Merge remote-tracking branches 'asoc/fix/rockchip', 'asoc/fix/rt5645', 'asoc/fix...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
50 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
51
52 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
53 {
54         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
55                 return false;
56
57         if (!i915_gem_object_is_coherent(obj))
58                 return true;
59
60         return obj->pin_display;
61 }
62
63 static int
64 insert_mappable_node(struct i915_ggtt *ggtt,
65                      struct drm_mm_node *node, u32 size)
66 {
67         memset(node, 0, sizeof(*node));
68         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
69                                            size, 0, I915_COLOR_UNEVICTABLE,
70                                            0, ggtt->mappable_end,
71                                            DRM_MM_INSERT_LOW);
72 }
73
74 static void
75 remove_mappable_node(struct drm_mm_node *node)
76 {
77         drm_mm_remove_node(node);
78 }
79
80 /* some bookkeeping */
81 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
82                                   u64 size)
83 {
84         spin_lock(&dev_priv->mm.object_stat_lock);
85         dev_priv->mm.object_count++;
86         dev_priv->mm.object_memory += size;
87         spin_unlock(&dev_priv->mm.object_stat_lock);
88 }
89
90 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
91                                      u64 size)
92 {
93         spin_lock(&dev_priv->mm.object_stat_lock);
94         dev_priv->mm.object_count--;
95         dev_priv->mm.object_memory -= size;
96         spin_unlock(&dev_priv->mm.object_stat_lock);
97 }
98
99 static int
100 i915_gem_wait_for_error(struct i915_gpu_error *error)
101 {
102         int ret;
103
104         might_sleep();
105
106         /*
107          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
108          * userspace. If it takes that long something really bad is going on and
109          * we should simply try to bail out and fail as gracefully as possible.
110          */
111         ret = wait_event_interruptible_timeout(error->reset_queue,
112                                                !i915_reset_backoff(error),
113                                                I915_RESET_TIMEOUT);
114         if (ret == 0) {
115                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
116                 return -EIO;
117         } else if (ret < 0) {
118                 return ret;
119         } else {
120                 return 0;
121         }
122 }
123
124 int i915_mutex_lock_interruptible(struct drm_device *dev)
125 {
126         struct drm_i915_private *dev_priv = to_i915(dev);
127         int ret;
128
129         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
130         if (ret)
131                 return ret;
132
133         ret = mutex_lock_interruptible(&dev->struct_mutex);
134         if (ret)
135                 return ret;
136
137         return 0;
138 }
139
140 int
141 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
142                             struct drm_file *file)
143 {
144         struct drm_i915_private *dev_priv = to_i915(dev);
145         struct i915_ggtt *ggtt = &dev_priv->ggtt;
146         struct drm_i915_gem_get_aperture *args = data;
147         struct i915_vma *vma;
148         size_t pinned;
149
150         pinned = 0;
151         mutex_lock(&dev->struct_mutex);
152         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
153                 if (i915_vma_is_pinned(vma))
154                         pinned += vma->node.size;
155         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
156                 if (i915_vma_is_pinned(vma))
157                         pinned += vma->node.size;
158         mutex_unlock(&dev->struct_mutex);
159
160         args->aper_size = ggtt->base.total;
161         args->aper_available_size = args->aper_size - pinned;
162
163         return 0;
164 }
165
166 static struct sg_table *
167 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
168 {
169         struct address_space *mapping = obj->base.filp->f_mapping;
170         drm_dma_handle_t *phys;
171         struct sg_table *st;
172         struct scatterlist *sg;
173         char *vaddr;
174         int i;
175
176         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
177                 return ERR_PTR(-EINVAL);
178
179         /* Always aligning to the object size, allows a single allocation
180          * to handle all possible callers, and given typical object sizes,
181          * the alignment of the buddy allocation will naturally match.
182          */
183         phys = drm_pci_alloc(obj->base.dev,
184                              obj->base.size,
185                              roundup_pow_of_two(obj->base.size));
186         if (!phys)
187                 return ERR_PTR(-ENOMEM);
188
189         vaddr = phys->vaddr;
190         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
191                 struct page *page;
192                 char *src;
193
194                 page = shmem_read_mapping_page(mapping, i);
195                 if (IS_ERR(page)) {
196                         st = ERR_CAST(page);
197                         goto err_phys;
198                 }
199
200                 src = kmap_atomic(page);
201                 memcpy(vaddr, src, PAGE_SIZE);
202                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
203                 kunmap_atomic(src);
204
205                 put_page(page);
206                 vaddr += PAGE_SIZE;
207         }
208
209         i915_gem_chipset_flush(to_i915(obj->base.dev));
210
211         st = kmalloc(sizeof(*st), GFP_KERNEL);
212         if (!st) {
213                 st = ERR_PTR(-ENOMEM);
214                 goto err_phys;
215         }
216
217         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
218                 kfree(st);
219                 st = ERR_PTR(-ENOMEM);
220                 goto err_phys;
221         }
222
223         sg = st->sgl;
224         sg->offset = 0;
225         sg->length = obj->base.size;
226
227         sg_dma_address(sg) = phys->busaddr;
228         sg_dma_len(sg) = obj->base.size;
229
230         obj->phys_handle = phys;
231         return st;
232
233 err_phys:
234         drm_pci_free(obj->base.dev, phys);
235         return st;
236 }
237
238 static void
239 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
240                                 struct sg_table *pages,
241                                 bool needs_clflush)
242 {
243         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
244
245         if (obj->mm.madv == I915_MADV_DONTNEED)
246                 obj->mm.dirty = false;
247
248         if (needs_clflush &&
249             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
250             !i915_gem_object_is_coherent(obj))
251                 drm_clflush_sg(pages);
252
253         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
254         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
255 }
256
257 static void
258 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
259                                struct sg_table *pages)
260 {
261         __i915_gem_object_release_shmem(obj, pages, false);
262
263         if (obj->mm.dirty) {
264                 struct address_space *mapping = obj->base.filp->f_mapping;
265                 char *vaddr = obj->phys_handle->vaddr;
266                 int i;
267
268                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
269                         struct page *page;
270                         char *dst;
271
272                         page = shmem_read_mapping_page(mapping, i);
273                         if (IS_ERR(page))
274                                 continue;
275
276                         dst = kmap_atomic(page);
277                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
278                         memcpy(dst, vaddr, PAGE_SIZE);
279                         kunmap_atomic(dst);
280
281                         set_page_dirty(page);
282                         if (obj->mm.madv == I915_MADV_WILLNEED)
283                                 mark_page_accessed(page);
284                         put_page(page);
285                         vaddr += PAGE_SIZE;
286                 }
287                 obj->mm.dirty = false;
288         }
289
290         sg_free_table(pages);
291         kfree(pages);
292
293         drm_pci_free(obj->base.dev, obj->phys_handle);
294 }
295
296 static void
297 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
298 {
299         i915_gem_object_unpin_pages(obj);
300 }
301
302 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
303         .get_pages = i915_gem_object_get_pages_phys,
304         .put_pages = i915_gem_object_put_pages_phys,
305         .release = i915_gem_object_release_phys,
306 };
307
308 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
309
310 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
311 {
312         struct i915_vma *vma;
313         LIST_HEAD(still_in_list);
314         int ret;
315
316         lockdep_assert_held(&obj->base.dev->struct_mutex);
317
318         /* Closed vma are removed from the obj->vma_list - but they may
319          * still have an active binding on the object. To remove those we
320          * must wait for all rendering to complete to the object (as unbinding
321          * must anyway), and retire the requests.
322          */
323         ret = i915_gem_object_wait(obj,
324                                    I915_WAIT_INTERRUPTIBLE |
325                                    I915_WAIT_LOCKED |
326                                    I915_WAIT_ALL,
327                                    MAX_SCHEDULE_TIMEOUT,
328                                    NULL);
329         if (ret)
330                 return ret;
331
332         i915_gem_retire_requests(to_i915(obj->base.dev));
333
334         while ((vma = list_first_entry_or_null(&obj->vma_list,
335                                                struct i915_vma,
336                                                obj_link))) {
337                 list_move_tail(&vma->obj_link, &still_in_list);
338                 ret = i915_vma_unbind(vma);
339                 if (ret)
340                         break;
341         }
342         list_splice(&still_in_list, &obj->vma_list);
343
344         return ret;
345 }
346
347 static long
348 i915_gem_object_wait_fence(struct dma_fence *fence,
349                            unsigned int flags,
350                            long timeout,
351                            struct intel_rps_client *rps)
352 {
353         struct drm_i915_gem_request *rq;
354
355         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
356
357         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
358                 return timeout;
359
360         if (!dma_fence_is_i915(fence))
361                 return dma_fence_wait_timeout(fence,
362                                               flags & I915_WAIT_INTERRUPTIBLE,
363                                               timeout);
364
365         rq = to_request(fence);
366         if (i915_gem_request_completed(rq))
367                 goto out;
368
369         /* This client is about to stall waiting for the GPU. In many cases
370          * this is undesirable and limits the throughput of the system, as
371          * many clients cannot continue processing user input/output whilst
372          * blocked. RPS autotuning may take tens of milliseconds to respond
373          * to the GPU load and thus incurs additional latency for the client.
374          * We can circumvent that by promoting the GPU frequency to maximum
375          * before we wait. This makes the GPU throttle up much more quickly
376          * (good for benchmarks and user experience, e.g. window animations),
377          * but at a cost of spending more power processing the workload
378          * (bad for battery). Not all clients even want their results
379          * immediately and for them we should just let the GPU select its own
380          * frequency to maximise efficiency. To prevent a single client from
381          * forcing the clocks too high for the whole system, we only allow
382          * each client to waitboost once in a busy period.
383          */
384         if (rps) {
385                 if (INTEL_GEN(rq->i915) >= 6)
386                         gen6_rps_boost(rq->i915, rps, rq->emitted_jiffies);
387                 else
388                         rps = NULL;
389         }
390
391         timeout = i915_wait_request(rq, flags, timeout);
392
393 out:
394         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
395                 i915_gem_request_retire_upto(rq);
396
397         if (rps && i915_gem_request_global_seqno(rq) == intel_engine_last_submit(rq->engine)) {
398                 /* The GPU is now idle and this client has stalled.
399                  * Since no other client has submitted a request in the
400                  * meantime, assume that this client is the only one
401                  * supplying work to the GPU but is unable to keep that
402                  * work supplied because it is waiting. Since the GPU is
403                  * then never kept fully busy, RPS autoclocking will
404                  * keep the clocks relatively low, causing further delays.
405                  * Compensate by giving the synchronous client credit for
406                  * a waitboost next time.
407                  */
408                 spin_lock(&rq->i915->rps.client_lock);
409                 list_del_init(&rps->link);
410                 spin_unlock(&rq->i915->rps.client_lock);
411         }
412
413         return timeout;
414 }
415
416 static long
417 i915_gem_object_wait_reservation(struct reservation_object *resv,
418                                  unsigned int flags,
419                                  long timeout,
420                                  struct intel_rps_client *rps)
421 {
422         unsigned int seq = __read_seqcount_begin(&resv->seq);
423         struct dma_fence *excl;
424         bool prune_fences = false;
425
426         if (flags & I915_WAIT_ALL) {
427                 struct dma_fence **shared;
428                 unsigned int count, i;
429                 int ret;
430
431                 ret = reservation_object_get_fences_rcu(resv,
432                                                         &excl, &count, &shared);
433                 if (ret)
434                         return ret;
435
436                 for (i = 0; i < count; i++) {
437                         timeout = i915_gem_object_wait_fence(shared[i],
438                                                              flags, timeout,
439                                                              rps);
440                         if (timeout < 0)
441                                 break;
442
443                         dma_fence_put(shared[i]);
444                 }
445
446                 for (; i < count; i++)
447                         dma_fence_put(shared[i]);
448                 kfree(shared);
449
450                 prune_fences = count && timeout >= 0;
451         } else {
452                 excl = reservation_object_get_excl_rcu(resv);
453         }
454
455         if (excl && timeout >= 0) {
456                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
457                 prune_fences = timeout >= 0;
458         }
459
460         dma_fence_put(excl);
461
462         /* Oportunistically prune the fences iff we know they have *all* been
463          * signaled and that the reservation object has not been changed (i.e.
464          * no new fences have been added).
465          */
466         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
467                 if (reservation_object_trylock(resv)) {
468                         if (!__read_seqcount_retry(&resv->seq, seq))
469                                 reservation_object_add_excl_fence(resv, NULL);
470                         reservation_object_unlock(resv);
471                 }
472         }
473
474         return timeout;
475 }
476
477 static void __fence_set_priority(struct dma_fence *fence, int prio)
478 {
479         struct drm_i915_gem_request *rq;
480         struct intel_engine_cs *engine;
481
482         if (!dma_fence_is_i915(fence))
483                 return;
484
485         rq = to_request(fence);
486         engine = rq->engine;
487         if (!engine->schedule)
488                 return;
489
490         engine->schedule(rq, prio);
491 }
492
493 static void fence_set_priority(struct dma_fence *fence, int prio)
494 {
495         /* Recurse once into a fence-array */
496         if (dma_fence_is_array(fence)) {
497                 struct dma_fence_array *array = to_dma_fence_array(fence);
498                 int i;
499
500                 for (i = 0; i < array->num_fences; i++)
501                         __fence_set_priority(array->fences[i], prio);
502         } else {
503                 __fence_set_priority(fence, prio);
504         }
505 }
506
507 int
508 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
509                               unsigned int flags,
510                               int prio)
511 {
512         struct dma_fence *excl;
513
514         if (flags & I915_WAIT_ALL) {
515                 struct dma_fence **shared;
516                 unsigned int count, i;
517                 int ret;
518
519                 ret = reservation_object_get_fences_rcu(obj->resv,
520                                                         &excl, &count, &shared);
521                 if (ret)
522                         return ret;
523
524                 for (i = 0; i < count; i++) {
525                         fence_set_priority(shared[i], prio);
526                         dma_fence_put(shared[i]);
527                 }
528
529                 kfree(shared);
530         } else {
531                 excl = reservation_object_get_excl_rcu(obj->resv);
532         }
533
534         if (excl) {
535                 fence_set_priority(excl, prio);
536                 dma_fence_put(excl);
537         }
538         return 0;
539 }
540
541 /**
542  * Waits for rendering to the object to be completed
543  * @obj: i915 gem object
544  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
545  * @timeout: how long to wait
546  * @rps: client (user process) to charge for any waitboosting
547  */
548 int
549 i915_gem_object_wait(struct drm_i915_gem_object *obj,
550                      unsigned int flags,
551                      long timeout,
552                      struct intel_rps_client *rps)
553 {
554         might_sleep();
555 #if IS_ENABLED(CONFIG_LOCKDEP)
556         GEM_BUG_ON(debug_locks &&
557                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
558                    !!(flags & I915_WAIT_LOCKED));
559 #endif
560         GEM_BUG_ON(timeout < 0);
561
562         timeout = i915_gem_object_wait_reservation(obj->resv,
563                                                    flags, timeout,
564                                                    rps);
565         return timeout < 0 ? timeout : 0;
566 }
567
568 static struct intel_rps_client *to_rps_client(struct drm_file *file)
569 {
570         struct drm_i915_file_private *fpriv = file->driver_priv;
571
572         return &fpriv->rps;
573 }
574
575 int
576 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
577                             int align)
578 {
579         int ret;
580
581         if (align > obj->base.size)
582                 return -EINVAL;
583
584         if (obj->ops == &i915_gem_phys_ops)
585                 return 0;
586
587         if (obj->mm.madv != I915_MADV_WILLNEED)
588                 return -EFAULT;
589
590         if (obj->base.filp == NULL)
591                 return -EINVAL;
592
593         ret = i915_gem_object_unbind(obj);
594         if (ret)
595                 return ret;
596
597         __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
598         if (obj->mm.pages)
599                 return -EBUSY;
600
601         GEM_BUG_ON(obj->ops != &i915_gem_object_ops);
602         obj->ops = &i915_gem_phys_ops;
603
604         ret = i915_gem_object_pin_pages(obj);
605         if (ret)
606                 goto err_xfer;
607
608         return 0;
609
610 err_xfer:
611         obj->ops = &i915_gem_object_ops;
612         return ret;
613 }
614
615 static int
616 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
617                      struct drm_i915_gem_pwrite *args,
618                      struct drm_file *file)
619 {
620         void *vaddr = obj->phys_handle->vaddr + args->offset;
621         char __user *user_data = u64_to_user_ptr(args->data_ptr);
622
623         /* We manually control the domain here and pretend that it
624          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
625          */
626         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
627         if (copy_from_user(vaddr, user_data, args->size))
628                 return -EFAULT;
629
630         drm_clflush_virt_range(vaddr, args->size);
631         i915_gem_chipset_flush(to_i915(obj->base.dev));
632
633         intel_fb_obj_flush(obj, ORIGIN_CPU);
634         return 0;
635 }
636
637 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
638 {
639         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
640 }
641
642 void i915_gem_object_free(struct drm_i915_gem_object *obj)
643 {
644         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
645         kmem_cache_free(dev_priv->objects, obj);
646 }
647
648 static int
649 i915_gem_create(struct drm_file *file,
650                 struct drm_i915_private *dev_priv,
651                 uint64_t size,
652                 uint32_t *handle_p)
653 {
654         struct drm_i915_gem_object *obj;
655         int ret;
656         u32 handle;
657
658         size = roundup(size, PAGE_SIZE);
659         if (size == 0)
660                 return -EINVAL;
661
662         /* Allocate the new object */
663         obj = i915_gem_object_create(dev_priv, size);
664         if (IS_ERR(obj))
665                 return PTR_ERR(obj);
666
667         ret = drm_gem_handle_create(file, &obj->base, &handle);
668         /* drop reference from allocate - handle holds it now */
669         i915_gem_object_put(obj);
670         if (ret)
671                 return ret;
672
673         *handle_p = handle;
674         return 0;
675 }
676
677 int
678 i915_gem_dumb_create(struct drm_file *file,
679                      struct drm_device *dev,
680                      struct drm_mode_create_dumb *args)
681 {
682         /* have to work out size/pitch and return them */
683         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
684         args->size = args->pitch * args->height;
685         return i915_gem_create(file, to_i915(dev),
686                                args->size, &args->handle);
687 }
688
689 /**
690  * Creates a new mm object and returns a handle to it.
691  * @dev: drm device pointer
692  * @data: ioctl data blob
693  * @file: drm file pointer
694  */
695 int
696 i915_gem_create_ioctl(struct drm_device *dev, void *data,
697                       struct drm_file *file)
698 {
699         struct drm_i915_private *dev_priv = to_i915(dev);
700         struct drm_i915_gem_create *args = data;
701
702         i915_gem_flush_free_objects(dev_priv);
703
704         return i915_gem_create(file, dev_priv,
705                                args->size, &args->handle);
706 }
707
708 static inline int
709 __copy_to_user_swizzled(char __user *cpu_vaddr,
710                         const char *gpu_vaddr, int gpu_offset,
711                         int length)
712 {
713         int ret, cpu_offset = 0;
714
715         while (length > 0) {
716                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
717                 int this_length = min(cacheline_end - gpu_offset, length);
718                 int swizzled_gpu_offset = gpu_offset ^ 64;
719
720                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
721                                      gpu_vaddr + swizzled_gpu_offset,
722                                      this_length);
723                 if (ret)
724                         return ret + length;
725
726                 cpu_offset += this_length;
727                 gpu_offset += this_length;
728                 length -= this_length;
729         }
730
731         return 0;
732 }
733
734 static inline int
735 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
736                           const char __user *cpu_vaddr,
737                           int length)
738 {
739         int ret, cpu_offset = 0;
740
741         while (length > 0) {
742                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
743                 int this_length = min(cacheline_end - gpu_offset, length);
744                 int swizzled_gpu_offset = gpu_offset ^ 64;
745
746                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
747                                        cpu_vaddr + cpu_offset,
748                                        this_length);
749                 if (ret)
750                         return ret + length;
751
752                 cpu_offset += this_length;
753                 gpu_offset += this_length;
754                 length -= this_length;
755         }
756
757         return 0;
758 }
759
760 /*
761  * Pins the specified object's pages and synchronizes the object with
762  * GPU accesses. Sets needs_clflush to non-zero if the caller should
763  * flush the object from the CPU cache.
