Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_vgpu.h"
33 #include "i915_trace.h"
34 #include "intel_drv.h"
35 #include "intel_frontbuffer.h"
36 #include "intel_mocs.h"
37 #include <linux/dma-fence-array.h>
38 #include <linux/reservation.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/slab.h>
41 #include <linux/stop_machine.h>
42 #include <linux/swap.h>
43 #include <linux/pci.h>
44 #include <linux/dma-buf.h>
45
46 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
47 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
48 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
49
50 static bool cpu_cache_is_coherent(struct drm_device *dev,
51                                   enum i915_cache_level level)
52 {
53         return HAS_LLC(to_i915(dev)) || level != I915_CACHE_NONE;
54 }
55
56 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
57 {
58         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
59                 return false;
60
61         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
62                 return true;
63
64         return obj->pin_display;
65 }
66
67 static int
68 insert_mappable_node(struct i915_ggtt *ggtt,
69                      struct drm_mm_node *node, u32 size)
70 {
71         memset(node, 0, sizeof(*node));
72         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
73                                            size, 0, I915_COLOR_UNEVICTABLE,
74                                            0, ggtt->mappable_end,
75                                            DRM_MM_INSERT_LOW);
76 }
77
78 static void
79 remove_mappable_node(struct drm_mm_node *node)
80 {
81         drm_mm_remove_node(node);
82 }
83
84 /* some bookkeeping */
85 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
86                                   u64 size)
87 {
88         spin_lock(&dev_priv->mm.object_stat_lock);
89         dev_priv->mm.object_count++;
90         dev_priv->mm.object_memory += size;
91         spin_unlock(&dev_priv->mm.object_stat_lock);
92 }
93
94 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
95                                      u64 size)
96 {
97         spin_lock(&dev_priv->mm.object_stat_lock);
98         dev_priv->mm.object_count--;
99         dev_priv->mm.object_memory -= size;
100         spin_unlock(&dev_priv->mm.object_stat_lock);
101 }
102
103 static int
104 i915_gem_wait_for_error(struct i915_gpu_error *error)
105 {
106         int ret;
107
108         might_sleep();
109
110         if (!i915_reset_in_progress(error))
111                 return 0;
112
113         /*
114          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
115          * userspace. If it takes that long something really bad is going on and
116          * we should simply try to bail out and fail as gracefully as possible.
117          */
118         ret = wait_event_interruptible_timeout(error->reset_queue,
119                                                !i915_reset_in_progress(error),
120                                                I915_RESET_TIMEOUT);
121         if (ret == 0) {
122                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
123                 return -EIO;
124         } else if (ret < 0) {
125                 return ret;
126         } else {
127                 return 0;
128         }
129 }
130
131 int i915_mutex_lock_interruptible(struct drm_device *dev)
132 {
133         struct drm_i915_private *dev_priv = to_i915(dev);
134         int ret;
135
136         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
137         if (ret)
138                 return ret;
139
140         ret = mutex_lock_interruptible(&dev->struct_mutex);
141         if (ret)
142                 return ret;
143
144         return 0;
145 }
146
147 int
148 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
149                             struct drm_file *file)
150 {
151         struct drm_i915_private *dev_priv = to_i915(dev);
152         struct i915_ggtt *ggtt = &dev_priv->ggtt;
153         struct drm_i915_gem_get_aperture *args = data;
154         struct i915_vma *vma;
155         size_t pinned;
156
157         pinned = 0;
158         mutex_lock(&dev->struct_mutex);
159         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
160                 if (i915_vma_is_pinned(vma))
161                         pinned += vma->node.size;
162         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
163                 if (i915_vma_is_pinned(vma))
164                         pinned += vma->node.size;
165         mutex_unlock(&dev->struct_mutex);
166
167         args->aper_size = ggtt->base.total;
168         args->aper_available_size = args->aper_size - pinned;
169
170         return 0;
171 }
172
173 static struct sg_table *
174 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
175 {
176         struct address_space *mapping = obj->base.filp->f_mapping;
177         drm_dma_handle_t *phys;
178         struct sg_table *st;
179         struct scatterlist *sg;
180         char *vaddr;
181         int i;
182
183         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
184                 return ERR_PTR(-EINVAL);
185
186         /* Always aligning to the object size, allows a single allocation
187          * to handle all possible callers, and given typical object sizes,
188          * the alignment of the buddy allocation will naturally match.
189          */
190         phys = drm_pci_alloc(obj->base.dev,
191                              obj->base.size,
192                              roundup_pow_of_two(obj->base.size));
193         if (!phys)
194                 return ERR_PTR(-ENOMEM);
195
196         vaddr = phys->vaddr;
197         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
198                 struct page *page;
199                 char *src;
200
201                 page = shmem_read_mapping_page(mapping, i);
202                 if (IS_ERR(page)) {
203                         st = ERR_CAST(page);
204                         goto err_phys;
205                 }
206
207                 src = kmap_atomic(page);
208                 memcpy(vaddr, src, PAGE_SIZE);
209                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
210                 kunmap_atomic(src);
211
212                 put_page(page);
213                 vaddr += PAGE_SIZE;
214         }
215
216         i915_gem_chipset_flush(to_i915(obj->base.dev));
217
218         st = kmalloc(sizeof(*st), GFP_KERNEL);
219         if (!st) {
220                 st = ERR_PTR(-ENOMEM);
221                 goto err_phys;
222         }
223
224         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
225                 kfree(st);
226                 st = ERR_PTR(-ENOMEM);
227                 goto err_phys;
228         }
229
230         sg = st->sgl;
231         sg->offset = 0;
232         sg->length = obj->base.size;
233
234         sg_dma_address(sg) = phys->busaddr;
235         sg_dma_len(sg) = obj->base.size;
236
237         obj->phys_handle = phys;
238         return st;
239
240 err_phys:
241         drm_pci_free(obj->base.dev, phys);
242         return st;
243 }
244
245 static void
246 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
247                                 struct sg_table *pages,
248                                 bool needs_clflush)
249 {
250         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
251
252         if (obj->mm.madv == I915_MADV_DONTNEED)
253                 obj->mm.dirty = false;
254
255         if (needs_clflush &&
256             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
257             !cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
258                 drm_clflush_sg(pages);
259
260         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
261         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
262 }
263
264 static void
265 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
266                                struct sg_table *pages)
267 {
268         __i915_gem_object_release_shmem(obj, pages, false);
269
270         if (obj->mm.dirty) {
271                 struct address_space *mapping = obj->base.filp->f_mapping;
272                 char *vaddr = obj->phys_handle->vaddr;
273                 int i;
274
275                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
276                         struct page *page;
277                         char *dst;
278
279                         page = shmem_read_mapping_page(mapping, i);
280                         if (IS_ERR(page))
281                                 continue;
282
283                         dst = kmap_atomic(page);
284                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
285                         memcpy(dst, vaddr, PAGE_SIZE);
286                         kunmap_atomic(dst);
287
288                         set_page_dirty(page);
289                         if (obj->mm.madv == I915_MADV_WILLNEED)
290                                 mark_page_accessed(page);
291                         put_page(page);
292                         vaddr += PAGE_SIZE;
293                 }
294                 obj->mm.dirty = false;
295         }
296
297         sg_free_table(pages);
298         kfree(pages);
299
300         drm_pci_free(obj->base.dev, obj->phys_handle);
301 }
302
303 static void
304 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
305 {
306         i915_gem_object_unpin_pages(obj);
307 }
308
309 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
310         .get_pages = i915_gem_object_get_pages_phys,
311         .put_pages = i915_gem_object_put_pages_phys,
312         .release = i915_gem_object_release_phys,
313 };
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317         struct i915_vma *vma;
318         LIST_HEAD(still_in_list);
319         int ret;
320
321         lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323         /* Closed vma are removed from the obj->vma_list - but they may
324          * still have an active binding on the object. To remove those we
325          * must wait for all rendering to complete to the object (as unbinding
326          * must anyway), and retire the requests.
327          */
328         ret = i915_gem_object_wait(obj,
329                                    I915_WAIT_INTERRUPTIBLE |
330                                    I915_WAIT_LOCKED |
331                                    I915_WAIT_ALL,
332                                    MAX_SCHEDULE_TIMEOUT,
333                                    NULL);
334         if (ret)
335                 return ret;
336
337         i915_gem_retire_requests(to_i915(obj->base.dev));
338
339         while ((vma = list_first_entry_or_null(&obj->vma_list,
340                                                struct i915_vma,
341                                                obj_link))) {
342                 list_move_tail(&vma->obj_link, &still_in_list);
343                 ret = i915_vma_unbind(vma);
344                 if (ret)
345                         break;
346         }
347         list_splice(&still_in_list, &obj->vma_list);
348
349         return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354                            unsigned int flags,
355                            long timeout,
356                            struct intel_rps_client *rps)
357 {
358         struct drm_i915_gem_request *rq;
359
360         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363                 return timeout;
364
365         if (!dma_fence_is_i915(fence))
366                 return dma_fence_wait_timeout(fence,
367                                               flags & I915_WAIT_INTERRUPTIBLE,
368                                               timeout);
369
370         rq = to_request(fence);
371         if (i915_gem_request_completed(rq))
372                 goto out;
373
374         /* This client is about to stall waiting for the GPU. In many cases
375          * this is undesirable and limits the throughput of the system, as
376          * many clients cannot continue processing user input/output whilst
377          * blocked. RPS autotuning may take tens of milliseconds to respond
378          * to the GPU load and thus incurs additional latency for the client.
379          * We can circumvent that by promoting the GPU frequency to maximum
380          * before we wait. This makes the GPU throttle up much more quickly
381          * (good for benchmarks and user experience, e.g. window animations),
382          * but at a cost of spending more power processing the workload
383          * (bad for battery). Not all clients even want their results
384          * immediately and for them we should just let the GPU select its own
385          * frequency to maximise efficiency. To prevent a single client from
386          * forcing the clocks too high for the whole system, we only allow
387          * each client to waitboost once in a busy period.
388          */
389         if (rps) {
390                 if (INTEL_GEN(rq->i915) >= 6)
391                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
392                 else
393                         rps = NULL;
394         }
395
396         timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400                 i915_gem_request_retire_upto(rq);
401
402         if (rps && rq->global_seqno == intel_engine_last_submit(rq->engine)) {
403                 /* The GPU is now idle and this client has stalled.
404                  * Since no other client has submitted a request in the
405                  * meantime, assume that this client is the only one
406                  * supplying work to the GPU but is unable to keep that
407                  * work supplied because it is waiting. Since the GPU is
408                  * then never kept fully busy, RPS autoclocking will
409                  * keep the clocks relatively low, causing further delays.
410                  * Compensate by giving the synchronous client credit for
411                  * a waitboost next time.
412                  */
413                 spin_lock(&rq->i915->rps.client_lock);
414                 list_del_init(&rps->link);
415                 spin_unlock(&rq->i915->rps.client_lock);
416         }
417
418         return timeout;
419 }
420
421 static long
422 i915_gem_object_wait_reservation(struct reservation_object *resv,
423                                  unsigned int flags,
424                                  long timeout,
425                                  struct intel_rps_client *rps)
426 {
427         struct dma_fence *excl;
428
429         if (flags & I915_WAIT_ALL) {
430                 struct dma_fence **shared;
431                 unsigned int count, i;
432                 int ret;
433
434                 ret = reservation_object_get_fences_rcu(resv,
435                                                         &excl, &count, &shared);
436                 if (ret)
437                         return ret;
438
439                 for (i = 0; i < count; i++) {
440                         timeout = i915_gem_object_wait_fence(shared[i],
441                                                              flags, timeout,
442                                                              rps);
443                         if (timeout < 0)
444                                 break;
445
446                         dma_fence_put(shared[i]);
447                 }
448
449                 for (; i < count; i++)
450                         dma_fence_put(shared[i]);
451                 kfree(shared);
452         } else {
453                 excl = reservation_object_get_excl_rcu(resv);
454         }
455
456         if (excl && timeout >= 0)
457                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
458
459         dma_fence_put(excl);
460
461         return timeout;
462 }
463
464 static void __fence_set_priority(struct dma_fence *fence, int prio)
465 {
466         struct drm_i915_gem_request *rq;
467         struct intel_engine_cs *engine;
468
469         if (!dma_fence_is_i915(fence))
470                 return;
471
472         rq = to_request(fence);
473         engine = rq->engine;
474         if (!engine->schedule)
475                 return;
476
477         engine->schedule(rq, prio);
478 }
479
480 static void fence_set_priority(struct dma_fence *fence, int prio)
481 {
482         /* Recurse once into a fence-array */
483         if (dma_fence_is_array(fence)) {
484                 struct dma_fence_array *array = to_dma_fence_array(fence);
485                 int i;
486
487                 for (i = 0; i < array->num_fences; i++)
488                         __fence_set_priority(array->fences[i], prio);
489         } else {
490                 __fence_set_priority(fence, prio);
491         }
492 }
493
494 int
495 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
496                               unsigned int flags,
497                               int prio)
498 {
499         struct dma_fence *excl;
500
501         if (flags & I915_WAIT_ALL) {
502                 struct dma_fence **shared;
503                 unsigned int count, i;
504                 int ret;
505
506                 ret = reservation_object_get_fences_rcu(obj->resv,
507                                                         &excl, &count, &shared);
508                 if (ret)
509                         return ret;
510
511                 for (i = 0; i < count; i++) {
512                         fence_set_priority(shared[i], prio);
513                         dma_fence_put(shared[i]);
514                 }
515
516                 kfree(shared);
517         } else {
518                 excl = reservation_object_get_excl_rcu(obj->resv);
519         }
520
521         if (excl) {
522                 fence_set_priority(excl, prio);
523                 dma_fence_put(excl);
524         }
525         return 0;
526 }
527
528 /**
529  * Waits for rendering to the object to be completed
530  * @obj: i915 gem object
531  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
532  * @timeout: how long to wait
533  * @rps: client (user process) to charge for any waitboosting
534  */
535 int
536 i915_gem_object_wait(struct drm_i915_gem_object *obj,
537                      unsigned int flags,
538                      long timeout,
539                      struct intel_rps_client *rps)
540 {
541         might_sleep();
542 #if IS_ENABLED(CONFIG_LOCKDEP)
543         GEM_BUG_ON(debug_locks &&
544                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
545                    !!(flags & I915_WAIT_LOCKED));
546 #endif
547         GEM_BUG_ON(timeout < 0);
548
549         timeout = i915_gem_object_wait_reservation(obj->resv,
550                                                    flags, timeout,
551                                                    rps);
552         return timeout < 0 ? timeout : 0;
553 }
554
555 static struct intel_rps_client *to_rps_client(struct drm_file *file)
556 {
557         struct drm_i915_file_private *fpriv = file->driver_priv;
558
559         return &fpriv->rps;
560 }
561
562 int
563 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
564                             int align)
565 {
566         int ret;
567
568         if (align > obj->base.size)
569                 return -EINVAL;
570
571         if (obj->ops == &i915_gem_phys_ops)
572                 return 0;
573
574         if (obj->mm.madv != I915_MADV_WILLNEED)
575                 return -EFAULT;
576
577         if (obj->base.filp == NULL)
578                 return -EINVAL;
579
580         ret = i915_gem_object_unbind(obj);
581         if (ret)
582                 return ret;
583
584         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
585         if (obj->mm.pages)
586                 return -EBUSY;
587
588         obj->ops = &i915_gem_phys_ops;
589
590         return i915_gem_object_pin_pages(obj);
591 }
592
593 static int
594 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
595                      struct drm_i915_gem_pwrite *args,
596                      struct drm_file *file)
597 {
598         void *vaddr = obj->phys_handle->vaddr + args->offset;
599         char __user *user_data = u64_to_user_ptr(args->data_ptr);
600
601         /* We manually control the domain here and pretend that it
602          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
603          */
604         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
605         if (copy_from_user(vaddr, user_data, args->size))
606                 return -EFAULT;
607
608         drm_clflush_virt_range(vaddr, args->size);
609         i915_gem_chipset_flush(to_i915(obj->base.dev));
610
611         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
612         return 0;
613 }
614
615 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
616 {
617         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
618 }
619
620 void i915_gem_object_free(struct drm_i915_gem_object *obj)
621 {
622         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
623         kmem_cache_free(dev_priv->objects, obj);
624 }
625
626 static int
627 i915_gem_create(struct drm_file *file,
628                 struct drm_i915_private *dev_priv,
629                 uint64_t size,
630                 uint32_t *handle_p)
631 {
632         struct drm_i915_gem_object *obj;
633         int ret;
634         u32 handle;
635
636         size = roundup(size, PAGE_SIZE);
637         if (size == 0)
638                 return -EINVAL;
639
640         /* Allocate the new object */
641         obj = i915_gem_object_create(dev_priv, size);
642         if (IS_ERR(obj))
643                 return PTR_ERR(obj);
644
645         ret = drm_gem_handle_create(file, &obj->base, &handle);
646         /* drop reference from allocate - handle holds it now */
647         i915_gem_object_put(obj);
648         if (ret)
649                 return ret;
650
651         *handle_p = handle;
652         return 0;
653 }
654
655 int
656 i915_gem_dumb_create(struct drm_file *file,
657                      struct drm_device *dev,
658                      struct drm_mode_create_dumb *args)
659 {
660         /* have to work out size/pitch and return them */
661         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
662         args->size = args->pitch * args->height;
663         return i915_gem_create(file, to_i915(dev),
664                                args->size, &args->handle);
665 }
666
667 /**
668  * Creates a new mm object and returns a handle to it.
669  * @dev: drm device pointer
670  * @data: ioctl data blob
671  * @file: drm file pointer
672  */
673 int
674 i915_gem_create_ioctl(struct drm_device *dev, void *data,
675                       struct drm_file *file)
676 {
677         struct drm_i915_private *dev_priv = to_i915(dev);
678         struct drm_i915_gem_create *args = data;
679
680         i915_gem_flush_free_objects(dev_priv);
681
682         return i915_gem_create(file, dev_priv,
683                                args->size, &args->handle);
684 }
685
686 static inline int
687 __copy_to_user_swizzled(char __user *cpu_vaddr,
688                         const char *gpu_vaddr, int gpu_offset,
689                         int length)
690 {
691         int ret, cpu_offset = 0;
692
693         while (length > 0) {
694                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
695                 int this_length = min(cacheline_end - gpu_offset, length);
696                 int swizzled_gpu_offset = gpu_offset ^ 64;
697
698                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
699                                      gpu_vaddr + swizzled_gpu_offset,
700                                      this_length);
701                 if (ret)
702                         return ret + length;
703
704                 cpu_offset += this_length;
705                 gpu_offset += this_length;
706                 length -= this_length;
707         }
708
709         return 0;
710 }
711
712 static inline int
713 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
714                           const char __user *cpu_vaddr,
715                           int length)
716 {
717         int ret, cpu_offset = 0;
718
719         while (length > 0) {
720                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
721                 int this_length = min(cacheline_end - gpu_offset, length);
722                 int swizzled_gpu_offset = gpu_offset ^ 64;
723
724                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
725                                        cpu_vaddr + cpu_offset,
726                                        this_length);
727                 if (ret)
728                         return ret + length;
729
730                 cpu_offset += this_length;
731                 gpu_offset += this_length;
732                 length -= this_length;
733         }
734
735         return 0;
736 }
737
738 /*
739  * Pins the specified object's pages and synchronizes the object with
740  * GPU accesses. Sets needs_clflush to non-zero if the caller should
741  * flush the object from the CPU cache.
