Merge tag 'ntb-5.1' of git://github.com/jonmason/ntb
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drm_atomic_helper.h>
45 #include <drm/drm_ioctl.h>
46 #include <drm/drm_irq.h>
47 #include <drm/drm_probe_helper.h>
48 #include <drm/i915_drm.h>
49
50 #include "i915_drv.h"
51 #include "i915_trace.h"
52 #include "i915_pmu.h"
53 #include "i915_reset.h"
54 #include "i915_query.h"
55 #include "i915_vgpu.h"
56 #include "intel_drv.h"
57 #include "intel_uc.h"
58 #include "intel_workarounds.h"
59
60 static struct drm_driver driver;
61
62 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG)
63 static unsigned int i915_load_fail_count;
64
65 bool __i915_inject_load_failure(const char *func, int line)
66 {
67         if (i915_load_fail_count >= i915_modparams.inject_load_failure)
68                 return false;
69
70         if (++i915_load_fail_count == i915_modparams.inject_load_failure) {
71                 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
72                          i915_modparams.inject_load_failure, func, line);
73                 i915_modparams.inject_load_failure = 0;
74                 return true;
75         }
76
77         return false;
78 }
79
80 bool i915_error_injected(void)
81 {
82         return i915_load_fail_count && !i915_modparams.inject_load_failure;
83 }
84
85 #endif
86
87 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
88 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
89                     "providing the dmesg log by booting with drm.debug=0xf"
90
91 void
92 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
93               const char *fmt, ...)
94 {
95         static bool shown_bug_once;
96         struct device *kdev = dev_priv->drm.dev;
97         bool is_error = level[1] <= KERN_ERR[1];
98         bool is_debug = level[1] == KERN_DEBUG[1];
99         struct va_format vaf;
100         va_list args;
101
102         if (is_debug && !(drm_debug & DRM_UT_DRIVER))
103                 return;
104
105         va_start(args, fmt);
106
107         vaf.fmt = fmt;
108         vaf.va = &args;
109
110         if (is_error)
111                 dev_printk(level, kdev, "%pV", &vaf);
112         else
113                 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
114                            __builtin_return_address(0), &vaf);
115
116         va_end(args);
117
118         if (is_error && !shown_bug_once) {
119                 /*
120                  * Ask the user to file a bug report for the error, except
121                  * if they may have caused the bug by fiddling with unsafe
122                  * module parameters.
123                  */
124                 if (!test_taint(TAINT_USER))
125                         dev_notice(kdev, "%s", FDO_BUG_MSG);
126                 shown_bug_once = true;
127         }
128 }
129
130 /* Map PCH device id to PCH type, or PCH_NONE if unknown. */
131 static enum intel_pch
132 intel_pch_type(const struct drm_i915_private *dev_priv, unsigned short id)
133 {
134         switch (id) {
135         case INTEL_PCH_IBX_DEVICE_ID_TYPE:
136                 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
137                 WARN_ON(!IS_GEN(dev_priv, 5));
138                 return PCH_IBX;
139         case INTEL_PCH_CPT_DEVICE_ID_TYPE:
140                 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
141                 WARN_ON(!IS_GEN(dev_priv, 6) && !IS_IVYBRIDGE(dev_priv));
142                 return PCH_CPT;
143         case INTEL_PCH_PPT_DEVICE_ID_TYPE:
144                 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
145                 WARN_ON(!IS_GEN(dev_priv, 6) && !IS_IVYBRIDGE(dev_priv));
146                 /* PantherPoint is CPT compatible */
147                 return PCH_CPT;
148         case INTEL_PCH_LPT_DEVICE_ID_TYPE:
149                 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
150                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
151                 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
152                 return PCH_LPT;
153         case INTEL_PCH_LPT_LP_DEVICE_ID_TYPE:
154                 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
155                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
156                 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
157                 return PCH_LPT;
158         case INTEL_PCH_WPT_DEVICE_ID_TYPE:
159                 DRM_DEBUG_KMS("Found WildcatPoint PCH\n");
160                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
161                 WARN_ON(IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv));
162                 /* WildcatPoint is LPT compatible */
163                 return PCH_LPT;
164         case INTEL_PCH_WPT_LP_DEVICE_ID_TYPE:
165                 DRM_DEBUG_KMS("Found WildcatPoint LP PCH\n");
166                 WARN_ON(!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv));
167                 WARN_ON(!IS_HSW_ULT(dev_priv) && !IS_BDW_ULT(dev_priv));
168                 /* WildcatPoint is LPT compatible */
169                 return PCH_LPT;
170         case INTEL_PCH_SPT_DEVICE_ID_TYPE:
171                 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
172                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
173                 return PCH_SPT;
174         case INTEL_PCH_SPT_LP_DEVICE_ID_TYPE:
175                 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
176                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv));
177                 return PCH_SPT;
178         case INTEL_PCH_KBP_DEVICE_ID_TYPE:
179                 DRM_DEBUG_KMS("Found Kaby Lake PCH (KBP)\n");
180                 WARN_ON(!IS_SKYLAKE(dev_priv) && !IS_KABYLAKE(dev_priv) &&
181                         !IS_COFFEELAKE(dev_priv));
182                 return PCH_KBP;
183         case INTEL_PCH_CNP_DEVICE_ID_TYPE:
184                 DRM_DEBUG_KMS("Found Cannon Lake PCH (CNP)\n");
185                 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
186                 return PCH_CNP;
187         case INTEL_PCH_CNP_LP_DEVICE_ID_TYPE:
188                 DRM_DEBUG_KMS("Found Cannon Lake LP PCH (CNP-LP)\n");
189                 WARN_ON(!IS_CANNONLAKE(dev_priv) && !IS_COFFEELAKE(dev_priv));
190                 return PCH_CNP;
191         case INTEL_PCH_ICP_DEVICE_ID_TYPE:
192                 DRM_DEBUG_KMS("Found Ice Lake PCH\n");
193                 WARN_ON(!IS_ICELAKE(dev_priv));
194                 return PCH_ICP;
195         default:
196                 return PCH_NONE;
197         }
198 }
199
200 static bool intel_is_virt_pch(unsigned short id,
201                               unsigned short svendor, unsigned short sdevice)
202 {
203         return (id == INTEL_PCH_P2X_DEVICE_ID_TYPE ||
204                 id == INTEL_PCH_P3X_DEVICE_ID_TYPE ||
205                 (id == INTEL_PCH_QEMU_DEVICE_ID_TYPE &&
206                  svendor == PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
207                  sdevice == PCI_SUBDEVICE_ID_QEMU));
208 }
209
210 static unsigned short
211 intel_virt_detect_pch(const struct drm_i915_private *dev_priv)
212 {
213         unsigned short id = 0;
214
215         /*
216          * In a virtualized passthrough environment we can be in a
217          * setup where the ISA bridge is not able to be passed through.
218          * In this case, a south bridge can be emulated and we have to
219          * make an educated guess as to which PCH is really there.
220          */
221
222         if (IS_GEN(dev_priv, 5))
223                 id = INTEL_PCH_IBX_DEVICE_ID_TYPE;
224         else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
225                 id = INTEL_PCH_CPT_DEVICE_ID_TYPE;
226         else if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
227                 id = INTEL_PCH_LPT_LP_DEVICE_ID_TYPE;
228         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
229                 id = INTEL_PCH_LPT_DEVICE_ID_TYPE;
230         else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
231                 id = INTEL_PCH_SPT_DEVICE_ID_TYPE;
232         else if (IS_COFFEELAKE(dev_priv) || IS_CANNONLAKE(dev_priv))
233                 id = INTEL_PCH_CNP_DEVICE_ID_TYPE;
234         else if (IS_ICELAKE(dev_priv))
235                 id = INTEL_PCH_ICP_DEVICE_ID_TYPE;
236
237         if (id)
238                 DRM_DEBUG_KMS("Assuming PCH ID %04x\n", id);
239         else
240                 DRM_DEBUG_KMS("Assuming no PCH\n");
241
242         return id;
243 }
244
245 static void intel_detect_pch(struct drm_i915_private *dev_priv)
246 {
247         struct pci_dev *pch = NULL;
248
249         /*
250          * The reason to probe ISA bridge instead of Dev31:Fun0 is to
251          * make graphics device passthrough work easy for VMM, that only
252          * need to expose ISA bridge to let driver know the real hardware
253          * underneath. This is a requirement from virtualization team.
254          *
255          * In some virtualized environments (e.g. XEN), there is irrelevant
256          * ISA bridge in the system. To work reliably, we should scan trhough
257          * all the ISA bridge devices and check for the first match, instead
258          * of only checking the first one.
259          */
260         while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
261                 unsigned short id;
262                 enum intel_pch pch_type;
263
264                 if (pch->vendor != PCI_VENDOR_ID_INTEL)
265                         continue;
266
267                 id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
268
269                 pch_type = intel_pch_type(dev_priv, id);
270                 if (pch_type != PCH_NONE) {
271                         dev_priv->pch_type = pch_type;
272                         dev_priv->pch_id = id;
273                         break;
274                 } else if (intel_is_virt_pch(id, pch->subsystem_vendor,
275                                          pch->subsystem_device)) {
276                         id = intel_virt_detect_pch(dev_priv);
277                         pch_type = intel_pch_type(dev_priv, id);
278
279                         /* Sanity check virtual PCH id */
280                         if (WARN_ON(id && pch_type == PCH_NONE))
281                                 id = 0;
282
283                         dev_priv->pch_type = pch_type;
284                         dev_priv->pch_id = id;
285                         break;
286                 }
287         }
288
289         /*
290          * Use PCH_NOP (PCH but no South Display) for PCH platforms without
291          * display.
292          */
293         if (pch && !HAS_DISPLAY(dev_priv)) {
294                 DRM_DEBUG_KMS("Display disabled, reverting to NOP PCH\n");
295                 dev_priv->pch_type = PCH_NOP;
296                 dev_priv->pch_id = 0;
297         }
298
299         if (!pch)
300                 DRM_DEBUG_KMS("No PCH found.\n");
301
302         pci_dev_put(pch);
303 }
304
305 static int i915_getparam_ioctl(struct drm_device *dev, void *data,
306                                struct drm_file *file_priv)
307 {
308         struct drm_i915_private *dev_priv = to_i915(dev);
309         struct pci_dev *pdev = dev_priv->drm.pdev;
310         drm_i915_getparam_t *param = data;
311         int value;
312
313         switch (param->param) {
314         case I915_PARAM_IRQ_ACTIVE:
315         case I915_PARAM_ALLOW_BATCHBUFFER:
316         case I915_PARAM_LAST_DISPATCH:
317         case I915_PARAM_HAS_EXEC_CONSTANTS:
318                 /* Reject all old ums/dri params. */
319                 return -ENODEV;
320         case I915_PARAM_CHIPSET_ID:
321                 value = pdev->device;
322                 break;
323         case I915_PARAM_REVISION:
324                 value = pdev->revision;
325                 break;
326         case I915_PARAM_NUM_FENCES_AVAIL:
327                 value = dev_priv->num_fence_regs;
328                 break;
329         case I915_PARAM_HAS_OVERLAY:
330                 value = dev_priv->overlay ? 1 : 0;
331                 break;
332         case I915_PARAM_HAS_BSD:
333                 value = !!dev_priv->engine[VCS];
334                 break;
335         case I915_PARAM_HAS_BLT:
336                 value = !!dev_priv->engine[BCS];
337                 break;
338         case I915_PARAM_HAS_VEBOX:
339                 value = !!dev_priv->engine[VECS];
340                 break;
341         case I915_PARAM_HAS_BSD2:
342                 value = !!dev_priv->engine[VCS2];
343                 break;
344         case I915_PARAM_HAS_LLC:
345                 value = HAS_LLC(dev_priv);
346                 break;
347         case I915_PARAM_HAS_WT:
348                 value = HAS_WT(dev_priv);
349                 break;
350         case I915_PARAM_HAS_ALIASING_PPGTT:
351                 value = min_t(int, INTEL_PPGTT(dev_priv), I915_GEM_PPGTT_FULL);
352                 break;
353         case I915_PARAM_HAS_SEMAPHORES:
354                 value = 0;
355                 break;
356         case I915_PARAM_HAS_SECURE_BATCHES:
357                 value = capable(CAP_SYS_ADMIN);
358                 break;
359         case I915_PARAM_CMD_PARSER_VERSION:
360                 value = i915_cmd_parser_get_version(dev_priv);
361                 break;
362         case I915_PARAM_SUBSLICE_TOTAL:
363                 value = sseu_subslice_total(&RUNTIME_INFO(dev_priv)->sseu);
364                 if (!value)
365                         return -ENODEV;
366                 break;
367         case I915_PARAM_EU_TOTAL:
368                 value = RUNTIME_INFO(dev_priv)->sseu.eu_total;
369                 if (!value)
370                         return -ENODEV;
371                 break;
372         case I915_PARAM_HAS_GPU_RESET:
373                 value = i915_modparams.enable_hangcheck &&
374                         intel_has_gpu_reset(dev_priv);
375                 if (value && intel_has_reset_engine(dev_priv))
376                         value = 2;
377                 break;
378         case I915_PARAM_HAS_RESOURCE_STREAMER:
379                 value = 0;
380                 break;
381         case I915_PARAM_HAS_POOLED_EU:
382                 value = HAS_POOLED_EU(dev_priv);
383                 break;
384         case I915_PARAM_MIN_EU_IN_POOL:
385                 value = RUNTIME_INFO(dev_priv)->sseu.min_eu_in_pool;
386                 break;
387         case I915_PARAM_HUC_STATUS:
388                 value = intel_huc_check_status(&dev_priv->huc);
389                 if (value < 0)
390                         return value;
391                 break;
392         case I915_PARAM_MMAP_GTT_VERSION:
393                 /* Though we've started our numbering from 1, and so class all
394                  * earlier versions as 0, in effect their value is undefined as
395                  * the ioctl will report EINVAL for the unknown param!