764  */
765 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
766                                     unsigned int *needs_clflush)
767 {
768         int ret;
769
770         lockdep_assert_held(&obj->base.dev->struct_mutex);
771
772         *needs_clflush = 0;
773         if (!i915_gem_object_has_struct_page(obj))
774                 return -ENODEV;
775
776         ret = i915_gem_object_wait(obj,
777                                    I915_WAIT_INTERRUPTIBLE |
778                                    I915_WAIT_LOCKED,
779                                    MAX_SCHEDULE_TIMEOUT,
780                                    NULL);
781         if (ret)
782                 return ret;
783
784         ret = i915_gem_object_pin_pages(obj);
785         if (ret)
786                 return ret;
787
788         if (i915_gem_object_is_coherent(obj) ||
789             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
790                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
791                 if (ret)
792                         goto err_unpin;
793                 else
794                         goto out;
795         }
796
797         i915_gem_object_flush_gtt_write_domain(obj);
798
799         /* If we're not in the cpu read domain, set ourself into the gtt
800          * read domain and manually flush cachelines (if required). This
801          * optimizes for the case when the gpu will dirty the data
802          * anyway again before the next pread happens.
803          */
804         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
805                 *needs_clflush = CLFLUSH_BEFORE;
806
807 out:
808         /* return with the pages pinned */
809         return 0;
810
811 err_unpin:
812         i915_gem_object_unpin_pages(obj);
813         return ret;
814 }
815
816 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
817                                      unsigned int *needs_clflush)
818 {
819         int ret;
820
821         lockdep_assert_held(&obj->base.dev->struct_mutex);
822
823         *needs_clflush = 0;
824         if (!i915_gem_object_has_struct_page(obj))
825                 return -ENODEV;
826
827         ret = i915_gem_object_wait(obj,
828                                    I915_WAIT_INTERRUPTIBLE |
829                                    I915_WAIT_LOCKED |
830                                    I915_WAIT_ALL,
831                                    MAX_SCHEDULE_TIMEOUT,
832                                    NULL);
833         if (ret)
834                 return ret;
835
836         ret = i915_gem_object_pin_pages(obj);
837         if (ret)
838                 return ret;
839
840         if (i915_gem_object_is_coherent(obj) ||
841             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
842                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
843                 if (ret)
844                         goto err_unpin;
845                 else
846                         goto out;
847         }
848
849         i915_gem_object_flush_gtt_write_domain(obj);
850
851         /* If we're not in the cpu write domain, set ourself into the
852          * gtt write domain and manually flush cachelines (as required).
853          * This optimizes for the case when the gpu will use the data
854          * right away and we therefore have to clflush anyway.
855          */
856         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
857                 *needs_clflush |= CLFLUSH_AFTER;
858
859         /* Same trick applies to invalidate partially written cachelines read
860          * before writing.
861          */
862         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
863                 *needs_clflush |= CLFLUSH_BEFORE;
864
865 out:
866         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
867         obj->mm.dirty = true;
868         /* return with the pages pinned */
869         return 0;
870
871 err_unpin:
872         i915_gem_object_unpin_pages(obj);
873         return ret;
874 }
875
876 static void
877 shmem_clflush_swizzled_range(char *addr, unsigned long length,
878                              bool swizzled)
879 {
880         if (unlikely(swizzled)) {
881                 unsigned long start = (unsigned long) addr;
882                 unsigned long end = (unsigned long) addr + length;
883
884                 /* For swizzling simply ensure that we always flush both
885                  * channels. Lame, but simple and it works. Swizzled
886                  * pwrite/pread is far from a hotpath - current userspace
887                  * doesn't use it at all. */
888                 start = round_down(start, 128);
889                 end = round_up(end, 128);
890
891                 drm_clflush_virt_range((void *)start, end - start);
892         } else {
893                 drm_clflush_virt_range(addr, length);
894         }
895
896 }
897
898 /* Only difference to the fast-path function is that this can handle bit17
899  * and uses non-atomic copy and kmap functions. */
900 static int
901 shmem_pread_slow(struct page *page, int offset, int length,
902                  char __user *user_data,
903                  bool page_do_bit17_swizzling, bool needs_clflush)
904 {
905         char *vaddr;
906         int ret;
907
908         vaddr = kmap(page);
909         if (needs_clflush)
910                 shmem_clflush_swizzled_range(vaddr + offset, length,
911                                              page_do_bit17_swizzling);
912
913         if (page_do_bit17_swizzling)
914                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
915         else
916                 ret = __copy_to_user(user_data, vaddr + offset, length);
917         kunmap(page);
918
919         return ret ? - EFAULT : 0;
920 }
921
922 static int
923 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
924             bool page_do_bit17_swizzling, bool needs_clflush)
925 {
926         int ret;
927
928         ret = -ENODEV;
929         if (!page_do_bit17_swizzling) {
930                 char *vaddr = kmap_atomic(page);
931
932                 if (needs_clflush)
933                         drm_clflush_virt_range(vaddr + offset, length);
934                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
935                 kunmap_atomic(vaddr);
936         }
937         if (ret == 0)
938                 return 0;
939
940         return shmem_pread_slow(page, offset, length, user_data,
941                                 page_do_bit17_swizzling, needs_clflush);
942 }
943
944 static int
945 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
946                      struct drm_i915_gem_pread *args)
947 {
948         char __user *user_data;
949         u64 remain;
950         unsigned int obj_do_bit17_swizzling;
951         unsigned int needs_clflush;
952         unsigned int idx, offset;
953         int ret;
954
955         obj_do_bit17_swizzling = 0;
956         if (i915_gem_object_needs_bit17_swizzle(obj))
957                 obj_do_bit17_swizzling = BIT(17);
958
959         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
960         if (ret)
961                 return ret;
962
963         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
964         mutex_unlock(&obj->base.dev->struct_mutex);
965         if (ret)
966                 return ret;
967
968         remain = args->size;
969         user_data = u64_to_user_ptr(args->data_ptr);
970         offset = offset_in_page(args->offset);
971         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
972                 struct page *page = i915_gem_object_get_page(obj, idx);
973                 int length;
974
975                 length = remain;
976                 if (offset + length > PAGE_SIZE)
977                         length = PAGE_SIZE - offset;
978
979                 ret = shmem_pread(page, offset, length, user_data,
980                                   page_to_phys(page) & obj_do_bit17_swizzling,
981                                   needs_clflush);
982                 if (ret)
983                         break;
984
985                 remain -= length;
986                 user_data += length;
987                 offset = 0;
988         }
989
990         i915_gem_obj_finish_shmem_access(obj);
991         return ret;
992 }
993
994 static inline bool
995 gtt_user_read(struct io_mapping *mapping,
996               loff_t base, int offset,
997               char __user *user_data, int length)
998 {
999         void *vaddr;
1000         unsigned long unwritten;
1001
1002         /* We can use the cpu mem copy function because this is X86. */
1003         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1004         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1005         io_mapping_unmap_atomic(vaddr);
1006         if (unwritten) {
1007                 vaddr = (void __force *)
1008                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1009                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1010                 io_mapping_unmap(vaddr);
1011         }
1012         return unwritten;
1013 }
1014
1015 static int
1016 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1017                    const struct drm_i915_gem_pread *args)
1018 {
1019         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1020         struct i915_ggtt *ggtt = &i915->ggtt;
1021         struct drm_mm_node node;
1022         struct i915_vma *vma;
1023         void __user *user_data;
1024         u64 remain, offset;
1025         int ret;
1026
1027         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1028         if (ret)
1029                 return ret;
1030
1031         intel_runtime_pm_get(i915);
1032         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1033                                        PIN_MAPPABLE | PIN_NONBLOCK);
1034         if (!IS_ERR(vma)) {
1035                 node.start = i915_ggtt_offset(vma);
1036                 node.allocated = false;
1037                 ret = i915_vma_put_fence(vma);
1038                 if (ret) {
1039                         i915_vma_unpin(vma);
1040                         vma = ERR_PTR(ret);
1041                 }
1042         }
1043         if (IS_ERR(vma)) {
1044                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1045                 if (ret)
1046                         goto out_unlock;
1047                 GEM_BUG_ON(!node.allocated);
1048         }
1049
1050         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1051         if (ret)
1052                 goto out_unpin;
1053
1054         mutex_unlock(&i915->drm.struct_mutex);
1055
1056         user_data = u64_to_user_ptr(args->data_ptr);
1057         remain = args->size;
1058         offset = args->offset;
1059
1060         while (remain > 0) {
1061                 /* Operation in this page
1062                  *
1063                  * page_base = page offset within aperture
1064                  * page_offset = offset within page
1065                  * page_length = bytes to copy for this page
1066                  */
1067                 u32 page_base = node.start;
1068                 unsigned page_offset = offset_in_page(offset);
1069                 unsigned page_length = PAGE_SIZE - page_offset;
1070                 page_length = remain < page_length ? remain : page_length;
1071                 if (node.allocated) {
1072                         wmb();
1073                         ggtt->base.insert_page(&ggtt->base,
1074                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1075                                                node.start, I915_CACHE_NONE, 0);
1076                         wmb();
1077                 } else {
1078                         page_base += offset & PAGE_MASK;
1079                 }
1080
1081                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1082                                   user_data, page_length)) {
1083                         ret = -EFAULT;
1084                         break;
1085                 }
1086
1087                 remain -= page_length;
1088                 user_data += page_length;
1089                 offset += page_length;
1090         }
1091
1092         mutex_lock(&i915->drm.struct_mutex);
1093 out_unpin:
1094         if (node.allocated) {
1095                 wmb();
1096                 ggtt->base.clear_range(&ggtt->base,
1097                                        node.start, node.size);
1098                 remove_mappable_node(&node);
1099         } else {
1100                 i915_vma_unpin(vma);
1101         }
1102 out_unlock:
1103         intel_runtime_pm_put(i915);
1104         mutex_unlock(&i915->drm.struct_mutex);
1105
1106         return ret;
1107 }
1108
1109 /**
1110  * Reads data from the object referenced by handle.
1111  * @dev: drm device pointer
1112  * @data: ioctl data blob
1113  * @file: drm file pointer
1114  *
1115  * On error, the contents of *data are undefined.
1116  */
1117 int
1118 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1119                      struct drm_file *file)
1120 {
1121         struct drm_i915_gem_pread *args = data;
1122         struct drm_i915_gem_object *obj;
1123         int ret;
1124
1125         if (args->size == 0)
1126                 return 0;
1127
1128         if (!access_ok(VERIFY_WRITE,
1129                        u64_to_user_ptr(args->data_ptr),
1130                        args->size))
1131                 return -EFAULT;
1132
1133         obj = i915_gem_object_lookup(file, args->handle);
1134         if (!obj)
1135                 return -ENOENT;
1136
1137         /* Bounds check source.  */
1138         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1139                 ret = -EINVAL;
1140                 goto out;
1141         }
1142
1143         trace_i915_gem_object_pread(obj, args->offset, args->size);
1144
1145         ret = i915_gem_object_wait(obj,
1146                                    I915_WAIT_INTERRUPTIBLE,
1147                                    MAX_SCHEDULE_TIMEOUT,
1148                                    to_rps_client(file));
1149         if (ret)
1150                 goto out;
1151
1152         ret = i915_gem_object_pin_pages(obj);
1153         if (ret)
1154                 goto out;
1155
1156         ret = i915_gem_shmem_pread(obj, args);
1157         if (ret == -EFAULT || ret == -ENODEV)
1158                 ret = i915_gem_gtt_pread(obj, args);
1159
1160         i915_gem_object_unpin_pages(obj);
1161 out:
1162         i915_gem_object_put(obj);
1163         return ret;
1164 }
1165
1166 /* This is the fast write path which cannot handle
1167  * page faults in the source data
1168  */
1169
1170 static inline bool
1171 ggtt_write(struct io_mapping *mapping,
1172            loff_t base, int offset,
1173            char __user *user_data, int length)
1174 {
1175         void *vaddr;
1176         unsigned long unwritten;
1177
1178         /* We can use the cpu mem copy function because this is X86. */
1179         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1180         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1181                                                       user_data, length);
1182         io_mapping_unmap_atomic(vaddr);
1183         if (unwritten) {
1184                 vaddr = (void __force *)
1185                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1186                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1187                 io_mapping_unmap(vaddr);
1188         }
1189
1190         return unwritten;
1191 }
1192
1193 /**
1194  * This is the fast pwrite path, where we copy the data directly from the
1195  * user into the GTT, uncached.
1196  * @obj: i915 GEM object
1197  * @args: pwrite arguments structure
1198  */
1199 static int
1200 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1201                          const struct drm_i915_gem_pwrite *args)
1202 {
1203         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1204         struct i915_ggtt *ggtt = &i915->ggtt;
1205         struct drm_mm_node node;
1206         struct i915_vma *vma;
1207         u64 remain, offset;
1208         void __user *user_data;
1209         int ret;
1210
1211         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1212         if (ret)
1213                 return ret;
1214
1215         intel_runtime_pm_get(i915);
1216         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1217                                        PIN_MAPPABLE | PIN_NONBLOCK);
1218         if (!IS_ERR(vma)) {
1219                 node.start = i915_ggtt_offset(vma);
1220                 node.allocated = false;
1221                 ret = i915_vma_put_fence(vma);
1222                 if (ret) {
1223                         i915_vma_unpin(vma);
1224                         vma = ERR_PTR(ret);
1225                 }
1226         }
1227         if (IS_ERR(vma)) {
1228                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1229                 if (ret)
1230                         goto out_unlock;
1231                 GEM_BUG_ON(!node.allocated);
1232         }
1233
1234         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1235         if (ret)
1236                 goto out_unpin;
1237
1238         mutex_unlock(&i915->drm.struct_mutex);
1239
1240         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1241
1242         user_data = u64_to_user_ptr(args->data_ptr);
1243         offset = args->offset;
1244         remain = args->size;
1245         while (remain) {
1246                 /* Operation in this page
1247                  *
1248                  * page_base = page offset within aperture
1249                  * page_offset = offset within page
1250                  * page_length = bytes to copy for this page
1251                  */
1252                 u32 page_base = node.start;
1253                 unsigned int page_offset = offset_in_page(offset);
1254                 unsigned int page_length = PAGE_SIZE - page_offset;
1255                 page_length = remain < page_length ? remain : page_length;
1256                 if (node.allocated) {
1257                         wmb(); /* flush the write before we modify the GGTT */
1258                         ggtt->base.insert_page(&ggtt->base,
1259                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1260                                                node.start, I915_CACHE_NONE, 0);
1261                         wmb(); /* flush modifications to the GGTT (insert_page) */
1262                 } else {
1263                         page_base += offset & PAGE_MASK;
1264                 }
1265                 /* If we get a fault while copying data, then (presumably) our
1266                  * source page isn't available.  Return the error and we'll
1267                  * retry in the slow path.
1268                  * If the object is non-shmem backed, we retry again with the
1269                  * path that handles page fault.
1270                  */
1271                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1272                                user_data, page_length)) {
1273                         ret = -EFAULT;
1274                         break;
1275                 }
1276
1277                 remain -= page_length;
1278                 user_data += page_length;
1279                 offset += page_length;
1280         }
1281         intel_fb_obj_flush(obj, ORIGIN_CPU);
1282
1283         mutex_lock(&i915->drm.struct_mutex);
1284 out_unpin:
1285         if (node.allocated) {
1286                 wmb();
1287                 ggtt->base.clear_range(&ggtt->base,
1288                                        node.start, node.size);
1289                 remove_mappable_node(&node);
1290         } else {
1291                 i915_vma_unpin(vma);
1292         }
1293 out_unlock:
1294         intel_runtime_pm_put(i915);
1295         mutex_unlock(&i915->drm.struct_mutex);
1296         return ret;
1297 }
1298
1299 static int
1300 shmem_pwrite_slow(struct page *page, int offset, int length,
1301                   char __user *user_data,
1302                   bool page_do_bit17_swizzling,
1303                   bool needs_clflush_before,
1304                   bool needs_clflush_after)
1305 {
1306         char *vaddr;
1307         int ret;
1308
1309         vaddr = kmap(page);
1310         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1311                 shmem_clflush_swizzled_range(vaddr + offset, length,
1312                                              page_do_bit17_swizzling);
1313         if (page_do_bit17_swizzling)
1314                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1315                                                 length);
1316         else
1317                 ret = __copy_from_user(vaddr + offset, user_data, length);
1318         if (needs_clflush_after)
1319                 shmem_clflush_swizzled_range(vaddr + offset, length,
1320                                              page_do_bit17_swizzling);
1321         kunmap(page);
1322
1323         return ret ? -EFAULT : 0;
1324 }
1325
1326 /* Per-page copy function for the shmem pwrite fastpath.
1327  * Flushes invalid cachelines before writing to the target if
1328  * needs_clflush_before is set and flushes out any written cachelines after
1329  * writing if needs_clflush is set.
1330  */
1331 static int
1332 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1333              bool page_do_bit17_swizzling,
1334              bool needs_clflush_before,
1335              bool needs_clflush_after)
1336 {
1337         int ret;
1338
1339         ret = -ENODEV;
1340         if (!page_do_bit17_swizzling) {
1341                 char *vaddr = kmap_atomic(page);
1342
1343                 if (needs_clflush_before)
1344                         drm_clflush_virt_range(vaddr + offset, len);
1345                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1346                 if (needs_clflush_after)
1347                         drm_clflush_virt_range(vaddr + offset, len);
1348
1349                 kunmap_atomic(vaddr);
1350         }
1351         if (ret == 0)
1352                 return ret;
1353
1354         return shmem_pwrite_slow(page, offset, len, user_data,
1355                                  page_do_bit17_swizzling,
1356                                  needs_clflush_before,
1357                                  needs_clflush_after);
1358 }
1359
1360 static int
1361 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1362                       const struct drm_i915_gem_pwrite *args)
1363 {
1364         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1365         void __user *user_data;
1366         u64 remain;
1367         unsigned int obj_do_bit17_swizzling;
1368         unsigned int partial_cacheline_write;
1369         unsigned int needs_clflush;
1370         unsigned int offset, idx;
1371         int ret;
1372
1373         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1374         if (ret)
1375                 return ret;
1376
1377         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1378         mutex_unlock(&i915->drm.struct_mutex);
1379         if (ret)
1380                 return ret;
1381
1382         obj_do_bit17_swizzling = 0;
1383         if (i915_gem_object_needs_bit17_swizzle(obj))
1384                 obj_do_bit17_swizzling = BIT(17);
1385
1386         /* If we don't overwrite a cacheline completely we need to be
1387          * careful to have up-to-date data by first clflushing. Don't
1388          * overcomplicate things and flush the entire patch.
1389          */
1390         partial_cacheline_write = 0;
1391         if (needs_clflush & CLFLUSH_BEFORE)
1392                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1393
1394         user_data = u64_to_user_ptr(args->data_ptr);
1395         remain = args->size;
1396         offset = offset_in_page(args->offset);
1397         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1398                 struct page *page = i915_gem_object_get_page(obj, idx);
1399                 int length;
1400
1401                 length = remain;
1402                 if (offset + length > PAGE_SIZE)
1403                         length = PAGE_SIZE - offset;
1404
1405                 ret = shmem_pwrite(page, offset, length, user_data,
1406                                    page_to_phys(page) & obj_do_bit17_swizzling,
1407                                    (offset | length) & partial_cacheline_write,
1408                                    needs_clflush & CLFLUSH_AFTER);
1409                 if (ret)
1410                         break;
1411
1412                 remain -= length;
1413                 user_data += length;
1414                 offset = 0;
1415         }
1416
1417         intel_fb_obj_flush(obj, ORIGIN_CPU);
1418         i915_gem_obj_finish_shmem_access(obj);
1419         return ret;
1420 }
1421
1422 /**
1423  * Writes data to the object referenced by handle.