742  */
743 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
744                                     unsigned int *needs_clflush)
745 {
746         int ret;
747
748         lockdep_assert_held(&obj->base.dev->struct_mutex);
749
750         *needs_clflush = 0;
751         if (!i915_gem_object_has_struct_page(obj))
752                 return -ENODEV;
753
754         ret = i915_gem_object_wait(obj,
755                                    I915_WAIT_INTERRUPTIBLE |
756                                    I915_WAIT_LOCKED,
757                                    MAX_SCHEDULE_TIMEOUT,
758                                    NULL);
759         if (ret)
760                 return ret;
761
762         ret = i915_gem_object_pin_pages(obj);
763         if (ret)
764                 return ret;
765
766         i915_gem_object_flush_gtt_write_domain(obj);
767
768         /* If we're not in the cpu read domain, set ourself into the gtt
769          * read domain and manually flush cachelines (if required). This
770          * optimizes for the case when the gpu will dirty the data
771          * anyway again before the next pread happens.
772          */
773         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
774                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
775                                                         obj->cache_level);
776
777         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
778                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
779                 if (ret)
780                         goto err_unpin;
781
782                 *needs_clflush = 0;
783         }
784
785         /* return with the pages pinned */
786         return 0;
787
788 err_unpin:
789         i915_gem_object_unpin_pages(obj);
790         return ret;
791 }
792
793 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
794                                      unsigned int *needs_clflush)
795 {
796         int ret;
797
798         lockdep_assert_held(&obj->base.dev->struct_mutex);
799
800         *needs_clflush = 0;
801         if (!i915_gem_object_has_struct_page(obj))
802                 return -ENODEV;
803
804         ret = i915_gem_object_wait(obj,
805                                    I915_WAIT_INTERRUPTIBLE |
806                                    I915_WAIT_LOCKED |
807                                    I915_WAIT_ALL,
808                                    MAX_SCHEDULE_TIMEOUT,
809                                    NULL);
810         if (ret)
811                 return ret;
812
813         ret = i915_gem_object_pin_pages(obj);
814         if (ret)
815                 return ret;
816
817         i915_gem_object_flush_gtt_write_domain(obj);
818
819         /* If we're not in the cpu write domain, set ourself into the
820          * gtt write domain and manually flush cachelines (as required).
821          * This optimizes for the case when the gpu will use the data
822          * right away and we therefore have to clflush anyway.
823          */
824         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
825                 *needs_clflush |= cpu_write_needs_clflush(obj) << 1;
826
827         /* Same trick applies to invalidate partially written cachelines read
828          * before writing.
829          */
830         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
831                 *needs_clflush |= !cpu_cache_is_coherent(obj->base.dev,
832                                                          obj->cache_level);
833
834         if (*needs_clflush && !static_cpu_has(X86_FEATURE_CLFLUSH)) {
835                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
836                 if (ret)
837                         goto err_unpin;
838
839                 *needs_clflush = 0;
840         }
841
842         if ((*needs_clflush & CLFLUSH_AFTER) == 0)
843                 obj->cache_dirty = true;
844
845         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
846         obj->mm.dirty = true;
847         /* return with the pages pinned */
848         return 0;
849
850 err_unpin:
851         i915_gem_object_unpin_pages(obj);
852         return ret;
853 }
854
855 static void
856 shmem_clflush_swizzled_range(char *addr, unsigned long length,
857                              bool swizzled)
858 {
859         if (unlikely(swizzled)) {
860                 unsigned long start = (unsigned long) addr;
861                 unsigned long end = (unsigned long) addr + length;
862
863                 /* For swizzling simply ensure that we always flush both
864                  * channels. Lame, but simple and it works. Swizzled
865                  * pwrite/pread is far from a hotpath - current userspace
866                  * doesn't use it at all. */
867                 start = round_down(start, 128);
868                 end = round_up(end, 128);
869
870                 drm_clflush_virt_range((void *)start, end - start);
871         } else {
872                 drm_clflush_virt_range(addr, length);
873         }
874
875 }
876
877 /* Only difference to the fast-path function is that this can handle bit17
878  * and uses non-atomic copy and kmap functions. */
879 static int
880 shmem_pread_slow(struct page *page, int offset, int length,
881                  char __user *user_data,
882                  bool page_do_bit17_swizzling, bool needs_clflush)
883 {
884         char *vaddr;
885         int ret;
886
887         vaddr = kmap(page);
888         if (needs_clflush)
889                 shmem_clflush_swizzled_range(vaddr + offset, length,
890                                              page_do_bit17_swizzling);
891
892         if (page_do_bit17_swizzling)
893                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
894         else
895                 ret = __copy_to_user(user_data, vaddr + offset, length);
896         kunmap(page);
897
898         return ret ? - EFAULT : 0;
899 }
900
901 static int
902 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
903             bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905         int ret;
906
907         ret = -ENODEV;
908         if (!page_do_bit17_swizzling) {
909                 char *vaddr = kmap_atomic(page);
910
911                 if (needs_clflush)
912                         drm_clflush_virt_range(vaddr + offset, length);
913                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
914                 kunmap_atomic(vaddr);
915         }
916         if (ret == 0)
917                 return 0;
918
919         return shmem_pread_slow(page, offset, length, user_data,
920                                 page_do_bit17_swizzling, needs_clflush);
921 }
922
923 static int
924 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
925                      struct drm_i915_gem_pread *args)
926 {
927         char __user *user_data;
928         u64 remain;
929         unsigned int obj_do_bit17_swizzling;
930         unsigned int needs_clflush;
931         unsigned int idx, offset;
932         int ret;
933
934         obj_do_bit17_swizzling = 0;
935         if (i915_gem_object_needs_bit17_swizzle(obj))
936                 obj_do_bit17_swizzling = BIT(17);
937
938         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
939         if (ret)
940                 return ret;
941
942         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
943         mutex_unlock(&obj->base.dev->struct_mutex);
944         if (ret)
945                 return ret;
946
947         remain = args->size;
948         user_data = u64_to_user_ptr(args->data_ptr);
949         offset = offset_in_page(args->offset);
950         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
951                 struct page *page = i915_gem_object_get_page(obj, idx);
952                 int length;
953
954                 length = remain;
955                 if (offset + length > PAGE_SIZE)
956                         length = PAGE_SIZE - offset;
957
958                 ret = shmem_pread(page, offset, length, user_data,
959                                   page_to_phys(page) & obj_do_bit17_swizzling,
960                                   needs_clflush);
961                 if (ret)
962                         break;
963
964                 remain -= length;
965                 user_data += length;
966                 offset = 0;
967         }
968
969         i915_gem_obj_finish_shmem_access(obj);
970         return ret;
971 }
972
973 static inline bool
974 gtt_user_read(struct io_mapping *mapping,
975               loff_t base, int offset,
976               char __user *user_data, int length)
977 {
978         void *vaddr;
979         unsigned long unwritten;
980
981         /* We can use the cpu mem copy function because this is X86. */
982         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
983         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
984         io_mapping_unmap_atomic(vaddr);
985         if (unwritten) {
986                 vaddr = (void __force *)
987                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
988                 unwritten = copy_to_user(user_data, vaddr + offset, length);
989                 io_mapping_unmap(vaddr);
990         }
991         return unwritten;
992 }
993
994 static int
995 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
996                    const struct drm_i915_gem_pread *args)
997 {
998         struct drm_i915_private *i915 = to_i915(obj->base.dev);
999         struct i915_ggtt *ggtt = &i915->ggtt;
1000         struct drm_mm_node node;
1001         struct i915_vma *vma;
1002         void __user *user_data;
1003         u64 remain, offset;
1004         int ret;
1005
1006         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1007         if (ret)
1008                 return ret;
1009
1010         intel_runtime_pm_get(i915);
1011         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012                                        PIN_MAPPABLE | PIN_NONBLOCK);
1013         if (!IS_ERR(vma)) {
1014                 node.start = i915_ggtt_offset(vma);
1015                 node.allocated = false;
1016                 ret = i915_vma_put_fence(vma);
1017                 if (ret) {
1018                         i915_vma_unpin(vma);
1019                         vma = ERR_PTR(ret);
1020                 }
1021         }
1022         if (IS_ERR(vma)) {
1023                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1024                 if (ret)
1025                         goto out_unlock;
1026                 GEM_BUG_ON(!node.allocated);
1027         }
1028
1029         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1030         if (ret)
1031                 goto out_unpin;
1032
1033         mutex_unlock(&i915->drm.struct_mutex);
1034
1035         user_data = u64_to_user_ptr(args->data_ptr);
1036         remain = args->size;
1037         offset = args->offset;
1038
1039         while (remain > 0) {
1040                 /* Operation in this page
1041                  *
1042                  * page_base = page offset within aperture
1043                  * page_offset = offset within page
1044                  * page_length = bytes to copy for this page
1045                  */
1046                 u32 page_base = node.start;
1047                 unsigned page_offset = offset_in_page(offset);
1048                 unsigned page_length = PAGE_SIZE - page_offset;
1049                 page_length = remain < page_length ? remain : page_length;
1050                 if (node.allocated) {
1051                         wmb();
1052                         ggtt->base.insert_page(&ggtt->base,
1053                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1054                                                node.start, I915_CACHE_NONE, 0);
1055                         wmb();
1056                 } else {
1057                         page_base += offset & PAGE_MASK;
1058                 }
1059
1060                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1061                                   user_data, page_length)) {
1062                         ret = -EFAULT;
1063                         break;
1064                 }
1065
1066                 remain -= page_length;
1067                 user_data += page_length;
1068                 offset += page_length;
1069         }
1070
1071         mutex_lock(&i915->drm.struct_mutex);
1072 out_unpin:
1073         if (node.allocated) {
1074                 wmb();
1075                 ggtt->base.clear_range(&ggtt->base,
1076                                        node.start, node.size);
1077                 remove_mappable_node(&node);
1078         } else {
1079                 i915_vma_unpin(vma);
1080         }
1081 out_unlock:
1082         intel_runtime_pm_put(i915);
1083         mutex_unlock(&i915->drm.struct_mutex);
1084
1085         return ret;
1086 }
1087
1088 /**
1089  * Reads data from the object referenced by handle.
1090  * @dev: drm device pointer
1091  * @data: ioctl data blob
1092  * @file: drm file pointer
1093  *
1094  * On error, the contents of *data are undefined.
1095  */
1096 int
1097 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1098                      struct drm_file *file)
1099 {
1100         struct drm_i915_gem_pread *args = data;
1101         struct drm_i915_gem_object *obj;
1102         int ret;
1103
1104         if (args->size == 0)
1105                 return 0;
1106
1107         if (!access_ok(VERIFY_WRITE,
1108                        u64_to_user_ptr(args->data_ptr),
1109                        args->size))
1110                 return -EFAULT;
1111
1112         obj = i915_gem_object_lookup(file, args->handle);
1113         if (!obj)
1114                 return -ENOENT;
1115
1116         /* Bounds check source.  */
1117         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1118                 ret = -EINVAL;
1119                 goto out;
1120         }
1121
1122         trace_i915_gem_object_pread(obj, args->offset, args->size);
1123
1124         ret = i915_gem_object_wait(obj,
1125                                    I915_WAIT_INTERRUPTIBLE,
1126                                    MAX_SCHEDULE_TIMEOUT,
1127                                    to_rps_client(file));
1128         if (ret)
1129                 goto out;
1130
1131         ret = i915_gem_object_pin_pages(obj);
1132         if (ret)
1133                 goto out;
1134
1135         ret = i915_gem_shmem_pread(obj, args);
1136         if (ret == -EFAULT || ret == -ENODEV)
1137                 ret = i915_gem_gtt_pread(obj, args);
1138
1139         i915_gem_object_unpin_pages(obj);
1140 out:
1141         i915_gem_object_put(obj);
1142         return ret;
1143 }
1144
1145 /* This is the fast write path which cannot handle
1146  * page faults in the source data
1147  */
1148
1149 static inline bool
1150 ggtt_write(struct io_mapping *mapping,
1151            loff_t base, int offset,
1152            char __user *user_data, int length)
1153 {
1154         void *vaddr;
1155         unsigned long unwritten;
1156
1157         /* We can use the cpu mem copy function because this is X86. */
1158         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1159         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1160                                                       user_data, length);
1161         io_mapping_unmap_atomic(vaddr);
1162         if (unwritten) {
1163                 vaddr = (void __force *)
1164                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1165                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1166                 io_mapping_unmap(vaddr);
1167         }
1168
1169         return unwritten;
1170 }
1171
1172 /**
1173  * This is the fast pwrite path, where we copy the data directly from the
1174  * user into the GTT, uncached.
1175  * @obj: i915 GEM object
1176  * @args: pwrite arguments structure
1177  */
1178 static int
1179 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1180                          const struct drm_i915_gem_pwrite *args)
1181 {
1182         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1183         struct i915_ggtt *ggtt = &i915->ggtt;
1184         struct drm_mm_node node;
1185         struct i915_vma *vma;
1186         u64 remain, offset;
1187         void __user *user_data;
1188         int ret;
1189
1190         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1191         if (ret)
1192                 return ret;
1193
1194         intel_runtime_pm_get(i915);
1195         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1196                                        PIN_MAPPABLE | PIN_NONBLOCK);
1197         if (!IS_ERR(vma)) {
1198                 node.start = i915_ggtt_offset(vma);
1199                 node.allocated = false;
1200                 ret = i915_vma_put_fence(vma);
1201                 if (ret) {
1202                         i915_vma_unpin(vma);
1203                         vma = ERR_PTR(ret);
1204                 }
1205         }
1206         if (IS_ERR(vma)) {
1207                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1208                 if (ret)
1209                         goto out_unlock;
1210                 GEM_BUG_ON(!node.allocated);
1211         }
1212
1213         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1214         if (ret)
1215                 goto out_unpin;
1216
1217         mutex_unlock(&i915->drm.struct_mutex);
1218
1219         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1220
1221         user_data = u64_to_user_ptr(args->data_ptr);
1222         offset = args->offset;
1223         remain = args->size;
1224         while (remain) {
1225                 /* Operation in this page
1226                  *
1227                  * page_base = page offset within aperture
1228                  * page_offset = offset within page
1229                  * page_length = bytes to copy for this page
1230                  */
1231                 u32 page_base = node.start;
1232                 unsigned int page_offset = offset_in_page(offset);
1233                 unsigned int page_length = PAGE_SIZE - page_offset;
1234                 page_length = remain < page_length ? remain : page_length;
1235                 if (node.allocated) {
1236                         wmb(); /* flush the write before we modify the GGTT */
1237                         ggtt->base.insert_page(&ggtt->base,
1238                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1239                                                node.start, I915_CACHE_NONE, 0);
1240                         wmb(); /* flush modifications to the GGTT (insert_page) */
1241                 } else {
1242                         page_base += offset & PAGE_MASK;
1243                 }
1244                 /* If we get a fault while copying data, then (presumably) our
1245                  * source page isn't available.  Return the error and we'll
1246                  * retry in the slow path.
1247                  * If the object is non-shmem backed, we retry again with the
1248                  * path that handles page fault.
1249                  */
1250                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1251                                user_data, page_length)) {
1252                         ret = -EFAULT;
1253                         break;
1254                 }
1255
1256                 remain -= page_length;
1257                 user_data += page_length;
1258                 offset += page_length;
1259         }
1260         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1261
1262         mutex_lock(&i915->drm.struct_mutex);
1263 out_unpin:
1264         if (node.allocated) {
1265                 wmb();
1266                 ggtt->base.clear_range(&ggtt->base,
1267                                        node.start, node.size);
1268                 remove_mappable_node(&node);
1269         } else {
1270                 i915_vma_unpin(vma);
1271         }
1272 out_unlock:
1273         intel_runtime_pm_put(i915);
1274         mutex_unlock(&i915->drm.struct_mutex);
1275         return ret;
1276 }
1277
1278 static int
1279 shmem_pwrite_slow(struct page *page, int offset, int length,
1280                   char __user *user_data,
1281                   bool page_do_bit17_swizzling,
1282                   bool needs_clflush_before,
1283                   bool needs_clflush_after)
1284 {
1285         char *vaddr;
1286         int ret;
1287
1288         vaddr = kmap(page);
1289         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1290                 shmem_clflush_swizzled_range(vaddr + offset, length,
1291                                              page_do_bit17_swizzling);
1292         if (page_do_bit17_swizzling)
1293                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1294                                                 length);
1295         else
1296                 ret = __copy_from_user(vaddr + offset, user_data, length);
1297         if (needs_clflush_after)
1298                 shmem_clflush_swizzled_range(vaddr + offset, length,
1299                                              page_do_bit17_swizzling);
1300         kunmap(page);
1301
1302         return ret ? -EFAULT : 0;
1303 }
1304
1305 /* Per-page copy function for the shmem pwrite fastpath.
1306  * Flushes invalid cachelines before writing to the target if
1307  * needs_clflush_before is set and flushes out any written cachelines after
1308  * writing if needs_clflush is set.
1309  */
1310 static int
1311 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1312              bool page_do_bit17_swizzling,
1313              bool needs_clflush_before,
1314              bool needs_clflush_after)
1315 {
1316         int ret;
1317
1318         ret = -ENODEV;
1319         if (!page_do_bit17_swizzling) {
1320                 char *vaddr = kmap_atomic(page);
1321
1322                 if (needs_clflush_before)
1323                         drm_clflush_virt_range(vaddr + offset, len);
1324                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1325                 if (needs_clflush_after)
1326                         drm_clflush_virt_range(vaddr + offset, len);
1327
1328                 kunmap_atomic(vaddr);
1329         }
1330         if (ret == 0)
1331                 return ret;
1332
1333         return shmem_pwrite_slow(page, offset, len, user_data,
1334                                  page_do_bit17_swizzling,
1335                                  needs_clflush_before,
1336                                  needs_clflush_after);
1337 }
1338
1339 static int
1340 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1341                       const struct drm_i915_gem_pwrite *args)
1342 {
1343         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1344         void __user *user_data;
1345         u64 remain;
1346         unsigned int obj_do_bit17_swizzling;
1347         unsigned int partial_cacheline_write;
1348         unsigned int needs_clflush;
1349         unsigned int offset, idx;
1350         int ret;
1351
1352         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1353         if (ret)
1354                 return ret;
1355
1356         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1357         mutex_unlock(&i915->drm.struct_mutex);
1358         if (ret)
1359                 return ret;
1360
1361         obj_do_bit17_swizzling = 0;
1362         if (i915_gem_object_needs_bit17_swizzle(obj))
1363                 obj_do_bit17_swizzling = BIT(17);
1364
1365         /* If we don't overwrite a cacheline completely we need to be
1366          * careful to have up-to-date data by first clflushing. Don't
1367          * overcomplicate things and flush the entire patch.