396                  */
397                 value = i915_gem_mmap_gtt_version();
398                 break;
399         case I915_PARAM_HAS_SCHEDULER:
400                 value = dev_priv->caps.scheduler;
401                 break;
402
403         case I915_PARAM_MMAP_VERSION:
404                 /* Remember to bump this if the version changes! */
405         case I915_PARAM_HAS_GEM:
406         case I915_PARAM_HAS_PAGEFLIPPING:
407         case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
408         case I915_PARAM_HAS_RELAXED_FENCING:
409         case I915_PARAM_HAS_COHERENT_RINGS:
410         case I915_PARAM_HAS_RELAXED_DELTA:
411         case I915_PARAM_HAS_GEN7_SOL_RESET:
412         case I915_PARAM_HAS_WAIT_TIMEOUT:
413         case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
414         case I915_PARAM_HAS_PINNED_BATCHES:
415         case I915_PARAM_HAS_EXEC_NO_RELOC:
416         case I915_PARAM_HAS_EXEC_HANDLE_LUT:
417         case I915_PARAM_HAS_COHERENT_PHYS_GTT:
418         case I915_PARAM_HAS_EXEC_SOFTPIN:
419         case I915_PARAM_HAS_EXEC_ASYNC:
420         case I915_PARAM_HAS_EXEC_FENCE:
421         case I915_PARAM_HAS_EXEC_CAPTURE:
422         case I915_PARAM_HAS_EXEC_BATCH_FIRST:
423         case I915_PARAM_HAS_EXEC_FENCE_ARRAY:
424                 /* For the time being all of these are always true;
425                  * if some supported hardware does not have one of these
426                  * features this value needs to be provided from
427                  * INTEL_INFO(), a feature macro, or similar.
428                  */
429                 value = 1;
430                 break;
431         case I915_PARAM_HAS_CONTEXT_ISOLATION:
432                 value = intel_engines_has_context_isolation(dev_priv);
433                 break;
434         case I915_PARAM_SLICE_MASK:
435                 value = RUNTIME_INFO(dev_priv)->sseu.slice_mask;
436                 if (!value)
437                         return -ENODEV;
438                 break;
439         case I915_PARAM_SUBSLICE_MASK:
440                 value = RUNTIME_INFO(dev_priv)->sseu.subslice_mask[0];
441                 if (!value)
442                         return -ENODEV;
443                 break;
444         case I915_PARAM_CS_TIMESTAMP_FREQUENCY:
445                 value = 1000 * RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz;
446                 break;
447         case I915_PARAM_MMAP_GTT_COHERENT:
448                 value = INTEL_INFO(dev_priv)->has_coherent_ggtt;
449                 break;
450         default:
451                 DRM_DEBUG("Unknown parameter %d\n", param->param);
452                 return -EINVAL;
453         }
454
455         if (put_user(value, param->value))
456                 return -EFAULT;
457
458         return 0;
459 }
460
461 static int i915_get_bridge_dev(struct drm_i915_private *dev_priv)
462 {
463         int domain = pci_domain_nr(dev_priv->drm.pdev->bus);
464
465         dev_priv->bridge_dev =
466                 pci_get_domain_bus_and_slot(domain, 0, PCI_DEVFN(0, 0));
467         if (!dev_priv->bridge_dev) {
468                 DRM_ERROR("bridge device not found\n");
469                 return -1;
470         }
471         return 0;
472 }
473
474 /* Allocate space for the MCH regs if needed, return nonzero on error */
475 static int
476 intel_alloc_mchbar_resource(struct drm_i915_private *dev_priv)
477 {
478         int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
479         u32 temp_lo, temp_hi = 0;
480         u64 mchbar_addr;
481         int ret;
482
483         if (INTEL_GEN(dev_priv) >= 4)
484                 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
485         pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
486         mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
487
488         /* If ACPI doesn't have it, assume we need to allocate it ourselves */
489 #ifdef CONFIG_PNP
490         if (mchbar_addr &&
491             pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
492                 return 0;
493 #endif
494
495         /* Get some space for it */
496         dev_priv->mch_res.name = "i915 MCHBAR";
497         dev_priv->mch_res.flags = IORESOURCE_MEM;
498         ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
499                                      &dev_priv->mch_res,
500                                      MCHBAR_SIZE, MCHBAR_SIZE,
501                                      PCIBIOS_MIN_MEM,
502                                      0, pcibios_align_resource,
503                                      dev_priv->bridge_dev);
504         if (ret) {
505                 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
506                 dev_priv->mch_res.start = 0;
507                 return ret;
508         }
509
510         if (INTEL_GEN(dev_priv) >= 4)
511                 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
512                                        upper_32_bits(dev_priv->mch_res.start));
513
514         pci_write_config_dword(dev_priv->bridge_dev, reg,
515                                lower_32_bits(dev_priv->mch_res.start));
516         return 0;
517 }
518
519 /* Setup MCHBAR if possible, return true if we should disable it again */
520 static void
521 intel_setup_mchbar(struct drm_i915_private *dev_priv)
522 {
523         int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
524         u32 temp;
525         bool enabled;
526
527         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
528                 return;
529
530         dev_priv->mchbar_need_disable = false;
531
532         if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
533                 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
534                 enabled = !!(temp & DEVEN_MCHBAR_EN);
535         } else {
536                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
537                 enabled = temp & 1;
538         }
539
540         /* If it's already enabled, don't have to do anything */
541         if (enabled)
542                 return;
543
544         if (intel_alloc_mchbar_resource(dev_priv))
545                 return;
546
547         dev_priv->mchbar_need_disable = true;
548
549         /* Space is allocated or reserved, so enable it. */
550         if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
551                 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
552                                        temp | DEVEN_MCHBAR_EN);
553         } else {
554                 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
555                 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
556         }
557 }
558
559 static void
560 intel_teardown_mchbar(struct drm_i915_private *dev_priv)
561 {
562         int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
563
564         if (dev_priv->mchbar_need_disable) {
565                 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
566                         u32 deven_val;
567
568                         pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
569                                               &deven_val);
570                         deven_val &= ~DEVEN_MCHBAR_EN;
571                         pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
572                                                deven_val);
573                 } else {
574                         u32 mchbar_val;
575
576                         pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
577                                               &mchbar_val);
578                         mchbar_val &= ~1;
579                         pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
580                                                mchbar_val);
581                 }
582         }
583
584         if (dev_priv->mch_res.start)
585                 release_resource(&dev_priv->mch_res);
586 }
587
588 /* true = enable decode, false = disable decoder */
589 static unsigned int i915_vga_set_decode(void *cookie, bool state)
590 {
591         struct drm_i915_private *dev_priv = cookie;
592
593         intel_modeset_vga_set_state(dev_priv, state);
594         if (state)
595                 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
596                        VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
597         else
598                 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
599 }
600
601 static int i915_resume_switcheroo(struct drm_device *dev);
602 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state);
603
604 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
605 {
606         struct drm_device *dev = pci_get_drvdata(pdev);
607         pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
608
609         if (state == VGA_SWITCHEROO_ON) {
610                 pr_info("switched on\n");
611                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
612                 /* i915 resume handler doesn't set to D0 */
613                 pci_set_power_state(pdev, PCI_D0);
614                 i915_resume_switcheroo(dev);
615                 dev->switch_power_state = DRM_SWITCH_POWER_ON;
616         } else {
617                 pr_info("switched off\n");
618                 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
619                 i915_suspend_switcheroo(dev, pmm);
620                 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
621         }
622 }
623
624 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
625 {
626         struct drm_device *dev = pci_get_drvdata(pdev);
627
628         /*
629          * FIXME: open_count is protected by drm_global_mutex but that would lead to
630          * locking inversion with the driver load path. And the access here is
631          * completely racy anyway. So don't bother with locking for now.
632          */
633         return dev->open_count == 0;
634 }
635
636 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
637         .set_gpu_state = i915_switcheroo_set_state,
638         .reprobe = NULL,
639         .can_switch = i915_switcheroo_can_switch,
640 };
641
642 static int i915_load_modeset_init(struct drm_device *dev)
643 {
644         struct drm_i915_private *dev_priv = to_i915(dev);
645         struct pci_dev *pdev = dev_priv->drm.pdev;
646         int ret;
647
648         if (i915_inject_load_failure())
649                 return -ENODEV;
650
651         if (HAS_DISPLAY(dev_priv)) {
652                 ret = drm_vblank_init(&dev_priv->drm,
653                                       INTEL_INFO(dev_priv)->num_pipes);
654                 if (ret)
655                         goto out;
656         }
657
658         intel_bios_init(dev_priv);
659
660         /* If we have > 1 VGA cards, then we need to arbitrate access
661          * to the common VGA resources.
662          *
663          * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
664          * then we do not take part in VGA arbitration and the
665          * vga_client_register() fails with -ENODEV.
666          */
667         ret = vga_client_register(pdev, dev_priv, NULL, i915_vga_set_decode);
668         if (ret && ret != -ENODEV)
669                 goto out;
670
671         intel_register_dsm_handler();
672
673         ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
674         if (ret)
675                 goto cleanup_vga_client;
676
677         /* must happen before intel_power_domains_init_hw() on VLV/CHV */
678         intel_update_rawclk(dev_priv);
679
680         intel_power_domains_init_hw(dev_priv, false);
681
682         intel_csr_ucode_init(dev_priv);
683
684         ret = intel_irq_install(dev_priv);
685         if (ret)
686                 goto cleanup_csr;
687
688         intel_setup_gmbus(dev_priv);
689
690         /* Important: The output setup functions called by modeset_init need
691          * working irqs for e.g. gmbus and dp aux transfers. */
692         ret = intel_modeset_init(dev);
693         if (ret)
694                 goto cleanup_irq;
695
696         ret = i915_gem_init(dev_priv);
697         if (ret)
698                 goto cleanup_modeset;
699
700         intel_overlay_setup(dev_priv);
701
702         if (!HAS_DISPLAY(dev_priv))
703                 return 0;
704
705         ret = intel_fbdev_init(dev);
706         if (ret)
707                 goto cleanup_gem;
708
709         /* Only enable hotplug handling once the fbdev is fully set up. */
710         intel_hpd_init(dev_priv);
711
712         intel_init_ipc(dev_priv);
713
714         return 0;
715
716 cleanup_gem:
717         if (i915_gem_suspend(dev_priv))
718                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
719         i915_gem_fini(dev_priv);
720 cleanup_modeset:
721         intel_modeset_cleanup(dev);
722 cleanup_irq:
723         drm_irq_uninstall(dev);
724         intel_teardown_gmbus(dev_priv);
725 cleanup_csr:
726         intel_csr_ucode_fini(dev_priv);
727         intel_power_domains_fini_hw(dev_priv);
728         vga_switcheroo_unregister_client(pdev);
729 cleanup_vga_client:
730         vga_client_register(pdev, NULL, NULL, NULL);
731 out:
732         return ret;
733 }
734
735 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
736 {
737         struct apertures_struct *ap;
738         struct pci_dev *pdev = dev_priv->drm.pdev;
739         struct i915_ggtt *ggtt = &dev_priv->ggtt;
740         bool primary;
741         int ret;
742
743         ap = alloc_apertures(1);
744         if (!ap)
745                 return -ENOMEM;
746
747         ap->ranges[0].base = ggtt->gmadr.start;
748         ap->ranges[0].size = ggtt->mappable_end;
749
750         primary =
751                 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
752
753         ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
754
755         kfree(ap);
756
757         return ret;
758 }
759
760 static void intel_init_dpio(struct drm_i915_private *dev_priv)
761 {
762         /*
763          * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
764          * CHV x1 PHY (DP/HDMI D)
765          * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
766          */
767         if (IS_CHERRYVIEW(dev_priv)) {
768                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
769                 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
770         } else if (IS_VALLEYVIEW(dev_priv)) {
771                 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
772         }
773 }
774
775 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
776 {
777         /*
778          * The i915 workqueue is primarily used for batched retirement of
779          * requests (and thus managing bo) once the task has been completed
780          * by the GPU. i915_retire_requests() is called directly when we
781          * need high-priority retirement, such as waiting for an explicit
782          * bo.
783          *
784          * It is also used for periodic low-priority events, such as
785          * idle-timers and recording error state.
786          *
787          * All tasks on the workqueue are expected to acquire the dev mutex
788          * so there is no point in running more than one instance of the
789          * workqueue at any time.  Use an ordered one.