1424  * @dev: drm device
1425  * @data: ioctl data blob
1426  * @file: drm file
1427  *
1428  * On error, the contents of the buffer that were to be modified are undefined.
1429  */
1430 int
1431 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1432                       struct drm_file *file)
1433 {
1434         struct drm_i915_gem_pwrite *args = data;
1435         struct drm_i915_gem_object *obj;
1436         int ret;
1437
1438         if (args->size == 0)
1439                 return 0;
1440
1441         if (!access_ok(VERIFY_READ,
1442                        u64_to_user_ptr(args->data_ptr),
1443                        args->size))
1444                 return -EFAULT;
1445
1446         obj = i915_gem_object_lookup(file, args->handle);
1447         if (!obj)
1448                 return -ENOENT;
1449
1450         /* Bounds check destination. */
1451         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1452                 ret = -EINVAL;
1453                 goto err;
1454         }
1455
1456         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1457
1458         ret = -ENODEV;
1459         if (obj->ops->pwrite)
1460                 ret = obj->ops->pwrite(obj, args);
1461         if (ret != -ENODEV)
1462                 goto err;
1463
1464         ret = i915_gem_object_wait(obj,
1465                                    I915_WAIT_INTERRUPTIBLE |
1466                                    I915_WAIT_ALL,
1467                                    MAX_SCHEDULE_TIMEOUT,
1468                                    to_rps_client(file));
1469         if (ret)
1470                 goto err;
1471
1472         ret = i915_gem_object_pin_pages(obj);
1473         if (ret)
1474                 goto err;
1475
1476         ret = -EFAULT;
1477         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1478          * it would end up going through the fenced access, and we'll get
1479          * different detiling behavior between reading and writing.
1480          * pread/pwrite currently are reading and writing from the CPU
1481          * perspective, requiring manual detiling by the client.
1482          */
1483         if (!i915_gem_object_has_struct_page(obj) ||
1484             cpu_write_needs_clflush(obj))
1485                 /* Note that the gtt paths might fail with non-page-backed user
1486                  * pointers (e.g. gtt mappings when moving data between
1487                  * textures). Fallback to the shmem path in that case.
1488                  */
1489                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1490
1491         if (ret == -EFAULT || ret == -ENOSPC) {
1492                 if (obj->phys_handle)
1493                         ret = i915_gem_phys_pwrite(obj, args, file);
1494                 else
1495                         ret = i915_gem_shmem_pwrite(obj, args);
1496         }
1497
1498         i915_gem_object_unpin_pages(obj);
1499 err:
1500         i915_gem_object_put(obj);
1501         return ret;
1502 }
1503
1504 static inline enum fb_op_origin
1505 write_origin(struct drm_i915_gem_object *obj, unsigned domain)
1506 {
1507         return (domain == I915_GEM_DOMAIN_GTT ?
1508                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
1509 }
1510
1511 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1512 {
1513         struct drm_i915_private *i915;
1514         struct list_head *list;
1515         struct i915_vma *vma;
1516
1517         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1518                 if (!i915_vma_is_ggtt(vma))
1519                         break;
1520
1521                 if (i915_vma_is_active(vma))
1522                         continue;
1523
1524                 if (!drm_mm_node_allocated(&vma->node))
1525                         continue;
1526
1527                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1528         }
1529
1530         i915 = to_i915(obj->base.dev);
1531         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1532         list_move_tail(&obj->global_link, list);
1533 }
1534
1535 /**
1536  * Called when user space prepares to use an object with the CPU, either
1537  * through the mmap ioctl's mapping or a GTT mapping.
1538  * @dev: drm device
1539  * @data: ioctl data blob
1540  * @file: drm file
1541  */
1542 int
1543 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1544                           struct drm_file *file)
1545 {
1546         struct drm_i915_gem_set_domain *args = data;
1547         struct drm_i915_gem_object *obj;
1548         uint32_t read_domains = args->read_domains;
1549         uint32_t write_domain = args->write_domain;
1550         int err;
1551
1552         /* Only handle setting domains to types used by the CPU. */
1553         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1554                 return -EINVAL;
1555
1556         /* Having something in the write domain implies it's in the read
1557          * domain, and only that read domain.  Enforce that in the request.
1558          */
1559         if (write_domain != 0 && read_domains != write_domain)
1560                 return -EINVAL;
1561
1562         obj = i915_gem_object_lookup(file, args->handle);
1563         if (!obj)
1564                 return -ENOENT;
1565
1566         /* Try to flush the object off the GPU without holding the lock.
1567          * We will repeat the flush holding the lock in the normal manner
1568          * to catch cases where we are gazumped.
1569          */
1570         err = i915_gem_object_wait(obj,
1571                                    I915_WAIT_INTERRUPTIBLE |
1572                                    (write_domain ? I915_WAIT_ALL : 0),
1573                                    MAX_SCHEDULE_TIMEOUT,
1574                                    to_rps_client(file));
1575         if (err)
1576                 goto out;
1577
1578         /* Flush and acquire obj->pages so that we are coherent through
1579          * direct access in memory with previous cached writes through
1580          * shmemfs and that our cache domain tracking remains valid.
1581          * For example, if the obj->filp was moved to swap without us
1582          * being notified and releasing the pages, we would mistakenly
1583          * continue to assume that the obj remained out of the CPU cached
1584          * domain.
1585          */
1586         err = i915_gem_object_pin_pages(obj);
1587         if (err)
1588                 goto out;
1589
1590         err = i915_mutex_lock_interruptible(dev);
1591         if (err)
1592                 goto out_unpin;
1593
1594         if (read_domains & I915_GEM_DOMAIN_GTT)
1595                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1596         else
1597                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1598
1599         /* And bump the LRU for this access */
1600         i915_gem_object_bump_inactive_ggtt(obj);
1601
1602         mutex_unlock(&dev->struct_mutex);
1603
1604         if (write_domain != 0)
1605                 intel_fb_obj_invalidate(obj, write_origin(obj, write_domain));
1606
1607 out_unpin:
1608         i915_gem_object_unpin_pages(obj);
1609 out:
1610         i915_gem_object_put(obj);
1611         return err;
1612 }
1613
1614 /**
1615  * Called when user space has done writes to this buffer
1616  * @dev: drm device
1617  * @data: ioctl data blob
1618  * @file: drm file
1619  */
1620 int
1621 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1622                          struct drm_file *file)
1623 {
1624         struct drm_i915_gem_sw_finish *args = data;
1625         struct drm_i915_gem_object *obj;
1626
1627         obj = i915_gem_object_lookup(file, args->handle);
1628         if (!obj)
1629                 return -ENOENT;
1630
1631         /* Pinned buffers may be scanout, so flush the cache */
1632         i915_gem_object_flush_if_display(obj);
1633         i915_gem_object_put(obj);
1634
1635         return 0;
1636 }
1637
1638 /**
1639  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1640  *                       it is mapped to.
1641  * @dev: drm device
1642  * @data: ioctl data blob
1643  * @file: drm file
1644  *
1645  * While the mapping holds a reference on the contents of the object, it doesn't
1646  * imply a ref on the object itself.
1647  *
1648  * IMPORTANT:
1649  *
1650  * DRM driver writers who look a this function as an example for how to do GEM
1651  * mmap support, please don't implement mmap support like here. The modern way
1652  * to implement DRM mmap support is with an mmap offset ioctl (like
1653  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1654  * That way debug tooling like valgrind will understand what's going on, hiding
1655  * the mmap call in a driver private ioctl will break that. The i915 driver only
1656  * does cpu mmaps this way because we didn't know better.
1657  */
1658 int
1659 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1660                     struct drm_file *file)
1661 {
1662         struct drm_i915_gem_mmap *args = data;
1663         struct drm_i915_gem_object *obj;
1664         unsigned long addr;
1665
1666         if (args->flags & ~(I915_MMAP_WC))
1667                 return -EINVAL;
1668
1669         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1670                 return -ENODEV;
1671
1672         obj = i915_gem_object_lookup(file, args->handle);
1673         if (!obj)
1674                 return -ENOENT;
1675
1676         /* prime objects have no backing filp to GEM mmap
1677          * pages from.
1678          */
1679         if (!obj->base.filp) {
1680                 i915_gem_object_put(obj);
1681                 return -EINVAL;
1682         }
1683
1684         addr = vm_mmap(obj->base.filp, 0, args->size,
1685                        PROT_READ | PROT_WRITE, MAP_SHARED,
1686                        args->offset);
1687         if (args->flags & I915_MMAP_WC) {
1688                 struct mm_struct *mm = current->mm;
1689                 struct vm_area_struct *vma;
1690
1691                 if (down_write_killable(&mm->mmap_sem)) {
1692                         i915_gem_object_put(obj);
1693                         return -EINTR;
1694                 }
1695                 vma = find_vma(mm, addr);
1696                 if (vma)
1697                         vma->vm_page_prot =
1698                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1699                 else
1700                         addr = -ENOMEM;
1701                 up_write(&mm->mmap_sem);
1702
1703                 /* This may race, but that's ok, it only gets set */
1704                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1705         }
1706         i915_gem_object_put(obj);
1707         if (IS_ERR((void *)addr))
1708                 return addr;
1709
1710         args->addr_ptr = (uint64_t) addr;
1711
1712         return 0;
1713 }
1714
1715 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1716 {
1717         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1718 }
1719
1720 /**
1721  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1722  *
1723  * A history of the GTT mmap interface:
1724  *
1725  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1726  *     aligned and suitable for fencing, and still fit into the available
1727  *     mappable space left by the pinned display objects. A classic problem
1728  *     we called the page-fault-of-doom where we would ping-pong between
1729  *     two objects that could not fit inside the GTT and so the memcpy
1730  *     would page one object in at the expense of the other between every
1731  *     single byte.
1732  *
1733  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1734  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1735  *     object is too large for the available space (or simply too large
1736  *     for the mappable aperture!), a view is created instead and faulted
1737  *     into userspace. (This view is aligned and sized appropriately for
1738  *     fenced access.)
1739  *
1740  * Restrictions:
1741  *
1742  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1743  *    hangs on some architectures, corruption on others. An attempt to service
1744  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1745  *
1746  *  * the object must be able to fit into RAM (physical memory, though no
1747  *    limited to the mappable aperture).
1748  *
1749  *
1750  * Caveats:
1751  *
1752  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1753  *    all data to system memory. Subsequent access will not be synchronized.
1754  *
1755  *  * all mappings are revoked on runtime device suspend.
1756  *
1757  *  * there are only 8, 16 or 32 fence registers to share between all users
1758  *    (older machines require fence register for display and blitter access
1759  *    as well). Contention of the fence registers will cause the previous users
1760  *    to be unmapped and any new access will generate new page faults.
1761  *
1762  *  * running out of memory while servicing a fault may generate a SIGBUS,
1763  *    rather than the expected SIGSEGV.
1764  */
1765 int i915_gem_mmap_gtt_version(void)
1766 {
1767         return 1;
1768 }
1769
1770 static inline struct i915_ggtt_view
1771 compute_partial_view(struct drm_i915_gem_object *obj,
1772                      pgoff_t page_offset,
1773                      unsigned int chunk)
1774 {
1775         struct i915_ggtt_view view;
1776
1777         if (i915_gem_object_is_tiled(obj))
1778                 chunk = roundup(chunk, tile_row_pages(obj));
1779
1780         view.type = I915_GGTT_VIEW_PARTIAL;
1781         view.partial.offset = rounddown(page_offset, chunk);
1782         view.partial.size =
1783                 min_t(unsigned int, chunk,
1784                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1785
1786         /* If the partial covers the entire object, just create a normal VMA. */
1787         if (chunk >= obj->base.size >> PAGE_SHIFT)
1788                 view.type = I915_GGTT_VIEW_NORMAL;
1789
1790         return view;
1791 }
1792
1793 /**
1794  * i915_gem_fault - fault a page into the GTT
1795  * @vmf: fault info
1796  *
1797  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1798  * from userspace.  The fault handler takes care of binding the object to
1799  * the GTT (if needed), allocating and programming a fence register (again,
1800  * only if needed based on whether the old reg is still valid or the object
1801  * is tiled) and inserting a new PTE into the faulting process.
1802  *
1803  * Note that the faulting process may involve evicting existing objects
1804  * from the GTT and/or fence registers to make room.  So performance may
1805  * suffer if the GTT working set is large or there are few fence registers
1806  * left.
1807  *
1808  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1809  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1810  */
1811 int i915_gem_fault(struct vm_fault *vmf)
1812 {
1813 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1814         struct vm_area_struct *area = vmf->vma;
1815         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1816         struct drm_device *dev = obj->base.dev;
1817         struct drm_i915_private *dev_priv = to_i915(dev);
1818         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1819         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1820         struct i915_vma *vma;
1821         pgoff_t page_offset;
1822         unsigned int flags;
1823         int ret;
1824
1825         /* We don't use vmf->pgoff since that has the fake offset */
1826         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1827
1828         trace_i915_gem_object_fault(obj, page_offset, true, write);
1829
1830         /* Try to flush the object off the GPU first without holding the lock.
1831          * Upon acquiring the lock, we will perform our sanity checks and then
1832          * repeat the flush holding the lock in the normal manner to catch cases
1833          * where we are gazumped.
1834          */
1835         ret = i915_gem_object_wait(obj,
1836                                    I915_WAIT_INTERRUPTIBLE,
1837                                    MAX_SCHEDULE_TIMEOUT,
1838                                    NULL);
1839         if (ret)
1840                 goto err;
1841
1842         ret = i915_gem_object_pin_pages(obj);
1843         if (ret)
1844                 goto err;
1845
1846         intel_runtime_pm_get(dev_priv);
1847
1848         ret = i915_mutex_lock_interruptible(dev);
1849         if (ret)
1850                 goto err_rpm;
1851
1852         /* Access to snoopable pages through the GTT is incoherent. */
1853         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1854                 ret = -EFAULT;
1855                 goto err_unlock;
1856         }
1857
1858         /* If the object is smaller than a couple of partial vma, it is
1859          * not worth only creating a single partial vma - we may as well
1860          * clear enough space for the full object.
1861          */
1862         flags = PIN_MAPPABLE;
1863         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1864                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1865
1866         /* Now pin it into the GTT as needed */
1867         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1868         if (IS_ERR(vma)) {
1869                 /* Use a partial view if it is bigger than available space */
1870                 struct i915_ggtt_view view =
1871                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1872
1873                 /* Userspace is now writing through an untracked VMA, abandon
1874                  * all hope that the hardware is able to track future writes.
1875                  */
1876                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1877
1878                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1879         }
1880         if (IS_ERR(vma)) {
1881                 ret = PTR_ERR(vma);
1882                 goto err_unlock;
1883         }
1884
1885         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1886         if (ret)
1887                 goto err_unpin;
1888
1889         ret = i915_vma_get_fence(vma);
1890         if (ret)
1891                 goto err_unpin;
1892
1893         /* Mark as being mmapped into userspace for later revocation */
1894         assert_rpm_wakelock_held(dev_priv);
1895         if (list_empty(&obj->userfault_link))
1896                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1897
1898         /* Finally, remap it using the new GTT offset */
1899         ret = remap_io_mapping(area,
1900                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1901                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1902                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1903                                &ggtt->mappable);
1904
1905 err_unpin:
1906         __i915_vma_unpin(vma);
1907 err_unlock:
1908         mutex_unlock(&dev->struct_mutex);
1909 err_rpm:
1910         intel_runtime_pm_put(dev_priv);
1911         i915_gem_object_unpin_pages(obj);
1912 err:
1913         switch (ret) {
1914         case -EIO:
1915                 /*
1916                  * We eat errors when the gpu is terminally wedged to avoid
1917                  * userspace unduly crashing (gl has no provisions for mmaps to
1918                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1919                  * and so needs to be reported.
1920                  */
1921                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1922                         ret = VM_FAULT_SIGBUS;
1923                         break;
1924                 }
1925         case -EAGAIN:
1926                 /*
1927                  * EAGAIN means the gpu is hung and we'll wait for the error
1928                  * handler to reset everything when re-faulting in
1929                  * i915_mutex_lock_interruptible.
1930                  */
1931         case 0:
1932         case -ERESTARTSYS:
1933         case -EINTR:
1934         case -EBUSY:
1935                 /*
1936                  * EBUSY is ok: this just means that another thread
1937                  * already did the job.
1938                  */
1939                 ret = VM_FAULT_NOPAGE;
1940                 break;
1941         case -ENOMEM:
1942                 ret = VM_FAULT_OOM;
1943                 break;
1944         case -ENOSPC:
1945         case -EFAULT:
1946                 ret = VM_FAULT_SIGBUS;
1947                 break;
1948         default:
1949                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1950                 ret = VM_FAULT_SIGBUS;
1951                 break;
1952         }
1953         return ret;
1954 }
1955
1956 /**
1957  * i915_gem_release_mmap - remove physical page mappings
1958  * @obj: obj in question
1959  *
1960  * Preserve the reservation of the mmapping with the DRM core code, but
1961  * relinquish ownership of the pages back to the system.
1962  *
1963  * It is vital that we remove the page mapping if we have mapped a tiled
1964  * object through the GTT and then lose the fence register due to
1965  * resource pressure. Similarly if the object has been moved out of the
1966  * aperture, than pages mapped into userspace must be revoked. Removing the
1967  * mapping will then trigger a page fault on the next user access, allowing
1968  * fixup by i915_gem_fault().
1969  */
1970 void
1971 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1972 {
1973         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1974
1975         /* Serialisation between user GTT access and our code depends upon
1976          * revoking the CPU's PTE whilst the mutex is held. The next user
1977          * pagefault then has to wait until we release the mutex.
1978          *
1979          * Note that RPM complicates somewhat by adding an additional
1980          * requirement that operations to the GGTT be made holding the RPM
1981          * wakeref.
1982          */
1983         lockdep_assert_held(&i915->drm.struct_mutex);
1984         intel_runtime_pm_get(i915);
1985
1986         if (list_empty(&obj->userfault_link))
1987                 goto out;
1988
1989         list_del_init(&obj->userfault_link);
1990         drm_vma_node_unmap(&obj->base.vma_node,
1991                            obj->base.dev->anon_inode->i_mapping);
1992
1993         /* Ensure that the CPU's PTE are revoked and there are not outstanding
1994          * memory transactions from userspace before we return. The TLB
1995          * flushing implied above by changing the PTE above *should* be
1996          * sufficient, an extra barrier here just provides us with a bit
1997          * of paranoid documentation about our requirement to serialise
1998          * memory writes before touching registers / GSM.
1999          */
2000         wmb();
2001
2002 out:
2003         intel_runtime_pm_put(i915);
2004 }
2005
2006 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2007 {
2008         struct drm_i915_gem_object *obj, *on;
2009         int i;
2010
2011         /*
2012          * Only called during RPM suspend. All users of the userfault_list
2013          * must be holding an RPM wakeref to ensure that this can not
2014          * run concurrently with themselves (and use the struct_mutex for
2015          * protection between themselves).
2016          */
2017
2018         list_for_each_entry_safe(obj, on,
2019                                  &dev_priv->mm.userfault_list, userfault_link) {
2020                 list_del_init(&obj->userfault_link);
2021                 drm_vma_node_unmap(&obj->base.vma_node,
2022                                    obj->base.dev->anon_inode->i_mapping);
2023         }
2024
2025         /* The fence will be lost when the device powers down. If any were
2026          * in use by hardware (i.e. they are pinned), we should not be powering
2027          * down! All other fences will be reacquired by the user upon waking.
2028          */
2029         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2030                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2031
2032                 /* Ideally we want to assert that the fence register is not
2033                  * live at this point (i.e. that no piece of code will be
2034                  * trying to write through fence + GTT, as that both violates
2035                  * our tracking of activity and associated locking/barriers,
2036                  * but also is illegal given that the hw is powered down).
2037                  *
2038                  * Previously we used reg->pin_count as a "liveness" indicator.
2039                  * That is not sufficient, and we need a more fine-grained
2040                  * tool if we want to have a sanity check here.
