Merge branch 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
44 {
45         return to_i915(node->minor->dev);
46 }
47
48 /* As the drm_debugfs_init() routines are called before dev->dev_private is
49  * allocated we need to hook into the minor for release. */
50 static int
51 drm_add_fake_info_node(struct drm_minor *minor,
52                        struct dentry *ent,
53                        const void *key)
54 {
55         struct drm_info_node *node;
56
57         node = kmalloc(sizeof(*node), GFP_KERNEL);
58         if (node == NULL) {
59                 debugfs_remove(ent);
60                 return -ENOMEM;
61         }
62
63         node->minor = minor;
64         node->dent = ent;
65         node->info_ent = (void *)key;
66
67         mutex_lock(&minor->debugfs_lock);
68         list_add(&node->list, &minor->debugfs_list);
69         mutex_unlock(&minor->debugfs_lock);
70
71         return 0;
72 }
73
74 static int i915_capabilities(struct seq_file *m, void *data)
75 {
76         struct drm_i915_private *dev_priv = node_to_i915(m->private);
77         const struct intel_device_info *info = INTEL_INFO(dev_priv);
78
79         seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
80         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
81 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
82 #define SEP_SEMICOLON ;
83         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
84 #undef PRINT_FLAG
85 #undef SEP_SEMICOLON
86
87         return 0;
88 }
89
90 static char get_active_flag(struct drm_i915_gem_object *obj)
91 {
92         return i915_gem_object_is_active(obj) ? '*' : ' ';
93 }
94
95 static char get_pin_flag(struct drm_i915_gem_object *obj)
96 {
97         return obj->pin_display ? 'p' : ' ';
98 }
99
100 static char get_tiling_flag(struct drm_i915_gem_object *obj)
101 {
102         switch (i915_gem_object_get_tiling(obj)) {
103         default:
104         case I915_TILING_NONE: return ' ';
105         case I915_TILING_X: return 'X';
106         case I915_TILING_Y: return 'Y';
107         }
108 }
109
110 static char get_global_flag(struct drm_i915_gem_object *obj)
111 {
112         return i915_gem_object_to_ggtt(obj, NULL) ?  'g' : ' ';
113 }
114
115 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
116 {
117         return obj->mapping ? 'M' : ' ';
118 }
119
120 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
121 {
122         u64 size = 0;
123         struct i915_vma *vma;
124
125         list_for_each_entry(vma, &obj->vma_list, obj_link) {
126                 if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
127                         size += vma->node.size;
128         }
129
130         return size;
131 }
132
133 static void
134 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
135 {
136         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
137         struct intel_engine_cs *engine;
138         struct i915_vma *vma;
139         unsigned int frontbuffer_bits;
140         int pin_count = 0;
141         enum intel_engine_id id;
142
143         lockdep_assert_held(&obj->base.dev->struct_mutex);
144
145         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x [ ",
146                    &obj->base,
147                    get_active_flag(obj),
148                    get_pin_flag(obj),
149                    get_tiling_flag(obj),
150                    get_global_flag(obj),
151                    get_pin_mapped_flag(obj),
152                    obj->base.size / 1024,
153                    obj->base.read_domains,
154                    obj->base.write_domain);
155         for_each_engine_id(engine, dev_priv, id)
156                 seq_printf(m, "%x ",
157                            i915_gem_active_get_seqno(&obj->last_read[id],
158                                                      &obj->base.dev->struct_mutex));
159         seq_printf(m, "] %x %s%s%s",
160                    i915_gem_active_get_seqno(&obj->last_write,
161                                              &obj->base.dev->struct_mutex),
162                    i915_cache_level_str(dev_priv, obj->cache_level),
163                    obj->dirty ? " dirty" : "",
164                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
165         if (obj->base.name)
166                 seq_printf(m, " (name: %d)", obj->base.name);
167         list_for_each_entry(vma, &obj->vma_list, obj_link) {
168                 if (i915_vma_is_pinned(vma))
169                         pin_count++;
170         }
171         seq_printf(m, " (pinned x %d)", pin_count);
172         if (obj->pin_display)
173                 seq_printf(m, " (display)");
174         list_for_each_entry(vma, &obj->vma_list, obj_link) {
175                 if (!drm_mm_node_allocated(&vma->node))
176                         continue;
177
178                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
179                            i915_vma_is_ggtt(vma) ? "g" : "pp",
180                            vma->node.start, vma->node.size);
181                 if (i915_vma_is_ggtt(vma))
182                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
183                 if (vma->fence)
184                         seq_printf(m, " , fence: %d%s",
185                                    vma->fence->id,
186                                    i915_gem_active_isset(&vma->last_fence) ? "*" : "");
187                 seq_puts(m, ")");
188         }
189         if (obj->stolen)
190                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
191         if (obj->pin_display || obj->fault_mappable) {
192                 char s[3], *t = s;
