flushed) - adding an
2759          * extra delay for a recent interrupt is pointless. Hence, we do
2760          * not need an engine->irq_seqno_barrier() before the seqno reads.
2761          */
2762         spin_lock_irqsave(&engine->timeline->lock, flags);
2763         list_for_each_entry(request, &engine->timeline->requests, link) {
2764                 if (__i915_gem_request_completed(request,
2765                                                  request->global_seqno))
2766                         continue;
2767
2768                 GEM_BUG_ON(request->engine != engine);
2769                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2770                                     &request->fence.flags));
2771
2772                 active = request;
2773                 break;
2774         }
2775         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2776
2777         return active;
2778 }
2779
2780 static bool engine_stalled(struct intel_engine_cs *engine)
2781 {
2782         if (!engine->hangcheck.stalled)
2783                 return false;
2784
2785         /* Check for possible seqno movement after hang declaration */
2786         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2787                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2788                 return false;
2789         }
2790
2791         return true;
2792 }
2793
2794 /*
2795  * Ensure irq handler finishes, and not run again.
2796  * Also return the active request so that we only search for it once.
2797  */
2798 struct drm_i915_gem_request *
2799 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2800 {
2801         struct drm_i915_gem_request *request = NULL;
2802
2803         /* Prevent the signaler thread from updating the request
2804          * state (by calling dma_fence_signal) as we are processing
2805          * the reset. The write from the GPU of the seqno is
2806          * asynchronous and the signaler thread may see a different
2807          * value to us and declare the request complete, even though
2808          * the reset routine have picked that request as the active
2809          * (incomplete) request. This conflict is not handled
2810          * gracefully!
2811          */
2812         kthread_park(engine->breadcrumbs.signaler);
2813
2814         /* Prevent request submission to the hardware until we have
2815          * completed the reset in i915_gem_reset_finish(). If a request
2816          * is completed by one engine, it may then queue a request
2817          * to a second via its engine->irq_tasklet *just* as we are
2818          * calling engine->init_hw() and also writing the ELSP.
2819          * Turning off the engine->irq_tasklet until the reset is over
2820          * prevents the race.
2821          */
2822         tasklet_kill(&engine->irq_tasklet);
2823         tasklet_disable(&engine->irq_tasklet);
2824
2825         if (engine->irq_seqno_barrier)
2826                 engine->irq_seqno_barrier(engine);
2827
2828         request = i915_gem_find_active_request(engine);
2829         if (request && request->fence.error == -EIO)
2830                 request = ERR_PTR(-EIO); /* Previous reset failed! */
2831
2832         return request;
2833 }
2834
2835 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2836 {
2837         struct intel_engine_cs *engine;
2838         struct drm_i915_gem_request *request;
2839         enum intel_engine_id id;
2840         int err = 0;
2841
2842         for_each_engine(engine, dev_priv, id) {
2843                 request = i915_gem_reset_prepare_engine(engine);
2844                 if (IS_ERR(request)) {
2845                         err = PTR_ERR(request);
2846                         continue;
2847                 }
2848
2849                 engine->hangcheck.active_request = request;
2850         }
2851
2852         i915_gem_revoke_fences(dev_priv);
2853
2854         return err;
2855 }
2856
2857 static void skip_request(struct drm_i915_gem_request *request)
2858 {
2859         void *vaddr = request->ring->vaddr;
2860         u32 head;
2861
2862         /* As this request likely depends on state from the lost
2863          * context, clear out all the user operations leaving the
2864          * breadcrumb at the end (so we get the fence notifications).
2865          */
2866         head = request->head;
2867         if (request->postfix < head) {
2868                 memset(vaddr + head, 0, request->ring->size - head);
2869                 head = 0;
2870         }
2871         memset(vaddr + head, 0, request->postfix - head);
2872
2873         dma_fence_set_error(&request->fence, -EIO);
2874 }
2875
2876 static void engine_skip_context(struct drm_i915_gem_request *request)
2877 {
2878         struct intel_engine_cs *engine = request->engine;
2879         struct i915_gem_context *hung_ctx = request->ctx;
2880         struct intel_timeline *timeline;
2881         unsigned long flags;
2882
2883         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2884
2885         spin_lock_irqsave(&engine->timeline->lock, flags);
2886         spin_lock(&timeline->lock);
2887
2888         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2889                 if (request->ctx == hung_ctx)
2890                         skip_request(request);
2891
2892         list_for_each_entry(request, &timeline->requests, link)
2893                 skip_request(request);
2894
2895         spin_unlock(&timeline->lock);
2896         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2897 }
2898
2899 /* Returns the request if it was guilty of the hang */
2900 static struct drm_i915_gem_request *
2901 i915_gem_reset_request(struct intel_engine_cs *engine,
2902                        struct drm_i915_gem_request *request)
2903 {
2904         /* The guilty request will get skipped on a hung engine.
2905          *
2906          * Users of client default contexts do not rely on logical
2907          * state preserved between batches so it is safe to execute
2908          * queued requests following the hang. Non default contexts
2909          * rely on preserved state, so skipping a batch loses the
2910          * evolution of the state and it needs to be considered corrupted.
2911          * Executing more queued batches on top of corrupted state is
2912          * risky. But we take the risk by trying to advance through
2913          * the queued requests in order to make the client behaviour
2914          * more predictable around resets, by not throwing away random
2915          * amount of batches it has prepared for execution. Sophisticated
2916          * clients can use gem_reset_stats_ioctl and dma fence status
2917          * (exported via sync_file info ioctl on explicit fences) to observe
2918          * when it loses the context state and should rebuild accordingly.
2919          *
2920          * The context ban, and ultimately the client ban, mechanism are safety
2921          * valves if client submission ends up resulting in nothing more than
2922          * subsequent hangs.
2923          */
2924
2925         if (engine_stalled(engine)) {
2926                 i915_gem_context_mark_guilty(request->ctx);
2927                 skip_request(request);
2928
2929                 /* If this context is now banned, skip all pending requests. */
2930                 if (i915_gem_context_is_banned(request->ctx))
2931                         engine_skip_context(request);
2932         } else {
2933                 /*
2934                  * Since this is not the hung engine, it may have advanced
2935                  * since the hang declaration. Double check by refinding
2936                  * the active request at the time of the reset.
2937                  */
2938                 request = i915_gem_find_active_request(engine);
2939                 if (request) {
2940                         i915_gem_context_mark_innocent(request->ctx);
2941                         dma_fence_set_error(&request->fence, -EAGAIN);
2942
2943                         /* Rewind the engine to replay the incomplete rq */
2944                         spin_lock_irq(&engine->timeline->lock);
2945                         request = list_prev_entry(request, link);
2946                         if (&request->link == &engine->timeline->requests)
2947                                 request = NULL;
2948                         spin_unlock_irq(&engine->timeline->lock);
2949                 }
2950         }
2951
2952         return request;
2953 }
2954
2955 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2956                            struct drm_i915_gem_request *request)
2957 {
2958         engine->irq_posted = 0;
2959
2960         if (request)
2961                 request = i915_gem_reset_request(engine, request);
2962
2963         if (request) {
2964                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2965                                  engine->name, request->global_seqno);
2966         }
2967
2968         /* Setup the CS to resume from the breadcrumb of the hung request */
2969         engine->reset_hw(engine, request);
2970 }
2971
2972 void i915_gem_reset(struct drm_i915_private *dev_priv)
2973 {
2974         struct intel_engine_cs *engine;
2975         enum intel_engine_id id;
2976
2977         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2978
2979         i915_gem_retire_requests(dev_priv);
2980
2981         for_each_engine(engine, dev_priv, id) {
2982                 struct i915_gem_context *ctx;
2983
2984                 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2985                 ctx = fetch_and_zero(&engine->last_retired_context);
2986                 if (ctx)
2987                         engine->context_unpin(engine, ctx);
2988         }
2989
2990         i915_gem_restore_fences(dev_priv);
2991
2992         if (dev_priv->gt.awake) {
2993                 intel_sanitize_gt_powersave(dev_priv);
2994                 intel_enable_gt_powersave(dev_priv);
2995                 if (INTEL_GEN(dev_priv) >= 6)
2996                         gen6_rps_busy(dev_priv);
2997         }
2998 }
2999
3000 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3001 {
3002         tasklet_enable(&engine->irq_tasklet);
3003         kthread_unpark(engine->breadcrumbs.signaler);
3004 }
3005
3006 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3007 {
3008         struct intel_engine_cs *engine;
3009         enum intel_engine_id id;
3010
3011         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3012
3013         for_each_engine(engine, dev_priv, id) {
3014                 engine->hangcheck.active_request = NULL;
3015                 i915_gem_reset_finish_engine(engine);
3016         }
3017 }
3018
3019 static void nop_submit_request(struct drm_i915_gem_request *request)
3020 {
3021         unsigned long flags;
3022
3023         GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3024         dma_fence_set_error(&request->fence, -EIO);
3025
3026         spin_lock_irqsave(&request->engine->timeline->lock, flags);
3027         __i915_gem_request_submit(request);
3028         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3029         spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3030 }
3031
3032 static void engine_set_wedged(struct intel_engine_cs *engine)
3033 {
3034         struct drm_i915_gem_request *request;
3035         unsigned long flags;
3036
3037         /* We need to be sure that no thread is running the old callback as
3038          * we install the nop handler (otherwise we would submit a request
3039          * to hardware that will never complete). In order to prevent this
3040          * race, we wait until the machine is idle before making the swap
3041          * (using stop_machine()).
3042          */
3043         engine->submit_request = nop_submit_request;
3044
3045         /* Mark all executing requests as skipped */
3046         spin_lock_irqsave(&engine->timeline->lock, flags);
3047         list_for_each_entry(request, &engine->timeline->requests, link)
3048                 if (!i915_gem_request_completed(request))
3049                         dma_fence_set_error(&request->fence, -EIO);
3050         spin_unlock_irqrestore(&engine->timeline->lock, flags);
3051
3052         /*
3053          * Clear the execlists queue up before freeing the requests, as those
3054          * are the ones that keep the context and ringbuffer backing objects
3055          * pinned in place.
3056          */
3057
3058         if (i915.enable_execlists) {
3059                 struct execlist_port *port = engine->execlist_port;
3060                 unsigned long flags;
3061                 unsigned int n;
3062
3063                 spin_lock_irqsave(&engine->timeline->lock, flags);
3064
3065                 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3066                         i915_gem_request_put(port_request(&port[n]));
3067                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3068                 engine->execlist_queue = RB_ROOT;
3069                 engine->execlist_first = NULL;
3070
3071                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3072
3073                 /* The port is checked prior to scheduling a tasklet, but
3074                  * just in case we have suspended the tasklet to do the
3075                  * wedging make sure that when it wakes, it decides there
3076                  * is no work to do by clearing the irq_posted bit.