2041                  */
2042
2043                 if (!reg->vma)
2044                         continue;
2045
2046                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2047                 reg->dirty = true;
2048         }
2049 }
2050
2051 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2052 {
2053         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2054         int err;
2055
2056         err = drm_gem_create_mmap_offset(&obj->base);
2057         if (likely(!err))
2058                 return 0;
2059
2060         /* Attempt to reap some mmap space from dead objects */
2061         do {
2062                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2063                 if (err)
2064                         break;
2065
2066                 i915_gem_drain_freed_objects(dev_priv);
2067                 err = drm_gem_create_mmap_offset(&obj->base);
2068                 if (!err)
2069                         break;
2070
2071         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2072
2073         return err;
2074 }
2075
2076 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2077 {
2078         drm_gem_free_mmap_offset(&obj->base);
2079 }
2080
2081 int
2082 i915_gem_mmap_gtt(struct drm_file *file,
2083                   struct drm_device *dev,
2084                   uint32_t handle,
2085                   uint64_t *offset)
2086 {
2087         struct drm_i915_gem_object *obj;
2088         int ret;
2089
2090         obj = i915_gem_object_lookup(file, handle);
2091         if (!obj)
2092                 return -ENOENT;
2093
2094         ret = i915_gem_object_create_mmap_offset(obj);
2095         if (ret == 0)
2096                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2097
2098         i915_gem_object_put(obj);
2099         return ret;
2100 }
2101
2102 /**
2103  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2104  * @dev: DRM device
2105  * @data: GTT mapping ioctl data
2106  * @file: GEM object info
2107  *
2108  * Simply returns the fake offset to userspace so it can mmap it.
2109  * The mmap call will end up in drm_gem_mmap(), which will set things
2110  * up so we can get faults in the handler above.
2111  *
2112  * The fault handler will take care of binding the object into the GTT
2113  * (since it may have been evicted to make room for something), allocating
2114  * a fence register, and mapping the appropriate aperture address into
2115  * userspace.
2116  */
2117 int
2118 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2119                         struct drm_file *file)
2120 {
2121         struct drm_i915_gem_mmap_gtt *args = data;
2122
2123         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2124 }
2125
2126 /* Immediately discard the backing storage */
2127 static void
2128 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2129 {
2130         i915_gem_object_free_mmap_offset(obj);
2131
2132         if (obj->base.filp == NULL)
2133                 return;
2134
2135         /* Our goal here is to return as much of the memory as
2136          * is possible back to the system as we are called from OOM.
2137          * To do this we must instruct the shmfs to drop all of its
2138          * backing pages, *now*.
2139          */
2140         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2141         obj->mm.madv = __I915_MADV_PURGED;
2142         obj->mm.pages = ERR_PTR(-EFAULT);
2143 }
2144
2145 /* Try to discard unwanted pages */
2146 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2147 {
2148         struct address_space *mapping;
2149
2150         lockdep_assert_held(&obj->mm.lock);
2151         GEM_BUG_ON(obj->mm.pages);
2152
2153         switch (obj->mm.madv) {
2154         case I915_MADV_DONTNEED:
2155                 i915_gem_object_truncate(obj);
2156         case __I915_MADV_PURGED:
2157                 return;
2158         }
2159
2160         if (obj->base.filp == NULL)
2161                 return;
2162
2163         mapping = obj->base.filp->f_mapping,
2164         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2165 }
2166
2167 static void
2168 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2169                               struct sg_table *pages)
2170 {
2171         struct sgt_iter sgt_iter;
2172         struct page *page;
2173
2174         __i915_gem_object_release_shmem(obj, pages, true);
2175
2176         i915_gem_gtt_finish_pages(obj, pages);
2177
2178         if (i915_gem_object_needs_bit17_swizzle(obj))
2179                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2180
2181         for_each_sgt_page(page, sgt_iter, pages) {
2182                 if (obj->mm.dirty)
2183                         set_page_dirty(page);
2184
2185                 if (obj->mm.madv == I915_MADV_WILLNEED)
2186                         mark_page_accessed(page);
2187
2188                 put_page(page);
2189         }
2190         obj->mm.dirty = false;
2191
2192         sg_free_table(pages);
2193         kfree(pages);
2194 }
2195
2196 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2197 {
2198         struct radix_tree_iter iter;
2199         void **slot;
2200
2201         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2202                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2203 }
2204
2205 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2206                                  enum i915_mm_subclass subclass)
2207 {
2208         struct sg_table *pages;
2209
2210         if (i915_gem_object_has_pinned_pages(obj))
2211                 return;
2212
2213         GEM_BUG_ON(obj->bind_count);
2214         if (!READ_ONCE(obj->mm.pages))
2215                 return;
2216
2217         /* May be called by shrinker from within get_pages() (on another bo) */
2218         mutex_lock_nested(&obj->mm.lock, subclass);
2219         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2220                 goto unlock;
2221
2222         /* ->put_pages might need to allocate memory for the bit17 swizzle
2223          * array, hence protect them from being reaped by removing them from gtt
2224          * lists early. */
2225         pages = fetch_and_zero(&obj->mm.pages);
2226         GEM_BUG_ON(!pages);
2227
2228         if (obj->mm.mapping) {
2229                 void *ptr;
2230
2231                 ptr = ptr_mask_bits(obj->mm.mapping);
2232                 if (is_vmalloc_addr(ptr))
2233                         vunmap(ptr);
2234                 else
2235                         kunmap(kmap_to_page(ptr));
2236
2237                 obj->mm.mapping = NULL;
2238         }
2239
2240         __i915_gem_object_reset_page_iter(obj);
2241
2242         if (!IS_ERR(pages))
2243                 obj->ops->put_pages(obj, pages);
2244
2245 unlock:
2246         mutex_unlock(&obj->mm.lock);
2247 }
2248
2249 static bool i915_sg_trim(struct sg_table *orig_st)
2250 {
2251         struct sg_table new_st;
2252         struct scatterlist *sg, *new_sg;
2253         unsigned int i;
2254
2255         if (orig_st->nents == orig_st->orig_nents)
2256                 return false;
2257
2258         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2259                 return false;
2260
2261         new_sg = new_st.sgl;
2262         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2263                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2264                 /* called before being DMA mapped, no need to copy sg->dma_* */
2265                 new_sg = sg_next(new_sg);
2266         }
2267         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2268
2269         sg_free_table(orig_st);
2270
2271         *orig_st = new_st;
2272         return true;
2273 }
2274
2275 static struct sg_table *
2276 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2277 {
2278         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2279         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2280         unsigned long i;
2281         struct address_space *mapping;
2282         struct sg_table *st;
2283         struct scatterlist *sg;
2284         struct sgt_iter sgt_iter;
2285         struct page *page;
2286         unsigned long last_pfn = 0;     /* suppress gcc warning */
2287         unsigned int max_segment;
2288         gfp_t noreclaim;
2289         int ret;
2290
2291         /* Assert that the object is not currently in any GPU domain. As it
2292          * wasn't in the GTT, there shouldn't be any way it could have been in
2293          * a GPU cache
2294          */
2295         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2296         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2297
2298         max_segment = swiotlb_max_segment();
2299         if (!max_segment)
2300                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2301
2302         st = kmalloc(sizeof(*st), GFP_KERNEL);
2303         if (st == NULL)
2304                 return ERR_PTR(-ENOMEM);
2305
2306 rebuild_st:
2307         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2308                 kfree(st);
2309                 return ERR_PTR(-ENOMEM);
2310         }
2311
2312         /* Get the list of pages out of our struct file.  They'll be pinned
2313          * at this point until we release them.
2314          *
2315          * Fail silently without starting the shrinker
2316          */
2317         mapping = obj->base.filp->f_mapping;
2318         noreclaim = mapping_gfp_constraint(mapping,
2319                                            ~(__GFP_IO | __GFP_RECLAIM));
2320         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2321
2322         sg = st->sgl;
2323         st->nents = 0;
2324         for (i = 0; i < page_count; i++) {
2325                 const unsigned int shrink[] = {
2326                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2327                         0,
2328                 }, *s = shrink;
2329                 gfp_t gfp = noreclaim;
2330
2331                 do {
2332                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2333                         if (likely(!IS_ERR(page)))
2334                                 break;
2335
2336                         if (!*s) {
2337                                 ret = PTR_ERR(page);
2338                                 goto err_sg;
2339                         }
2340
2341                         i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2342                         cond_resched();
2343
2344                         /* We've tried hard to allocate the memory by reaping
2345                          * our own buffer, now let the real VM do its job and
2346                          * go down in flames if truly OOM.
2347                          *
2348                          * However, since graphics tend to be disposable,
2349                          * defer the oom here by reporting the ENOMEM back
2350                          * to userspace.
2351                          */
2352                         if (!*s) {
2353                                 /* reclaim and warn, but no oom */
2354                                 gfp = mapping_gfp_mask(mapping);
2355
2356                                 /* Our bo are always dirty and so we require
2357                                  * kswapd to reclaim our pages (direct reclaim
2358                                  * does not effectively begin pageout of our
2359                                  * buffers on its own). However, direct reclaim
2360                                  * only waits for kswapd when under allocation
2361                                  * congestion. So as a result __GFP_RECLAIM is
2362                                  * unreliable and fails to actually reclaim our
2363                                  * dirty pages -- unless you try over and over
2364                                  * again with !__GFP_NORETRY. However, we still
2365                                  * want to fail this allocation rather than
2366                                  * trigger the out-of-memory killer and for
2367                                  * this we want the future __GFP_MAYFAIL.
2368                                  */
2369                         }
2370                 } while (1);
2371
2372                 if (!i ||
2373                     sg->length >= max_segment ||
2374                     page_to_pfn(page) != last_pfn + 1) {
2375                         if (i)
2376                                 sg = sg_next(sg);
2377                         st->nents++;
2378                         sg_set_page(sg, page, PAGE_SIZE, 0);
2379                 } else {
2380                         sg->length += PAGE_SIZE;
2381                 }
2382                 last_pfn = page_to_pfn(page);
2383
2384                 /* Check that the i965g/gm workaround works. */
2385                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2386         }
2387         if (sg) /* loop terminated early; short sg table */
2388                 sg_mark_end(sg);
2389
2390         /* Trim unused sg entries to avoid wasting memory. */
2391         i915_sg_trim(st);
2392
2393         ret = i915_gem_gtt_prepare_pages(obj, st);
2394         if (ret) {
2395                 /* DMA remapping failed? One possible cause is that
2396                  * it could not reserve enough large entries, asking
2397                  * for PAGE_SIZE chunks instead may be helpful.
2398                  */
2399                 if (max_segment > PAGE_SIZE) {
2400                         for_each_sgt_page(page, sgt_iter, st)
2401                                 put_page(page);
2402                         sg_free_table(st);
2403
2404                         max_segment = PAGE_SIZE;
2405                         goto rebuild_st;
2406                 } else {
2407                         dev_warn(&dev_priv->drm.pdev->dev,
2408                                  "Failed to DMA remap %lu pages\n",
2409                                  page_count);
2410                         goto err_pages;
2411                 }
2412         }
2413
2414         if (i915_gem_object_needs_bit17_swizzle(obj))
2415                 i915_gem_object_do_bit_17_swizzle(obj, st);
2416
2417         return st;
2418
2419 err_sg:
2420         sg_mark_end(sg);
2421 err_pages:
2422         for_each_sgt_page(page, sgt_iter, st)
2423                 put_page(page);
2424         sg_free_table(st);
2425         kfree(st);
2426
2427         /* shmemfs first checks if there is enough memory to allocate the page
2428          * and reports ENOSPC should there be insufficient, along with the usual
2429          * ENOMEM for a genuine allocation failure.
2430          *
2431          * We use ENOSPC in our driver to mean that we have run out of aperture
2432          * space and so want to translate the error from shmemfs back to our
2433          * usual understanding of ENOMEM.
2434          */
2435         if (ret == -ENOSPC)
2436                 ret = -ENOMEM;
2437
2438         return ERR_PTR(ret);
2439 }
2440
2441 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2442                                  struct sg_table *pages)
2443 {
2444         lockdep_assert_held(&obj->mm.lock);
2445
2446         obj->mm.get_page.sg_pos = pages->sgl;
2447         obj->mm.get_page.sg_idx = 0;
2448
2449         obj->mm.pages = pages;
2450
2451         if (i915_gem_object_is_tiled(obj) &&
2452             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2453                 GEM_BUG_ON(obj->mm.quirked);
2454                 __i915_gem_object_pin_pages(obj);
2455                 obj->mm.quirked = true;
2456         }
2457 }
2458
2459 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2460 {
2461         struct sg_table *pages;
2462
2463         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2464
2465         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2466                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2467                 return -EFAULT;
2468         }
2469
2470         pages = obj->ops->get_pages(obj);
2471         if (unlikely(IS_ERR(pages)))
2472                 return PTR_ERR(pages);
2473
2474         __i915_gem_object_set_pages(obj, pages);
2475         return 0;
2476 }
2477
2478 /* Ensure that the associated pages are gathered from the backing storage
2479  * and pinned into our object. i915_gem_object_pin_pages() may be called
2480  * multiple times before they are released by a single call to
2481  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2482  * either as a result of memory pressure (reaping pages under the shrinker)
2483  * or as the object is itself released.
2484  */
2485 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2486 {
2487         int err;
2488
2489         err = mutex_lock_interruptible(&obj->mm.lock);
2490         if (err)
2491                 return err;
2492
2493         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2494                 err = ____i915_gem_object_get_pages(obj);
2495                 if (err)
2496                         goto unlock;
2497
2498                 smp_mb__before_atomic();
2499         }
2500         atomic_inc(&obj->mm.pages_pin_count);
2501
2502 unlock:
2503         mutex_unlock(&obj->mm.lock);
2504         return err;
2505 }
2506
2507 /* The 'mapping' part of i915_gem_object_pin_map() below */
2508 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2509                                  enum i915_map_type type)
2510 {
2511         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2512         struct sg_table *sgt = obj->mm.pages;
2513         struct sgt_iter sgt_iter;
2514         struct page *page;
2515         struct page *stack_pages[32];
2516         struct page **pages = stack_pages;
2517         unsigned long i = 0;
2518         pgprot_t pgprot;
2519         void *addr;
2520
2521         /* A single page can always be kmapped */
2522         if (n_pages == 1 && type == I915_MAP_WB)
2523                 return kmap(sg_page(sgt->sgl));
2524
2525         if (n_pages > ARRAY_SIZE(stack_pages)) {
2526                 /* Too big for stack -- allocate temporary array instead */
2527                 pages = drm_malloc_gfp(n_pages, sizeof(*pages), GFP_TEMPORARY);
2528                 if (!pages)
2529                         return NULL;
2530         }
2531
2532         for_each_sgt_page(page, sgt_iter, sgt)
2533                 pages[i++] = page;
2534
2535         /* Check that we have the expected number of pages */
2536         GEM_BUG_ON(i != n_pages);
2537
2538         switch (type) {
2539         case I915_MAP_WB:
2540                 pgprot = PAGE_KERNEL;
2541                 break;
2542         case I915_MAP_WC:
2543                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2544                 break;
2545         }
2546         addr = vmap(pages, n_pages, 0, pgprot);
2547
2548         if (pages != stack_pages)
2549                 drm_free_large(pages);
2550
2551         return addr;
2552 }
2553
2554 /* get, pin, and map the pages of the object into kernel space */
2555 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2556                               enum i915_map_type type)
2557 {
2558         enum i915_map_type has_type;
2559         bool pinned;
2560         void *ptr;
2561         int ret;
2562
2563         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2564
2565         ret = mutex_lock_interruptible(&obj->mm.lock);
2566         if (ret)
2567                 return ERR_PTR(ret);
2568
2569         pinned = true;
2570         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2571                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2572                         ret = ____i915_gem_object_get_pages(obj);
2573                         if (ret)
2574                                 goto err_unlock;
2575
2576                         smp_mb__before_atomic();
2577                 }
2578                 atomic_inc(&obj->mm.pages_pin_count);
2579                 pinned = false;
2580         }
2581         GEM_BUG_ON(!obj->mm.pages);
2582
2583         ptr = ptr_unpack_bits(obj->mm.mapping, has_type);
2584         if (ptr && has_type != type) {
2585                 if (pinned) {
2586                         ret = -EBUSY;
2587                         goto err_unpin;
2588                 }
2589
2590                 if (is_vmalloc_addr(ptr))
2591                         vunmap(ptr);
2592                 else
2593                         kunmap(kmap_to_page(ptr));
2594
2595                 ptr = obj->mm.mapping = NULL;
2596         }
2597
2598         if (!ptr) {
2599                 ptr = i915_gem_object_map(obj, type);
2600                 if (!ptr) {
2601                         ret = -ENOMEM;
2602                         goto err_unpin;
2603                 }
2604
2605                 obj->mm.mapping = ptr_pack_bits(ptr, type);
2606         }
2607
2608 out_unlock:
2609         mutex_unlock(&obj->mm.lock);
2610         return ptr;
2611
2612 err_unpin:
2613         atomic_dec(&obj->mm.pages_pin_count);
2614 err_unlock:
2615         ptr = ERR_PTR(ret);
2616         goto out_unlock;
2617 }
2618
2619 static int
2620 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2621                            const struct drm_i915_gem_pwrite *arg)
2622 {
2623         struct address_space *mapping = obj->base.filp->f_mapping;
2624         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2625         u64 remain, offset;
2626         unsigned int pg;
2627
2628         /* Before we instantiate/pin the backing store for our use, we
2629          * can prepopulate the shmemfs filp efficiently using a write into
2630          * the pagecache. We avoid the penalty of instantiating all the
2631          * pages, important if the user is just writing to a few and never
2632          * uses the object on the GPU, and using a direct write into shmemfs
2633          * allows it to avoid the cost of retrieving a page (either swapin
2634          * or clearing-before-use) before it is overwritten.
2635          */
2636         if (READ_ONCE(obj->mm.pages))
2637                 return -ENODEV;
2638
2639         /* Before the pages are instantiated the object is treated as being
2640          * in the CPU domain. The pages will be clflushed as required before
2641          * use, and we can freely write into the pages directly. If userspace
2642          * races pwrite with any other operation; corruption will ensue -
2643          * that is userspace's prerogative!
2644          */
2645
2646         remain = arg->size;
2647         offset = arg->offset;
2648         pg = offset_in_page(offset);
2649
2650         do {
2651                 unsigned int len, unwritten;
2652                 struct page *page;
2653                 void *data, *vaddr;
2654                 int err;
2655
2656                 len = PAGE_SIZE - pg;
2657                 if (len > remain)
2658                         len = remain;
2659
2660                 err = pagecache_write_begin(obj->base.filp, mapping,
2661                                             offset, len, 0,
2662                                             &page, &data);
2663                 if (err < 0)
2664                         return err;
2665
2666                 vaddr = kmap(page);
2667                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2668                 kunmap(page);
2669
2670                 err = pagecache_write_end(obj->base.filp, mapping,
2671                                           offset, len, len - unwritten,
2672                                           page, data);
2673                 if (err < 0)
2674                         return err;
2675
2676                 if (unwritten)
2677                         return -EFAULT;
2678
2679                 remain -= len;
2680                 user_data += len;
2681                 offset += len;
2682                 pg = 0;
2683         } while (remain);
2684
2685         return 0;
2686 }
2687
2688 static bool ban_context(const struct i915_gem_context *ctx)
2689 {
2690         return (i915_gem_context_is_bannable(ctx) &&
2691                 ctx->ban_score >= CONTEXT_SCORE_BAN_THRESHOLD);
2692 }
2693
2694 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2695 {
2696         ctx->guilty_count++;
2697         ctx->ban_score += CONTEXT_SCORE_GUILTY;
2698         if (ban_context(ctx))
2699                 i915_gem_context_set_banned(ctx);
2700
2701         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2702                          ctx->name, ctx->ban_score,
2703                          yesno(i915_gem_context_is_banned(ctx)));
2704
2705         if (!i915_gem_context_is_banned(ctx) || IS_ERR_OR_NULL(ctx->file_priv))
2706                 return;
2707
2708         ctx->file_priv->context_bans++;
2709         DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2710                          ctx->name, ctx->file_priv->context_bans);
2711 }
2712
2713 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2714 {
2715         ctx->active_count++;
2716 }
2717
2718 struct drm_i915_gem_request *
2719 i915_gem_find_active_request(struct intel_engine_cs *engine)
2720 {
2721         struct drm_i915_gem_request *request, *active = NULL;
2722         unsigned long flags;
2723
2724         /* We are called by the error capture and reset at a random
2725          * point in time. In particular, note that neither is crucially
2726          * ordered with an interrupt. After a hang, the GPU is dead and we
2727          * assume that no more writes can happen (we waited long enough for
2728          * all writes that were in transaction to be flushed) - adding an
2729          * extra delay for a recent interrupt is pointless. Hence, we do
2730          * not need an engine->irq_seqno_barrier() before the seqno reads.