1368          */
1369         partial_cacheline_write = 0;
1370         if (needs_clflush & CLFLUSH_BEFORE)
1371                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1372
1373         user_data = u64_to_user_ptr(args->data_ptr);
1374         remain = args->size;
1375         offset = offset_in_page(args->offset);
1376         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1377                 struct page *page = i915_gem_object_get_page(obj, idx);
1378                 int length;
1379
1380                 length = remain;
1381                 if (offset + length > PAGE_SIZE)
1382                         length = PAGE_SIZE - offset;
1383
1384                 ret = shmem_pwrite(page, offset, length, user_data,
1385                                    page_to_phys(page) & obj_do_bit17_swizzling,
1386                                    (offset | length) & partial_cacheline_write,
1387                                    needs_clflush & CLFLUSH_AFTER);
1388                 if (ret)
1389                         break;
1390
1391                 remain -= length;
1392                 user_data += length;
1393                 offset = 0;
1394         }
1395
1396         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
1397         i915_gem_obj_finish_shmem_access(obj);
1398         return ret;
1399 }
1400
1401 /**
1402  * Writes data to the object referenced by handle.
1403  * @dev: drm device
1404  * @data: ioctl data blob
1405  * @file: drm file
1406  *
1407  * On error, the contents of the buffer that were to be modified are undefined.
1408  */
1409 int
1410 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1411                       struct drm_file *file)
1412 {
1413         struct drm_i915_gem_pwrite *args = data;
1414         struct drm_i915_gem_object *obj;
1415         int ret;
1416
1417         if (args->size == 0)
1418                 return 0;
1419
1420         if (!access_ok(VERIFY_READ,
1421                        u64_to_user_ptr(args->data_ptr),
1422                        args->size))
1423                 return -EFAULT;
1424
1425         obj = i915_gem_object_lookup(file, args->handle);
1426         if (!obj)
1427                 return -ENOENT;
1428
1429         /* Bounds check destination. */
1430         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1431                 ret = -EINVAL;
1432                 goto err;
1433         }
1434
1435         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1436
1437         ret = -ENODEV;
1438         if (obj->ops->pwrite)
1439                 ret = obj->ops->pwrite(obj, args);
1440         if (ret != -ENODEV)
1441                 goto err;
1442
1443         ret = i915_gem_object_wait(obj,
1444                                    I915_WAIT_INTERRUPTIBLE |
1445                                    I915_WAIT_ALL,
1446                                    MAX_SCHEDULE_TIMEOUT,
1447                                    to_rps_client(file));
1448         if (ret)
1449                 goto err;
1450
1451         ret = i915_gem_object_pin_pages(obj);
1452         if (ret)
1453                 goto err;
1454
1455         ret = -EFAULT;
1456         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1457          * it would end up going through the fenced access, and we'll get
1458          * different detiling behavior between reading and writing.
1459          * pread/pwrite currently are reading and writing from the CPU
1460          * perspective, requiring manual detiling by the client.
1461          */
1462         if (!i915_gem_object_has_struct_page(obj) ||
1463             cpu_write_needs_clflush(obj))
1464                 /* Note that the gtt paths might fail with non-page-backed user
1465                  * pointers (e.g. gtt mappings when moving data between
1466                  * textures). Fallback to the shmem path in that case.
1467                  */
1468                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1469
1470         if (ret == -EFAULT || ret == -ENOSPC) {
1471                 if (obj->phys_handle)
1472                         ret = i915_gem_phys_pwrite(obj, args, file);
1473                 else
1474                         ret = i915_gem_shmem_pwrite(obj, args);
1475         }
1476
1477         i915_gem_object_unpin_pages(obj);
1478 err:
1479         i915_gem_object_put(obj);
1480         return ret;
1481 }
1482
1483 static inline enum fb_op_origin
1484 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1485 {
1486         return (domain == I915_GEM_DOMAIN_GTT ?
1487                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1488 }
1489
1490 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1491 {
1492         struct drm_i915_private *i915;
1493         struct list_head *list;
1494         struct i915_vma *vma;
1495
1496         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1497                 if (!i915_vma_is_ggtt(vma))
1498                         break;
1499
1500                 if (i915_vma_is_active(vma))
1501                         continue;
1502
1503                 if (!drm_mm_node_allocated(&vma->node))
1504                         continue;
1505
1506                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1507         }
1508
1509         i915 = to_i915(obj->base.dev);
1510         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1511         list_move_tail(&obj->global_link, list);
1512 }
1513
1514 /**
1515  * Called when user space prepares to use an object with the CPU, either
1516  * through the mmap ioctl's mapping or a GTT mapping.
1517  * @dev: drm device
1518  * @data: ioctl data blob
1519  * @file: drm file
1520  */
1521 int
1522 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1523                           struct drm_file *file)
1524 {
1525         struct drm_i915_gem_set_domain *args = data;
1526         struct drm_i915_gem_object *obj;
1527         uint32_t read_domains = args->read_domains;
1528         uint32_t write_domain = args->write_domain;
1529         int err;
1530
1531         /* Only handle setting domains to types used by the CPU. */
1532         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1533                 return -EINVAL;
1534
1535         /* Having something in the write domain implies it's in the read
1536          * domain, and only that read domain.  Enforce that in the request.
1537          */
1538         if (write_domain != 0 && read_domains != write_domain)
1539                 return -EINVAL;
1540
1541         obj = i915_gem_object_lookup(file, args->handle);
1542         if (!obj)
1543                 return -ENOENT;
1544
1545         /* Try to flush the object off the GPU without holding the lock.
1546          * We will repeat the flush holding the lock in the normal manner
1547          * to catch cases where we are gazumped.
1548          */
1549         err = i915_gem_object_wait(obj,
1550                                    I915_WAIT_INTERRUPTIBLE |
1551                                    (write_domain ? I915_WAIT_ALL : 0),
1552                                    MAX_SCHEDULE_TIMEOUT,
1553                                    to_rps_client(file));
1554         if (err)
1555                 goto out;
1556
1557         /* Flush and acquire obj->pages so that we are coherent through
1558          * direct access in memory with previous cached writes through
1559          * shmemfs and that our cache domain tracking remains valid.
1560          * For example, if the obj->filp was moved to swap without us
1561          * being notified and releasing the pages, we would mistakenly
1562          * continue to assume that the obj remained out of the CPU cached
1563          * domain.
1564          */
1565         err = i915_gem_object_pin_pages(obj);
1566         if (err)
1567                 goto out;
1568
1569         err = i915_mutex_lock_interruptible(dev);
1570         if (err)
1571                 goto out_unpin;
1572
1573         if (read_domains & I915_GEM_DOMAIN_GTT)
1574                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1575         else
1576                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1577
1578         /* And bump the LRU for this access */
1579         i915_gem_object_bump_inactive_ggtt(obj);
1580
1581         mutex_unlock(&dev->struct_mutex);
1582
1583         if (write_domain != 0)
1584                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1585
1586 out_unpin:
1587         i915_gem_object_unpin_pages(obj);
1588 out:
1589         i915_gem_object_put(obj);
1590         return err;
1591 }
1592
1593 /**
1594  * Called when user space has done writes to this buffer
1595  * @dev: drm device
1596  * @data: ioctl data blob
1597  * @file: drm file
1598  */
1599 int
1600 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1601                          struct drm_file *file)
1602 {
1603         struct drm_i915_gem_sw_finish *args = data;
1604         struct drm_i915_gem_object *obj;
1605         int err = 0;
1606
1607         obj = i915_gem_object_lookup(file, args->handle);
1608         if (!obj)
1609                 return -ENOENT;
1610
1611         /* Pinned buffers may be scanout, so flush the cache */
1612         if (READ_ONCE(obj->pin_display)) {
1613                 err = i915_mutex_lock_interruptible(dev);
1614                 if (!err) {
1615                         i915_gem_object_flush_cpu_write_domain(obj);
1616                         mutex_unlock(&dev->struct_mutex);
1617                 }
1618         }
1619
1620         i915_gem_object_put(obj);
1621         return err;
1622 }
1623
1624 /**
1625  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1626  *                       it is mapped to.
1627  * @dev: drm device
1628  * @data: ioctl data blob
1629  * @file: drm file
1630  *
1631  * While the mapping holds a reference on the contents of the object, it doesn't
1632  * imply a ref on the object itself.
1633  *
1634  * IMPORTANT:
1635  *
1636  * DRM driver writers who look a this function as an example for how to do GEM
1637  * mmap support, please don't implement mmap support like here. The modern way
1638  * to implement DRM mmap support is with an mmap offset ioctl (like
1639  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1640  * That way debug tooling like valgrind will understand what's going on, hiding
1641  * the mmap call in a driver private ioctl will break that. The i915 driver only
1642  * does cpu mmaps this way because we didn't know better.
1643  */
1644 int
1645 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1646                     struct drm_file *file)
1647 {
1648         struct drm_i915_gem_mmap *args = data;
1649         struct drm_i915_gem_object *obj;
1650         unsigned long addr;
1651
1652         if (args->flags & ~(I915_MMAP_WC))
1653                 return -EINVAL;
1654
1655         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1656                 return -ENODEV;
1657
1658         obj = i915_gem_object_lookup(file, args->handle);
1659         if (!obj)
1660                 return -ENOENT;
1661
1662         /* prime objects have no backing filp to GEM mmap
1663          * pages from.
1664          */
1665         if (!obj->base.filp) {
1666                 i915_gem_object_put(obj);
1667                 return -EINVAL;
1668         }
1669
1670         addr = vm_mmap(obj->base.filp, 0, args->size,
1671                        PROT_READ | PROT_WRITE, MAP_SHARED,
1672                        args->offset);
1673         if (args->flags & I915_MMAP_WC) {
1674                 struct mm_struct *mm = current->mm;
1675                 struct vm_area_struct *vma;
1676
1677                 if (down_write_killable(&mm->mmap_sem)) {
1678                         i915_gem_object_put(obj);
1679                         return -EINTR;
1680                 }
1681                 vma = find_vma(mm, addr);
1682                 if (vma)
1683                         vma->vm_page_prot =
1684                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1685                 else
1686                         addr = -ENOMEM;
1687                 up_write(&mm->mmap_sem);
1688
1689                 /* This may race, but that's ok, it only gets set */
1690                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1691         }
1692         i915_gem_object_put(obj);
1693         if (IS_ERR((void *)addr))
1694                 return addr;
1695
1696         args->addr_ptr = (uint64_t) addr;
1697
1698         return 0;
1699 }
1700
1701 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1702 {
1703         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1704 }
1705
1706 /**
1707  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1708  *
1709  * A history of the GTT mmap interface:
1710  *
1711  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1712  *     aligned and suitable for fencing, and still fit into the available
1713  *     mappable space left by the pinned display objects. A classic problem
1714  *     we called the page-fault-of-doom where we would ping-pong between
1715  *     two objects that could not fit inside the GTT and so the memcpy
1716  *     would page one object in at the expense of the other between every
1717  *     single byte.
1718  *
1719  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1720  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1721  *     object is too large for the available space (or simply too large
1722  *     for the mappable aperture!), a view is created instead and faulted
1723  *     into userspace. (This view is aligned and sized appropriately for
1724  *     fenced access.)
1725  *
1726  * Restrictions:
1727  *
1728  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1729  *    hangs on some architectures, corruption on others. An attempt to service
1730  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1731  *
1732  *  * the object must be able to fit into RAM (physical memory, though no
1733  *    limited to the mappable aperture).
1734  *
1735  *
1736  * Caveats:
1737  *
1738  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1739  *    all data to system memory. Subsequent access will not be synchronized.
1740  *
1741  *  * all mappings are revoked on runtime device suspend.
1742  *
1743  *  * there are only 8, 16 or 32 fence registers to share between all users
1744  *    (older machines require fence register for display and blitter access
1745  *    as well). Contention of the fence registers will cause the previous users
1746  *    to be unmapped and any new access will generate new page faults.
1747  *
1748  *  * running out of memory while servicing a fault may generate a SIGBUS,
1749  *    rather than the expected SIGSEGV.
1750  */
1751 int i915_gem_mmap_gtt_version(void)
1752 {
1753         return 1;
1754 }
1755
1756 static inline struct i915_ggtt_view
1757 compute_partial_view(struct drm_i915_gem_object *obj,
1758                      pgoff_t page_offset,
1759                      unsigned int chunk)
1760 {
1761         struct i915_ggtt_view view;
1762
1763         if (i915_gem_object_is_tiled(obj))
1764                 chunk = roundup(chunk, tile_row_pages(obj));
1765
1766         view.type = I915_GGTT_VIEW_PARTIAL;
1767         view.partial.offset = rounddown(page_offset, chunk);
1768         view.partial.size =
1769                 min_t(unsigned int, chunk,
1770                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1771
1772         /* If the partial covers the entire object, just create a normal VMA. */
1773         if (chunk >= obj->base.size >> PAGE_SHIFT)
1774                 view.type = I915_GGTT_VIEW_NORMAL;
1775
1776         return view;
1777 }
1778
1779 /**
1780  * i915_gem_fault - fault a page into the GTT
1781  * @vmf: fault info
1782  *
1783  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1784  * from userspace.  The fault handler takes care of binding the object to
1785  * the GTT (if needed), allocating and programming a fence register (again,
1786  * only if needed based on whether the old reg is still valid or the object
1787  * is tiled) and inserting a new PTE into the faulting process.
1788  *
1789  * Note that the faulting process may involve evicting existing objects
1790  * from the GTT and/or fence registers to make room.  So performance may
1791  * suffer if the GTT working set is large or there are few fence registers
1792  * left.
1793  *
1794  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1795  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1796  */
1797 int i915_gem_fault(struct vm_fault *vmf)
1798 {
1799 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1800         struct vm_area_struct *area = vmf->vma;
1801         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1802         struct drm_device *dev = obj->base.dev;
1803         struct drm_i915_private *dev_priv = to_i915(dev);
1804         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1805         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1806         struct i915_vma *vma;
1807         pgoff_t page_offset;
1808         unsigned int flags;
1809         int ret;
1810
1811         /* We don't use vmf->pgoff since that has the fake offset */
1812         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1813
1814         trace_i915_gem_object_fault(obj, page_offset, true, write);
1815
1816         /* Try to flush the object off the GPU first without holding the lock.
1817          * Upon acquiring the lock, we will perform our sanity checks and then
1818          * repeat the flush holding the lock in the normal manner to catch cases
1819          * where we are gazumped.
1820          */
1821         ret = i915_gem_object_wait(obj,
1822                                    I915_WAIT_INTERRUPTIBLE,
1823                                    MAX_SCHEDULE_TIMEOUT,
1824                                    NULL);
1825         if (ret)
1826                 goto err;
1827
1828         ret = i915_gem_object_pin_pages(obj);
1829         if (ret)
1830                 goto err;
1831
1832         intel_runtime_pm_get(dev_priv);
1833
1834         ret = i915_mutex_lock_interruptible(dev);
1835         if (ret)
1836                 goto err_rpm;
1837
1838         /* Access to snoopable pages through the GTT is incoherent. */
1839         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1840                 ret = -EFAULT;
1841                 goto err_unlock;
1842         }
1843
1844         /* If the object is smaller than a couple of partial vma, it is
1845          * not worth only creating a single partial vma - we may as well
1846          * clear enough space for the full object.
1847          */
1848         flags = PIN_MAPPABLE;
1849         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1850                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1851
1852         /* Now pin it into the GTT as needed */
1853         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1854         if (IS_ERR(vma)) {
1855                 /* Use a partial view if it is bigger than available space */
1856                 struct i915_ggtt_view view =
1857                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1858
1859                 /* Userspace is now writing through an untracked VMA, abandon
1860                  * all hope that the hardware is able to track future writes.
1861                  */
1862                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1863
1864                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1865         }
1866         if (IS_ERR(vma)) {
1867                 ret = PTR_ERR(vma);
1868                 goto err_unlock;
1869         }
1870
1871         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1872         if (ret)
1873                 goto err_unpin;
1874
1875         ret = i915_vma_get_fence(vma);
1876         if (ret)
1877                 goto err_unpin;
1878
1879         /* Mark as being mmapped into userspace for later revocation */
1880         assert_rpm_wakelock_held(dev_priv);
1881         if (list_empty(&obj->userfault_link))
1882                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1883
1884         /* Finally, remap it using the new GTT offset */
1885         ret = remap_io_mapping(area,
1886                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1887                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1888                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1889                                &ggtt->mappable);
1890
1891 err_unpin:
1892         __i915_vma_unpin(vma);
1893 err_unlock:
1894         mutex_unlock(&dev->struct_mutex);
1895 err_rpm:
1896         intel_runtime_pm_put(dev_priv);
1897         i915_gem_object_unpin_pages(obj);
1898 err:
1899         switch (ret) {
1900         case -EIO:
1901                 /*
1902                  * We eat errors when the gpu is terminally wedged to avoid
1903                  * userspace unduly crashing (gl has no provisions for mmaps to
1904                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1905                  * and so needs to be reported.
1906                  */
1907                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1908                         ret = VM_FAULT_SIGBUS;
1909                         break;
1910                 }
1911         case -EAGAIN:
1912                 /*
1913                  * EAGAIN means the gpu is hung and we'll wait for the error
1914                  * handler to reset everything when re-faulting in
1915                  * i915_mutex_lock_interruptible.
1916                  */
1917         case 0:
1918         case -ERESTARTSYS:
1919         case -EINTR:
1920         case -EBUSY:
1921                 /*
1922                  * EBUSY is ok: this just means that another thread
1923                  * already did the job.
1924                  */
1925                 ret = VM_FAULT_NOPAGE;
1926                 break;
1927         case -ENOMEM:
1928                 ret = VM_FAULT_OOM;
1929                 break;
1930         case -ENOSPC:
1931         case -EFAULT:
1932                 ret = VM_FAULT_SIGBUS;
1933                 break;
1934         default:
1935                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1936                 ret = VM_FAULT_SIGBUS;
1937                 break;
1938         }
1939         return ret;
1940 }
1941
1942 /**
1943  * i915_gem_release_mmap - remove physical page mappings
1944  * @obj: obj in question
1945  *
1946  * Preserve the reservation of the mmapping with the DRM core code, but
1947  * relinquish ownership of the pages back to the system.
1948  *
1949  * It is vital that we remove the page mapping if we have mapped a tiled
1950  * object through the GTT and then lose the fence register due to
1951  * resource pressure. Similarly if the object has been moved out of the
1952  * aperture, than pages mapped into userspace must be revoked. Removing the
1953  * mapping will then trigger a page fault on the next user access, allowing
1954  * fixup by i915_gem_fault().
1955  */
1956 void
1957 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1958 {
1959         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1960
1961         /* Serialisation between user GTT access and our code depends upon
1962          * revoking the CPU's PTE whilst the mutex is held. The next user
1963          * pagefault then has to wait until we release the mutex.
1964          *
1965          * Note that RPM complicates somewhat by adding an additional
1966          * requirement that operations to the GGTT be made holding the RPM
1967          * wakeref.
1968          */
1969         lockdep_assert_held(&i915->drm.struct_mutex);
1970         intel_runtime_pm_get(i915);
1971
1972         if (list_empty(&obj->userfault_link))
1973                 goto out;
1974
1975         list_del_init(&obj->userfault_link);
1976         drm_vma_node_unmap(&obj->base.vma_node,
1977                            obj->base.dev->anon_inode->i_mapping);
1978
1979         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1980          * memory transactions from userspace before we return. The TLB
1981          * flushing implied above by changing the PTE above *should* be
1982          * sufficient, an extra barrier here just provides us with a bit
1983          * of paranoid documentation about our requirement to serialise
1984          * memory writes before touching registers / GSM.
