Merge tag 'xtensa-20161005' of git://github.com/jcmvbkbc/linux-xtensa
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 /* As the drm_debugfs_init() routines are called before dev->dev_private is
50  * allocated we need to hook into the minor for release. */
51 static int
52 drm_add_fake_info_node(struct drm_minor *minor,
53                        struct dentry *ent,
54                        const void *key)
55 {
56         struct drm_info_node *node;
57
58         node = kmalloc(sizeof(*node), GFP_KERNEL);
59         if (node == NULL) {
60                 debugfs_remove(ent);
61                 return -ENOMEM;
62         }
63
64         node->minor = minor;
65         node->dent = ent;
66         node->info_ent = (void *) key;
67
68         mutex_lock(&minor->debugfs_lock);
69         list_add(&node->list, &minor->debugfs_list);
70         mutex_unlock(&minor->debugfs_lock);
71
72         return 0;
73 }
74
75 static int i915_capabilities(struct seq_file *m, void *data)
76 {
77         struct drm_info_node *node = m->private;
78         struct drm_device *dev = node->minor->dev;
79         const struct intel_device_info *info = INTEL_INFO(dev);
80
81         seq_printf(m, "gen: %d\n", info->gen);
82         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
83 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
84 #define SEP_SEMICOLON ;
85         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
86 #undef PRINT_FLAG
87 #undef SEP_SEMICOLON
88
89         return 0;
90 }
91
92 static char get_active_flag(struct drm_i915_gem_object *obj)
93 {
94         return obj->active ? '*' : ' ';
95 }
96
97 static char get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         return obj->pin_display ? 'p' : ' ';
100 }
101
102 static char get_tiling_flag(struct drm_i915_gem_object *obj)
103 {
104         switch (obj->tiling_mode) {
105         default:
106         case I915_TILING_NONE: return ' ';
107         case I915_TILING_X: return 'X';
108         case I915_TILING_Y: return 'Y';
109         }
110 }
111
112 static char get_global_flag(struct drm_i915_gem_object *obj)
113 {
114         return i915_gem_obj_to_ggtt(obj) ? 'g' : ' ';
115 }
116
117 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->mapping ? 'M' : ' ';
120 }
121
122 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
123 {
124         u64 size = 0;
125         struct i915_vma *vma;
126
127         list_for_each_entry(vma, &obj->vma_list, obj_link) {
128                 if (vma->is_ggtt && drm_mm_node_allocated(&vma->node))
129                         size += vma->node.size;
130         }
131
132         return size;
133 }
134
135 static void
136 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
137 {
138         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
139         struct intel_engine_cs *engine;
140         struct i915_vma *vma;
141         int pin_count = 0;
142         enum intel_engine_id id;
143
144         lockdep_assert_held(&obj->base.dev->struct_mutex);
145
146         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
147                    &obj->base,
148                    get_active_flag(obj),
149                    get_pin_flag(obj),
150                    get_tiling_flag(obj),
151                    get_global_flag(obj),
152                    get_pin_mapped_flag(obj),
153                    obj->base.size / 1024,
154                    obj->base.read_domains,
155                    obj->base.write_domain);
156         for_each_engine_id(engine, dev_priv, id)
157                 seq_printf(m, "%x ",
158                                 i915_gem_request_get_seqno(obj->last_read_req[id]));
159         seq_printf(m, "] %x %x%s%s%s",
160                    i915_gem_request_get_seqno(obj->last_write_req),
161                    i915_gem_request_get_seqno(obj->last_fenced_req),
162                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
163                    obj->dirty ? " dirty" : "",
164                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
165         if (obj->base.name)
166                 seq_printf(m, " (name: %d)", obj->base.name);
167         list_for_each_entry(vma, &obj->vma_list, obj_link) {
168                 if (vma->pin_count > 0)
169                         pin_count++;
170         }
171         seq_printf(m, " (pinned x %d)", pin_count);
172         if (obj->pin_display)
173                 seq_printf(m, " (display)");
174         if (obj->fence_reg != I915_FENCE_REG_NONE)
175                 seq_printf(m, " (fence: %d)", obj->fence_reg);
176         list_for_each_entry(vma, &obj->vma_list, obj_link) {
177                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
178                            vma->is_ggtt ? "g" : "pp",
179                            vma->node.start, vma->node.size);
180                 if (vma->is_ggtt)
181                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
182                 seq_puts(m, ")");
183         }
184         if (obj->stolen)
185                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
186         if (obj->pin_display || obj->fault_mappable) {
187                 char s[3], *t = s;
188                 if (obj->pin_display)
189                         *t++ = 'p';
190                 if (obj->fault_mappable)
191                         *t++ = 'f';
192                 *t = '\0';
193                 seq_printf(m, " (%s mappable)", s);
194         }
195         if (obj->last_write_req != NULL)
196                 seq_printf(m, " (%s)",
197                            i915_gem_request_get_engine(obj->last_write_req)->name);
198         if (obj->frontbuffer_bits)
199                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
200 }
201
202 static int i915_gem_object_list_info(struct seq_file *m, void *data)
203 {
204         struct drm_info_node *node = m->private;
205         uintptr_t list = (uintptr_t) node->info_ent->data;
206         struct list_head *head;
207         struct drm_device *dev = node->minor->dev;
208         struct drm_i915_private *dev_priv = to_i915(dev);
209         struct i915_ggtt *ggtt = &dev_priv->ggtt;
210         struct i915_vma *vma;
211         u64 total_obj_size, total_gtt_size;
212         int count, ret;
213
214         ret = mutex_lock_interruptible(&dev->struct_mutex);
215         if (ret)
216                 return ret;
217
218         /* FIXME: the user of this interface might want more than just GGTT */
219         switch (list) {
220         case ACTIVE_LIST:
221                 seq_puts(m, "Active:\n");
222                 head = &ggtt->base.active_list;
223                 break;
224         case INACTIVE_LIST:
225                 seq_puts(m, "Inactive:\n");
226                 head = &ggtt->base.inactive_list;
227                 break;
228         default:
229                 mutex_unlock(&dev->struct_mutex);
230                 return -EINVAL;
231         }
232
233         total_obj_size = total_gtt_size = count = 0;
234         list_for_each_entry(vma, head, vm_link) {
235                 seq_printf(m, "   ");
236                 describe_obj(m, vma->obj);
237                 seq_printf(m, "\n");
238                 total_obj_size += vma->obj->base.size;
239                 total_gtt_size += vma->node.size;
240                 count++;
241         }
242         mutex_unlock(&dev->struct_mutex);
243
244         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
245                    count, total_obj_size, total_gtt_size);
246         return 0;
247 }
248
249 static int obj_rank_by_stolen(void *priv,
250                               struct list_head *A, struct list_head *B)
251 {
252         struct drm_i915_gem_object *a =
253                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
254         struct drm_i915_gem_object *b =
255                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
256
257         if (a->stolen->start < b->stolen->start)
258                 return -1;
259         if (a->stolen->start > b->stolen->start)
260                 return 1;
261         return 0;
262 }
263
264 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
265 {
266         struct drm_info_node *node = m->private;
267         struct drm_device *dev = node->minor->dev;
268         struct drm_i915_private *dev_priv = to_i915(dev);
269         struct drm_i915_gem_object *obj;
270         u64 total_obj_size, total_gtt_size;
271         LIST_HEAD(stolen);
272         int count, ret;
273
274         ret = mutex_lock_interruptible(&dev->struct_mutex);
275         if (ret)
276                 return ret;
277
278         total_obj_size = total_gtt_size = count = 0;
279         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
280                 if (obj->stolen == NULL)
281                         continue;
282
283                 list_add(&obj->obj_exec_link, &stolen);
284
285                 total_obj_size += obj->base.size;
286                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
287                 count++;
288         }
289         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
290                 if (obj->stolen == NULL)
291                         continue;
292
293                 list_add(&obj->obj_exec_link, &stolen);
294
295                 total_obj_size += obj->base.size;
296                 count++;
297         }
298         list_sort(NULL, &stolen, obj_rank_by_stolen);
299         seq_puts(m, "Stolen:\n");
300         while (!list_empty(&stolen)) {
301                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
302                 seq_puts(m, "   ");
303                 describe_obj(m, obj);
304                 seq_putc(m, '\n');
305                 list_del_init(&obj->obj_exec_link);
306         }
307         mutex_unlock(&dev->struct_mutex);
308
309         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
310                    count, total_obj_size, total_gtt_size);
311         return 0;
312 }
313
314 #define count_objects(list, member) do { \
315         list_for_each_entry(obj, list, member) { \
316                 size += i915_gem_obj_total_ggtt_size(obj); \
317                 ++count; \
318                 if (obj->map_and_fenceable) { \
319                         mappable_size += i915_gem_obj_ggtt_size(obj); \
320                         ++mappable_count; \
321                 } \
322         } \
323 } while (0)
324
325 struct file_stats {
326         struct drm_i915_file_private *file_priv;
327         unsigned long count;
328         u64 total, unbound;
329         u64 global, shared;
330         u64 active, inactive;
331 };
332
333 static int per_file_stats(int id, void *ptr, void *data)
334 {
335         struct drm_i915_gem_object *obj = ptr;
336         struct file_stats *stats = data;
337         struct i915_vma *vma;
338
339         stats->count++;
340         stats->total += obj->base.size;
341
342         if (obj->base.name || obj->base.dma_buf)
343                 stats->shared += obj->base.size;
344
345         if (USES_FULL_PPGTT(obj->base.dev)) {
346                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
347                         struct i915_hw_ppgtt *ppgtt;
348
349                         if (!drm_mm_node_allocated(&vma->node))
350                                 continue;
351
352                         if (vma->is_ggtt) {
353                                 stats->global += obj->base.size;
354                                 continue;
355                         }
356
357                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
358                         if (ppgtt->file_priv != stats->file_priv)
359                                 continue;
360
361                         if (obj->active) /* XXX per-vma statistic */
362                                 stats->active += obj->base.size;
363                         else
364                                 stats->inactive += obj->base.size;
365
366                         return 0;
367                 }
368         } else {
369                 if (i915_gem_obj_ggtt_bound(obj)) {
370                         stats->global += obj->base.size;
371                         if (obj->active)
372                                 stats->active += obj->base.size;
373                         else
374                                 stats->inactive += obj->base.size;
375                         return 0;
376                 }
377         }
378
379         if (!list_empty(&obj->global_list))
380                 stats->unbound += obj->base.size;
381
382         return 0;
383 }
384
385 #define print_file_stats(m, name, stats) do { \
386         if (stats.count) \
387                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
388                            name, \
389                            stats.count, \
390                            stats.total, \
391                            stats.active, \
392                            stats.inactive, \
393                            stats.global, \
394                            stats.shared, \
395                            stats.unbound); \
396 } while (0)
397
398 static void print_batch_pool_stats(struct seq_file *m,
399                                    struct drm_i915_private *dev_priv)
400 {
401         struct drm_i915_gem_object *obj;
402         struct file_stats stats;
403         struct intel_engine_cs *engine;
404         int j;
405
406         memset(&stats, 0, sizeof(stats));
407
408         for_each_engine(engine, dev_priv) {
409                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
410                         list_for_each_entry(obj,
411                                             &engine->batch_pool.cache_list[j],
412                                             batch_pool_link)
413                                 per_file_stats(0, obj, &stats);
414                 }
415         }
416
417         print_file_stats(m, "[k]batch pool", stats);
418 }
419
420 static int per_file_ctx_stats(int id, void *ptr, void *data)
421 {
422         struct i915_gem_context *ctx = ptr;
423         int n;
424
425         for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
426                 if (ctx->engine[n].state)
427                         per_file_stats(0, ctx->engine[n].state, data);
428                 if (ctx->engine[n].ringbuf)
429                         per_file_stats(0, ctx->engine[n].ringbuf->obj, data);
430         }
431
432         return 0;
433 }
434
435 static void print_context_stats(struct seq_file *m,
436                                 struct drm_i915_private *dev_priv)
437 {
438         struct file_stats stats;
439         struct drm_file *file;
440
441         memset(&stats, 0, sizeof(stats));
442
443         mutex_lock(&dev_priv->drm.struct_mutex);
444         if (dev_priv->kernel_context)
445                 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
446
447         list_for_each_entry(file, &dev_priv->drm.filelist, lhead) {
448                 struct drm_i915_file_private *fpriv = file->driver_priv;
449                 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
450         }
451         mutex_unlock(&dev_priv->drm.struct_mutex);
452
453         print_file_stats(m, "[k]contexts", stats);
454 }
455
456 #define count_vmas(list, member) do { \
457         list_for_each_entry(vma, list, member) { \
458                 size += i915_gem_obj_total_ggtt_size(vma->obj); \
459                 ++count; \
460                 if (vma->obj->map_and_fenceable) { \
461                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
462                         ++mappable_count; \
463                 } \
464         } \
465 } while (0)
466
467 static int i915_gem_object_info(struct seq_file *m, void* data)
468 {
469         struct drm_info_node *node = m->private;
470         struct drm_device *dev = node->minor->dev;
471         struct drm_i915_private *dev_priv = to_i915(dev);
472         struct i915_ggtt *ggtt = &dev_priv->ggtt;
473         u32 count, mappable_count, purgeable_count;
474         u64 size, mappable_size, purgeable_size;
475         unsigned long pin_mapped_count = 0, pin_mapped_purgeable_count = 0;
476         u64 pin_mapped_size = 0, pin_mapped_purgeable_size = 0;
477         struct drm_i915_gem_object *obj;
478         struct drm_file *file;
479         struct i915_vma *vma;
480         int ret;
481
482         ret = mutex_lock_interruptible(&dev->struct_mutex);
483         if (ret)
484                 return ret;
485
486         seq_printf(m, "%u objects, %zu bytes\n",
487                    dev_priv->mm.object_count,
488                    dev_priv->mm.object_memory);
489
490         size = count = mappable_size = mappable_count = 0;
491         count_objects(&dev_priv->mm.bound_list, global_list);
492         seq_printf(m, "%u [%u] objects, %llu [%llu] bytes in gtt\n",
493                    count, mappable_count, size, mappable_size);
494
495         size = count = mappable_size = mappable_count = 0;
496         count_vmas(&ggtt->base.active_list, vm_link);
497         seq_printf(m, "  %u [%u] active objects, %llu [%llu] bytes\n",
498                    count, mappable_count, size, mappable_size);
499
500         size = count = mappable_size = mappable_count = 0;
501         count_vmas(&ggtt->base.inactive_list, vm_link);
502         seq_printf(m, "  %u [%u] inactive objects, %llu [%llu] bytes\n",
503                    count, mappable_count, size, mappable_size);
504
505         size = count = purgeable_size = purgeable_count = 0;
506         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
507                 size += obj->base.size, ++count;
508                 if (obj->madv == I915_MADV_DONTNEED)
509                         purgeable_size += obj->base.size, ++purgeable_count;
510                 if (obj->mapping) {
511                         pin_mapped_count++;
512                         pin_mapped_size += obj->base.size;
513                         if (obj->pages_pin_count == 0) {
514                                 pin_mapped_purgeable_count++;
515                                 pin_mapped_purgeable_size += obj->base.size;
516                         }
517                 }
518         }
519         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
520
521         size = count = mappable_size = mappable_count = 0;
522         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
523                 if (obj->fault_mappable) {
524                         size += i915_gem_obj_ggtt_size(obj);
525                         ++count;
526                 }
527                 if (obj->pin_display) {
528                         mappable_size += i915_gem_obj_ggtt_size(obj);
529                         ++mappable_count;
530                 }
531                 if (obj->madv == I915_MADV_DONTNEED) {
532                         purgeable_size += obj->base.size;
533                         ++purgeable_count;
534                 }
535                 if (obj->mapping) {
536                         pin_mapped_count++;
537                         pin_mapped_size += obj->base.size;
538                         if (obj->pages_pin_count == 0) {
539                                 pin_mapped_purgeable_count++;
540                                 pin_mapped_purgeable_size += obj->base.size;
541                         }
542                 }
543         }
544         seq_printf(m, "%u purgeable objects, %llu bytes\n",
545                    purgeable_count, purgeable_size);
546         seq_printf(m, "%u pinned mappable objects, %llu bytes\n",
547                    mappable_count, mappable_size);
548         seq_printf(m, "%u fault mappable objects, %llu bytes\n",
549                    count, size);
550         seq_printf(m,
551                    "%lu [%lu] pin mapped objects, %llu [%llu] bytes [purgeable]\n",
552                    pin_mapped_count, pin_mapped_purgeable_count,
553                    pin_mapped_size, pin_mapped_purgeable_size);
554
555         seq_printf(m, "%llu [%llu] gtt total\n",
556                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
557
558         seq_putc(m, '\n');
559         print_batch_pool_stats(m, dev_priv);
560         mutex_unlock(&dev->struct_mutex);
561
562         mutex_lock(&dev->filelist_mutex);
563         print_context_stats(m, dev_priv);
564         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
565                 struct file_stats stats;
566                 struct task_struct *task;
567
568                 memset(&stats, 0, sizeof(stats));
569                 stats.file_priv = file->driver_priv;
570                 spin_lock(&file->table_lock);
571                 idr_for_each(&file->object_idr, per_file_stats, &stats);
572                 spin_unlock(&file->table_lock);
573                 /*
574                  * Although we have a valid reference on file->pid, that does
575                  * not guarantee that the task_struct who called get_pid() is
576                  * still alive (e.g. get_pid(current) => fork() => exit()).
577                  * Therefore, we need to protect this ->comm access using RCU.