3077                  */
3078                 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3079         }
3080
3081         /* Mark all pending requests as complete so that any concurrent
3082          * (lockless) lookup doesn't try and wait upon the request as we
3083          * reset it.
3084          */
3085         intel_engine_init_global_seqno(engine,
3086                                        intel_engine_last_submit(engine));
3087 }
3088
3089 static int __i915_gem_set_wedged_BKL(void *data)
3090 {
3091         struct drm_i915_private *i915 = data;
3092         struct intel_engine_cs *engine;
3093         enum intel_engine_id id;
3094
3095         for_each_engine(engine, i915, id)
3096                 engine_set_wedged(engine);
3097
3098         set_bit(I915_WEDGED, &i915->gpu_error.flags);
3099         wake_up_all(&i915->gpu_error.reset_queue);
3100
3101         return 0;
3102 }
3103
3104 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3105 {
3106         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3107 }
3108
3109 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3110 {
3111         struct i915_gem_timeline *tl;
3112         int i;
3113
3114         lockdep_assert_held(&i915->drm.struct_mutex);
3115         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3116                 return true;
3117
3118         /* Before unwedging, make sure that all pending operations
3119          * are flushed and errored out - we may have requests waiting upon
3120          * third party fences. We marked all inflight requests as EIO, and
3121          * every execbuf since returned EIO, for consistency we want all
3122          * the currently pending requests to also be marked as EIO, which
3123          * is done inside our nop_submit_request - and so we must wait.
3124          *
3125          * No more can be submitted until we reset the wedged bit.
3126          */
3127         list_for_each_entry(tl, &i915->gt.timelines, link) {
3128                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3129                         struct drm_i915_gem_request *rq;
3130
3131                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3132                                                   &i915->drm.struct_mutex);
3133                         if (!rq)
3134                                 continue;
3135
3136                         /* We can't use our normal waiter as we want to
3137                          * avoid recursively trying to handle the current
3138                          * reset. The basic dma_fence_default_wait() installs
3139                          * a callback for dma_fence_signal(), which is
3140                          * triggered by our nop handler (indirectly, the
3141                          * callback enables the signaler thread which is
3142                          * woken by the nop_submit_request() advancing the seqno
3143                          * and when the seqno passes the fence, the signaler
3144                          * then signals the fence waking us up).
3145                          */
3146                         if (dma_fence_default_wait(&rq->fence, true,
3147                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3148                                 return false;
3149                 }
3150         }
3151
3152         /* Undo nop_submit_request. We prevent all new i915 requests from
3153          * being queued (by disallowing execbuf whilst wedged) so having
3154          * waited for all active requests above, we know the system is idle
3155          * and do not have to worry about a thread being inside
3156          * engine->submit_request() as we swap over. So unlike installing
3157          * the nop_submit_request on reset, we can do this from normal
3158          * context and do not require stop_machine().
3159          */
3160         intel_engines_reset_default_submission(i915);
3161         i915_gem_contexts_lost(i915);
3162
3163         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3164         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3165
3166         return true;
3167 }
3168
3169 static void
3170 i915_gem_retire_work_handler(struct work_struct *work)
3171 {
3172         struct drm_i915_private *dev_priv =
3173                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3174         struct drm_device *dev = &dev_priv->drm;
3175
3176         /* Come back later if the device is busy... */
3177         if (mutex_trylock(&dev->struct_mutex)) {
3178                 i915_gem_retire_requests(dev_priv);
3179                 mutex_unlock(&dev->struct_mutex);
3180         }
3181
3182         /* Keep the retire handler running until we are finally idle.
3183          * We do not need to do this test under locking as in the worst-case
3184          * we queue the retire worker once too often.
3185          */
3186         if (READ_ONCE(dev_priv->gt.awake)) {
3187                 i915_queue_hangcheck(dev_priv);
3188                 queue_delayed_work(dev_priv->wq,
3189                                    &dev_priv->gt.retire_work,
3190                                    round_jiffies_up_relative(HZ));
3191         }
3192 }
3193
3194 static void
3195 i915_gem_idle_work_handler(struct work_struct *work)
3196 {
3197         struct drm_i915_private *dev_priv =
3198                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3199         struct drm_device *dev = &dev_priv->drm;
3200         bool rearm_hangcheck;
3201
3202         if (!READ_ONCE(dev_priv->gt.awake))
3203                 return;
3204
3205         /*
3206          * Wait for last execlists context complete, but bail out in case a
3207          * new request is submitted.
3208          */
3209         wait_for(intel_engines_are_idle(dev_priv), 10);
3210         if (READ_ONCE(dev_priv->gt.active_requests))
3211                 return;
3212
3213         rearm_hangcheck =
3214                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3215
3216         if (!mutex_trylock(&dev->struct_mutex)) {
3217                 /* Currently busy, come back later */
3218                 mod_delayed_work(dev_priv->wq,
3219                                  &dev_priv->gt.idle_work,
3220                                  msecs_to_jiffies(50));
3221                 goto out_rearm;
3222         }
3223
3224         /*
3225          * New request retired after this work handler started, extend active
3226          * period until next instance of the work.
3227          */
3228         if (work_pending(work))
3229                 goto out_unlock;
3230
3231         if (dev_priv->gt.active_requests)
3232                 goto out_unlock;
3233
3234         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3235                 DRM_ERROR("Timeout waiting for engines to idle\n");
3236
3237         intel_engines_mark_idle(dev_priv);
3238         i915_gem_timelines_mark_idle(dev_priv);
3239
3240         GEM_BUG_ON(!dev_priv->gt.awake);
3241         dev_priv->gt.awake = false;
3242         rearm_hangcheck = false;
3243
3244         if (INTEL_GEN(dev_priv) >= 6)
3245                 gen6_rps_idle(dev_priv);
3246         intel_runtime_pm_put(dev_priv);
3247 out_unlock:
3248         mutex_unlock(&dev->struct_mutex);
3249
3250 out_rearm:
3251         if (rearm_hangcheck) {
3252                 GEM_BUG_ON(!dev_priv->gt.awake);
3253                 i915_queue_hangcheck(dev_priv);
3254         }
3255 }
3256
3257 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3258 {
3259         struct drm_i915_private *i915 = to_i915(gem->dev);
3260         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3261         struct drm_i915_file_private *fpriv = file->driver_priv;
3262         struct i915_lut_handle *lut, *ln;
3263
3264         mutex_lock(&i915->drm.struct_mutex);
3265
3266         list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3267                 struct i915_gem_context *ctx = lut->ctx;
3268                 struct i915_vma *vma;
3269
3270                 if (ctx->file_priv != fpriv)
3271                         continue;
3272
3273                 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3274
3275                 GEM_BUG_ON(vma->obj != obj);
3276
3277                 /* We allow the process to have multiple handles to the same
3278                  * vma, in the same fd namespace, by virtue of flink/open.
3279                  */
3280                 GEM_BUG_ON(!vma->open_count);
3281                 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3282                         i915_vma_close(vma);
3283
3284                 list_del(&lut->obj_link);
3285                 list_del(&lut->ctx_link);
3286
3287                 kmem_cache_free(i915->luts, lut);
3288                 __i915_gem_object_release_unless_active(obj);
3289         }
3290
3291         mutex_unlock(&i915->drm.struct_mutex);
3292 }
3293
3294 static unsigned long to_wait_timeout(s64 timeout_ns)
3295 {
3296         if (timeout_ns < 0)
3297                 return MAX_SCHEDULE_TIMEOUT;
3298
3299         if (timeout_ns == 0)
3300                 return 0;
3301
3302         return nsecs_to_jiffies_timeout(timeout_ns);
3303 }
3304
3305 /**
3306  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3307  * @dev: drm device pointer
3308  * @data: ioctl data blob
3309  * @file: drm file pointer
3310  *
3311  * Returns 0 if successful, else an error is returned with the remaining time in
3312  * the timeout parameter.
3313  *  -ETIME: object is still busy after timeout
3314  *  -ERESTARTSYS: signal interrupted the wait
3315  *  -ENONENT: object doesn't exist
3316  * Also possible, but rare:
3317  *  -EAGAIN: incomplete, restart syscall
3318  *  -ENOMEM: damn
3319  *  -ENODEV: Internal IRQ fail
3320  *  -E?: The add request failed
3321  *
3322  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3323  * non-zero timeout parameter the wait ioctl will wait for the given number of
3324  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3325  * without holding struct_mutex the object may become re-busied before this
3326  * function completes. A similar but shorter * race condition exists in the busy
3327  * ioctl
3328  */
3329 int
3330 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3331 {
3332         struct drm_i915_gem_wait *args = data;
3333         struct drm_i915_gem_object *obj;
3334         ktime_t start;
3335         long ret;
3336
3337         if (args->flags != 0)
3338                 return -EINVAL;
3339
3340         obj = i915_gem_object_lookup(file, args->bo_handle);
3341         if (!obj)
3342                 return -ENOENT;
3343
3344         start = ktime_get();
3345
3346         ret = i915_gem_object_wait(obj,
3347                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3348                                    to_wait_timeout(args->timeout_ns),
3349                                    to_rps_client(file));
3350
3351         if (args->timeout_ns > 0) {
3352                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3353                 if (args->timeout_ns < 0)
3354                         args->timeout_ns = 0;
3355
3356                 /*
3357                  * Apparently ktime isn't accurate enough and occasionally has a
3358                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3359                  * things up to make the test happy. We allow up to 1 jiffy.
3360                  *
3361                  * This is a regression from the timespec->ktime conversion.