193                 if (obj->pin_display)
194                         *t++ = 'p';
195                 if (obj->fault_mappable)
196                         *t++ = 'f';
197                 *t = '\0';
198                 seq_printf(m, " (%s mappable)", s);
199         }
200
201         engine = i915_gem_active_get_engine(&obj->last_write,
202                                             &dev_priv->drm.struct_mutex);
203         if (engine)
204                 seq_printf(m, " (%s)", engine->name);
205
206         frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
207         if (frontbuffer_bits)
208                 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
209 }
210
211 static int obj_rank_by_stolen(void *priv,
212                               struct list_head *A, struct list_head *B)
213 {
214         struct drm_i915_gem_object *a =
215                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
216         struct drm_i915_gem_object *b =
217                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
218
219         if (a->stolen->start < b->stolen->start)
220                 return -1;
221         if (a->stolen->start > b->stolen->start)
222                 return 1;
223         return 0;
224 }
225
226 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
227 {
228         struct drm_i915_private *dev_priv = node_to_i915(m->private);
229         struct drm_device *dev = &dev_priv->drm;
230         struct drm_i915_gem_object *obj;
231         u64 total_obj_size, total_gtt_size;
232         LIST_HEAD(stolen);
233         int count, ret;
234
235         ret = mutex_lock_interruptible(&dev->struct_mutex);
236         if (ret)
237                 return ret;
238
239         total_obj_size = total_gtt_size = count = 0;
240         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
241                 if (obj->stolen == NULL)
242                         continue;
243
244                 list_add(&obj->obj_exec_link, &stolen);
245
246                 total_obj_size += obj->base.size;
247                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
248                 count++;
249         }
250         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
251                 if (obj->stolen == NULL)
252                         continue;
253
254                 list_add(&obj->obj_exec_link, &stolen);
255
256                 total_obj_size += obj->base.size;
257                 count++;
258         }
259         list_sort(NULL, &stolen, obj_rank_by_stolen);
260         seq_puts(m, "Stolen:\n");
261         while (!list_empty(&stolen)) {
262                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
263                 seq_puts(m, "   ");
264                 describe_obj(m, obj);
265                 seq_putc(m, '\n');
266                 list_del_init(&obj->obj_exec_link);
267         }
268         mutex_unlock(&dev->struct_mutex);
269
270         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
271                    count, total_obj_size, total_gtt_size);
272         return 0;
273 }
274
275 struct file_stats {
276         struct drm_i915_file_private *file_priv;
277         unsigned long count;
278         u64 total, unbound;
279         u64 global, shared;
280         u64 active, inactive;
281 };
282
283 static int per_file_stats(int id, void *ptr, void *data)
284 {
285         struct drm_i915_gem_object *obj = ptr;
286         struct file_stats *stats = data;
287         struct i915_vma *vma;
288
289         stats->count++;
290         stats->total += obj->base.size;
291         if (!obj->bind_count)
292                 stats->unbound += obj->base.size;
293         if (obj->base.name || obj->base.dma_buf)
294                 stats->shared += obj->base.size;
295
296         list_for_each_entry(vma, &obj->vma_list, obj_link) {
297                 if (!drm_mm_node_allocated(&vma->node))
298                         continue;
299
300                 if (i915_vma_is_ggtt(vma)) {
301                         stats->global += vma->node.size;
302                 } else {
303                         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
304
305                         if (ppgtt->base.file != stats->file_priv)
306                                 continue;
307                 }
308
309                 if (i915_vma_is_active(vma))
310                         stats->active += vma->node.size;
311                 else
312                         stats->inactive += vma->node.size;
313         }
314
315         return 0;
316 }
317
318 #define print_file_stats(m, name, stats) do { \
319         if (stats.count) \
320                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
321                            name, \
322                            stats.count, \
323                            stats.total, \
324                            stats.active, \
325                            stats.inactive, \
326                            stats.global, \
327                            stats.shared, \
328                            stats.unbound); \
329 } while (0)
330
331 static void print_batch_pool_stats(struct seq_file *m,
332                                    struct drm_i915_private *dev_priv)
333 {
334         struct drm_i915_gem_object *obj;
335         struct file_stats stats;
336         struct intel_engine_cs *engine;
337         int j;
338
339         memset(&stats, 0, sizeof(stats));
340
341         for_each_engine(engine, dev_priv) {
342                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
343                         list_for_each_entry(obj,