790          */
791         dev_priv->wq = alloc_ordered_workqueue("i915", 0);
792         if (dev_priv->wq == NULL)
793                 goto out_err;
794
795         dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
796         if (dev_priv->hotplug.dp_wq == NULL)
797                 goto out_free_wq;
798
799         return 0;
800
801 out_free_wq:
802         destroy_workqueue(dev_priv->wq);
803 out_err:
804         DRM_ERROR("Failed to allocate workqueues.\n");
805
806         return -ENOMEM;
807 }
808
809 static void i915_engines_cleanup(struct drm_i915_private *i915)
810 {
811         struct intel_engine_cs *engine;
812         enum intel_engine_id id;
813
814         for_each_engine(engine, i915, id)
815                 kfree(engine);
816 }
817
818 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
819 {
820         destroy_workqueue(dev_priv->hotplug.dp_wq);
821         destroy_workqueue(dev_priv->wq);
822 }
823
824 /*
825  * We don't keep the workarounds for pre-production hardware, so we expect our
826  * driver to fail on these machines in one way or another. A little warning on
827  * dmesg may help both the user and the bug triagers.
828  *
829  * Our policy for removing pre-production workarounds is to keep the
830  * current gen workarounds as a guide to the bring-up of the next gen
831  * (workarounds have a habit of persisting!). Anything older than that
832  * should be removed along with the complications they introduce.
833  */
834 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
835 {
836         bool pre = false;
837
838         pre |= IS_HSW_EARLY_SDV(dev_priv);
839         pre |= IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0);
840         pre |= IS_BXT_REVID(dev_priv, 0, BXT_REVID_B_LAST);
841         pre |= IS_KBL_REVID(dev_priv, 0, KBL_REVID_A0);
842
843         if (pre) {
844                 DRM_ERROR("This is a pre-production stepping. "
845                           "It may not be fully functional.\n");
846                 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK);
847         }
848 }
849
850 /**
851  * i915_driver_init_early - setup state not requiring device access
852  * @dev_priv: device private
853  *
854  * Initialize everything that is a "SW-only" state, that is state not
855  * requiring accessing the device or exposing the driver via kernel internal
856  * or userspace interfaces. Example steps belonging here: lock initialization,
857  * system memory allocation, setting up device specific attributes and
858  * function hooks not requiring accessing the device.
859  */
860 static int i915_driver_init_early(struct drm_i915_private *dev_priv)
861 {
862         int ret = 0;
863
864         if (i915_inject_load_failure())
865                 return -ENODEV;
866
867         spin_lock_init(&dev_priv->irq_lock);
868         spin_lock_init(&dev_priv->gpu_error.lock);
869         mutex_init(&dev_priv->backlight_lock);
870         spin_lock_init(&dev_priv->uncore.lock);
871
872         mutex_init(&dev_priv->sb_lock);
873         mutex_init(&dev_priv->av_mutex);
874         mutex_init(&dev_priv->wm.wm_mutex);
875         mutex_init(&dev_priv->pps_mutex);
876
877         i915_memcpy_init_early(dev_priv);
878         intel_runtime_pm_init_early(dev_priv);
879
880         ret = i915_workqueues_init(dev_priv);
881         if (ret < 0)
882                 goto err_engines;
883
884         ret = i915_gem_init_early(dev_priv);
885         if (ret < 0)
886                 goto err_workqueues;
887
888         /* This must be called before any calls to HAS_PCH_* */
889         intel_detect_pch(dev_priv);
890
891         intel_wopcm_init_early(&dev_priv->wopcm);
892         intel_uc_init_early(dev_priv);
893         intel_pm_setup(dev_priv);
894         intel_init_dpio(dev_priv);
895         ret = intel_power_domains_init(dev_priv);
896         if (ret < 0)
897                 goto err_uc;
898         intel_irq_init(dev_priv);
899         intel_hangcheck_init(dev_priv);
900         intel_init_display_hooks(dev_priv);
901         intel_init_clock_gating_hooks(dev_priv);
902         intel_init_audio_hooks(dev_priv);
903         intel_display_crc_init(dev_priv);
904
905         intel_detect_preproduction_hw(dev_priv);
906
907         return 0;
908
909 err_uc:
910         intel_uc_cleanup_early(dev_priv);
911         i915_gem_cleanup_early(dev_priv);
912 err_workqueues:
913         i915_workqueues_cleanup(dev_priv);
914 err_engines:
915         i915_engines_cleanup(dev_priv);
916         return ret;
917 }
918
919 /**
920  * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
921  * @dev_priv: device private
922  */
923 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
924 {
925         intel_irq_fini(dev_priv);
926         intel_power_domains_cleanup(dev_priv);
927         intel_uc_cleanup_early(dev_priv);
928         i915_gem_cleanup_early(dev_priv);
929         i915_workqueues_cleanup(dev_priv);
930         i915_engines_cleanup(dev_priv);
931 }
932
933 static int i915_mmio_setup(struct drm_i915_private *dev_priv)
934 {
935         struct pci_dev *pdev = dev_priv->drm.pdev;
936         int mmio_bar;
937         int mmio_size;
938
939         mmio_bar = IS_GEN(dev_priv, 2) ? 1 : 0;
940         /*
941          * Before gen4, the registers and the GTT are behind different BARs.
942          * However, from gen4 onwards, the registers and the GTT are shared
943          * in the same BAR, so we want to restrict this ioremap from
944          * clobbering the GTT which we want ioremap_wc instead. Fortunately,
945          * the register BAR remains the same size for all the earlier
946          * generations up to Ironlake.
947          */
948         if (INTEL_GEN(dev_priv) < 5)
949                 mmio_size = 512 * 1024;
950         else
951                 mmio_size = 2 * 1024 * 1024;
952         dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
953         if (dev_priv->regs == NULL) {
954                 DRM_ERROR("failed to map registers\n");
955
956                 return -EIO;
957         }
958
959         /* Try to make sure MCHBAR is enabled before poking at it */
960         intel_setup_mchbar(dev_priv);
961
962         return 0;
963 }
964
965 static void i915_mmio_cleanup(struct drm_i915_private *dev_priv)
966 {
967         struct pci_dev *pdev = dev_priv->drm.pdev;
968
969         intel_teardown_mchbar(dev_priv);
970         pci_iounmap(pdev, dev_priv->regs);
971 }
972
973 /**
974  * i915_driver_init_mmio - setup device MMIO
975  * @dev_priv: device private
976  *
977  * Setup minimal device state necessary for MMIO accesses later in the
978  * initialization sequence. The setup here should avoid any other device-wide
979  * side effects or exposing the driver via kernel internal or user space
980  * interfaces.
981  */
982 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
983 {
984         int ret;
985
986         if (i915_inject_load_failure())
987                 return -ENODEV;
988
989         if (i915_get_bridge_dev(dev_priv))
990                 return -EIO;
991
992         ret = i915_mmio_setup(dev_priv);
993         if (ret < 0)
994                 goto err_bridge;
995
996         intel_uncore_init(dev_priv);
997
998         intel_device_info_init_mmio(dev_priv);
999
1000         intel_uncore_prune(dev_priv);
1001
1002         intel_uc_init_mmio(dev_priv);
1003
1004         ret = intel_engines_init_mmio(dev_priv);
1005         if (ret)
1006                 goto err_uncore;
1007
1008         i915_gem_init_mmio(dev_priv);
1009
1010         return 0;
1011
1012 err_uncore:
1013         intel_uncore_fini(dev_priv);
1014         i915_mmio_cleanup(dev_priv);
1015 err_bridge:
1016         pci_dev_put(dev_priv->bridge_dev);
1017
1018         return ret;
1019 }
1020
1021 /**
1022  * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
1023  * @dev_priv: device private
1024  */
1025 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
1026 {
1027         intel_uncore_fini(dev_priv);
1028         i915_mmio_cleanup(dev_priv);
1029         pci_dev_put(dev_priv->bridge_dev);
1030 }
1031
1032 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
1033 {
1034         intel_gvt_sanitize_options(dev_priv);
1035 }
1036
1037 static enum dram_rank skl_get_dimm_rank(u8 size, u32 rank)
1038 {
1039         if (size == 0)
1040                 return I915_DRAM_RANK_INVALID;
1041         if (rank == SKL_DRAM_RANK_SINGLE)
1042                 return I915_DRAM_RANK_SINGLE;
1043         else if (rank == SKL_DRAM_RANK_DUAL)
1044                 return I915_DRAM_RANK_DUAL;
1045
1046         return I915_DRAM_RANK_INVALID;
1047 }
1048
1049 static bool
1050 skl_is_16gb_dimm(enum dram_rank rank, u8 size, u8 width)
1051 {
1052         if (rank == I915_DRAM_RANK_SINGLE && width == 8 && size == 16)
1053                 return true;
1054         else if (rank == I915_DRAM_RANK_DUAL && width == 8 && size == 32)
1055                 return true;
1056         else if (rank == SKL_DRAM_RANK_SINGLE && width == 16 && size == 8)
1057                 return true;
1058         else if (rank == SKL_DRAM_RANK_DUAL && width == 16 && size == 16)
1059                 return true;
1060
1061         return false;
1062 }
1063
1064 static int
1065 skl_dram_get_channel_info(struct dram_channel_info *ch, u32 val)
1066 {
1067         u32 tmp_l, tmp_s;
1068         u32 s_val = val >> SKL_DRAM_S_SHIFT;
1069
1070         if (!val)
1071                 return -EINVAL;
1072
1073         tmp_l = val & SKL_DRAM_SIZE_MASK;
1074         tmp_s = s_val & SKL_DRAM_SIZE_MASK;
1075
1076         if (tmp_l == 0 && tmp_s == 0)
1077                 return -EINVAL;
1078
1079         ch->l_info.size = tmp_l;
1080         ch->s_info.size = tmp_s;
1081
1082         tmp_l = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
1083         tmp_s = (s_val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
1084         ch->l_info.width = (1 << tmp_l) * 8;
1085         ch->s_info.width = (1 << tmp_s) * 8;
1086
1087         tmp_l = val & SKL_DRAM_RANK_MASK;
1088         tmp_s = s_val & SKL_DRAM_RANK_MASK;
1089         ch->l_info.rank = skl_get_dimm_rank(ch->l_info.size, tmp_l);
1090         ch->s_info.rank = skl_get_dimm_rank(ch->s_info.size, tmp_s);
1091
1092         if (ch->l_info.rank == I915_DRAM_RANK_DUAL ||
1093             ch->s_info.rank == I915_DRAM_RANK_DUAL)
1094                 ch->rank = I915_DRAM_RANK_DUAL;
1095         else if (ch->l_info.rank == I915_DRAM_RANK_SINGLE &&
1096                  ch->s_info.rank == I915_DRAM_RANK_SINGLE)
1097                 ch->rank = I915_DRAM_RANK_DUAL;
1098         else
1099                 ch->rank = I915_DRAM_RANK_SINGLE;
1100
1101         ch->is_16gb_dimm = skl_is_16gb_dimm(ch->l_info.rank, ch->l_info.size,
1102                                             ch->l_info.width) ||
1103                            skl_is_16gb_dimm(ch->s_info.rank, ch->s_info.size,
1104                                             ch->s_info.width);
1105
1106         DRM_DEBUG_KMS("(size:width:rank) L(%dGB:X%d:%s) S(%dGB:X%d:%s)\n",
1107                       ch->l_info.size, ch->l_info.width,
1108                       ch->l_info.rank ? "dual" : "single",
1109                       ch->s_info.size, ch->s_info.width,
1110                       ch->s_info.rank ? "dual" : "single");
1111
1112         return 0;
1113 }
1114
1115 static bool
1116 intel_is_dram_symmetric(u32 val_ch0, u32 val_ch1,
1117                         struct dram_channel_info *ch0)
1118 {
1119         return (val_ch0 == val_ch1 &&
1120                 (ch0->s_info.size == 0 ||
1121                  (ch0->l_info.size == ch0->s_info.size &&
1122                   ch0->l_info.width == ch0->s_info.width &&
1123                   ch0->l_info.rank == ch0->s_info.rank)));
1124 }
1125
1126 static int
1127 skl_dram_get_channels_info(struct drm_i915_private *dev_priv)
1128 {
1129         struct dram_info *dram_info = &dev_priv->dram_info;
1130         struct dram_channel_info ch0, ch1;
1131         u32 val_ch0, val_ch1;
1132         int ret;
1133
1134         val_ch0 = I915_READ(SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
1135         ret = skl_dram_get_channel_info(&ch0, val_ch0);
1136         if (ret == 0)
1137                 dram_info->num_channels++;
1138
1139         val_ch1 = I915_READ(SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
1140         ret = skl_dram_get_channel_info(&ch1, val_ch1);
1141         if (ret == 0)
1142                 dram_info->num_channels++;
1143
1144         if (dram_info->num_channels == 0) {
1145                 DRM_INFO("Number of memory channels is zero\n");
1146                 return -EINVAL;
1147         }
1148
1149         /*
1150          * If any of the channel is single rank channel, worst case output
1151          * will be same as if single rank memory, so consider single rank
1152          * memory.