3362                  */
3363                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3364                         args->timeout_ns = 0;
3365
3366                 /* Asked to wait beyond the jiffie/scheduler precision? */
3367                 if (ret == -ETIME && args->timeout_ns)
3368                         ret = -EAGAIN;
3369         }
3370
3371         i915_gem_object_put(obj);
3372         return ret;
3373 }
3374
3375 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3376 {
3377         int ret, i;
3378
3379         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3380                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3381                 if (ret)
3382                         return ret;
3383         }
3384
3385         return 0;
3386 }
3387
3388 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3389 {
3390         return wait_for(intel_engine_is_idle(engine), timeout_ms);
3391 }
3392
3393 static int wait_for_engines(struct drm_i915_private *i915)
3394 {
3395         struct intel_engine_cs *engine;
3396         enum intel_engine_id id;
3397
3398         for_each_engine(engine, i915, id) {
3399                 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3400                         i915_gem_set_wedged(i915);
3401                         return -EIO;
3402                 }
3403
3404                 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3405                            intel_engine_last_submit(engine));
3406         }
3407
3408         return 0;
3409 }
3410
3411 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3412 {
3413         int ret;
3414
3415         /* If the device is asleep, we have no requests outstanding */
3416         if (!READ_ONCE(i915->gt.awake))
3417                 return 0;
3418
3419         if (flags & I915_WAIT_LOCKED) {
3420                 struct i915_gem_timeline *tl;
3421
3422                 lockdep_assert_held(&i915->drm.struct_mutex);
3423
3424                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3425                         ret = wait_for_timeline(tl, flags);
3426                         if (ret)
3427                                 return ret;
3428                 }
3429
3430                 i915_gem_retire_requests(i915);
3431                 GEM_BUG_ON(i915->gt.active_requests);
3432
3433                 ret = wait_for_engines(i915);
3434         } else {
3435                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3436         }
3437
3438         return ret;
3439 }
3440
3441 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3442 {
3443         /*
3444          * We manually flush the CPU domain so that we can override and
3445          * force the flush for the display, and perform it asyncrhonously.
3446          */
3447         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3448         if (obj->cache_dirty)
3449                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3450         obj->base.write_domain = 0;
3451 }
3452
3453 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3454 {
3455         if (!READ_ONCE(obj->pin_display))
3456                 return;
3457
3458         mutex_lock(&obj->base.dev->struct_mutex);
3459         __i915_gem_object_flush_for_display(obj);
3460         mutex_unlock(&obj->base.dev->struct_mutex);
3461 }
3462
3463 /**
3464  * Moves a single object to the WC read, and possibly write domain.
3465  * @obj: object to act on
3466  * @write: ask for write access or read only
3467  *
3468  * This function returns when the move is complete, including waiting on
3469  * flushes to occur.
3470  */
3471 int
3472 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3473 {
3474         int ret;
3475
3476         lockdep_assert_held(&obj->base.dev->struct_mutex);
3477
3478         ret = i915_gem_object_wait(obj,
3479                                    I915_WAIT_INTERRUPTIBLE |
3480                                    I915_WAIT_LOCKED |
3481                                    (write ? I915_WAIT_ALL : 0),
3482                                    MAX_SCHEDULE_TIMEOUT,
3483                                    NULL);
3484         if (ret)
3485                 return ret;
3486
3487         if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3488                 return 0;
3489
3490         /* Flush and acquire obj->pages so that we are coherent through
3491          * direct access in memory with previous cached writes through
3492          * shmemfs and that our cache domain tracking remains valid.
3493          * For example, if the obj->filp was moved to swap without us
3494          * being notified and releasing the pages, we would mistakenly
3495          * continue to assume that the obj remained out of the CPU cached
3496          * domain.
3497          */
3498         ret = i915_gem_object_pin_pages(obj);
3499         if (ret)
3500                 return ret;
3501
3502         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3503
3504         /* Serialise direct access to this object with the barriers for
3505          * coherent writes from the GPU, by effectively invalidating the
3506          * WC domain upon first access.
3507          */
3508         if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3509                 mb();
3510
3511         /* It should now be out of any other write domains, and we can update
3512          * the domain values for our changes.
3513          */
3514         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3515         obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3516         if (write) {
3517                 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3518                 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3519                 obj->mm.dirty = true;
3520         }
3521
3522         i915_gem_object_unpin_pages(obj);
3523         return 0;
3524 }
3525
3526 /**
3527  * Moves a single object to the GTT read, and possibly write domain.
3528  * @obj: object to act on
3529  * @write: ask for write access or read only
3530  *
3531  * This function returns when the move is complete, including waiting on
3532  * flushes to occur.
3533  */
3534 int
3535 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3536 {
3537         int ret;
3538
3539         lockdep_assert_held(&obj->base.dev->struct_mutex);
3540
3541         ret = i915_gem_object_wait(obj,
3542                                    I915_WAIT_INTERRUPTIBLE |
3543                                    I915_WAIT_LOCKED |
3544                                    (write ? I915_WAIT_ALL : 0),
3545                                    MAX_SCHEDULE_TIMEOUT,
3546                                    NULL);
3547         if (ret)
3548                 return ret;
3549
3550         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3551                 return 0;
3552
3553         /* Flush and acquire obj->pages so that we are coherent through
3554          * direct access in memory with previous cached writes through
3555          * shmemfs and that our cache domain tracking remains valid.
3556          * For example, if the obj->filp was moved to swap without us
3557          * being notified and releasing the pages, we would mistakenly
3558          * continue to assume that the obj remained out of the CPU cached
3559          * domain.
3560          */
3561         ret = i915_gem_object_pin_pages(obj);
3562         if (ret)
3563                 return ret;
3564
3565         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3566
3567         /* Serialise direct access to this object with the barriers for
3568          * coherent writes from the GPU, by effectively invalidating the
3569          * GTT domain upon first access.
3570          */
3571         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3572                 mb();
3573
3574         /* It should now be out of any other write domains, and we can update
3575          * the domain values for our changes.
3576          */
3577         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3578         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3579         if (write) {
3580                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3581                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3582                 obj->mm.dirty = true;
3583         }
3584
3585         i915_gem_object_unpin_pages(obj);
3586         return 0;
3587 }
3588
3589 /**
3590  * Changes the cache-level of an object across all VMA.
3591  * @obj: object to act on
3592  * @cache_level: new cache level to set for the object
3593  *
3594  * After this function returns, the object will be in the new cache-level
3595  * across all GTT and the contents of the backing storage will be coherent,
3596  * with respect to the new cache-level. In order to keep the backing storage
3597  * coherent for all users, we only allow a single cache level to be set
3598  * globally on the object and prevent it from being changed whilst the
3599  * hardware is reading from the object. That is if the object is currently
3600  * on the scanout it will be set to uncached (or equivalent display
3601  * cache coherency) and all non-MOCS GPU access will also be uncached so
3602  * that all direct access to the scanout remains coherent.
3603  */
3604 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3605                                     enum i915_cache_level cache_level)
3606 {
3607         struct i915_vma *vma;
3608         int ret;
3609
3610         lockdep_assert_held(&obj->base.dev->struct_mutex);
3611
3612         if (obj->cache_level == cache_level)
3613                 return 0;
3614
3615         /* Inspect the list of currently bound VMA and unbind any that would
3616          * be invalid given the new cache-level. This is principally to
3617          * catch the issue of the CS prefetch crossing page boundaries and
3618          * reading an invalid PTE on older architectures.
3619          */
3620 restart:
3621         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3622                 if (!drm_mm_node_allocated(&vma->node))
3623                         continue;
3624
3625                 if (i915_vma_is_pinned(vma)) {
3626                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3627                         return -EBUSY;
3628                 }
3629
3630                 if (i915_gem_valid_gtt_space(vma, cache_level))
3631                         continue;
3632
3633                 ret = i915_vma_unbind(vma);
3634                 if (ret)
3635                         return ret;
3636
3637                 /* As unbinding may affect other elements in the
3638                  * obj->vma_list (due to side-effects from retiring
3639                  * an active vma), play safe and restart the iterator.
3640                  */
3641                 goto restart;
3642         }
3643
3644         /* We can reuse the existing drm_mm nodes but need to change the
3645          * cache-level on the PTE. We could simply unbind them all and
3646          * rebind with the correct cache-level on next use. However since
3647          * we already have a valid slot, dma mapping, pages etc, we may as
3648          * rewrite the PTE in the belief that doing so tramples upon less
3649          * state and so involves less work.
3650          */
3651         if (obj->bind_count) {
3652                 /* Before we change the PTE, the GPU must not be accessing it.
3653                  * If we wait upon the object, we know that all the bound
3654                  * VMA are no longer active.
3655                  */
3656                 ret = i915_gem_object_wait(obj,
3657                                            I915_WAIT_INTERRUPTIBLE |
3658                                            I915_WAIT_LOCKED |
3659                                            I915_WAIT_ALL,
3660                                            MAX_SCHEDULE_TIMEOUT,
3661                                            NULL);
3662                 if (ret)
3663                         return ret;
3664
3665                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3666                     cache_level != I915_CACHE_NONE) {
3667                         /* Access to snoopable pages through the GTT is
3668                          * incoherent and on some machines causes a hard
3669                          * lockup. Relinquish the CPU mmaping to force
3670                          * userspace to refault in the pages and we can
3671                          * then double check if the GTT mapping is still
3672                          * valid for that pointer access.
3673                          */
3674                         i915_gem_release_mmap(obj);
3675
3676                         /* As we no longer need a fence for GTT access,
3677                          * we can relinquish it now (and so prevent having
3678                          * to steal a fence from someone else on the next
3679                          * fence request). Note GPU activity would have
3680                          * dropped the fence as all snoopable access is
3681                          * supposed to be linear.
3682                          */
3683                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3684                                 ret = i915_vma_put_fence(vma);
3685                                 if (ret)
3686                                         return ret;
3687                         }
3688                 } else {
3689                         /* We either have incoherent backing store and
3690                          * so no GTT access or the architecture is fully
3691                          * coherent. In such cases, existing GTT mmaps
3692                          * ignore the cache bit in the PTE and we can
3693                          * rewrite it without confusing the GPU or having
3694                          * to force userspace to fault back in its mmaps.