344                                             &engine->batch_pool.cache_list[j],
345                                             batch_pool_link)
346                                 per_file_stats(0, obj, &stats);
347                 }
348         }
349
350         print_file_stats(m, "[k]batch pool", stats);
351 }
352
353 static int per_file_ctx_stats(int id, void *ptr, void *data)
354 {
355         struct i915_gem_context *ctx = ptr;
356         int n;
357
358         for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
359                 if (ctx->engine[n].state)
360                         per_file_stats(0, ctx->engine[n].state->obj, data);
361                 if (ctx->engine[n].ring)
362                         per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
363         }
364
365         return 0;
366 }
367
368 static void print_context_stats(struct seq_file *m,
369                                 struct drm_i915_private *dev_priv)
370 {
371         struct drm_device *dev = &dev_priv->drm;
372         struct file_stats stats;
373         struct drm_file *file;
374
375         memset(&stats, 0, sizeof(stats));
376
377         mutex_lock(&dev->struct_mutex);
378         if (dev_priv->kernel_context)
379                 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
380
381         list_for_each_entry(file, &dev->filelist, lhead) {
382                 struct drm_i915_file_private *fpriv = file->driver_priv;
383                 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
384         }
385         mutex_unlock(&dev->struct_mutex);
386
387         print_file_stats(m, "[k]contexts", stats);
388 }
389
390 static int i915_gem_object_info(struct seq_file *m, void *data)
391 {
392         struct drm_i915_private *dev_priv = node_to_i915(m->private);
393         struct drm_device *dev = &dev_priv->drm;
394         struct i915_ggtt *ggtt = &dev_priv->ggtt;
395         u32 count, mapped_count, purgeable_count, dpy_count;
396         u64 size, mapped_size, purgeable_size, dpy_size;
397         struct drm_i915_gem_object *obj;
398         struct drm_file *file;
399         int ret;
400
401         ret = mutex_lock_interruptible(&dev->struct_mutex);
402         if (ret)
403                 return ret;
404
405         seq_printf(m, "%u objects, %zu bytes\n",
406                    dev_priv->mm.object_count,
407                    dev_priv->mm.object_memory);
408
409         size = count = 0;
410         mapped_size = mapped_count = 0;
411         purgeable_size = purgeable_count = 0;
412         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
413                 size += obj->base.size;
414                 ++count;
415
416                 if (obj->madv == I915_MADV_DONTNEED) {
417                         purgeable_size += obj->base.size;
418                         ++purgeable_count;
419                 }
420
421                 if (obj->mapping) {
422                         mapped_count++;
423                         mapped_size += obj->base.size;
424                 }
425         }
426         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
427
428         size = count = dpy_size = dpy_count = 0;
429         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
430                 size += obj->base.size;
431                 ++count;
432
433                 if (obj->pin_display) {
434                         dpy_size += obj->base.size;
435                         ++dpy_count;
436                 }
437
438                 if (obj->madv == I915_MADV_DONTNEED) {
439                         purgeable_size += obj->base.size;
440                         ++purgeable_count;
441                 }
442
443                 if (obj->mapping) {
444                         mapped_count++;
445                         mapped_size += obj->base.size;
446                 }
447         }
448         seq_printf(m, "%u bound objects, %llu bytes\n",
449                    count, size);
450         seq_printf(m, "%u purgeable objects, %llu bytes\n",
451                    purgeable_count, purgeable_size);
452         seq_printf(m, "%u mapped objects, %llu bytes\n",
453                    mapped_count, mapped_size);
454         seq_printf(m, "%u display objects (pinned), %llu bytes\n",
455                    dpy_count, dpy_size);
456
457         seq_printf(m, "%llu [%llu] gtt total\n",
458                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
459
460         seq_putc(m, '\n');
461         print_batch_pool_stats(m, dev_priv);
462         mutex_unlock(&dev->struct_mutex);
463
464         mutex_lock(&dev->filelist_mutex);
465         print_context_stats(m, dev_priv);
466         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
467                 struct file_stats stats;
468                 struct drm_i915_file_private *file_priv = file->driver_priv;
469                 struct drm_i915_gem_request *request;
470                 struct task_struct *task;
471
472                 memset(&stats, 0, sizeof(stats));
473                 stats.file_priv = file->driver_priv;
474                 spin_lock(&file->table_lock);
475                 idr_for_each(&file->object_idr, per_file_stats, &stats);
476                 spin_unlock(&file->table_lock);
477                 /*
478                  * Although we have a valid reference on file->pid, that does
479                  * not guarantee that the task_struct who called get_pid() is
480                  * still alive (e.g. get_pid(current) => fork() => exit()).
481                  * Therefore, we need to protect this ->comm access using RCU.