1153          */
1154         if (ch0.rank == I915_DRAM_RANK_SINGLE ||
1155             ch1.rank == I915_DRAM_RANK_SINGLE)
1156                 dram_info->rank = I915_DRAM_RANK_SINGLE;
1157         else
1158                 dram_info->rank = max(ch0.rank, ch1.rank);
1159
1160         if (dram_info->rank == I915_DRAM_RANK_INVALID) {
1161                 DRM_INFO("couldn't get memory rank information\n");
1162                 return -EINVAL;
1163         }
1164
1165         dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
1166
1167         dev_priv->dram_info.symmetric_memory = intel_is_dram_symmetric(val_ch0,
1168                                                                        val_ch1,
1169                                                                        &ch0);
1170
1171         DRM_DEBUG_KMS("memory configuration is %sSymmetric memory\n",
1172                       dev_priv->dram_info.symmetric_memory ? "" : "not ");
1173         return 0;
1174 }
1175
1176 static int
1177 skl_get_dram_info(struct drm_i915_private *dev_priv)
1178 {
1179         struct dram_info *dram_info = &dev_priv->dram_info;
1180         u32 mem_freq_khz, val;
1181         int ret;
1182
1183         ret = skl_dram_get_channels_info(dev_priv);
1184         if (ret)
1185                 return ret;
1186
1187         val = I915_READ(SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
1188         mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
1189                                     SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1190
1191         dram_info->bandwidth_kbps = dram_info->num_channels *
1192                                                         mem_freq_khz * 8;
1193
1194         if (dram_info->bandwidth_kbps == 0) {
1195                 DRM_INFO("Couldn't get system memory bandwidth\n");
1196                 return -EINVAL;
1197         }
1198
1199         dram_info->valid = true;
1200         return 0;
1201 }
1202
1203 static int
1204 bxt_get_dram_info(struct drm_i915_private *dev_priv)
1205 {
1206         struct dram_info *dram_info = &dev_priv->dram_info;
1207         u32 dram_channels;
1208         u32 mem_freq_khz, val;
1209         u8 num_active_channels;
1210         int i;
1211
1212         val = I915_READ(BXT_P_CR_MC_BIOS_REQ_0_0_0);
1213         mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
1214                                     BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
1215
1216         dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
1217         num_active_channels = hweight32(dram_channels);
1218
1219         /* Each active bit represents 4-byte channel */
1220         dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
1221
1222         if (dram_info->bandwidth_kbps == 0) {
1223                 DRM_INFO("Couldn't get system memory bandwidth\n");
1224                 return -EINVAL;
1225         }
1226
1227         /*
1228          * Now read each DUNIT8/9/10/11 to check the rank of each dimms.
1229          */
1230         for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
1231                 u8 size, width;
1232                 enum dram_rank rank;
1233                 u32 tmp;
1234
1235                 val = I915_READ(BXT_D_CR_DRP0_DUNIT(i));
1236                 if (val == 0xFFFFFFFF)
1237                         continue;
1238
1239                 dram_info->num_channels++;
1240                 tmp = val & BXT_DRAM_RANK_MASK;
1241
1242                 if (tmp == BXT_DRAM_RANK_SINGLE)
1243                         rank = I915_DRAM_RANK_SINGLE;
1244                 else if (tmp == BXT_DRAM_RANK_DUAL)
1245                         rank = I915_DRAM_RANK_DUAL;
1246                 else
1247                         rank = I915_DRAM_RANK_INVALID;
1248
1249                 tmp = val & BXT_DRAM_SIZE_MASK;
1250                 if (tmp == BXT_DRAM_SIZE_4GB)
1251                         size = 4;
1252                 else if (tmp == BXT_DRAM_SIZE_6GB)
1253                         size = 6;
1254                 else if (tmp == BXT_DRAM_SIZE_8GB)
1255                         size = 8;
1256                 else if (tmp == BXT_DRAM_SIZE_12GB)
1257                         size = 12;
1258                 else if (tmp == BXT_DRAM_SIZE_16GB)
1259                         size = 16;
1260                 else
1261                         size = 0;
1262
1263                 tmp = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
1264                 width = (1 << tmp) * 8;
1265                 DRM_DEBUG_KMS("dram size:%dGB width:X%d rank:%s\n", size,
1266                               width, rank == I915_DRAM_RANK_SINGLE ? "single" :
1267                               rank == I915_DRAM_RANK_DUAL ? "dual" : "unknown");
1268
1269                 /*
1270                  * If any of the channel is single rank channel,
1271                  * worst case output will be same as if single rank
1272                  * memory, so consider single rank memory.
1273                  */
1274                 if (dram_info->rank == I915_DRAM_RANK_INVALID)
1275                         dram_info->rank = rank;
1276                 else if (rank == I915_DRAM_RANK_SINGLE)
1277                         dram_info->rank = I915_DRAM_RANK_SINGLE;
1278         }
1279
1280         if (dram_info->rank == I915_DRAM_RANK_INVALID) {
1281                 DRM_INFO("couldn't get memory rank information\n");
1282                 return -EINVAL;
1283         }
1284
1285         dram_info->valid = true;
1286         return 0;
1287 }
1288
1289 static void
1290 intel_get_dram_info(struct drm_i915_private *dev_priv)
1291 {
1292         struct dram_info *dram_info = &dev_priv->dram_info;
1293         char bandwidth_str[32];
1294         int ret;
1295
1296         dram_info->valid = false;
1297         dram_info->rank = I915_DRAM_RANK_INVALID;
1298         dram_info->bandwidth_kbps = 0;
1299         dram_info->num_channels = 0;
1300
1301         /*
1302          * Assume 16Gb DIMMs are present until proven otherwise.
1303          * This is only used for the level 0 watermark latency
1304          * w/a which does not apply to bxt/glk.
1305          */
1306         dram_info->is_16gb_dimm = !IS_GEN9_LP(dev_priv);
1307
1308         if (INTEL_GEN(dev_priv) < 9 || IS_GEMINILAKE(dev_priv))
1309                 return;
1310
1311         /* Need to calculate bandwidth only for Gen9 */
1312         if (IS_BROXTON(dev_priv))
1313                 ret = bxt_get_dram_info(dev_priv);
1314         else if (IS_GEN(dev_priv, 9))
1315                 ret = skl_get_dram_info(dev_priv);
1316         else
1317                 ret = skl_dram_get_channels_info(dev_priv);
1318         if (ret)
1319                 return;
1320
1321         if (dram_info->bandwidth_kbps)
1322                 sprintf(bandwidth_str, "%d KBps", dram_info->bandwidth_kbps);
1323         else
1324                 sprintf(bandwidth_str, "unknown");
1325         DRM_DEBUG_KMS("DRAM bandwidth:%s, total-channels: %u\n",
1326                       bandwidth_str, dram_info->num_channels);
1327         DRM_DEBUG_KMS("DRAM rank: %s rank 16GB-dimm:%s\n",
1328                       (dram_info->rank == I915_DRAM_RANK_DUAL) ?
1329                       "dual" : "single", yesno(dram_info->is_16gb_dimm));
1330 }
1331
1332 /**
1333  * i915_driver_init_hw - setup state requiring device access
1334  * @dev_priv: device private
1335  *
1336  * Setup state that requires accessing the device, but doesn't require
1337  * exposing the driver via kernel internal or userspace interfaces.
1338  */
1339 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
1340 {
1341         struct pci_dev *pdev = dev_priv->drm.pdev;
1342         int ret;
1343
1344         if (i915_inject_load_failure())
1345                 return -ENODEV;
1346
1347         intel_device_info_runtime_init(dev_priv);
1348
1349         if (HAS_PPGTT(dev_priv)) {
1350                 if (intel_vgpu_active(dev_priv) &&
1351                     !intel_vgpu_has_full_48bit_ppgtt(dev_priv)) {
1352                         i915_report_error(dev_priv,
1353                                           "incompatible vGPU found, support for isolated ppGTT required\n");
1354                         return -ENXIO;
1355                 }
1356         }
1357
1358         if (HAS_EXECLISTS(dev_priv)) {
1359                 /*
1360                  * Older GVT emulation depends upon intercepting CSB mmio,
1361                  * which we no longer use, preferring to use the HWSP cache
1362                  * instead.
1363                  */
1364                 if (intel_vgpu_active(dev_priv) &&
1365                     !intel_vgpu_has_hwsp_emulation(dev_priv)) {
1366                         i915_report_error(dev_priv,
1367                                           "old vGPU host found, support for HWSP emulation required\n");
1368                         return -ENXIO;
1369                 }
1370         }
1371
1372         intel_sanitize_options(dev_priv);
1373
1374         i915_perf_init(dev_priv);
1375
1376         ret = i915_ggtt_probe_hw(dev_priv);
1377         if (ret)
1378                 goto err_perf;
1379
1380         /*
1381          * WARNING: Apparently we must kick fbdev drivers before vgacon,
1382          * otherwise the vga fbdev driver falls over.
1383          */
1384         ret = i915_kick_out_firmware_fb(dev_priv);
1385         if (ret) {
1386                 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1387                 goto err_ggtt;
1388         }
1389
1390         ret = vga_remove_vgacon(pdev);
1391         if (ret) {
1392                 DRM_ERROR("failed to remove conflicting VGA console\n");
1393                 goto err_ggtt;
1394         }
1395
1396         ret = i915_ggtt_init_hw(dev_priv);
1397         if (ret)
1398                 goto err_ggtt;
1399
1400         ret = i915_ggtt_enable_hw(dev_priv);
1401         if (ret) {
1402                 DRM_ERROR("failed to enable GGTT\n");
1403                 goto err_ggtt;
1404         }
1405
1406         pci_set_master(pdev);
1407
1408         /* overlay on gen2 is broken and can't address above 1G */
1409         if (IS_GEN(dev_priv, 2)) {
1410                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1411                 if (ret) {
1412                         DRM_ERROR("failed to set DMA mask\n");
1413
1414                         goto err_ggtt;
1415                 }
1416         }
1417
1418         /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1419          * using 32bit addressing, overwriting memory if HWS is located
1420          * above 4GB.
1421          *
1422          * The documentation also mentions an issue with undefined
1423          * behaviour if any general state is accessed within a page above 4GB,
1424          * which also needs to be handled carefully.
1425          */
1426         if (IS_I965G(dev_priv) || IS_I965GM(dev_priv)) {
1427                 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1428
1429                 if (ret) {
1430                         DRM_ERROR("failed to set DMA mask\n");
1431
1432                         goto err_ggtt;
1433                 }
1434         }
1435
1436         pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1437                            PM_QOS_DEFAULT_VALUE);
1438
1439         intel_uncore_sanitize(dev_priv);
1440
1441         intel_gt_init_workarounds(dev_priv);
1442         i915_gem_load_init_fences(dev_priv);
1443
1444         /* On the 945G/GM, the chipset reports the MSI capability on the
1445          * integrated graphics even though the support isn't actually there
1446          * according to the published specs.  It doesn't appear to function
1447          * correctly in testing on 945G.
1448          * This may be a side effect of MSI having been made available for PEG
1449          * and the registers being closely associated.
1450          *
1451          * According to chipset errata, on the 965GM, MSI interrupts may
1452          * be lost or delayed, and was defeatured. MSI interrupts seem to
1453          * get lost on g4x as well, and interrupt delivery seems to stay
1454          * properly dead afterwards. So we'll just disable them for all
1455          * pre-gen5 chipsets.
1456          *
1457          * dp aux and gmbus irq on gen4 seems to be able to generate legacy
1458          * interrupts even when in MSI mode. This results in spurious
1459          * interrupt warnings if the legacy irq no. is shared with another
1460          * device. The kernel then disables that interrupt source and so
1461          * prevents the other device from working properly.
1462          */
1463         if (INTEL_GEN(dev_priv) >= 5) {
1464                 if (pci_enable_msi(pdev) < 0)
1465                         DRM_DEBUG_DRIVER("can't enable MSI");
1466         }
1467
1468         ret = intel_gvt_init(dev_priv);
1469         if (ret)
1470                 goto err_msi;
1471
1472         intel_opregion_setup(dev_priv);
1473         /*
1474          * Fill the dram structure to get the system raw bandwidth and
1475          * dram info. This will be used for memory latency calculation.
1476          */
1477         intel_get_dram_info(dev_priv);
1478
1479
1480         return 0;
1481
1482 err_msi:
1483         if (pdev->msi_enabled)
1484                 pci_disable_msi(pdev);
1485         pm_qos_remove_request(&dev_priv->pm_qos);
1486 err_ggtt:
1487         i915_ggtt_cleanup_hw(dev_priv);
1488 err_perf:
1489         i915_perf_fini(dev_priv);
1490         return ret;
1491 }
1492
1493 /**
1494  * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1495  * @dev_priv: device private
1496  */
1497 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1498 {
1499         struct pci_dev *pdev = dev_priv->drm.pdev;
1500
1501         i915_perf_fini(dev_priv);
1502
1503         if (pdev->msi_enabled)
1504                 pci_disable_msi(pdev);
1505
1506         pm_qos_remove_request(&dev_priv->pm_qos);
1507         i915_ggtt_cleanup_hw(dev_priv);
1508 }
1509
1510 /**
1511  * i915_driver_register - register the driver with the rest of the system
1512  * @dev_priv: device private
1513  *
1514  * Perform any steps necessary to make the driver available via kernel
1515  * internal or userspace interfaces.