578                  */
579                 rcu_read_lock();
580                 task = pid_task(file->pid, PIDTYPE_PID);
581                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
582                 rcu_read_unlock();
583         }
584         mutex_unlock(&dev->filelist_mutex);
585
586         return 0;
587 }
588
589 static int i915_gem_gtt_info(struct seq_file *m, void *data)
590 {
591         struct drm_info_node *node = m->private;
592         struct drm_device *dev = node->minor->dev;
593         uintptr_t list = (uintptr_t) node->info_ent->data;
594         struct drm_i915_private *dev_priv = to_i915(dev);
595         struct drm_i915_gem_object *obj;
596         u64 total_obj_size, total_gtt_size;
597         int count, ret;
598
599         ret = mutex_lock_interruptible(&dev->struct_mutex);
600         if (ret)
601                 return ret;
602
603         total_obj_size = total_gtt_size = count = 0;
604         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
605                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
606                         continue;
607
608                 seq_puts(m, "   ");
609                 describe_obj(m, obj);
610                 seq_putc(m, '\n');
611                 total_obj_size += obj->base.size;
612                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
613                 count++;
614         }
615
616         mutex_unlock(&dev->struct_mutex);
617
618         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
619                    count, total_obj_size, total_gtt_size);
620
621         return 0;
622 }
623
624 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
625 {
626         struct drm_info_node *node = m->private;
627         struct drm_device *dev = node->minor->dev;
628         struct drm_i915_private *dev_priv = to_i915(dev);
629         struct intel_crtc *crtc;
630         int ret;
631
632         ret = mutex_lock_interruptible(&dev->struct_mutex);
633         if (ret)
634                 return ret;
635
636         for_each_intel_crtc(dev, crtc) {
637                 const char pipe = pipe_name(crtc->pipe);
638                 const char plane = plane_name(crtc->plane);
639                 struct intel_flip_work *work;
640
641                 spin_lock_irq(&dev->event_lock);
642                 work = crtc->flip_work;
643                 if (work == NULL) {
644                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
645                                    pipe, plane);
646                 } else {
647                         u32 pending;
648                         u32 addr;
649
650                         pending = atomic_read(&work->pending);
651                         if (pending) {
652                                 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
653                                            pipe, plane);
654                         } else {
655                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
656                                            pipe, plane);
657                         }
658                         if (work->flip_queued_req) {
659                                 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
660
661                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
662                                            engine->name,
663                                            i915_gem_request_get_seqno(work->flip_queued_req),
664                                            dev_priv->next_seqno,
665                                            intel_engine_get_seqno(engine),
666                                            i915_gem_request_completed(work->flip_queued_req));
667                         } else
668                                 seq_printf(m, "Flip not associated with any ring\n");
669                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
670                                    work->flip_queued_vblank,
671                                    work->flip_ready_vblank,
672                                    intel_crtc_get_vblank_counter(crtc));
673                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
674
675                         if (INTEL_INFO(dev)->gen >= 4)
676                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
677                         else
678                                 addr = I915_READ(DSPADDR(crtc->plane));
679                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
680
681                         if (work->pending_flip_obj) {
682                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
683                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
684                         }
685                 }
686                 spin_unlock_irq(&dev->event_lock);
687         }
688
689         mutex_unlock(&dev->struct_mutex);
690
691         return 0;
692 }
693
694 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
695 {
696         struct drm_info_node *node = m->private;
697         struct drm_device *dev = node->minor->dev;
698         struct drm_i915_private *dev_priv = to_i915(dev);
699         struct drm_i915_gem_object *obj;
700         struct intel_engine_cs *engine;
701         int total = 0;
702         int ret, j;
703
704         ret = mutex_lock_interruptible(&dev->struct_mutex);
705         if (ret)
706                 return ret;
707
708         for_each_engine(engine, dev_priv) {
709                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
710                         int count;
711
712                         count = 0;
713                         list_for_each_entry(obj,
714                                             &engine->batch_pool.cache_list[j],
715                                             batch_pool_link)
716                                 count++;
717                         seq_printf(m, "%s cache[%d]: %d objects\n",
718                                    engine->name, j, count);
719
720                         list_for_each_entry(obj,
721                                             &engine->batch_pool.cache_list[j],
722                                             batch_pool_link) {
723                                 seq_puts(m, "   ");
724                                 describe_obj(m, obj);
725                                 seq_putc(m, '\n');
726                         }
727
728                         total += count;
729                 }
730         }
731
732         seq_printf(m, "total: %d\n", total);
733
734         mutex_unlock(&dev->struct_mutex);
735
736         return 0;
737 }
738
739 static int i915_gem_request_info(struct seq_file *m, void *data)
740 {
741         struct drm_info_node *node = m->private;
742         struct drm_device *dev = node->minor->dev;
743         struct drm_i915_private *dev_priv = to_i915(dev);
744         struct intel_engine_cs *engine;
745         struct drm_i915_gem_request *req;
746         int ret, any;
747
748         ret = mutex_lock_interruptible(&dev->struct_mutex);
749         if (ret)
750                 return ret;
751
752         any = 0;
753         for_each_engine(engine, dev_priv) {
754                 int count;
755
756                 count = 0;
757                 list_for_each_entry(req, &engine->request_list, list)
758                         count++;
759                 if (count == 0)
760                         continue;
761
762                 seq_printf(m, "%s requests: %d\n", engine->name, count);
763                 list_for_each_entry(req, &engine->request_list, list) {
764                         struct task_struct *task;
765
766                         rcu_read_lock();
767                         task = NULL;
768                         if (req->pid)
769                                 task = pid_task(req->pid, PIDTYPE_PID);
770                         seq_printf(m, "    %x @ %d: %s [%d]\n",
771                                    req->seqno,
772                                    (int) (jiffies - req->emitted_jiffies),
773                                    task ? task->comm : "<unknown>",
774                                    task ? task->pid : -1);
775                         rcu_read_unlock();
776                 }
777
778                 any++;
779         }
780         mutex_unlock(&dev->struct_mutex);
781
782         if (any == 0)
783                 seq_puts(m, "No requests\n");
784
785         return 0;
786 }
787
788 static void i915_ring_seqno_info(struct seq_file *m,
789                                  struct intel_engine_cs *engine)
790 {
791         struct intel_breadcrumbs *b = &engine->breadcrumbs;
792         struct rb_node *rb;
793
794         seq_printf(m, "Current sequence (%s): %x\n",
795                    engine->name, intel_engine_get_seqno(engine));
796         seq_printf(m, "Current user interrupts (%s): %lx\n",
797                    engine->name, READ_ONCE(engine->breadcrumbs.irq_wakeups));
798
799         spin_lock(&b->lock);
800         for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
801                 struct intel_wait *w = container_of(rb, typeof(*w), node);
802
803                 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
804                            engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
805         }
806         spin_unlock(&b->lock);
807 }
808
809 static int i915_gem_seqno_info(struct seq_file *m, void *data)
810 {
811         struct drm_info_node *node = m->private;
812         struct drm_device *dev = node->minor->dev;
813         struct drm_i915_private *dev_priv = to_i915(dev);
814         struct intel_engine_cs *engine;
815         int ret;
816
817         ret = mutex_lock_interruptible(&dev->struct_mutex);
818         if (ret)
819                 return ret;
820         intel_runtime_pm_get(dev_priv);
821
822         for_each_engine(engine, dev_priv)
823                 i915_ring_seqno_info(m, engine);
824
825         intel_runtime_pm_put(dev_priv);
826         mutex_unlock(&dev->struct_mutex);
827
828         return 0;
829 }
830
831
832 static int i915_interrupt_info(struct seq_file *m, void *data)
833 {
834         struct drm_info_node *node = m->private;
835         struct drm_device *dev = node->minor->dev;
836         struct drm_i915_private *dev_priv = to_i915(dev);
837         struct intel_engine_cs *engine;
838         int ret, i, pipe;
839
840         ret = mutex_lock_interruptible(&dev->struct_mutex);
841         if (ret)
842                 return ret;
843         intel_runtime_pm_get(dev_priv);
844
845         if (IS_CHERRYVIEW(dev)) {
846                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
847                            I915_READ(GEN8_MASTER_IRQ));
848
849                 seq_printf(m, "Display IER:\t%08x\n",
850                            I915_READ(VLV_IER));
851                 seq_printf(m, "Display IIR:\t%08x\n",
852                            I915_READ(VLV_IIR));
853                 seq_printf(m, "Display IIR_RW:\t%08x\n",
854                            I915_READ(VLV_IIR_RW));
855                 seq_printf(m, "Display IMR:\t%08x\n",
856                            I915_READ(VLV_IMR));
857                 for_each_pipe(dev_priv, pipe)
858                         seq_printf(m, "Pipe %c stat:\t%08x\n",
859                                    pipe_name(pipe),
860                                    I915_READ(PIPESTAT(pipe)));
861
862                 seq_printf(m, "Port hotplug:\t%08x\n",
863                            I915_READ(PORT_HOTPLUG_EN));
864                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
865                            I915_READ(VLV_DPFLIPSTAT));
866                 seq_printf(m, "DPINVGTT:\t%08x\n",
867                            I915_READ(DPINVGTT));
868
869                 for (i = 0; i < 4; i++) {
870                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
871                                    i, I915_READ(GEN8_GT_IMR(i)));
872                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
873                                    i, I915_READ(GEN8_GT_IIR(i)));
874                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
875                                    i, I915_READ(GEN8_GT_IER(i)));
876                 }
877
878                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
879                            I915_READ(GEN8_PCU_IMR));
880                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
881                            I915_READ(GEN8_PCU_IIR));
882                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
883                            I915_READ(GEN8_PCU_IER));
884         } else if (INTEL_INFO(dev)->gen >= 8) {
885                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
886                            I915_READ(GEN8_MASTER_IRQ));
887
888                 for (i = 0; i < 4; i++) {
889                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
890                                    i, I915_READ(GEN8_GT_IMR(i)));
891                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
892                                    i, I915_READ(GEN8_GT_IIR(i)));
893                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
894                                    i, I915_READ(GEN8_GT_IER(i)));
895                 }
896
897                 for_each_pipe(dev_priv, pipe) {
898                         enum intel_display_power_domain power_domain;
899
900                         power_domain = POWER_DOMAIN_PIPE(pipe);
901                         if (!intel_display_power_get_if_enabled(dev_priv,
902                                                                 power_domain)) {
903                                 seq_printf(m, "Pipe %c power disabled\n",
904                                            pipe_name(pipe));
905                                 continue;
906                         }
907                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
908                                    pipe_name(pipe),
909                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
910                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
911                                    pipe_name(pipe),
912                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
913                         seq_printf(m, "Pipe %c IER:\t%08x\n",
914                                    pipe_name(pipe),
915                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
916
917                         intel_display_power_put(dev_priv, power_domain);
918                 }
919
920                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
921                            I915_READ(GEN8_DE_PORT_IMR));
922                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
923                            I915_READ(GEN8_DE_PORT_IIR));
924                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
925                            I915_READ(GEN8_DE_PORT_IER));
926
927                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
928                            I915_READ(GEN8_DE_MISC_IMR));
929                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
930                            I915_READ(GEN8_DE_MISC_IIR));
931                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
932                            I915_READ(GEN8_DE_MISC_IER));
933
934                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
935                            I915_READ(GEN8_PCU_IMR));
936                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
937                            I915_READ(GEN8_PCU_IIR));
938                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
939                            I915_READ(GEN8_PCU_IER));
940         } else if (IS_VALLEYVIEW(dev)) {
941                 seq_printf(m, "Display IER:\t%08x\n",
942                            I915_READ(VLV_IER));
943                 seq_printf(m, "Display IIR:\t%08x\n",
944                            I915_READ(VLV_IIR));
945                 seq_printf(m, "Display IIR_RW:\t%08x\n",
946                            I915_READ(VLV_IIR_RW));
947                 seq_printf(m, "Display IMR:\t%08x\n",
948                            I915_READ(VLV_IMR));
949                 for_each_pipe(dev_priv, pipe)
950                         seq_printf(m, "Pipe %c stat:\t%08x\n",
951                                    pipe_name(pipe),
952                                    I915_READ(PIPESTAT(pipe)));
953
954                 seq_printf(m, "Master IER:\t%08x\n",
955                            I915_READ(VLV_MASTER_IER));
956
957                 seq_printf(m, "Render IER:\t%08x\n",
958                            I915_READ(GTIER));
959                 seq_printf(m, "Render IIR:\t%08x\n",
960                            I915_READ(GTIIR));
961                 seq_printf(m, "Render IMR:\t%08x\n",
962                            I915_READ(GTIMR));
963
964                 seq_printf(m, "PM IER:\t\t%08x\n",
965                            I915_READ(GEN6_PMIER));
966                 seq_printf(m, "PM IIR:\t\t%08x\n",
967                            I915_READ(GEN6_PMIIR));
968                 seq_printf(m, "PM IMR:\t\t%08x\n",
969                            I915_READ(GEN6_PMIMR));
970
971                 seq_printf(m, "Port hotplug:\t%08x\n",
972                            I915_READ(PORT_HOTPLUG_EN));
973                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
974                            I915_READ(VLV_DPFLIPSTAT));
975                 seq_printf(m, "DPINVGTT:\t%08x\n",
976                            I915_READ(DPINVGTT));
977
978         } else if (!HAS_PCH_SPLIT(dev)) {
979                 seq_printf(m, "Interrupt enable:    %08x\n",
980                            I915_READ(IER));
981                 seq_printf(m, "Interrupt identity:  %08x\n",
982                            I915_READ(IIR));
983                 seq_printf(m, "Interrupt mask:      %08x\n",
984                            I915_READ(IMR));
985                 for_each_pipe(dev_priv, pipe)
986                         seq_printf(m, "Pipe %c stat:         %08x\n",
987                                    pipe_name(pipe),
988                                    I915_READ(PIPESTAT(pipe)));
989         } else {
990                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
991                            I915_READ(DEIER));
992                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
993                            I915_READ(DEIIR));
994                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
995                            I915_READ(DEIMR));
996                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
997                            I915_READ(SDEIER));
998                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
999                            I915_READ(SDEIIR));
1000                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
1001                            I915_READ(SDEIMR));
1002                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
1003                            I915_READ(GTIER));
1004                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
1005                            I915_READ(GTIIR));
1006                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
1007                            I915_READ(GTIMR));
1008         }
1009         for_each_engine(engine, dev_priv) {
1010                 if (INTEL_INFO(dev)->gen >= 6) {
1011                         seq_printf(m,
1012                                    "Graphics Interrupt mask (%s):       %08x\n",
1013                                    engine->name, I915_READ_IMR(engine));
1014                 }
1015                 i915_ring_seqno_info(m, engine);
1016         }
1017         intel_runtime_pm_put(dev_priv);
1018         mutex_unlock(&dev->struct_mutex);
1019
1020         return 0;
1021 }
1022
1023 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
1024 {
1025         struct drm_info_node *node = m->private;
1026         struct drm_device *dev = node->minor->dev;
1027         struct drm_i915_private *dev_priv = to_i915(dev);
1028         int i, ret;
1029
1030         ret = mutex_lock_interruptible(&dev->struct_mutex);
1031         if (ret)
1032                 return ret;
1033
1034         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
1035         for (i = 0; i < dev_priv->num_fence_regs; i++) {
1036                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
1037
1038                 seq_printf(m, "Fence %d, pin count = %d, object = ",
1039                            i, dev_priv->fence_regs[i].pin_count);
1040                 if (obj == NULL)
1041                         seq_puts(m, "unused");
1042                 else
1043                         describe_obj(m, obj);
1044                 seq_putc(m, '\n');
1045         }
1046
1047         mutex_unlock(&dev->struct_mutex);
1048         return 0;
1049 }
1050
1051 static int i915_hws_info(struct seq_file *m, void *data)
1052 {
1053         struct drm_info_node *node = m->private;
1054         struct drm_device *dev = node->minor->dev;
1055         struct drm_i915_private *dev_priv = to_i915(dev);
1056         struct intel_engine_cs *engine;
1057         const u32 *hws;
1058         int i;
1059
1060         engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
1061         hws = engine->status_page.page_addr;
1062         if (hws == NULL)
1063                 return 0;
1064
1065         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
1066                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1067                            i * 4,
1068                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
1069         }
1070         return 0;
1071 }
1072
1073 static ssize_t
1074 i915_error_state_write(struct file *filp,
1075                        const char __user *ubuf,
1076                        size_t cnt,
1077                        loff_t *ppos)
1078 {
1079         struct i915_error_state_file_priv *error_priv = filp->private_data;
1080         struct drm_device *dev = error_priv->dev;
1081         int ret;
1082
1083         DRM_DEBUG_DRIVER("Resetting error state\n");
1084
1085         ret = mutex_lock_interruptible(&dev->struct_mutex);
1086         if (ret)
1087                 return ret;
1088
1089         i915_destroy_error_state(dev);
1090         mutex_unlock(&dev->struct_mutex);
1091
1092         return cnt;
1093 }
1094
1095 static int i915_error_state_open(struct inode *inode, struct file *file)
1096 {
1097         struct drm_device *dev = inode->i_private;
1098         struct i915_error_state_file_priv *error_priv;
1099
1100         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
1101         if (!error_priv)
1102                 return -ENOMEM;
1103
1104         error_priv->dev = dev;
1105
1106         i915_error_state_get(dev, error_priv);
1107
1108         file->private_data = error_priv;
1109
1110         return 0;
1111 }
1112
1113 static int i915_error_state_release(struct inode *inode, struct file *file)
1114 {
1115         struct i915_error_state_file_priv *error_priv = file->private_data;
1116
1117         i915_error_state_put(error_priv);
1118         kfree(error_priv);
1119
1120         return 0;
1121 }
1122
1123 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1124                                      size_t count, loff_t *pos)
1125 {
1126         struct i915_error_state_file_priv *error_priv = file->private_data;
1127         struct drm_i915_error_state_buf error_str;
1128         loff_t tmp_pos = 0;
1129         ssize_t ret_count = 0;
1130         int ret;
1131
1132         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
1133         if (ret)
1134                 return ret;
1135
1136         ret = i915_error_state_to_str(&error_str, error_priv);
1137         if (ret)
1138                 goto out;
1139
1140         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1141                                             error_str.buf,
1142                                             error_str.bytes);
1143
1144         if (ret_count < 0)
1145                 ret = ret_count;
1146         else
1147                 *pos = error_str.start + ret_count;
1148 out:
1149         i915_error_state_buf_release(&error_str);
1150         return ret ?: ret_count;
1151 }
1152
1153 static const struct file_operations i915_error_state_fops = {
1154         .owner = THIS_MODULE,
1155         .open = i915_error_state_open,
1156         .read = i915_error_state_read,
1157         .write = i915_error_state_write,
1158         .llseek = default_llseek,
1159         .release = i915_error_state_release,
1160 };
1161
1162 static int
1163 i915_next_seqno_get(void *data, u64 *val)
1164 {
1165         struct drm_device *dev = data;
1166         struct drm_i915_private *dev_priv = to_i915(dev);
1167         int ret;
1168
1169         ret = mutex_lock_interruptible(&dev->struct_mutex);
1170         if (ret)
1171                 return ret;
1172
1173         *val = dev_priv->next_seqno;
1174         mutex_unlock(&dev->struct_mutex);
1175
1176         return 0;
1177 }
1178
1179 static int
1180 i915_next_seqno_set(void *data, u64 val)
1181 {
1182         struct drm_device *dev = data;
1183         int ret;
1184
1185         ret = mutex_lock_interruptible(&dev->struct_mutex);
1186         if (ret)
1187                 return ret;
1188
1189         ret = i915_gem_set_seqno(dev, val);
1190         mutex_unlock(&dev->struct_mutex);
1191
1192         return ret;
1193 }
1194
1195 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1196                         i915_next_seqno_get, i915_next_seqno_set,
1197                         "0x%llx\n");
1198
1199 static int i915_frequency_info(struct seq_file *m, void *unused)
1200 {
1201         struct drm_info_node *node = m->private;
1202         struct drm_device *dev = node->minor->dev;
1203         struct drm_i915_private *dev_priv = to_i915(dev);
1204         int ret = 0;
1205
1206         intel_runtime_pm_get(dev_priv);
1207
1208         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1209
1210         if (IS_GEN5(dev)) {
1211                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1212                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1213
1214                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1215                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1216                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1217                            MEMSTAT_VID_SHIFT);
1218                 seq_printf(m, "Current P-state: %d\n",
1219                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1220         } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
1221                 u32 freq_sts;
1222
1223                 mutex_lock(&dev_priv->rps.hw_lock);
1224                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1225                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1226                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1227
1228                 seq_printf(m, "actual GPU freq: %d MHz\n",
1229                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1230
1231                 seq_printf(m, "current GPU freq: %d MHz\n",
1232                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1233
1234                 seq_printf(m, "max GPU freq: %d MHz\n",
1235                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1236
1237                 seq_printf(m, "min GPU freq: %d MHz\n",
1238                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1239
1240                 seq_printf(m, "idle GPU freq: %d MHz\n",
1241                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1242
1243                 seq_printf(m,
1244                            "efficient (RPe) frequency: %d MHz\n",
1245                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1246                 mutex_unlock(&dev_priv->rps.hw_lock);
1247         } else if (INTEL_INFO(dev)->gen >= 6) {
1248                 u32 rp_state_limits;
1249                 u32 gt_perf_status;
1250                 u32 rp_state_cap;
1251                 u32 rpmodectl, rpinclimit, rpdeclimit;
1252                 u32 rpstat, cagf, reqf;
1253                 u32 rpupei, rpcurup, rpprevup;
1254                 u32 rpdownei, rpcurdown, rpprevdown;
1255                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1256                 int max_freq;
1257
1258                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1259                 if (IS_BROXTON(dev)) {
1260                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1261                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1262                 } else {
1263                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1264                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1265                 }