482                  */
483                 mutex_lock(&dev->struct_mutex);
484                 request = list_first_entry_or_null(&file_priv->mm.request_list,
485                                                    struct drm_i915_gem_request,
486                                                    client_list);
487                 rcu_read_lock();
488                 task = pid_task(request && request->ctx->pid ?
489                                 request->ctx->pid : file->pid,
490                                 PIDTYPE_PID);
491                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
492                 rcu_read_unlock();
493                 mutex_unlock(&dev->struct_mutex);
494         }
495         mutex_unlock(&dev->filelist_mutex);
496
497         return 0;
498 }
499
500 static int i915_gem_gtt_info(struct seq_file *m, void *data)
501 {
502         struct drm_info_node *node = m->private;
503         struct drm_i915_private *dev_priv = node_to_i915(node);
504         struct drm_device *dev = &dev_priv->drm;
505         bool show_pin_display_only = !!node->info_ent->data;
506         struct drm_i915_gem_object *obj;
507         u64 total_obj_size, total_gtt_size;
508         int count, ret;
509
510         ret = mutex_lock_interruptible(&dev->struct_mutex);
511         if (ret)
512                 return ret;
513
514         total_obj_size = total_gtt_size = count = 0;
515         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
516                 if (show_pin_display_only && !obj->pin_display)
517                         continue;
518
519                 seq_puts(m, "   ");
520                 describe_obj(m, obj);
521                 seq_putc(m, '\n');
522                 total_obj_size += obj->base.size;
523                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
524                 count++;
525         }
526
527         mutex_unlock(&dev->struct_mutex);
528
529         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
530                    count, total_obj_size, total_gtt_size);
531
532         return 0;
533 }
534
535 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
536 {
537         struct drm_i915_private *dev_priv = node_to_i915(m->private);
538         struct drm_device *dev = &dev_priv->drm;
539         struct intel_crtc *crtc;
540         int ret;
541
542         ret = mutex_lock_interruptible(&dev->struct_mutex);
543         if (ret)
544                 return ret;
545
546         for_each_intel_crtc(dev, crtc) {
547                 const char pipe = pipe_name(crtc->pipe);
548                 const char plane = plane_name(crtc->plane);
549                 struct intel_flip_work *work;
550
551                 spin_lock_irq(&dev->event_lock);
552                 work = crtc->flip_work;
553                 if (work == NULL) {
554                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
555                                    pipe, plane);
556                 } else {
557                         u32 pending;
558                         u32 addr;
559
560                         pending = atomic_read(&work->pending);
561                         if (pending) {
562                                 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
563                                            pipe, plane);
564                         } else {
565                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
566                                            pipe, plane);
567                         }
568                         if (work->flip_queued_req) {
569                                 struct intel_engine_cs *engine = i915_gem_request_get_engine(work->flip_queued_req);
570
571                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
572                                            engine->name,
573                                            i915_gem_request_get_seqno(work->flip_queued_req),
574                                            dev_priv->next_seqno,
575                                            intel_engine_get_seqno(engine),
576                                            i915_gem_request_completed(work->flip_queued_req));
577                         } else
578                                 seq_printf(m, "Flip not associated with any ring\n");
579                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
580                                    work->flip_queued_vblank,
581                                    work->flip_ready_vblank,
582                                    intel_crtc_get_vblank_counter(crtc));
583                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
584
585                         if (INTEL_GEN(dev_priv) >= 4)
586                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
587                         else
588                                 addr = I915_READ(DSPADDR(crtc->plane));
589                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
590
591                         if (work->pending_flip_obj) {
592                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
593                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
594                         }
595                 }
596                 spin_unlock_irq(&dev->event_lock);
597         }
598
599         mutex_unlock(&dev->struct_mutex);
600
601         return 0;
602 }
603
604 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
605 {
606         struct drm_i915_private *dev_priv = node_to_i915(m->private);
607         struct drm_device *dev = &dev_priv->drm;
608         struct drm_i915_gem_object *obj;
609         struct intel_engine_cs *engine;
610         int total = 0;
611         int ret, j;
612
613         ret = mutex_lock_interruptible(&dev->struct_mutex);
614         if (ret)
615                 return ret;
616
617         for_each_engine(engine, dev_priv) {
618                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
619                         int count;
620
621                         count = 0;
622                         list_for_each_entry(obj,
623                                             &engine->batch_pool.cache_list[j],
624                                             batch_pool_link)
625                                 count++;
626                         seq_printf(m, "%s cache[%d]: %d objects\n",