1516  */
1517 static void i915_driver_register(struct drm_i915_private *dev_priv)
1518 {
1519         struct drm_device *dev = &dev_priv->drm;
1520
1521         i915_gem_shrinker_register(dev_priv);
1522         i915_pmu_register(dev_priv);
1523
1524         /*
1525          * Notify a valid surface after modesetting,
1526          * when running inside a VM.
1527          */
1528         if (intel_vgpu_active(dev_priv))
1529                 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1530
1531         /* Reveal our presence to userspace */
1532         if (drm_dev_register(dev, 0) == 0) {
1533                 i915_debugfs_register(dev_priv);
1534                 i915_setup_sysfs(dev_priv);
1535
1536                 /* Depends on sysfs having been initialized */
1537                 i915_perf_register(dev_priv);
1538         } else
1539                 DRM_ERROR("Failed to register driver for userspace access!\n");
1540
1541         if (HAS_DISPLAY(dev_priv)) {
1542                 /* Must be done after probing outputs */
1543                 intel_opregion_register(dev_priv);
1544                 acpi_video_register();
1545         }
1546
1547         if (IS_GEN(dev_priv, 5))
1548                 intel_gpu_ips_init(dev_priv);
1549
1550         intel_audio_init(dev_priv);
1551
1552         /*
1553          * Some ports require correctly set-up hpd registers for detection to
1554          * work properly (leading to ghost connected connector status), e.g. VGA
1555          * on gm45.  Hence we can only set up the initial fbdev config after hpd
1556          * irqs are fully enabled. We do it last so that the async config
1557          * cannot run before the connectors are registered.
1558          */
1559         intel_fbdev_initial_config_async(dev);
1560
1561         /*
1562          * We need to coordinate the hotplugs with the asynchronous fbdev
1563          * configuration, for which we use the fbdev->async_cookie.
1564          */
1565         if (HAS_DISPLAY(dev_priv))
1566                 drm_kms_helper_poll_init(dev);
1567
1568         intel_power_domains_enable(dev_priv);
1569         intel_runtime_pm_enable(dev_priv);
1570 }
1571
1572 /**
1573  * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1574  * @dev_priv: device private
1575  */
1576 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1577 {
1578         intel_runtime_pm_disable(dev_priv);
1579         intel_power_domains_disable(dev_priv);
1580
1581         intel_fbdev_unregister(dev_priv);
1582         intel_audio_deinit(dev_priv);
1583
1584         /*
1585          * After flushing the fbdev (incl. a late async config which will
1586          * have delayed queuing of a hotplug event), then flush the hotplug
1587          * events.
1588          */
1589         drm_kms_helper_poll_fini(&dev_priv->drm);
1590
1591         intel_gpu_ips_teardown();
1592         acpi_video_unregister();
1593         intel_opregion_unregister(dev_priv);
1594
1595         i915_perf_unregister(dev_priv);
1596         i915_pmu_unregister(dev_priv);
1597
1598         i915_teardown_sysfs(dev_priv);
1599         drm_dev_unregister(&dev_priv->drm);
1600
1601         i915_gem_shrinker_unregister(dev_priv);
1602 }
1603
1604 static void i915_welcome_messages(struct drm_i915_private *dev_priv)
1605 {
1606         if (drm_debug & DRM_UT_DRIVER) {
1607                 struct drm_printer p = drm_debug_printer("i915 device info:");
1608
1609                 drm_printf(&p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
1610                            INTEL_DEVID(dev_priv),
1611                            INTEL_REVID(dev_priv),
1612                            intel_platform_name(INTEL_INFO(dev_priv)->platform),
1613                            INTEL_GEN(dev_priv));
1614
1615                 intel_device_info_dump_flags(INTEL_INFO(dev_priv), &p);
1616                 intel_device_info_dump_runtime(RUNTIME_INFO(dev_priv), &p);
1617         }
1618
1619         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1620                 DRM_INFO("DRM_I915_DEBUG enabled\n");
1621         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1622                 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1623         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM))
1624                 DRM_INFO("DRM_I915_DEBUG_RUNTIME_PM enabled\n");
1625 }
1626
1627 static struct drm_i915_private *
1628 i915_driver_create(struct pci_dev *pdev, const struct pci_device_id *ent)
1629 {
1630         const struct intel_device_info *match_info =
1631                 (struct intel_device_info *)ent->driver_data;
1632         struct intel_device_info *device_info;
1633         struct drm_i915_private *i915;
1634         int err;
1635
1636         i915 = kzalloc(sizeof(*i915), GFP_KERNEL);
1637         if (!i915)
1638                 return ERR_PTR(-ENOMEM);
1639
1640         err = drm_dev_init(&i915->drm, &driver, &pdev->dev);
1641         if (err) {
1642                 kfree(i915);
1643                 return ERR_PTR(err);
1644         }
1645
1646         i915->drm.pdev = pdev;
1647         i915->drm.dev_private = i915;
1648         pci_set_drvdata(pdev, &i915->drm);
1649
1650         /* Setup the write-once "constant" device info */
1651         device_info = mkwrite_device_info(i915);
1652         memcpy(device_info, match_info, sizeof(*device_info));
1653         RUNTIME_INFO(i915)->device_id = pdev->device;
1654
1655         BUILD_BUG_ON(INTEL_MAX_PLATFORMS >
1656                      BITS_PER_TYPE(device_info->platform_mask));
1657         BUG_ON(device_info->gen > BITS_PER_TYPE(device_info->gen_mask));
1658
1659         return i915;
1660 }
1661
1662 static void i915_driver_destroy(struct drm_i915_private *i915)
1663 {
1664         struct pci_dev *pdev = i915->drm.pdev;
1665
1666         drm_dev_fini(&i915->drm);
1667         kfree(i915);
1668
1669         /* And make sure we never chase our dangling pointer from pci_dev */
1670         pci_set_drvdata(pdev, NULL);
1671 }
1672
1673 /**
1674  * i915_driver_load - setup chip and create an initial config
1675  * @pdev: PCI device
1676  * @ent: matching PCI ID entry
1677  *
1678  * The driver load routine has to do several things:
1679  *   - drive output discovery via intel_modeset_init()
1680  *   - initialize the memory manager
1681  *   - allocate initial config memory
1682  *   - setup the DRM framebuffer with the allocated memory
1683  */
1684 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1685 {
1686         const struct intel_device_info *match_info =
1687                 (struct intel_device_info *)ent->driver_data;
1688         struct drm_i915_private *dev_priv;
1689         int ret;
1690
1691         dev_priv = i915_driver_create(pdev, ent);
1692         if (IS_ERR(dev_priv))
1693                 return PTR_ERR(dev_priv);
1694
1695         /* Disable nuclear pageflip by default on pre-ILK */
1696         if (!i915_modparams.nuclear_pageflip && match_info->gen < 5)
1697                 dev_priv->drm.driver_features &= ~DRIVER_ATOMIC;
1698
1699         ret = pci_enable_device(pdev);
1700         if (ret)
1701                 goto out_fini;
1702
1703         ret = i915_driver_init_early(dev_priv);
1704         if (ret < 0)
1705                 goto out_pci_disable;
1706
1707         disable_rpm_wakeref_asserts(dev_priv);
1708
1709         ret = i915_driver_init_mmio(dev_priv);
1710         if (ret < 0)
1711                 goto out_runtime_pm_put;
1712
1713         ret = i915_driver_init_hw(dev_priv);
1714         if (ret < 0)
1715                 goto out_cleanup_mmio;
1716
1717         ret = i915_load_modeset_init(&dev_priv->drm);
1718         if (ret < 0)
1719                 goto out_cleanup_hw;
1720
1721         i915_driver_register(dev_priv);
1722
1723         enable_rpm_wakeref_asserts(dev_priv);
1724
1725         i915_welcome_messages(dev_priv);
1726
1727         return 0;
1728
1729 out_cleanup_hw:
1730         i915_driver_cleanup_hw(dev_priv);
1731 out_cleanup_mmio:
1732         i915_driver_cleanup_mmio(dev_priv);
1733 out_runtime_pm_put:
1734         enable_rpm_wakeref_asserts(dev_priv);
1735         i915_driver_cleanup_early(dev_priv);
1736 out_pci_disable:
1737         pci_disable_device(pdev);
1738 out_fini:
1739         i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1740         i915_driver_destroy(dev_priv);
1741         return ret;
1742 }
1743
1744 void i915_driver_unload(struct drm_device *dev)
1745 {
1746         struct drm_i915_private *dev_priv = to_i915(dev);
1747         struct pci_dev *pdev = dev_priv->drm.pdev;
1748
1749         disable_rpm_wakeref_asserts(dev_priv);
1750
1751         i915_driver_unregister(dev_priv);
1752
1753         /* Flush any external code that still may be under the RCU lock */
1754         synchronize_rcu();
1755
1756         if (i915_gem_suspend(dev_priv))
1757                 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1758
1759         drm_atomic_helper_shutdown(dev);
1760
1761         intel_gvt_cleanup(dev_priv);
1762
1763         intel_modeset_cleanup(dev);
1764
1765         intel_bios_cleanup(dev_priv);
1766
1767         vga_switcheroo_unregister_client(pdev);
1768         vga_client_register(pdev, NULL, NULL, NULL);
1769
1770         intel_csr_ucode_fini(dev_priv);
1771
1772         /* Free error state after interrupts are fully disabled. */
1773         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1774         i915_reset_error_state(dev_priv);
1775
1776         i915_gem_fini(dev_priv);
1777
1778         intel_power_domains_fini_hw(dev_priv);
1779
1780         i915_driver_cleanup_hw(dev_priv);
1781         i915_driver_cleanup_mmio(dev_priv);
1782
1783         enable_rpm_wakeref_asserts(dev_priv);
1784         intel_runtime_pm_cleanup(dev_priv);
1785 }
1786
1787 static void i915_driver_release(struct drm_device *dev)
1788 {
1789         struct drm_i915_private *dev_priv = to_i915(dev);
1790
1791         i915_driver_cleanup_early(dev_priv);
1792         i915_driver_destroy(dev_priv);
1793 }
1794
1795 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1796 {
1797         struct drm_i915_private *i915 = to_i915(dev);
1798         int ret;
1799
1800         ret = i915_gem_open(i915, file);
1801         if (ret)
1802                 return ret;
1803
1804         return 0;
1805 }
1806
1807 /**
1808  * i915_driver_lastclose - clean up after all DRM clients have exited
1809  * @dev: DRM device
1810  *
1811  * Take care of cleaning up after all DRM clients have exited.  In the
1812  * mode setting case, we want to restore the kernel's initial mode (just
1813  * in case the last client left us in a bad state).
1814  *
1815  * Additionally, in the non-mode setting case, we'll tear down the GTT
1816  * and DMA structures, since the kernel won't be using them, and clea
1817  * up any GEM state.
1818  */
1819 static void i915_driver_lastclose(struct drm_device *dev)
1820 {
1821         intel_fbdev_restore_mode(dev);
1822         vga_switcheroo_process_delayed_switch();
1823 }
1824
1825 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1826 {
1827         struct drm_i915_file_private *file_priv = file->driver_priv;
1828
1829         mutex_lock(&dev->struct_mutex);
1830         i915_gem_context_close(file);
1831         i915_gem_release(dev, file);
1832         mutex_unlock(&dev->struct_mutex);
1833
1834         kfree(file_priv);
1835 }
1836
1837 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1838 {
1839         struct drm_device *dev = &dev_priv->drm;
1840         struct intel_encoder *encoder;
1841
1842         drm_modeset_lock_all(dev);
1843         for_each_intel_encoder(dev, encoder)
1844                 if (encoder->suspend)
1845                         encoder->suspend(encoder);
1846         drm_modeset_unlock_all(dev);
1847 }
1848
1849 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1850                               bool rpm_resume);
1851 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1852
1853 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1854 {
1855 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1856         if (acpi_target_system_state() < ACPI_STATE_S3)
1857                 return true;
1858 #endif
1859         return false;
1860 }
1861
1862 static int i915_drm_prepare(struct drm_device *dev)
1863 {
1864         struct drm_i915_private *i915 = to_i915(dev);
1865         int err;
1866
1867         /*
1868          * NB intel_display_suspend() may issue new requests after we've
1869          * ostensibly marked the GPU as ready-to-sleep here. We need to
1870          * split out that work and pull it forward so that after point,
1871          * the GPU is not woken again.