1985          */
1986         wmb();
1987
1988 out:
1989         intel_runtime_pm_put(i915);
1990 }
1991
1992 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
1993 {
1994         struct drm_i915_gem_object *obj, *on;
1995         int i;
1996
1997         /*
1998          * Only called during RPM suspend. All users of the userfault_list
1999          * must be holding an RPM wakeref to ensure that this can not
2000          * run concurrently with themselves (and use the struct_mutex for
2001          * protection between themselves).
2002          */
2003
2004         list_for_each_entry_safe(obj, on,
2005                                  &dev_priv->mm.userfault_list, userfault_link) {
2006                 list_del_init(&obj->userfault_link);
2007                 drm_vma_node_unmap(&obj->base.vma_node,
2008                                    obj->base.dev->anon_inode->i_mapping);
2009         }
2010
2011         /* The fence will be lost when the device powers down. If any were
2012          * in use by hardware (i.e. they are pinned), we should not be powering
2013          * down! All other fences will be reacquired by the user upon waking.
2014          */
2015         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2016                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2017
2018                 /* Ideally we want to assert that the fence register is not
2019                  * live at this point (i.e. that no piece of code will be
2020                  * trying to write through fence + GTT, as that both violates
2021                  * our tracking of activity and associated locking/barriers,
2022                  * but also is illegal given that the hw is powered down).
2023                  *
2024                  * Previously we used reg->pin_count as a "liveness" indicator.
2025                  * That is not sufficient, and we need a more fine-grained
2026                  * tool if we want to have a sanity check here.
2027                  */
2028
2029                 if (!reg->vma)
2030                         continue;
2031
2032                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2033                 reg->dirty = true;
2034         }
2035 }
2036
2037 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2038 {
2039         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2040         int err;
2041
2042         err = drm_gem_create_mmap_offset(&obj->base);
2043         if (likely(!err))
2044                 return 0;
2045
2046         /* Attempt to reap some mmap space from dead objects */
2047         do {
2048                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2049                 if (err)
2050                         break;
2051
2052                 i915_gem_drain_freed_objects(dev_priv);
2053                 err = drm_gem_create_mmap_offset(&obj->base);
2054                 if (!err)
2055                         break;
2056
2057         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2058
2059         return err;
2060 }
2061
2062 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2063 {
2064         drm_gem_free_mmap_offset(&obj->base);
2065 }
2066
2067 int
2068 i915_gem_mmap_gtt(struct drm_file *file,
2069                   struct drm_device *dev,
2070                   uint32_t handle,
2071                   uint64_t *offset)
2072 {
2073         struct drm_i915_gem_object *obj;
2074         int ret;
2075
2076         obj = i915_gem_object_lookup(file, handle);
2077         if (!obj)
2078                 return -ENOENT;
2079
2080         ret = i915_gem_object_create_mmap_offset(obj);
2081         if (ret == 0)
2082                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2083
2084         i915_gem_object_put(obj);
2085         return ret;
2086 }
2087
2088 /**
2089  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2090  * @dev: DRM device
2091  * @data: GTT mapping ioctl data
2092  * @file: GEM object info
2093  *
2094  * Simply returns the fake offset to userspace so it can mmap it.
2095  * The mmap call will end up in drm_gem_mmap(), which will set things
2096  * up so we can get faults in the handler above.
2097  *
2098  * The fault handler will take care of binding the object into the GTT
2099  * (since it may have been evicted to make room for something), allocating
2100  * a fence register, and mapping the appropriate aperture address into
2101  * userspace.
2102  */
2103 int
2104 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2105                         struct drm_file *file)
2106 {
2107         struct drm_i915_gem_mmap_gtt *args = data;
2108
2109         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2110 }
2111
2112 /* Immediately discard the backing storage */
2113 static void
2114 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2115 {
2116         i915_gem_object_free_mmap_offset(obj);
2117
2118         if (obj->base.filp == NULL)
2119                 return;
2120
2121         /* Our goal here is to return as much of the memory as
2122          * is possible back to the system as we are called from OOM.
2123          * To do this we must instruct the shmfs to drop all of its
2124          * backing pages, *now*.
2125          */
2126         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2127         obj->mm.madv = __I915_MADV_PURGED;
2128         obj->mm.pages = ERR_PTR(-EFAULT);
2129 }
2130
2131 /* Try to discard unwanted pages */
2132 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2133 {
2134         struct address_space *mapping;
2135
2136         lockdep_assert_held(&obj->mm.lock);
2137         GEM_BUG_ON(obj->mm.pages);
2138
2139         switch (obj->mm.madv) {
2140         case I915_MADV_DONTNEED:
2141                 i915_gem_object_truncate(obj);
2142         case __I915_MADV_PURGED:
2143                 return;
2144         }
2145
2146         if (obj->base.filp == NULL)
2147                 return;
2148
2149         mapping = obj->base.filp->f_mapping,
2150         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2151 }
2152
2153 static void
2154 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2155                               struct sg_table *pages)
2156 {
2157         struct sgt_iter sgt_iter;
2158         struct page *page;
2159
2160         __i915_gem_object_release_shmem(obj, pages, true);
2161
2162         i915_gem_gtt_finish_pages(obj, pages);
2163
2164         if (i915_gem_object_needs_bit17_swizzle(obj))
2165                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2166
2167         for_each_sgt_page(page, sgt_iter, pages) {
2168                 if (obj->mm.dirty)
2169                         set_page_dirty(page);
2170
2171                 if (obj->mm.madv == I915_MADV_WILLNEED)
2172                         mark_page_accessed(page);
2173
2174                 put_page(page);
2175         }
2176         obj->mm.dirty = false;
2177
2178         sg_free_table(pages);
2179         kfree(pages);
2180 }
2181
2182 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2183 {
2184         struct radix_tree_iter iter;
2185         void **slot;
2186
2187         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2188                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2189 }
2190
2191 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2192                                  enum i915_mm_subclass subclass)
2193 {
2194         struct sg_table *pages;
2195
2196         if (i915_gem_object_has_pinned_pages(obj))
2197                 return;
2198
2199         GEM_BUG_ON(obj->bind_count);
2200         if (!READ_ONCE(obj->mm.pages))
2201                 return;
2202
2203         /* May be called by shrinker from within get_pages() (on another bo) */
2204         mutex_lock_nested(&obj->mm.lock, subclass);
2205         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2206                 goto unlock;
2207
2208         /* ->put_pages might need to allocate memory for the bit17 swizzle
2209          * array, hence protect them from being reaped by removing them from gtt
2210          * lists early. */
2211         pages = fetch_and_zero(&obj->mm.pages);
2212         GEM_BUG_ON(!pages);
2213
2214         if (obj->mm.mapping) {
2215                 void *ptr;
2216
2217                 ptr = ptr_mask_bits(obj->mm.mapping);
2218                 if (is_vmalloc_addr(ptr))
2219                         vunmap(ptr);
2220                 else
2221                         kunmap(kmap_to_page(ptr));
2222
2223                 obj->mm.mapping = NULL;
2224         }
2225
2226         __i915_gem_object_reset_page_iter(obj);
2227
2228         if (!IS_ERR(pages))
2229                 obj->ops->put_pages(obj, pages);
2230
2231 unlock:
2232         mutex_unlock(&obj->mm.lock);
2233 }
2234
2235 static void i915_sg_trim(struct sg_table *orig_st)
2236 {
2237         struct sg_table new_st;
2238         struct scatterlist *sg, *new_sg;
2239         unsigned int i;
2240
2241         if (orig_st->nents == orig_st->orig_nents)
2242                 return;
2243
2244         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2245                 return;
2246
2247         new_sg = new_st.sgl;
2248         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2249                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2250                 /* called before being DMA mapped, no need to copy sg->dma_* */
2251                 new_sg = sg_next(new_sg);
2252         }
2253         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2254
2255         sg_free_table(orig_st);
2256
2257         *orig_st = new_st;
2258 }
2259
2260 static struct sg_table *
2261 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2262 {
2263         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2264         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2265         unsigned long i;
2266         struct address_space *mapping;
2267         struct sg_table *st;
2268         struct scatterlist *sg;
2269         struct sgt_iter sgt_iter;
2270         struct page *page;
2271         unsigned long last_pfn = 0;     /* suppress gcc warning */
2272         unsigned int max_segment;
2273         int ret;
2274         gfp_t gfp;
2275
2276         /* Assert that the object is not currently in any GPU domain. As it
2277          * wasn't in the GTT, there shouldn't be any way it could have been in
2278          * a GPU cache
2279          */
2280         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2281         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2282
2283         max_segment = swiotlb_max_segment();
2284         if (!max_segment)
2285                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2286
2287         st = kmalloc(sizeof(*st), GFP_KERNEL);
2288         if (st == NULL)
2289                 return ERR_PTR(-ENOMEM);
2290
2291 rebuild_st:
2292         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2293                 kfree(st);
2294                 return ERR_PTR(-ENOMEM);
2295         }
2296
2297         /* Get the list of pages out of our struct file.  They'll be pinned
2298          * at this point until we release them.
2299          *
2300          * Fail silently without starting the shrinker
2301          */
2302         mapping = obj->base.filp->f_mapping;
2303         gfp = mapping_gfp_constraint(mapping, ~(__GFP_IO | __GFP_RECLAIM));
2304         gfp |= __GFP_NORETRY | __GFP_NOWARN;
2305         sg = st->sgl;
2306         st->nents = 0;
2307         for (i = 0; i < page_count; i++) {
2308                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2309                 if (IS_ERR(page)) {
2310                         i915_gem_shrink(dev_priv,
2311                                         page_count,
2312                                         I915_SHRINK_BOUND |
2313                                         I915_SHRINK_UNBOUND |
2314                                         I915_SHRINK_PURGEABLE);
2315                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2316                 }
2317                 if (IS_ERR(page)) {
2318                         /* We've tried hard to allocate the memory by reaping
2319                          * our own buffer, now let the real VM do its job and
2320                          * go down in flames if truly OOM.
2321                          */
2322                         page = shmem_read_mapping_page(mapping, i);
2323                         if (IS_ERR(page)) {
2324                                 ret = PTR_ERR(page);
2325                                 goto err_sg;
2326                         }
2327                 }
2328                 if (!i ||
2329                     sg->length >= max_segment ||
2330                     page_to_pfn(page) != last_pfn + 1) {
2331                         if (i)
2332                                 sg = sg_next(sg);
2333                         st->nents++;
2334                         sg_set_page(sg, page, PAGE_SIZE, 0);
2335                 } else {
2336                         sg->length += PAGE_SIZE;
2337                 }
2338                 last_pfn = page_to_pfn(page);
2339
2340                 /* Check that the i965g/gm workaround works. */
2341                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2342         }
2343         if (sg) /* loop terminated early; short sg table */
2344                 sg_mark_end(sg);
2345
2346         /* Trim unused sg entries to avoid wasting memory. */
2347         i915_sg_trim(st);
2348
2349         ret = i915_gem_gtt_prepare_pages(obj, st);
2350         if (ret) {
2351                 /* DMA remapping failed? One possible cause is that
2352                  * it could not reserve enough large entries, asking
2353                  * for PAGE_SIZE chunks instead may be helpful.
2354                  */
2355                 if (max_segment > PAGE_SIZE) {
2356                         for_each_sgt_page(page, sgt_iter, st)
2357                                 put_page(page);
2358                         sg_free_table(st);
2359
2360                         max_segment = PAGE_SIZE;
2361                         goto rebuild_st;
2362                 } else {
2363                         dev_warn(&dev_priv->drm.pdev->dev,
2364                                  "Failed to DMA remap %lu pages\n",
2365                                  page_count);
2366                         goto err_pages;
2367                 }
2368         }
2369
2370         if (i915_gem_object_needs_bit17_swizzle(obj))
2371                 i915_gem_object_do_bit_17_swizzle(obj, st);
2372
2373         return st;
2374
2375 err_sg:
2376         sg_mark_end(sg);
2377 err_pages:
2378         for_each_sgt_page(page, sgt_iter, st)
2379                 put_page(page);
2380         sg_free_table(st);
2381         kfree(st);
2382
2383         /* shmemfs first checks if there is enough memory to allocate the page
2384          * and reports ENOSPC should there be insufficient, along with the usual
2385          * ENOMEM for a genuine allocation failure.
2386          *
2387          * We use ENOSPC in our driver to mean that we have run out of aperture
2388          * space and so want to translate the error from shmemfs back to our
2389          * usual understanding of ENOMEM.
2390          */
2391         if (ret == -ENOSPC)
2392                 ret = -ENOMEM;
2393
2394         return ERR_PTR(ret);
2395 }
2396
2397 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2398                                  struct sg_table *pages)
2399 {
2400         lockdep_assert_held(&obj->mm.lock);
2401
2402         obj->mm.get_page.sg_pos = pages->sgl;
2403         obj->mm.get_page.sg_idx = 0;
2404
2405         obj->mm.pages = pages;
2406
2407         if (i915_gem_object_is_tiled(obj) &&
2408             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2409                 GEM_BUG_ON(obj->mm.quirked);
2410                 __i915_gem_object_pin_pages(obj);
2411                 obj->mm.quirked = true;
2412         }
2413 }
2414
2415 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2416 {
2417         struct sg_table *pages;
2418
2419         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2420
2421         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2422                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2423                 return -EFAULT;
2424         }
2425
2426         pages = obj->ops->get_pages(obj);
2427         if (unlikely(IS_ERR(pages)))
2428                 return PTR_ERR(pages);
2429
2430         __i915_gem_object_set_pages(obj, pages);
2431         return 0;
2432 }
2433
2434 /* Ensure that the associated pages are gathered from the backing storage
2435  * and pinned into our object. i915_gem_object_pin_pages() may be called
2436  * multiple times before they are released by a single call to
2437  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2438  * either as a result of memory pressure (reaping pages under the shrinker)
2439  * or as the object is itself released.
2440  */
2441 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2442 {
2443         int err;
2444
2445         err = mutex_lock_interruptible(&obj->mm.lock);
2446         if (err)
2447                 return err;
2448
2449         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2450                 err = ____i915_gem_object_get_pages(obj);
2451                 if (err)
2452                         goto unlock;
2453
2454                 smp_mb__before_atomic();
2455         }
2456         atomic_inc(&obj->mm.pages_pin_count);
2457
2458 unlock:
2459         mutex_unlock(&obj->mm.lock);
2460         return err;
2461 }
2462
2463 /* The 'mapping' part of i915_gem_object_pin_map() below */
2464 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2465                                  enum i915_map_type type)
2466 {
2467         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2468         struct sg_table *sgt = obj->mm.pages;
2469         struct sgt_iter sgt_iter;
2470         struct page *page;
2471         struct page *stack_pages[32];
2472         struct page **pages = stack_pages;
2473         unsigned long i = 0;
2474         pgprot_t pgprot;
2475         void *addr;
2476
2477         /* A single page can always be kmapped */
2478         if (n_pages == 1 && type == I915_MAP_WB)
2479                 return kmap(sg_page(sgt->sgl));
2480
2481         if (n_pages > ARRAY_SIZE(stack_pages)) {
2482                 /* Too big for stack -- allocate temporary array instead */
2483                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2484                 if (!pages)
2485                         return NULL;
2486         }
2487
2488         for_each_sgt_page(page, sgt_iter, sgt)
2489                 pages[i++] = page;
2490
2491         /* Check that we have the expected number of pages */
2492         GEM_BUG_ON(i != n_pages);
2493
2494         switch (type) {
2495         case I915_MAP_WB:
2496                 pgprot = PAGE_KERNEL;
2497                 break;
2498         case I915_MAP_WC:
2499                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2500                 break;
2501         }
2502         addr = vmap(pages, n_pages, 0, pgprot);
2503
2504         if (pages != stack_pages)
2505                 drm_free_large(pages);
2506
2507         return addr;
2508 }
2509
2510 /* get, pin, and map the pages of the object into kernel space */
2511 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2512                               enum i915_map_type type)
2513 {
2514         enum i915_map_type has_type;
2515         bool pinned;
2516         void *ptr;
2517         int ret;
2518
2519         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2520
2521         ret = mutex_lock_interruptible(&obj->mm.lock);
2522         if (ret)
2523                 return ERR_PTR(ret);
2524
2525         pinned = true;
2526         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2527                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2528                         ret = ____i915_gem_object_get_pages(obj);
2529                         if (ret)
2530                                 goto err_unlock;
2531
2532                         smp_mb__before_atomic();
2533                 }
2534                 atomic_inc(&obj->mm.pages_pin_count);
2535                 pinned = false;
2536         }
2537         GEM_BUG_ON(!obj->mm.pages);
2538
2539         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2540         if (ptr && has_type != type) {
2541                 if (pinned) {
2542                         ret = -EBUSY;
2543                         goto err_unpin;
2544                 }
2545
2546                 if (is_vmalloc_addr(ptr))
2547                         vunmap(ptr);
2548                 else
2549                         kunmap(kmap_to_page(ptr));
2550
2551                 ptr = obj->mm.mapping = NULL;
2552         }
2553
2554         if (!ptr) {
2555                 ptr = i915_gem_object_map(obj, type);
2556                 if (!ptr) {
2557                         ret = -ENOMEM;
2558                         goto err_unpin;
2559                 }
2560
2561                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2562         }
2563
2564 out_unlock:
2565         mutex_unlock(&obj->mm.lock);
2566         return ptr;
2567
2568 err_unpin:
2569         atomic_dec(&obj->mm.pages_pin_count);
2570 err_unlock:
2571         ptr = ERR_PTR(ret);
2572         goto out_unlock;
2573 }
2574
2575 static int
2576 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2577                            const struct drm_i915_gem_pwrite *arg)
2578 {
2579         struct address_space *mapping = obj->base.filp->f_mapping;
2580         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2581         u64 remain, offset;
2582         unsigned int pg;
2583
2584         /* Before we instantiate/pin the backing store for our use, we
2585          * can prepopulate the shmemfs filp efficiently using a write into
2586          * the pagecache. We avoid the penalty of instantiating all the
2587          * pages, important if the user is just writing to a few and never
2588          * uses the object on the GPU, and using a direct write into shmemfs
2589          * allows it to avoid the cost of retrieving a page (either swapin
2590          * or clearing-before-use) before it is overwritten.
2591          */
2592         if (READ_ONCE(obj->mm.pages))
2593                 return -ENODEV;
2594
2595         /* Before the pages are instantiated the object is treated as being
2596          * in the CPU domain. The pages will be clflushed as required before
2597          * use, and we can freely write into the pages directly. If userspace
2598          * races pwrite with any other operation; corruption will ensue -
2599          * that is userspace's prerogative!