2731          */
2732         spin_lock_irqsave(&engine->timeline->lock, flags);
2733         list_for_each_entry(request, &engine->timeline->requests, link) {
2734                 if (__i915_gem_request_completed(request,
2735                                                  request->global_seqno))
2736                         continue;
2737
2738                 GEM_BUG_ON(request->engine != engine);
2739                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2740                                     &request->fence.flags));
2741
2742                 active = request;
2743                 break;
2744         }
2745         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2746
2747         return active;
2748 }
2749
2750 static bool engine_stalled(struct intel_engine_cs *engine)
2751 {
2752         if (!engine->hangcheck.stalled)
2753                 return false;
2754
2755         /* Check for possible seqno movement after hang declaration */
2756         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2757                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2758                 return false;
2759         }
2760
2761         return true;
2762 }
2763
2764 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2765 {
2766         struct intel_engine_cs *engine;
2767         enum intel_engine_id id;
2768         int err = 0;
2769
2770         /* Ensure irq handler finishes, and not run again. */
2771         for_each_engine(engine, dev_priv, id) {
2772                 struct drm_i915_gem_request *request;
2773
2774                 /* Prevent the signaler thread from updating the request
2775                  * state (by calling dma_fence_signal) as we are processing
2776                  * the reset. The write from the GPU of the seqno is
2777                  * asynchronous and the signaler thread may see a different
2778                  * value to us and declare the request complete, even though
2779                  * the reset routine have picked that request as the active
2780                  * (incomplete) request. This conflict is not handled
2781                  * gracefully!
2782                  */
2783                 kthread_park(engine->breadcrumbs.signaler);
2784
2785                 /* Prevent request submission to the hardware until we have
2786                  * completed the reset in i915_gem_reset_finish(). If a request
2787                  * is completed by one engine, it may then queue a request
2788                  * to a second via its engine->irq_tasklet *just* as we are
2789                  * calling engine->init_hw() and also writing the ELSP.
2790                  * Turning off the engine->irq_tasklet until the reset is over
2791                  * prevents the race.
2792                  */
2793                 tasklet_kill(&engine->irq_tasklet);
2794                 tasklet_disable(&engine->irq_tasklet);
2795
2796                 if (engine->irq_seqno_barrier)
2797                         engine->irq_seqno_barrier(engine);
2798
2799                 if (engine_stalled(engine)) {
2800                         request = i915_gem_find_active_request(engine);
2801                         if (request && request->fence.error == -EIO)
2802                                 err = -EIO; /* Previous reset failed! */
2803                 }
2804         }
2805
2806         i915_gem_revoke_fences(dev_priv);
2807
2808         return err;
2809 }
2810
2811 static void skip_request(struct drm_i915_gem_request *request)
2812 {
2813         void *vaddr = request->ring->vaddr;
2814         u32 head;
2815
2816         /* As this request likely depends on state from the lost
2817          * context, clear out all the user operations leaving the
2818          * breadcrumb at the end (so we get the fence notifications).
2819          */
2820         head = request->head;
2821         if (request->postfix < head) {
2822                 memset(vaddr + head, 0, request->ring->size - head);
2823                 head = 0;
2824         }
2825         memset(vaddr + head, 0, request->postfix - head);
2826
2827         dma_fence_set_error(&request->fence, -EIO);
2828 }
2829
2830 static void engine_skip_context(struct drm_i915_gem_request *request)
2831 {
2832         struct intel_engine_cs *engine = request->engine;
2833         struct i915_gem_context *hung_ctx = request->ctx;
2834         struct intel_timeline *timeline;
2835         unsigned long flags;
2836
2837         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2838
2839         spin_lock_irqsave(&engine->timeline->lock, flags);
2840         spin_lock(&timeline->lock);
2841
2842         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2843                 if (request->ctx == hung_ctx)
2844                         skip_request(request);
2845
2846         list_for_each_entry(request, &timeline->requests, link)
2847                 skip_request(request);
2848
2849         spin_unlock(&timeline->lock);
2850         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2851 }
2852
2853 /* Returns true if the request was guilty of hang */
2854 static bool i915_gem_reset_request(struct drm_i915_gem_request *request)
2855 {
2856         /* Read once and return the resolution */
2857         const bool guilty = engine_stalled(request->engine);
2858
2859         /* The guilty request will get skipped on a hung engine.
2860          *
2861          * Users of client default contexts do not rely on logical
2862          * state preserved between batches so it is safe to execute
2863          * queued requests following the hang. Non default contexts
2864          * rely on preserved state, so skipping a batch loses the
2865          * evolution of the state and it needs to be considered corrupted.
2866          * Executing more queued batches on top of corrupted state is
2867          * risky. But we take the risk by trying to advance through
2868          * the queued requests in order to make the client behaviour
2869          * more predictable around resets, by not throwing away random
2870          * amount of batches it has prepared for execution. Sophisticated
2871          * clients can use gem_reset_stats_ioctl and dma fence status
2872          * (exported via sync_file info ioctl on explicit fences) to observe
2873          * when it loses the context state and should rebuild accordingly.
2874          *
2875          * The context ban, and ultimately the client ban, mechanism are safety
2876          * valves if client submission ends up resulting in nothing more than
2877          * subsequent hangs.
2878          */
2879
2880         if (guilty) {
2881                 i915_gem_context_mark_guilty(request->ctx);
2882                 skip_request(request);
2883         } else {
2884                 i915_gem_context_mark_innocent(request->ctx);
2885                 dma_fence_set_error(&request->fence, -EAGAIN);
2886         }
2887
2888         return guilty;
2889 }
2890
2891 static void i915_gem_reset_engine(struct intel_engine_cs *engine)
2892 {
2893         struct drm_i915_gem_request *request;
2894
2895         request = i915_gem_find_active_request(engine);
2896         if (request && i915_gem_reset_request(request)) {
2897                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2898                                  engine->name, request->global_seqno);
2899
2900                 /* If this context is now banned, skip all pending requests. */
2901                 if (i915_gem_context_is_banned(request->ctx))
2902                         engine_skip_context(request);
2903         }
2904
2905         /* Setup the CS to resume from the breadcrumb of the hung request */
2906         engine->reset_hw(engine, request);
2907 }
2908
2909 void i915_gem_reset(struct drm_i915_private *dev_priv)
2910 {
2911         struct intel_engine_cs *engine;
2912         enum intel_engine_id id;
2913
2914         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2915
2916         i915_gem_retire_requests(dev_priv);
2917
2918         for_each_engine(engine, dev_priv, id) {
2919                 struct i915_gem_context *ctx;
2920
2921                 i915_gem_reset_engine(engine);
2922                 ctx = fetch_and_zero(&engine->last_retired_context);
2923                 if (ctx)
2924                         engine->context_unpin(engine, ctx);
2925         }
2926
2927         i915_gem_restore_fences(dev_priv);
2928
2929         if (dev_priv->gt.awake) {
2930                 intel_sanitize_gt_powersave(dev_priv);
2931                 intel_enable_gt_powersave(dev_priv);
2932                 if (INTEL_GEN(dev_priv) >= 6)
2933                         gen6_rps_busy(dev_priv);
2934         }
2935 }
2936
2937 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2938 {
2939         struct intel_engine_cs *engine;
2940         enum intel_engine_id id;
2941
2942         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2943
2944         for_each_engine(engine, dev_priv, id) {
2945                 tasklet_enable(&engine->irq_tasklet);
2946                 kthread_unpark(engine->breadcrumbs.signaler);
2947         }
2948 }
2949
2950 static void nop_submit_request(struct drm_i915_gem_request *request)
2951 {
2952         dma_fence_set_error(&request->fence, -EIO);
2953         i915_gem_request_submit(request);
2954         intel_engine_init_global_seqno(request->engine, request->global_seqno);
2955 }
2956
2957 static void engine_set_wedged(struct intel_engine_cs *engine)
2958 {
2959         struct drm_i915_gem_request *request;
2960         unsigned long flags;
2961
2962         /* We need to be sure that no thread is running the old callback as
2963          * we install the nop handler (otherwise we would submit a request
2964          * to hardware that will never complete). In order to prevent this
2965          * race, we wait until the machine is idle before making the swap
2966          * (using stop_machine()).
2967          */
2968         engine->submit_request = nop_submit_request;
2969
2970         /* Mark all executing requests as skipped */
2971         spin_lock_irqsave(&engine->timeline->lock, flags);
2972         list_for_each_entry(request, &engine->timeline->requests, link)
2973                 dma_fence_set_error(&request->fence, -EIO);
2974         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2975
2976         /* Mark all pending requests as complete so that any concurrent
2977          * (lockless) lookup doesn't try and wait upon the request as we
2978          * reset it.
2979          */
2980         intel_engine_init_global_seqno(engine,
2981                                        intel_engine_last_submit(engine));
2982
2983         /*
2984          * Clear the execlists queue up before freeing the requests, as those
2985          * are the ones that keep the context and ringbuffer backing objects
2986          * pinned in place.
2987          */
2988
2989         if (i915.enable_execlists) {
2990                 unsigned long flags;
2991
2992                 spin_lock_irqsave(&engine->timeline->lock, flags);
2993
2994                 i915_gem_request_put(engine->execlist_port[0].request);
2995                 i915_gem_request_put(engine->execlist_port[1].request);
2996                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
2997                 engine->execlist_queue = RB_ROOT;
2998                 engine->execlist_first = NULL;
2999
3000                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3001         }
3002 }
3003
3004 static int __i915_gem_set_wedged_BKL(void *data)
3005 {
3006         struct drm_i915_private *i915 = data;
3007         struct intel_engine_cs *engine;
3008         enum intel_engine_id id;
3009
3010         for_each_engine(engine, i915, id)
3011                 engine_set_wedged(engine);
3012
3013         return 0;
3014 }
3015
3016 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3017 {
3018         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3019         set_bit(I915_WEDGED, &dev_priv->gpu_error.flags);
3020
3021         /* Retire completed requests first so the list of inflight/incomplete
3022          * requests is accurate and we don't try and mark successful requests
3023          * as in error during __i915_gem_set_wedged_BKL().
3024          */
3025         i915_gem_retire_requests(dev_priv);
3026
3027         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3028
3029         i915_gem_context_lost(dev_priv);
3030
3031         mod_delayed_work(dev_priv->wq, &dev_priv->gt.idle_work, 0);
3032 }
3033
3034 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3035 {
3036         struct i915_gem_timeline *tl;
3037         int i;
3038
3039         lockdep_assert_held(&i915->drm.struct_mutex);
3040         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3041                 return true;
3042
3043         /* Before unwedging, make sure that all pending operations
3044          * are flushed and errored out - we may have requests waiting upon
3045          * third party fences. We marked all inflight requests as EIO, and
3046          * every execbuf since returned EIO, for consistency we want all
3047          * the currently pending requests to also be marked as EIO, which
3048          * is done inside our nop_submit_request - and so we must wait.
3049          *
3050          * No more can be submitted until we reset the wedged bit.
3051          */
3052         list_for_each_entry(tl, &i915->gt.timelines, link) {
3053                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3054                         struct drm_i915_gem_request *rq;
3055
3056                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3057                                                   &i915->drm.struct_mutex);
3058                         if (!rq)
3059                                 continue;
3060
3061                         /* We can't use our normal waiter as we want to
3062                          * avoid recursively trying to handle the current
3063                          * reset. The basic dma_fence_default_wait() installs
3064                          * a callback for dma_fence_signal(), which is
3065                          * triggered by our nop handler (indirectly, the
3066                          * callback enables the signaler thread which is
3067                          * woken by the nop_submit_request() advancing the seqno
3068                          * and when the seqno passes the fence, the signaler
3069                          * then signals the fence waking us up).
3070                          */
3071                         if (dma_fence_default_wait(&rq->fence, true,
3072                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3073                                 return false;
3074                 }
3075         }
3076
3077         /* Undo nop_submit_request. We prevent all new i915 requests from
3078          * being queued (by disallowing execbuf whilst wedged) so having
3079          * waited for all active requests above, we know the system is idle
3080          * and do not have to worry about a thread being inside
3081          * engine->submit_request() as we swap over. So unlike installing
3082          * the nop_submit_request on reset, we can do this from normal
3083          * context and do not require stop_machine().
3084          */
3085         intel_engines_reset_default_submission(i915);
3086
3087         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3088         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3089
3090         return true;
3091 }
3092
3093 static void
3094 i915_gem_retire_work_handler(struct work_struct *work)
3095 {
3096         struct drm_i915_private *dev_priv =
3097                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3098         struct drm_device *dev = &dev_priv->drm;
3099
3100         /* Come back later if the device is busy... */
3101         if (mutex_trylock(&dev->struct_mutex)) {
3102                 i915_gem_retire_requests(dev_priv);
3103                 mutex_unlock(&dev->struct_mutex);
3104         }
3105
3106         /* Keep the retire handler running until we are finally idle.
3107          * We do not need to do this test under locking as in the worst-case
3108          * we queue the retire worker once too often.
3109          */
3110         if (READ_ONCE(dev_priv->gt.awake)) {
3111                 i915_queue_hangcheck(dev_priv);
3112                 queue_delayed_work(dev_priv->wq,
3113                                    &dev_priv->gt.retire_work,
3114                                    round_jiffies_up_relative(HZ));
3115         }
3116 }
3117
3118 static void
3119 i915_gem_idle_work_handler(struct work_struct *work)
3120 {
3121         struct drm_i915_private *dev_priv =
3122                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3123         struct drm_device *dev = &dev_priv->drm;
3124         struct intel_engine_cs *engine;
3125         enum intel_engine_id id;
3126         bool rearm_hangcheck;
3127
3128         if (!READ_ONCE(dev_priv->gt.awake))
3129                 return;
3130
3131         /*
3132          * Wait for last execlists context complete, but bail out in case a
3133          * new request is submitted.
3134          */
3135         wait_for(intel_engines_are_idle(dev_priv), 10);
3136         if (READ_ONCE(dev_priv->gt.active_requests))
3137                 return;
3138
3139         rearm_hangcheck =
3140                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3141
3142         if (!mutex_trylock(&dev->struct_mutex)) {
3143                 /* Currently busy, come back later */
3144                 mod_delayed_work(dev_priv->wq,
3145                                  &dev_priv->gt.idle_work,
3146                                  msecs_to_jiffies(50));
3147                 goto out_rearm;
3148         }
3149
3150         /*
3151          * New request retired after this work handler started, extend active
3152          * period until next instance of the work.
3153          */
3154         if (work_pending(work))
3155                 goto out_unlock;
3156
3157         if (dev_priv->gt.active_requests)
3158                 goto out_unlock;
3159
3160         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3161                 DRM_ERROR("Timeout waiting for engines to idle\n");
3162
3163         for_each_engine(engine, dev_priv, id) {
3164                 intel_engine_disarm_breadcrumbs(engine);
3165                 i915_gem_batch_pool_fini(&engine->batch_pool);
3166         }
3167
3168         GEM_BUG_ON(!dev_priv->gt.awake);
3169         dev_priv->gt.awake = false;
3170         rearm_hangcheck = false;
3171
3172         if (INTEL_GEN(dev_priv) >= 6)
3173                 gen6_rps_idle(dev_priv);
3174         intel_runtime_pm_put(dev_priv);
3175 out_unlock:
3176         mutex_unlock(&dev->struct_mutex);
3177
3178 out_rearm:
3179         if (rearm_hangcheck) {
3180                 GEM_BUG_ON(!dev_priv->gt.awake);
3181                 i915_queue_hangcheck(dev_priv);
3182         }
3183 }
3184
3185 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3186 {
3187         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3188         struct drm_i915_file_private *fpriv = file->driver_priv;
3189         struct i915_vma *vma, *vn;
3190
3191         mutex_lock(&obj->base.dev->struct_mutex);
3192         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3193                 if (vma->vm->file == fpriv)
3194                         i915_vma_close(vma);
3195
3196         if (i915_gem_object_is_active(obj) &&
3197             !i915_gem_object_has_active_reference(obj)) {
3198                 i915_gem_object_set_active_reference(obj);
3199                 i915_gem_object_get(obj);
3200         }
3201         mutex_unlock(&obj->base.dev->struct_mutex);
3202 }
3203
3204 static unsigned long to_wait_timeout(s64 timeout_ns)
3205 {
3206         if (timeout_ns < 0)
3207                 return MAX_SCHEDULE_TIMEOUT;
3208
3209         if (timeout_ns == 0)
3210                 return 0;
3211
3212         return nsecs_to_jiffies_timeout(timeout_ns);
3213 }
3214
3215 /**
3216  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3217  * @dev: drm device pointer
3218  * @data: ioctl data blob
3219  * @file: drm file pointer
3220  *
3221  * Returns 0 if successful, else an error is returned with the remaining time in
3222  * the timeout parameter.
3223  *  -ETIME: object is still busy after timeout
3224  *  -ERESTARTSYS: signal interrupted the wait
3225  *  -ENONENT: object doesn't exist
3226  * Also possible, but rare:
3227  *  -EAGAIN: GPU wedged
3228  *  -ENOMEM: damn
3229  *  -ENODEV: Internal IRQ fail
3230  *  -E?: The add request failed
3231  *
3232  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3233  * non-zero timeout parameter the wait ioctl will wait for the given number of
3234  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3235  * without holding struct_mutex the object may become re-busied before this
3236  * function completes. A similar but shorter * race condition exists in the busy
3237  * ioctl
3238  */
3239 int
3240 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3241 {
3242         struct drm_i915_gem_wait *args = data;
3243         struct drm_i915_gem_object *obj;
3244         ktime_t start;
3245         long ret;
3246
3247         if (args->flags != 0)
3248                 return -EINVAL;
3249
3250         obj = i915_gem_object_lookup(file, args->bo_handle);
3251         if (!obj)
3252                 return -ENOENT;
3253
3254         start = ktime_get();
3255
3256         ret = i915_gem_object_wait(obj,
3257                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3258                                    to_wait_timeout(args->timeout_ns),
3259                                    to_rps_client(file));
3260
3261         if (args->timeout_ns > 0) {
3262                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3263                 if (args->timeout_ns < 0)
3264                         args->timeout_ns = 0;
3265
3266                 /*
3267                  * Apparently ktime isn't accurate enough and occasionally has a
3268                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3269                  * things up to make the test happy. We allow up to 1 jiffy.
3270                  *
3271                  * This is a regression from the timespec->ktime conversion.