1266
1267                 /* RPSTAT1 is in the GT power well */
1268                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1269                 if (ret)
1270                         goto out;
1271
1272                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1273
1274                 reqf = I915_READ(GEN6_RPNSWREQ);
1275                 if (IS_GEN9(dev))
1276                         reqf >>= 23;
1277                 else {
1278                         reqf &= ~GEN6_TURBO_DISABLE;
1279                         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1280                                 reqf >>= 24;
1281                         else
1282                                 reqf >>= 25;
1283                 }
1284                 reqf = intel_gpu_freq(dev_priv, reqf);
1285
1286                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1287                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1288                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1289
1290                 rpstat = I915_READ(GEN6_RPSTAT1);
1291                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1292                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1293                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1294                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1295                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1296                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1297                 if (IS_GEN9(dev))
1298                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1299                 else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1300                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1301                 else
1302                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1303                 cagf = intel_gpu_freq(dev_priv, cagf);
1304
1305                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1306                 mutex_unlock(&dev->struct_mutex);
1307
1308                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1309                         pm_ier = I915_READ(GEN6_PMIER);
1310                         pm_imr = I915_READ(GEN6_PMIMR);
1311                         pm_isr = I915_READ(GEN6_PMISR);
1312                         pm_iir = I915_READ(GEN6_PMIIR);
1313                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1314                 } else {
1315                         pm_ier = I915_READ(GEN8_GT_IER(2));
1316                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1317                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1318                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1319                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1320                 }
1321                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1322                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1323                 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1324                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1325                 seq_printf(m, "Render p-state ratio: %d\n",
1326                            (gt_perf_status & (IS_GEN9(dev) ? 0x1ff00 : 0xff00)) >> 8);
1327                 seq_printf(m, "Render p-state VID: %d\n",
1328                            gt_perf_status & 0xff);
1329                 seq_printf(m, "Render p-state limit: %d\n",
1330                            rp_state_limits & 0xff);
1331                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1332                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1333                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1334                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1335                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1336                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1337                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1338                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1339                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1340                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1341                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1342                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1343                 seq_printf(m, "Up threshold: %d%%\n",
1344                            dev_priv->rps.up_threshold);
1345
1346                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1347                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1348                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1349                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1350                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1351                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1352                 seq_printf(m, "Down threshold: %d%%\n",
1353                            dev_priv->rps.down_threshold);
1354
1355                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 0 :
1356                             rp_state_cap >> 16) & 0xff;
1357                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1358                              GEN9_FREQ_SCALER : 1);
1359                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1360                            intel_gpu_freq(dev_priv, max_freq));
1361
1362                 max_freq = (rp_state_cap & 0xff00) >> 8;
1363                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1364                              GEN9_FREQ_SCALER : 1);
1365                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1366                            intel_gpu_freq(dev_priv, max_freq));
1367
1368                 max_freq = (IS_BROXTON(dev) ? rp_state_cap >> 16 :
1369                             rp_state_cap >> 0) & 0xff;
1370                 max_freq *= (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1371                              GEN9_FREQ_SCALER : 1);
1372                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1373                            intel_gpu_freq(dev_priv, max_freq));
1374                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1375                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1376
1377                 seq_printf(m, "Current freq: %d MHz\n",
1378                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1379                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1380                 seq_printf(m, "Idle freq: %d MHz\n",
1381                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1382                 seq_printf(m, "Min freq: %d MHz\n",
1383                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1384                 seq_printf(m, "Max freq: %d MHz\n",
1385                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1386                 seq_printf(m,
1387                            "efficient (RPe) frequency: %d MHz\n",
1388                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1389         } else {
1390                 seq_puts(m, "no P-state info available\n");
1391         }
1392
1393         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1394         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1395         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1396
1397 out:
1398         intel_runtime_pm_put(dev_priv);
1399         return ret;
1400 }
1401
1402 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1403 {
1404         struct drm_info_node *node = m->private;
1405         struct drm_device *dev = node->minor->dev;
1406         struct drm_i915_private *dev_priv = to_i915(dev);
1407         struct intel_engine_cs *engine;
1408         u64 acthd[I915_NUM_ENGINES];
1409         u32 seqno[I915_NUM_ENGINES];
1410         u32 instdone[I915_NUM_INSTDONE_REG];
1411         enum intel_engine_id id;
1412         int j;
1413
1414         if (!i915.enable_hangcheck) {
1415                 seq_printf(m, "Hangcheck disabled\n");
1416                 return 0;
1417         }
1418
1419         intel_runtime_pm_get(dev_priv);
1420
1421         for_each_engine_id(engine, dev_priv, id) {
1422                 acthd[id] = intel_ring_get_active_head(engine);
1423                 seqno[id] = intel_engine_get_seqno(engine);
1424         }
1425
1426         i915_get_extra_instdone(dev_priv, instdone);
1427
1428         intel_runtime_pm_put(dev_priv);
1429
1430         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1431                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1432                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1433                                             jiffies));
1434         } else
1435                 seq_printf(m, "Hangcheck inactive\n");
1436
1437         for_each_engine_id(engine, dev_priv, id) {
1438                 seq_printf(m, "%s:\n", engine->name);
1439                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1440                            engine->hangcheck.seqno,
1441                            seqno[id],
1442                            engine->last_submitted_seqno);
1443                 seq_printf(m, "\twaiters? %d\n",
1444                            intel_engine_has_waiter(engine));
1445                 seq_printf(m, "\tuser interrupts = %lx [current %lx]\n",
1446                            engine->hangcheck.user_interrupts,
1447                            READ_ONCE(engine->breadcrumbs.irq_wakeups));
1448                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1449                            (long long)engine->hangcheck.acthd,
1450                            (long long)acthd[id]);
1451                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1452                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1453
1454                 if (engine->id == RCS) {
1455                         seq_puts(m, "\tinstdone read =");
1456
1457                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1458                                 seq_printf(m, " 0x%08x", instdone[j]);
1459
1460                         seq_puts(m, "\n\tinstdone accu =");
1461
1462                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1463                                 seq_printf(m, " 0x%08x",
1464                                            engine->hangcheck.instdone[j]);
1465
1466                         seq_puts(m, "\n");
1467                 }
1468         }
1469
1470         return 0;
1471 }
1472
1473 static int ironlake_drpc_info(struct seq_file *m)
1474 {
1475         struct drm_info_node *node = m->private;
1476         struct drm_device *dev = node->minor->dev;
1477         struct drm_i915_private *dev_priv = to_i915(dev);
1478         u32 rgvmodectl, rstdbyctl;
1479         u16 crstandvid;
1480         int ret;
1481
1482         ret = mutex_lock_interruptible(&dev->struct_mutex);
1483         if (ret)
1484                 return ret;
1485         intel_runtime_pm_get(dev_priv);
1486
1487         rgvmodectl = I915_READ(MEMMODECTL);
1488         rstdbyctl = I915_READ(RSTDBYCTL);
1489         crstandvid = I915_READ16(CRSTANDVID);
1490
1491         intel_runtime_pm_put(dev_priv);
1492         mutex_unlock(&dev->struct_mutex);
1493
1494         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1495         seq_printf(m, "Boost freq: %d\n",
1496                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1497                    MEMMODE_BOOST_FREQ_SHIFT);
1498         seq_printf(m, "HW control enabled: %s\n",
1499                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1500         seq_printf(m, "SW control enabled: %s\n",
1501                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1502         seq_printf(m, "Gated voltage change: %s\n",
1503                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1504         seq_printf(m, "Starting frequency: P%d\n",
1505                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1506         seq_printf(m, "Max P-state: P%d\n",
1507                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1508         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1509         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1510         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1511         seq_printf(m, "Render standby enabled: %s\n",
1512                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1513         seq_puts(m, "Current RS state: ");
1514         switch (rstdbyctl & RSX_STATUS_MASK) {
1515         case RSX_STATUS_ON:
1516                 seq_puts(m, "on\n");
1517                 break;
1518         case RSX_STATUS_RC1:
1519                 seq_puts(m, "RC1\n");
1520                 break;
1521         case RSX_STATUS_RC1E:
1522                 seq_puts(m, "RC1E\n");
1523                 break;
1524         case RSX_STATUS_RS1:
1525                 seq_puts(m, "RS1\n");
1526                 break;
1527         case RSX_STATUS_RS2:
1528                 seq_puts(m, "RS2 (RC6)\n");
1529                 break;
1530         case RSX_STATUS_RS3:
1531                 seq_puts(m, "RC3 (RC6+)\n");
1532                 break;
1533         default:
1534                 seq_puts(m, "unknown\n");
1535                 break;
1536         }
1537
1538         return 0;
1539 }
1540
1541 static int i915_forcewake_domains(struct seq_file *m, void *data)
1542 {
1543         struct drm_info_node *node = m->private;
1544         struct drm_device *dev = node->minor->dev;
1545         struct drm_i915_private *dev_priv = to_i915(dev);
1546         struct intel_uncore_forcewake_domain *fw_domain;
1547
1548         spin_lock_irq(&dev_priv->uncore.lock);
1549         for_each_fw_domain(fw_domain, dev_priv) {
1550                 seq_printf(m, "%s.wake_count = %u\n",
1551                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1552                            fw_domain->wake_count);
1553         }
1554         spin_unlock_irq(&dev_priv->uncore.lock);
1555
1556         return 0;
1557 }
1558
1559 static int vlv_drpc_info(struct seq_file *m)
1560 {
1561         struct drm_info_node *node = m->private;
1562         struct drm_device *dev = node->minor->dev;
1563         struct drm_i915_private *dev_priv = to_i915(dev);
1564         u32 rpmodectl1, rcctl1, pw_status;
1565
1566         intel_runtime_pm_get(dev_priv);
1567
1568         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1569         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1570         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1571
1572         intel_runtime_pm_put(dev_priv);
1573
1574         seq_printf(m, "Video Turbo Mode: %s\n",
1575                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1576         seq_printf(m, "Turbo enabled: %s\n",
1577                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1578         seq_printf(m, "HW control enabled: %s\n",
1579                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1580         seq_printf(m, "SW control enabled: %s\n",
1581                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1582                           GEN6_RP_MEDIA_SW_MODE));
1583         seq_printf(m, "RC6 Enabled: %s\n",
1584                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1585                                         GEN6_RC_CTL_EI_MODE(1))));
1586         seq_printf(m, "Render Power Well: %s\n",
1587                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1588         seq_printf(m, "Media Power Well: %s\n",
1589                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1590
1591         seq_printf(m, "Render RC6 residency since boot: %u\n",
1592                    I915_READ(VLV_GT_RENDER_RC6));
1593         seq_printf(m, "Media RC6 residency since boot: %u\n",
1594                    I915_READ(VLV_GT_MEDIA_RC6));
1595
1596         return i915_forcewake_domains(m, NULL);
1597 }
1598
1599 static int gen6_drpc_info(struct seq_file *m)
1600 {
1601         struct drm_info_node *node = m->private;
1602         struct drm_device *dev = node->minor->dev;
1603         struct drm_i915_private *dev_priv = to_i915(dev);
1604         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1605         unsigned forcewake_count;
1606         int count = 0, ret;
1607
1608         ret = mutex_lock_interruptible(&dev->struct_mutex);
1609         if (ret)
1610                 return ret;
1611         intel_runtime_pm_get(dev_priv);
1612
1613         spin_lock_irq(&dev_priv->uncore.lock);
1614         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1615         spin_unlock_irq(&dev_priv->uncore.lock);
1616
1617         if (forcewake_count) {
1618                 seq_puts(m, "RC information inaccurate because somebody "
1619                             "holds a forcewake reference \n");
1620         } else {
1621                 /* NB: we cannot use forcewake, else we read the wrong values */
1622                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1623                         udelay(10);
1624                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1625         }
1626
1627         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1628         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1629
1630         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1631         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1632         mutex_unlock(&dev->struct_mutex);
1633         mutex_lock(&dev_priv->rps.hw_lock);
1634         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1635         mutex_unlock(&dev_priv->rps.hw_lock);
1636
1637         intel_runtime_pm_put(dev_priv);
1638
1639         seq_printf(m, "Video Turbo Mode: %s\n",
1640                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1641         seq_printf(m, "HW control enabled: %s\n",
1642                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1643         seq_printf(m, "SW control enabled: %s\n",
1644                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1645                           GEN6_RP_MEDIA_SW_MODE));
1646         seq_printf(m, "RC1e Enabled: %s\n",
1647                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1648         seq_printf(m, "RC6 Enabled: %s\n",
1649                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1650         seq_printf(m, "Deep RC6 Enabled: %s\n",
1651                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1652         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1653                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1654         seq_puts(m, "Current RC state: ");
1655         switch (gt_core_status & GEN6_RCn_MASK) {
1656         case GEN6_RC0:
1657                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1658                         seq_puts(m, "Core Power Down\n");
1659                 else
1660                         seq_puts(m, "on\n");
1661                 break;
1662         case GEN6_RC3:
1663                 seq_puts(m, "RC3\n");
1664                 break;
1665         case GEN6_RC6:
1666                 seq_puts(m, "RC6\n");
1667                 break;
1668         case GEN6_RC7:
1669                 seq_puts(m, "RC7\n");
1670                 break;
1671         default:
1672                 seq_puts(m, "Unknown\n");
1673                 break;
1674         }
1675
1676         seq_printf(m, "Core Power Down: %s\n",
1677                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1678
1679         /* Not exactly sure what this is */
1680         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1681                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1682         seq_printf(m, "RC6 residency since boot: %u\n",
1683                    I915_READ(GEN6_GT_GFX_RC6));
1684         seq_printf(m, "RC6+ residency since boot: %u\n",
1685                    I915_READ(GEN6_GT_GFX_RC6p));
1686         seq_printf(m, "RC6++ residency since boot: %u\n",
1687                    I915_READ(GEN6_GT_GFX_RC6pp));
1688
1689         seq_printf(m, "RC6   voltage: %dmV\n",
1690                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1691         seq_printf(m, "RC6+  voltage: %dmV\n",
1692                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1693         seq_printf(m, "RC6++ voltage: %dmV\n",
1694                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1695         return 0;
1696 }
1697
1698 static int i915_drpc_info(struct seq_file *m, void *unused)
1699 {
1700         struct drm_info_node *node = m->private;
1701         struct drm_device *dev = node->minor->dev;
1702
1703         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1704                 return vlv_drpc_info(m);
1705         else if (INTEL_INFO(dev)->gen >= 6)
1706                 return gen6_drpc_info(m);
1707         else
1708                 return ironlake_drpc_info(m);
1709 }
1710
1711 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1712 {
1713         struct drm_info_node *node = m->private;
1714         struct drm_device *dev = node->minor->dev;
1715         struct drm_i915_private *dev_priv = to_i915(dev);
1716
1717         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1718                    dev_priv->fb_tracking.busy_bits);
1719
1720         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1721                    dev_priv->fb_tracking.flip_bits);
1722
1723         return 0;
1724 }
1725
1726 static int i915_fbc_status(struct seq_file *m, void *unused)
1727 {
1728         struct drm_info_node *node = m->private;
1729         struct drm_device *dev = node->minor->dev;
1730         struct drm_i915_private *dev_priv = to_i915(dev);
1731
1732         if (!HAS_FBC(dev)) {
1733                 seq_puts(m, "FBC unsupported on this chipset\n");
1734                 return 0;
1735         }
1736
1737         intel_runtime_pm_get(dev_priv);
1738         mutex_lock(&dev_priv->fbc.lock);
1739
1740         if (intel_fbc_is_active(dev_priv))
1741                 seq_puts(m, "FBC enabled\n");
1742         else
1743                 seq_printf(m, "FBC disabled: %s\n",
1744                            dev_priv->fbc.no_fbc_reason);
1745
1746         if (INTEL_INFO(dev_priv)->gen >= 7)
1747                 seq_printf(m, "Compressing: %s\n",
1748                            yesno(I915_READ(FBC_STATUS2) &
1749                                  FBC_COMPRESSION_MASK));
1750
1751         mutex_unlock(&dev_priv->fbc.lock);
1752         intel_runtime_pm_put(dev_priv);
1753
1754         return 0;
1755 }
1756
1757 static int i915_fbc_fc_get(void *data, u64 *val)
1758 {
1759         struct drm_device *dev = data;
1760         struct drm_i915_private *dev_priv = to_i915(dev);
1761
1762         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1763                 return -ENODEV;
1764
1765         *val = dev_priv->fbc.false_color;
1766
1767         return 0;
1768 }
1769
1770 static int i915_fbc_fc_set(void *data, u64 val)
1771 {
1772         struct drm_device *dev = data;
1773         struct drm_i915_private *dev_priv = to_i915(dev);
1774         u32 reg;
1775
1776         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1777                 return -ENODEV;
1778
1779         mutex_lock(&dev_priv->fbc.lock);
1780
1781         reg = I915_READ(ILK_DPFC_CONTROL);
1782         dev_priv->fbc.false_color = val;
1783
1784         I915_WRITE(ILK_DPFC_CONTROL, val ?
1785                    (reg | FBC_CTL_FALSE_COLOR) :
1786                    (reg & ~FBC_CTL_FALSE_COLOR));
1787
1788         mutex_unlock(&dev_priv->fbc.lock);
1789         return 0;
1790 }
1791
1792 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1793                         i915_fbc_fc_get, i915_fbc_fc_set,
1794                         "%llu\n");
1795
1796 static int i915_ips_status(struct seq_file *m, void *unused)
1797 {
1798         struct drm_info_node *node = m->private;
1799         struct drm_device *dev = node->minor->dev;
1800         struct drm_i915_private *dev_priv = to_i915(dev);
1801
1802         if (!HAS_IPS(dev)) {
1803                 seq_puts(m, "not supported\n");
1804                 return 0;
1805         }
1806
1807         intel_runtime_pm_get(dev_priv);
1808
1809         seq_printf(m, "Enabled by kernel parameter: %s\n",
1810                    yesno(i915.enable_ips));
1811
1812         if (INTEL_INFO(dev)->gen >= 8) {
1813                 seq_puts(m, "Currently: unknown\n");
1814         } else {
1815                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1816                         seq_puts(m, "Currently: enabled\n");
1817                 else
1818                         seq_puts(m, "Currently: disabled\n");
1819         }
1820
1821         intel_runtime_pm_put(dev_priv);
1822
1823         return 0;
1824 }
1825
1826 static int i915_sr_status(struct seq_file *m, void *unused)
1827 {
1828         struct drm_info_node *node = m->private;
1829         struct drm_device *dev = node->minor->dev;
1830         struct drm_i915_private *dev_priv = to_i915(dev);
1831         bool sr_enabled = false;
1832
1833         intel_runtime_pm_get(dev_priv);
1834
1835         if (HAS_PCH_SPLIT(dev))
1836                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1837         else if (IS_CRESTLINE(dev) || IS_G4X(dev) ||
1838                  IS_I945G(dev) || IS_I945GM(dev))
1839                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1840         else if (IS_I915GM(dev))
1841                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1842         else if (IS_PINEVIEW(dev))
1843                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1844         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
1845                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1846
1847         intel_runtime_pm_put(dev_priv);
1848
1849         seq_printf(m, "self-refresh: %s\n",
1850                    sr_enabled ? "enabled" : "disabled");
1851
1852         return 0;
1853 }
1854
1855 static int i915_emon_status(struct seq_file *m, void *unused)
1856 {
1857         struct drm_info_node *node = m->private;
1858         struct drm_device *dev = node->minor->dev;
1859         struct drm_i915_private *dev_priv = to_i915(dev);
1860         unsigned long temp, chipset, gfx;
1861         int ret;
1862
1863         if (!IS_GEN5(dev))
1864                 return -ENODEV;
1865
1866         ret = mutex_lock_interruptible(&dev->struct_mutex);
1867         if (ret)
1868                 return ret;
1869
1870         temp = i915_mch_val(dev_priv);
1871         chipset = i915_chipset_val(dev_priv);
1872         gfx = i915_gfx_val(dev_priv);
1873         mutex_unlock(&dev->struct_mutex);
1874
1875         seq_printf(m, "GMCH temp: %ld\n", temp);
1876         seq_printf(m, "Chipset power: %ld\n", chipset);
1877         seq_printf(m, "GFX power: %ld\n", gfx);
1878         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1879
1880         return 0;
1881 }
1882
1883 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1884 {
1885         struct drm_info_node *node = m->private;
1886         struct drm_device *dev = node->minor->dev;
1887         struct drm_i915_private *dev_priv = to_i915(dev);
1888         int ret = 0;
1889         int gpu_freq, ia_freq;
1890         unsigned int max_gpu_freq, min_gpu_freq;
1891
1892         if (!HAS_CORE_RING_FREQ(dev)) {
1893                 seq_puts(m, "unsupported on this chipset\n");
1894                 return 0;
1895         }
1896
1897         intel_runtime_pm_get(dev_priv);
1898
1899         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1900
1901         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1902         if (ret)
1903                 goto out;
1904
1905         if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
1906                 /* Convert GT frequency to 50 HZ units */
1907                 min_gpu_freq =
1908                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1909                 max_gpu_freq =
1910                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1911         } else {
1912                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1913                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1914         }
1915
1916         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1917
1918         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1919                 ia_freq = gpu_freq;
1920                 sandybridge_pcode_read(dev_priv,
1921                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1922                                        &ia_freq);
1923                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1924                            intel_gpu_freq(dev_priv, (gpu_freq *
1925                                 (IS_SKYLAKE(dev) || IS_KABYLAKE(dev) ?