1872          */
1873         err = i915_gem_suspend(i915);
1874         if (err)
1875                 dev_err(&i915->drm.pdev->dev,
1876                         "GEM idle failed, suspend/resume might fail\n");
1877
1878         return err;
1879 }
1880
1881 static int i915_drm_suspend(struct drm_device *dev)
1882 {
1883         struct drm_i915_private *dev_priv = to_i915(dev);
1884         struct pci_dev *pdev = dev_priv->drm.pdev;
1885         pci_power_t opregion_target_state;
1886
1887         disable_rpm_wakeref_asserts(dev_priv);
1888
1889         /* We do a lot of poking in a lot of registers, make sure they work
1890          * properly. */
1891         intel_power_domains_disable(dev_priv);
1892
1893         drm_kms_helper_poll_disable(dev);
1894
1895         pci_save_state(pdev);
1896
1897         intel_display_suspend(dev);
1898
1899         intel_dp_mst_suspend(dev_priv);
1900
1901         intel_runtime_pm_disable_interrupts(dev_priv);
1902         intel_hpd_cancel_work(dev_priv);
1903
1904         intel_suspend_encoders(dev_priv);
1905
1906         intel_suspend_hw(dev_priv);
1907
1908         i915_gem_suspend_gtt_mappings(dev_priv);
1909
1910         i915_save_state(dev_priv);
1911
1912         opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1913         intel_opregion_suspend(dev_priv, opregion_target_state);
1914
1915         intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1916
1917         dev_priv->suspend_count++;
1918
1919         intel_csr_ucode_suspend(dev_priv);
1920
1921         enable_rpm_wakeref_asserts(dev_priv);
1922
1923         return 0;
1924 }
1925
1926 static enum i915_drm_suspend_mode
1927 get_suspend_mode(struct drm_i915_private *dev_priv, bool hibernate)
1928 {
1929         if (hibernate)
1930                 return I915_DRM_SUSPEND_HIBERNATE;
1931
1932         if (suspend_to_idle(dev_priv))
1933                 return I915_DRM_SUSPEND_IDLE;
1934
1935         return I915_DRM_SUSPEND_MEM;
1936 }
1937
1938 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1939 {
1940         struct drm_i915_private *dev_priv = to_i915(dev);
1941         struct pci_dev *pdev = dev_priv->drm.pdev;
1942         int ret;
1943
1944         disable_rpm_wakeref_asserts(dev_priv);
1945
1946         i915_gem_suspend_late(dev_priv);
1947
1948         intel_uncore_suspend(dev_priv);
1949
1950         intel_power_domains_suspend(dev_priv,
1951                                     get_suspend_mode(dev_priv, hibernation));
1952
1953         ret = 0;
1954         if (INTEL_GEN(dev_priv) >= 11 || IS_GEN9_LP(dev_priv))
1955                 bxt_enable_dc9(dev_priv);
1956         else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1957                 hsw_enable_pc8(dev_priv);
1958         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1959                 ret = vlv_suspend_complete(dev_priv);
1960
1961         if (ret) {
1962                 DRM_ERROR("Suspend complete failed: %d\n", ret);
1963                 intel_power_domains_resume(dev_priv);
1964
1965                 goto out;
1966         }
1967
1968         pci_disable_device(pdev);
1969         /*
1970          * During hibernation on some platforms the BIOS may try to access
1971          * the device even though it's already in D3 and hang the machine. So
1972          * leave the device in D0 on those platforms and hope the BIOS will
1973          * power down the device properly. The issue was seen on multiple old
1974          * GENs with different BIOS vendors, so having an explicit blacklist
1975          * is inpractical; apply the workaround on everything pre GEN6. The
1976          * platforms where the issue was seen:
1977          * Lenovo Thinkpad X301, X61s, X60, T60, X41
1978          * Fujitsu FSC S7110
1979          * Acer Aspire 1830T
1980          */
1981         if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1982                 pci_set_power_state(pdev, PCI_D3hot);
1983
1984 out:
1985         enable_rpm_wakeref_asserts(dev_priv);
1986         if (!dev_priv->uncore.user_forcewake.count)
1987                 intel_runtime_pm_cleanup(dev_priv);
1988
1989         return ret;
1990 }
1991
1992 static int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1993 {
1994         int error;
1995
1996         if (!dev) {
1997                 DRM_ERROR("dev: %p\n", dev);
1998                 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1999                 return -ENODEV;
2000         }
2001
2002         if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
2003                          state.event != PM_EVENT_FREEZE))
2004                 return -EINVAL;
2005
2006         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2007                 return 0;
2008
2009         error = i915_drm_suspend(dev);
2010         if (error)
2011                 return error;
2012
2013         return i915_drm_suspend_late(dev, false);
2014 }
2015
2016 static int i915_drm_resume(struct drm_device *dev)
2017 {
2018         struct drm_i915_private *dev_priv = to_i915(dev);
2019         int ret;
2020
2021         disable_rpm_wakeref_asserts(dev_priv);
2022         intel_sanitize_gt_powersave(dev_priv);
2023
2024         i915_gem_sanitize(dev_priv);
2025
2026         ret = i915_ggtt_enable_hw(dev_priv);
2027         if (ret)
2028                 DRM_ERROR("failed to re-enable GGTT\n");
2029
2030         intel_csr_ucode_resume(dev_priv);
2031
2032         i915_restore_state(dev_priv);
2033         intel_pps_unlock_regs_wa(dev_priv);
2034
2035         intel_init_pch_refclk(dev_priv);
2036
2037         /*
2038          * Interrupts have to be enabled before any batches are run. If not the
2039          * GPU will hang. i915_gem_init_hw() will initiate batches to
2040          * update/restore the context.
2041          *
2042          * drm_mode_config_reset() needs AUX interrupts.
2043          *
2044          * Modeset enabling in intel_modeset_init_hw() also needs working
2045          * interrupts.
2046          */
2047         intel_runtime_pm_enable_interrupts(dev_priv);
2048
2049         drm_mode_config_reset(dev);
2050
2051         i915_gem_resume(dev_priv);
2052
2053         intel_modeset_init_hw(dev);
2054         intel_init_clock_gating(dev_priv);
2055
2056         spin_lock_irq(&dev_priv->irq_lock);
2057         if (dev_priv->display.hpd_irq_setup)
2058                 dev_priv->display.hpd_irq_setup(dev_priv);
2059         spin_unlock_irq(&dev_priv->irq_lock);
2060
2061         intel_dp_mst_resume(dev_priv);
2062
2063         intel_display_resume(dev);
2064
2065         drm_kms_helper_poll_enable(dev);
2066
2067         /*
2068          * ... but also need to make sure that hotplug processing
2069          * doesn't cause havoc. Like in the driver load code we don't
2070          * bother with the tiny race here where we might lose hotplug
2071          * notifications.
2072          * */
2073         intel_hpd_init(dev_priv);
2074
2075         intel_opregion_resume(dev_priv);
2076
2077         intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
2078
2079         intel_power_domains_enable(dev_priv);
2080
2081         enable_rpm_wakeref_asserts(dev_priv);
2082
2083         return 0;
2084 }
2085
2086 static int i915_drm_resume_early(struct drm_device *dev)
2087 {
2088         struct drm_i915_private *dev_priv = to_i915(dev);
2089         struct pci_dev *pdev = dev_priv->drm.pdev;
2090         int ret;
2091
2092         /*
2093          * We have a resume ordering issue with the snd-hda driver also
2094          * requiring our device to be power up. Due to the lack of a
2095          * parent/child relationship we currently solve this with an early
2096          * resume hook.
2097          *
2098          * FIXME: This should be solved with a special hdmi sink device or
2099          * similar so that power domains can be employed.
2100          */
2101
2102         /*
2103          * Note that we need to set the power state explicitly, since we
2104          * powered off the device during freeze and the PCI core won't power
2105          * it back up for us during thaw. Powering off the device during
2106          * freeze is not a hard requirement though, and during the
2107          * suspend/resume phases the PCI core makes sure we get here with the
2108          * device powered on. So in case we change our freeze logic and keep
2109          * the device powered we can also remove the following set power state
2110          * call.
2111          */
2112         ret = pci_set_power_state(pdev, PCI_D0);
2113         if (ret) {
2114                 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
2115                 return ret;
2116         }
2117
2118         /*
2119          * Note that pci_enable_device() first enables any parent bridge
2120          * device and only then sets the power state for this device. The
2121          * bridge enabling is a nop though, since bridge devices are resumed
2122          * first. The order of enabling power and enabling the device is
2123          * imposed by the PCI core as described above, so here we preserve the
2124          * same order for the freeze/thaw phases.
2125          *
2126          * TODO: eventually we should remove pci_disable_device() /
2127          * pci_enable_enable_device() from suspend/resume. Due to how they
2128          * depend on the device enable refcount we can't anyway depend on them
2129          * disabling/enabling the device.
2130          */
2131         if (pci_enable_device(pdev))
2132                 return -EIO;
2133
2134         pci_set_master(pdev);
2135
2136         disable_rpm_wakeref_asserts(dev_priv);
2137
2138         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2139                 ret = vlv_resume_prepare(dev_priv, false);
2140         if (ret)
2141                 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
2142                           ret);
2143
2144         intel_uncore_resume_early(dev_priv);
2145
2146         if (INTEL_GEN(dev_priv) >= 11 || IS_GEN9_LP(dev_priv)) {
2147                 gen9_sanitize_dc_state(dev_priv);
2148                 bxt_disable_dc9(dev_priv);
2149         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2150                 hsw_disable_pc8(dev_priv);
2151         }
2152
2153         intel_uncore_sanitize(dev_priv);
2154
2155         intel_power_domains_resume(dev_priv);
2156
2157         intel_engines_sanitize(dev_priv, true);
2158
2159         enable_rpm_wakeref_asserts(dev_priv);
2160
2161         return ret;
2162 }
2163
2164 static int i915_resume_switcheroo(struct drm_device *dev)
2165 {
2166         int ret;
2167
2168         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2169                 return 0;
2170
2171         ret = i915_drm_resume_early(dev);
2172         if (ret)
2173                 return ret;
2174
2175         return i915_drm_resume(dev);
2176 }
2177
2178 static int i915_pm_prepare(struct device *kdev)
2179 {
2180         struct pci_dev *pdev = to_pci_dev(kdev);
2181         struct drm_device *dev = pci_get_drvdata(pdev);
2182
2183         if (!dev) {
2184                 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2185                 return -ENODEV;
2186         }
2187
2188         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2189                 return 0;
2190
2191         return i915_drm_prepare(dev);
2192 }
2193
2194 static int i915_pm_suspend(struct device *kdev)
2195 {
2196         struct pci_dev *pdev = to_pci_dev(kdev);
2197         struct drm_device *dev = pci_get_drvdata(pdev);
2198
2199         if (!dev) {
2200                 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
2201                 return -ENODEV;
2202         }
2203
2204         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2205                 return 0;
2206
2207         return i915_drm_suspend(dev);
2208 }
2209
2210 static int i915_pm_suspend_late(struct device *kdev)
2211 {
2212         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2213
2214         /*
2215          * We have a suspend ordering issue with the snd-hda driver also
2216          * requiring our device to be power up. Due to the lack of a
2217          * parent/child relationship we currently solve this with an late
2218          * suspend hook.
2219          *
2220          * FIXME: This should be solved with a special hdmi sink device or
2221          * similar so that power domains can be employed.
2222          */
2223         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2224                 return 0;
2225
2226         return i915_drm_suspend_late(dev, false);
2227 }
2228
2229 static int i915_pm_poweroff_late(struct device *kdev)
2230 {
2231         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2232
2233         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2234                 return 0;
2235
2236         return i915_drm_suspend_late(dev, true);
2237 }
2238
2239 static int i915_pm_resume_early(struct device *kdev)
2240 {
2241         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2242
2243         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2244                 return 0;
2245
2246         return i915_drm_resume_early(dev);
2247 }
2248
2249 static int i915_pm_resume(struct device *kdev)
2250 {
2251         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2252
2253         if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
2254                 return 0;
2255
2256         return i915_drm_resume(dev);
2257 }
2258
2259 /* freeze: before creating the hibernation_image */
2260 static int i915_pm_freeze(struct device *kdev)
2261 {
2262         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2263         int ret;
2264
2265         if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2266                 ret = i915_drm_suspend(dev);
2267                 if (ret)
2268                         return ret;
2269         }
2270
2271         ret = i915_gem_freeze(kdev_to_i915(kdev));
2272         if (ret)
2273                 return ret;
2274
2275         return 0;
2276 }
2277
2278 static int i915_pm_freeze_late(struct device *kdev)
2279 {
2280         struct drm_device *dev = &kdev_to_i915(kdev)->drm;
2281         int ret;
2282
2283         if (dev->switch_power_state != DRM_SWITCH_POWER_OFF) {
2284                 ret = i915_drm_suspend_late(dev, true);
2285                 if (ret)
2286                         return ret;
2287         }
2288
2289         ret = i915_gem_freeze_late(kdev_to_i915(kdev));
2290         if (ret)
2291                 return ret;
2292
2293         return 0;
2294 }
2295
2296 /* thaw: called after creating the hibernation image, but before turning off. */
2297 static int i915_pm_thaw_early(struct device *kdev)
2298 {
2299         return i915_pm_resume_early(kdev);
2300 }
2301
2302 static int i915_pm_thaw(struct device *kdev)
2303 {
2304         return i915_pm_resume(kdev);
2305 }
2306
2307 /* restore: called after loading the hibernation image. */
2308 static int i915_pm_restore_early(struct device *kdev)
2309 {
2310         return i915_pm_resume_early(kdev);
2311 }
2312
2313 static int i915_pm_restore(struct device *kdev)
2314 {
2315         return i915_pm_resume(kdev);
2316 }
2317
2318 /*
2319  * Save all Gunit registers that may be lost after a D3 and a subsequent
2320  * S0i[R123] transition. The list of registers needing a save/restore is
2321  * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
2322  * registers in the following way:
2323  * - Driver: saved/restored by the driver
2324  * - Punit : saved/restored by the Punit firmware
2325  * - No, w/o marking: no need to save/restore, since the register is R/O or
2326  *                    used internally by the HW in a way that doesn't depend
2327  *                    keeping the content across a suspend/resume.