3272                  */
3273                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3274                         args->timeout_ns = 0;
3275         }
3276
3277         i915_gem_object_put(obj);
3278         return ret;
3279 }
3280
3281 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3282 {
3283         int ret, i;
3284
3285         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3286                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3287                 if (ret)
3288                         return ret;
3289         }
3290
3291         return 0;
3292 }
3293
3294 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3295 {
3296         return wait_for(intel_engine_is_idle(engine), timeout_ms);
3297 }
3298
3299 static int wait_for_engines(struct drm_i915_private *i915)
3300 {
3301         struct intel_engine_cs *engine;
3302         enum intel_engine_id id;
3303
3304         for_each_engine(engine, i915, id) {
3305                 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3306                         i915_gem_set_wedged(i915);
3307                         return -EIO;
3308                 }
3309
3310                 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3311                            intel_engine_last_submit(engine));
3312         }
3313
3314         return 0;
3315 }
3316
3317 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3318 {
3319         int ret;
3320
3321         /* If the device is asleep, we have no requests outstanding */
3322         if (!READ_ONCE(i915->gt.awake))
3323                 return 0;
3324
3325         if (flags & I915_WAIT_LOCKED) {
3326                 struct i915_gem_timeline *tl;
3327
3328                 lockdep_assert_held(&i915->drm.struct_mutex);
3329
3330                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3331                         ret = wait_for_timeline(tl, flags);
3332                         if (ret)
3333                                 return ret;
3334                 }
3335
3336                 i915_gem_retire_requests(i915);
3337                 GEM_BUG_ON(i915->gt.active_requests);
3338
3339                 ret = wait_for_engines(i915);
3340         } else {
3341                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3342         }
3343
3344         return ret;
3345 }
3346
3347 /** Flushes the GTT write domain for the object if it's dirty. */
3348 static void
3349 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3350 {
3351         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3352
3353         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3354                 return;
3355
3356         /* No actual flushing is required for the GTT write domain.  Writes
3357          * to it "immediately" go to main memory as far as we know, so there's
3358          * no chipset flush.  It also doesn't land in render cache.
3359          *
3360          * However, we do have to enforce the order so that all writes through
3361          * the GTT land before any writes to the device, such as updates to
3362          * the GATT itself.
3363          *
3364          * We also have to wait a bit for the writes to land from the GTT.
3365          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
3366          * timing. This issue has only been observed when switching quickly
3367          * between GTT writes and CPU reads from inside the kernel on recent hw,
3368          * and it appears to only affect discrete GTT blocks (i.e. on LLC
3369          * system agents we cannot reproduce this behaviour).
3370          */
3371         wmb();
3372         if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
3373                 if (intel_runtime_pm_get_if_in_use(dev_priv)) {
3374                         spin_lock_irq(&dev_priv->uncore.lock);
3375                         POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
3376                         spin_unlock_irq(&dev_priv->uncore.lock);
3377                         intel_runtime_pm_put(dev_priv);
3378                 }
3379         }
3380
3381         intel_fb_obj_flush(obj, write_origin(obj, I915_GEM_DOMAIN_GTT));
3382
3383         obj->base.write_domain = 0;
3384 }
3385
3386 /** Flushes the CPU write domain for the object if it's dirty. */
3387 static void
3388 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
3389 {
3390         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3391                 return;
3392
3393         i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3394         obj->base.write_domain = 0;
3395 }
3396
3397 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3398 {
3399         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU && !obj->cache_dirty)
3400                 return;
3401
3402         i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3403         obj->base.write_domain = 0;
3404 }
3405
3406 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3407 {
3408         if (!READ_ONCE(obj->pin_display))
3409                 return;
3410
3411         mutex_lock(&obj->base.dev->struct_mutex);
3412         __i915_gem_object_flush_for_display(obj);
3413         mutex_unlock(&obj->base.dev->struct_mutex);
3414 }
3415
3416 /**
3417  * Moves a single object to the GTT read, and possibly write domain.
3418  * @obj: object to act on
3419  * @write: ask for write access or read only
3420  *
3421  * This function returns when the move is complete, including waiting on
3422  * flushes to occur.
3423  */
3424 int
3425 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3426 {
3427         int ret;
3428
3429         lockdep_assert_held(&obj->base.dev->struct_mutex);
3430
3431         ret = i915_gem_object_wait(obj,
3432                                    I915_WAIT_INTERRUPTIBLE |
3433                                    I915_WAIT_LOCKED |
3434                                    (write ? I915_WAIT_ALL : 0),
3435                                    MAX_SCHEDULE_TIMEOUT,
3436                                    NULL);
3437         if (ret)
3438                 return ret;
3439
3440         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3441                 return 0;
3442
3443         /* Flush and acquire obj->pages so that we are coherent through
3444          * direct access in memory with previous cached writes through
3445          * shmemfs and that our cache domain tracking remains valid.
3446          * For example, if the obj->filp was moved to swap without us
3447          * being notified and releasing the pages, we would mistakenly
3448          * continue to assume that the obj remained out of the CPU cached
3449          * domain.
3450          */
3451         ret = i915_gem_object_pin_pages(obj);
3452         if (ret)
3453                 return ret;
3454
3455         i915_gem_object_flush_cpu_write_domain(obj);
3456
3457         /* Serialise direct access to this object with the barriers for
3458          * coherent writes from the GPU, by effectively invalidating the
3459          * GTT domain upon first access.
3460          */
3461         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3462                 mb();
3463
3464         /* It should now be out of any other write domains, and we can update
3465          * the domain values for our changes.
3466          */
3467         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3468         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3469         if (write) {
3470                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3471                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3472                 obj->mm.dirty = true;
3473         }
3474
3475         i915_gem_object_unpin_pages(obj);
3476         return 0;
3477 }
3478
3479 /**
3480  * Changes the cache-level of an object across all VMA.
3481  * @obj: object to act on
3482  * @cache_level: new cache level to set for the object
3483  *
3484  * After this function returns, the object will be in the new cache-level
3485  * across all GTT and the contents of the backing storage will be coherent,
3486  * with respect to the new cache-level. In order to keep the backing storage
3487  * coherent for all users, we only allow a single cache level to be set
3488  * globally on the object and prevent it from being changed whilst the
3489  * hardware is reading from the object. That is if the object is currently
3490  * on the scanout it will be set to uncached (or equivalent display
3491  * cache coherency) and all non-MOCS GPU access will also be uncached so
3492  * that all direct access to the scanout remains coherent.
3493  */
3494 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3495                                     enum i915_cache_level cache_level)
3496 {
3497         struct i915_vma *vma;
3498         int ret;
3499
3500         lockdep_assert_held(&obj->base.dev->struct_mutex);
3501
3502         if (obj->cache_level == cache_level)
3503                 return 0;
3504
3505         /* Inspect the list of currently bound VMA and unbind any that would
3506          * be invalid given the new cache-level. This is principally to
3507          * catch the issue of the CS prefetch crossing page boundaries and
3508          * reading an invalid PTE on older architectures.
3509          */
3510 restart:
3511         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3512                 if (!drm_mm_node_allocated(&vma->node))
3513                         continue;
3514
3515                 if (i915_vma_is_pinned(vma)) {
3516                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3517                         return -EBUSY;
3518                 }
3519
3520                 if (i915_gem_valid_gtt_space(vma, cache_level))
3521                         continue;
3522
3523                 ret = i915_vma_unbind(vma);
3524                 if (ret)
3525                         return ret;
3526
3527                 /* As unbinding may affect other elements in the
3528                  * obj->vma_list (due to side-effects from retiring
3529                  * an active vma), play safe and restart the iterator.
3530                  */
3531                 goto restart;
3532         }
3533
3534         /* We can reuse the existing drm_mm nodes but need to change the
3535          * cache-level on the PTE. We could simply unbind them all and
3536          * rebind with the correct cache-level on next use. However since
3537          * we already have a valid slot, dma mapping, pages etc, we may as
3538          * rewrite the PTE in the belief that doing so tramples upon less
3539          * state and so involves less work.
3540          */
3541         if (obj->bind_count) {
3542                 /* Before we change the PTE, the GPU must not be accessing it.
3543                  * If we wait upon the object, we know that all the bound
3544                  * VMA are no longer active.
3545                  */
3546                 ret = i915_gem_object_wait(obj,
3547                                            I915_WAIT_INTERRUPTIBLE |
3548                                            I915_WAIT_LOCKED |
3549                                            I915_WAIT_ALL,
3550                                            MAX_SCHEDULE_TIMEOUT,
3551                                            NULL);
3552                 if (ret)
3553                         return ret;
3554
3555                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3556                     cache_level != I915_CACHE_NONE) {
3557                         /* Access to snoopable pages through the GTT is
3558                          * incoherent and on some machines causes a hard
3559                          * lockup. Relinquish the CPU mmaping to force
3560                          * userspace to refault in the pages and we can
3561                          * then double check if the GTT mapping is still
3562                          * valid for that pointer access.
3563                          */
3564                         i915_gem_release_mmap(obj);
3565
3566                         /* As we no longer need a fence for GTT access,
3567                          * we can relinquish it now (and so prevent having
3568                          * to steal a fence from someone else on the next
3569                          * fence request). Note GPU activity would have
3570                          * dropped the fence as all snoopable access is
3571                          * supposed to be linear.
3572                          */
3573                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3574                                 ret = i915_vma_put_fence(vma);
3575                                 if (ret)
3576                                         return ret;
3577                         }
3578                 } else {
3579                         /* We either have incoherent backing store and
3580                          * so no GTT access or the architecture is fully
3581                          * coherent. In such cases, existing GTT mmaps
3582                          * ignore the cache bit in the PTE and we can
3583                          * rewrite it without confusing the GPU or having
3584                          * to force userspace to fault back in its mmaps.
3585                          */
3586                 }
3587
3588                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3589                         if (!drm_mm_node_allocated(&vma->node))
3590                                 continue;
3591
3592                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3593                         if (ret)
3594                                 return ret;
3595                 }
3596         }
3597
3598         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU &&
3599             i915_gem_object_is_coherent(obj))
3600                 obj->cache_dirty = true;
3601
3602         list_for_each_entry(vma, &obj->vma_list, obj_link)
3603                 vma->node.color = cache_level;
3604         obj->cache_level = cache_level;
3605
3606         return 0;
3607 }
3608
3609 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3610                                struct drm_file *file)
3611 {
3612         struct drm_i915_gem_caching *args = data;
3613         struct drm_i915_gem_object *obj;
3614         int err = 0;
3615
3616         rcu_read_lock();
3617         obj = i915_gem_object_lookup_rcu(file, args->handle);
3618         if (!obj) {
3619                 err = -ENOENT;
3620                 goto out;
3621         }
3622
3623         switch (obj->cache_level) {
3624         case I915_CACHE_LLC:
3625         case I915_CACHE_L3_LLC:
3626                 args->caching = I915_CACHING_CACHED;
3627                 break;
3628
3629         case I915_CACHE_WT:
3630                 args->caching = I915_CACHING_DISPLAY;
3631                 break;
3632
3633         default:
3634                 args->caching = I915_CACHING_NONE;
3635                 break;
3636         }
3637 out:
3638         rcu_read_unlock();
3639         return err;
3640 }
3641
3642 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3643                                struct drm_file *file)
3644 {
3645         struct drm_i915_private *i915 = to_i915(dev);
3646         struct drm_i915_gem_caching *args = data;
3647         struct drm_i915_gem_object *obj;
3648         enum i915_cache_level level;
3649         int ret = 0;
3650
3651         switch (args->caching) {
3652         case I915_CACHING_NONE:
3653                 level = I915_CACHE_NONE;
3654                 break;
3655         case I915_CACHING_CACHED:
3656                 /*
3657                  * Due to a HW issue on BXT A stepping, GPU stores via a
3658                  * snooped mapping may leave stale data in a corresponding CPU
3659                  * cacheline, whereas normally such cachelines would get
3660                  * invalidated.
3661                  */
3662                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3663                         return -ENODEV;
3664
3665                 level = I915_CACHE_LLC;
3666                 break;
3667         case I915_CACHING_DISPLAY:
3668                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3669                 break;
3670         default:
3671                 return -EINVAL;
3672         }
3673
3674         obj = i915_gem_object_lookup(file, args->handle);
3675         if (!obj)
3676                 return -ENOENT;
3677
3678         if (obj->cache_level == level)
3679                 goto out;
3680
3681         ret = i915_gem_object_wait(obj,
3682                                    I915_WAIT_INTERRUPTIBLE,
3683                                    MAX_SCHEDULE_TIMEOUT,
3684                                    to_rps_client(file));
3685         if (ret)
3686                 goto out;
3687
3688         ret = i915_mutex_lock_interruptible(dev);
3689         if (ret)
3690                 goto out;
3691
3692         ret = i915_gem_object_set_cache_level(obj, level);
3693         mutex_unlock(&dev->struct_mutex);
3694
3695 out:
3696         i915_gem_object_put(obj);
3697         return ret;
3698 }
3699
3700 /*
3701  * Prepare buffer for display plane (scanout, cursors, etc).
3702  * Can be called from an uninterruptible phase (modesetting) and allows
3703  * any flushes to be pipelined (for pageflips).
3704  */
3705 struct i915_vma *
3706 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3707                                      u32 alignment,
3708                                      const struct i915_ggtt_view *view)
3709 {
3710         struct i915_vma *vma;
3711         int ret;
3712
3713         lockdep_assert_held(&obj->base.dev->struct_mutex);
3714
3715         /* Mark the pin_display early so that we account for the
3716          * display coherency whilst setting up the cache domains.
3717          */
3718         obj->pin_display++;
3719
3720         /* The display engine is not coherent with the LLC cache on gen6.  As
3721          * a result, we make sure that the pinning that is about to occur is
3722          * done with uncached PTEs. This is lowest common denominator for all
3723          * chipsets.
3724          *
3725          * However for gen6+, we could do better by using the GFDT bit instead
3726          * of uncaching, which would allow us to flush all the LLC-cached data
3727          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3728          */
3729         ret = i915_gem_object_set_cache_level(obj,
3730                                               HAS_WT(to_i915(obj->base.dev)) ?
3731                                               I915_CACHE_WT : I915_CACHE_NONE);
3732         if (ret) {
3733                 vma = ERR_PTR(ret);
3734                 goto err_unpin_display;
3735         }
3736
3737         /* As the user may map the buffer once pinned in the display plane
3738          * (e.g. libkms for the bootup splash), we have to ensure that we
3739          * always use map_and_fenceable for all scanout buffers. However,
3740          * it may simply be too big to fit into mappable, in which case
3741          * put it anyway and hope that userspace can cope (but always first
3742          * try to preserve the existing ABI).
3743          */
3744         vma = ERR_PTR(-ENOSPC);
3745         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3746                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3747                                                PIN_MAPPABLE | PIN_NONBLOCK);
3748         if (IS_ERR(vma)) {
3749                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3750                 unsigned int flags;
3751
3752                 /* Valleyview is definitely limited to scanning out the first
3753                  * 512MiB. Lets presume this behaviour was inherited from the
3754                  * g4x display engine and that all earlier gen are similarly
3755                  * limited. Testing suggests that it is a little more
3756                  * complicated than this. For example, Cherryview appears quite
3757                  * happy to scanout from anywhere within its global aperture.
3758                  */
3759                 flags = 0;
3760                 if (HAS_GMCH_DISPLAY(i915))
3761                         flags = PIN_MAPPABLE;
3762                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3763         }
3764         if (IS_ERR(vma))
3765                 goto err_unpin_display;
3766
3767         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3768
3769         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3770         __i915_gem_object_flush_for_display(obj);
3771         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3772
3773         /* It should now be out of any other write domains, and we can update
3774          * the domain values for our changes.
3775          */
3776         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3777
3778         return vma;
3779
3780 err_unpin_display:
3781         obj->pin_display--;
3782         return vma;
3783 }
3784
3785 void
3786 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3787 {
3788         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3789
3790         if (WARN_ON(vma->obj->pin_display == 0))
3791                 return;
3792
3793         if (--vma->obj->pin_display == 0)
3794                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3795
3796         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3797         i915_gem_object_bump_inactive_ggtt(vma->obj);
3798
3799         i915_vma_unpin(vma);
3800 }
3801
3802 /**
3803  * Moves a single object to the CPU read, and possibly write domain.
3804  * @obj: object to act on
3805  * @write: requesting write or read-only access
3806  *
3807  * This function returns when the move is complete, including waiting on
3808  * flushes to occur.
3809  */
3810 int
3811 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3812 {
3813         int ret;
3814
3815         lockdep_assert_held(&obj->base.dev->struct_mutex);
3816
3817         ret = i915_gem_object_wait(obj,
3818                                    I915_WAIT_INTERRUPTIBLE |
3819                                    I915_WAIT_LOCKED |
3820                                    (write ? I915_WAIT_ALL : 0),
3821                                    MAX_SCHEDULE_TIMEOUT,
3822                                    NULL);
3823         if (ret)
3824                 return ret;
3825
3826         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3827                 return 0;
3828
3829         i915_gem_object_flush_gtt_write_domain(obj);
3830
3831         /* Flush the CPU cache if it's still invalid. */
3832         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3833                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3834                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3835         }
3836
3837         /* It should now be out of any other write domains, and we can update
3838          * the domain values for our changes.
3839          */
3840         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3841
3842         /* If we're writing through the CPU, then the GPU read domains will
3843          * need to be invalidated at next use.
3844          */
3845         if (write) {
3846                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3847                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3848         }
3849
3850         return 0;
3851 }
3852
3853 /* Throttle our rendering by waiting until the ring has completed our requests
3854  * emitted over 20 msec ago.
3855  *
3856  * Note that if we were to use the current jiffies each time around the loop,
3857  * we wouldn't escape the function with any frames outstanding if the time to
3858  * render a frame was over 20ms.
3859  *
3860  * This should get us reasonable parallelism between CPU and GPU but also
3861  * relatively low latency when blocking on a particular request to finish.
3862  */
3863 static int
3864 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3865 {
3866         struct drm_i915_private *dev_priv = to_i915(dev);
3867         struct drm_i915_file_private *file_priv = file->driver_priv;
3868         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3869         struct drm_i915_gem_request *request, *target = NULL;
3870         long ret;
3871
3872         /* ABI: return -EIO if already wedged */
3873         if (i915_terminally_wedged(&dev_priv->gpu_error))
3874                 return -EIO;
3875
3876         spin_lock(&file_priv->mm.lock);
3877         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3878                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3879                         break;
3880
3881                 if (target) {
3882                         list_del(&target->client_link);
3883                         target->file_priv = NULL;
3884                 }
3885
3886                 target = request;
3887         }
3888         if (target)
3889                 i915_gem_request_get(target);
3890         spin_unlock(&file_priv->mm.lock);
3891
3892         if (target == NULL)
3893                 return 0;
3894
3895         ret = i915_wait_request(target,
3896                                 I915_WAIT_INTERRUPTIBLE,
3897                                 MAX_SCHEDULE_TIMEOUT);
3898         i915_gem_request_put(target);
3899
3900         return ret < 0 ? ret : 0;
3901 }
3902
3903 struct i915_vma *
3904 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3905                          const struct i915_ggtt_view *view,
3906                          u64 size,
3907                          u64 alignment,
3908                          u64 flags)
3909 {
3910         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3911         struct i915_address_space *vm = &dev_priv->ggtt.base;
3912         struct i915_vma *vma;
3913         int ret;
3914
3915         lockdep_assert_held(&obj->base.dev->struct_mutex);
3916
3917         vma = i915_vma_instance(obj, vm, view);
3918         if (unlikely(IS_ERR(vma)))
3919                 return vma;
3920
3921         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3922                 if (flags & PIN_NONBLOCK &&
3923                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3924                         return ERR_PTR(-ENOSPC);
3925
3926                 if (flags & PIN_MAPPABLE) {
3927                         /* If the required space is larger than the available
3928                          * aperture, we will not able to find a slot for the
3929                          * object and unbinding the object now will be in
3930                          * vain. Worse, doing so may cause us to ping-pong
3931                          * the object in and out of the Global GTT and
3932                          * waste a lot of cycles under the mutex.
3933                          */
3934                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
3935                                 return ERR_PTR(-E2BIG);
3936
3937                         /* If NONBLOCK is set the caller is optimistically
3938                          * trying to cache the full object within the mappable
3939                          * aperture, and *must* have a fallback in place for
3940                          * situations where we cannot bind the object. We
3941                          * can be a little more lax here and use the fallback
3942                          * more often to avoid costly migrations of ourselves
3943                          * and other objects within the aperture.
3944                          *
3945                          * Half-the-aperture is used as a simple heuristic.
3946                          * More interesting would to do search for a free
3947                          * block prior to making the commitment to unbind.