3695                          */
3696                 }
3697
3698                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3699                         if (!drm_mm_node_allocated(&vma->node))
3700                                 continue;
3701
3702                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3703                         if (ret)
3704                                 return ret;
3705                 }
3706         }
3707
3708         list_for_each_entry(vma, &obj->vma_list, obj_link)
3709                 vma->node.color = cache_level;
3710         i915_gem_object_set_cache_coherency(obj, cache_level);
3711         obj->cache_dirty = true; /* Always invalidate stale cachelines */
3712
3713         return 0;
3714 }
3715
3716 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3717                                struct drm_file *file)
3718 {
3719         struct drm_i915_gem_caching *args = data;
3720         struct drm_i915_gem_object *obj;
3721         int err = 0;
3722
3723         rcu_read_lock();
3724         obj = i915_gem_object_lookup_rcu(file, args->handle);
3725         if (!obj) {
3726                 err = -ENOENT;
3727                 goto out;
3728         }
3729
3730         switch (obj->cache_level) {
3731         case I915_CACHE_LLC:
3732         case I915_CACHE_L3_LLC:
3733                 args->caching = I915_CACHING_CACHED;
3734                 break;
3735
3736         case I915_CACHE_WT:
3737                 args->caching = I915_CACHING_DISPLAY;
3738                 break;
3739
3740         default:
3741                 args->caching = I915_CACHING_NONE;
3742                 break;
3743         }
3744 out:
3745         rcu_read_unlock();
3746         return err;
3747 }
3748
3749 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3750                                struct drm_file *file)
3751 {
3752         struct drm_i915_private *i915 = to_i915(dev);
3753         struct drm_i915_gem_caching *args = data;
3754         struct drm_i915_gem_object *obj;
3755         enum i915_cache_level level;
3756         int ret = 0;
3757
3758         switch (args->caching) {
3759         case I915_CACHING_NONE:
3760                 level = I915_CACHE_NONE;
3761                 break;
3762         case I915_CACHING_CACHED:
3763                 /*
3764                  * Due to a HW issue on BXT A stepping, GPU stores via a
3765                  * snooped mapping may leave stale data in a corresponding CPU
3766                  * cacheline, whereas normally such cachelines would get
3767                  * invalidated.
3768                  */
3769                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3770                         return -ENODEV;
3771
3772                 level = I915_CACHE_LLC;
3773                 break;
3774         case I915_CACHING_DISPLAY:
3775                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3776                 break;
3777         default:
3778                 return -EINVAL;
3779         }
3780
3781         obj = i915_gem_object_lookup(file, args->handle);
3782         if (!obj)
3783                 return -ENOENT;
3784
3785         if (obj->cache_level == level)
3786                 goto out;
3787
3788         ret = i915_gem_object_wait(obj,
3789                                    I915_WAIT_INTERRUPTIBLE,
3790                                    MAX_SCHEDULE_TIMEOUT,
3791                                    to_rps_client(file));
3792         if (ret)
3793                 goto out;
3794
3795         ret = i915_mutex_lock_interruptible(dev);
3796         if (ret)
3797                 goto out;
3798
3799         ret = i915_gem_object_set_cache_level(obj, level);
3800         mutex_unlock(&dev->struct_mutex);
3801
3802 out:
3803         i915_gem_object_put(obj);
3804         return ret;
3805 }
3806
3807 /*
3808  * Prepare buffer for display plane (scanout, cursors, etc).
3809  * Can be called from an uninterruptible phase (modesetting) and allows
3810  * any flushes to be pipelined (for pageflips).
3811  */
3812 struct i915_vma *
3813 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3814                                      u32 alignment,
3815                                      const struct i915_ggtt_view *view)
3816 {
3817         struct i915_vma *vma;
3818         int ret;
3819
3820         lockdep_assert_held(&obj->base.dev->struct_mutex);
3821
3822         /* Mark the pin_display early so that we account for the
3823          * display coherency whilst setting up the cache domains.
3824          */
3825         obj->pin_display++;
3826
3827         /* The display engine is not coherent with the LLC cache on gen6.  As
3828          * a result, we make sure that the pinning that is about to occur is
3829          * done with uncached PTEs. This is lowest common denominator for all
3830          * chipsets.
3831          *
3832          * However for gen6+, we could do better by using the GFDT bit instead
3833          * of uncaching, which would allow us to flush all the LLC-cached data
3834          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3835          */
3836         ret = i915_gem_object_set_cache_level(obj,
3837                                               HAS_WT(to_i915(obj->base.dev)) ?
3838                                               I915_CACHE_WT : I915_CACHE_NONE);
3839         if (ret) {
3840                 vma = ERR_PTR(ret);
3841                 goto err_unpin_display;
3842         }
3843
3844         /* As the user may map the buffer once pinned in the display plane
3845          * (e.g. libkms for the bootup splash), we have to ensure that we
3846          * always use map_and_fenceable for all scanout buffers. However,
3847          * it may simply be too big to fit into mappable, in which case
3848          * put it anyway and hope that userspace can cope (but always first
3849          * try to preserve the existing ABI).
3850          */
3851         vma = ERR_PTR(-ENOSPC);
3852         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3853                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3854                                                PIN_MAPPABLE | PIN_NONBLOCK);
3855         if (IS_ERR(vma)) {
3856                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3857                 unsigned int flags;
3858
3859                 /* Valleyview is definitely limited to scanning out the first
3860                  * 512MiB. Lets presume this behaviour was inherited from the
3861                  * g4x display engine and that all earlier gen are similarly
3862                  * limited. Testing suggests that it is a little more
3863                  * complicated than this. For example, Cherryview appears quite
3864                  * happy to scanout from anywhere within its global aperture.
3865                  */
3866                 flags = 0;
3867                 if (HAS_GMCH_DISPLAY(i915))
3868                         flags = PIN_MAPPABLE;
3869                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3870         }
3871         if (IS_ERR(vma))
3872                 goto err_unpin_display;
3873
3874         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3875
3876         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3877         __i915_gem_object_flush_for_display(obj);
3878         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3879
3880         /* It should now be out of any other write domains, and we can update
3881          * the domain values for our changes.
3882          */
3883         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3884
3885         return vma;
3886
3887 err_unpin_display:
3888         obj->pin_display--;
3889         return vma;
3890 }
3891
3892 void
3893 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3894 {
3895         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3896
3897         if (WARN_ON(vma->obj->pin_display == 0))
3898                 return;
3899
3900         if (--vma->obj->pin_display == 0)
3901                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3902
3903         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3904         i915_gem_object_bump_inactive_ggtt(vma->obj);
3905
3906         i915_vma_unpin(vma);
3907 }
3908
3909 /**
3910  * Moves a single object to the CPU read, and possibly write domain.
3911  * @obj: object to act on
3912  * @write: requesting write or read-only access
3913  *
3914  * This function returns when the move is complete, including waiting on
3915  * flushes to occur.
3916  */
3917 int
3918 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3919 {
3920         int ret;
3921
3922         lockdep_assert_held(&obj->base.dev->struct_mutex);
3923
3924         ret = i915_gem_object_wait(obj,
3925                                    I915_WAIT_INTERRUPTIBLE |
3926                                    I915_WAIT_LOCKED |
3927                                    (write ? I915_WAIT_ALL : 0),
3928                                    MAX_SCHEDULE_TIMEOUT,
3929                                    NULL);
3930         if (ret)
3931                 return ret;
3932
3933         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3934
3935         /* Flush the CPU cache if it's still invalid. */
3936         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3937                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3938                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3939         }
3940
3941         /* It should now be out of any other write domains, and we can update
3942          * the domain values for our changes.
3943          */
3944         GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3945
3946         /* If we're writing through the CPU, then the GPU read domains will
3947          * need to be invalidated at next use.
3948          */
3949         if (write)
3950                 __start_cpu_write(obj);
3951
3952         return 0;
3953 }
3954
3955 /* Throttle our rendering by waiting until the ring has completed our requests
3956  * emitted over 20 msec ago.
3957  *
3958  * Note that if we were to use the current jiffies each time around the loop,
3959  * we wouldn't escape the function with any frames outstanding if the time to
3960  * render a frame was over 20ms.
3961  *
3962  * This should get us reasonable parallelism between CPU and GPU but also
3963  * relatively low latency when blocking on a particular request to finish.
3964  */
3965 static int
3966 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3967 {
3968         struct drm_i915_private *dev_priv = to_i915(dev);
3969         struct drm_i915_file_private *file_priv = file->driver_priv;
3970         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3971         struct drm_i915_gem_request *request, *target = NULL;
3972         long ret;
3973
3974         /* ABI: return -EIO if already wedged */
3975         if (i915_terminally_wedged(&dev_priv->gpu_error))
3976                 return -EIO;
3977
3978         spin_lock(&file_priv->mm.lock);
3979         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3980                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3981                         break;
3982
3983                 if (target) {
3984                         list_del(&target->client_link);
3985                         target->file_priv = NULL;
3986                 }
3987
3988                 target = request;
3989         }
3990         if (target)
3991                 i915_gem_request_get(target);
3992         spin_unlock(&file_priv->mm.lock);
3993
3994         if (target == NULL)
3995                 return 0;
3996
3997         ret = i915_wait_request(target,
3998                                 I915_WAIT_INTERRUPTIBLE,
3999                                 MAX_SCHEDULE_TIMEOUT);
4000         i915_gem_request_put(target);
4001
4002         return ret < 0 ? ret : 0;
4003 }
4004
4005 struct i915_vma *
4006 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4007                          const struct i915_ggtt_view *view,
4008                          u64 size,
4009                          u64 alignment,
4010                          u64 flags)
4011 {
4012         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4013         struct i915_address_space *vm = &dev_priv->ggtt.base;
4014         struct i915_vma *vma;
4015         int ret;
4016
4017         lockdep_assert_held(&obj->base.dev->struct_mutex);
4018
4019         vma = i915_vma_instance(obj, vm, view);
4020         if (unlikely(IS_ERR(vma)))
4021                 return vma;
4022
4023         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4024                 if (flags & PIN_NONBLOCK &&
4025                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
4026                         return ERR_PTR(-ENOSPC);
4027
4028                 if (flags & PIN_MAPPABLE) {
4029                         /* If the required space is larger than the available
4030                          * aperture, we will not able to find a slot for the
4031                          * object and unbinding the object now will be in
4032                          * vain. Worse, doing so may cause us to ping-pong
4033                          * the object in and out of the Global GTT and
4034                          * waste a lot of cycles under the mutex.
4035                          */
4036                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
4037                                 return ERR_PTR(-E2BIG);
4038
4039                         /* If NONBLOCK is set the caller is optimistically
4040                          * trying to cache the full object within the mappable
4041                          * aperture, and *must* have a fallback in place for
4042                          * situations where we cannot bind the object. We
4043                          * can be a little more lax here and use the fallback
4044                          * more often to avoid costly migrations of ourselves
4045                          * and other objects within the aperture.
4046                          *
4047                          * Half-the-aperture is used as a simple heuristic.
4048                          * More interesting would to do search for a free
4049                          * block prior to making the commitment to unbind.
4050                          * That caters for the self-harm case, and with a
4051                          * little more heuristics (e.g. NOFAULT, NOEVICT)
4052                          * we could try to minimise harm to others.