2328  * - Debug : used for debugging
2329  *
2330  * We save/restore all registers marked with 'Driver', with the following
2331  * exceptions:
2332  * - Registers out of use, including also registers marked with 'Debug'.
2333  *   These have no effect on the driver's operation, so we don't save/restore
2334  *   them to reduce the overhead.
2335  * - Registers that are fully setup by an initialization function called from
2336  *   the resume path. For example many clock gating and RPS/RC6 registers.
2337  * - Registers that provide the right functionality with their reset defaults.
2338  *
2339  * TODO: Except for registers that based on the above 3 criteria can be safely
2340  * ignored, we save/restore all others, practically treating the HW context as
2341  * a black-box for the driver. Further investigation is needed to reduce the
2342  * saved/restored registers even further, by following the same 3 criteria.
2343  */
2344 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2345 {
2346         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2347         int i;
2348
2349         /* GAM 0x4000-0x4770 */
2350         s->wr_watermark         = I915_READ(GEN7_WR_WATERMARK);
2351         s->gfx_prio_ctrl        = I915_READ(GEN7_GFX_PRIO_CTRL);
2352         s->arb_mode             = I915_READ(ARB_MODE);
2353         s->gfx_pend_tlb0        = I915_READ(GEN7_GFX_PEND_TLB0);
2354         s->gfx_pend_tlb1        = I915_READ(GEN7_GFX_PEND_TLB1);
2355
2356         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2357                 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
2358
2359         s->media_max_req_count  = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
2360         s->gfx_max_req_count    = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
2361
2362         s->render_hwsp          = I915_READ(RENDER_HWS_PGA_GEN7);
2363         s->ecochk               = I915_READ(GAM_ECOCHK);
2364         s->bsd_hwsp             = I915_READ(BSD_HWS_PGA_GEN7);
2365         s->blt_hwsp             = I915_READ(BLT_HWS_PGA_GEN7);
2366
2367         s->tlb_rd_addr          = I915_READ(GEN7_TLB_RD_ADDR);
2368
2369         /* MBC 0x9024-0x91D0, 0x8500 */
2370         s->g3dctl               = I915_READ(VLV_G3DCTL);
2371         s->gsckgctl             = I915_READ(VLV_GSCKGCTL);
2372         s->mbctl                = I915_READ(GEN6_MBCTL);
2373
2374         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2375         s->ucgctl1              = I915_READ(GEN6_UCGCTL1);
2376         s->ucgctl3              = I915_READ(GEN6_UCGCTL3);
2377         s->rcgctl1              = I915_READ(GEN6_RCGCTL1);
2378         s->rcgctl2              = I915_READ(GEN6_RCGCTL2);
2379         s->rstctl               = I915_READ(GEN6_RSTCTL);
2380         s->misccpctl            = I915_READ(GEN7_MISCCPCTL);
2381
2382         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2383         s->gfxpause             = I915_READ(GEN6_GFXPAUSE);
2384         s->rpdeuhwtc            = I915_READ(GEN6_RPDEUHWTC);
2385         s->rpdeuc               = I915_READ(GEN6_RPDEUC);
2386         s->ecobus               = I915_READ(ECOBUS);
2387         s->pwrdwnupctl          = I915_READ(VLV_PWRDWNUPCTL);
2388         s->rp_down_timeout      = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2389         s->rp_deucsw            = I915_READ(GEN6_RPDEUCSW);
2390         s->rcubmabdtmr          = I915_READ(GEN6_RCUBMABDTMR);
2391         s->rcedata              = I915_READ(VLV_RCEDATA);
2392         s->spare2gh             = I915_READ(VLV_SPAREG2H);
2393
2394         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2395         s->gt_imr               = I915_READ(GTIMR);
2396         s->gt_ier               = I915_READ(GTIER);
2397         s->pm_imr               = I915_READ(GEN6_PMIMR);
2398         s->pm_ier               = I915_READ(GEN6_PMIER);
2399
2400         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2401                 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2402
2403         /* GT SA CZ domain, 0x100000-0x138124 */
2404         s->tilectl              = I915_READ(TILECTL);
2405         s->gt_fifoctl           = I915_READ(GTFIFOCTL);
2406         s->gtlc_wake_ctrl       = I915_READ(VLV_GTLC_WAKE_CTRL);
2407         s->gtlc_survive         = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2408         s->pmwgicz              = I915_READ(VLV_PMWGICZ);
2409
2410         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2411         s->gu_ctl0              = I915_READ(VLV_GU_CTL0);
2412         s->gu_ctl1              = I915_READ(VLV_GU_CTL1);
2413         s->pcbr                 = I915_READ(VLV_PCBR);
2414         s->clock_gate_dis2      = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2415
2416         /*
2417          * Not saving any of:
2418          * DFT,         0x9800-0x9EC0
2419          * SARB,        0xB000-0xB1FC
2420          * GAC,         0x5208-0x524C, 0x14000-0x14C000
2421          * PCI CFG
2422          */
2423 }
2424
2425 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2426 {
2427         struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2428         u32 val;
2429         int i;
2430
2431         /* GAM 0x4000-0x4770 */
2432         I915_WRITE(GEN7_WR_WATERMARK,   s->wr_watermark);
2433         I915_WRITE(GEN7_GFX_PRIO_CTRL,  s->gfx_prio_ctrl);
2434         I915_WRITE(ARB_MODE,            s->arb_mode | (0xffff << 16));
2435         I915_WRITE(GEN7_GFX_PEND_TLB0,  s->gfx_pend_tlb0);
2436         I915_WRITE(GEN7_GFX_PEND_TLB1,  s->gfx_pend_tlb1);
2437
2438         for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2439                 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2440
2441         I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2442         I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2443
2444         I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2445         I915_WRITE(GAM_ECOCHK,          s->ecochk);
2446         I915_WRITE(BSD_HWS_PGA_GEN7,    s->bsd_hwsp);
2447         I915_WRITE(BLT_HWS_PGA_GEN7,    s->blt_hwsp);
2448
2449         I915_WRITE(GEN7_TLB_RD_ADDR,    s->tlb_rd_addr);
2450
2451         /* MBC 0x9024-0x91D0, 0x8500 */
2452         I915_WRITE(VLV_G3DCTL,          s->g3dctl);
2453         I915_WRITE(VLV_GSCKGCTL,        s->gsckgctl);
2454         I915_WRITE(GEN6_MBCTL,          s->mbctl);
2455
2456         /* GCP 0x9400-0x9424, 0x8100-0x810C */
2457         I915_WRITE(GEN6_UCGCTL1,        s->ucgctl1);
2458         I915_WRITE(GEN6_UCGCTL3,        s->ucgctl3);
2459         I915_WRITE(GEN6_RCGCTL1,        s->rcgctl1);
2460         I915_WRITE(GEN6_RCGCTL2,        s->rcgctl2);
2461         I915_WRITE(GEN6_RSTCTL,         s->rstctl);
2462         I915_WRITE(GEN7_MISCCPCTL,      s->misccpctl);
2463
2464         /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2465         I915_WRITE(GEN6_GFXPAUSE,       s->gfxpause);
2466         I915_WRITE(GEN6_RPDEUHWTC,      s->rpdeuhwtc);
2467         I915_WRITE(GEN6_RPDEUC,         s->rpdeuc);
2468         I915_WRITE(ECOBUS,              s->ecobus);
2469         I915_WRITE(VLV_PWRDWNUPCTL,     s->pwrdwnupctl);
2470         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2471         I915_WRITE(GEN6_RPDEUCSW,       s->rp_deucsw);
2472         I915_WRITE(GEN6_RCUBMABDTMR,    s->rcubmabdtmr);
2473         I915_WRITE(VLV_RCEDATA,         s->rcedata);
2474         I915_WRITE(VLV_SPAREG2H,        s->spare2gh);
2475
2476         /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2477         I915_WRITE(GTIMR,               s->gt_imr);
2478         I915_WRITE(GTIER,               s->gt_ier);
2479         I915_WRITE(GEN6_PMIMR,          s->pm_imr);
2480         I915_WRITE(GEN6_PMIER,          s->pm_ier);
2481
2482         for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2483                 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2484
2485         /* GT SA CZ domain, 0x100000-0x138124 */
2486         I915_WRITE(TILECTL,                     s->tilectl);
2487         I915_WRITE(GTFIFOCTL,                   s->gt_fifoctl);
2488         /*
2489          * Preserve the GT allow wake and GFX force clock bit, they are not
2490          * be restored, as they are used to control the s0ix suspend/resume
2491          * sequence by the caller.
2492          */
2493         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2494         val &= VLV_GTLC_ALLOWWAKEREQ;
2495         val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2496         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2497
2498         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2499         val &= VLV_GFX_CLK_FORCE_ON_BIT;
2500         val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2501         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2502
2503         I915_WRITE(VLV_PMWGICZ,                 s->pmwgicz);
2504
2505         /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2506         I915_WRITE(VLV_GU_CTL0,                 s->gu_ctl0);
2507         I915_WRITE(VLV_GU_CTL1,                 s->gu_ctl1);
2508         I915_WRITE(VLV_PCBR,                    s->pcbr);
2509         I915_WRITE(VLV_GUNIT_CLOCK_GATE2,       s->clock_gate_dis2);
2510 }
2511
2512 static int vlv_wait_for_pw_status(struct drm_i915_private *dev_priv,
2513                                   u32 mask, u32 val)
2514 {
2515         i915_reg_t reg = VLV_GTLC_PW_STATUS;
2516         u32 reg_value;
2517         int ret;
2518
2519         /* The HW does not like us polling for PW_STATUS frequently, so
2520          * use the sleeping loop rather than risk the busy spin within
2521          * intel_wait_for_register().
2522          *
2523          * Transitioning between RC6 states should be at most 2ms (see
2524          * valleyview_enable_rps) so use a 3ms timeout.
2525          */
2526         ret = wait_for(((reg_value = I915_READ_NOTRACE(reg)) & mask) == val, 3);
2527
2528         /* just trace the final value */
2529         trace_i915_reg_rw(false, reg, reg_value, sizeof(reg_value), true);
2530
2531         return ret;
2532 }
2533
2534 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2535 {
2536         u32 val;
2537         int err;
2538
2539         val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2540         val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2541         if (force_on)
2542                 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2543         I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2544
2545         if (!force_on)
2546                 return 0;
2547
2548         err = intel_wait_for_register(dev_priv,
2549                                       VLV_GTLC_SURVIVABILITY_REG,
2550                                       VLV_GFX_CLK_STATUS_BIT,
2551                                       VLV_GFX_CLK_STATUS_BIT,
2552                                       20);
2553         if (err)
2554                 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2555                           I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2556
2557         return err;
2558 }
2559
2560 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2561 {
2562         u32 mask;
2563         u32 val;
2564         int err;
2565
2566         val = I915_READ(VLV_GTLC_WAKE_CTRL);
2567         val &= ~VLV_GTLC_ALLOWWAKEREQ;
2568         if (allow)
2569                 val |= VLV_GTLC_ALLOWWAKEREQ;
2570         I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2571         POSTING_READ(VLV_GTLC_WAKE_CTRL);
2572
2573         mask = VLV_GTLC_ALLOWWAKEACK;
2574         val = allow ? mask : 0;
2575
2576         err = vlv_wait_for_pw_status(dev_priv, mask, val);
2577         if (err)
2578                 DRM_ERROR("timeout disabling GT waking\n");
2579
2580         return err;
2581 }
2582
2583 static void vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2584                                   bool wait_for_on)
2585 {
2586         u32 mask;
2587         u32 val;
2588
2589         mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2590         val = wait_for_on ? mask : 0;
2591
2592         /*
2593          * RC6 transitioning can be delayed up to 2 msec (see
2594          * valleyview_enable_rps), use 3 msec for safety.
2595          *
2596          * This can fail to turn off the rc6 if the GPU is stuck after a failed
2597          * reset and we are trying to force the machine to sleep.
2598          */
2599         if (vlv_wait_for_pw_status(dev_priv, mask, val))
2600                 DRM_DEBUG_DRIVER("timeout waiting for GT wells to go %s\n",
2601                                  onoff(wait_for_on));
2602 }
2603
2604 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2605 {
2606         if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2607                 return;
2608
2609         DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2610         I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2611 }
2612
2613 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2614 {
2615         u32 mask;
2616         int err;
2617
2618         /*
2619          * Bspec defines the following GT well on flags as debug only, so
2620          * don't treat them as hard failures.
2621          */
2622         vlv_wait_for_gt_wells(dev_priv, false);
2623
2624         mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2625         WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2626
2627         vlv_check_no_gt_access(dev_priv);
2628
2629         err = vlv_force_gfx_clock(dev_priv, true);
2630         if (err)
2631                 goto err1;
2632
2633         err = vlv_allow_gt_wake(dev_priv, false);
2634         if (err)
2635                 goto err2;
2636
2637         if (!IS_CHERRYVIEW(dev_priv))
2638                 vlv_save_gunit_s0ix_state(dev_priv);
2639
2640         err = vlv_force_gfx_clock(dev_priv, false);
2641         if (err)
2642                 goto err2;
2643
2644         return 0;
2645
2646 err2:
2647         /* For safety always re-enable waking and disable gfx clock forcing */
2648         vlv_allow_gt_wake(dev_priv, true);
2649 err1:
2650         vlv_force_gfx_clock(dev_priv, false);
2651
2652         return err;
2653 }
2654
2655 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2656                                 bool rpm_resume)
2657 {
2658         int err;
2659         int ret;
2660
2661         /*
2662          * If any of the steps fail just try to continue, that's the best we
2663          * can do at this point. Return the first error code (which will also
2664          * leave RPM permanently disabled).