1926                                  GEN9_FREQ_SCALER : 1))),
1927                            ((ia_freq >> 0) & 0xff) * 100,
1928                            ((ia_freq >> 8) & 0xff) * 100);
1929         }
1930
1931         mutex_unlock(&dev_priv->rps.hw_lock);
1932
1933 out:
1934         intel_runtime_pm_put(dev_priv);
1935         return ret;
1936 }
1937
1938 static int i915_opregion(struct seq_file *m, void *unused)
1939 {
1940         struct drm_info_node *node = m->private;
1941         struct drm_device *dev = node->minor->dev;
1942         struct drm_i915_private *dev_priv = to_i915(dev);
1943         struct intel_opregion *opregion = &dev_priv->opregion;
1944         int ret;
1945
1946         ret = mutex_lock_interruptible(&dev->struct_mutex);
1947         if (ret)
1948                 goto out;
1949
1950         if (opregion->header)
1951                 seq_write(m, opregion->header, OPREGION_SIZE);
1952
1953         mutex_unlock(&dev->struct_mutex);
1954
1955 out:
1956         return 0;
1957 }
1958
1959 static int i915_vbt(struct seq_file *m, void *unused)
1960 {
1961         struct drm_info_node *node = m->private;
1962         struct drm_device *dev = node->minor->dev;
1963         struct drm_i915_private *dev_priv = to_i915(dev);
1964         struct intel_opregion *opregion = &dev_priv->opregion;
1965
1966         if (opregion->vbt)
1967                 seq_write(m, opregion->vbt, opregion->vbt_size);
1968
1969         return 0;
1970 }
1971
1972 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1973 {
1974         struct drm_info_node *node = m->private;
1975         struct drm_device *dev = node->minor->dev;
1976         struct intel_framebuffer *fbdev_fb = NULL;
1977         struct drm_framebuffer *drm_fb;
1978         int ret;
1979
1980         ret = mutex_lock_interruptible(&dev->struct_mutex);
1981         if (ret)
1982                 return ret;
1983
1984 #ifdef CONFIG_DRM_FBDEV_EMULATION
1985         if (to_i915(dev)->fbdev) {
1986                 fbdev_fb = to_intel_framebuffer(to_i915(dev)->fbdev->helper.fb);
1987
1988                 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1989                            fbdev_fb->base.width,
1990                            fbdev_fb->base.height,
1991                            fbdev_fb->base.depth,
1992                            fbdev_fb->base.bits_per_pixel,
1993                            fbdev_fb->base.modifier[0],
1994                            drm_framebuffer_read_refcount(&fbdev_fb->base));
1995                 describe_obj(m, fbdev_fb->obj);
1996                 seq_putc(m, '\n');
1997         }
1998 #endif
1999
2000         mutex_lock(&dev->mode_config.fb_lock);
2001         drm_for_each_fb(drm_fb, dev) {
2002                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
2003                 if (fb == fbdev_fb)
2004                         continue;
2005
2006                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
2007                            fb->base.width,
2008                            fb->base.height,
2009                            fb->base.depth,
2010                            fb->base.bits_per_pixel,
2011                            fb->base.modifier[0],
2012                            drm_framebuffer_read_refcount(&fb->base));
2013                 describe_obj(m, fb->obj);
2014                 seq_putc(m, '\n');
2015         }
2016         mutex_unlock(&dev->mode_config.fb_lock);
2017         mutex_unlock(&dev->struct_mutex);
2018
2019         return 0;
2020 }
2021
2022 static void describe_ctx_ringbuf(struct seq_file *m,
2023                                  struct intel_ringbuffer *ringbuf)
2024 {
2025         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
2026                    ringbuf->space, ringbuf->head, ringbuf->tail,
2027                    ringbuf->last_retired_head);
2028 }
2029
2030 static int i915_context_status(struct seq_file *m, void *unused)
2031 {
2032         struct drm_info_node *node = m->private;
2033         struct drm_device *dev = node->minor->dev;
2034         struct drm_i915_private *dev_priv = to_i915(dev);
2035         struct intel_engine_cs *engine;
2036         struct i915_gem_context *ctx;
2037         int ret;
2038
2039         ret = mutex_lock_interruptible(&dev->struct_mutex);
2040         if (ret)
2041                 return ret;
2042
2043         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2044                 seq_printf(m, "HW context %u ", ctx->hw_id);
2045                 if (IS_ERR(ctx->file_priv)) {
2046                         seq_puts(m, "(deleted) ");
2047                 } else if (ctx->file_priv) {
2048                         struct pid *pid = ctx->file_priv->file->pid;
2049                         struct task_struct *task;
2050
2051                         task = get_pid_task(pid, PIDTYPE_PID);
2052                         if (task) {
2053                                 seq_printf(m, "(%s [%d]) ",
2054                                            task->comm, task->pid);
2055                                 put_task_struct(task);
2056                         }
2057                 } else {
2058                         seq_puts(m, "(kernel) ");
2059                 }
2060
2061                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
2062                 seq_putc(m, '\n');
2063
2064                 for_each_engine(engine, dev_priv) {
2065                         struct intel_context *ce = &ctx->engine[engine->id];
2066
2067                         seq_printf(m, "%s: ", engine->name);
2068                         seq_putc(m, ce->initialised ? 'I' : 'i');
2069                         if (ce->state)
2070                                 describe_obj(m, ce->state);
2071                         if (ce->ringbuf)
2072                                 describe_ctx_ringbuf(m, ce->ringbuf);
2073                         seq_putc(m, '\n');
2074                 }
2075
2076                 seq_putc(m, '\n');
2077         }
2078
2079         mutex_unlock(&dev->struct_mutex);
2080
2081         return 0;
2082 }
2083
2084 static void i915_dump_lrc_obj(struct seq_file *m,
2085                               struct i915_gem_context *ctx,
2086                               struct intel_engine_cs *engine)
2087 {
2088         struct drm_i915_gem_object *ctx_obj = ctx->engine[engine->id].state;
2089         struct page *page;
2090         uint32_t *reg_state;
2091         int j;
2092         unsigned long ggtt_offset = 0;
2093
2094         seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
2095
2096         if (ctx_obj == NULL) {
2097                 seq_puts(m, "\tNot allocated\n");
2098                 return;
2099         }
2100
2101         if (!i915_gem_obj_ggtt_bound(ctx_obj))
2102                 seq_puts(m, "\tNot bound in GGTT\n");
2103         else
2104                 ggtt_offset = i915_gem_obj_ggtt_offset(ctx_obj);
2105
2106         if (i915_gem_object_get_pages(ctx_obj)) {
2107                 seq_puts(m, "\tFailed to get pages for context object\n");
2108                 return;
2109         }
2110
2111         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
2112         if (!WARN_ON(page == NULL)) {
2113                 reg_state = kmap_atomic(page);
2114
2115                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
2116                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
2117                                    ggtt_offset + 4096 + (j * 4),
2118                                    reg_state[j], reg_state[j + 1],
2119                                    reg_state[j + 2], reg_state[j + 3]);
2120                 }
2121                 kunmap_atomic(reg_state);
2122         }
2123
2124         seq_putc(m, '\n');
2125 }
2126
2127 static int i915_dump_lrc(struct seq_file *m, void *unused)
2128 {
2129         struct drm_info_node *node = (struct drm_info_node *) m->private;
2130         struct drm_device *dev = node->minor->dev;
2131         struct drm_i915_private *dev_priv = to_i915(dev);
2132         struct intel_engine_cs *engine;
2133         struct i915_gem_context *ctx;
2134         int ret;
2135
2136         if (!i915.enable_execlists) {
2137                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2138                 return 0;
2139         }
2140
2141         ret = mutex_lock_interruptible(&dev->struct_mutex);
2142         if (ret)
2143                 return ret;
2144
2145         list_for_each_entry(ctx, &dev_priv->context_list, link)
2146                 for_each_engine(engine, dev_priv)
2147                         i915_dump_lrc_obj(m, ctx, engine);
2148
2149         mutex_unlock(&dev->struct_mutex);
2150
2151         return 0;
2152 }
2153
2154 static int i915_execlists(struct seq_file *m, void *data)
2155 {
2156         struct drm_info_node *node = (struct drm_info_node *)m->private;
2157         struct drm_device *dev = node->minor->dev;
2158         struct drm_i915_private *dev_priv = to_i915(dev);
2159         struct intel_engine_cs *engine;
2160         u32 status_pointer;
2161         u8 read_pointer;
2162         u8 write_pointer;
2163         u32 status;
2164         u32 ctx_id;
2165         struct list_head *cursor;
2166         int i, ret;
2167
2168         if (!i915.enable_execlists) {
2169                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2170                 return 0;
2171         }
2172
2173         ret = mutex_lock_interruptible(&dev->struct_mutex);
2174         if (ret)
2175                 return ret;
2176
2177         intel_runtime_pm_get(dev_priv);
2178
2179         for_each_engine(engine, dev_priv) {
2180                 struct drm_i915_gem_request *head_req = NULL;
2181                 int count = 0;
2182
2183                 seq_printf(m, "%s\n", engine->name);
2184
2185                 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2186                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2187                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2188                            status, ctx_id);
2189
2190                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2191                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2192
2193                 read_pointer = engine->next_context_status_buffer;
2194                 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2195                 if (read_pointer > write_pointer)
2196                         write_pointer += GEN8_CSB_ENTRIES;
2197                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2198                            read_pointer, write_pointer);
2199
2200                 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2201                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2202                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2203
2204                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2205                                    i, status, ctx_id);
2206                 }
2207
2208                 spin_lock_bh(&engine->execlist_lock);
2209                 list_for_each(cursor, &engine->execlist_queue)
2210                         count++;
2211                 head_req = list_first_entry_or_null(&engine->execlist_queue,
2212                                                     struct drm_i915_gem_request,
2213                                                     execlist_link);
2214                 spin_unlock_bh(&engine->execlist_lock);
2215
2216                 seq_printf(m, "\t%d requests in queue\n", count);
2217                 if (head_req) {
2218                         seq_printf(m, "\tHead request context: %u\n",
2219                                    head_req->ctx->hw_id);
2220                         seq_printf(m, "\tHead request tail: %u\n",
2221                                    head_req->tail);
2222                 }
2223
2224                 seq_putc(m, '\n');
2225         }
2226
2227         intel_runtime_pm_put(dev_priv);
2228         mutex_unlock(&dev->struct_mutex);
2229
2230         return 0;
2231 }
2232
2233 static const char *swizzle_string(unsigned swizzle)
2234 {
2235         switch (swizzle) {
2236         case I915_BIT_6_SWIZZLE_NONE:
2237                 return "none";
2238         case I915_BIT_6_SWIZZLE_9:
2239                 return "bit9";
2240         case I915_BIT_6_SWIZZLE_9_10:
2241                 return "bit9/bit10";
2242         case I915_BIT_6_SWIZZLE_9_11:
2243                 return "bit9/bit11";
2244         case I915_BIT_6_SWIZZLE_9_10_11:
2245                 return "bit9/bit10/bit11";
2246         case I915_BIT_6_SWIZZLE_9_17:
2247                 return "bit9/bit17";
2248         case I915_BIT_6_SWIZZLE_9_10_17:
2249                 return "bit9/bit10/bit17";
2250         case I915_BIT_6_SWIZZLE_UNKNOWN:
2251                 return "unknown";
2252         }
2253
2254         return "bug";
2255 }
2256
2257 static int i915_swizzle_info(struct seq_file *m, void *data)
2258 {
2259         struct drm_info_node *node = m->private;
2260         struct drm_device *dev = node->minor->dev;
2261         struct drm_i915_private *dev_priv = to_i915(dev);
2262         int ret;
2263
2264         ret = mutex_lock_interruptible(&dev->struct_mutex);
2265         if (ret)
2266                 return ret;
2267         intel_runtime_pm_get(dev_priv);
2268
2269         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2270                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2271         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2272                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2273
2274         if (IS_GEN3(dev) || IS_GEN4(dev)) {
2275                 seq_printf(m, "DDC = 0x%08x\n",
2276                            I915_READ(DCC));
2277                 seq_printf(m, "DDC2 = 0x%08x\n",
2278                            I915_READ(DCC2));
2279                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2280                            I915_READ16(C0DRB3));
2281                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2282                            I915_READ16(C1DRB3));
2283         } else if (INTEL_INFO(dev)->gen >= 6) {
2284                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2285                            I915_READ(MAD_DIMM_C0));
2286                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2287                            I915_READ(MAD_DIMM_C1));
2288                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2289                            I915_READ(MAD_DIMM_C2));
2290                 seq_printf(m, "TILECTL = 0x%08x\n",
2291                            I915_READ(TILECTL));
2292                 if (INTEL_INFO(dev)->gen >= 8)
2293                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2294                                    I915_READ(GAMTARBMODE));
2295                 else
2296                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2297                                    I915_READ(ARB_MODE));
2298                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2299                            I915_READ(DISP_ARB_CTL));
2300         }
2301
2302         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2303                 seq_puts(m, "L-shaped memory detected\n");
2304
2305         intel_runtime_pm_put(dev_priv);
2306         mutex_unlock(&dev->struct_mutex);
2307
2308         return 0;
2309 }
2310
2311 static int per_file_ctx(int id, void *ptr, void *data)
2312 {
2313         struct i915_gem_context *ctx = ptr;
2314         struct seq_file *m = data;
2315         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2316
2317         if (!ppgtt) {
2318                 seq_printf(m, "  no ppgtt for context %d\n",
2319                            ctx->user_handle);
2320                 return 0;
2321         }
2322
2323         if (i915_gem_context_is_default(ctx))
2324                 seq_puts(m, "  default context:\n");
2325         else
2326                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2327         ppgtt->debug_dump(ppgtt, m);
2328
2329         return 0;
2330 }
2331
2332 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2333 {
2334         struct drm_i915_private *dev_priv = to_i915(dev);
2335         struct intel_engine_cs *engine;
2336         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2337         int i;
2338
2339         if (!ppgtt)
2340                 return;
2341
2342         for_each_engine(engine, dev_priv) {
2343                 seq_printf(m, "%s\n", engine->name);
2344                 for (i = 0; i < 4; i++) {
2345                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2346                         pdp <<= 32;
2347                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2348                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2349                 }
2350         }
2351 }
2352
2353 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2354 {
2355         struct drm_i915_private *dev_priv = to_i915(dev);
2356         struct intel_engine_cs *engine;
2357
2358         if (IS_GEN6(dev_priv))
2359                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2360
2361         for_each_engine(engine, dev_priv) {
2362                 seq_printf(m, "%s\n", engine->name);
2363                 if (IS_GEN7(dev_priv))
2364                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2365                                    I915_READ(RING_MODE_GEN7(engine)));
2366                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2367                            I915_READ(RING_PP_DIR_BASE(engine)));
2368                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2369                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2370                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2371                            I915_READ(RING_PP_DIR_DCLV(engine)));
2372         }
2373         if (dev_priv->mm.aliasing_ppgtt) {
2374                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2375
2376                 seq_puts(m, "aliasing PPGTT:\n");
2377                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2378
2379                 ppgtt->debug_dump(ppgtt, m);
2380         }
2381
2382         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2383 }
2384
2385 static int i915_ppgtt_info(struct seq_file *m, void *data)
2386 {
2387         struct drm_info_node *node = m->private;
2388         struct drm_device *dev = node->minor->dev;
2389         struct drm_i915_private *dev_priv = to_i915(dev);
2390         struct drm_file *file;
2391
2392         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2393         if (ret)
2394                 return ret;
2395         intel_runtime_pm_get(dev_priv);
2396
2397         if (INTEL_INFO(dev)->gen >= 8)
2398                 gen8_ppgtt_info(m, dev);
2399         else if (INTEL_INFO(dev)->gen >= 6)
2400                 gen6_ppgtt_info(m, dev);
2401
2402         mutex_lock(&dev->filelist_mutex);
2403         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2404                 struct drm_i915_file_private *file_priv = file->driver_priv;
2405                 struct task_struct *task;
2406
2407                 task = get_pid_task(file->pid, PIDTYPE_PID);
2408                 if (!task) {
2409                         ret = -ESRCH;
2410                         goto out_unlock;
2411                 }
2412                 seq_printf(m, "\nproc: %s\n", task->comm);
2413                 put_task_struct(task);
2414                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2415                              (void *)(unsigned long)m);
2416         }
2417 out_unlock:
2418         mutex_unlock(&dev->filelist_mutex);
2419
2420         intel_runtime_pm_put(dev_priv);
2421         mutex_unlock(&dev->struct_mutex);
2422
2423         return ret;
2424 }
2425
2426 static int count_irq_waiters(struct drm_i915_private *i915)
2427 {
2428         struct intel_engine_cs *engine;
2429         int count = 0;
2430
2431         for_each_engine(engine, i915)
2432                 count += intel_engine_has_waiter(engine);
2433
2434         return count;
2435 }
2436
2437 static int i915_rps_boost_info(struct seq_file *m, void *data)
2438 {
2439         struct drm_info_node *node = m->private;
2440         struct drm_device *dev = node->minor->dev;
2441         struct drm_i915_private *dev_priv = to_i915(dev);
2442         struct drm_file *file;
2443
2444         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2445         seq_printf(m, "GPU busy? %s [%x]\n",
2446                    yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
2447         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2448         seq_printf(m, "Frequency requested %d; min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2449                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
2450                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2451                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2452                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2453                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2454
2455         mutex_lock(&dev->filelist_mutex);
2456         spin_lock(&dev_priv->rps.client_lock);
2457         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2458                 struct drm_i915_file_private *file_priv = file->driver_priv;
2459                 struct task_struct *task;
2460
2461                 rcu_read_lock();
2462                 task = pid_task(file->pid, PIDTYPE_PID);
2463                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2464                            task ? task->comm : "<unknown>",
2465                            task ? task->pid : -1,
2466                            file_priv->rps.boosts,
2467                            list_empty(&file_priv->rps.link) ? "" : ", active");
2468                 rcu_read_unlock();
2469         }
2470         seq_printf(m, "Semaphore boosts: %d%s\n",
2471                    dev_priv->rps.semaphores.boosts,
2472                    list_empty(&dev_priv->rps.semaphores.link) ? "" : ", active");
2473         seq_printf(m, "MMIO flip boosts: %d%s\n",
2474                    dev_priv->rps.mmioflips.boosts,
2475                    list_empty(&dev_priv->rps.mmioflips.link) ? "" : ", active");
2476         seq_printf(m, "Kernel boosts: %d\n", dev_priv->rps.boosts);
2477         spin_unlock(&dev_priv->rps.client_lock);
2478         mutex_unlock(&dev->filelist_mutex);
2479
2480         return 0;
2481 }
2482
2483 static int i915_llc(struct seq_file *m, void *data)
2484 {
2485         struct drm_info_node *node = m->private;
2486         struct drm_device *dev = node->minor->dev;
2487         struct drm_i915_private *dev_priv = to_i915(dev);
2488         const bool edram = INTEL_GEN(dev_priv) > 8;
2489
2490         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2491         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2492                    intel_uncore_edram_size(dev_priv)/1024/1024);
2493
2494         return 0;
2495 }
2496
2497 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2498 {
2499         struct drm_info_node *node = m->private;
2500         struct drm_i915_private *dev_priv = to_i915(node->minor->dev);
2501         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2502         u32 tmp, i;
2503
2504         if (!HAS_GUC_UCODE(dev_priv))
2505                 return 0;
2506
2507         seq_printf(m, "GuC firmware status:\n");
2508         seq_printf(m, "\tpath: %s\n",
2509                 guc_fw->guc_fw_path);
2510         seq_printf(m, "\tfetch: %s\n",
2511                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2512         seq_printf(m, "\tload: %s\n",
2513                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2514         seq_printf(m, "\tversion wanted: %d.%d\n",
2515                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2516         seq_printf(m, "\tversion found: %d.%d\n",
2517                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2518         seq_printf(m, "\theader: offset is %d; size = %d\n",
2519                 guc_fw->header_offset, guc_fw->header_size);
2520         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2521                 guc_fw->ucode_offset, guc_fw->ucode_size);
2522         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2523                 guc_fw->rsa_offset, guc_fw->rsa_size);
2524
2525         tmp = I915_READ(GUC_STATUS);
2526
2527         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2528         seq_printf(m, "\tBootrom status = 0x%x\n",
2529                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2530         seq_printf(m, "\tuKernel status = 0x%x\n",
2531                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2532         seq_printf(m, "\tMIA Core status = 0x%x\n",
2533                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2534         seq_puts(m, "\nScratch registers:\n");
2535         for (i = 0; i < 16; i++)
2536                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2537
2538         return 0;
2539 }
2540
2541 static void i915_guc_client_info(struct seq_file *m,
2542                                  struct drm_i915_private *dev_priv,
2543                                  struct i915_guc_client *client)
2544 {
2545         struct intel_engine_cs *engine;
2546         uint64_t tot = 0;
2547
2548         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2549                 client->priority, client->ctx_index, client->proc_desc_offset);
2550         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2551                 client->doorbell_id, client->doorbell_offset, client->cookie);
2552         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2553                 client->wq_size, client->wq_offset, client->wq_tail);
2554
2555         seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2556         seq_printf(m, "\tFailed to queue: %u\n", client->q_fail);
2557         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2558         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2559
2560         for_each_engine(engine, dev_priv) {
2561                 seq_printf(m, "\tSubmissions: %llu %s\n",
2562                                 client->submissions[engine->id],
2563                                 engine->name);
2564                 tot += client->submissions[engine->id];
2565         }
2566         seq_printf(m, "\tTotal: %llu\n", tot);
2567 }
2568
2569 static int i915_guc_info(struct seq_file *m, void *data)
2570 {
2571         struct drm_info_node *node = m->private;
2572         struct drm_device *dev = node->minor->dev;
2573         struct drm_i915_private *dev_priv = to_i915(dev);
2574         struct intel_guc guc;
2575         struct i915_guc_client client = {};
2576         struct intel_engine_cs *engine;
2577         u64 total = 0;
2578
2579         if (!HAS_GUC_SCHED(dev_priv))
2580                 return 0;
2581
2582         if (mutex_lock_interruptible(&dev->struct_mutex))
2583                 return 0;
2584
2585         /* Take a local copy of the GuC data, so we can dump it at leisure */
2586         guc = dev_priv->guc;
2587         if (guc.execbuf_client)
2588                 client = *guc.execbuf_client;
2589
2590         mutex_unlock(&dev->struct_mutex);
2591
2592         seq_printf(m, "Doorbell map:\n");
2593         seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2594         seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2595
2596         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2597         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2598         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2599         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2600         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2601
2602         seq_printf(m, "\nGuC submissions:\n");
2603         for_each_engine(engine, dev_priv) {
2604                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2605                         engine->name, guc.submissions[engine->id],
2606                         guc.last_seqno[engine->id]);
2607                 total += guc.submissions[engine->id];
2608         }
2609         seq_printf(m, "\t%s: %llu\n", "Total", total);
2610
2611         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2612         i915_guc_client_info(m, dev_priv, &client);
2613
2614         /* Add more as required ... */
2615
2616         return 0;
2617 }
2618
2619 static int i915_guc_log_dump(struct seq_file *m, void *data)
2620 {
2621         struct drm_info_node *node = m->private;
2622         struct drm_device *dev = node->minor->dev;
2623         struct drm_i915_private *dev_priv = to_i915(dev);
2624         struct drm_i915_gem_object *log_obj = dev_priv->guc.log_obj;
2625         u32 *log;
2626         int i = 0, pg;
2627
2628         if (!log_obj)
2629                 return 0;
2630
2631         for (pg = 0; pg < log_obj->base.size / PAGE_SIZE; pg++) {
2632                 log = kmap_atomic(i915_gem_object_get_page(log_obj, pg));
2633
2634                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2635                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2636                                    *(log + i), *(log + i + 1),
2637                                    *(log + i + 2), *(log + i + 3));
2638
2639                 kunmap_atomic(log);
2640         }
2641
2642         seq_putc(m, '\n');
2643
2644         return 0;
2645 }
2646
2647 static int i915_edp_psr_status(struct seq_file *m, void *data)
2648 {
2649         struct drm_info_node *node = m->private;
2650         struct drm_device *dev = node->minor->dev;
2651         struct drm_i915_private *dev_priv = to_i915(dev);
2652         u32 psrperf = 0;
2653         u32 stat[3];
2654         enum pipe pipe;
2655         bool enabled = false;
2656
2657         if (!HAS_PSR(dev)) {
2658                 seq_puts(m, "PSR not supported\n");
2659                 return 0;
2660         }
2661
2662         intel_runtime_pm_get(dev_priv);
2663
2664         mutex_lock(&dev_priv->psr.lock);
2665         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2666         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2667         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2668         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2669         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2670                    dev_priv->psr.busy_frontbuffer_bits);
2671         seq_printf(m, "Re-enable work scheduled: %s\n",
2672                    yesno(work_busy(&dev_priv->psr.work.work)));
2673
2674         if (HAS_DDI(dev))
2675                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2676         else {
2677                 for_each_pipe(dev_priv, pipe) {
2678                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2679                                 VLV_EDP_PSR_CURR_STATE_MASK;
2680                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2681                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2682                                 enabled = true;
2683                 }
2684         }
2685
2686         seq_printf(m, "Main link in standby mode: %s\n",
2687                    yesno(dev_priv->psr.link_standby));
2688
2689         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2690
2691         if (!HAS_DDI(dev))
2692                 for_each_pipe(dev_priv, pipe) {
2693                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2694                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2695                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2696                 }
2697         seq_puts(m, "\n");
2698
2699         /*
2700          * VLV/CHV PSR has no kind of performance counter
2701          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2702          */
2703         if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2704                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2705                         EDP_PSR_PERF_CNT_MASK;
2706
2707                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2708         }
2709         mutex_unlock(&dev_priv->psr.lock);
2710
2711         intel_runtime_pm_put(dev_priv);
2712         return 0;
2713 }
2714
2715 static int i915_sink_crc(struct seq_file *m, void *data)
2716 {
2717         struct drm_info_node *node = m->private;
2718         struct drm_device *dev = node->minor->dev;
2719         struct intel_connector *connector;
2720         struct intel_dp *intel_dp = NULL;
2721         int ret;
2722         u8 crc[6];
2723
2724         drm_modeset_lock_all(dev);
2725         for_each_intel_connector(dev, connector) {
2726                 struct drm_crtc *crtc;
2727
2728                 if (!connector->base.state->best_encoder)
2729                         continue;
2730
2731                 crtc = connector->base.state->crtc;
2732                 if (!crtc->state->active)
2733                         continue;
2734
2735                 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2736                         continue;
2737
2738                 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2739
2740                 ret = intel_dp_sink_crc(intel_dp, crc);
2741                 if (ret)
2742                         goto out;
2743
2744                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2745                            crc[0], crc[1], crc[2],
2746                            crc[3], crc[4], crc[5]);
2747                 goto out;
2748         }
2749         ret = -ENODEV;
2750 out:
2751         drm_modeset_unlock_all(dev);
2752         return ret;
2753 }
2754
2755 static int i915_energy_uJ(struct seq_file *m, void *data)
2756 {
2757         struct drm_info_node *node = m->private;
2758         struct drm_device *dev = node->minor->dev;