4053                          */
4054                         if (flags & PIN_NONBLOCK &&
4055                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4056                                 return ERR_PTR(-ENOSPC);
4057                 }
4058
4059                 WARN(i915_vma_is_pinned(vma),
4060                      "bo is already pinned in ggtt with incorrect alignment:"
4061                      " offset=%08x, req.alignment=%llx,"
4062                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4063                      i915_ggtt_offset(vma), alignment,
4064                      !!(flags & PIN_MAPPABLE),
4065                      i915_vma_is_map_and_fenceable(vma));
4066                 ret = i915_vma_unbind(vma);
4067                 if (ret)
4068                         return ERR_PTR(ret);
4069         }
4070
4071         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4072         if (ret)
4073                 return ERR_PTR(ret);
4074
4075         return vma;
4076 }
4077
4078 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4079 {
4080         /* Note that we could alias engines in the execbuf API, but
4081          * that would be very unwise as it prevents userspace from
4082          * fine control over engine selection. Ahem.
4083          *
4084          * This should be something like EXEC_MAX_ENGINE instead of
4085          * I915_NUM_ENGINES.
4086          */
4087         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4088         return 0x10000 << id;
4089 }
4090
4091 static __always_inline unsigned int __busy_write_id(unsigned int id)
4092 {
4093         /* The uABI guarantees an active writer is also amongst the read
4094          * engines. This would be true if we accessed the activity tracking
4095          * under the lock, but as we perform the lookup of the object and
4096          * its activity locklessly we can not guarantee that the last_write
4097          * being active implies that we have set the same engine flag from
4098          * last_read - hence we always set both read and write busy for
4099          * last_write.
4100          */
4101         return id | __busy_read_flag(id);
4102 }
4103
4104 static __always_inline unsigned int
4105 __busy_set_if_active(const struct dma_fence *fence,
4106                      unsigned int (*flag)(unsigned int id))
4107 {
4108         struct drm_i915_gem_request *rq;
4109
4110         /* We have to check the current hw status of the fence as the uABI
4111          * guarantees forward progress. We could rely on the idle worker
4112          * to eventually flush us, but to minimise latency just ask the
4113          * hardware.
4114          *
4115          * Note we only report on the status of native fences.
4116          */
4117         if (!dma_fence_is_i915(fence))
4118                 return 0;
4119
4120         /* opencode to_request() in order to avoid const warnings */
4121         rq = container_of(fence, struct drm_i915_gem_request, fence);
4122         if (i915_gem_request_completed(rq))
4123                 return 0;
4124
4125         return flag(rq->engine->uabi_id);
4126 }
4127
4128 static __always_inline unsigned int
4129 busy_check_reader(const struct dma_fence *fence)
4130 {
4131         return __busy_set_if_active(fence, __busy_read_flag);
4132 }
4133
4134 static __always_inline unsigned int
4135 busy_check_writer(const struct dma_fence *fence)
4136 {
4137         if (!fence)
4138                 return 0;
4139
4140         return __busy_set_if_active(fence, __busy_write_id);
4141 }
4142
4143 int
4144 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4145                     struct drm_file *file)
4146 {
4147         struct drm_i915_gem_busy *args = data;
4148         struct drm_i915_gem_object *obj;
4149         struct reservation_object_list *list;
4150         unsigned int seq;
4151         int err;
4152
4153         err = -ENOENT;
4154         rcu_read_lock();
4155         obj = i915_gem_object_lookup_rcu(file, args->handle);
4156         if (!obj)
4157                 goto out;
4158
4159         /* A discrepancy here is that we do not report the status of
4160          * non-i915 fences, i.e. even though we may report the object as idle,
4161          * a call to set-domain may still stall waiting for foreign rendering.
4162          * This also means that wait-ioctl may report an object as busy,
4163          * where busy-ioctl considers it idle.
4164          *
4165          * We trade the ability to warn of foreign fences to report on which
4166          * i915 engines are active for the object.
4167          *
4168          * Alternatively, we can trade that extra information on read/write
4169          * activity with
4170          *      args->busy =
4171          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4172          * to report the overall busyness. This is what the wait-ioctl does.
4173          *
4174          */
4175 retry:
4176         seq = raw_read_seqcount(&obj->resv->seq);
4177
4178         /* Translate the exclusive fence to the READ *and* WRITE engine */
4179         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4180
4181         /* Translate shared fences to READ set of engines */
4182         list = rcu_dereference(obj->resv->fence);
4183         if (list) {
4184                 unsigned int shared_count = list->shared_count, i;
4185
4186                 for (i = 0; i < shared_count; ++i) {
4187                         struct dma_fence *fence =
4188                                 rcu_dereference(list->shared[i]);
4189
4190                         args->busy |= busy_check_reader(fence);
4191                 }
4192         }
4193
4194         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4195                 goto retry;
4196
4197         err = 0;
4198 out:
4199         rcu_read_unlock();
4200         return err;
4201 }
4202
4203 int
4204 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4205                         struct drm_file *file_priv)
4206 {
4207         return i915_gem_ring_throttle(dev, file_priv);
4208 }
4209
4210 int
4211 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4212                        struct drm_file *file_priv)
4213 {
4214         struct drm_i915_private *dev_priv = to_i915(dev);
4215         struct drm_i915_gem_madvise *args = data;
4216         struct drm_i915_gem_object *obj;
4217         int err;
4218
4219         switch (args->madv) {
4220         case I915_MADV_DONTNEED:
4221         case I915_MADV_WILLNEED:
4222             break;
4223         default:
4224             return -EINVAL;
4225         }
4226
4227         obj = i915_gem_object_lookup(file_priv, args->handle);
4228         if (!obj)
4229                 return -ENOENT;
4230
4231         err = mutex_lock_interruptible(&obj->mm.lock);
4232         if (err)
4233                 goto out;
4234
4235         if (obj->mm.pages &&
4236             i915_gem_object_is_tiled(obj) &&
4237             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4238                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4239                         GEM_BUG_ON(!obj->mm.quirked);
4240                         __i915_gem_object_unpin_pages(obj);
4241                         obj->mm.quirked = false;
4242                 }
4243                 if (args->madv == I915_MADV_WILLNEED) {
4244                         GEM_BUG_ON(obj->mm.quirked);
4245                         __i915_gem_object_pin_pages(obj);
4246                         obj->mm.quirked = true;
4247                 }
4248         }
4249
4250         if (obj->mm.madv != __I915_MADV_PURGED)
4251                 obj->mm.madv = args->madv;
4252
4253         /* if the object is no longer attached, discard its backing storage */
4254         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4255                 i915_gem_object_truncate(obj);
4256
4257         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4258         mutex_unlock(&obj->mm.lock);
4259
4260 out:
4261         i915_gem_object_put(obj);
4262         return err;
4263 }
4264
4265 static void
4266 frontbuffer_retire(struct i915_gem_active *active,
4267                    struct drm_i915_gem_request *request)
4268 {
4269         struct drm_i915_gem_object *obj =
4270                 container_of(active, typeof(*obj), frontbuffer_write);
4271
4272         intel_fb_obj_flush(obj, ORIGIN_CS);
4273 }
4274
4275 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4276                           const struct drm_i915_gem_object_ops *ops)
4277 {
4278         mutex_init(&obj->mm.lock);
4279
4280         INIT_LIST_HEAD(&obj->global_link);
4281         INIT_LIST_HEAD(&obj->userfault_link);
4282         INIT_LIST_HEAD(&obj->vma_list);
4283         INIT_LIST_HEAD(&obj->lut_list);
4284         INIT_LIST_HEAD(&obj->batch_pool_link);
4285
4286         obj->ops = ops;
4287
4288         reservation_object_init(&obj->__builtin_resv);
4289         obj->resv = &obj->__builtin_resv;
4290
4291         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4292         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4293
4294         obj->mm.madv = I915_MADV_WILLNEED;
4295         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4296         mutex_init(&obj->mm.get_page.lock);
4297
4298         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4299 }
4300
4301 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4302         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4303                  I915_GEM_OBJECT_IS_SHRINKABLE,
4304
4305         .get_pages = i915_gem_object_get_pages_gtt,
4306         .put_pages = i915_gem_object_put_pages_gtt,
4307
4308         .pwrite = i915_gem_object_pwrite_gtt,
4309 };
4310
4311 struct drm_i915_gem_object *
4312 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4313 {
4314         struct drm_i915_gem_object *obj;
4315         struct address_space *mapping;
4316         unsigned int cache_level;
4317         gfp_t mask;
4318         int ret;
4319
4320         /* There is a prevalence of the assumption that we fit the object's
4321          * page count inside a 32bit _signed_ variable. Let's document this and
4322          * catch if we ever need to fix it. In the meantime, if you do spot
4323          * such a local variable, please consider fixing!
4324          */
4325         if (size >> PAGE_SHIFT > INT_MAX)
4326                 return ERR_PTR(-E2BIG);
4327
4328         if (overflows_type(size, obj->base.size))
4329                 return ERR_PTR(-E2BIG);
4330
4331         obj = i915_gem_object_alloc(dev_priv);
4332         if (obj == NULL)
4333                 return ERR_PTR(-ENOMEM);
4334
4335         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4336         if (ret)
4337                 goto fail;
4338
4339         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4340         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4341                 /* 965gm cannot relocate objects above 4GiB. */
4342                 mask &= ~__GFP_HIGHMEM;
4343                 mask |= __GFP_DMA32;
4344         }
4345
4346         mapping = obj->base.filp->f_mapping;
4347         mapping_set_gfp_mask(mapping, mask);
4348         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4349
4350         i915_gem_object_init(obj, &i915_gem_object_ops);
4351
4352         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4353         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4354
4355         if (HAS_LLC(dev_priv))
4356                 /* On some devices, we can have the GPU use the LLC (the CPU
4357                  * cache) for about a 10% performance improvement
4358                  * compared to uncached.  Graphics requests other than
4359                  * display scanout are coherent with the CPU in
4360                  * accessing this cache.  This means in this mode we
4361                  * don't need to clflush on the CPU side, and on the
4362                  * GPU side we only need to flush internal caches to
4363                  * get data visible to the CPU.
4364                  *
4365                  * However, we maintain the display planes as UC, and so
4366                  * need to rebind when first used as such.