627                                    engine->name, j, count);
628
629                         list_for_each_entry(obj,
630                                             &engine->batch_pool.cache_list[j],
631                                             batch_pool_link) {
632                                 seq_puts(m, "   ");
633                                 describe_obj(m, obj);
634                                 seq_putc(m, '\n');
635                         }
636
637                         total += count;
638                 }
639         }
640
641         seq_printf(m, "total: %d\n", total);
642
643         mutex_unlock(&dev->struct_mutex);
644
645         return 0;
646 }
647
648 static int i915_gem_request_info(struct seq_file *m, void *data)
649 {
650         struct drm_i915_private *dev_priv = node_to_i915(m->private);
651         struct drm_device *dev = &dev_priv->drm;
652         struct intel_engine_cs *engine;
653         struct drm_i915_gem_request *req;
654         int ret, any;
655
656         ret = mutex_lock_interruptible(&dev->struct_mutex);
657         if (ret)
658                 return ret;
659
660         any = 0;
661         for_each_engine(engine, dev_priv) {
662                 int count;
663
664                 count = 0;
665                 list_for_each_entry(req, &engine->request_list, link)
666                         count++;
667                 if (count == 0)
668                         continue;
669
670                 seq_printf(m, "%s requests: %d\n", engine->name, count);
671                 list_for_each_entry(req, &engine->request_list, link) {
672                         struct pid *pid = req->ctx->pid;
673                         struct task_struct *task;
674
675                         rcu_read_lock();
676                         task = pid ? pid_task(pid, PIDTYPE_PID) : NULL;
677                         seq_printf(m, "    %x @ %d: %s [%d]\n",
678                                    req->fence.seqno,
679                                    (int) (jiffies - req->emitted_jiffies),
680                                    task ? task->comm : "<unknown>",
681                                    task ? task->pid : -1);
682                         rcu_read_unlock();
683                 }
684
685                 any++;
686         }
687         mutex_unlock(&dev->struct_mutex);
688
689         if (any == 0)
690                 seq_puts(m, "No requests\n");
691
692         return 0;
693 }
694
695 static void i915_ring_seqno_info(struct seq_file *m,
696                                  struct intel_engine_cs *engine)
697 {
698         struct intel_breadcrumbs *b = &engine->breadcrumbs;
699         struct rb_node *rb;
700
701         seq_printf(m, "Current sequence (%s): %x\n",
702                    engine->name, intel_engine_get_seqno(engine));
703
704         spin_lock(&b->lock);
705         for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
706                 struct intel_wait *w = container_of(rb, typeof(*w), node);
707
708                 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
709                            engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
710         }
711         spin_unlock(&b->lock);
712 }
713
714 static int i915_gem_seqno_info(struct seq_file *m, void *data)
715 {
716         struct drm_i915_private *dev_priv = node_to_i915(m->private);
717         struct intel_engine_cs *engine;
718
719         for_each_engine(engine, dev_priv)
720                 i915_ring_seqno_info(m, engine);
721
722         return 0;
723 }
724
725
726 static int i915_interrupt_info(struct seq_file *m, void *data)
727 {
728         struct drm_i915_private *dev_priv = node_to_i915(m->private);
729         struct intel_engine_cs *engine;
730         int i, pipe;
731
732         intel_runtime_pm_get(dev_priv);
733
734         if (IS_CHERRYVIEW(dev_priv)) {
735                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
736                            I915_READ(GEN8_MASTER_IRQ));
737
738                 seq_printf(m, "Display IER:\t%08x\n",
739                            I915_READ(VLV_IER));
740                 seq_printf(m, "Display IIR:\t%08x\n",
741                            I915_READ(VLV_IIR));
742                 seq_printf(m, "Display IIR_RW:\t%08x\n",
743                            I915_READ(VLV_IIR_RW));
744                 seq_printf(m, "Display IMR:\t%08x\n",
745                            I915_READ(VLV_IMR));
746                 for_each_pipe(dev_priv, pipe)
747                         seq_printf(m, "Pipe %c stat:\t%08x\n",
748                                    pipe_name(pipe),
749                                    I915_READ(PIPESTAT(pipe)));
750
751                 seq_printf(m, "Port hotplug:\t%08x\n",
752                            I915_READ(PORT_HOTPLUG_EN));
753                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
754                            I915_READ(VLV_DPFLIPSTAT));
755                 seq_printf(m, "DPINVGTT:\t%08x\n",
756                            I915_READ(DPINVGTT));
757
758                 for (i = 0; i < 4; i++) {
759                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
760                                    i, I915_READ(GEN8_GT_IMR(i)));
761                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
762                                    i, I915_READ(GEN8_GT_IIR(i)));
763                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
764                                    i, I915_READ(GEN8_GT_IER(i)));
765                 }
766
767                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
768                            I915_READ(GEN8_PCU_IMR));
769                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
770                            I915_READ(GEN8_PCU_IIR));
771                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
772                            I915_READ(GEN8_PCU_IER));
773         } else if (INTEL_GEN(dev_priv) >= 8) {
774                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
775                            I915_READ(GEN8_MASTER_IRQ));
776
777                 for (i = 0; i < 4; i++) {
778                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
779                                    i, I915_READ(GEN8_GT_IMR(i)));
780                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