2759         struct drm_i915_private *dev_priv = to_i915(dev);
2760         u64 power;
2761         u32 units;
2762
2763         if (INTEL_INFO(dev)->gen < 6)
2764                 return -ENODEV;
2765
2766         intel_runtime_pm_get(dev_priv);
2767
2768         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2769         power = (power & 0x1f00) >> 8;
2770         units = 1000000 / (1 << power); /* convert to uJ */
2771         power = I915_READ(MCH_SECP_NRG_STTS);
2772         power *= units;
2773
2774         intel_runtime_pm_put(dev_priv);
2775
2776         seq_printf(m, "%llu", (long long unsigned)power);
2777
2778         return 0;
2779 }
2780
2781 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2782 {
2783         struct drm_info_node *node = m->private;
2784         struct drm_device *dev = node->minor->dev;
2785         struct drm_i915_private *dev_priv = to_i915(dev);
2786
2787         if (!HAS_RUNTIME_PM(dev_priv))
2788                 seq_puts(m, "Runtime power management not supported\n");
2789
2790         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2791         seq_printf(m, "IRQs disabled: %s\n",
2792                    yesno(!intel_irqs_enabled(dev_priv)));
2793 #ifdef CONFIG_PM
2794         seq_printf(m, "Usage count: %d\n",
2795                    atomic_read(&dev->dev->power.usage_count));
2796 #else
2797         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2798 #endif
2799         seq_printf(m, "PCI device power state: %s [%d]\n",
2800                    pci_power_name(dev_priv->drm.pdev->current_state),
2801                    dev_priv->drm.pdev->current_state);
2802
2803         return 0;
2804 }
2805
2806 static int i915_power_domain_info(struct seq_file *m, void *unused)
2807 {
2808         struct drm_info_node *node = m->private;
2809         struct drm_device *dev = node->minor->dev;
2810         struct drm_i915_private *dev_priv = to_i915(dev);
2811         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2812         int i;
2813
2814         mutex_lock(&power_domains->lock);
2815
2816         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2817         for (i = 0; i < power_domains->power_well_count; i++) {
2818                 struct i915_power_well *power_well;
2819                 enum intel_display_power_domain power_domain;
2820
2821                 power_well = &power_domains->power_wells[i];
2822                 seq_printf(m, "%-25s %d\n", power_well->name,
2823                            power_well->count);
2824
2825                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2826                      power_domain++) {
2827                         if (!(BIT(power_domain) & power_well->domains))
2828                                 continue;
2829
2830                         seq_printf(m, "  %-23s %d\n",
2831                                  intel_display_power_domain_str(power_domain),
2832                                  power_domains->domain_use_count[power_domain]);
2833                 }
2834         }
2835
2836         mutex_unlock(&power_domains->lock);
2837
2838         return 0;
2839 }
2840
2841 static int i915_dmc_info(struct seq_file *m, void *unused)
2842 {
2843         struct drm_info_node *node = m->private;
2844         struct drm_device *dev = node->minor->dev;
2845         struct drm_i915_private *dev_priv = to_i915(dev);
2846         struct intel_csr *csr;
2847
2848         if (!HAS_CSR(dev)) {
2849                 seq_puts(m, "not supported\n");
2850                 return 0;
2851         }
2852
2853         csr = &dev_priv->csr;
2854
2855         intel_runtime_pm_get(dev_priv);
2856
2857         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2858         seq_printf(m, "path: %s\n", csr->fw_path);
2859
2860         if (!csr->dmc_payload)
2861                 goto out;
2862
2863         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2864                    CSR_VERSION_MINOR(csr->version));
2865
2866         if (IS_SKYLAKE(dev) && csr->version >= CSR_VERSION(1, 6)) {
2867                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2868                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2869                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2870                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2871         } else if (IS_BROXTON(dev) && csr->version >= CSR_VERSION(1, 4)) {
2872                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2873                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2874         }
2875
2876 out:
2877         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2878         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2879         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2880
2881         intel_runtime_pm_put(dev_priv);
2882
2883         return 0;
2884 }
2885
2886 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2887                                  struct drm_display_mode *mode)
2888 {
2889         int i;
2890
2891         for (i = 0; i < tabs; i++)
2892                 seq_putc(m, '\t');
2893
2894         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2895                    mode->base.id, mode->name,
2896                    mode->vrefresh, mode->clock,
2897                    mode->hdisplay, mode->hsync_start,
2898                    mode->hsync_end, mode->htotal,
2899                    mode->vdisplay, mode->vsync_start,
2900                    mode->vsync_end, mode->vtotal,
2901                    mode->type, mode->flags);
2902 }
2903
2904 static void intel_encoder_info(struct seq_file *m,
2905                                struct intel_crtc *intel_crtc,
2906                                struct intel_encoder *intel_encoder)
2907 {
2908         struct drm_info_node *node = m->private;
2909         struct drm_device *dev = node->minor->dev;
2910         struct drm_crtc *crtc = &intel_crtc->base;
2911         struct intel_connector *intel_connector;
2912         struct drm_encoder *encoder;
2913
2914         encoder = &intel_encoder->base;
2915         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2916                    encoder->base.id, encoder->name);
2917         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2918                 struct drm_connector *connector = &intel_connector->base;
2919                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2920                            connector->base.id,
2921                            connector->name,
2922                            drm_get_connector_status_name(connector->status));
2923                 if (connector->status == connector_status_connected) {
2924                         struct drm_display_mode *mode = &crtc->mode;
2925                         seq_printf(m, ", mode:\n");
2926                         intel_seq_print_mode(m, 2, mode);
2927                 } else {
2928                         seq_putc(m, '\n');
2929                 }
2930         }
2931 }
2932
2933 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2934 {
2935         struct drm_info_node *node = m->private;
2936         struct drm_device *dev = node->minor->dev;
2937         struct drm_crtc *crtc = &intel_crtc->base;
2938         struct intel_encoder *intel_encoder;
2939         struct drm_plane_state *plane_state = crtc->primary->state;
2940         struct drm_framebuffer *fb = plane_state->fb;
2941
2942         if (fb)
2943                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2944                            fb->base.id, plane_state->src_x >> 16,
2945                            plane_state->src_y >> 16, fb->width, fb->height);
2946         else
2947                 seq_puts(m, "\tprimary plane disabled\n");
2948         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2949                 intel_encoder_info(m, intel_crtc, intel_encoder);
2950 }
2951
2952 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2953 {
2954         struct drm_display_mode *mode = panel->fixed_mode;
2955
2956         seq_printf(m, "\tfixed mode:\n");
2957         intel_seq_print_mode(m, 2, mode);
2958 }
2959
2960 static void intel_dp_info(struct seq_file *m,
2961                           struct intel_connector *intel_connector)
2962 {
2963         struct intel_encoder *intel_encoder = intel_connector->encoder;
2964         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2965
2966         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2967         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2968         if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2969                 intel_panel_info(m, &intel_connector->panel);
2970 }
2971
2972 static void intel_hdmi_info(struct seq_file *m,
2973                             struct intel_connector *intel_connector)
2974 {
2975         struct intel_encoder *intel_encoder = intel_connector->encoder;
2976         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2977
2978         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2979 }
2980
2981 static void intel_lvds_info(struct seq_file *m,
2982                             struct intel_connector *intel_connector)
2983 {
2984         intel_panel_info(m, &intel_connector->panel);
2985 }
2986
2987 static void intel_connector_info(struct seq_file *m,
2988                                  struct drm_connector *connector)
2989 {
2990         struct intel_connector *intel_connector = to_intel_connector(connector);
2991         struct intel_encoder *intel_encoder = intel_connector->encoder;
2992         struct drm_display_mode *mode;
2993
2994         seq_printf(m, "connector %d: type %s, status: %s\n",
2995                    connector->base.id, connector->name,
2996                    drm_get_connector_status_name(connector->status));
2997         if (connector->status == connector_status_connected) {
2998                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2999                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
3000                            connector->display_info.width_mm,
3001                            connector->display_info.height_mm);
3002                 seq_printf(m, "\tsubpixel order: %s\n",
3003                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
3004                 seq_printf(m, "\tCEA rev: %d\n",
3005                            connector->display_info.cea_rev);
3006         }
3007
3008         if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3009                 return;
3010
3011         switch (connector->connector_type) {
3012         case DRM_MODE_CONNECTOR_DisplayPort:
3013         case DRM_MODE_CONNECTOR_eDP:
3014                 intel_dp_info(m, intel_connector);
3015                 break;
3016         case DRM_MODE_CONNECTOR_LVDS:
3017                 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
3018                         intel_lvds_info(m, intel_connector);
3019                 break;
3020         case DRM_MODE_CONNECTOR_HDMIA:
3021                 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
3022                     intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
3023                         intel_hdmi_info(m, intel_connector);
3024                 break;
3025         default:
3026                 break;
3027         }
3028
3029         seq_printf(m, "\tmodes:\n");
3030         list_for_each_entry(mode, &connector->modes, head)
3031                 intel_seq_print_mode(m, 2, mode);
3032 }
3033
3034 static bool cursor_active(struct drm_device *dev, int pipe)
3035 {
3036         struct drm_i915_private *dev_priv = to_i915(dev);
3037         u32 state;
3038
3039         if (IS_845G(dev) || IS_I865G(dev))
3040                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
3041         else
3042                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
3043
3044         return state;
3045 }
3046
3047 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
3048 {
3049         struct drm_i915_private *dev_priv = to_i915(dev);
3050         u32 pos;
3051
3052         pos = I915_READ(CURPOS(pipe));
3053
3054         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
3055         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
3056                 *x = -*x;
3057
3058         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
3059         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
3060                 *y = -*y;
3061
3062         return cursor_active(dev, pipe);
3063 }
3064
3065 static const char *plane_type(enum drm_plane_type type)
3066 {
3067         switch (type) {
3068         case DRM_PLANE_TYPE_OVERLAY:
3069                 return "OVL";
3070         case DRM_PLANE_TYPE_PRIMARY:
3071                 return "PRI";
3072         case DRM_PLANE_TYPE_CURSOR:
3073                 return "CUR";
3074         /*
3075          * Deliberately omitting default: to generate compiler warnings
3076          * when a new drm_plane_type gets added.
3077          */
3078         }
3079
3080         return "unknown";
3081 }
3082
3083 static const char *plane_rotation(unsigned int rotation)
3084 {
3085         static char buf[48];
3086         /*
3087          * According to doc only one DRM_ROTATE_ is allowed but this
3088          * will print them all to visualize if the values are misused
3089          */
3090         snprintf(buf, sizeof(buf),
3091                  "%s%s%s%s%s%s(0x%08x)",
3092                  (rotation & BIT(DRM_ROTATE_0)) ? "0 " : "",
3093                  (rotation & BIT(DRM_ROTATE_90)) ? "90 " : "",
3094                  (rotation & BIT(DRM_ROTATE_180)) ? "180 " : "",
3095                  (rotation & BIT(DRM_ROTATE_270)) ? "270 " : "",
3096                  (rotation & BIT(DRM_REFLECT_X)) ? "FLIPX " : "",
3097                  (rotation & BIT(DRM_REFLECT_Y)) ? "FLIPY " : "",
3098                  rotation);
3099
3100         return buf;
3101 }
3102
3103 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3104 {
3105         struct drm_info_node *node = m->private;
3106         struct drm_device *dev = node->minor->dev;
3107         struct intel_plane *intel_plane;
3108
3109         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3110                 struct drm_plane_state *state;
3111                 struct drm_plane *plane = &intel_plane->base;
3112
3113                 if (!plane->state) {
3114                         seq_puts(m, "plane->state is NULL!\n");
3115                         continue;
3116                 }
3117
3118                 state = plane->state;
3119
3120                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3121                            plane->base.id,
3122                            plane_type(intel_plane->base.type),
3123                            state->crtc_x, state->crtc_y,
3124                            state->crtc_w, state->crtc_h,
3125                            (state->src_x >> 16),
3126                            ((state->src_x & 0xffff) * 15625) >> 10,
3127                            (state->src_y >> 16),
3128                            ((state->src_y & 0xffff) * 15625) >> 10,
3129                            (state->src_w >> 16),
3130                            ((state->src_w & 0xffff) * 15625) >> 10,
3131                            (state->src_h >> 16),
3132                            ((state->src_h & 0xffff) * 15625) >> 10,
3133                            state->fb ? drm_get_format_name(state->fb->pixel_format) : "N/A",
3134                            plane_rotation(state->rotation));
3135         }
3136 }
3137
3138 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3139 {
3140         struct intel_crtc_state *pipe_config;
3141         int num_scalers = intel_crtc->num_scalers;
3142         int i;
3143
3144         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3145
3146         /* Not all platformas have a scaler */
3147         if (num_scalers) {
3148                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3149                            num_scalers,
3150                            pipe_config->scaler_state.scaler_users,
3151                            pipe_config->scaler_state.scaler_id);
3152
3153                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3154                         struct intel_scaler *sc =
3155                                         &pipe_config->scaler_state.scalers[i];
3156
3157                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3158                                    i, yesno(sc->in_use), sc->mode);
3159                 }
3160                 seq_puts(m, "\n");
3161         } else {
3162                 seq_puts(m, "\tNo scalers available on this platform\n");
3163         }
3164 }
3165
3166 static int i915_display_info(struct seq_file *m, void *unused)
3167 {
3168         struct drm_info_node *node = m->private;
3169         struct drm_device *dev = node->minor->dev;
3170         struct drm_i915_private *dev_priv = to_i915(dev);
3171         struct intel_crtc *crtc;
3172         struct drm_connector *connector;
3173
3174         intel_runtime_pm_get(dev_priv);
3175         drm_modeset_lock_all(dev);
3176         seq_printf(m, "CRTC info\n");
3177         seq_printf(m, "---------\n");
3178         for_each_intel_crtc(dev, crtc) {
3179                 bool active;
3180                 struct intel_crtc_state *pipe_config;
3181                 int x, y;
3182
3183                 pipe_config = to_intel_crtc_state(crtc->base.state);
3184
3185                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3186                            crtc->base.base.id, pipe_name(crtc->pipe),
3187                            yesno(pipe_config->base.active),
3188                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3189                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3190
3191                 if (pipe_config->base.active) {
3192                         intel_crtc_info(m, crtc);
3193
3194                         active = cursor_position(dev, crtc->pipe, &x, &y);
3195                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3196                                    yesno(crtc->cursor_base),
3197                                    x, y, crtc->base.cursor->state->crtc_w,
3198                                    crtc->base.cursor->state->crtc_h,
3199                                    crtc->cursor_addr, yesno(active));
3200                         intel_scaler_info(m, crtc);
3201                         intel_plane_info(m, crtc);
3202                 }
3203
3204                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3205                            yesno(!crtc->cpu_fifo_underrun_disabled),
3206                            yesno(!crtc->pch_fifo_underrun_disabled));
3207         }
3208
3209         seq_printf(m, "\n");
3210         seq_printf(m, "Connector info\n");
3211         seq_printf(m, "--------------\n");
3212         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3213                 intel_connector_info(m, connector);
3214         }
3215         drm_modeset_unlock_all(dev);
3216         intel_runtime_pm_put(dev_priv);
3217
3218         return 0;
3219 }
3220
3221 static int i915_semaphore_status(struct seq_file *m, void *unused)
3222 {
3223         struct drm_info_node *node = (struct drm_info_node *) m->private;
3224         struct drm_device *dev = node->minor->dev;
3225         struct drm_i915_private *dev_priv = to_i915(dev);
3226         struct intel_engine_cs *engine;
3227         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
3228         enum intel_engine_id id;
3229         int j, ret;
3230
3231         if (!i915_semaphore_is_enabled(dev_priv)) {
3232                 seq_puts(m, "Semaphores are disabled\n");
3233                 return 0;
3234         }
3235
3236         ret = mutex_lock_interruptible(&dev->struct_mutex);
3237         if (ret)
3238                 return ret;
3239         intel_runtime_pm_get(dev_priv);
3240
3241         if (IS_BROADWELL(dev)) {
3242                 struct page *page;
3243                 uint64_t *seqno;
3244
3245                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
3246
3247                 seqno = (uint64_t *)kmap_atomic(page);
3248                 for_each_engine_id(engine, dev_priv, id) {
3249                         uint64_t offset;
3250
3251                         seq_printf(m, "%s\n", engine->name);
3252
3253                         seq_puts(m, "  Last signal:");
3254                         for (j = 0; j < num_rings; j++) {
3255                                 offset = id * I915_NUM_ENGINES + j;
3256                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3257                                            seqno[offset], offset * 8);
3258                         }
3259                         seq_putc(m, '\n');
3260
3261                         seq_puts(m, "  Last wait:  ");
3262                         for (j = 0; j < num_rings; j++) {
3263                                 offset = id + (j * I915_NUM_ENGINES);
3264                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3265                                            seqno[offset], offset * 8);
3266                         }
3267                         seq_putc(m, '\n');
3268
3269                 }
3270                 kunmap_atomic(seqno);
3271         } else {
3272                 seq_puts(m, "  Last signal:");
3273                 for_each_engine(engine, dev_priv)
3274                         for (j = 0; j < num_rings; j++)
3275                                 seq_printf(m, "0x%08x\n",
3276                                            I915_READ(engine->semaphore.mbox.signal[j]));
3277                 seq_putc(m, '\n');
3278         }
3279
3280         seq_puts(m, "\nSync seqno:\n");
3281         for_each_engine(engine, dev_priv) {
3282                 for (j = 0; j < num_rings; j++)
3283                         seq_printf(m, "  0x%08x ",
3284                                    engine->semaphore.sync_seqno[j]);
3285                 seq_putc(m, '\n');
3286         }
3287         seq_putc(m, '\n');
3288
3289         intel_runtime_pm_put(dev_priv);
3290         mutex_unlock(&dev->struct_mutex);
3291         return 0;
3292 }
3293
3294 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3295 {
3296         struct drm_info_node *node = (struct drm_info_node *) m->private;
3297         struct drm_device *dev = node->minor->dev;
3298         struct drm_i915_private *dev_priv = to_i915(dev);
3299         int i;
3300
3301         drm_modeset_lock_all(dev);
3302         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3303                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3304
3305                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3306                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3307                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3308                 seq_printf(m, " tracked hardware state:\n");
3309                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3310                 seq_printf(m, " dpll_md: 0x%08x\n",
3311                            pll->config.hw_state.dpll_md);
3312                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3313                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3314                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3315         }
3316         drm_modeset_unlock_all(dev);
3317
3318         return 0;
3319 }
3320
3321 static int i915_wa_registers(struct seq_file *m, void *unused)
3322 {
3323         int i;
3324         int ret;
3325         struct intel_engine_cs *engine;
3326         struct drm_info_node *node = (struct drm_info_node *) m->private;
3327         struct drm_device *dev = node->minor->dev;
3328         struct drm_i915_private *dev_priv = to_i915(dev);
3329         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3330         enum intel_engine_id id;
3331
3332         ret = mutex_lock_interruptible(&dev->struct_mutex);
3333         if (ret)
3334                 return ret;
3335
3336         intel_runtime_pm_get(dev_priv);
3337
3338         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3339         for_each_engine_id(engine, dev_priv, id)
3340                 seq_printf(m, "HW whitelist count for %s: %d\n",
3341                            engine->name, workarounds->hw_whitelist_count[id]);
3342         for (i = 0; i < workarounds->count; ++i) {
3343                 i915_reg_t addr;
3344                 u32 mask, value, read;
3345                 bool ok;
3346
3347                 addr = workarounds->reg[i].addr;
3348                 mask = workarounds->reg[i].mask;
3349                 value = workarounds->reg[i].value;
3350                 read = I915_READ(addr);
3351                 ok = (value & mask) == (read & mask);
3352                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3353                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3354         }
3355
3356         intel_runtime_pm_put(dev_priv);
3357         mutex_unlock(&dev->struct_mutex);
3358
3359         return 0;
3360 }
3361
3362 static int i915_ddb_info(struct seq_file *m, void *unused)
3363 {
3364         struct drm_info_node *node = m->private;
3365         struct drm_device *dev = node->minor->dev;
3366         struct drm_i915_private *dev_priv = to_i915(dev);
3367         struct skl_ddb_allocation *ddb;
3368         struct skl_ddb_entry *entry;
3369         enum pipe pipe;
3370         int plane;
3371
3372         if (INTEL_INFO(dev)->gen < 9)
3373                 return 0;
3374
3375         drm_modeset_lock_all(dev);
3376
3377         ddb = &dev_priv->wm.skl_hw.ddb;
3378
3379         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3380
3381         for_each_pipe(dev_priv, pipe) {
3382                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3383
3384                 for_each_plane(dev_priv, pipe, plane) {
3385                         entry = &ddb->plane[pipe][plane];
3386                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3387                                    entry->start, entry->end,
3388                                    skl_ddb_entry_size(entry));
3389                 }
3390
3391                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3392                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3393                            entry->end, skl_ddb_entry_size(entry));
3394         }
3395
3396         drm_modeset_unlock_all(dev);
3397
3398         return 0;
3399 }
3400
3401 static void drrs_status_per_crtc(struct seq_file *m,
3402                 struct drm_device *dev, struct intel_crtc *intel_crtc)
3403 {
3404         struct drm_i915_private *dev_priv = to_i915(dev);
3405         struct i915_drrs *drrs = &dev_priv->drrs;
3406         int vrefresh = 0;
3407         struct drm_connector *connector;
3408
3409         drm_for_each_connector(connector, dev) {
3410                 if (connector->state->crtc != &intel_crtc->base)
3411                         continue;
3412
3413                 seq_printf(m, "%s:\n", connector->name);
3414         }
3415
3416         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3417                 seq_puts(m, "\tVBT: DRRS_type: Static");
3418         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3419                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3420         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3421                 seq_puts(m, "\tVBT: DRRS_type: None");
3422         else
3423                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3424
3425         seq_puts(m, "\n\n");
3426
3427         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3428                 struct intel_panel *panel;
3429
3430                 mutex_lock(&drrs->mutex);
3431                 /* DRRS Supported */
3432                 seq_puts(m, "\tDRRS Supported: Yes\n");
3433
3434                 /* disable_drrs() will make drrs->dp NULL */
3435                 if (!drrs->dp) {
3436                         seq_puts(m, "Idleness DRRS: Disabled");
3437                         mutex_unlock(&drrs->mutex);
3438                         return;
3439                 }
3440
3441                 panel = &drrs->dp->attached_connector->panel;
3442                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3443                                         drrs->busy_frontbuffer_bits);
3444
3445                 seq_puts(m, "\n\t\t");
3446                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3447                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3448                         vrefresh = panel->fixed_mode->vrefresh;
3449                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3450                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3451                         vrefresh = panel->downclock_mode->vrefresh;
3452                 } else {
3453                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3454                                                 drrs->refresh_rate_type);
3455                         mutex_unlock(&drrs->mutex);
3456                         return;
3457                 }
3458                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3459
3460                 seq_puts(m, "\n\t\t");
3461                 mutex_unlock(&drrs->mutex);
3462         } else {
3463                 /* DRRS not supported. Print the VBT parameter*/
3464                 seq_puts(m, "\tDRRS Supported : No");
3465         }
3466         seq_puts(m, "\n");
3467 }
3468
3469 static int i915_drrs_status(struct seq_file *m, void *unused)
3470 {
3471         struct drm_info_node *node = m->private;
3472         struct drm_device *dev = node->minor->dev;
3473         struct intel_crtc *intel_crtc;
3474         int active_crtc_cnt = 0;
3475
3476         drm_modeset_lock_all(dev);
3477         for_each_intel_crtc(dev, intel_crtc) {
3478                 if (intel_crtc->base.state->active) {
3479                         active_crtc_cnt++;
3480                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3481
3482                         drrs_status_per_crtc(m, dev, intel_crtc);
3483                 }
3484         }
3485         drm_modeset_unlock_all(dev);
3486
3487         if (!active_crtc_cnt)
3488                 seq_puts(m, "No active crtc found\n");
3489
3490         return 0;
3491 }
3492
3493 struct pipe_crc_info {
3494         const char *name;
3495         struct drm_device *dev;
3496         enum pipe pipe;
3497 };
3498
3499 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3500 {
3501         struct drm_info_node *node = (struct drm_info_node *) m->private;
3502         struct drm_device *dev = node->minor->dev;
3503         struct intel_encoder *intel_encoder;
3504         struct intel_digital_port *intel_dig_port;
3505         struct drm_connector *connector;
3506
3507         drm_modeset_lock_all(dev);
3508         drm_for_each_connector(connector, dev) {
3509                 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3510                         continue;
3511
3512                 intel_encoder = intel_attached_encoder(connector);
3513                 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3514                         continue;
3515
3516                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3517                 if (!intel_dig_port->dp.can_mst)
3518                         continue;
3519
3520                 seq_printf(m, "MST Source Port %c\n",
3521                            port_name(intel_dig_port->port));
3522                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3523         }
3524         drm_modeset_unlock_all(dev);
3525         return 0;
3526 }
3527
3528 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3529 {
3530         struct pipe_crc_info *info = inode->i_private;
3531         struct drm_i915_private *dev_priv = to_i915(info->dev);
3532         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3533
3534         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
3535                 return -ENODEV;
3536
3537         spin_lock_irq(&pipe_crc->lock);
3538
3539         if (pipe_crc->opened) {
3540                 spin_unlock_irq(&pipe_crc->lock);
3541                 return -EBUSY; /* already open */
3542         }
3543
3544         pipe_crc->opened = true;
3545         filep->private_data = inode->i_private;
3546
3547         spin_unlock_irq(&pipe_crc->lock);
3548
3549         return 0;
3550 }
3551
3552 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3553 {
3554         struct pipe_crc_info *info = inode->i_private;
3555         struct drm_i915_private *dev_priv = to_i915(info->dev);
3556         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3557
3558         spin_lock_irq(&pipe_crc->lock);
3559         pipe_crc->opened = false;
3560         spin_unlock_irq(&pipe_crc->lock);
3561
3562         return 0;
3563 }
3564
3565 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3566 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3567 /* account for \'0' */
3568 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3569
3570 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3571 {
3572         assert_spin_locked(&pipe_crc->lock);
3573         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3574                         INTEL_PIPE_CRC_ENTRIES_NR);
3575 }
3576
3577 static ssize_t
3578 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3579                    loff_t *pos)
3580 {
3581         struct pipe_crc_info *info = filep->private_data;
3582         struct drm_device *dev = info->dev;
3583         struct drm_i915_private *dev_priv = to_i915(dev);
3584         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3585         char buf[PIPE_CRC_BUFFER_LEN];
3586         int n_entries;
3587         ssize_t bytes_read;
3588
3589         /*
3590          * Don't allow user space to provide buffers not big enough to hold
3591          * a line of data.