4367                  */
4368                 cache_level = I915_CACHE_LLC;
4369         else
4370                 cache_level = I915_CACHE_NONE;
4371
4372         i915_gem_object_set_cache_coherency(obj, cache_level);
4373
4374         trace_i915_gem_object_create(obj);
4375
4376         return obj;
4377
4378 fail:
4379         i915_gem_object_free(obj);
4380         return ERR_PTR(ret);
4381 }
4382
4383 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4384 {
4385         /* If we are the last user of the backing storage (be it shmemfs
4386          * pages or stolen etc), we know that the pages are going to be
4387          * immediately released. In this case, we can then skip copying
4388          * back the contents from the GPU.
4389          */
4390
4391         if (obj->mm.madv != I915_MADV_WILLNEED)
4392                 return false;
4393
4394         if (obj->base.filp == NULL)
4395                 return true;
4396
4397         /* At first glance, this looks racy, but then again so would be
4398          * userspace racing mmap against close. However, the first external
4399          * reference to the filp can only be obtained through the
4400          * i915_gem_mmap_ioctl() which safeguards us against the user
4401          * acquiring such a reference whilst we are in the middle of
4402          * freeing the object.
4403          */
4404         return atomic_long_read(&obj->base.filp->f_count) == 1;
4405 }
4406
4407 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4408                                     struct llist_node *freed)
4409 {
4410         struct drm_i915_gem_object *obj, *on;
4411
4412         mutex_lock(&i915->drm.struct_mutex);
4413         intel_runtime_pm_get(i915);
4414         llist_for_each_entry(obj, freed, freed) {
4415                 struct i915_vma *vma, *vn;
4416
4417                 trace_i915_gem_object_destroy(obj);
4418
4419                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4420                 list_for_each_entry_safe(vma, vn,
4421                                          &obj->vma_list, obj_link) {
4422                         GEM_BUG_ON(i915_vma_is_active(vma));
4423                         vma->flags &= ~I915_VMA_PIN_MASK;
4424                         i915_vma_close(vma);
4425                 }
4426                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4427                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4428
4429                 list_del(&obj->global_link);
4430         }
4431         intel_runtime_pm_put(i915);
4432         mutex_unlock(&i915->drm.struct_mutex);
4433
4434         cond_resched();
4435
4436         llist_for_each_entry_safe(obj, on, freed, freed) {
4437                 GEM_BUG_ON(obj->bind_count);
4438                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4439
4440                 if (obj->ops->release)
4441                         obj->ops->release(obj);
4442
4443                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4444                         atomic_set(&obj->mm.pages_pin_count, 0);
4445                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4446                 GEM_BUG_ON(obj->mm.pages);
4447
4448                 if (obj->base.import_attach)
4449                         drm_prime_gem_destroy(&obj->base, NULL);
4450
4451                 reservation_object_fini(&obj->__builtin_resv);
4452                 drm_gem_object_release(&obj->base);
4453                 i915_gem_info_remove_obj(i915, obj->base.size);
4454
4455                 kfree(obj->bit_17);
4456                 i915_gem_object_free(obj);
4457         }
4458 }
4459
4460 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4461 {
4462         struct llist_node *freed;
4463
4464         freed = llist_del_all(&i915->mm.free_list);
4465         if (unlikely(freed))
4466                 __i915_gem_free_objects(i915, freed);
4467 }
4468
4469 static void __i915_gem_free_work(struct work_struct *work)
4470 {
4471         struct drm_i915_private *i915 =
4472                 container_of(work, struct drm_i915_private, mm.free_work);
4473         struct llist_node *freed;
4474
4475         /* All file-owned VMA should have been released by this point through
4476          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4477          * However, the object may also be bound into the global GTT (e.g.
4478          * older GPUs without per-process support, or for direct access through
4479          * the GTT either for the user or for scanout). Those VMA still need to
4480          * unbound now.
4481          */
4482
4483         while ((freed = llist_del_all(&i915->mm.free_list))) {
4484                 __i915_gem_free_objects(i915, freed);
4485                 if (need_resched())
4486                         break;
4487         }
4488 }
4489
4490 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4491 {
4492         struct drm_i915_gem_object *obj =
4493                 container_of(head, typeof(*obj), rcu);
4494         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4495
4496         /* We can't simply use call_rcu() from i915_gem_free_object()
4497          * as we need to block whilst unbinding, and the call_rcu
4498          * task may be called from softirq context. So we take a
4499          * detour through a worker.
4500          */
4501         if (llist_add(&obj->freed, &i915->mm.free_list))
4502                 schedule_work(&i915->mm.free_work);
4503 }
4504
4505 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4506 {
4507         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4508
4509         if (obj->mm.quirked)
4510                 __i915_gem_object_unpin_pages(obj);
4511
4512         if (discard_backing_storage(obj))
4513                 obj->mm.madv = I915_MADV_DONTNEED;
4514
4515         /* Before we free the object, make sure any pure RCU-only
4516          * read-side critical sections are complete, e.g.
4517          * i915_gem_busy_ioctl(). For the corresponding synchronized
4518          * lookup see i915_gem_object_lookup_rcu().
4519          */
4520         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4521 }
4522
4523 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4524 {
4525         lockdep_assert_held(&obj->base.dev->struct_mutex);
4526
4527         if (!i915_gem_object_has_active_reference(obj) &&
4528             i915_gem_object_is_active(obj))
4529                 i915_gem_object_set_active_reference(obj);
4530         else
4531                 i915_gem_object_put(obj);
4532 }
4533
4534 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4535 {
4536         struct intel_engine_cs *engine;
4537         enum intel_engine_id id;
4538
4539         for_each_engine(engine, dev_priv, id)
4540                 GEM_BUG_ON(engine->last_retired_context &&
4541                            !i915_gem_context_is_kernel(engine->last_retired_context));
4542 }
4543
4544 void i915_gem_sanitize(struct drm_i915_private *i915)
4545 {
4546         /*
4547          * If we inherit context state from the BIOS or earlier occupants
4548          * of the GPU, the GPU may be in an inconsistent state when we
4549          * try to take over. The only way to remove the earlier state
4550          * is by resetting. However, resetting on earlier gen is tricky as
4551          * it may impact the display and we are uncertain about the stability
4552          * of the reset, so this could be applied to even earlier gen.
4553          */
4554         if (INTEL_GEN(i915) >= 5) {
4555                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4556                 WARN_ON(reset && reset != -ENODEV);
4557         }
4558 }
4559
4560 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4561 {
4562         struct drm_device *dev = &dev_priv->drm;
4563         int ret;
4564
4565         intel_runtime_pm_get(dev_priv);
4566         intel_suspend_gt_powersave(dev_priv);
4567
4568         mutex_lock(&dev->struct_mutex);
4569
4570         /* We have to flush all the executing contexts to main memory so
4571          * that they can saved in the hibernation image. To ensure the last
4572          * context image is coherent, we have to switch away from it. That
4573          * leaves the dev_priv->kernel_context still active when
4574          * we actually suspend, and its image in memory may not match the GPU
4575          * state. Fortunately, the kernel_context is disposable and we do
4576          * not rely on its state.
4577          */
4578         ret = i915_gem_switch_to_kernel_context(dev_priv);
4579         if (ret)
4580                 goto err_unlock;
4581
4582         ret = i915_gem_wait_for_idle(dev_priv,
4583                                      I915_WAIT_INTERRUPTIBLE |
4584                                      I915_WAIT_LOCKED);
4585         if (ret)
4586                 goto err_unlock;
4587
4588         assert_kernel_context_is_current(dev_priv);
4589         i915_gem_contexts_lost(dev_priv);
4590         mutex_unlock(&dev->struct_mutex);
4591
4592         intel_guc_suspend(dev_priv);
4593
4594         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4595         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4596
4597         /* As the idle_work is rearming if it detects a race, play safe and
4598          * repeat the flush until it is definitely idle.
4599          */
4600         while (flush_delayed_work(&dev_priv->gt.idle_work))
4601                 ;
4602
4603         /* Assert that we sucessfully flushed all the work and
4604          * reset the GPU back to its idle, low power state.
4605          */
4606         WARN_ON(dev_priv->gt.awake);
4607         WARN_ON(!intel_engines_are_idle(dev_priv));
4608
4609         /*
4610          * Neither the BIOS, ourselves or any other kernel
4611          * expects the system to be in execlists mode on startup,
4612          * so we need to reset the GPU back to legacy mode. And the only
4613          * known way to disable logical contexts is through a GPU reset.
4614          *
4615          * So in order to leave the system in a known default configuration,
4616          * always reset the GPU upon unload and suspend. Afterwards we then
4617          * clean up the GEM state tracking, flushing off the requests and
4618          * leaving the system in a known idle state.
4619          *
4620          * Note that is of the upmost importance that the GPU is idle and
4621          * all stray writes are flushed *before* we dismantle the backing
4622          * storage for the pinned objects.
4623          *
4624          * However, since we are uncertain that resetting the GPU on older
4625          * machines is a good idea, we don't - just in case it leaves the
4626          * machine in an unusable condition.
4627          */
4628         i915_gem_sanitize(dev_priv);
4629         goto out_rpm_put;
4630
4631 err_unlock:
4632         mutex_unlock(&dev->struct_mutex);
4633 out_rpm_put:
4634         intel_runtime_pm_put(dev_priv);
4635         return ret;
4636 }
4637
4638 void i915_gem_resume(struct drm_i915_private *dev_priv)
4639 {
4640         struct drm_device *dev = &dev_priv->drm;
4641
4642         WARN_ON(dev_priv->gt.awake);
4643
4644         mutex_lock(&dev->struct_mutex);
4645         i915_gem_restore_gtt_mappings(dev_priv);
4646
4647         /* As we didn't flush the kernel context before suspend, we cannot
4648          * guarantee that the context image is complete. So let's just reset
4649          * it and start again.