781                                    i, I915_READ(GEN8_GT_IIR(i)));
782                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
783                                    i, I915_READ(GEN8_GT_IER(i)));
784                 }
785
786                 for_each_pipe(dev_priv, pipe) {
787                         enum intel_display_power_domain power_domain;
788
789                         power_domain = POWER_DOMAIN_PIPE(pipe);
790                         if (!intel_display_power_get_if_enabled(dev_priv,
791                                                                 power_domain)) {
792                                 seq_printf(m, "Pipe %c power disabled\n",
793                                            pipe_name(pipe));
794                                 continue;
795                         }
796                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
797                                    pipe_name(pipe),
798                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
799                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
800                                    pipe_name(pipe),
801                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
802                         seq_printf(m, "Pipe %c IER:\t%08x\n",
803                                    pipe_name(pipe),
804                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
805
806                         intel_display_power_put(dev_priv, power_domain);
807                 }
808
809                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
810                            I915_READ(GEN8_DE_PORT_IMR));
811                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
812                            I915_READ(GEN8_DE_PORT_IIR));
813                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
814                            I915_READ(GEN8_DE_PORT_IER));
815
816                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
817                            I915_READ(GEN8_DE_MISC_IMR));
818                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
819                            I915_READ(GEN8_DE_MISC_IIR));
820                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
821                            I915_READ(GEN8_DE_MISC_IER));
822
823                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
824                            I915_READ(GEN8_PCU_IMR));
825                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
826                            I915_READ(GEN8_PCU_IIR));
827                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
828                            I915_READ(GEN8_PCU_IER));
829         } else if (IS_VALLEYVIEW(dev_priv)) {
830                 seq_printf(m, "Display IER:\t%08x\n",
831                            I915_READ(VLV_IER));
832                 seq_printf(m, "Display IIR:\t%08x\n",
833                            I915_READ(VLV_IIR));
834                 seq_printf(m, "Display IIR_RW:\t%08x\n",
835                            I915_READ(VLV_IIR_RW));
836                 seq_printf(m, "Display IMR:\t%08x\n",
837                            I915_READ(VLV_IMR));
838                 for_each_pipe(dev_priv, pipe)
839                         seq_printf(m, "Pipe %c stat:\t%08x\n",
840                                    pipe_name(pipe),
841                                    I915_READ(PIPESTAT(pipe)));
842
843                 seq_printf(m, "Master IER:\t%08x\n",
844                            I915_READ(VLV_MASTER_IER));
845
846                 seq_printf(m, "Render IER:\t%08x\n",
847                            I915_READ(GTIER));
848                 seq_printf(m, "Render IIR:\t%08x\n",
849                            I915_READ(GTIIR));
850                 seq_printf(m, "Render IMR:\t%08x\n",
851                            I915_READ(GTIMR));
852
853                 seq_printf(m, "PM IER:\t\t%08x\n",
854                            I915_READ(GEN6_PMIER));
855                 seq_printf(m, "PM IIR:\t\t%08x\n",
856                            I915_READ(GEN6_PMIIR));
857                 seq_printf(m, "PM IMR:\t\t%08x\n",
858                            I915_READ(GEN6_PMIMR));
859
860                 seq_printf(m, "Port hotplug:\t%08x\n",
861                            I915_READ(PORT_HOTPLUG_EN));
862                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
863                            I915_READ(VLV_DPFLIPSTAT));
864                 seq_printf(m, "DPINVGTT:\t%08x\n",
865                            I915_READ(DPINVGTT));
866
867         } else if (!HAS_PCH_SPLIT(dev_priv)) {
868                 seq_printf(m, "Interrupt enable:    %08x\n",
869                            I915_READ(IER));
870                 seq_printf(m, "Interrupt identity:  %08x\n",
871                            I915_READ(IIR));
872                 seq_printf(m, "Interrupt mask:      %08x\n",
873                            I915_READ(IMR));
874                 for_each_pipe(dev_priv, pipe)
875                         seq_printf(m, "Pipe %c stat:         %08x\n",
876                                    pipe_name(pipe),
877                                    I915_READ(PIPESTAT(pipe)));
878         } else {
879                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
880                            I915_READ(DEIER));
881                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
882                            I915_READ(DEIIR));
883                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
884                            I915_READ(DEIMR));
885                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
886                            I915_READ(SDEIER));
887                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
888                            I915_READ(SDEIIR));
889                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
890                            I915_READ(SDEIMR));
891                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
892                            I915_READ(GTIER));
893                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
894                            I915_READ(GTIIR));
895                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