2665          */
2666         ret = vlv_force_gfx_clock(dev_priv, true);
2667
2668         if (!IS_CHERRYVIEW(dev_priv))
2669                 vlv_restore_gunit_s0ix_state(dev_priv);
2670
2671         err = vlv_allow_gt_wake(dev_priv, true);
2672         if (!ret)
2673                 ret = err;
2674
2675         err = vlv_force_gfx_clock(dev_priv, false);
2676         if (!ret)
2677                 ret = err;
2678
2679         vlv_check_no_gt_access(dev_priv);
2680
2681         if (rpm_resume)
2682                 intel_init_clock_gating(dev_priv);
2683
2684         return ret;
2685 }
2686
2687 static int intel_runtime_suspend(struct device *kdev)
2688 {
2689         struct pci_dev *pdev = to_pci_dev(kdev);
2690         struct drm_device *dev = pci_get_drvdata(pdev);
2691         struct drm_i915_private *dev_priv = to_i915(dev);
2692         int ret;
2693
2694         if (WARN_ON_ONCE(!(dev_priv->gt_pm.rc6.enabled && HAS_RC6(dev_priv))))
2695                 return -ENODEV;
2696
2697         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2698                 return -ENODEV;
2699
2700         DRM_DEBUG_KMS("Suspending device\n");
2701
2702         disable_rpm_wakeref_asserts(dev_priv);
2703
2704         /*
2705          * We are safe here against re-faults, since the fault handler takes
2706          * an RPM reference.
2707          */
2708         i915_gem_runtime_suspend(dev_priv);
2709
2710         intel_uc_suspend(dev_priv);
2711
2712         intel_runtime_pm_disable_interrupts(dev_priv);
2713
2714         intel_uncore_suspend(dev_priv);
2715
2716         ret = 0;
2717         if (INTEL_GEN(dev_priv) >= 11) {
2718                 icl_display_core_uninit(dev_priv);
2719                 bxt_enable_dc9(dev_priv);
2720         } else if (IS_GEN9_LP(dev_priv)) {
2721                 bxt_display_core_uninit(dev_priv);
2722                 bxt_enable_dc9(dev_priv);
2723         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2724                 hsw_enable_pc8(dev_priv);
2725         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2726                 ret = vlv_suspend_complete(dev_priv);
2727         }
2728
2729         if (ret) {
2730                 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2731                 intel_uncore_runtime_resume(dev_priv);
2732
2733                 intel_runtime_pm_enable_interrupts(dev_priv);
2734
2735                 intel_uc_resume(dev_priv);
2736
2737                 i915_gem_init_swizzling(dev_priv);
2738                 i915_gem_restore_fences(dev_priv);
2739
2740                 enable_rpm_wakeref_asserts(dev_priv);
2741
2742                 return ret;
2743         }
2744
2745         enable_rpm_wakeref_asserts(dev_priv);
2746         intel_runtime_pm_cleanup(dev_priv);
2747
2748         if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2749                 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2750
2751         dev_priv->runtime_pm.suspended = true;
2752
2753         /*
2754          * FIXME: We really should find a document that references the arguments
2755          * used below!
2756          */
2757         if (IS_BROADWELL(dev_priv)) {
2758                 /*
2759                  * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2760                  * being detected, and the call we do at intel_runtime_resume()
2761                  * won't be able to restore them. Since PCI_D3hot matches the
2762                  * actual specification and appears to be working, use it.
2763                  */
2764                 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2765         } else {
2766                 /*
2767                  * current versions of firmware which depend on this opregion
2768                  * notification have repurposed the D1 definition to mean
2769                  * "runtime suspended" vs. what you would normally expect (D3)
2770                  * to distinguish it from notifications that might be sent via
2771                  * the suspend path.
2772                  */
2773                 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2774         }
2775
2776         assert_forcewakes_inactive(dev_priv);
2777
2778         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2779                 intel_hpd_poll_init(dev_priv);
2780
2781         DRM_DEBUG_KMS("Device suspended\n");
2782         return 0;
2783 }
2784
2785 static int intel_runtime_resume(struct device *kdev)
2786 {
2787         struct pci_dev *pdev = to_pci_dev(kdev);
2788         struct drm_device *dev = pci_get_drvdata(pdev);
2789         struct drm_i915_private *dev_priv = to_i915(dev);
2790         int ret = 0;
2791
2792         if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2793                 return -ENODEV;
2794
2795         DRM_DEBUG_KMS("Resuming device\n");
2796
2797         WARN_ON_ONCE(atomic_read(&dev_priv->runtime_pm.wakeref_count));
2798         disable_rpm_wakeref_asserts(dev_priv);
2799
2800         intel_opregion_notify_adapter(dev_priv, PCI_D0);
2801         dev_priv->runtime_pm.suspended = false;
2802         if (intel_uncore_unclaimed_mmio(dev_priv))
2803                 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2804
2805         if (INTEL_GEN(dev_priv) >= 11) {
2806                 bxt_disable_dc9(dev_priv);
2807                 icl_display_core_init(dev_priv, true);
2808                 if (dev_priv->csr.dmc_payload) {
2809                         if (dev_priv->csr.allowed_dc_mask &
2810                             DC_STATE_EN_UPTO_DC6)
2811                                 skl_enable_dc6(dev_priv);
2812                         else if (dev_priv->csr.allowed_dc_mask &
2813                                  DC_STATE_EN_UPTO_DC5)
2814                                 gen9_enable_dc5(dev_priv);
2815                 }
2816         } else if (IS_GEN9_LP(dev_priv)) {
2817                 bxt_disable_dc9(dev_priv);
2818                 bxt_display_core_init(dev_priv, true);
2819                 if (dev_priv->csr.dmc_payload &&
2820                     (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2821                         gen9_enable_dc5(dev_priv);
2822         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2823                 hsw_disable_pc8(dev_priv);
2824         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2825                 ret = vlv_resume_prepare(dev_priv, true);
2826         }
2827
2828         intel_uncore_runtime_resume(dev_priv);
2829
2830         intel_runtime_pm_enable_interrupts(dev_priv);
2831
2832         intel_uc_resume(dev_priv);
2833
2834         /*
2835          * No point of rolling back things in case of an error, as the best
2836          * we can do is to hope that things will still work (and disable RPM).
2837          */
2838         i915_gem_init_swizzling(dev_priv);
2839         i915_gem_restore_fences(dev_priv);
2840
2841         /*
2842          * On VLV/CHV display interrupts are part of the display
2843          * power well, so hpd is reinitialized from there. For
2844          * everyone else do it here.
2845          */
2846         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2847                 intel_hpd_init(dev_priv);
2848
2849         intel_enable_ipc(dev_priv);
2850
2851         enable_rpm_wakeref_asserts(dev_priv);
2852
2853         if (ret)
2854                 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2855         else
2856                 DRM_DEBUG_KMS("Device resumed\n");
2857
2858         return ret;
2859 }
2860
2861 const struct dev_pm_ops i915_pm_ops = {
2862         /*
2863          * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2864          * PMSG_RESUME]
2865          */
2866         .prepare = i915_pm_prepare,
2867         .suspend = i915_pm_suspend,
2868         .suspend_late = i915_pm_suspend_late,
2869         .resume_early = i915_pm_resume_early,
2870         .resume = i915_pm_resume,
2871
2872         /*
2873          * S4 event handlers
2874          * @freeze, @freeze_late    : called (1) before creating the
2875          *                            hibernation image [PMSG_FREEZE] and
2876          *                            (2) after rebooting, before restoring
2877          *                            the image [PMSG_QUIESCE]
2878          * @thaw, @thaw_early       : called (1) after creating the hibernation
2879          *                            image, before writing it [PMSG_THAW]
2880          *                            and (2) after failing to create or
2881          *                            restore the image [PMSG_RECOVER]
2882          * @poweroff, @poweroff_late: called after writing the hibernation
2883          *                            image, before rebooting [PMSG_HIBERNATE]
2884          * @restore, @restore_early : called after rebooting and restoring the
2885          *                            hibernation image [PMSG_RESTORE]
2886          */
2887         .freeze = i915_pm_freeze,
2888         .freeze_late = i915_pm_freeze_late,
2889         .thaw_early = i915_pm_thaw_early,
2890         .thaw = i915_pm_thaw,
2891         .poweroff = i915_pm_suspend,
2892         .poweroff_late = i915_pm_poweroff_late,
2893         .restore_early = i915_pm_restore_early,
2894         .restore = i915_pm_restore,
2895
2896         /* S0ix (via runtime suspend) event handlers */
2897         .runtime_suspend = intel_runtime_suspend,
2898         .runtime_resume = intel_runtime_resume,
2899 };
2900
2901 static const struct vm_operations_struct i915_gem_vm_ops = {
2902         .fault = i915_gem_fault,
2903         .open = drm_gem_vm_open,
2904         .close = drm_gem_vm_close,
2905 };
2906
2907 static const struct file_operations i915_driver_fops = {
2908         .owner = THIS_MODULE,
2909         .open = drm_open,
2910         .release = drm_release,
2911         .unlocked_ioctl = drm_ioctl,
2912         .mmap = drm_gem_mmap,
2913         .poll = drm_poll,
2914         .read = drm_read,
2915         .compat_ioctl = i915_compat_ioctl,
2916         .llseek = noop_llseek,
2917 };
2918
2919 static int
2920 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2921                           struct drm_file *file)
2922 {
2923         return -ENODEV;
2924 }
2925
2926 static const struct drm_ioctl_desc i915_ioctls[] = {
2927         DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2928         DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2929         DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2930         DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2931         DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2932         DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2933         DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2934         DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2935         DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2936         DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2937         DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2938         DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2939         DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2940         DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE,  drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2941         DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE,  drm_noop, DRM_AUTH),
2942         DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2943         DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2944         DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2945         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer_ioctl, DRM_AUTH),
2946         DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2_WR, i915_gem_execbuffer2_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2947         DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2948         DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2949         DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2950         DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2951         DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2952         DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2953         DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2954         DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2955         DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2956         DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2957         DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2958         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2959         DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2960         DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2961         DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2962         DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling_ioctl, DRM_RENDER_ALLOW),
2963         DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling_ioctl, DRM_RENDER_ALLOW),
2964         DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2965         DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id_ioctl, 0),
2966         DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2967         DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER),
2968         DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER),
2969         DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey_ioctl, DRM_MASTER),
2970         DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER),
2971         DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2972         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2973         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2974         DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2975         DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2976         DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2977         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2978         DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2979         DRM_IOCTL_DEF_DRV(I915_PERF_OPEN, i915_perf_open_ioctl, DRM_RENDER_ALLOW),
2980         DRM_IOCTL_DEF_DRV(I915_PERF_ADD_CONFIG, i915_perf_add_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2981         DRM_IOCTL_DEF_DRV(I915_PERF_REMOVE_CONFIG, i915_perf_remove_config_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2982         DRM_IOCTL_DEF_DRV(I915_QUERY, i915_query_ioctl, DRM_UNLOCKED|DRM_RENDER_ALLOW),
2983 };
2984
2985 static struct drm_driver driver = {
2986         /* Don't use MTRRs here; the Xserver or userspace app should
2987          * deal with them for Intel hardware.
2988          */
2989         .driver_features =
2990             DRIVER_GEM | DRIVER_PRIME |
2991             DRIVER_RENDER | DRIVER_MODESET | DRIVER_ATOMIC | DRIVER_SYNCOBJ,
2992         .release = i915_driver_release,
2993         .open = i915_driver_open,
2994         .lastclose = i915_driver_lastclose,
2995         .postclose = i915_driver_postclose,
2996
2997         .gem_close_object = i915_gem_close_object,
2998         .gem_free_object_unlocked = i915_gem_free_object,
2999         .gem_vm_ops = &i915_gem_vm_ops,
3000
3001         .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
3002         .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
3003         .gem_prime_export = i915_gem_prime_export,
3004         .gem_prime_import = i915_gem_prime_import,
3005
3006         .dumb_create = i915_gem_dumb_create,
3007         .dumb_map_offset = i915_gem_mmap_gtt,
3008         .ioctls = i915_ioctls,
3009         .num_ioctls = ARRAY_SIZE(i915_ioctls),
3010         .fops = &i915_driver_fops,
3011         .name = DRIVER_NAME,
3012         .desc = DRIVER_DESC,
3013         .date = DRIVER_DATE,
3014         .major = DRIVER_MAJOR,
3015         .minor = DRIVER_MINOR,
3016         .patchlevel = DRIVER_PATCHLEVEL,
3017 };
3018
3019 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3020 #include "selftests/mock_drm.c"
3021 #endif