4650          */
4651         dev_priv->gt.resume(dev_priv);
4652
4653         mutex_unlock(&dev->struct_mutex);
4654 }
4655
4656 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4657 {
4658         if (INTEL_GEN(dev_priv) < 5 ||
4659             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4660                 return;
4661
4662         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4663                                  DISP_TILE_SURFACE_SWIZZLING);
4664
4665         if (IS_GEN5(dev_priv))
4666                 return;
4667
4668         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4669         if (IS_GEN6(dev_priv))
4670                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4671         else if (IS_GEN7(dev_priv))
4672                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4673         else if (IS_GEN8(dev_priv))
4674                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4675         else
4676                 BUG();
4677 }
4678
4679 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4680 {
4681         I915_WRITE(RING_CTL(base), 0);
4682         I915_WRITE(RING_HEAD(base), 0);
4683         I915_WRITE(RING_TAIL(base), 0);
4684         I915_WRITE(RING_START(base), 0);
4685 }
4686
4687 static void init_unused_rings(struct drm_i915_private *dev_priv)
4688 {
4689         if (IS_I830(dev_priv)) {
4690                 init_unused_ring(dev_priv, PRB1_BASE);
4691                 init_unused_ring(dev_priv, SRB0_BASE);
4692                 init_unused_ring(dev_priv, SRB1_BASE);
4693                 init_unused_ring(dev_priv, SRB2_BASE);
4694                 init_unused_ring(dev_priv, SRB3_BASE);
4695         } else if (IS_GEN2(dev_priv)) {
4696                 init_unused_ring(dev_priv, SRB0_BASE);
4697                 init_unused_ring(dev_priv, SRB1_BASE);
4698         } else if (IS_GEN3(dev_priv)) {
4699                 init_unused_ring(dev_priv, PRB1_BASE);
4700                 init_unused_ring(dev_priv, PRB2_BASE);
4701         }
4702 }
4703
4704 static int __i915_gem_restart_engines(void *data)
4705 {
4706         struct drm_i915_private *i915 = data;
4707         struct intel_engine_cs *engine;
4708         enum intel_engine_id id;
4709         int err;
4710
4711         for_each_engine(engine, i915, id) {
4712                 err = engine->init_hw(engine);
4713                 if (err)
4714                         return err;
4715         }
4716
4717         return 0;
4718 }
4719
4720 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4721 {
4722         int ret;
4723
4724         dev_priv->gt.last_init_time = ktime_get();
4725
4726         /* Double layer security blanket, see i915_gem_init() */
4727         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4728
4729         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4730                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4731
4732         if (IS_HASWELL(dev_priv))
4733                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4734                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4735
4736         if (HAS_PCH_NOP(dev_priv)) {
4737                 if (IS_IVYBRIDGE(dev_priv)) {
4738                         u32 temp = I915_READ(GEN7_MSG_CTL);
4739                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4740                         I915_WRITE(GEN7_MSG_CTL, temp);
4741                 } else if (INTEL_GEN(dev_priv) >= 7) {
4742                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4743                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4744                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4745                 }
4746         }
4747
4748         i915_gem_init_swizzling(dev_priv);
4749
4750         /*
4751          * At least 830 can leave some of the unused rings
4752          * "active" (ie. head != tail) after resume which
4753          * will prevent c3 entry. Makes sure all unused rings
4754          * are totally idle.
4755          */
4756         init_unused_rings(dev_priv);
4757
4758         BUG_ON(!dev_priv->kernel_context);
4759
4760         ret = i915_ppgtt_init_hw(dev_priv);
4761         if (ret) {
4762                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4763                 goto out;
4764         }
4765
4766         /* Need to do basic initialisation of all rings first: */
4767         ret = __i915_gem_restart_engines(dev_priv);
4768         if (ret)
4769                 goto out;
4770
4771         intel_mocs_init_l3cc_table(dev_priv);
4772
4773         /* We can't enable contexts until all firmware is loaded */
4774         ret = intel_uc_init_hw(dev_priv);
4775         if (ret)
4776                 goto out;
4777
4778 out:
4779         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4780         return ret;
4781 }
4782
4783 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4784 {
4785         if (INTEL_INFO(dev_priv)->gen < 6)
4786                 return false;
4787
4788         /* TODO: make semaphores and Execlists play nicely together */
4789         if (i915.enable_execlists)
4790                 return false;
4791
4792         if (value >= 0)
4793                 return value;
4794
4795         /* Enable semaphores on SNB when IO remapping is off */
4796         if (IS_GEN6(dev_priv) && intel_vtd_active())
4797                 return false;
4798
4799         return true;
4800 }
4801
4802 int i915_gem_init(struct drm_i915_private *dev_priv)
4803 {
4804         int ret;
4805
4806         mutex_lock(&dev_priv->drm.struct_mutex);
4807
4808         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4809
4810         if (!i915.enable_execlists) {
4811                 dev_priv->gt.resume = intel_legacy_submission_resume;
4812                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4813         } else {
4814                 dev_priv->gt.resume = intel_lr_context_resume;
4815                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4816         }
4817
4818         /* This is just a security blanket to placate dragons.
4819          * On some systems, we very sporadically observe that the first TLBs
4820          * used by the CS may be stale, despite us poking the TLB reset. If
4821          * we hold the forcewake during initialisation these problems
4822          * just magically go away.
4823          */
4824         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4825
4826         ret = i915_gem_init_userptr(dev_priv);
4827         if (ret)
4828                 goto out_unlock;
4829
4830         ret = i915_gem_init_ggtt(dev_priv);
4831         if (ret)
4832                 goto out_unlock;
4833
4834         ret = i915_gem_contexts_init(dev_priv);
4835         if (ret)
4836                 goto out_unlock;
4837
4838         ret = intel_engines_init(dev_priv);
4839         if (ret)
4840                 goto out_unlock;
4841
4842         ret = i915_gem_init_hw(dev_priv);
4843         if (ret == -EIO) {
4844                 /* Allow engine initialisation to fail by marking the GPU as
4845                  * wedged. But we only want to do this where the GPU is angry,
4846                  * for all other failure, such as an allocation failure, bail.
4847                  */
4848                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4849                 i915_gem_set_wedged(dev_priv);
4850                 ret = 0;
4851         }
4852
4853 out_unlock:
4854         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4855         mutex_unlock(&dev_priv->drm.struct_mutex);
4856
4857         return ret;
4858 }
4859
4860 void i915_gem_init_mmio(struct drm_i915_private *i915)
4861 {
4862         i915_gem_sanitize(i915);
4863 }
4864
4865 void
4866 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4867 {
4868         struct intel_engine_cs *engine;
4869         enum intel_engine_id id;
4870
4871         for_each_engine(engine, dev_priv, id)
4872                 dev_priv->gt.cleanup_engine(engine);
4873 }
4874
4875 void
4876 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4877 {
4878         int i;
4879
4880         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4881             !IS_CHERRYVIEW(dev_priv))
4882                 dev_priv->num_fence_regs = 32;
4883         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4884                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4885                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4886                 dev_priv->num_fence_regs = 16;
4887         else
4888                 dev_priv->num_fence_regs = 8;
4889
4890         if (intel_vgpu_active(dev_priv))
4891                 dev_priv->num_fence_regs =
4892                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4893
4894         /* Initialize fence registers to zero */
4895         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4896                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4897
4898                 fence->i915 = dev_priv;
4899                 fence->id = i;
4900                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4901         }
4902         i915_gem_restore_fences(dev_priv);
4903
4904         i915_gem_detect_bit_6_swizzle(dev_priv);
4905 }
4906
4907 int
4908 i915_gem_load_init(struct drm_i915_private *dev_priv)
4909 {
4910         int err = -ENOMEM;
4911
4912         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4913         if (!dev_priv->objects)
4914                 goto err_out;
4915
4916         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4917         if (!dev_priv->vmas)
4918                 goto err_objects;
4919
4920         dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
4921         if (!dev_priv->luts)
4922                 goto err_vmas;
4923
4924         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4925                                         SLAB_HWCACHE_ALIGN |
4926                                         SLAB_RECLAIM_ACCOUNT |
4927                                         SLAB_TYPESAFE_BY_RCU);
4928         if (!dev_priv->requests)
4929                 goto err_luts;
4930
4931         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4932                                             SLAB_HWCACHE_ALIGN |
4933                                             SLAB_RECLAIM_ACCOUNT);
4934         if (!dev_priv->dependencies)
4935                 goto err_requests;
4936
4937         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4938         if (!dev_priv->priorities)
4939                 goto err_dependencies;
4940
4941         mutex_lock(&dev_priv->drm.struct_mutex);
4942         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4943         err = i915_gem_timeline_init__global(dev_priv);
4944         mutex_unlock(&dev_priv->drm.struct_mutex);
4945         if (err)
4946                 goto err_priorities;
4947
4948         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4949         init_llist_head(&dev_priv->mm.free_list);
4950         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4951         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4952         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4953         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4954         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4955                           i915_gem_retire_work_handler);
4956         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4957                           i915_gem_idle_work_handler);
4958         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4959         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4960
4961         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4962
4963         spin_lock_init(&dev_priv->fb_tracking.lock);
4964
4965         return 0;
4966
4967 err_priorities:
4968         kmem_cache_destroy(dev_priv->priorities);
4969 err_dependencies:
4970         kmem_cache_destroy(dev_priv->dependencies);
4971 err_requests:
4972         kmem_cache_destroy(dev_priv->requests);
4973 err_luts:
4974         kmem_cache_destroy(dev_priv->luts);
4975 err_vmas:
4976         kmem_cache_destroy(dev_priv->vmas);
4977 err_objects:
4978         kmem_cache_destroy(dev_priv->objects);
4979 err_out:
4980         return err;
4981 }
4982
4983 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4984 {
4985         i915_gem_drain_freed_objects(dev_priv);
4986         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4987         WARN_ON(dev_priv->mm.object_count);
4988
4989         mutex_lock(&dev_priv->drm.struct_mutex);
4990         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4991         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4992         mutex_unlock(&dev_priv->drm.struct_mutex);
4993
4994         kmem_cache_destroy(dev_priv->priorities);
4995         kmem_cache_destroy(dev_priv->dependencies);
4996         kmem_cache_destroy(dev_priv->requests);
4997         kmem_cache_destroy(dev_priv->luts);
4998         kmem_cache_destroy(dev_priv->vmas);
4999         kmem_cache_destroy(dev_priv->objects);
5000
5001         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5002         rcu_barrier();
5003 }
5004
5005 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5006 {
5007         /* Discard all purgeable objects, let userspace recover those as
5008          * required after resuming.
5009          */
5010         i915_gem_shrink_all(dev_priv);
5011
5012         return 0;
5013 }
5014
5015 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5016 {
5017         struct drm_i915_gem_object *obj;
5018         struct list_head *phases[] = {
5019                 &dev_priv->mm.unbound_list,
5020                 &dev_priv->mm.bound_list,
5021                 NULL
5022         }, **p;
5023
5024         /* Called just before we write the hibernation image.
5025          *
5026          * We need to update the domain tracking to reflect that the CPU
5027          * will be accessing all the pages to create and restore from the
5028          * hibernation, and so upon restoration those pages will be in the
5029          * CPU domain.
5030          *
5031          * To make sure the hibernation image contains the latest state,
5032          * we update that state just before writing out the image.