896                            I915_READ(GTIMR));
897         }
898         for_each_engine(engine, dev_priv) {
899                 if (INTEL_GEN(dev_priv) >= 6) {
900                         seq_printf(m,
901                                    "Graphics Interrupt mask (%s):       %08x\n",
902                                    engine->name, I915_READ_IMR(engine));
903                 }
904                 i915_ring_seqno_info(m, engine);
905         }
906         intel_runtime_pm_put(dev_priv);
907
908         return 0;
909 }
910
911 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
912 {
913         struct drm_i915_private *dev_priv = node_to_i915(m->private);
914         struct drm_device *dev = &dev_priv->drm;
915         int i, ret;
916
917         ret = mutex_lock_interruptible(&dev->struct_mutex);
918         if (ret)
919                 return ret;
920
921         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
922         for (i = 0; i < dev_priv->num_fence_regs; i++) {
923                 struct i915_vma *vma = dev_priv->fence_regs[i].vma;
924
925                 seq_printf(m, "Fence %d, pin count = %d, object = ",
926                            i, dev_priv->fence_regs[i].pin_count);
927                 if (!vma)
928                         seq_puts(m, "unused");
929                 else
930                         describe_obj(m, vma->obj);
931                 seq_putc(m, '\n');
932         }
933
934         mutex_unlock(&dev->struct_mutex);
935         return 0;
936 }
937
938 static int i915_hws_info(struct seq_file *m, void *data)
939 {
940         struct drm_info_node *node = m->private;
941         struct drm_i915_private *dev_priv = node_to_i915(node);
942         struct intel_engine_cs *engine;
943         const u32 *hws;
944         int i;
945
946         engine = &dev_priv->engine[(uintptr_t)node->info_ent->data];
947         hws = engine->status_page.page_addr;
948         if (hws == NULL)
949                 return 0;
950
951         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
952                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
953                            i * 4,
954                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
955         }
956         return 0;
957 }
958
959 static ssize_t
960 i915_error_state_write(struct file *filp,
961                        const char __user *ubuf,
962                        size_t cnt,
963                        loff_t *ppos)
964 {
965         struct i915_error_state_file_priv *error_priv = filp->private_data;
966
967         DRM_DEBUG_DRIVER("Resetting error state\n");
968         i915_destroy_error_state(error_priv->dev);
969
970         return cnt;
971 }
972
973 static int i915_error_state_open(struct inode *inode, struct file *file)
974 {
975         struct drm_i915_private *dev_priv = inode->i_private;
976         struct i915_error_state_file_priv *error_priv;
977
978         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
979         if (!error_priv)
980                 return -ENOMEM;
981
982         error_priv->dev = &dev_priv->drm;
983
984         i915_error_state_get(&dev_priv->drm, error_priv);
985
986         file->private_data = error_priv;
987
988         return 0;
989 }
990
991 static int i915_error_state_release(struct inode *inode, struct file *file)
992 {
993         struct i915_error_state_file_priv *error_priv = file->private_data;
994
995         i915_error_state_put(error_priv);
996         kfree(error_priv);
997
998         return 0;
999 }
1000
1001 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
1002                                      size_t count, loff_t *pos)
1003 {
1004         struct i915_error_state_file_priv *error_priv = file->private_data;
1005         struct drm_i915_error_state_buf error_str;
1006         loff_t tmp_pos = 0;
1007         ssize_t ret_count = 0;
1008         int ret;
1009
1010         ret = i915_error_state_buf_init(&error_str,
1011                                         to_i915(error_priv->dev), count, *pos);
1012         if (ret)
1013                 return ret;
1014
1015         ret = i915_error_state_to_str(&error_str, error_priv);
1016         if (ret)
1017                 goto out;
1018
1019         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1020                                             error_str.buf,
1021                                             error_str.bytes);
1022
1023         if (ret_count < 0)
1024                 ret = ret_count;
1025         else
1026                 *pos = error_str.start + ret_count;
1027 out:
1028         i915_error_state_buf_release(&error_str);
1029         return ret ?: ret_count;
1030 }
1031
1032 static const struct file_operations i915_error_state_fops = {
1033         .owner = THIS_MODULE,
1034         .open = i915_error_state_open,
1035         .read = i915_error_state_read,
1036         .write = i915_error_state_write,
1037         .llseek = default_llseek,
1038         .release = i915_error_state_release,
1039 };
1040
1041 static int
1042 i915_next_seqno_get(void *data, u64 *val)
1043 {
1044         struct drm_i915_private *dev_priv = data;
1045         int ret;
1046
1047         ret = mutex_lock_interruptible(&dev_priv->drm.struct_mutex);
1048         if (ret)
1049                 return ret;
1050
1051         *val = dev_priv->next_seqno;
1052         mutex_unlock(&dev_priv->drm.struct_mutex);
1053
1054         return 0;
1055 }
1056
1057 static int
1058 i915_next_seqno_set(void *data, u64 val)
1059 {
1060         struct drm_i915_private *dev_priv = data;
1061         struct drm_device *dev = &dev_priv->drm;
1062         int ret;
1063
1064         ret = mutex_lock_interruptible(&dev->struct_mutex);
1065         if (ret)
1066                 return ret;
1067
1068         ret = i915_gem_set_seqno(dev, val);
1069         mutex_unlock(&dev->struct_mutex);
1070
1071         return ret;
1072 }
1073
1074 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1075                         i915_next_seqno_get, i915_next_seqno_set,
1076                         "0x%llx\n");
1077
1078 static int i915_frequency_info(struct seq_file *m, void *unused)
1079 {
1080         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1081         struct drm_device *dev = &dev_priv->drm;
1082         int ret = 0;
1083
1084         intel_runtime_pm_get(dev_priv);
1085