3592          */
3593         if (count < PIPE_CRC_LINE_LEN)
3594                 return -EINVAL;
3595
3596         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3597                 return 0;
3598
3599         /* nothing to read */
3600         spin_lock_irq(&pipe_crc->lock);
3601         while (pipe_crc_data_count(pipe_crc) == 0) {
3602                 int ret;
3603
3604                 if (filep->f_flags & O_NONBLOCK) {
3605                         spin_unlock_irq(&pipe_crc->lock);
3606                         return -EAGAIN;
3607                 }
3608
3609                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3610                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3611                 if (ret) {
3612                         spin_unlock_irq(&pipe_crc->lock);
3613                         return ret;
3614                 }
3615         }
3616
3617         /* We now have one or more entries to read */
3618         n_entries = count / PIPE_CRC_LINE_LEN;
3619
3620         bytes_read = 0;
3621         while (n_entries > 0) {
3622                 struct intel_pipe_crc_entry *entry =
3623                         &pipe_crc->entries[pipe_crc->tail];
3624                 int ret;
3625
3626                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3627                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3628                         break;
3629
3630                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3631                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3632
3633                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3634                                        "%8u %8x %8x %8x %8x %8x\n",
3635                                        entry->frame, entry->crc[0],
3636                                        entry->crc[1], entry->crc[2],
3637                                        entry->crc[3], entry->crc[4]);
3638
3639                 spin_unlock_irq(&pipe_crc->lock);
3640
3641                 ret = copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN);
3642                 if (ret == PIPE_CRC_LINE_LEN)
3643                         return -EFAULT;
3644
3645                 user_buf += PIPE_CRC_LINE_LEN;
3646                 n_entries--;
3647
3648                 spin_lock_irq(&pipe_crc->lock);
3649         }
3650
3651         spin_unlock_irq(&pipe_crc->lock);
3652
3653         return bytes_read;
3654 }
3655
3656 static const struct file_operations i915_pipe_crc_fops = {
3657         .owner = THIS_MODULE,
3658         .open = i915_pipe_crc_open,
3659         .read = i915_pipe_crc_read,
3660         .release = i915_pipe_crc_release,
3661 };
3662
3663 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3664         {
3665                 .name = "i915_pipe_A_crc",
3666                 .pipe = PIPE_A,
3667         },
3668         {
3669                 .name = "i915_pipe_B_crc",
3670                 .pipe = PIPE_B,
3671         },
3672         {
3673                 .name = "i915_pipe_C_crc",
3674                 .pipe = PIPE_C,
3675         },
3676 };
3677
3678 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3679                                 enum pipe pipe)
3680 {
3681         struct drm_device *dev = minor->dev;
3682         struct dentry *ent;
3683         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3684
3685         info->dev = dev;
3686         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3687                                   &i915_pipe_crc_fops);
3688         if (!ent)
3689                 return -ENOMEM;
3690
3691         return drm_add_fake_info_node(minor, ent, info);
3692 }
3693
3694 static const char * const pipe_crc_sources[] = {
3695         "none",
3696         "plane1",
3697         "plane2",
3698         "pf",
3699         "pipe",
3700         "TV",
3701         "DP-B",
3702         "DP-C",
3703         "DP-D",
3704         "auto",
3705 };
3706
3707 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3708 {
3709         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3710         return pipe_crc_sources[source];
3711 }
3712
3713 static int display_crc_ctl_show(struct seq_file *m, void *data)
3714 {
3715         struct drm_device *dev = m->private;
3716         struct drm_i915_private *dev_priv = to_i915(dev);
3717         int i;
3718
3719         for (i = 0; i < I915_MAX_PIPES; i++)
3720                 seq_printf(m, "%c %s\n", pipe_name(i),
3721                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3722
3723         return 0;
3724 }
3725
3726 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3727 {
3728         struct drm_device *dev = inode->i_private;
3729
3730         return single_open(file, display_crc_ctl_show, dev);
3731 }
3732
3733 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3734                                  uint32_t *val)
3735 {
3736         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3737                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3738
3739         switch (*source) {
3740         case INTEL_PIPE_CRC_SOURCE_PIPE:
3741                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3742                 break;
3743         case INTEL_PIPE_CRC_SOURCE_NONE:
3744                 *val = 0;
3745                 break;
3746         default:
3747                 return -EINVAL;
3748         }
3749
3750         return 0;
3751 }
3752
3753 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
3754                                      enum intel_pipe_crc_source *source)
3755 {
3756         struct intel_encoder *encoder;
3757         struct intel_crtc *crtc;
3758         struct intel_digital_port *dig_port;
3759         int ret = 0;
3760
3761         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3762
3763         drm_modeset_lock_all(dev);
3764         for_each_intel_encoder(dev, encoder) {
3765                 if (!encoder->base.crtc)
3766                         continue;
3767
3768                 crtc = to_intel_crtc(encoder->base.crtc);
3769
3770                 if (crtc->pipe != pipe)
3771                         continue;
3772
3773                 switch (encoder->type) {
3774                 case INTEL_OUTPUT_TVOUT:
3775                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3776                         break;
3777                 case INTEL_OUTPUT_DP:
3778                 case INTEL_OUTPUT_EDP:
3779                         dig_port = enc_to_dig_port(&encoder->base);
3780                         switch (dig_port->port) {
3781                         case PORT_B:
3782                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3783                                 break;
3784                         case PORT_C:
3785                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3786                                 break;
3787                         case PORT_D:
3788                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3789                                 break;
3790                         default:
3791                                 WARN(1, "nonexisting DP port %c\n",
3792                                      port_name(dig_port->port));
3793                                 break;
3794                         }
3795                         break;
3796                 default:
3797                         break;
3798                 }
3799         }
3800         drm_modeset_unlock_all(dev);
3801
3802         return ret;
3803 }
3804
3805 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
3806                                 enum pipe pipe,
3807                                 enum intel_pipe_crc_source *source,
3808                                 uint32_t *val)
3809 {
3810         struct drm_i915_private *dev_priv = to_i915(dev);
3811         bool need_stable_symbols = false;
3812
3813         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3814                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3815                 if (ret)
3816                         return ret;
3817         }
3818
3819         switch (*source) {
3820         case INTEL_PIPE_CRC_SOURCE_PIPE:
3821                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3822                 break;
3823         case INTEL_PIPE_CRC_SOURCE_DP_B:
3824                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3825                 need_stable_symbols = true;
3826                 break;
3827         case INTEL_PIPE_CRC_SOURCE_DP_C:
3828                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3829                 need_stable_symbols = true;
3830                 break;
3831         case INTEL_PIPE_CRC_SOURCE_DP_D:
3832                 if (!IS_CHERRYVIEW(dev))
3833                         return -EINVAL;
3834                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3835                 need_stable_symbols = true;
3836                 break;
3837         case INTEL_PIPE_CRC_SOURCE_NONE:
3838                 *val = 0;
3839                 break;
3840         default:
3841                 return -EINVAL;
3842         }
3843
3844         /*
3845          * When the pipe CRC tap point is after the transcoders we need
3846          * to tweak symbol-level features to produce a deterministic series of
3847          * symbols for a given frame. We need to reset those features only once
3848          * a frame (instead of every nth symbol):
3849          *   - DC-balance: used to ensure a better clock recovery from the data
3850          *     link (SDVO)
3851          *   - DisplayPort scrambling: used for EMI reduction
3852          */
3853         if (need_stable_symbols) {
3854                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3855
3856                 tmp |= DC_BALANCE_RESET_VLV;
3857                 switch (pipe) {
3858                 case PIPE_A:
3859                         tmp |= PIPE_A_SCRAMBLE_RESET;
3860                         break;
3861                 case PIPE_B:
3862                         tmp |= PIPE_B_SCRAMBLE_RESET;
3863                         break;
3864                 case PIPE_C:
3865                         tmp |= PIPE_C_SCRAMBLE_RESET;
3866                         break;
3867                 default:
3868                         return -EINVAL;
3869                 }
3870                 I915_WRITE(PORT_DFT2_G4X, tmp);
3871         }
3872
3873         return 0;
3874 }
3875
3876 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3877                                  enum pipe pipe,
3878                                  enum intel_pipe_crc_source *source,
3879                                  uint32_t *val)
3880 {
3881         struct drm_i915_private *dev_priv = to_i915(dev);
3882         bool need_stable_symbols = false;
3883
3884         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3885                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3886                 if (ret)
3887                         return ret;
3888         }
3889
3890         switch (*source) {
3891         case INTEL_PIPE_CRC_SOURCE_PIPE:
3892                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3893                 break;
3894         case INTEL_PIPE_CRC_SOURCE_TV:
3895                 if (!SUPPORTS_TV(dev))
3896                         return -EINVAL;
3897                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3898                 break;
3899         case INTEL_PIPE_CRC_SOURCE_DP_B:
3900                 if (!IS_G4X(dev))
3901                         return -EINVAL;
3902                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3903                 need_stable_symbols = true;
3904                 break;
3905         case INTEL_PIPE_CRC_SOURCE_DP_C:
3906                 if (!IS_G4X(dev))
3907                         return -EINVAL;
3908                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3909                 need_stable_symbols = true;
3910                 break;
3911         case INTEL_PIPE_CRC_SOURCE_DP_D:
3912                 if (!IS_G4X(dev))
3913                         return -EINVAL;
3914                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3915                 need_stable_symbols = true;
3916                 break;
3917         case INTEL_PIPE_CRC_SOURCE_NONE:
3918                 *val = 0;
3919                 break;
3920         default:
3921                 return -EINVAL;
3922         }
3923
3924         /*
3925          * When the pipe CRC tap point is after the transcoders we need
3926          * to tweak symbol-level features to produce a deterministic series of
3927          * symbols for a given frame. We need to reset those features only once
3928          * a frame (instead of every nth symbol):
3929          *   - DC-balance: used to ensure a better clock recovery from the data
3930          *     link (SDVO)
3931          *   - DisplayPort scrambling: used for EMI reduction
3932          */
3933         if (need_stable_symbols) {
3934                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3935
3936                 WARN_ON(!IS_G4X(dev));
3937
3938                 I915_WRITE(PORT_DFT_I9XX,
3939                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3940
3941                 if (pipe == PIPE_A)
3942                         tmp |= PIPE_A_SCRAMBLE_RESET;
3943                 else
3944                         tmp |= PIPE_B_SCRAMBLE_RESET;
3945
3946                 I915_WRITE(PORT_DFT2_G4X, tmp);
3947         }
3948
3949         return 0;
3950 }
3951
3952 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3953                                          enum pipe pipe)
3954 {
3955         struct drm_i915_private *dev_priv = to_i915(dev);
3956         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3957
3958         switch (pipe) {
3959         case PIPE_A:
3960                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3961                 break;
3962         case PIPE_B:
3963                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3964                 break;
3965         case PIPE_C:
3966                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3967                 break;
3968         default:
3969                 return;
3970         }
3971         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3972                 tmp &= ~DC_BALANCE_RESET_VLV;
3973         I915_WRITE(PORT_DFT2_G4X, tmp);
3974
3975 }
3976
3977 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3978                                          enum pipe pipe)
3979 {
3980         struct drm_i915_private *dev_priv = to_i915(dev);
3981         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3982
3983         if (pipe == PIPE_A)
3984                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3985         else
3986                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3987         I915_WRITE(PORT_DFT2_G4X, tmp);
3988
3989         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3990                 I915_WRITE(PORT_DFT_I9XX,
3991                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3992         }
3993 }
3994
3995 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3996                                 uint32_t *val)
3997 {
3998         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3999                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
4000
4001         switch (*source) {
4002         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4003                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
4004                 break;
4005         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4006                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
4007                 break;
4008         case INTEL_PIPE_CRC_SOURCE_PIPE:
4009                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
4010                 break;
4011         case INTEL_PIPE_CRC_SOURCE_NONE:
4012                 *val = 0;
4013                 break;
4014         default:
4015                 return -EINVAL;
4016         }
4017
4018         return 0;
4019 }
4020
4021 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev, bool enable)
4022 {
4023         struct drm_i915_private *dev_priv = to_i915(dev);
4024         struct intel_crtc *crtc =
4025                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
4026         struct intel_crtc_state *pipe_config;
4027         struct drm_atomic_state *state;
4028         int ret = 0;
4029
4030         drm_modeset_lock_all(dev);
4031         state = drm_atomic_state_alloc(dev);
4032         if (!state) {
4033                 ret = -ENOMEM;
4034                 goto out;
4035         }
4036
4037         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4038         pipe_config = intel_atomic_get_crtc_state(state, crtc);
4039         if (IS_ERR(pipe_config)) {
4040                 ret = PTR_ERR(pipe_config);
4041                 goto out;
4042         }
4043
4044         pipe_config->pch_pfit.force_thru = enable;
4045         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4046             pipe_config->pch_pfit.enabled != enable)
4047                 pipe_config->base.connectors_changed = true;
4048
4049         ret = drm_atomic_commit(state);
4050 out:
4051         drm_modeset_unlock_all(dev);
4052         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4053         if (ret)
4054                 drm_atomic_state_free(state);
4055 }
4056
4057 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
4058                                 enum pipe pipe,
4059                                 enum intel_pipe_crc_source *source,
4060                                 uint32_t *val)
4061 {
4062         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4063                 *source = INTEL_PIPE_CRC_SOURCE_PF;
4064
4065         switch (*source) {
4066         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4067                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4068                 break;
4069         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4070                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4071                 break;
4072         case INTEL_PIPE_CRC_SOURCE_PF:
4073                 if (IS_HASWELL(dev) && pipe == PIPE_A)
4074                         hsw_trans_edp_pipe_A_crc_wa(dev, true);
4075
4076                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4077                 break;
4078         case INTEL_PIPE_CRC_SOURCE_NONE:
4079                 *val = 0;
4080                 break;
4081         default:
4082                 return -EINVAL;
4083         }
4084
4085         return 0;
4086 }
4087
4088 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
4089                                enum intel_pipe_crc_source source)
4090 {
4091         struct drm_i915_private *dev_priv = to_i915(dev);
4092         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4093         struct intel_crtc *crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev,
4094                                                                         pipe));
4095         enum intel_display_power_domain power_domain;
4096         u32 val = 0; /* shut up gcc */
4097         int ret;
4098
4099         if (pipe_crc->source == source)
4100                 return 0;
4101
4102         /* forbid changing the source without going back to 'none' */
4103         if (pipe_crc->source && source)
4104                 return -EINVAL;
4105
4106         power_domain = POWER_DOMAIN_PIPE(pipe);
4107         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4108                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4109                 return -EIO;
4110         }
4111
4112         if (IS_GEN2(dev))
4113                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4114         else if (INTEL_INFO(dev)->gen < 5)
4115                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4116         else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4117                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4118         else if (IS_GEN5(dev) || IS_GEN6(dev))
4119                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4120         else
4121                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
4122
4123         if (ret != 0)
4124                 goto out;
4125
4126         /* none -> real source transition */
4127         if (source) {
4128                 struct intel_pipe_crc_entry *entries;
4129
4130                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4131                                  pipe_name(pipe), pipe_crc_source_name(source));
4132
4133                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4134                                   sizeof(pipe_crc->entries[0]),
4135                                   GFP_KERNEL);
4136                 if (!entries) {
4137                         ret = -ENOMEM;
4138                         goto out;
4139                 }
4140
4141                 /*
4142                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4143                  * enabled and disabled dynamically based on package C states,
4144                  * user space can't make reliable use of the CRCs, so let's just
4145                  * completely disable it.