3948                          * That caters for the self-harm case, and with a
3949                          * little more heuristics (e.g. NOFAULT, NOEVICT)
3950                          * we could try to minimise harm to others.
3951                          */
3952                         if (flags & PIN_NONBLOCK &&
3953                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
3954                                 return ERR_PTR(-ENOSPC);
3955                 }
3956
3957                 WARN(i915_vma_is_pinned(vma),
3958                      "bo is already pinned in ggtt with incorrect alignment:"
3959                      " offset=%08x, req.alignment=%llx,"
3960                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
3961                      i915_ggtt_offset(vma), alignment,
3962                      !!(flags & PIN_MAPPABLE),
3963                      i915_vma_is_map_and_fenceable(vma));
3964                 ret = i915_vma_unbind(vma);
3965                 if (ret)
3966                         return ERR_PTR(ret);
3967         }
3968
3969         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
3970         if (ret)
3971                 return ERR_PTR(ret);
3972
3973         return vma;
3974 }
3975
3976 static __always_inline unsigned int __busy_read_flag(unsigned int id)
3977 {
3978         /* Note that we could alias engines in the execbuf API, but
3979          * that would be very unwise as it prevents userspace from
3980          * fine control over engine selection. Ahem.
3981          *
3982          * This should be something like EXEC_MAX_ENGINE instead of
3983          * I915_NUM_ENGINES.
3984          */
3985         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
3986         return 0x10000 << id;
3987 }
3988
3989 static __always_inline unsigned int __busy_write_id(unsigned int id)
3990 {
3991         /* The uABI guarantees an active writer is also amongst the read
3992          * engines. This would be true if we accessed the activity tracking
3993          * under the lock, but as we perform the lookup of the object and
3994          * its activity locklessly we can not guarantee that the last_write
3995          * being active implies that we have set the same engine flag from
3996          * last_read - hence we always set both read and write busy for
3997          * last_write.
3998          */
3999         return id | __busy_read_flag(id);
4000 }
4001
4002 static __always_inline unsigned int
4003 __busy_set_if_active(const struct dma_fence *fence,
4004                      unsigned int (*flag)(unsigned int id))
4005 {
4006         struct drm_i915_gem_request *rq;
4007
4008         /* We have to check the current hw status of the fence as the uABI
4009          * guarantees forward progress. We could rely on the idle worker
4010          * to eventually flush us, but to minimise latency just ask the
4011          * hardware.
4012          *
4013          * Note we only report on the status of native fences.
4014          */
4015         if (!dma_fence_is_i915(fence))
4016                 return 0;
4017
4018         /* opencode to_request() in order to avoid const warnings */
4019         rq = container_of(fence, struct drm_i915_gem_request, fence);
4020         if (i915_gem_request_completed(rq))
4021                 return 0;
4022
4023         return flag(rq->engine->exec_id);
4024 }
4025
4026 static __always_inline unsigned int
4027 busy_check_reader(const struct dma_fence *fence)
4028 {
4029         return __busy_set_if_active(fence, __busy_read_flag);
4030 }
4031
4032 static __always_inline unsigned int
4033 busy_check_writer(const struct dma_fence *fence)
4034 {
4035         if (!fence)
4036                 return 0;
4037
4038         return __busy_set_if_active(fence, __busy_write_id);
4039 }
4040
4041 int
4042 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4043                     struct drm_file *file)
4044 {
4045         struct drm_i915_gem_busy *args = data;
4046         struct drm_i915_gem_object *obj;
4047         struct reservation_object_list *list;
4048         unsigned int seq;
4049         int err;
4050
4051         err = -ENOENT;
4052         rcu_read_lock();
4053         obj = i915_gem_object_lookup_rcu(file, args->handle);
4054         if (!obj)
4055                 goto out;
4056
4057         /* A discrepancy here is that we do not report the status of
4058          * non-i915 fences, i.e. even though we may report the object as idle,
4059          * a call to set-domain may still stall waiting for foreign rendering.
4060          * This also means that wait-ioctl may report an object as busy,
4061          * where busy-ioctl considers it idle.
4062          *
4063          * We trade the ability to warn of foreign fences to report on which
4064          * i915 engines are active for the object.
4065          *
4066          * Alternatively, we can trade that extra information on read/write
4067          * activity with
4068          *      args->busy =
4069          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4070          * to report the overall busyness. This is what the wait-ioctl does.
4071          *
4072          */
4073 retry:
4074         seq = raw_read_seqcount(&obj->resv->seq);
4075
4076         /* Translate the exclusive fence to the READ *and* WRITE engine */
4077         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4078
4079         /* Translate shared fences to READ set of engines */
4080         list = rcu_dereference(obj->resv->fence);
4081         if (list) {
4082                 unsigned int shared_count = list->shared_count, i;
4083
4084                 for (i = 0; i < shared_count; ++i) {
4085                         struct dma_fence *fence =
4086                                 rcu_dereference(list->shared[i]);
4087
4088                         args->busy |= busy_check_reader(fence);
4089                 }
4090         }
4091
4092         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4093                 goto retry;
4094
4095         err = 0;
4096 out:
4097         rcu_read_unlock();
4098         return err;
4099 }
4100
4101 int
4102 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4103                         struct drm_file *file_priv)
4104 {
4105         return i915_gem_ring_throttle(dev, file_priv);
4106 }
4107
4108 int
4109 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4110                        struct drm_file *file_priv)
4111 {
4112         struct drm_i915_private *dev_priv = to_i915(dev);
4113         struct drm_i915_gem_madvise *args = data;
4114         struct drm_i915_gem_object *obj;
4115         int err;
4116
4117         switch (args->madv) {
4118         case I915_MADV_DONTNEED:
4119         case I915_MADV_WILLNEED:
4120             break;
4121         default:
4122             return -EINVAL;
4123         }
4124
4125         obj = i915_gem_object_lookup(file_priv, args->handle);
4126         if (!obj)
4127                 return -ENOENT;
4128
4129         err = mutex_lock_interruptible(&obj->mm.lock);
4130         if (err)
4131                 goto out;
4132
4133         if (obj->mm.pages &&
4134             i915_gem_object_is_tiled(obj) &&
4135             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4136                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4137                         GEM_BUG_ON(!obj->mm.quirked);
4138                         __i915_gem_object_unpin_pages(obj);
4139                         obj->mm.quirked = false;
4140                 }
4141                 if (args->madv == I915_MADV_WILLNEED) {
4142                         GEM_BUG_ON(obj->mm.quirked);
4143                         __i915_gem_object_pin_pages(obj);
4144                         obj->mm.quirked = true;
4145                 }
4146         }
4147
4148         if (obj->mm.madv != __I915_MADV_PURGED)
4149                 obj->mm.madv = args->madv;
4150
4151         /* if the object is no longer attached, discard its backing storage */
4152         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4153                 i915_gem_object_truncate(obj);
4154
4155         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4156         mutex_unlock(&obj->mm.lock);
4157
4158 out:
4159         i915_gem_object_put(obj);
4160         return err;
4161 }
4162
4163 static void
4164 frontbuffer_retire(struct i915_gem_active *active,
4165                    struct drm_i915_gem_request *request)
4166 {
4167         struct drm_i915_gem_object *obj =
4168                 container_of(active, typeof(*obj), frontbuffer_write);
4169
4170         intel_fb_obj_flush(obj, ORIGIN_CS);
4171 }
4172
4173 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4174                           const struct drm_i915_gem_object_ops *ops)
4175 {
4176         mutex_init(&obj->mm.lock);
4177
4178         INIT_LIST_HEAD(&obj->global_link);
4179         INIT_LIST_HEAD(&obj->userfault_link);
4180         INIT_LIST_HEAD(&obj->obj_exec_link);
4181         INIT_LIST_HEAD(&obj->vma_list);
4182         INIT_LIST_HEAD(&obj->batch_pool_link);
4183
4184         obj->ops = ops;
4185
4186         reservation_object_init(&obj->__builtin_resv);
4187         obj->resv = &obj->__builtin_resv;
4188
4189         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4190         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4191
4192         obj->mm.madv = I915_MADV_WILLNEED;
4193         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4194         mutex_init(&obj->mm.get_page.lock);
4195
4196         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4197 }
4198
4199 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4200         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4201                  I915_GEM_OBJECT_IS_SHRINKABLE,
4202
4203         .get_pages = i915_gem_object_get_pages_gtt,
4204         .put_pages = i915_gem_object_put_pages_gtt,
4205
4206         .pwrite = i915_gem_object_pwrite_gtt,
4207 };
4208
4209 struct drm_i915_gem_object *
4210 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4211 {
4212         struct drm_i915_gem_object *obj;
4213         struct address_space *mapping;
4214         gfp_t mask;
4215         int ret;
4216
4217         /* There is a prevalence of the assumption that we fit the object's
4218          * page count inside a 32bit _signed_ variable. Let's document this and
4219          * catch if we ever need to fix it. In the meantime, if you do spot
4220          * such a local variable, please consider fixing!
4221          */
4222         if (WARN_ON(size >> PAGE_SHIFT > INT_MAX))
4223                 return ERR_PTR(-E2BIG);
4224
4225         if (overflows_type(size, obj->base.size))
4226                 return ERR_PTR(-E2BIG);
4227
4228         obj = i915_gem_object_alloc(dev_priv);
4229         if (obj == NULL)
4230                 return ERR_PTR(-ENOMEM);
4231
4232         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4233         if (ret)
4234                 goto fail;
4235
4236         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4237         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4238                 /* 965gm cannot relocate objects above 4GiB. */
4239                 mask &= ~__GFP_HIGHMEM;
4240                 mask |= __GFP_DMA32;
4241         }
4242
4243         mapping = obj->base.filp->f_mapping;
4244         mapping_set_gfp_mask(mapping, mask);
4245         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4246
4247         i915_gem_object_init(obj, &i915_gem_object_ops);
4248
4249         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4250         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4251
4252         if (HAS_LLC(dev_priv)) {
4253                 /* On some devices, we can have the GPU use the LLC (the CPU
4254                  * cache) for about a 10% performance improvement
4255                  * compared to uncached.  Graphics requests other than
4256                  * display scanout are coherent with the CPU in
4257                  * accessing this cache.  This means in this mode we
4258                  * don't need to clflush on the CPU side, and on the
4259                  * GPU side we only need to flush internal caches to
4260                  * get data visible to the CPU.
4261                  *
4262                  * However, we maintain the display planes as UC, and so
4263                  * need to rebind when first used as such.
4264                  */
4265                 obj->cache_level = I915_CACHE_LLC;
4266         } else
4267                 obj->cache_level = I915_CACHE_NONE;
4268
4269         trace_i915_gem_object_create(obj);
4270
4271         return obj;
4272
4273 fail:
4274         i915_gem_object_free(obj);
4275         return ERR_PTR(ret);
4276 }
4277
4278 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4279 {
4280         /* If we are the last user of the backing storage (be it shmemfs
4281          * pages or stolen etc), we know that the pages are going to be
4282          * immediately released. In this case, we can then skip copying
4283          * back the contents from the GPU.
4284          */
4285
4286         if (obj->mm.madv != I915_MADV_WILLNEED)
4287                 return false;
4288
4289         if (obj->base.filp == NULL)
4290                 return true;
4291
4292         /* At first glance, this looks racy, but then again so would be
4293          * userspace racing mmap against close. However, the first external
4294          * reference to the filp can only be obtained through the
4295          * i915_gem_mmap_ioctl() which safeguards us against the user
4296          * acquiring such a reference whilst we are in the middle of
4297          * freeing the object.
4298          */
4299         return atomic_long_read(&obj->base.filp->f_count) == 1;
4300 }
4301
4302 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4303                                     struct llist_node *freed)
4304 {
4305         struct drm_i915_gem_object *obj, *on;
4306
4307         mutex_lock(&i915->drm.struct_mutex);
4308         intel_runtime_pm_get(i915);
4309         llist_for_each_entry(obj, freed, freed) {
4310                 struct i915_vma *vma, *vn;
4311
4312                 trace_i915_gem_object_destroy(obj);
4313
4314                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4315                 list_for_each_entry_safe(vma, vn,
4316                                          &obj->vma_list, obj_link) {
4317                         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
4318                         GEM_BUG_ON(i915_vma_is_active(vma));
4319                         vma->flags &= ~I915_VMA_PIN_MASK;
4320                         i915_vma_close(vma);
4321                 }
4322                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4323                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4324
4325                 list_del(&obj->global_link);
4326         }
4327         intel_runtime_pm_put(i915);
4328         mutex_unlock(&i915->drm.struct_mutex);
4329
4330         llist_for_each_entry_safe(obj, on, freed, freed) {
4331                 GEM_BUG_ON(obj->bind_count);
4332                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4333
4334                 if (obj->ops->release)
4335                         obj->ops->release(obj);
4336
4337                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4338                         atomic_set(&obj->mm.pages_pin_count, 0);
4339                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4340                 GEM_BUG_ON(obj->mm.pages);
4341
4342                 if (obj->base.import_attach)
4343                         drm_prime_gem_destroy(&obj->base, NULL);
4344
4345                 reservation_object_fini(&obj->__builtin_resv);
4346                 drm_gem_object_release(&obj->base);
4347                 i915_gem_info_remove_obj(i915, obj->base.size);
4348
4349                 kfree(obj->bit_17);
4350                 i915_gem_object_free(obj);
4351         }
4352 }
4353
4354 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4355 {
4356         struct llist_node *freed;
4357
4358         freed = llist_del_all(&i915->mm.free_list);
4359         if (unlikely(freed))
4360                 __i915_gem_free_objects(i915, freed);
4361 }
4362
4363 static void __i915_gem_free_work(struct work_struct *work)
4364 {
4365         struct drm_i915_private *i915 =
4366                 container_of(work, struct drm_i915_private, mm.free_work);
4367         struct llist_node *freed;
4368
4369         /* All file-owned VMA should have been released by this point through
4370          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4371          * However, the object may also be bound into the global GTT (e.g.
4372          * older GPUs without per-process support, or for direct access through
4373          * the GTT either for the user or for scanout). Those VMA still need to
4374          * unbound now.
4375          */
4376
4377         while ((freed = llist_del_all(&i915->mm.free_list)))
4378                 __i915_gem_free_objects(i915, freed);
4379 }
4380
4381 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4382 {
4383         struct drm_i915_gem_object *obj =
4384                 container_of(head, typeof(*obj), rcu);
4385         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4386
4387         /* We can't simply use call_rcu() from i915_gem_free_object()
4388          * as we need to block whilst unbinding, and the call_rcu
4389          * task may be called from softirq context. So we take a
4390          * detour through a worker.
4391          */
4392         if (llist_add(&obj->freed, &i915->mm.free_list))
4393                 schedule_work(&i915->mm.free_work);
4394 }
4395
4396 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4397 {
4398         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4399
4400         if (obj->mm.quirked)
4401                 __i915_gem_object_unpin_pages(obj);
4402
4403         if (discard_backing_storage(obj))
4404                 obj->mm.madv = I915_MADV_DONTNEED;
4405
4406         /* Before we free the object, make sure any pure RCU-only
4407          * read-side critical sections are complete, e.g.
4408          * i915_gem_busy_ioctl(). For the corresponding synchronized
4409          * lookup see i915_gem_object_lookup_rcu().
4410          */
4411         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4412 }
4413
4414 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4415 {
4416         lockdep_assert_held(&obj->base.dev->struct_mutex);
4417
4418         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4419         if (i915_gem_object_is_active(obj))
4420                 i915_gem_object_set_active_reference(obj);
4421         else
4422                 i915_gem_object_put(obj);
4423 }
4424
4425 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4426 {
4427         struct intel_engine_cs *engine;
4428         enum intel_engine_id id;
4429
4430         for_each_engine(engine, dev_priv, id)
4431                 GEM_BUG_ON(engine->last_retired_context &&
4432                            !i915_gem_context_is_kernel(engine->last_retired_context));
4433 }
4434
4435 void i915_gem_sanitize(struct drm_i915_private *i915)
4436 {
4437         /*
4438          * If we inherit context state from the BIOS or earlier occupants
4439          * of the GPU, the GPU may be in an inconsistent state when we
4440          * try to take over. The only way to remove the earlier state
4441          * is by resetting. However, resetting on earlier gen is tricky as
4442          * it may impact the display and we are uncertain about the stability
4443          * of the reset, so we only reset recent machines with logical
4444          * context support (that must be reset to remove any stray contexts).
4445          */
4446         if (HAS_HW_CONTEXTS(i915)) {
4447                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4448                 WARN_ON(reset && reset != -ENODEV);
4449         }
4450 }
4451
4452 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4453 {
4454         struct drm_device *dev = &dev_priv->drm;
4455         int ret;
4456
4457         intel_runtime_pm_get(dev_priv);
4458         intel_suspend_gt_powersave(dev_priv);
4459
4460         mutex_lock(&dev->struct_mutex);
4461
4462         /* We have to flush all the executing contexts to main memory so
4463          * that they can saved in the hibernation image. To ensure the last
4464          * context image is coherent, we have to switch away from it. That
4465          * leaves the dev_priv->kernel_context still active when
4466          * we actually suspend, and its image in memory may not match the GPU
4467          * state. Fortunately, the kernel_context is disposable and we do
4468          * not rely on its state.
4469          */
4470         ret = i915_gem_switch_to_kernel_context(dev_priv);
4471         if (ret)
4472                 goto err_unlock;
4473
4474         ret = i915_gem_wait_for_idle(dev_priv,
4475                                      I915_WAIT_INTERRUPTIBLE |
4476                                      I915_WAIT_LOCKED);
4477         if (ret)
4478                 goto err_unlock;
4479
4480         assert_kernel_context_is_current(dev_priv);
4481         i915_gem_context_lost(dev_priv);
4482         mutex_unlock(&dev->struct_mutex);
4483
4484         intel_guc_suspend(dev_priv);
4485
4486         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4487         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4488
4489         /* As the idle_work is rearming if it detects a race, play safe and
4490          * repeat the flush until it is definitely idle.
4491          */
4492         while (flush_delayed_work(&dev_priv->gt.idle_work))
4493                 ;
4494
4495         i915_gem_drain_freed_objects(dev_priv);
4496
4497         /* Assert that we sucessfully flushed all the work and
4498          * reset the GPU back to its idle, low power state.
4499          */
4500         WARN_ON(dev_priv->gt.awake);
4501         WARN_ON(!intel_engines_are_idle(dev_priv));
4502
4503         /*
4504          * Neither the BIOS, ourselves or any other kernel
4505          * expects the system to be in execlists mode on startup,
4506          * so we need to reset the GPU back to legacy mode. And the only
4507          * known way to disable logical contexts is through a GPU reset.
4508          *
4509          * So in order to leave the system in a known default configuration,
4510          * always reset the GPU upon unload and suspend. Afterwards we then
4511          * clean up the GEM state tracking, flushing off the requests and
4512          * leaving the system in a known idle state.
4513          *
4514          * Note that is of the upmost importance that the GPU is idle and
4515          * all stray writes are flushed *before* we dismantle the backing
4516          * storage for the pinned objects.
4517          *
4518          * However, since we are uncertain that resetting the GPU on older
4519          * machines is a good idea, we don't - just in case it leaves the
4520          * machine in an unusable condition.
4521          */
4522         i915_gem_sanitize(dev_priv);
4523         goto out_rpm_put;
4524
4525 err_unlock:
4526         mutex_unlock(&dev->struct_mutex);
4527 out_rpm_put:
4528         intel_runtime_pm_put(dev_priv);
4529         return ret;
4530 }
4531
4532 void i915_gem_resume(struct drm_i915_private *dev_priv)
4533 {
4534         struct drm_device *dev = &dev_priv->drm;
4535
4536         WARN_ON(dev_priv->gt.awake);
4537
4538         mutex_lock(&dev->struct_mutex);
4539         i915_gem_restore_gtt_mappings(dev_priv);
4540
4541         /* As we didn't flush the kernel context before suspend, we cannot
4542          * guarantee that the context image is complete. So let's just reset
4543          * it and start again.