2600          */
2601
2602         remain = arg->size;
2603         offset = arg->offset;
2604         pg = offset_in_page(offset);
2605
2606         do {
2607                 unsigned int len, unwritten;
2608                 struct page *page;
2609                 void *data, *vaddr;
2610                 int err;
2611
2612                 len = PAGE_SIZE - pg;
2613                 if (len > remain)
2614                         len = remain;
2615
2616                 err = pagecache_write_begin(obj->base.filp, mapping,
2617                                             offset, len, 0,
2618                                             &page, &data);
2619                 if (err < 0)
2620                         return err;
2621
2622                 vaddr = kmap(page);
2623                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2624                 kunmap(page);
2625
2626                 err = pagecache_write_end(obj->base.filp, mapping,
2627                                           offset, len, len - unwritten,
2628                                           page, data);
2629                 if (err < 0)
2630                         return err;
2631
2632                 if (unwritten)
2633                         return -EFAULT;
2634
2635                 remain -= len;
2636                 user_data += len;
2637                 offset += len;
2638                 pg = 0;
2639         } while (remain);
2640
2641         return 0;
2642 }
2643
2644 static bool ban_context(const struct i915_gem_context *ctx)
2645 {
2646         return (i915_gem_context_is_bannable(ctx) &&
2647                 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2648 }
2649
2650 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2651 {
2652         ctx->guilty_count++;
2653         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2654         if (ban_context(ctx))
2655                 i915_gem_context_set_banned(ctx);
2656
2657         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2658                          ctx->name, ctx->ban_score,
2659                          yesno(i915_gem_context_is_banned(ctx)));
2660
2661         if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2662                 return;
2663
2664         ctx->file_priv->context_bans++;
2665         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2666                          ctx->name, ctx->file_priv->context_bans);
2667 }
2668
2669 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2670 {
2671         ctx->active_count++;
2672 }
2673
2674 struct drm_i915_gem_request *
2675 i915_gem_find_active_request(struct intel_engine_cs *engine)
2676 {
2677         struct drm_i915_gem_request *request;
2678
2679         /* We are called by the error capture and reset at a random
2680          * point in time. In particular, note that neither is crucially
2681          * ordered with an interrupt. After a hang, the GPU is dead and we
2682          * assume that no more writes can happen (we waited long enough for
2683          * all writes that were in transaction to be flushed) - adding an
2684          * extra delay for a recent interrupt is pointless. Hence, we do
2685          * not need an engine->irq_seqno_barrier() before the seqno reads.
2686          */
2687         list_for_each_entry(request, &engine->timeline->requests, link) {
2688                 if (__i915_gem_request_completed(request))
2689                         continue;
2690
2691                 GEM_BUG_ON(request->engine != engine);
2692                 return request;
2693         }
2694
2695         return NULL;
2696 }
2697
2698 static bool engine_stalled(struct intel_engine_cs *engine)
2699 {
2700         if (!engine->hangcheck.stalled)
2701                 return false;
2702
2703         /* Check for possible seqno movement after hang declaration */
2704         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2705                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2706                 return false;
2707         }
2708
2709         return true;
2710 }
2711
2712 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2713 {
2714         struct intel_engine_cs *engine;
2715         enum intel_engine_id id;
2716         int err = 0;
2717
2718         /* Ensure irq handler finishes, and not run again. */
2719         for_each_engine(engine, dev_priv, id) {
2720                 struct drm_i915_gem_request *request;
2721
2722                 /* Prevent request submission to the hardware until we have
2723                  * completed the reset in i915_gem_reset_finish(). If a request
2724                  * is completed by one engine, it may then queue a request
2725                  * to a second via its engine->irq_tasklet *just* as we are
2726                  * calling engine->init_hw() and also writing the ELSP.
2727                  * Turning off the engine->irq_tasklet until the reset is over
2728                  * prevents the race.
2729                  */
2730                 tasklet_kill(&engine->irq_tasklet);
2731                 tasklet_disable(&engine->irq_tasklet);
2732
2733                 if (engine_stalled(engine)) {
2734                         request = i915_gem_find_active_request(engine);
2735                         if (request && request->fence.error == -EIO)
2736                                 err = -EIO; /* Previous reset failed! */
2737                 }
2738         }
2739
2740         i915_gem_revoke_fences(dev_priv);
2741
2742         return err;
2743 }
2744
2745 static void skip_request(struct drm_i915_gem_request *request)
2746 {
2747         void *vaddr = request->ring->vaddr;
2748         u32 head;
2749
2750         /* As this request likely depends on state from the lost
2751          * context, clear out all the user operations leaving the
2752          * breadcrumb at the end (so we get the fence notifications).
2753          */
2754         head = request->head;
2755         if (request->postfix < head) {
2756                 memset(vaddr + head, 0, request->ring->size - head);
2757                 head = 0;
2758         }
2759         memset(vaddr + head, 0, request->postfix - head);
2760
2761         dma_fence_set_error(&request->fence, -EIO);
2762 }
2763
2764 static void engine_skip_context(struct drm_i915_gem_request *request)
2765 {
2766         struct intel_engine_cs *engine = request->engine;
2767         struct i915_gem_context *hung_ctx = request->ctx;
2768         struct intel_timeline *timeline;
2769         unsigned long flags;
2770
2771         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2772
2773         spin_lock_irqsave(&engine->timeline->lock, flags);
2774         spin_lock(&timeline->lock);
2775
2776         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2777                 if (request->ctx == hung_ctx)
2778                         skip_request(request);
2779
2780         list_for_each_entry(request, &timeline->requests, link)
2781                 skip_request(request);
2782
2783         spin_unlock(&timeline->lock);
2784         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2785 }
2786
2787 /* Returns true if the request was guilty of hang */
2788 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2789 {
2790         /* Read once and return the resolution */
2791         const bool guilty = engine_stalled(request->engine);
2792
2793         /* The guilty request will get skipped on a hung engine.
2794          *
2795          * Users of client default contexts do not rely on logical
2796          * state preserved between batches so it is safe to execute
2797          * queued requests following the hang. Non default contexts
2798          * rely on preserved state, so skipping a batch loses the
2799          * evolution of the state and it needs to be considered corrupted.
2800          * Executing more queued batches on top of corrupted state is
2801          * risky. But we take the risk by trying to advance through
2802          * the queued requests in order to make the client behaviour
2803          * more predictable around resets, by not throwing away random
2804          * amount of batches it has prepared for execution. Sophisticated
2805          * clients can use gem_reset_stats_ioctl and dma fence status
2806          * (exported via sync_file info ioctl on explicit fences) to observe
2807          * when it loses the context state and should rebuild accordingly.
2808          *
2809          * The context ban, and ultimately the client ban, mechanism are safety
2810          * valves if client submission ends up resulting in nothing more than
2811          * subsequent hangs.
2812          */
2813
2814         if (guilty) {
2815                 i915_gem_context_mark_guilty(request->ctx);
2816                 skip_request(request);
2817         } else {
2818                 i915_gem_context_mark_innocent(request->ctx);
2819                 dma_fence_set_error(&request->fence, -EAGAIN);
2820         }
2821
2822         return guilty;
2823 }
2824
2825 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2826 {
2827         struct drm_i915_gem_request *request;
2828
2829         if (engine->irq_seqno_barrier)
2830                 engine->irq_seqno_barrier(engine);
2831
2832         request = i915_gem_find_active_request(engine);
2833         if (request && i915_gem_reset_request(request)) {
2834                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2835                                  engine->name, request->global_seqno);
2836
2837                 /* If this context is now banned, skip all pending requests. */
2838                 if (i915_gem_context_is_banned(request->ctx))
2839                         engine_skip_context(request);
2840         }
2841
2842         /* Setup the CS to resume from the breadcrumb of the hung request */
2843         engine->reset_hw(engine, request);
2844 }
2845
2846 void i915_gem_reset(struct drm_i915_private *dev_priv)
2847 {
2848         struct intel_engine_cs *engine;
2849         enum intel_engine_id id;
2850
2851         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2852
2853         i915_gem_retire_requests(dev_priv);
2854
2855         for_each_engine(engine, dev_priv, id)
2856                 i915_gem_reset_engine(engine);
2857
2858         i915_gem_restore_fences(dev_priv);
2859
2860         if (dev_priv->gt.awake) {
2861                 intel_sanitize_gt_powersave(dev_priv);
2862                 intel_enable_gt_powersave(dev_priv);
2863                 if (INTEL_GEN(dev_priv) >= 6)
2864                         gen6_rps_busy(dev_priv);
2865         }
2866 }
2867
2868 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2869 {
2870         struct intel_engine_cs *engine;
2871         enum intel_engine_id id;
2872
2873         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2874
2875         for_each_engine(engine, dev_priv, id)
2876                 tasklet_enable(&engine->irq_tasklet);
2877 }
2878
2879 static void nop_submit_request(struct drm_i915_gem_request *request)
2880 {
2881         dma_fence_set_error(&request->fence, -EIO);
2882         i915_gem_request_submit(request);
2883         intel_engine_init_global_seqno(request->engine, request->global_seqno);
2884 }
2885
2886 static void engine_set_wedged(struct intel_engine_cs *engine)
2887 {
2888         struct drm_i915_gem_request *request;
2889         unsigned long flags;
2890
2891         /* We need to be sure that no thread is running the old callback as
2892          * we install the nop handler (otherwise we would submit a request
2893          * to hardware that will never complete). In order to prevent this
2894          * race, we wait until the machine is idle before making the swap
2895          * (using stop_machine()).
2896          */
2897         engine->submit_request = nop_submit_request;
2898
2899         /* Mark all executing requests as skipped */
2900         spin_lock_irqsave(&engine->timeline->lock, flags);
2901         list_for_each_entry(request, &engine->timeline->requests, link)
2902                 dma_fence_set_error(&request->fence, -EIO);
2903         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2904
2905         /* Mark all pending requests as complete so that any concurrent
2906          * (lockless) lookup doesn't try and wait upon the request as we
2907          * reset it.
2908          */
2909         intel_engine_init_global_seqno(engine,
2910                                        intel_engine_last_submit(engine));
2911
2912         /*
2913          * Clear the execlists queue up before freeing the requests, as those
2914          * are the ones that keep the context and ringbuffer backing objects
2915          * pinned in place.
2916          */
2917
2918         if (i915.enable_execlists) {
2919                 unsigned long flags;
2920
2921                 spin_lock_irqsave(&engine->timeline->lock, flags);
2922
2923                 i915_gem_request_put(engine->execlist_port[0].request);
2924                 i915_gem_request_put(engine->execlist_port[1].request);
2925                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2926                 engine->execlist_queue = RB_ROOT;
2927                 engine->execlist_first = NULL;
2928
2929                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
2930         }
2931 }
2932
2933 static int __i915_gem_set_wedged_BKL(void *data)
2934 {
2935         struct drm_i915_private *i915 = data;
2936         struct intel_engine_cs *engine;
2937         enum intel_engine_id id;
2938
2939         for_each_engine(engine, i915, id)
2940                 engine_set_wedged(engine);
2941
2942         return 0;
2943 }
2944
2945 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
2946 {
2947         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2948         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
2949
2950         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
2951
2952         i915_gem_context_lost(dev_priv);
2953         i915_gem_retire_requests(dev_priv);
2954
2955         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
2956 }
2957
2958 static void
2959 i915_gem_retire_work_handler(struct work_struct *work)
2960 {
2961         struct drm_i915_private *dev_priv =
2962                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
2963         struct drm_device *dev = &dev_priv->drm;
2964
2965         /* Come back later if the device is busy... */
2966         if (mutex_trylock(&dev->struct_mutex)) {
2967                 i915_gem_retire_requests(dev_priv);
2968                 mutex_unlock(&dev->struct_mutex);
2969         }
2970
2971         /* Keep the retire handler running until we are finally idle.
2972          * We do not need to do this test under locking as in the worst-case
2973          * we queue the retire worker once too often.
2974          */
2975         if (READ_ONCE(dev_priv->gt.awake)) {
2976                 i915_queue_hangcheck(dev_priv);
2977                 queue_delayed_work(dev_priv->wq,
2978                                    &dev_priv->gt.retire_work,
2979                                    round_jiffies_up_relative(HZ));
2980         }
2981 }
2982
2983 static void
2984 i915_gem_idle_work_handler(struct work_struct *work)
2985 {
2986         struct drm_i915_private *dev_priv =
2987                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
2988         struct drm_device *dev = &dev_priv->drm;
2989         struct intel_engine_cs *engine;
2990         enum intel_engine_id id;
2991         bool rearm_hangcheck;
2992
2993         if (!READ_ONCE(dev_priv->gt.awake))
2994                 return;
2995
2996         /*
2997          * Wait for last execlists context complete, but bail out in case a
2998          * new request is submitted.
2999          */
3000         wait_for(READ_ONCE(dev_priv->gt.active_requests) ||
3001                  intel_execlists_idle(dev_priv), 10);
3002
3003         if (READ_ONCE(dev_priv->gt.active_requests))
3004                 return;
3005
3006         rearm_hangcheck =
3007                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3008
3009         if (!mutex_trylock(&dev->struct_mutex)) {
3010                 /* Currently busy, come back later */
3011                 mod_delayed_work(dev_priv->wq,
3012                                  &dev_priv->gt.idle_work,
3013                                  msecs_to_jiffies(50));
3014                 goto out_rearm;
3015         }
3016
3017         /*
3018          * New request retired after this work handler started, extend active
3019          * period until next instance of the work.
3020          */
3021         if (work_pending(work))
3022                 goto out_unlock;
3023
3024         if (dev_priv->gt.active_requests)
3025                 goto out_unlock;
3026
3027         if (wait_for(intel_execlists_idle(dev_priv), 10))
3028                 DRM_ERROR("Timeout waiting for engines to idle\n");
3029
3030         for_each_engine(engine, dev_priv, id)
3031                 i915_gem_batch_pool_fini(&engine->batch_pool);
3032
3033         GEM_BUG_ON(!dev_priv->gt.awake);
3034         dev_priv->gt.awake = false;
3035         rearm_hangcheck = false;
3036
3037         if (INTEL_GEN(dev_priv) >= 6)
3038                 gen6_rps_idle(dev_priv);
3039         intel_runtime_pm_put(dev_priv);
3040 out_unlock:
3041         mutex_unlock(&dev->struct_mutex);
3042
3043 out_rearm:
3044         if (rearm_hangcheck) {
3045                 GEM_BUG_ON(!dev_priv->gt.awake);
3046                 i915_queue_hangcheck(dev_priv);
3047         }
3048 }
3049
3050 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3051 {
3052         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3053         struct drm_i915_file_private *fpriv = file->driver_priv;
3054         struct i915_vma *vma, *vn;
3055
3056         mutex_lock(&obj->base.dev->struct_mutex);
3057         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3058                 if (vma->vm->file == fpriv)
3059                         i915_vma_close(vma);
3060
3061         if (i915_gem_object_is_active(obj) &&
3062             !i915_gem_object_has_active_reference(obj)) {
3063                 i915_gem_object_set_active_reference(obj);
3064                 i915_gem_object_get(obj);
3065         }
3066         mutex_unlock(&obj->base.dev->struct_mutex);
3067 }
3068
3069 static unsigned long to_wait_timeout(s64 timeout_ns)
3070 {
3071         if (timeout_ns < 0)
3072                 return MAX_SCHEDULE_TIMEOUT;
3073
3074         if (timeout_ns == 0)
3075                 return 0;
3076
3077         return nsecs_to_jiffies_timeout(timeout_ns);
3078 }
3079
3080 /**
3081  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3082  * @dev: drm device pointer
3083  * @data: ioctl data blob
3084  * @file: drm file pointer
3085  *
3086  * Returns 0 if successful, else an error is returned with the remaining time in
3087  * the timeout parameter.
3088  *  -ETIME: object is still busy after timeout
3089  *  -ERESTARTSYS: signal interrupted the wait
3090  *  -ENONENT: object doesn't exist
3091  * Also possible, but rare:
3092  *  -EAGAIN: GPU wedged
3093  *  -ENOMEM: damn
3094  *  -ENODEV: Internal IRQ fail
3095  *  -E?: The add request failed
3096  *
3097  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3098  * non-zero timeout parameter the wait ioctl will wait for the given number of
3099  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3100  * without holding struct_mutex the object may become re-busied before this
3101  * function completes. A similar but shorter * race condition exists in the busy
3102  * ioctl
3103  */
3104 int
3105 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3106 {
3107         struct drm_i915_gem_wait *args = data;
3108         struct drm_i915_gem_object *obj;
3109         ktime_t start;
3110         long ret;
3111
3112         if (args->flags != 0)
3113                 return -EINVAL;
3114
3115         obj = i915_gem_object_lookup(file, args->bo_handle);
3116         if (!obj)
3117                 return -ENOENT;
3118
3119         start = ktime_get();
3120
3121         ret = i915_gem_object_wait(obj,
3122                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3123                                    to_wait_timeout(args->timeout_ns),
3124                                    to_rps_client(file));
3125
3126         if (args->timeout_ns > 0) {
3127                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3128                 if (args->timeout_ns < 0)
3129                         args->timeout_ns = 0;
3130
3131                 /*
3132                  * Apparently ktime isn't accurate enough and occasionally has a
3133                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3134                  * things up to make the test happy. We allow up to 1 jiffy.
3135                  *
3136                  * This is a regression from the timespec->ktime conversion.
3137                  */
3138                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3139                         args->timeout_ns = 0;
3140         }
3141
3142         i915_gem_object_put(obj);
3143         return ret;
3144 }
3145
3146 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3147 {
3148         int ret, i;
3149
3150         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3151                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3152                 if (ret)
3153                         return ret;
3154         }
3155
3156         return 0;
3157 }
3158
3159 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3160 {
3161         int ret;
3162
3163         if (flags & I915_WAIT_LOCKED) {
3164                 struct i915_gem_timeline *tl;
3165
3166                 lockdep_assert_held(&i915->drm.struct_mutex);
3167
3168                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3169                         ret = wait_for_timeline(tl, flags);
3170                         if (ret)
3171                                 return ret;
3172                 }
3173         } else {
3174                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3175                 if (ret)
3176                         return ret;
3177         }
3178
3179         return 0;
3180 }
3181
3182 void i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3183                              bool force)
3184 {
3185         /* If we don't have a page list set up, then we're not pinned
3186          * to GPU, and we can ignore the cache flush because it'll happen
3187          * again at bind time.
3188          */
3189         if (!obj->mm.pages)
3190                 return;
3191
3192         /*
3193          * Stolen memory is always coherent with the GPU as it is explicitly
3194          * marked as wc by the system, or the system is cache-coherent.
3195          */
3196         if (obj->stolen || obj->phys_handle)
3197                 return;
3198
3199         /* If the GPU is snooping the contents of the CPU cache,
3200          * we do not need to manually clear the CPU cache lines.  However,
3201          * the caches are only snooped when the render cache is
3202          * flushed/invalidated.  As we always have to emit invalidations
3203          * and flushes when moving into and out of the RENDER domain, correct
3204          * snooping behaviour occurs naturally as the result of our domain
3205          * tracking.
3206          */
3207         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level)) {
3208                 obj->cache_dirty = true;
3209                 return;
3210         }
3211
3212         trace_i915_gem_object_clflush(obj);
3213         drm_clflush_sg(obj->mm.pages);
3214         obj->cache_dirty = false;
3215 }
3216
3217 /** Flushes the GTT write domain for the object if it's dirty. */
3218 static void
3219 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3220 {
3221         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3222
3223         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3224                 return;
3225
3226         /* No actual flushing is required for the GTT write domain.  Writes
3227          * to it "immediately" go to main memory as far as we know, so there's
3228          * no chipset flush.  It also doesn't land in render cache.
3229          *
3230          * However, we do have to enforce the order so that all writes through
3231          * the GTT land before any writes to the device, such as updates to
3232          * the GATT itself.