4146                  */
4147                 hsw_disable_ips(crtc);
4148
4149                 spin_lock_irq(&pipe_crc->lock);
4150                 kfree(pipe_crc->entries);
4151                 pipe_crc->entries = entries;
4152                 pipe_crc->head = 0;
4153                 pipe_crc->tail = 0;
4154                 spin_unlock_irq(&pipe_crc->lock);
4155         }
4156
4157         pipe_crc->source = source;
4158
4159         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4160         POSTING_READ(PIPE_CRC_CTL(pipe));
4161
4162         /* real source -> none transition */
4163         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4164                 struct intel_pipe_crc_entry *entries;
4165                 struct intel_crtc *crtc =
4166                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4167
4168                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4169                                  pipe_name(pipe));
4170
4171                 drm_modeset_lock(&crtc->base.mutex, NULL);
4172                 if (crtc->base.state->active)
4173                         intel_wait_for_vblank(dev, pipe);
4174                 drm_modeset_unlock(&crtc->base.mutex);
4175
4176                 spin_lock_irq(&pipe_crc->lock);
4177                 entries = pipe_crc->entries;
4178                 pipe_crc->entries = NULL;
4179                 pipe_crc->head = 0;
4180                 pipe_crc->tail = 0;
4181                 spin_unlock_irq(&pipe_crc->lock);
4182
4183                 kfree(entries);
4184
4185                 if (IS_G4X(dev))
4186                         g4x_undo_pipe_scramble_reset(dev, pipe);
4187                 else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
4188                         vlv_undo_pipe_scramble_reset(dev, pipe);
4189                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
4190                         hsw_trans_edp_pipe_A_crc_wa(dev, false);
4191
4192                 hsw_enable_ips(crtc);
4193         }
4194
4195         ret = 0;
4196
4197 out:
4198         intel_display_power_put(dev_priv, power_domain);
4199
4200         return ret;
4201 }
4202
4203 /*
4204  * Parse pipe CRC command strings:
4205  *   command: wsp* object wsp+ name wsp+ source wsp*
4206  *   object: 'pipe'
4207  *   name: (A | B | C)
4208  *   source: (none | plane1 | plane2 | pf)
4209  *   wsp: (#0x20 | #0x9 | #0xA)+
4210  *
4211  * eg.:
4212  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4213  *  "pipe A none"    ->  Stop CRC
4214  */
4215 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4216 {
4217         int n_words = 0;
4218
4219         while (*buf) {
4220                 char *end;
4221
4222                 /* skip leading white space */
4223                 buf = skip_spaces(buf);
4224                 if (!*buf)
4225                         break;  /* end of buffer */
4226
4227                 /* find end of word */
4228                 for (end = buf; *end && !isspace(*end); end++)
4229                         ;
4230
4231                 if (n_words == max_words) {
4232                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4233                                          max_words);
4234                         return -EINVAL; /* ran out of words[] before bytes */
4235                 }
4236
4237                 if (*end)
4238                         *end++ = '\0';
4239                 words[n_words++] = buf;
4240                 buf = end;
4241         }
4242
4243         return n_words;
4244 }
4245
4246 enum intel_pipe_crc_object {
4247         PIPE_CRC_OBJECT_PIPE,
4248 };
4249
4250 static const char * const pipe_crc_objects[] = {
4251         "pipe",
4252 };
4253
4254 static int
4255 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4256 {
4257         int i;
4258
4259         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4260                 if (!strcmp(buf, pipe_crc_objects[i])) {
4261                         *o = i;
4262                         return 0;
4263                     }
4264
4265         return -EINVAL;
4266 }
4267
4268 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4269 {
4270         const char name = buf[0];
4271
4272         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4273                 return -EINVAL;
4274
4275         *pipe = name - 'A';
4276
4277         return 0;
4278 }
4279
4280 static int
4281 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4282 {
4283         int i;
4284
4285         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4286                 if (!strcmp(buf, pipe_crc_sources[i])) {
4287                         *s = i;
4288                         return 0;
4289                     }
4290
4291         return -EINVAL;
4292 }
4293
4294 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
4295 {
4296 #define N_WORDS 3
4297         int n_words;
4298         char *words[N_WORDS];
4299         enum pipe pipe;
4300         enum intel_pipe_crc_object object;
4301         enum intel_pipe_crc_source source;
4302
4303         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4304         if (n_words != N_WORDS) {
4305                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4306                                  N_WORDS);
4307                 return -EINVAL;
4308         }
4309
4310         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4311                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4312                 return -EINVAL;
4313         }
4314
4315         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4316                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4317                 return -EINVAL;
4318         }
4319
4320         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4321                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4322                 return -EINVAL;
4323         }
4324
4325         return pipe_crc_set_source(dev, pipe, source);
4326 }
4327
4328 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4329                                      size_t len, loff_t *offp)
4330 {
4331         struct seq_file *m = file->private_data;
4332         struct drm_device *dev = m->private;
4333         char *tmpbuf;
4334         int ret;
4335
4336         if (len == 0)
4337                 return 0;
4338
4339         if (len > PAGE_SIZE - 1) {
4340                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4341                                  PAGE_SIZE);
4342                 return -E2BIG;
4343         }
4344
4345         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4346         if (!tmpbuf)
4347                 return -ENOMEM;
4348
4349         if (copy_from_user(tmpbuf, ubuf, len)) {
4350                 ret = -EFAULT;
4351                 goto out;
4352         }
4353         tmpbuf[len] = '\0';
4354
4355         ret = display_crc_ctl_parse(dev, tmpbuf, len);
4356
4357 out:
4358         kfree(tmpbuf);
4359         if (ret < 0)
4360                 return ret;
4361
4362         *offp += len;
4363         return len;
4364 }
4365
4366 static const struct file_operations i915_display_crc_ctl_fops = {
4367         .owner = THIS_MODULE,
4368         .open = display_crc_ctl_open,
4369         .read = seq_read,
4370         .llseek = seq_lseek,
4371         .release = single_release,
4372         .write = display_crc_ctl_write
4373 };
4374
4375 static ssize_t i915_displayport_test_active_write(struct file *file,
4376                                             const char __user *ubuf,
4377                                             size_t len, loff_t *offp)
4378 {
4379         char *input_buffer;
4380         int status = 0;
4381         struct drm_device *dev;
4382         struct drm_connector *connector;
4383         struct list_head *connector_list;
4384         struct intel_dp *intel_dp;
4385         int val = 0;
4386
4387         dev = ((struct seq_file *)file->private_data)->private;
4388
4389         connector_list = &dev->mode_config.connector_list;
4390
4391         if (len == 0)
4392                 return 0;
4393
4394         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4395         if (!input_buffer)
4396                 return -ENOMEM;
4397
4398         if (copy_from_user(input_buffer, ubuf, len)) {
4399                 status = -EFAULT;
4400                 goto out;
4401         }
4402
4403         input_buffer[len] = '\0';
4404         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4405
4406         list_for_each_entry(connector, connector_list, head) {
4407
4408                 if (connector->connector_type !=
4409                     DRM_MODE_CONNECTOR_DisplayPort)
4410                         continue;
4411
4412                 if (connector->status == connector_status_connected &&
4413                     connector->encoder != NULL) {
4414                         intel_dp = enc_to_intel_dp(connector->encoder);
4415                         status = kstrtoint(input_buffer, 10, &val);
4416                         if (status < 0)
4417                                 goto out;
4418                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4419                         /* To prevent erroneous activation of the compliance
4420                          * testing code, only accept an actual value of 1 here
4421                          */
4422                         if (val == 1)
4423                                 intel_dp->compliance_test_active = 1;
4424                         else
4425                                 intel_dp->compliance_test_active = 0;
4426                 }
4427         }
4428 out:
4429         kfree(input_buffer);
4430         if (status < 0)
4431                 return status;
4432
4433         *offp += len;
4434         return len;
4435 }
4436
4437 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4438 {
4439         struct drm_device *dev = m->private;
4440         struct drm_connector *connector;
4441         struct list_head *connector_list = &dev->mode_config.connector_list;
4442         struct intel_dp *intel_dp;
4443
4444         list_for_each_entry(connector, connector_list, head) {
4445
4446                 if (connector->connector_type !=
4447                     DRM_MODE_CONNECTOR_DisplayPort)
4448                         continue;
4449
4450                 if (connector->status == connector_status_connected &&
4451                     connector->encoder != NULL) {
4452                         intel_dp = enc_to_intel_dp(connector->encoder);
4453                         if (intel_dp->compliance_test_active)
4454                                 seq_puts(m, "1");
4455                         else
4456                                 seq_puts(m, "0");
4457                 } else
4458                         seq_puts(m, "0");
4459         }
4460
4461         return 0;
4462 }
4463
4464 static int i915_displayport_test_active_open(struct inode *inode,
4465                                        struct file *file)
4466 {
4467         struct drm_device *dev = inode->i_private;
4468
4469         return single_open(file, i915_displayport_test_active_show, dev);
4470 }
4471
4472 static const struct file_operations i915_displayport_test_active_fops = {
4473         .owner = THIS_MODULE,
4474         .open = i915_displayport_test_active_open,
4475         .read = seq_read,
4476         .llseek = seq_lseek,
4477         .release = single_release,
4478         .write = i915_displayport_test_active_write
4479 };
4480
4481 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4482 {
4483         struct drm_device *dev = m->private;
4484         struct drm_connector *connector;
4485         struct list_head *connector_list = &dev->mode_config.connector_list;
4486         struct intel_dp *intel_dp;
4487
4488         list_for_each_entry(connector, connector_list, head) {
4489
4490                 if (connector->connector_type !=
4491                     DRM_MODE_CONNECTOR_DisplayPort)
4492                         continue;
4493
4494                 if (connector->status == connector_status_connected &&
4495                     connector->encoder != NULL) {
4496                         intel_dp = enc_to_intel_dp(connector->encoder);
4497                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4498                 } else
4499                         seq_puts(m, "0");
4500         }
4501
4502         return 0;
4503 }
4504 static int i915_displayport_test_data_open(struct inode *inode,
4505                                        struct file *file)
4506 {
4507         struct drm_device *dev = inode->i_private;
4508
4509         return single_open(file, i915_displayport_test_data_show, dev);
4510 }
4511
4512 static const struct file_operations i915_displayport_test_data_fops = {
4513         .owner = THIS_MODULE,
4514         .open = i915_displayport_test_data_open,
4515         .read = seq_read,
4516         .llseek = seq_lseek,
4517         .release = single_release
4518 };
4519
4520 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4521 {
4522         struct drm_device *dev = m->private;
4523         struct drm_connector *connector;
4524         struct list_head *connector_list = &dev->mode_config.connector_list;
4525         struct intel_dp *intel_dp;
4526
4527         list_for_each_entry(connector, connector_list, head) {
4528
4529                 if (connector->connector_type !=
4530                     DRM_MODE_CONNECTOR_DisplayPort)
4531                         continue;
4532
4533                 if (connector->status == connector_status_connected &&
4534                     connector->encoder != NULL) {
4535                         intel_dp = enc_to_intel_dp(connector->encoder);
4536                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4537                 } else
4538                         seq_puts(m, "0");
4539         }
4540
4541         return 0;
4542 }
4543
4544 static int i915_displayport_test_type_open(struct inode *inode,
4545                                        struct file *file)
4546 {
4547         struct drm_device *dev = inode->i_private;
4548
4549         return single_open(file, i915_displayport_test_type_show, dev);
4550 }
4551
4552 static const struct file_operations i915_displayport_test_type_fops = {
4553         .owner = THIS_MODULE,
4554         .open = i915_displayport_test_type_open,
4555         .read = seq_read,
4556         .llseek = seq_lseek,
4557         .release = single_release
4558 };
4559
4560 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4561 {
4562         struct drm_device *dev = m->private;
4563         int level;
4564         int num_levels;
4565
4566         if (IS_CHERRYVIEW(dev))
4567                 num_levels = 3;
4568         else if (IS_VALLEYVIEW(dev))
4569                 num_levels = 1;
4570         else
4571                 num_levels = ilk_wm_max_level(dev) + 1;
4572
4573         drm_modeset_lock_all(dev);
4574
4575         for (level = 0; level < num_levels; level++) {
4576                 unsigned int latency = wm[level];
4577
4578                 /*
4579                  * - WM1+ latency values in 0.5us units
4580                  * - latencies are in us on gen9/vlv/chv
4581                  */
4582                 if (INTEL_INFO(dev)->gen >= 9 || IS_VALLEYVIEW(dev) ||
4583                     IS_CHERRYVIEW(dev))
4584                         latency *= 10;
4585                 else if (level > 0)
4586                         latency *= 5;
4587
4588                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4589                            level, wm[level], latency / 10, latency % 10);
4590         }
4591
4592         drm_modeset_unlock_all(dev);
4593 }
4594
4595 static int pri_wm_latency_show(struct seq_file *m, void *data)
4596 {
4597         struct drm_device *dev = m->private;
4598         struct drm_i915_private *dev_priv = to_i915(dev);
4599         const uint16_t *latencies;
4600
4601         if (INTEL_INFO(dev)->gen >= 9)
4602                 latencies = dev_priv->wm.skl_latency;
4603         else
4604                 latencies = to_i915(dev)->wm.pri_latency;
4605
4606         wm_latency_show(m, latencies);
4607
4608         return 0;
4609 }
4610
4611 static int spr_wm_latency_show(struct seq_file *m, void *data)
4612 {
4613         struct drm_device *dev = m->private;
4614         struct drm_i915_private *dev_priv = to_i915(dev);
4615         const uint16_t *latencies;
4616
4617         if (INTEL_INFO(dev)->gen >= 9)
4618                 latencies = dev_priv->wm.skl_latency;
4619         else
4620                 latencies = to_i915(dev)->wm.spr_latency;
4621
4622         wm_latency_show(m, latencies);
4623
4624         return 0;
4625 }
4626
4627 static int cur_wm_latency_show(struct seq_file *m, void *data)
4628 {
4629         struct drm_device *dev = m->private;
4630         struct drm_i915_private *dev_priv = to_i915(dev);
4631         const uint16_t *latencies;
4632
4633         if (INTEL_INFO(dev)->gen >= 9)
4634                 latencies = dev_priv->wm.skl_latency;
4635         else
4636                 latencies = to_i915(dev)->wm.cur_latency;
4637
4638         wm_latency_show(m, latencies);
4639
4640         return 0;
4641 }
4642
4643 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4644 {
4645         struct drm_device *dev = inode->i_private;
4646
4647         if (INTEL_INFO(dev)->gen < 5)
4648                 return -ENODEV;
4649
4650         return single_open(file, pri_wm_latency_show, dev);
4651 }
4652
4653 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4654 {
4655         struct drm_device *dev = inode->i_private;
4656
4657         if (HAS_GMCH_DISPLAY(dev))
4658                 return -ENODEV;
4659
4660         return single_open(file, spr_wm_latency_show, dev);
4661 }
4662
4663 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4664 {
4665         struct drm_device *dev = inode->i_private;
4666
4667         if (HAS_GMCH_DISPLAY(dev))
4668                 return -ENODEV;
4669
4670         return single_open(file, cur_wm_latency_show, dev);
4671 }
4672
4673 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4674                                 size_t len, loff_t *offp, uint16_t wm[8])
4675 {
4676         struct seq_file *m = file->private_data;
4677         struct drm_device *dev = m->private;
4678         uint16_t new[8] = { 0 };
4679         int num_levels;
4680         int level;
4681         int ret;
4682         char tmp[32];
4683
4684         if (IS_CHERRYVIEW(dev))
4685                 num_levels = 3;
4686         else if (IS_VALLEYVIEW(dev))
4687                 num_levels = 1;
4688         else
4689                 num_levels = ilk_wm_max_level(dev) + 1;
4690
4691         if (len >= sizeof(tmp))
4692                 return -EINVAL;
4693
4694         if (copy_from_user(tmp, ubuf, len))
4695                 return -EFAULT;
4696
4697         tmp[len] = '\0';
4698
4699         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4700                      &new[0], &new[1], &new[2], &new[3],
4701                      &new[4], &new[5], &new[6], &new[7]);
4702         if (ret != num_levels)
4703                 return -EINVAL;
4704
4705         drm_modeset_lock_all(dev);
4706
4707         for (level = 0; level < num_levels; level++)
4708                 wm[level] = new[level];
4709
4710         drm_modeset_unlock_all(dev);
4711
4712         return len;
4713 }
4714
4715
4716 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4717                                     size_t len, loff_t *offp)
4718 {
4719         struct seq_file *m = file->private_data;
4720         struct drm_device *dev = m->private;
4721         struct drm_i915_private *dev_priv = to_i915(dev);
4722         uint16_t *latencies;
4723
4724         if (INTEL_INFO(dev)->gen >= 9)
4725                 latencies = dev_priv->wm.skl_latency;
4726         else
4727                 latencies = to_i915(dev)->wm.pri_latency;
4728
4729         return wm_latency_write(file, ubuf, len, offp, latencies);
4730 }
4731
4732 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4733                                     size_t len, loff_t *offp)
4734 {
4735         struct seq_file *m = file->private_data;
4736         struct drm_device *dev = m->private;
4737         struct drm_i915_private *dev_priv = to_i915(dev);
4738         uint16_t *latencies;
4739
4740         if (INTEL_INFO(dev)->gen >= 9)
4741                 latencies = dev_priv->wm.skl_latency;
4742         else
4743                 latencies = to_i915(dev)->wm.spr_latency;
4744
4745         return wm_latency_write(file, ubuf, len, offp, latencies);
4746 }
4747
4748 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4749                                     size_t len, loff_t *offp)
4750 {
4751         struct seq_file *m = file->private_data;
4752         struct drm_device *dev = m->private;
4753         struct drm_i915_private *dev_priv = to_i915(dev);
4754         uint16_t *latencies;
4755
4756         if (INTEL_INFO(dev)->gen >= 9)
4757                 latencies = dev_priv->wm.skl_latency;
4758         else
4759                 latencies = to_i915(dev)->wm.cur_latency;
4760
4761         return wm_latency_write(file, ubuf, len, offp, latencies);
4762 }
4763
4764 static const struct file_operations i915_pri_wm_latency_fops = {
4765         .owner = THIS_MODULE,
4766         .open = pri_wm_latency_open,
4767         .read = seq_read,
4768         .llseek = seq_lseek,
4769         .release = single_release,
4770         .write = pri_wm_latency_write
4771 };
4772
4773 static const struct file_operations i915_spr_wm_latency_fops = {
4774         .owner = THIS_MODULE,
4775         .open = spr_wm_latency_open,
4776         .read = seq_read,
4777         .llseek = seq_lseek,
4778         .release = single_release,
4779         .write = spr_wm_latency_write
4780 };
4781
4782 static const struct file_operations i915_cur_wm_latency_fops = {
4783         .owner = THIS_MODULE,
4784         .open = cur_wm_latency_open,
4785         .read = seq_read,
4786         .llseek = seq_lseek,
4787         .release = single_release,
4788         .write = cur_wm_latency_write
4789 };
4790
4791 static int
4792 i915_wedged_get(void *data, u64 *val)
4793 {
4794         struct drm_device *dev = data;
4795         struct drm_i915_private *dev_priv = to_i915(dev);
4796
4797         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4798
4799         return 0;
4800 }
4801
4802 static int
4803 i915_wedged_set(void *data, u64 val)
4804 {
4805         struct drm_device *dev = data;
4806         struct drm_i915_private *dev_priv = to_i915(dev);
4807
4808         /*
4809          * There is no safeguard against this debugfs entry colliding
4810          * with the hangcheck calling same i915_handle_error() in
4811          * parallel, causing an explosion. For now we assume that the
4812          * test harness is responsible enough not to inject gpu hangs
4813          * while it is writing to 'i915_wedged'
4814          */
4815
4816         if (i915_reset_in_progress(&dev_priv->gpu_error))
4817                 return -EAGAIN;
4818
4819         intel_runtime_pm_get(dev_priv);
4820
4821         i915_handle_error(dev_priv, val,
4822                           "Manually setting wedged to %llu", val);
4823
4824         intel_runtime_pm_put(dev_priv);
4825
4826         return 0;
4827 }
4828
4829 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4830                         i915_wedged_get, i915_wedged_set,
4831                         "%llu\n");
4832
4833 static int
4834 i915_ring_missed_irq_get(void *data, u64 *val)
4835 {
4836         struct drm_device *dev = data;
4837         struct drm_i915_private *dev_priv = to_i915(dev);
4838
4839         *val = dev_priv->gpu_error.missed_irq_rings;
4840         return 0;
4841 }
4842
4843 static int
4844 i915_ring_missed_irq_set(void *data, u64 val)
4845 {
4846         struct drm_device *dev = data;
4847         struct drm_i915_private *dev_priv = to_i915(dev);
4848         int ret;
4849
4850         /* Lock against concurrent debugfs callers */
4851         ret = mutex_lock_interruptible(&dev->struct_mutex);
4852         if (ret)
4853                 return ret;
4854         dev_priv->gpu_error.missed_irq_rings = val;
4855         mutex_unlock(&dev->struct_mutex);
4856
4857         return 0;
4858 }
4859
4860 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4861                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4862                         "0x%08llx\n");
4863
4864 static int
4865 i915_ring_test_irq_get(void *data, u64 *val)
4866 {
4867         struct drm_device *dev = data;
4868         struct drm_i915_private *dev_priv = to_i915(dev);
4869
4870         *val = dev_priv->gpu_error.test_irq_rings;
4871
4872         return 0;
4873 }
4874
4875 static int
4876 i915_ring_test_irq_set(void *data, u64 val)
4877 {
4878         struct drm_device *dev = data;
4879         struct drm_i915_private *dev_priv = to_i915(dev);
4880
4881         val &= INTEL_INFO(dev_priv)->ring_mask;
4882         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4883         dev_priv->gpu_error.test_irq_rings = val;
4884
4885         return 0;
4886 }
4887
4888 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4889                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4890                         "0x%08llx\n");
4891
4892 #define DROP_UNBOUND 0x1
4893 #define DROP_BOUND 0x2
4894 #define DROP_RETIRE 0x4
4895 #define DROP_ACTIVE 0x8
4896 #define DROP_ALL (DROP_UNBOUND | \
4897                   DROP_BOUND | \
4898                   DROP_RETIRE | \
4899                   DROP_ACTIVE)
4900 static int
4901 i915_drop_caches_get(void *data, u64 *val)
4902 {
4903         *val = DROP_ALL;
4904
4905         return 0;
4906 }
4907
4908 static int
4909 i915_drop_caches_set(void *data, u64 val)
4910 {
4911         struct drm_device *dev = data;
4912         struct drm_i915_private *dev_priv = to_i915(dev);
4913         int ret;
4914
4915         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4916
4917         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4918          * on ioctls on -EAGAIN. */
4919         ret = mutex_lock_interruptible(&dev->struct_mutex);
4920         if (ret)
4921                 return ret;
4922
4923         if (val & DROP_ACTIVE) {
4924                 ret = i915_gem_wait_for_idle(dev_priv);
4925                 if (ret)
4926                         goto unlock;
4927         }
4928
4929         if (val & (DROP_RETIRE | DROP_ACTIVE))
4930                 i915_gem_retire_requests(dev_priv);
4931
4932         if (val & DROP_BOUND)
4933                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4934
4935         if (val & DROP_UNBOUND)
4936                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4937
4938 unlock:
4939         mutex_unlock(&dev->struct_mutex);
4940
4941         return ret;
4942 }
4943
4944 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4945                         i915_drop_caches_get, i915_drop_caches_set,
4946                         "0x%08llx\n");
4947
4948 static int
4949 i915_max_freq_get(void *data, u64 *val)
4950 {
4951         struct drm_device *dev = data;
4952         struct drm_i915_private *dev_priv = to_i915(dev);
4953         int ret;
4954
4955         if (INTEL_INFO(dev)->gen < 6)
4956                 return -ENODEV;
4957
4958         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4959
4960         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4961         if (ret)
4962                 return ret;
4963
4964         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4965         mutex_unlock(&dev_priv->rps.hw_lock);
4966
4967         return 0;
4968 }
4969
4970 static int
4971 i915_max_freq_set(void *data, u64 val)
4972 {
4973         struct drm_device *dev = data;
4974         struct drm_i915_private *dev_priv = to_i915(dev);
4975         u32 hw_max, hw_min;
4976         int ret;
4977
4978         if (INTEL_INFO(dev)->gen < 6)
4979                 return -ENODEV;
4980
4981         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
4982
4983         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4984
4985         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4986         if (ret)
4987                 return ret;
4988
4989         /*
4990          * Turbo will still be enabled, but won't go above the set value.