5033          *
5034          * To try and reduce the hibernation image, we manually shrink
5035          * the objects as well, see i915_gem_freeze()
5036          */
5037
5038         i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5039         i915_gem_drain_freed_objects(dev_priv);
5040
5041         mutex_lock(&dev_priv->drm.struct_mutex);
5042         for (p = phases; *p; p++) {
5043                 list_for_each_entry(obj, *p, global_link)
5044                         __start_cpu_write(obj);
5045         }
5046         mutex_unlock(&dev_priv->drm.struct_mutex);
5047
5048         return 0;
5049 }
5050
5051 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5052 {
5053         struct drm_i915_file_private *file_priv = file->driver_priv;
5054         struct drm_i915_gem_request *request;
5055
5056         /* Clean up our request list when the client is going away, so that
5057          * later retire_requests won't dereference our soon-to-be-gone
5058          * file_priv.
5059          */
5060         spin_lock(&file_priv->mm.lock);
5061         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5062                 request->file_priv = NULL;
5063         spin_unlock(&file_priv->mm.lock);
5064 }
5065
5066 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5067 {
5068         struct drm_i915_file_private *file_priv;
5069         int ret;
5070
5071         DRM_DEBUG("\n");
5072
5073         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5074         if (!file_priv)
5075                 return -ENOMEM;
5076
5077         file->driver_priv = file_priv;
5078         file_priv->dev_priv = i915;
5079         file_priv->file = file;
5080
5081         spin_lock_init(&file_priv->mm.lock);
5082         INIT_LIST_HEAD(&file_priv->mm.request_list);
5083
5084         file_priv->bsd_engine = -1;
5085
5086         ret = i915_gem_context_open(i915, file);
5087         if (ret)
5088                 kfree(file_priv);
5089
5090         return ret;
5091 }
5092
5093 /**
5094  * i915_gem_track_fb - update frontbuffer tracking
5095  * @old: current GEM buffer for the frontbuffer slots
5096  * @new: new GEM buffer for the frontbuffer slots
5097  * @frontbuffer_bits: bitmask of frontbuffer slots
5098  *
5099  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5100  * from @old and setting them in @new. Both @old and @new can be NULL.
5101  */
5102 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5103                        struct drm_i915_gem_object *new,
5104                        unsigned frontbuffer_bits)
5105 {
5106         /* Control of individual bits within the mask are guarded by
5107          * the owning plane->mutex, i.e. we can never see concurrent
5108          * manipulation of individual bits. But since the bitfield as a whole
5109          * is updated using RMW, we need to use atomics in order to update
5110          * the bits.
5111          */
5112         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5113                      sizeof(atomic_t) * BITS_PER_BYTE);
5114
5115         if (old) {
5116                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5117                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5118         }
5119
5120         if (new) {
5121                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5122                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5123         }
5124 }
5125
5126 /* Allocate a new GEM object and fill it with the supplied data */
5127 struct drm_i915_gem_object *
5128 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5129                                  const void *data, size_t size)
5130 {
5131         struct drm_i915_gem_object *obj;
5132         struct file *file;
5133         size_t offset;
5134         int err;
5135
5136         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5137         if (IS_ERR(obj))
5138                 return obj;
5139
5140         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5141
5142         file = obj->base.filp;
5143         offset = 0;
5144         do {
5145                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5146                 struct page *page;
5147                 void *pgdata, *vaddr;
5148
5149                 err = pagecache_write_begin(file, file->f_mapping,
5150                                             offset, len, 0,
5151                                             &page, &pgdata);
5152                 if (err < 0)
5153                         goto fail;
5154
5155                 vaddr = kmap(page);
5156                 memcpy(vaddr, data, len);
5157                 kunmap(page);
5158
5159                 err = pagecache_write_end(file, file->f_mapping,
5160                                           offset, len, len,
5161                                           page, pgdata);
5162                 if (err < 0)
5163                         goto fail;
5164
5165                 size -= len;
5166                 data += len;
5167                 offset += len;
5168         } while (size);
5169
5170         return obj;
5171
5172 fail:
5173         i915_gem_object_put(obj);
5174         return ERR_PTR(err);
5175 }
5176
5177 struct scatterlist *
5178 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5179                        unsigned int n,
5180                        unsigned int *offset)
5181 {
5182         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5183         struct scatterlist *sg;
5184         unsigned int idx, count;
5185
5186         might_sleep();
5187         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5188         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5189
5190         /* As we iterate forward through the sg, we record each entry in a
5191          * radixtree for quick repeated (backwards) lookups. If we have seen
5192          * this index previously, we will have an entry for it.
5193          *
5194          * Initial lookup is O(N), but this is amortized to O(1) for
5195          * sequential page access (where each new request is consecutive
5196          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5197          * i.e. O(1) with a large constant!
5198          */
5199         if (n < READ_ONCE(iter->sg_idx))
5200                 goto lookup;
5201
5202         mutex_lock(&iter->lock);
5203
5204         /* We prefer to reuse the last sg so that repeated lookup of this
5205          * (or the subsequent) sg are fast - comparing against the last
5206          * sg is faster than going through the radixtree.
5207          */
5208
5209         sg = iter->sg_pos;
5210         idx = iter->sg_idx;
5211         count = __sg_page_count(sg);
5212
5213         while (idx + count <= n) {
5214                 unsigned long exception, i;
5215                 int ret;
5216
5217                 /* If we cannot allocate and insert this entry, or the
5218                  * individual pages from this range, cancel updating the
5219                  * sg_idx so that on this lookup we are forced to linearly
5220                  * scan onwards, but on future lookups we will try the
5221                  * insertion again (in which case we need to be careful of
5222                  * the error return reporting that we have already inserted
5223                  * this index).
5224                  */
5225                 ret = radix_tree_insert(&iter->radix, idx, sg);
5226                 if (ret && ret != -EEXIST)
5227                         goto scan;
5228
5229                 exception =
5230                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5231                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5232                 for (i = 1; i < count; i++) {
5233                         ret = radix_tree_insert(&iter->radix, idx + i,
5234                                                 (void *)exception);
5235                         if (ret && ret != -EEXIST)
5236                                 goto scan;
5237                 }
5238
5239                 idx += count;
5240                 sg = ____sg_next(sg);
5241                 count = __sg_page_count(sg);
5242         }
5243
5244 scan:
5245         iter->sg_pos = sg;
5246         iter->sg_idx = idx;
5247
5248         mutex_unlock(&iter->lock);
5249
5250         if (unlikely(n < idx)) /* insertion completed by another thread */
5251                 goto lookup;
5252
5253         /* In case we failed to insert the entry into the radixtree, we need
5254          * to look beyond the current sg.
5255          */
5256         while (idx + count <= n) {
5257                 idx += count;
5258                 sg = ____sg_next(sg);
5259                 count = __sg_page_count(sg);
5260         }
5261
5262         *offset = n - idx;
5263         return sg;
5264
5265 lookup:
5266         rcu_read_lock();
5267
5268         sg = radix_tree_lookup(&iter->radix, n);
5269         GEM_BUG_ON(!sg);
5270
5271         /* If this index is in the middle of multi-page sg entry,
5272          * the radixtree will contain an exceptional entry that points
5273          * to the start of that range. We will return the pointer to
5274          * the base page and the offset of this page within the
5275          * sg entry's range.
5276          */
5277         *offset = 0;
5278         if (unlikely(radix_tree_exception(sg))) {
5279                 unsigned long base =
5280                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5281
5282                 sg = radix_tree_lookup(&iter->radix, base);
5283                 GEM_BUG_ON(!sg);
5284
5285                 *offset = n - base;
5286         }
5287
5288         rcu_read_unlock();
5289
5290         return sg;
5291 }
5292
5293 struct page *
5294 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5295 {
5296         struct scatterlist *sg;
5297         unsigned int offset;
5298
5299         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5300
5301         sg = i915_gem_object_get_sg(obj, n, &offset);
5302         return nth_page(sg_page(sg), offset);
5303 }
5304
5305 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5306 struct page *
5307 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5308                                unsigned int n)
5309 {
5310         struct page *page;
5311
5312         page = i915_gem_object_get_page(obj, n);
5313         if (!obj->mm.dirty)
5314                 set_page_dirty(page);
5315
5316         return page;
5317 }
5318
5319 dma_addr_t
5320 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5321                                 unsigned long n)
5322 {
5323         struct scatterlist *sg;
5324         unsigned int offset;
5325
5326         sg = i915_gem_object_get_sg(obj, n, &offset);
5327         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5328 }
5329
5330 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5331 {
5332         struct sg_table *pages;
5333         int err;
5334
5335         if (align > obj->base.size)
5336                 return -EINVAL;
5337
5338         if (obj->ops == &i915_gem_phys_ops)
5339                 return 0;
5340
5341         if (obj->ops != &i915_gem_object_ops)
5342                 return -EINVAL;
5343
5344         err = i915_gem_object_unbind(obj);
5345         if (err)
5346                 return err;
5347
5348         mutex_lock(&obj->mm.lock);
5349
5350         if (obj->mm.madv != I915_MADV_WILLNEED) {
5351                 err = -EFAULT;
5352                 goto err_unlock;
5353         }
5354
5355         if (obj->mm.quirked) {
5356                 err = -EFAULT;
5357                 goto err_unlock;
5358         }
5359
5360         if (obj->mm.mapping) {
5361                 err = -EBUSY;
5362                 goto err_unlock;
5363         }
5364
5365         pages = obj->mm.pages;
5366         obj->ops = &i915_gem_phys_ops;
5367
5368         err = ____i915_gem_object_get_pages(obj);
5369         if (err)
5370                 goto err_xfer;
5371
5372         /* Perma-pin (until release) the physical set of pages */
5373         __i915_gem_object_pin_pages(obj);
5374
5375         if (!IS_ERR_OR_NULL(pages))
5376                 i915_gem_object_ops.put_pages(obj, pages);
5377         mutex_unlock(&obj->mm.lock);
5378         return 0;
5379
5380 err_xfer:
5381         obj->ops = &i915_gem_object_ops;
5382         obj->mm.pages = pages;
5383 err_unlock:
5384         mutex_unlock(&obj->mm.lock);
5385         return err;
5386 }
5387
5388 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5389 #include "selftests/scatterlist.c"
5390 #include "selftests/mock_gem_device.c"
5391 #include "selftests/huge_gem_object.c"
5392 #include "selftests/i915_gem_object.c"
5393 #include "selftests/i915_gem_coherency.c"
5394 #endif