3233          *
3234          * We also have to wait a bit for the writes to land from the GTT.
3235          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3236          * timing. This issue has only been observed when switching quickly
3237          * between GTT writes and CPU reads from inside the kernel on recent hw,
3238          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3239          * system agents we cannot reproduce this behaviour).
3240          */
3241         wmb();
3242         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv))
3243                 POSTING_READ(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3244
3245         intel_fb_obj_flush(obj, false, write_origin(obj, I915_GEM_DOMAIN_GTT));
3246
3247         obj->base.write_domain = 0;
3248         trace_i915_gem_object_change_domain(obj,
3249                                             obj->base.read_domains,
3250                                             I915_GEM_DOMAIN_GTT);
3251 }
3252
3253 /** Flushes the CPU write domain for the object if it's dirty. */
3254 static void
3255 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3256 {
3257         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3258                 return;
3259
3260         i915_gem_clflush_object(obj, obj->pin_display);
3261         intel_fb_obj_flush(obj, false, ORIGIN_CPU);
3262
3263         obj->base.write_domain = 0;
3264         trace_i915_gem_object_change_domain(obj,
3265                                             obj->base.read_domains,
3266                                             I915_GEM_DOMAIN_CPU);
3267 }
3268
3269 /**
3270  * Moves a single object to the GTT read, and possibly write domain.
3271  * @obj: object to act on
3272  * @write: ask for write access or read only
3273  *
3274  * This function returns when the move is complete, including waiting on
3275  * flushes to occur.
3276  */
3277 int
3278 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3279 {
3280         uint32_t old_write_domain, old_read_domains;
3281         int ret;
3282
3283         lockdep_assert_held(&obj->base.dev->struct_mutex);
3284
3285         ret = i915_gem_object_wait(obj,
3286                                    I915_WAIT_INTERRUPTIBLE |
3287                                    I915_WAIT_LOCKED |
3288                                    (write ? I915_WAIT_ALL : 0),
3289                                    MAX_SCHEDULE_TIMEOUT,
3290                                    NULL);
3291         if (ret)
3292                 return ret;
3293
3294         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3295                 return 0;
3296
3297         /* Flush and acquire obj->pages so that we are coherent through
3298          * direct access in memory with previous cached writes through
3299          * shmemfs and that our cache domain tracking remains valid.
3300          * For example, if the obj->filp was moved to swap without us
3301          * being notified and releasing the pages, we would mistakenly
3302          * continue to assume that the obj remained out of the CPU cached
3303          * domain.
3304          */
3305         ret = i915_gem_object_pin_pages(obj);
3306         if (ret)
3307                 return ret;
3308
3309         i915_gem_object_flush_cpu_write_domain(obj);
3310
3311         /* Serialise direct access to this object with the barriers for
3312          * coherent writes from the GPU, by effectively invalidating the
3313          * GTT domain upon first access.
3314          */
3315         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3316                 mb();
3317
3318         old_write_domain = obj->base.write_domain;
3319         old_read_domains = obj->base.read_domains;
3320
3321         /* It should now be out of any other write domains, and we can update
3322          * the domain values for our changes.
3323          */
3324         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3325         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3326         if (write) {
3327                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3328                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3329                 obj->mm.dirty = true;
3330         }
3331
3332         trace_i915_gem_object_change_domain(obj,
3333                                             old_read_domains,
3334                                             old_write_domain);
3335
3336         i915_gem_object_unpin_pages(obj);
3337         return 0;
3338 }
3339
3340 /**
3341  * Changes the cache-level of an object across all VMA.
3342  * @obj: object to act on
3343  * @cache_level: new cache level to set for the object
3344  *
3345  * After this function returns, the object will be in the new cache-level
3346  * across all GTT and the contents of the backing storage will be coherent,
3347  * with respect to the new cache-level. In order to keep the backing storage
3348  * coherent for all users, we only allow a single cache level to be set
3349  * globally on the object and prevent it from being changed whilst the
3350  * hardware is reading from the object. That is if the object is currently
3351  * on the scanout it will be set to uncached (or equivalent display
3352  * cache coherency) and all non-MOCS GPU access will also be uncached so
3353  * that all direct access to the scanout remains coherent.
3354  */
3355 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3356                                     enum i915_cache_level cache_level)
3357 {
3358         struct i915_vma *vma;
3359         int ret;
3360
3361         lockdep_assert_held(&obj->base.dev->struct_mutex);
3362
3363         if (obj->cache_level == cache_level)
3364                 return 0;
3365
3366         /* Inspect the list of currently bound VMA and unbind any that would
3367          * be invalid given the new cache-level. This is principally to
3368          * catch the issue of the CS prefetch crossing page boundaries and
3369          * reading an invalid PTE on older architectures.
3370          */
3371 restart:
3372         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3373                 if (!drm_mm_node_allocated(&vma->node))
3374                         continue;
3375
3376                 if (i915_vma_is_pinned(vma)) {
3377                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3378                         return -EBUSY;
3379                 }
3380
3381                 if (i915_gem_valid_gtt_space(vma, cache_level))
3382                         continue;
3383
3384                 ret = i915_vma_unbind(vma);
3385                 if (ret)
3386                         return ret;
3387
3388                 /* As unbinding may affect other elements in the
3389                  * obj->vma_list (due to side-effects from retiring
3390                  * an active vma), play safe and restart the iterator.
3391                  */
3392                 goto restart;
3393         }
3394
3395         /* We can reuse the existing drm_mm nodes but need to change the
3396          * cache-level on the PTE. We could simply unbind them all and
3397          * rebind with the correct cache-level on next use. However since
3398          * we already have a valid slot, dma mapping, pages etc, we may as
3399          * rewrite the PTE in the belief that doing so tramples upon less
3400          * state and so involves less work.
3401          */
3402         if (obj->bind_count) {
3403                 /* Before we change the PTE, the GPU must not be accessing it.
3404                  * If we wait upon the object, we know that all the bound
3405                  * VMA are no longer active.
3406                  */
3407                 ret = i915_gem_object_wait(obj,
3408                                            I915_WAIT_INTERRUPTIBLE |
3409                                            I915_WAIT_LOCKED |
3410                                            I915_WAIT_ALL,
3411                                            MAX_SCHEDULE_TIMEOUT,
3412                                            NULL);
3413                 if (ret)
3414                         return ret;
3415
3416                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3417                     cache_level != I915_CACHE_NONE) {
3418                         /* Access to snoopable pages through the GTT is
3419                          * incoherent and on some machines causes a hard
3420                          * lockup. Relinquish the CPU mmaping to force
3421                          * userspace to refault in the pages and we can
3422                          * then double check if the GTT mapping is still
3423                          * valid for that pointer access.
3424                          */
3425                         i915_gem_release_mmap(obj);
3426
3427                         /* As we no longer need a fence for GTT access,
3428                          * we can relinquish it now (and so prevent having
3429                          * to steal a fence from someone else on the next
3430                          * fence request). Note GPU activity would have
3431                          * dropped the fence as all snoopable access is
3432                          * supposed to be linear.
3433                          */
3434                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3435                                 ret = i915_vma_put_fence(vma);
3436                                 if (ret)
3437                                         return ret;
3438                         }
3439                 } else {
3440                         /* We either have incoherent backing store and
3441                          * so no GTT access or the architecture is fully
3442                          * coherent. In such cases, existing GTT mmaps
3443                          * ignore the cache bit in the PTE and we can
3444                          * rewrite it without confusing the GPU or having
3445                          * to force userspace to fault back in its mmaps.
3446                          */
3447                 }
3448
3449                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3450                         if (!drm_mm_node_allocated(&vma->node))
3451                                 continue;
3452
3453                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3454                         if (ret)
3455                                 return ret;
3456                 }
3457         }
3458
3459         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3460             cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3461                 obj->cache_dirty = true;
3462
3463         list_for_each_entry(vma, &obj->vma_list, obj_link)
3464                 vma->node.color = cache_level;
3465         obj->cache_level = cache_level;
3466
3467         return 0;
3468 }
3469
3470 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3471                                struct drm_file *file)
3472 {
3473         struct drm_i915_gem_caching *args = data;
3474         struct drm_i915_gem_object *obj;
3475         int err = 0;
3476
3477         rcu_read_lock();
3478         obj = i915_gem_object_lookup_rcu(file, args->handle);
3479         if (!obj) {
3480                 err = -ENOENT;
3481                 goto out;
3482         }
3483
3484         switch (obj->cache_level) {
3485         case I915_CACHE_LLC:
3486         case I915_CACHE_L3_LLC:
3487                 args->caching = I915_CACHING_CACHED;
3488                 break;
3489
3490         case I915_CACHE_WT:
3491                 args->caching = I915_CACHING_DISPLAY;
3492                 break;
3493
3494         default:
3495                 args->caching = I915_CACHING_NONE;
3496                 break;
3497         }
3498 out:
3499         rcu_read_unlock();
3500         return err;
3501 }
3502
3503 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3504                                struct drm_file *file)
3505 {
3506         struct drm_i915_private *i915 = to_i915(dev);
3507         struct drm_i915_gem_caching *args = data;
3508         struct drm_i915_gem_object *obj;
3509         enum i915_cache_level level;
3510         int ret = 0;
3511
3512         switch (args->caching) {
3513         case I915_CACHING_NONE:
3514                 level = I915_CACHE_NONE;
3515                 break;
3516         case I915_CACHING_CACHED:
3517                 /*
3518                  * Due to a HW issue on BXT A stepping, GPU stores via a
3519                  * snooped mapping may leave stale data in a corresponding CPU
3520                  * cacheline, whereas normally such cachelines would get
3521                  * invalidated.
3522                  */
3523                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3524                         return -ENODEV;
3525
3526                 level = I915_CACHE_LLC;
3527                 break;
3528         case I915_CACHING_DISPLAY:
3529                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3530                 break;
3531         default:
3532                 return -EINVAL;
3533         }
3534
3535         obj = i915_gem_object_lookup(file, args->handle);
3536         if (!obj)
3537                 return -ENOENT;
3538
3539         if (obj->cache_level == level)
3540                 goto out;
3541
3542         ret = i915_gem_object_wait(obj,
3543                                    I915_WAIT_INTERRUPTIBLE,
3544                                    MAX_SCHEDULE_TIMEOUT,
3545                                    to_rps_client(file));
3546         if (ret)
3547                 goto out;
3548
3549         ret = i915_mutex_lock_interruptible(dev);
3550         if (ret)
3551                 goto out;
3552
3553         ret = i915_gem_object_set_cache_level(obj, level);
3554         mutex_unlock(&dev->struct_mutex);
3555
3556 out:
3557         i915_gem_object_put(obj);
3558         return ret;
3559 }
3560
3561 /*
3562  * Prepare buffer for display plane (scanout, cursors, etc).
3563  * Can be called from an uninterruptible phase (modesetting) and allows
3564  * any flushes to be pipelined (for pageflips).
3565  */
3566 struct i915_vma *
3567 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3568                                      u32 alignment,
3569                                      const struct i915_ggtt_view *view)
3570 {
3571         struct i915_vma *vma;
3572         u32 old_read_domains, old_write_domain;
3573         int ret;
3574
3575         lockdep_assert_held(&obj->base.dev->struct_mutex);
3576
3577         /* Mark the pin_display early so that we account for the
3578          * display coherency whilst setting up the cache domains.
3579          */
3580         obj->pin_display++;
3581
3582         /* The display engine is not coherent with the LLC cache on gen6.  As
3583          * a result, we make sure that the pinning that is about to occur is
3584          * done with uncached PTEs. This is lowest common denominator for all
3585          * chipsets.
3586          *
3587          * However for gen6+, we could do better by using the GFDT bit instead
3588          * of uncaching, which would allow us to flush all the LLC-cached data
3589          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3590          */
3591         ret = i915_gem_object_set_cache_level(obj,
3592                                               HAS_WT(to_i915(obj->base.dev)) ?
3593                                               I915_CACHE_WT : I915_CACHE_NONE);
3594         if (ret) {
3595                 vma = ERR_PTR(ret);
3596                 goto err_unpin_display;
3597         }
3598
3599         /* As the user may map the buffer once pinned in the display plane
3600          * (e.g. libkms for the bootup splash), we have to ensure that we
3601          * always use map_and_fenceable for all scanout buffers. However,
3602          * it may simply be too big to fit into mappable, in which case
3603          * put it anyway and hope that userspace can cope (but always first
3604          * try to preserve the existing ABI).
3605          */
3606         vma = ERR_PTR(-ENOSPC);
3607         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3608                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3609                                                PIN_MAPPABLE | PIN_NONBLOCK);
3610         if (IS_ERR(vma)) {
3611                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3612                 unsigned int flags;
3613
3614                 /* Valleyview is definitely limited to scanning out the first
3615                  * 512MiB. Lets presume this behaviour was inherited from the
3616                  * g4x display engine and that all earlier gen are similarly
3617                  * limited. Testing suggests that it is a little more
3618                  * complicated than this. For example, Cherryview appears quite
3619                  * happy to scanout from anywhere within its global aperture.
3620                  */
3621                 flags = 0;
3622                 if (HAS_GMCH_DISPLAY(i915))
3623                         flags = PIN_MAPPABLE;
3624                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3625         }
3626         if (IS_ERR(vma))
3627                 goto err_unpin_display;
3628
3629         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3630
3631         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3632         if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
3633                 i915_gem_clflush_object(obj, true);
3634                 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
3635         }
3636
3637         old_write_domain = obj->base.write_domain;
3638         old_read_domains = obj->base.read_domains;
3639
3640         /* It should now be out of any other write domains, and we can update
3641          * the domain values for our changes.
3642          */
3643         obj->base.write_domain = 0;
3644         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3645
3646         trace_i915_gem_object_change_domain(obj,
3647                                             old_read_domains,
3648                                             old_write_domain);
3649
3650         return vma;
3651
3652 err_unpin_display:
3653         obj->pin_display--;
3654         return vma;
3655 }
3656
3657 void
3658 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3659 {
3660         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3661
3662         if (WARN_ON(vma->obj->pin_display == 0))
3663                 return;
3664
3665         if (--vma->obj->pin_display == 0)
3666                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3667
3668         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3669         i915_gem_object_bump_inactive_ggtt(vma->obj);
3670
3671         i915_vma_unpin(vma);
3672 }
3673
3674 /**
3675  * Moves a single object to the CPU read, and possibly write domain.
3676  * @obj: object to act on
3677  * @write: requesting write or read-only access
3678  *
3679  * This function returns when the move is complete, including waiting on
3680  * flushes to occur.
3681  */
3682 int
3683 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3684 {
3685         uint32_t old_write_domain, old_read_domains;
3686         int ret;
3687
3688         lockdep_assert_held(&obj->base.dev->struct_mutex);
3689
3690         ret = i915_gem_object_wait(obj,
3691                                    I915_WAIT_INTERRUPTIBLE |
3692                                    I915_WAIT_LOCKED |
3693                                    (write ? I915_WAIT_ALL : 0),
3694                                    MAX_SCHEDULE_TIMEOUT,
3695                                    NULL);
3696         if (ret)
3697                 return ret;
3698
3699         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3700                 return 0;
3701
3702         i915_gem_object_flush_gtt_write_domain(obj);
3703
3704         old_write_domain = obj->base.write_domain;
3705         old_read_domains = obj->base.read_domains;
3706
3707         /* Flush the CPU cache if it's still invalid. */
3708         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3709                 i915_gem_clflush_object(obj, false);
3710
3711                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3712         }
3713
3714         /* It should now be out of any other write domains, and we can update
3715          * the domain values for our changes.
3716          */
3717         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3718
3719         /* If we're writing through the CPU, then the GPU read domains will
3720          * need to be invalidated at next use.
3721          */
3722         if (write) {
3723                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3724                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3725         }
3726
3727         trace_i915_gem_object_change_domain(obj,
3728                                             old_read_domains,
3729                                             old_write_domain);
3730
3731         return 0;
3732 }
3733
3734 /* Throttle our rendering by waiting until the ring has completed our requests
3735  * emitted over 20 msec ago.
3736  *
3737  * Note that if we were to use the current jiffies each time around the loop,
3738  * we wouldn't escape the function with any frames outstanding if the time to
3739  * render a frame was over 20ms.
3740  *
3741  * This should get us reasonable parallelism between CPU and GPU but also
3742  * relatively low latency when blocking on a particular request to finish.
3743  */
3744 static int
3745 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3746 {
3747         struct drm_i915_private *dev_priv = to_i915(dev);
3748         struct drm_i915_file_private *file_priv = file->driver_priv;
3749         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3750         struct drm_i915_gem_request *request, *target = NULL;
3751         long ret;
3752
3753         /* ABI: return -EIO if already wedged */
3754         if (i915_terminally_wedged(&dev_priv->gpu_error))
3755                 return -EIO;
3756
3757         spin_lock(&file_priv->mm.lock);
3758         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3759                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3760                         break;
3761
3762                 /*
3763                  * Note that the request might not have been submitted yet.
3764                  * In which case emitted_jiffies will be zero.
3765                  */
3766                 if (!request->emitted_jiffies)
3767                         continue;
3768
3769                 target = request;
3770         }
3771         if (target)
3772                 i915_gem_request_get(target);
3773         spin_unlock(&file_priv->mm.lock);
3774
3775         if (target == NULL)
3776                 return 0;
3777
3778         ret = i915_wait_request(target,
3779                                 I915_WAIT_INTERRUPTIBLE,
3780                                 MAX_SCHEDULE_TIMEOUT);
3781         i915_gem_request_put(target);
3782
3783         return ret < 0 ? ret : 0;
3784 }
3785
3786 struct i915_vma *
3787 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3788                          const struct i915_ggtt_view *view,
3789                          u64 size,
3790                          u64 alignment,
3791                          u64 flags)
3792 {
3793         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3794         struct i915_address_space *vm = &dev_priv->ggtt.base;
3795         struct i915_vma *vma;
3796         int ret;
3797
3798         lockdep_assert_held(&obj->base.dev->struct_mutex);
3799
3800         vma = i915_vma_instance(obj, vm, view);
3801         if (unlikely(IS_ERR(vma)))
3802                 return vma;
3803
3804         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3805                 if (flags & PIN_NONBLOCK &&
3806                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3807                         return ERR_PTR(-ENOSPC);
3808
3809                 if (flags & PIN_MAPPABLE) {
3810                         /* If the required space is larger than the available
3811                          * aperture, we will not able to find a slot for the
3812                          * object and unbinding the object now will be in
3813                          * vain. Worse, doing so may cause us to ping-pong
3814                          * the object in and out of the Global GTT and
3815                          * waste a lot of cycles under the mutex.
3816                          */
3817                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
3818                                 return ERR_PTR(-E2BIG);
3819
3820                         /* If NONBLOCK is set the caller is optimistically
3821                          * trying to cache the full object within the mappable
3822                          * aperture, and *must* have a fallback in place for
3823                          * situations where we cannot bind the object. We
3824                          * can be a little more lax here and use the fallback
3825                          * more often to avoid costly migrations of ourselves
3826                          * and other objects within the aperture.
3827                          *
3828                          * Half-the-aperture is used as a simple heuristic.
3829                          * More interesting would to do search for a free
3830                          * block prior to making the commitment to unbind.
3831                          * That caters for the self-harm case, and with a
3832                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3833                          * we could try to minimise harm to others.