4991          */
4992         val = intel_freq_opcode(dev_priv, val);
4993
4994         hw_max = dev_priv->rps.max_freq;
4995         hw_min = dev_priv->rps.min_freq;
4996
4997         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4998                 mutex_unlock(&dev_priv->rps.hw_lock);
4999                 return -EINVAL;
5000         }
5001
5002         dev_priv->rps.max_freq_softlimit = val;
5003
5004         intel_set_rps(dev_priv, val);
5005
5006         mutex_unlock(&dev_priv->rps.hw_lock);
5007
5008         return 0;
5009 }
5010
5011 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5012                         i915_max_freq_get, i915_max_freq_set,
5013                         "%llu\n");
5014
5015 static int
5016 i915_min_freq_get(void *data, u64 *val)
5017 {
5018         struct drm_device *dev = data;
5019         struct drm_i915_private *dev_priv = to_i915(dev);
5020         int ret;
5021
5022         if (INTEL_INFO(dev)->gen < 6)
5023                 return -ENODEV;
5024
5025         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5026
5027         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5028         if (ret)
5029                 return ret;
5030
5031         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5032         mutex_unlock(&dev_priv->rps.hw_lock);
5033
5034         return 0;
5035 }
5036
5037 static int
5038 i915_min_freq_set(void *data, u64 val)
5039 {
5040         struct drm_device *dev = data;
5041         struct drm_i915_private *dev_priv = to_i915(dev);
5042         u32 hw_max, hw_min;
5043         int ret;
5044
5045         if (INTEL_INFO(dev)->gen < 6)
5046                 return -ENODEV;
5047
5048         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5049
5050         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5051
5052         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5053         if (ret)
5054                 return ret;
5055
5056         /*
5057          * Turbo will still be enabled, but won't go below the set value.
5058          */
5059         val = intel_freq_opcode(dev_priv, val);
5060
5061         hw_max = dev_priv->rps.max_freq;
5062         hw_min = dev_priv->rps.min_freq;
5063
5064         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5065                 mutex_unlock(&dev_priv->rps.hw_lock);
5066                 return -EINVAL;
5067         }
5068
5069         dev_priv->rps.min_freq_softlimit = val;
5070
5071         intel_set_rps(dev_priv, val);
5072
5073         mutex_unlock(&dev_priv->rps.hw_lock);
5074
5075         return 0;
5076 }
5077
5078 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5079                         i915_min_freq_get, i915_min_freq_set,
5080                         "%llu\n");
5081
5082 static int
5083 i915_cache_sharing_get(void *data, u64 *val)
5084 {
5085         struct drm_device *dev = data;
5086         struct drm_i915_private *dev_priv = to_i915(dev);
5087         u32 snpcr;
5088         int ret;
5089
5090         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5091                 return -ENODEV;
5092
5093         ret = mutex_lock_interruptible(&dev->struct_mutex);
5094         if (ret)
5095                 return ret;
5096         intel_runtime_pm_get(dev_priv);
5097
5098         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5099
5100         intel_runtime_pm_put(dev_priv);
5101         mutex_unlock(&dev_priv->drm.struct_mutex);
5102
5103         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5104
5105         return 0;
5106 }
5107
5108 static int
5109 i915_cache_sharing_set(void *data, u64 val)
5110 {
5111         struct drm_device *dev = data;
5112         struct drm_i915_private *dev_priv = to_i915(dev);
5113         u32 snpcr;
5114
5115         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
5116                 return -ENODEV;
5117
5118         if (val > 3)
5119                 return -EINVAL;
5120
5121         intel_runtime_pm_get(dev_priv);
5122         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5123
5124         /* Update the cache sharing policy here as well */
5125         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5126         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5127         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5128         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5129
5130         intel_runtime_pm_put(dev_priv);
5131         return 0;
5132 }
5133
5134 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5135                         i915_cache_sharing_get, i915_cache_sharing_set,
5136                         "%llu\n");
5137
5138 struct sseu_dev_status {
5139         unsigned int slice_total;
5140         unsigned int subslice_total;
5141         unsigned int subslice_per_slice;
5142         unsigned int eu_total;
5143         unsigned int eu_per_subslice;
5144 };
5145
5146 static void cherryview_sseu_device_status(struct drm_device *dev,
5147                                           struct sseu_dev_status *stat)
5148 {
5149         struct drm_i915_private *dev_priv = to_i915(dev);
5150         int ss_max = 2;
5151         int ss;
5152         u32 sig1[ss_max], sig2[ss_max];
5153
5154         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5155         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5156         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5157         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5158
5159         for (ss = 0; ss < ss_max; ss++) {
5160                 unsigned int eu_cnt;
5161
5162                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5163                         /* skip disabled subslice */
5164                         continue;
5165
5166                 stat->slice_total = 1;
5167                 stat->subslice_per_slice++;
5168                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5169                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5170                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5171                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5172                 stat->eu_total += eu_cnt;
5173                 stat->eu_per_subslice = max(stat->eu_per_subslice, eu_cnt);
5174         }
5175         stat->subslice_total = stat->subslice_per_slice;
5176 }
5177
5178 static void gen9_sseu_device_status(struct drm_device *dev,
5179                                     struct sseu_dev_status *stat)
5180 {
5181         struct drm_i915_private *dev_priv = to_i915(dev);
5182         int s_max = 3, ss_max = 4;
5183         int s, ss;
5184         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5185
5186         /* BXT has a single slice and at most 3 subslices. */
5187         if (IS_BROXTON(dev)) {
5188                 s_max = 1;
5189                 ss_max = 3;
5190         }
5191
5192         for (s = 0; s < s_max; s++) {
5193                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5194                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5195                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5196         }
5197
5198         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5199                      GEN9_PGCTL_SSA_EU19_ACK |
5200                      GEN9_PGCTL_SSA_EU210_ACK |
5201                      GEN9_PGCTL_SSA_EU311_ACK;
5202         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5203                      GEN9_PGCTL_SSB_EU19_ACK |
5204                      GEN9_PGCTL_SSB_EU210_ACK |
5205                      GEN9_PGCTL_SSB_EU311_ACK;
5206
5207         for (s = 0; s < s_max; s++) {
5208                 unsigned int ss_cnt = 0;
5209
5210                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5211                         /* skip disabled slice */
5212                         continue;
5213
5214                 stat->slice_total++;
5215
5216                 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
5217                         ss_cnt = INTEL_INFO(dev)->subslice_per_slice;
5218
5219                 for (ss = 0; ss < ss_max; ss++) {
5220                         unsigned int eu_cnt;
5221
5222                         if (IS_BROXTON(dev) &&
5223                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5224                                 /* skip disabled subslice */
5225                                 continue;
5226
5227                         if (IS_BROXTON(dev))
5228                                 ss_cnt++;
5229
5230                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5231                                                eu_mask[ss%2]);
5232                         stat->eu_total += eu_cnt;
5233                         stat->eu_per_subslice = max(stat->eu_per_subslice,
5234                                                     eu_cnt);
5235                 }
5236
5237                 stat->subslice_total += ss_cnt;
5238                 stat->subslice_per_slice = max(stat->subslice_per_slice,
5239                                                ss_cnt);
5240         }
5241 }
5242
5243 static void broadwell_sseu_device_status(struct drm_device *dev,
5244                                          struct sseu_dev_status *stat)
5245 {
5246         struct drm_i915_private *dev_priv = to_i915(dev);
5247         int s;
5248         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5249
5250         stat->slice_total = hweight32(slice_info & GEN8_LSLICESTAT_MASK);
5251
5252         if (stat->slice_total) {
5253                 stat->subslice_per_slice = INTEL_INFO(dev)->subslice_per_slice;
5254                 stat->subslice_total = stat->slice_total *
5255                                        stat->subslice_per_slice;
5256                 stat->eu_per_subslice = INTEL_INFO(dev)->eu_per_subslice;
5257                 stat->eu_total = stat->eu_per_subslice * stat->subslice_total;
5258
5259                 /* subtract fused off EU(s) from enabled slice(s) */
5260                 for (s = 0; s < stat->slice_total; s++) {
5261                         u8 subslice_7eu = INTEL_INFO(dev)->subslice_7eu[s];
5262
5263                         stat->eu_total -= hweight8(subslice_7eu);
5264                 }
5265         }
5266 }
5267
5268 static int i915_sseu_status(struct seq_file *m, void *unused)
5269 {
5270         struct drm_info_node *node = (struct drm_info_node *) m->private;
5271         struct drm_device *dev = node->minor->dev;
5272         struct sseu_dev_status stat;
5273
5274         if (INTEL_INFO(dev)->gen < 8)
5275                 return -ENODEV;
5276
5277         seq_puts(m, "SSEU Device Info\n");
5278         seq_printf(m, "  Available Slice Total: %u\n",
5279                    INTEL_INFO(dev)->slice_total);
5280         seq_printf(m, "  Available Subslice Total: %u\n",
5281                    INTEL_INFO(dev)->subslice_total);
5282         seq_printf(m, "  Available Subslice Per Slice: %u\n",
5283                    INTEL_INFO(dev)->subslice_per_slice);
5284         seq_printf(m, "  Available EU Total: %u\n",
5285                    INTEL_INFO(dev)->eu_total);
5286         seq_printf(m, "  Available EU Per Subslice: %u\n",
5287                    INTEL_INFO(dev)->eu_per_subslice);
5288         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev)));
5289         if (HAS_POOLED_EU(dev))
5290                 seq_printf(m, "  Min EU in pool: %u\n",
5291                            INTEL_INFO(dev)->min_eu_in_pool);
5292         seq_printf(m, "  Has Slice Power Gating: %s\n",
5293                    yesno(INTEL_INFO(dev)->has_slice_pg));
5294         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5295                    yesno(INTEL_INFO(dev)->has_subslice_pg));
5296         seq_printf(m, "  Has EU Power Gating: %s\n",
5297                    yesno(INTEL_INFO(dev)->has_eu_pg));
5298
5299         seq_puts(m, "SSEU Device Status\n");
5300         memset(&stat, 0, sizeof(stat));
5301         if (IS_CHERRYVIEW(dev)) {
5302                 cherryview_sseu_device_status(dev, &stat);
5303         } else if (IS_BROADWELL(dev)) {
5304                 broadwell_sseu_device_status(dev, &stat);
5305         } else if (INTEL_INFO(dev)->gen >= 9) {
5306                 gen9_sseu_device_status(dev, &stat);
5307         }
5308         seq_printf(m, "  Enabled Slice Total: %u\n",
5309                    stat.slice_total);
5310         seq_printf(m, "  Enabled Subslice Total: %u\n",
5311                    stat.subslice_total);
5312         seq_printf(m, "  Enabled Subslice Per Slice: %u\n",
5313                    stat.subslice_per_slice);
5314         seq_printf(m, "  Enabled EU Total: %u\n",
5315                    stat.eu_total);
5316         seq_printf(m, "  Enabled EU Per Subslice: %u\n",
5317                    stat.eu_per_subslice);
5318
5319         return 0;
5320 }
5321
5322 static int i915_forcewake_open(struct inode *inode, struct file *file)
5323 {
5324         struct drm_device *dev = inode->i_private;
5325         struct drm_i915_private *dev_priv = to_i915(dev);
5326
5327         if (INTEL_INFO(dev)->gen < 6)
5328                 return 0;
5329
5330         intel_runtime_pm_get(dev_priv);
5331         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5332
5333         return 0;
5334 }
5335
5336 static int i915_forcewake_release(struct inode *inode, struct file *file)
5337 {
5338         struct drm_device *dev = inode->i_private;
5339         struct drm_i915_private *dev_priv = to_i915(dev);
5340
5341         if (INTEL_INFO(dev)->gen < 6)
5342                 return 0;
5343
5344         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5345         intel_runtime_pm_put(dev_priv);
5346
5347         return 0;
5348 }
5349
5350 static const struct file_operations i915_forcewake_fops = {
5351         .owner = THIS_MODULE,
5352         .open = i915_forcewake_open,
5353         .release = i915_forcewake_release,
5354 };
5355
5356 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5357 {
5358         struct drm_device *dev = minor->dev;
5359         struct dentry *ent;
5360
5361         ent = debugfs_create_file("i915_forcewake_user",
5362                                   S_IRUSR,
5363                                   root, dev,
5364                                   &i915_forcewake_fops);
5365         if (!ent)
5366                 return -ENOMEM;
5367
5368         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5369 }
5370
5371 static int i915_debugfs_create(struct dentry *root,
5372                                struct drm_minor *minor,
5373                                const char *name,
5374                                const struct file_operations *fops)
5375 {
5376         struct drm_device *dev = minor->dev;
5377         struct dentry *ent;
5378
5379         ent = debugfs_create_file(name,
5380                                   S_IRUGO | S_IWUSR,
5381                                   root, dev,
5382                                   fops);
5383         if (!ent)
5384                 return -ENOMEM;
5385
5386         return drm_add_fake_info_node(minor, ent, fops);
5387 }
5388
5389 static const struct drm_info_list i915_debugfs_list[] = {
5390         {"i915_capabilities", i915_capabilities, 0},
5391         {"i915_gem_objects", i915_gem_object_info, 0},
5392         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5393         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
5394         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
5395         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
5396         {"i915_gem_stolen", i915_gem_stolen_list_info },
5397         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5398         {"i915_gem_request", i915_gem_request_info, 0},
5399         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5400         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5401         {"i915_gem_interrupt", i915_interrupt_info, 0},
5402         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5403         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5404         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5405         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5406         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5407         {"i915_guc_info", i915_guc_info, 0},
5408         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5409         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5410         {"i915_frequency_info", i915_frequency_info, 0},
5411         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5412         {"i915_drpc_info", i915_drpc_info, 0},
5413         {"i915_emon_status", i915_emon_status, 0},
5414         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5415         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5416         {"i915_fbc_status", i915_fbc_status, 0},
5417         {"i915_ips_status", i915_ips_status, 0},
5418         {"i915_sr_status", i915_sr_status, 0},
5419         {"i915_opregion", i915_opregion, 0},
5420         {"i915_vbt", i915_vbt, 0},
5421         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5422         {"i915_context_status", i915_context_status, 0},
5423         {"i915_dump_lrc", i915_dump_lrc, 0},
5424         {"i915_execlists", i915_execlists, 0},
5425         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5426         {"i915_swizzle_info", i915_swizzle_info, 0},
5427         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5428         {"i915_llc", i915_llc, 0},
5429         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5430         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5431         {"i915_energy_uJ", i915_energy_uJ, 0},
5432         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5433         {"i915_power_domain_info", i915_power_domain_info, 0},
5434         {"i915_dmc_info", i915_dmc_info, 0},
5435         {"i915_display_info", i915_display_info, 0},
5436         {"i915_semaphore_status", i915_semaphore_status, 0},
5437         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5438         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5439         {"i915_wa_registers", i915_wa_registers, 0},
5440         {"i915_ddb_info", i915_ddb_info, 0},
5441         {"i915_sseu_status", i915_sseu_status, 0},
5442         {"i915_drrs_status", i915_drrs_status, 0},
5443         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5444 };
5445 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5446
5447 static const struct i915_debugfs_files {
5448         const char *name;
5449         const struct file_operations *fops;
5450 } i915_debugfs_files[] = {
5451         {"i915_wedged", &i915_wedged_fops},
5452         {"i915_max_freq", &i915_max_freq_fops},
5453         {"i915_min_freq", &i915_min_freq_fops},
5454         {"i915_cache_sharing", &i915_cache_sharing_fops},
5455         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5456         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5457         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5458         {"i915_error_state", &i915_error_state_fops},
5459         {"i915_next_seqno", &i915_next_seqno_fops},
5460         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5461         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5462         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5463         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5464         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5465         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5466         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5467         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5468 };
5469
5470 void intel_display_crc_init(struct drm_device *dev)
5471 {
5472         struct drm_i915_private *dev_priv = to_i915(dev);
5473         enum pipe pipe;
5474
5475         for_each_pipe(dev_priv, pipe) {
5476                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5477
5478                 pipe_crc->opened = false;
5479                 spin_lock_init(&pipe_crc->lock);
5480                 init_waitqueue_head(&pipe_crc->wq);
5481         }
5482 }
5483
5484 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5485 {
5486         struct drm_minor *minor = dev_priv->drm.primary;
5487         int ret, i;
5488
5489         ret = i915_forcewake_create(minor->debugfs_root, minor);
5490         if (ret)
5491                 return ret;
5492
5493         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5494                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5495                 if (ret)
5496                         return ret;
5497         }
5498
5499         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5500                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5501                                           i915_debugfs_files[i].name,
5502                                           i915_debugfs_files[i].fops);
5503                 if (ret)
5504                         return ret;
5505         }
5506
5507         return drm_debugfs_create_files(i915_debugfs_list,
5508                                         I915_DEBUGFS_ENTRIES,
5509                                         minor->debugfs_root, minor);
5510 }
5511
5512 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5513 {
5514         struct drm_minor *minor = dev_priv->drm.primary;
5515         int i;
5516
5517         drm_debugfs_remove_files(i915_debugfs_list,
5518                                  I915_DEBUGFS_ENTRIES, minor);
5519
5520         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
5521                                  1, minor);
5522
5523         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5524                 struct drm_info_list *info_list =
5525                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5526
5527                 drm_debugfs_remove_files(info_list, 1, minor);
5528         }
5529
5530         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5531                 struct drm_info_list *info_list =
5532                         (struct drm_info_list *) i915_debugfs_files[i].fops;
5533
5534                 drm_debugfs_remove_files(info_list, 1, minor);
5535         }
5536 }
5537
5538 struct dpcd_block {
5539         /* DPCD dump start address. */
5540         unsigned int offset;
5541         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5542         unsigned int end;
5543         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5544         size_t size;
5545         /* Only valid for eDP. */
5546         bool edp;
5547 };
5548
5549 static const struct dpcd_block i915_dpcd_debug[] = {
5550         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5551         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5552         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5553         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5554         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5555         { .offset = DP_SET_POWER },
5556         { .offset = DP_EDP_DPCD_REV },
5557         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5558         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5559         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5560 };
5561
5562 static int i915_dpcd_show(struct seq_file *m, void *data)
5563 {
5564         struct drm_connector *connector = m->private;
5565         struct intel_dp *intel_dp =
5566                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5567         uint8_t buf[16];
5568         ssize_t err;
5569         int i;
5570
5571         if (connector->status != connector_status_connected)
5572                 return -ENODEV;
5573
5574         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5575                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5576                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5577
5578                 if (b->edp &&
5579                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5580                         continue;
5581
5582                 /* low tech for now */
5583                 if (WARN_ON(size > sizeof(buf)))
5584                         continue;
5585
5586                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5587                 if (err <= 0) {
5588                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5589                                   size, b->offset, err);
5590                         continue;
5591                 }
5592
5593                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5594         }
5595
5596         return 0;
5597 }
5598
5599 static int i915_dpcd_open(struct inode *inode, struct file *file)
5600 {
5601         return single_open(file, i915_dpcd_show, inode->i_private);
5602 }
5603
5604 static const struct file_operations i915_dpcd_fops = {
5605         .owner = THIS_MODULE,
5606         .open = i915_dpcd_open,
5607         .read = seq_read,
5608         .llseek = seq_lseek,
5609         .release = single_release,
5610 };
5611
5612 /**
5613  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5614  * @connector: pointer to a registered drm_connector
5615  *
5616  * Cleanup will be done by drm_connector_unregister() through a call to
5617  * drm_debugfs_connector_remove().
5618  *
5619  * Returns 0 on success, negative error codes on error.
5620  */
5621 int i915_debugfs_connector_add(struct drm_connector *connector)
5622 {
5623         struct dentry *root = connector->debugfs_entry;
5624
5625         /* The connector must have been registered beforehands. */
5626         if (!root)
5627                 return -ENODEV;
5628
5629         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5630             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5631                 debugfs_create_file("i915_dpcd", S_IRUGO, root, connector,
5632                                     &i915_dpcd_fops);
5633
5634         return 0;
5635 }