4544          */
4545         dev_priv->gt.resume(dev_priv);
4546
4547         mutex_unlock(&dev->struct_mutex);
4548 }
4549
4550 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4551 {
4552         if (INTEL_GEN(dev_priv) < 5 ||
4553             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4554                 return;
4555
4556         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4557                                  DISP_TILE_SURFACE_SWIZZLING);
4558
4559         if (IS_GEN5(dev_priv))
4560                 return;
4561
4562         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4563         if (IS_GEN6(dev_priv))
4564                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4565         else if (IS_GEN7(dev_priv))
4566                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4567         else if (IS_GEN8(dev_priv))
4568                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4569         else
4570                 BUG();
4571 }
4572
4573 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4574 {
4575         I915_WRITE(RING_CTL(base), 0);
4576         I915_WRITE(RING_HEAD(base), 0);
4577         I915_WRITE(RING_TAIL(base), 0);
4578         I915_WRITE(RING_START(base), 0);
4579 }
4580
4581 static void init_unused_rings(struct drm_i915_private *dev_priv)
4582 {
4583         if (IS_I830(dev_priv)) {
4584                 init_unused_ring(dev_priv, PRB1_BASE);
4585                 init_unused_ring(dev_priv, SRB0_BASE);
4586                 init_unused_ring(dev_priv, SRB1_BASE);
4587                 init_unused_ring(dev_priv, SRB2_BASE);
4588                 init_unused_ring(dev_priv, SRB3_BASE);
4589         } else if (IS_GEN2(dev_priv)) {
4590                 init_unused_ring(dev_priv, SRB0_BASE);
4591                 init_unused_ring(dev_priv, SRB1_BASE);
4592         } else if (IS_GEN3(dev_priv)) {
4593                 init_unused_ring(dev_priv, PRB1_BASE);
4594                 init_unused_ring(dev_priv, PRB2_BASE);
4595         }
4596 }
4597
4598 static int __i915_gem_restart_engines(void *data)
4599 {
4600         struct drm_i915_private *i915 = data;
4601         struct intel_engine_cs *engine;
4602         enum intel_engine_id id;
4603         int err;
4604
4605         for_each_engine(engine, i915, id) {
4606                 err = engine->init_hw(engine);
4607                 if (err)
4608                         return err;
4609         }
4610
4611         return 0;
4612 }
4613
4614 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4615 {
4616         int ret;
4617
4618         dev_priv->gt.last_init_time = ktime_get();
4619
4620         /* Double layer security blanket, see i915_gem_init() */
4621         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4622
4623         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4624                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4625
4626         if (IS_HASWELL(dev_priv))
4627                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4628                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4629
4630         if (HAS_PCH_NOP(dev_priv)) {
4631                 if (IS_IVYBRIDGE(dev_priv)) {
4632                         u32 temp = I915_READ(GEN7_MSG_CTL);
4633                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4634                         I915_WRITE(GEN7_MSG_CTL, temp);
4635                 } else if (INTEL_GEN(dev_priv) >= 7) {
4636                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4637                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4638                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4639                 }
4640         }
4641
4642         i915_gem_init_swizzling(dev_priv);
4643
4644         /*
4645          * At least 830 can leave some of the unused rings
4646          * "active" (ie. head != tail) after resume which
4647          * will prevent c3 entry. Makes sure all unused rings
4648          * are totally idle.
4649          */
4650         init_unused_rings(dev_priv);
4651
4652         BUG_ON(!dev_priv->kernel_context);
4653
4654         ret = i915_ppgtt_init_hw(dev_priv);
4655         if (ret) {
4656                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4657                 goto out;
4658         }
4659
4660         /* Need to do basic initialisation of all rings first: */
4661         ret = __i915_gem_restart_engines(dev_priv);
4662         if (ret)
4663                 goto out;
4664
4665         intel_mocs_init_l3cc_table(dev_priv);
4666
4667         /* We can't enable contexts until all firmware is loaded */
4668         ret = intel_uc_init_hw(dev_priv);
4669         if (ret)
4670                 goto out;
4671
4672 out:
4673         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4674         return ret;
4675 }
4676
4677 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4678 {
4679         if (INTEL_INFO(dev_priv)->gen < 6)
4680                 return false;
4681
4682         /* TODO: make semaphores and Execlists play nicely together */
4683         if (i915.enable_execlists)
4684                 return false;
4685
4686         if (value >= 0)
4687                 return value;
4688
4689 #ifdef CONFIG_INTEL_IOMMU
4690         /* Enable semaphores on SNB when IO remapping is off */
4691         if (INTEL_INFO(dev_priv)->gen == 6 && intel_iommu_gfx_mapped)
4692                 return false;
4693 #endif
4694
4695         return true;
4696 }
4697
4698 int i915_gem_init(struct drm_i915_private *dev_priv)
4699 {
4700         int ret;
4701
4702         mutex_lock(&dev_priv->drm.struct_mutex);
4703
4704         i915_gem_clflush_init(dev_priv);
4705
4706         if (!i915.enable_execlists) {
4707                 dev_priv->gt.resume = intel_legacy_submission_resume;
4708                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4709         } else {
4710                 dev_priv->gt.resume = intel_lr_context_resume;
4711                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4712         }
4713
4714         /* This is just a security blanket to placate dragons.
4715          * On some systems, we very sporadically observe that the first TLBs
4716          * used by the CS may be stale, despite us poking the TLB reset. If
4717          * we hold the forcewake during initialisation these problems
4718          * just magically go away.
4719          */
4720         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4721
4722         i915_gem_init_userptr(dev_priv);
4723
4724         ret = i915_gem_init_ggtt(dev_priv);
4725         if (ret)
4726                 goto out_unlock;
4727
4728         ret = i915_gem_context_init(dev_priv);
4729         if (ret)
4730                 goto out_unlock;
4731
4732         ret = intel_engines_init(dev_priv);
4733         if (ret)
4734                 goto out_unlock;
4735
4736         ret = i915_gem_init_hw(dev_priv);
4737         if (ret == -EIO) {
4738                 /* Allow engine initialisation to fail by marking the GPU as
4739                  * wedged. But we only want to do this where the GPU is angry,
4740                  * for all other failure, such as an allocation failure, bail.
4741                  */
4742                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4743                 i915_gem_set_wedged(dev_priv);
4744                 ret = 0;
4745         }
4746
4747 out_unlock:
4748         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4749         mutex_unlock(&dev_priv->drm.struct_mutex);
4750
4751         return ret;
4752 }
4753
4754 void i915_gem_init_mmio(struct drm_i915_private *i915)
4755 {
4756         i915_gem_sanitize(i915);
4757 }
4758
4759 void
4760 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4761 {
4762         struct intel_engine_cs *engine;
4763         enum intel_engine_id id;
4764
4765         for_each_engine(engine, dev_priv, id)
4766                 dev_priv->gt.cleanup_engine(engine);
4767 }
4768
4769 void
4770 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4771 {
4772         int i;
4773
4774         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4775             !IS_CHERRYVIEW(dev_priv))
4776                 dev_priv->num_fence_regs = 32;
4777         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4778                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4779                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4780                 dev_priv->num_fence_regs = 16;
4781         else
4782                 dev_priv->num_fence_regs = 8;
4783
4784         if (intel_vgpu_active(dev_priv))
4785                 dev_priv->num_fence_regs =
4786                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4787
4788         /* Initialize fence registers to zero */
4789         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4790                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4791
4792                 fence->i915 = dev_priv;
4793                 fence->id = i;
4794                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4795         }
4796         i915_gem_restore_fences(dev_priv);
4797
4798         i915_gem_detect_bit_6_swizzle(dev_priv);
4799 }
4800
4801 int
4802 i915_gem_load_init(struct drm_i915_private *dev_priv)
4803 {
4804         int err = -ENOMEM;
4805
4806         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4807         if (!dev_priv->objects)
4808                 goto err_out;
4809
4810         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4811         if (!dev_priv->vmas)
4812                 goto err_objects;
4813
4814         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4815                                         SLAB_HWCACHE_ALIGN |
4816                                         SLAB_RECLAIM_ACCOUNT |
4817                                         SLAB_TYPESAFE_BY_RCU);
4818         if (!dev_priv->requests)
4819                 goto err_vmas;
4820
4821         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4822                                             SLAB_HWCACHE_ALIGN |
4823                                             SLAB_RECLAIM_ACCOUNT);
4824         if (!dev_priv->dependencies)
4825                 goto err_requests;
4826
4827         mutex_lock(&dev_priv->drm.struct_mutex);
4828         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4829         err = i915_gem_timeline_init__global(dev_priv);
4830         mutex_unlock(&dev_priv->drm.struct_mutex);
4831         if (err)
4832                 goto err_dependencies;
4833
4834         INIT_LIST_HEAD(&dev_priv->context_list);
4835         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4836         init_llist_head(&dev_priv->mm.free_list);
4837         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4838         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4839         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4840         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4841         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4842                           i915_gem_retire_work_handler);
4843         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4844                           i915_gem_idle_work_handler);
4845         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4846         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4847
4848         init_waitqueue_head(&dev_priv->pending_flip_queue);
4849
4850         dev_priv->mm.interruptible = true;
4851
4852         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4853
4854         spin_lock_init(&dev_priv->fb_tracking.lock);
4855
4856         return 0;
4857
4858 err_dependencies:
4859         kmem_cache_destroy(dev_priv->dependencies);
4860 err_requests:
4861         kmem_cache_destroy(dev_priv->requests);
4862 err_vmas:
4863         kmem_cache_destroy(dev_priv->vmas);
4864 err_objects:
4865         kmem_cache_destroy(dev_priv->objects);
4866 err_out:
4867         return err;
4868 }
4869
4870 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4871 {
4872         i915_gem_drain_freed_objects(dev_priv);
4873         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4874         WARN_ON(dev_priv->mm.object_count);
4875
4876         mutex_lock(&dev_priv->drm.struct_mutex);
4877         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4878         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4879         mutex_unlock(&dev_priv->drm.struct_mutex);
4880
4881         kmem_cache_destroy(dev_priv->dependencies);
4882         kmem_cache_destroy(dev_priv->requests);
4883         kmem_cache_destroy(dev_priv->vmas);
4884         kmem_cache_destroy(dev_priv->objects);
4885
4886         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4887         rcu_barrier();
4888 }
4889
4890 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4891 {
4892         mutex_lock(&dev_priv->drm.struct_mutex);
4893         i915_gem_shrink_all(dev_priv);
4894         mutex_unlock(&dev_priv->drm.struct_mutex);
4895
4896         return 0;
4897 }
4898
4899 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4900 {
4901         struct drm_i915_gem_object *obj;
4902         struct list_head *phases[] = {
4903                 &dev_priv->mm.unbound_list,
4904                 &dev_priv->mm.bound_list,
4905                 NULL
4906         }, **p;
4907
4908         /* Called just before we write the hibernation image.
4909          *
4910          * We need to update the domain tracking to reflect that the CPU
4911          * will be accessing all the pages to create and restore from the
4912          * hibernation, and so upon restoration those pages will be in the
4913          * CPU domain.
4914          *
4915          * To make sure the hibernation image contains the latest state,
4916          * we update that state just before writing out the image.
4917          *
4918          * To try and reduce the hibernation image, we manually shrink
4919          * the objects as well.
4920          */
4921
4922         mutex_lock(&dev_priv->drm.struct_mutex);
4923         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
4924
4925         for (p = phases; *p; p++) {
4926                 list_for_each_entry(obj, *p, global_link) {
4927                         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4928                         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4929                 }
4930         }
4931         mutex_unlock(&dev_priv->drm.struct_mutex);
4932
4933         return 0;
4934 }
4935
4936 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4937 {
4938         struct drm_i915_file_private *file_priv = file->driver_priv;
4939         struct drm_i915_gem_request *request;
4940
4941         /* Clean up our request list when the client is going away, so that
4942          * later retire_requests won't dereference our soon-to-be-gone
4943          * file_priv.
4944          */
4945         spin_lock(&file_priv->mm.lock);
4946         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
4947                 request->file_priv = NULL;
4948         spin_unlock(&file_priv->mm.lock);
4949
4950         if (!list_empty(&file_priv->rps.link)) {
4951                 spin_lock(&to_i915(dev)->rps.client_lock);
4952                 list_del(&file_priv->rps.link);
4953                 spin_unlock(&to_i915(dev)->rps.client_lock);
4954         }
4955 }
4956
4957 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4958 {
4959         struct drm_i915_file_private *file_priv;
4960         int ret;
4961
4962         DRM_DEBUG("\n");
4963
4964         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4965         if (!file_priv)
4966                 return -ENOMEM;
4967
4968         file->driver_priv = file_priv;
4969         file_priv->dev_priv = to_i915(dev);
4970         file_priv->file = file;
4971         INIT_LIST_HEAD(&file_priv->rps.link);
4972
4973         spin_lock_init(&file_priv->mm.lock);
4974         INIT_LIST_HEAD(&file_priv->mm.request_list);
4975
4976         file_priv->bsd_engine = -1;
4977
4978         ret = i915_gem_context_open(dev, file);
4979         if (ret)
4980                 kfree(file_priv);
4981
4982         return ret;
4983 }
4984
4985 /**
4986  * i915_gem_track_fb - update frontbuffer tracking
4987  * @old: current GEM buffer for the frontbuffer slots
4988  * @new: new GEM buffer for the frontbuffer slots
4989  * @frontbuffer_bits: bitmask of frontbuffer slots
4990  *
4991  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
4992  * from @old and setting them in @new. Both @old and @new can be NULL.
4993  */
4994 void i915_gem_track_fb(struct drm_i915_gem_object *old,
4995                        struct drm_i915_gem_object *new,
4996                        unsigned frontbuffer_bits)
4997 {
4998         /* Control of individual bits within the mask are guarded by
4999          * the owning plane->mutex, i.e. we can never see concurrent
5000          * manipulation of individual bits. But since the bitfield as a whole
5001          * is updated using RMW, we need to use atomics in order to update
5002          * the bits.
5003          */
5004         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5005                      sizeof(atomic_t) * BITS_PER_BYTE);
5006
5007         if (old) {
5008                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5009                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5010         }
5011
5012         if (new) {
5013                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5014                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5015         }
5016 }
5017
5018 /* Allocate a new GEM object and fill it with the supplied data */
5019 struct drm_i915_gem_object *
5020 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5021                                  const void *data, size_t size)
5022 {
5023         struct drm_i915_gem_object *obj;
5024         struct file *file;
5025         size_t offset;
5026         int err;
5027
5028         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5029         if (IS_ERR(obj))
5030                 return obj;
5031
5032         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5033
5034         file = obj->base.filp;
5035         offset = 0;
5036         do {
5037                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5038                 struct page *page;
5039                 void *pgdata, *vaddr;
5040
5041                 err = pagecache_write_begin(file, file->f_mapping,
5042                                             offset, len, 0,
5043                                             &page, &pgdata);
5044                 if (err < 0)
5045                         goto fail;
5046
5047                 vaddr = kmap(page);
5048                 memcpy(vaddr, data, len);
5049                 kunmap(page);
5050
5051                 err = pagecache_write_end(file, file->f_mapping,
5052                                           offset, len, len,
5053                                           page, pgdata);
5054                 if (err < 0)
5055                         goto fail;
5056
5057                 size -= len;
5058                 data += len;
5059                 offset += len;
5060         } while (size);
5061
5062         return obj;
5063
5064 fail:
5065         i915_gem_object_put(obj);
5066         return ERR_PTR(err);
5067 }
5068
5069 struct scatterlist *
5070 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5071                        unsigned int n,
5072                        unsigned int *offset)
5073 {
5074         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5075         struct scatterlist *sg;
5076         unsigned int idx, count;
5077
5078         might_sleep();
5079         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5080         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5081
5082         /* As we iterate forward through the sg, we record each entry in a
5083          * radixtree for quick repeated (backwards) lookups. If we have seen
5084          * this index previously, we will have an entry for it.
5085          *
5086          * Initial lookup is O(N), but this is amortized to O(1) for
5087          * sequential page access (where each new request is consecutive
5088          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5089          * i.e. O(1) with a large constant!
5090          */
5091         if (n < READ_ONCE(iter->sg_idx))
5092                 goto lookup;
5093
5094         mutex_lock(&iter->lock);
5095
5096         /* We prefer to reuse the last sg so that repeated lookup of this
5097          * (or the subsequent) sg are fast - comparing against the last
5098          * sg is faster than going through the radixtree.
5099          */
5100
5101         sg = iter->sg_pos;
5102         idx = iter->sg_idx;
5103         count = __sg_page_count(sg);
5104
5105         while (idx + count <= n) {
5106                 unsigned long exception, i;
5107                 int ret;
5108
5109                 /* If we cannot allocate and insert this entry, or the
5110                  * individual pages from this range, cancel updating the
5111                  * sg_idx so that on this lookup we are forced to linearly
5112                  * scan onwards, but on future lookups we will try the
5113                  * insertion again (in which case we need to be careful of
5114                  * the error return reporting that we have already inserted
5115                  * this index).
5116                  */
5117                 ret = radix_tree_insert(&iter->radix, idx, sg);
5118                 if (ret && ret != -EEXIST)
5119                         goto scan;
5120
5121                 exception =
5122                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5123                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5124                 for (i = 1; i < count; i++) {
5125                         ret = radix_tree_insert(&iter->radix, idx + i,
5126                                                 (void *)exception);
5127                         if (ret && ret != -EEXIST)
5128                                 goto scan;
5129                 }
5130
5131                 idx += count;
5132                 sg = ____sg_next(sg);
5133                 count = __sg_page_count(sg);
5134         }
5135
5136 scan:
5137         iter->sg_pos = sg;
5138         iter->sg_idx = idx;
5139
5140         mutex_unlock(&iter->lock);
5141
5142         if (unlikely(n < idx)) /* insertion completed by another thread */
5143                 goto lookup;
5144
5145         /* In case we failed to insert the entry into the radixtree, we need
5146          * to look beyond the current sg.
5147          */
5148         while (idx + count <= n) {
5149                 idx += count;
5150                 sg = ____sg_next(sg);
5151                 count = __sg_page_count(sg);
5152         }
5153
5154         *offset = n - idx;
5155         return sg;
5156
5157 lookup:
5158         rcu_read_lock();
5159
5160         sg = radix_tree_lookup(&iter->radix, n);
5161         GEM_BUG_ON(!sg);
5162
5163         /* If this index is in the middle of multi-page sg entry,
5164          * the radixtree will contain an exceptional entry that points
5165          * to the start of that range. We will return the pointer to
5166          * the base page and the offset of this page within the
5167          * sg entry's range.
5168          */
5169         *offset = 0;
5170         if (unlikely(radix_tree_exception(sg))) {
5171                 unsigned long base =
5172                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5173
5174                 sg = radix_tree_lookup(&iter->radix, base);
5175                 GEM_BUG_ON(!sg);
5176
5177                 *offset = n - base;
5178         }
5179
5180         rcu_read_unlock();
5181
5182         return sg;
5183 }
5184
5185 struct page *
5186 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5187 {
5188         struct scatterlist *sg;
5189         unsigned int offset;
5190
5191         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5192
5193         sg = i915_gem_object_get_sg(obj, n, &offset);
5194         return nth_page(sg_page(sg), offset);
5195 }
5196
5197 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5198 struct page *
5199 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5200                                unsigned int n)
5201 {
5202         struct page *page;
5203
5204         page = i915_gem_object_get_page(obj, n);
5205         if (!obj->mm.dirty)
5206                 set_page_dirty(page);
5207
5208         return page;
5209 }
5210
5211 dma_addr_t
5212 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5213                                 unsigned long n)
5214 {
5215         struct scatterlist *sg;
5216         unsigned int offset;
5217
5218         sg = i915_gem_object_get_sg(obj, n, &offset);
5219         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5220 }
5221
5222 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5223 #include "selftests/scatterlist.c"
5224 #include "selftests/mock_gem_device.c"
5225 #include "selftests/huge_gem_object.c"
5226 #include "selftests/i915_gem_object.c"
5227 #include "selftests/i915_gem_coherency.c"
5228 #endif