3834                          */
3835                         if (flags & PIN_NONBLOCK &&
3836                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3837                                 return ERR_PTR(-ENOSPC);
3838                 }
3839
3840                 WARN(i915_vma_is_pinned(vma),
3841                      "bo is already pinned in ggtt with incorrect alignment:"
3842                      " offset=%08x, req.alignment=%llx,"
3843                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3844                      i915_ggtt_offset(vma), alignment,
3845                      !!(flags & PIN_MAPPABLE),
3846                      i915_vma_is_map_and_fenceable(vma));
3847                 ret = i915_vma_unbind(vma);
3848                 if (ret)
3849                         return ERR_PTR(ret);
3850         }
3851
3852         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3853         if (ret)
3854                 return ERR_PTR(ret);
3855
3856         return vma;
3857 }
3858
3859 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3860 {
3861         /* Note that we could alias engines in the execbuf API, but
3862          * that would be very unwise as it prevents userspace from
3863          * fine control over engine selection. Ahem.
3864          *
3865          * This should be something like EXEC_MAX_ENGINE instead of
3866          * I915_NUM_ENGINES.
3867          */
3868         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3869         return 0x10000 << id;
3870 }
3871
3872 static __always_inline unsigned int __busy_write_id(unsigned int id)
3873 {
3874         /* The uABI guarantees an active writer is also amongst the read
3875          * engines. This would be true if we accessed the activity tracking
3876          * under the lock, but as we perform the lookup of the object and
3877          * its activity locklessly we can not guarantee that the last_write
3878          * being active implies that we have set the same engine flag from
3879          * last_read - hence we always set both read and write busy for
3880          * last_write.
3881          */
3882         return id | __busy_read_flag(id);
3883 }
3884
3885 static __always_inline unsigned int
3886 __busy_set_if_active(const struct dma_fence *fence,
3887                      unsigned int (*flag)(unsigned int id))
3888 {
3889         struct drm_i915_gem_request *rq;
3890
3891         /* We have to check the current hw status of the fence as the uABI
3892          * guarantees forward progress. We could rely on the idle worker
3893          * to eventually flush us, but to minimise latency just ask the
3894          * hardware.
3895          *
3896          * Note we only report on the status of native fences.
3897          */
3898         if (!dma_fence_is_i915(fence))
3899                 return 0;
3900
3901         /* opencode to_request() in order to avoid const warnings */
3902         rq = container_of(fence, struct drm_i915_gem_request, fence);
3903         if (i915_gem_request_completed(rq))
3904                 return 0;
3905
3906         return flag(rq->engine->exec_id);
3907 }
3908
3909 static __always_inline unsigned int
3910 busy_check_reader(const struct dma_fence *fence)
3911 {
3912         return __busy_set_if_active(fence, __busy_read_flag);
3913 }
3914
3915 static __always_inline unsigned int
3916 busy_check_writer(const struct dma_fence *fence)
3917 {
3918         if (!fence)
3919                 return 0;
3920
3921         return __busy_set_if_active(fence, __busy_write_id);
3922 }
3923
3924 int
3925 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3926                     struct drm_file *file)
3927 {
3928         struct drm_i915_gem_busy *args = data;
3929         struct drm_i915_gem_object *obj;
3930         struct reservation_object_list *list;
3931         unsigned int seq;
3932         int err;
3933
3934         err = -ENOENT;
3935         rcu_read_lock();
3936         obj = i915_gem_object_lookup_rcu(file, args->handle);
3937         if (!obj)
3938                 goto out;
3939
3940         /* A discrepancy here is that we do not report the status of
3941          * non-i915 fences, i.e. even though we may report the object as idle,
3942          * a call to set-domain may still stall waiting for foreign rendering.
3943          * This also means that wait-ioctl may report an object as busy,
3944          * where busy-ioctl considers it idle.
3945          *
3946          * We trade the ability to warn of foreign fences to report on which
3947          * i915 engines are active for the object.
3948          *
3949          * Alternatively, we can trade that extra information on read/write
3950          * activity with
3951          *      args->busy =
3952          *              !reservation_object_test_signaled_rcu(obj->resv, true);
3953          * to report the overall busyness. This is what the wait-ioctl does.
3954          *
3955          */
3956 retry:
3957         seq = raw_read_seqcount(&obj->resv->seq);
3958
3959         /* Translate the exclusive fence to the READ *and* WRITE engine */
3960         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
3961
3962         /* Translate shared fences to READ set of engines */
3963         list = rcu_dereference(obj->resv->fence);
3964         if (list) {
3965                 unsigned int shared_count = list->shared_count, i;
3966
3967                 for (i = 0; i < shared_count; ++i) {
3968                         struct dma_fence *fence =
3969                                 rcu_dereference(list->shared[i]);
3970
3971                         args->busy |= busy_check_reader(fence);
3972                 }
3973         }
3974
3975         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
3976                 goto retry;
3977
3978         err = 0;
3979 out:
3980         rcu_read_unlock();
3981         return err;
3982 }
3983
3984 int
3985 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3986                         struct drm_file *file_priv)
3987 {
3988         return i915_gem_ring_throttle(dev, file_priv);
3989 }
3990
3991 int
3992 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3993                        struct drm_file *file_priv)
3994 {
3995         struct drm_i915_private *dev_priv = to_i915(dev);
3996         struct drm_i915_gem_madvise *args = data;
3997         struct drm_i915_gem_object *obj;
3998         int err;
3999
4000         switch (args->madv) {
4001         case I915_MADV_DONTNEED:
4002         case I915_MADV_WILLNEED:
4003             break;
4004         default:
4005             return -EINVAL;
4006         }
4007
4008         obj = i915_gem_object_lookup(file_priv, args->handle);
4009         if (!obj)
4010                 return -ENOENT;
4011
4012         err = mutex_lock_interruptible(&obj->mm.lock);
4013         if (err)
4014                 goto out;
4015
4016         if (obj->mm.pages &&
4017             i915_gem_object_is_tiled(obj) &&
4018             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4019                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4020                         GEM_BUG_ON(!obj->mm.quirked);
4021                         __i915_gem_object_unpin_pages(obj);
4022                         obj->mm.quirked = false;
4023                 }
4024                 if (args->madv == I915_MADV_WILLNEED) {
4025                         GEM_BUG_ON(obj->mm.quirked);
4026                         __i915_gem_object_pin_pages(obj);
4027                         obj->mm.quirked = true;
4028                 }
4029         }
4030
4031         if (obj->mm.madv != __I915_MADV_PURGED)
4032                 obj->mm.madv = args->madv;
4033
4034         /* if the object is no longer attached, discard its backing storage */
4035         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4036                 i915_gem_object_truncate(obj);
4037
4038         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4039         mutex_unlock(&obj->mm.lock);
4040
4041 out:
4042         i915_gem_object_put(obj);
4043         return err;
4044 }
4045
4046 static void
4047 frontbuffer_retire(struct i915_gem_active *active,
4048                    struct drm_i915_gem_request *request)
4049 {
4050         struct drm_i915_gem_object *obj =
4051                 container_of(active, typeof(*obj), frontbuffer_write);
4052
4053         intel_fb_obj_flush(obj, true, ORIGIN_CS);
4054 }
4055
4056 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4057                           const struct drm_i915_gem_object_ops *ops)
4058 {
4059         mutex_init(&obj->mm.lock);
4060
4061         INIT_LIST_HEAD(&obj->global_link);
4062         INIT_LIST_HEAD(&obj->userfault_link);
4063         INIT_LIST_HEAD(&obj->obj_exec_link);
4064         INIT_LIST_HEAD(&obj->vma_list);
4065         INIT_LIST_HEAD(&obj->batch_pool_link);
4066
4067         obj->ops = ops;
4068
4069         reservation_object_init(&obj->__builtin_resv);
4070         obj->resv = &obj->__builtin_resv;
4071
4072         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4073         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4074
4075         obj->mm.madv = I915_MADV_WILLNEED;
4076         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4077         mutex_init(&obj->mm.get_page.lock);
4078
4079         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4080 }
4081
4082 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4083         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4084                  I915_GEM_OBJECT_IS_SHRINKABLE,
4085
4086         .get_pages = i915_gem_object_get_pages_gtt,
4087         .put_pages = i915_gem_object_put_pages_gtt,
4088
4089         .pwrite = i915_gem_object_pwrite_gtt,
4090 };
4091
4092 struct drm_i915_gem_object *
4093 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4094 {
4095         struct drm_i915_gem_object *obj;
4096         struct address_space *mapping;
4097         gfp_t mask;
4098         int ret;
4099
4100         /* There is a prevalence of the assumption that we fit the object's
4101          * page count inside a 32bit _signed_ variable. Let's document this and
4102          * catch if we ever need to fix it. In the meantime, if you do spot
4103          * such a local variable, please consider fixing!
4104          */
4105         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4106                 return ERR_PTR(-E2BIG);
4107
4108         if (overflows_type(size, obj->base.size))
4109                 return ERR_PTR(-E2BIG);
4110
4111         obj = i915_gem_object_alloc(dev_priv);
4112         if (obj == NULL)
4113                 return ERR_PTR(-ENOMEM);
4114
4115         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4116         if (ret)
4117                 goto fail;
4118
4119         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4120         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4121                 /* 965gm cannot relocate objects above 4GiB. */
4122                 mask &= ~__GFP_HIGHMEM;
4123                 mask |= __GFP_DMA32;
4124         }
4125
4126         mapping = obj->base.filp->f_mapping;
4127         mapping_set_gfp_mask(mapping, mask);
4128
4129         i915_gem_object_init(obj, &i915_gem_object_ops);
4130
4131         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4132         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4133
4134         if (HAS_LLC(dev_priv)) {
4135                 /* On some devices, we can have the GPU use the LLC (the CPU
4136                  * cache) for about a 10% performance improvement
4137                  * compared to uncached.  Graphics requests other than
4138                  * display scanout are coherent with the CPU in
4139                  * accessing this cache.  This means in this mode we
4140                  * don't need to clflush on the CPU side, and on the
4141                  * GPU side we only need to flush internal caches to
4142                  * get data visible to the CPU.
4143                  *
4144                  * However, we maintain the display planes as UC, and so
4145                  * need to rebind when first used as such.
4146                  */
4147                 obj->cache_level = I915_CACHE_LLC;
4148         } else
4149                 obj->cache_level = I915_CACHE_NONE;
4150
4151         trace_i915_gem_object_create(obj);
4152
4153         return obj;
4154
4155 fail:
4156         i915_gem_object_free(obj);
4157         return ERR_PTR(ret);
4158 }
4159
4160 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4161 {
4162         /* If we are the last user of the backing storage (be it shmemfs
4163          * pages or stolen etc), we know that the pages are going to be
4164          * immediately released. In this case, we can then skip copying
4165          * back the contents from the GPU.
4166          */
4167
4168         if (obj->mm.madv != I915_MADV_WILLNEED)
4169                 return false;
4170
4171         if (obj->base.filp == NULL)
4172                 return true;
4173
4174         /* At first glance, this looks racy, but then again so would be
4175          * userspace racing mmap against close. However, the first external
4176          * reference to the filp can only be obtained through the
4177          * i915_gem_mmap_ioctl() which safeguards us against the user
4178          * acquiring such a reference whilst we are in the middle of
4179          * freeing the object.
4180          */
4181         return atomic_long_read(&obj->base.filp->f_count) == 1;
4182 }
4183
4184 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4185                                     struct llist_node *freed)
4186 {
4187         struct drm_i915_gem_object *obj, *on;
4188
4189         mutex_lock(&i915->drm.struct_mutex);
4190         intel_runtime_pm_get(i915);
4191         llist_for_each_entry(obj, freed, freed) {
4192                 struct i915_vma *vma, *vn;
4193
4194                 trace_i915_gem_object_destroy(obj);
4195
4196                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4197                 list_for_each_entry_safe(vma, vn,
4198                                          &obj->vma_list, obj_link) {
4199                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4200                         GEM_BUG_ON(i915_vma_is_active(vma));
4201                         vma->flags &= ~I915_VMA_PIN_MASK;
4202                         i915_vma_close(vma);
4203                 }
4204                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4205                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4206
4207                 list_del(&obj->global_link);
4208         }
4209         intel_runtime_pm_put(i915);
4210         mutex_unlock(&i915->drm.struct_mutex);
4211
4212         llist_for_each_entry_safe(obj, on, freed, freed) {
4213                 GEM_BUG_ON(obj->bind_count);
4214                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4215
4216                 if (obj->ops->release)
4217                         obj->ops->release(obj);
4218
4219                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4220                         atomic_set(&obj->mm.pages_pin_count, 0);
4221                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4222                 GEM_BUG_ON(obj->mm.pages);
4223
4224                 if (obj->base.import_attach)
4225                         drm_prime_gem_destroy(&obj->base, NULL);
4226
4227                 reservation_object_fini(&obj->__builtin_resv);
4228                 drm_gem_object_release(&obj->base);
4229                 i915_gem_info_remove_obj(i915, obj->base.size);
4230
4231                 kfree(obj->bit_17);
4232                 i915_gem_object_free(obj);
4233         }
4234 }
4235
4236 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4237 {
4238         struct llist_node *freed;
4239
4240         freed = llist_del_all(&i915->mm.free_list);
4241         if (unlikely(freed))
4242                 __i915_gem_free_objects(i915, freed);
4243 }
4244
4245 static void __i915_gem_free_work(struct work_struct *work)
4246 {
4247         struct drm_i915_private *i915 =
4248                 container_of(work, struct drm_i915_private, mm.free_work);
4249         struct llist_node *freed;
4250
4251         /* All file-owned VMA should have been released by this point through
4252          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4253          * However, the object may also be bound into the global GTT (e.g.
4254          * older GPUs without per-process support, or for direct access through
4255          * the GTT either for the user or for scanout). Those VMA still need to
4256          * unbound now.
4257          */
4258
4259         while ((freed = llist_del_all(&i915->mm.free_list)))
4260                 __i915_gem_free_objects(i915, freed);
4261 }
4262
4263 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4264 {
4265         struct drm_i915_gem_object *obj =
4266                 container_of(head, typeof(*obj), rcu);
4267         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4268
4269         /* We can't simply use call_rcu() from i915_gem_free_object()
4270          * as we need to block whilst unbinding, and the call_rcu
4271          * task may be called from softirq context. So we take a
4272          * detour through a worker.
4273          */
4274         if (llist_add(&obj->freed, &i915->mm.free_list))
4275                 schedule_work(&i915->mm.free_work);
4276 }
4277
4278 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4279 {
4280         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4281
4282         if (obj->mm.quirked)
4283                 __i915_gem_object_unpin_pages(obj);
4284
4285         if (discard_backing_storage(obj))
4286                 obj->mm.madv = I915_MADV_DONTNEED;
4287
4288         /* Before we free the object, make sure any pure RCU-only
4289          * read-side critical sections are complete, e.g.
4290          * i915_gem_busy_ioctl(). For the corresponding synchronized
4291          * lookup see i915_gem_object_lookup_rcu().
4292          */
4293         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4294 }
4295
4296 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4297 {
4298         lockdep_assert_held(&obj->base.dev->struct_mutex);
4299
4300         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4301         if (i915_gem_object_is_active(obj))
4302                 i915_gem_object_set_active_reference(obj);
4303         else
4304                 i915_gem_object_put(obj);
4305 }
4306
4307 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4308 {
4309         struct intel_engine_cs *engine;
4310         enum intel_engine_id id;
4311
4312         for_each_engine(engine, dev_priv, id)
4313                 GEM_BUG_ON(engine->last_retired_context &&
4314                            !i915_gem_context_is_kernel(engine->last_retired_context));
4315 }
4316
4317 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4318 {
4319         struct drm_device *dev = &dev_priv->drm;
4320         int ret;
4321
4322         intel_suspend_gt_powersave(dev_priv);
4323
4324         mutex_lock(&dev->struct_mutex);
4325
4326         /* We have to flush all the executing contexts to main memory so
4327          * that they can saved in the hibernation image. To ensure the last
4328          * context image is coherent, we have to switch away from it. That
4329          * leaves the dev_priv->kernel_context still active when
4330          * we actually suspend, and its image in memory may not match the GPU
4331          * state. Fortunately, the kernel_context is disposable and we do
4332          * not rely on its state.
4333          */
4334         ret = i915_gem_switch_to_kernel_context(dev_priv);
4335         if (ret)
4336                 goto err;
4337
4338         ret = i915_gem_wait_for_idle(dev_priv,
4339                                      I915_WAIT_INTERRUPTIBLE |
4340                                      I915_WAIT_LOCKED);
4341         if (ret)
4342                 goto err;
4343
4344         i915_gem_retire_requests(dev_priv);
4345         GEM_BUG_ON(dev_priv->gt.active_requests);
4346
4347         assert_kernel_context_is_current(dev_priv);
4348         i915_gem_context_lost(dev_priv);
4349         mutex_unlock(&dev->struct_mutex);
4350
4351         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4352         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4353
4354         /* As the idle_work is rearming if it detects a race, play safe and
4355          * repeat the flush until it is definitely idle.
4356          */
4357         while (flush_delayed_work(&dev_priv->gt.idle_work))
4358                 ;
4359
4360         i915_gem_drain_freed_objects(dev_priv);
4361
4362         /* Assert that we sucessfully flushed all the work and
4363          * reset the GPU back to its idle, low power state.
4364          */
4365         WARN_ON(dev_priv->gt.awake);
4366         WARN_ON(!intel_execlists_idle(dev_priv));
4367
4368         /*
4369          * Neither the BIOS, ourselves or any other kernel
4370          * expects the system to be in execlists mode on startup,
4371          * so we need to reset the GPU back to legacy mode. And the only
4372          * known way to disable logical contexts is through a GPU reset.
4373          *
4374          * So in order to leave the system in a known default configuration,
4375          * always reset the GPU upon unload and suspend. Afterwards we then
4376          * clean up the GEM state tracking, flushing off the requests and
4377          * leaving the system in a known idle state.
4378          *
4379          * Note that is of the upmost importance that the GPU is idle and
4380          * all stray writes are flushed *before* we dismantle the backing
4381          * storage for the pinned objects.
4382          *
4383          * However, since we are uncertain that resetting the GPU on older
4384          * machines is a good idea, we don't - just in case it leaves the
4385          * machine in an unusable condition.
4386          */
4387         if (HAS_HW_CONTEXTS(dev_priv)) {
4388                 int reset = intel_gpu_reset(dev_priv, ALL_ENGINES);
4389                 WARN_ON(reset && reset != -ENODEV);
4390         }
4391
4392         return 0;
4393
4394 err:
4395         mutex_unlock(&dev->struct_mutex);
4396         return ret;
4397 }
4398
4399 void i915_gem_resume(struct drm_i915_private *dev_priv)
4400 {
4401         struct drm_device *dev = &dev_priv->drm;
4402
4403         WARN_ON(dev_priv->gt.awake);
4404
4405         mutex_lock(&dev->struct_mutex);
4406         i915_gem_restore_gtt_mappings(dev_priv);
4407
4408         /* As we didn't flush the kernel context before suspend, we cannot
4409          * guarantee that the context image is complete. So let's just reset
4410          * it and start again.
4411          */
4412         dev_priv->gt.resume(dev_priv);
4413
4414         mutex_unlock(&dev->struct_mutex);
4415 }
4416
4417 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4418 {
4419         if (INTEL_GEN(dev_priv) < 5 ||
4420             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4421                 return;
4422
4423         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4424                                  DISP_TILE_SURFACE_SWIZZLING);
4425
4426         if (IS_GEN5(dev_priv))
4427                 return;
4428
4429         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4430         if (IS_GEN6(dev_priv))
4431                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4432         else if (IS_GEN7(dev_priv))
4433                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4434         else if (IS_GEN8(dev_priv))
4435                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4436         else
4437                 BUG();
4438 }
4439
4440 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4441 {
4442         I915_WRITE(RING_CTL(base), 0);
4443         I915_WRITE(RING_HEAD(base), 0);
4444         I915_WRITE(RING_TAIL(base), 0);
4445         I915_WRITE(RING_START(base), 0);
4446 }
4447
4448 static void init_unused_rings(struct drm_i915_private *dev_priv)
4449 {
4450         if (IS_I830(dev_priv)) {
4451                 init_unused_ring(dev_priv, PRB1_BASE);
4452                 init_unused_ring(dev_priv, SRB0_BASE);
4453                 init_unused_ring(dev_priv, SRB1_BASE);
4454                 init_unused_ring(dev_priv, SRB2_BASE);
4455                 init_unused_ring(dev_priv, SRB3_BASE);
4456         } else if (IS_GEN2(dev_priv)) {
4457                 init_unused_ring(dev_priv, SRB0_BASE);
4458                 init_unused_ring(dev_priv, SRB1_BASE);
4459         } else if (IS_GEN3(dev_priv)) {
4460                 init_unused_ring(dev_priv, PRB1_BASE);
4461                 init_unused_ring(dev_priv, PRB2_BASE);
4462         }
4463 }
4464
4465 int
4466 i915_gem_init_hw(struct drm_i915_private *dev_priv)
4467 {
4468         struct intel_engine_cs *engine;
4469         enum intel_engine_id id;
4470         int ret;
4471
4472         dev_priv->gt.last_init_time = ktime_get();
4473
4474         /* Double layer security blanket, see i915_gem_init() */
4475         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4476
4477         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4478                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4479
4480         if (IS_HASWELL(dev_priv))
4481                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4482                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4483
4484         if (HAS_PCH_NOP(dev_priv)) {
4485                 if (IS_IVYBRIDGE(dev_priv)) {
4486                         u32 temp = I915_READ(GEN7_MSG_CTL);
4487                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4488                         I915_WRITE(GEN7_MSG_CTL, temp);
4489                 } else if (INTEL_GEN(dev_priv) >= 7) {
4490                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4491                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4492                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4493                 }
4494         }
4495
4496         i915_gem_init_swizzling(dev_priv);
4497
4498         /*
4499          * At least 830 can leave some of the unused rings
4500          * "active" (ie. head != tail) after resume which
4501          * will prevent c3 entry. Makes sure all unused rings
4502          * are totally idle.
4503          */
4504         init_unused_rings(dev_priv);
4505
4506         BUG_ON(!dev_priv->kernel_context);
4507
4508         ret = i915_ppgtt_init_hw(dev_priv);
4509         if (ret) {
4510                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4511                 goto out;
4512         }
4513
4514         /* Need to do basic initialisation of all rings first: */
4515         for_each_engine(engine, dev_priv, id) {
4516                 ret = engine->init_hw(engine);
4517                 if (ret)
4518                         goto out;
4519         }
4520
4521         intel_mocs_init_l3cc_table(dev_priv);
4522
4523         /* We can't enable contexts until all firmware is loaded */
4524         ret = intel_guc_setup(dev_priv);
4525         if (ret)
4526                 goto out;
4527
4528 out:
4529         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4530         return ret;
4531 }
4532
4533 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4534 {
4535         if (INTEL_INFO(dev_priv)->gen < 6)
4536                 return false;
4537
4538         /* TODO: make semaphores and Execlists play nicely together */
4539         if (i915.enable_execlists)
4540                 return false;
4541
4542         if (value >= 0)
4543                 return value;
4544
4545 #ifdef CONFIG_INTEL_IOMMU
4546         /* Enable semaphores on SNB when IO remapping is off */
4547         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4548                 return false;
4549 #endif
4550
4551         return true;
4552 }
4553
4554 int i915_gem_init(struct drm_i915_private *dev_priv)
4555 {
4556         int ret;
4557
4558         mutex_lock(&dev_priv->drm.struct_mutex);
4559
4560         if (!i915.enable_execlists) {
4561                 dev_priv->gt.resume = intel_legacy_submission_resume;
4562                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4563         } else {
4564                 dev_priv->gt.resume = intel_lr_context_resume;
4565                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4566         }
4567
4568         /* This is just a security blanket to placate dragons.
4569          * On some systems, we very sporadically observe that the first TLBs
4570          * used by the CS may be stale, despite us poking the TLB reset. If
4571          * we hold the forcewake during initialisation these problems
4572          * just magically go away.
4573          */
4574         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4575
4576         i915_gem_init_userptr(dev_priv);
4577
4578         ret = i915_gem_init_ggtt(dev_priv);
4579         if (ret)
4580                 goto out_unlock;
4581
4582         ret = i915_gem_context_init(dev_priv);
4583         if (ret)
4584                 goto out_unlock;
4585
4586         ret = intel_engines_init(dev_priv);
4587         if (ret)
4588                 goto out_unlock;
4589
4590         ret = i915_gem_init_hw(dev_priv);
4591         if (ret == -EIO) {
4592                 /* Allow engine initialisation to fail by marking the GPU as
4593                  * wedged. But we only want to do this where the GPU is angry,
4594                  * for all other failure, such as an allocation failure, bail.
4595                  */
4596                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4597                 i915_gem_set_wedged(dev_priv);
4598                 ret = 0;
4599         }
4600
4601 out_unlock:
4602         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4603         mutex_unlock(&dev_priv->drm.struct_mutex);
4604
4605         return ret;
4606 }
4607
4608 void
4609 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4610 {
4611         struct intel_engine_cs *engine;
4612         enum intel_engine_id id;
4613
4614         for_each_engine(engine, dev_priv, id)
4615                 dev_priv->gt.cleanup_engine(engine);
4616 }
4617
4618 void
4619 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4620 {
4621         int i;
4622
4623         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4624             !IS_CHERRYVIEW(dev_priv))
4625                 dev_priv->num_fence_regs = 32;
4626         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4627                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4628                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4629                 dev_priv->num_fence_regs = 16;
4630         else
4631                 dev_priv->num_fence_regs = 8;
4632
4633         if (intel_vgpu_active(dev_priv))
4634                 dev_priv->num_fence_regs =
4635                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4636
4637         /* Initialize fence registers to zero */
4638         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4639                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4640
4641                 fence->i915 = dev_priv;
4642                 fence->id = i;
4643                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4644         }
4645         i915_gem_restore_fences(dev_priv);
4646
4647         i915_gem_detect_bit_6_swizzle(dev_priv);
4648 }
4649
4650 int
4651 i915_gem_load_init(struct drm_i915_private *dev_priv)
4652 {
4653         int err = -ENOMEM;
4654
4655         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4656         if (!dev_priv->objects)
4657                 goto err_out;
4658
4659         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4660         if (!dev_priv->vmas)
4661                 goto err_objects;
4662
4663         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4664                                         SLAB_HWCACHE_ALIGN |
4665                                         SLAB_RECLAIM_ACCOUNT |
4666                                         SLAB_DESTROY_BY_RCU);
4667         if (!dev_priv->requests)
4668                 goto err_vmas;
4669
4670         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4671                                             SLAB_HWCACHE_ALIGN |
4672                                             SLAB_RECLAIM_ACCOUNT);
4673         if (!dev_priv->dependencies)
4674                 goto err_requests;
4675
4676         mutex_lock(&dev_priv->drm.struct_mutex);
4677         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4678         err = i915_gem_timeline_init__global(dev_priv);
4679         mutex_unlock(&dev_priv->drm.struct_mutex);
4680         if (err)
4681                 goto err_dependencies;
4682
4683         INIT_LIST_HEAD(&dev_priv->context_list);
4684         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4685         init_llist_head(&dev_priv->mm.free_list);
4686         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4687         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4688         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4689         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4690         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4691                           i915_gem_retire_work_handler);
4692         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4693                           i915_gem_idle_work_handler);
4694         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4695         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4696
4697         init_waitqueue_head(&dev_priv->pending_flip_queue);
4698
4699         dev_priv->mm.interruptible = true;
4700
4701         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4702
4703         spin_lock_init(&dev_priv->fb_tracking.lock);
4704
4705         return 0;
4706
4707 err_dependencies:
4708         kmem_cache_destroy(dev_priv->dependencies);
4709 err_requests:
4710         kmem_cache_destroy(dev_priv->requests);
4711 err_vmas:
4712         kmem_cache_destroy(dev_priv->vmas);
4713 err_objects:
4714         kmem_cache_destroy(dev_priv->objects);
4715 err_out:
4716         return err;
4717 }
4718
4719 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4720 {
4721         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4722
4723         mutex_lock(&dev_priv->drm.struct_mutex);
4724         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4725         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4726         mutex_unlock(&dev_priv->drm.struct_mutex);
4727
4728         kmem_cache_destroy(dev_priv->dependencies);
4729         kmem_cache_destroy(dev_priv->requests);
4730         kmem_cache_destroy(dev_priv->vmas);
4731         kmem_cache_destroy(dev_priv->objects);
4732
4733         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4734         rcu_barrier();
4735 }
4736
4737 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4738 {
4739         intel_runtime_pm_get(dev_priv);
4740
4741         mutex_lock(&dev_priv->drm.struct_mutex);
4742         i915_gem_shrink_all(dev_priv);
4743         mutex_unlock(&dev_priv->drm.struct_mutex);
4744
4745         intel_runtime_pm_put(dev_priv);
4746
4747         return 0;
4748 }
4749
4750 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4751 {
4752         struct drm_i915_gem_object *obj;
4753         struct list_head *phases[] = {
4754                 &dev_priv->mm.unbound_list,
4755                 &dev_priv->mm.bound_list,
4756                 NULL
4757         }, **p;
4758
4759         /* Called just before we write the hibernation image.
4760          *
4761          * We need to update the domain tracking to reflect that the CPU
4762          * will be accessing all the pages to create and restore from the
4763          * hibernation, and so upon restoration those pages will be in the
4764          * CPU domain.
4765          *
4766          * To make sure the hibernation image contains the latest state,
4767          * we update that state just before writing out the image.
4768          *
4769          * To try and reduce the hibernation image, we manually shrink
4770          * the objects as well.
4771          */
4772
4773         mutex_lock(&dev_priv->drm.struct_mutex);
4774         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4775
4776         for (p = phases; *p; p++) {
4777                 list_for_each_entry(obj, *p, global_link) {
4778                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4779                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4780                 }
4781         }
4782         mutex_unlock(&dev_priv->drm.struct_mutex);
4783
4784         return 0;
4785 }
4786
4787 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4788 {
4789         struct drm_i915_file_private *file_priv = file->driver_priv;
4790         struct drm_i915_gem_request *request;
4791
4792         /* Clean up our request list when the client is going away, so that
4793          * later retire_requests won't dereference our soon-to-be-gone
4794          * file_priv.
4795          */
4796         spin_lock(&file_priv->mm.lock);
4797         list_for_each_entry(request, &file_priv->mm.request_list, client_list)
4798                 request->file_priv = NULL;
4799         spin_unlock(&file_priv->mm.lock);
4800
4801         if (!list_empty(&file_priv->rps.link)) {
4802                 spin_lock(&to_i915(dev)->rps.client_lock);
4803                 list_del(&file_priv->rps.link);
4804                 spin_unlock(&to_i915(dev)->rps.client_lock);
4805         }
4806 }
4807
4808 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4809 {
4810         struct drm_i915_file_private *file_priv;
4811         int ret;
4812
4813         DRM_DEBUG("\n");
4814
4815         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4816         if (!file_priv)
4817                 return -ENOMEM;
4818
4819         file->driver_priv = file_priv;
4820         file_priv->dev_priv = to_i915(dev);
4821         file_priv->file = file;
4822         INIT_LIST_HEAD(&file_priv->rps.link);
4823
4824         spin_lock_init(&file_priv->mm.lock);
4825         INIT_LIST_HEAD(&file_priv->mm.request_list);
4826
4827         file_priv->bsd_engine = -1;
4828
4829         ret = i915_gem_context_open(dev, file);
4830         if (ret)
4831                 kfree(file_priv);
4832
4833         return ret;
4834 }
4835
4836 /**
4837  * i915_gem_track_fb - update frontbuffer tracking
4838  * @old: current GEM buffer for the frontbuffer slots
4839  * @new: new GEM buffer for the frontbuffer slots
4840  * @frontbuffer_bits: bitmask of frontbuffer slots
4841  *
4842  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4843  * from @old and setting them in @new. Both @old and @new can be NULL.
4844  */
4845 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4846                        struct drm_i915_gem_object *new,
4847                        unsigned frontbuffer_bits)
4848 {
4849         /* Control of individual bits within the mask are guarded by
4850          * the owning plane->mutex, i.e. we can never see concurrent
4851          * manipulation of individual bits. But since the bitfield as a whole
4852          * is updated using RMW, we need to use atomics in order to update
4853          * the bits.
4854          */
4855         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
4856                      sizeof(atomic_t) * BITS_PER_BYTE);
4857
4858         if (old) {
4859                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
4860                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
4861         }
4862
4863         if (new) {
4864                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
4865                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
4866         }
4867 }
4868
4869 /* Allocate a new GEM object and fill it with the supplied data */
4870 struct drm_i915_gem_object *
4871 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
4872                                  const void *data, size_t size)
4873 {
4874         struct drm_i915_gem_object *obj;
4875         struct sg_table *sg;
4876         size_t bytes;
4877         int ret;
4878
4879         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
4880         if (IS_ERR(obj))
4881                 return obj;
4882
4883         ret = i915_gem_object_set_to_cpu_domain(obj, true);
4884         if (ret)
4885                 goto fail;
4886
4887         ret = i915_gem_object_pin_pages(obj);
4888         if (ret)
4889                 goto fail;
4890
4891         sg = obj->mm.pages;
4892         bytes = sg_copy_from_buffer(sg->sgl, sg->nents, (void *)data, size);
4893         obj->mm.dirty = true; /* Backing store is now out of date */
4894         i915_gem_object_unpin_pages(obj);
4895
4896         if (WARN_ON(bytes != size)) {
4897                 DRM_ERROR("Incomplete copy, wrote %zu of %zu", bytes, size);
4898                 ret = -EFAULT;
4899                 goto fail;
4900         }
4901
4902         return obj;
4903
4904 fail:
4905         i915_gem_object_put(obj);
4906         return ERR_PTR(ret);
4907 }
4908
4909 struct scatterlist *
4910 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
4911                        unsigned int n,
4912                        unsigned int *offset)
4913 {
4914         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
4915         struct scatterlist *sg;
4916         unsigned int idx, count;
4917
4918         might_sleep();
4919         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
4920         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
4921
4922         /* As we iterate forward through the sg, we record each entry in a
4923          * radixtree for quick repeated (backwards) lookups. If we have seen
4924          * this index previously, we will have an entry for it.
4925          *
4926          * Initial lookup is O(N), but this is amortized to O(1) for
4927          * sequential page access (where each new request is consecutive
4928          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
4929          * i.e. O(1) with a large constant!
4930          */
4931         if (n < READ_ONCE(iter->sg_idx))
4932                 goto lookup;
4933
4934         mutex_lock(&iter->lock);
4935
4936         /* We prefer to reuse the last sg so that repeated lookup of this
4937          * (or the subsequent) sg are fast - comparing against the last
4938          * sg is faster than going through the radixtree.
4939          */
4940
4941         sg = iter->sg_pos;
4942         idx = iter->sg_idx;
4943         count = __sg_page_count(sg);
4944
4945         while (idx + count <= n) {
4946                 unsigned long exception, i;
4947                 int ret;
4948
4949                 /* If we cannot allocate and insert this entry, or the
4950                  * individual pages from this range, cancel updating the
4951                  * sg_idx so that on this lookup we are forced to linearly
4952                  * scan onwards, but on future lookups we will try the
4953                  * insertion again (in which case we need to be careful of
4954                  * the error return reporting that we have already inserted
4955                  * this index).
4956                  */
4957                 ret = radix_tree_insert(&iter->radix, idx, sg);
4958                 if (ret && ret != -EEXIST)
4959                         goto scan;
4960
4961                 exception =
4962                         RADIX_TREE_EXCEPTIONAL_ENTRY |
4963                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
4964                 for (i = 1; i < count; i++) {
4965                         ret = radix_tree_insert(&iter->radix, idx + i,
4966                                                 (void *)exception);
4967                         if (ret && ret != -EEXIST)
4968                                 goto scan;
4969                 }
4970
4971                 idx += count;
4972                 sg = ____sg_next(sg);
4973                 count = __sg_page_count(sg);
4974         }
4975
4976 scan:
4977         iter->sg_pos = sg;
4978         iter->sg_idx = idx;
4979
4980         mutex_unlock(&iter->lock);
4981
4982         if (unlikely(n < idx)) /* insertion completed by another thread */
4983                 goto lookup;
4984
4985         /* In case we failed to insert the entry into the radixtree, we need
4986          * to look beyond the current sg.
4987          */
4988         while (idx + count <= n) {
4989                 idx += count;
4990                 sg = ____sg_next(sg);
4991                 count = __sg_page_count(sg);
4992         }
4993
4994         *offset = n - idx;
4995         return sg;
4996
4997 lookup:
4998         rcu_read_lock();
4999
5000         sg = radix_tree_lookup(&iter->radix, n);
5001         GEM_BUG_ON(!sg);
5002
5003         /* If this index is in the middle of multi-page sg entry,
5004          * the radixtree will contain an exceptional entry that points
5005          * to the start of that range. We will return the pointer to
5006          * the base page and the offset of this page within the
5007          * sg entry's range.
5008          */
5009         *offset = 0;
5010         if (unlikely(radix_tree_exception(sg))) {
5011                 unsigned long base =
5012                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5013
5014                 sg = radix_tree_lookup(&iter->radix, base);
5015                 GEM_BUG_ON(!sg);
5016
5017                 *offset = n - base;
5018         }
5019
5020         rcu_read_unlock();
5021
5022         return sg;
5023 }
5024
5025 struct page *
5026 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5027 {
5028         struct scatterlist *sg;
5029         unsigned int offset;
5030
5031         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5032
5033         sg = i915_gem_object_get_sg(obj, n, &offset);
5034         return nth_page(sg_page(sg), offset);
5035 }
5036
5037 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5038 struct page *
5039 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5040                                unsigned int n)
5041 {
5042         struct page *page;
5043
5044         page = i915_gem_object_get_page(obj, n);
5045         if (!obj->mm.dirty)
5046                 set_page_dirty(page);
5047
5048         return page;
5049 }
5050
5051 dma_addr_t
5052 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5053                                 unsigned long n)
5054 {
5055         struct scatterlist *sg;
5056         unsigned int offset;
5057
5058         sg = i915_gem_object_get_sg(obj, n, &offset);
5059         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5060 }