1086         if (IS_GEN5(dev_priv)) {
1087                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1088                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1089
1090                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1091                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1092                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1093                            MEMSTAT_VID_SHIFT);
1094                 seq_printf(m, "Current P-state: %d\n",
1095                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1096         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1097                 u32 freq_sts;
1098
1099                 mutex_lock(&dev_priv->rps.hw_lock);
1100                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1101                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1102                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1103
1104                 seq_printf(m, "actual GPU freq: %d MHz\n",
1105                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1106
1107                 seq_printf(m, "current GPU freq: %d MHz\n",
1108                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1109
1110                 seq_printf(m, "max GPU freq: %d MHz\n",
1111                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1112
1113                 seq_printf(m, "min GPU freq: %d MHz\n",
1114                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1115
1116                 seq_printf(m, "idle GPU freq: %d MHz\n",
1117                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1118
1119                 seq_printf(m,
1120                            "efficient (RPe) frequency: %d MHz\n",
1121                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1122                 mutex_unlock(&dev_priv->rps.hw_lock);
1123         } else if (INTEL_GEN(dev_priv) >= 6) {
1124                 u32 rp_state_limits;
1125                 u32 gt_perf_status;
1126                 u32 rp_state_cap;
1127                 u32 rpmodectl, rpinclimit, rpdeclimit;
1128                 u32 rpstat, cagf, reqf;
1129                 u32 rpupei, rpcurup, rpprevup;
1130                 u32 rpdownei, rpcurdown, rpprevdown;
1131                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1132                 int max_freq;
1133
1134                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1135                 if (IS_BROXTON(dev_priv)) {
1136                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1137                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1138                 } else {
1139                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1140                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1141                 }
1142
1143                 /* RPSTAT1 is in the GT power well */
1144                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1145                 if (ret)
1146                         goto out;
1147
1148                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1149
1150                 reqf = I915_READ(GEN6_RPNSWREQ);
1151                 if (IS_GEN9(dev_priv))
1152                         reqf >>= 23;
1153                 else {
1154                         reqf &= ~GEN6_TURBO_DISABLE;
1155                         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1156                                 reqf >>= 24;
1157                         else
1158                                 reqf >>= 25;
1159                 }
1160                 reqf = intel_gpu_freq(dev_priv, reqf);
1161
1162                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1163                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1164                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1165
1166                 rpstat = I915_READ(GEN6_RPSTAT1);
1167                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1168                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1169                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1170                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1171                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1172                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1173                 if (IS_GEN9(dev_priv))
1174                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1175                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1176                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1177                 else
1178                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1179                 cagf = intel_gpu_freq(dev_priv, cagf);
1180
1181                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1182                 mutex_unlock(&dev->struct_mutex);
1183
1184                 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1185                         pm_ier = I915_READ(GEN6_PMIER);
1186                         pm_imr = I915_READ(GEN6_PMIMR);
1187                         pm_isr = I915_READ(GEN6_PMISR);
1188                         pm_iir = I915_READ(GEN6_PMIIR);
1189                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1190                 } else {
1191                         pm_ier = I915_READ(GEN8_GT_IER(2));
1192                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1193                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1194                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1195                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1196                 }
1197                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1198                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1199                 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1200                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1201                 seq_printf(m, "Render p-state ratio: %d\n",
1202                            (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1203                 seq_printf(m, "Render p-state VID: %d\n",
1204                            gt_perf_status & 0xff);
1205                 seq_printf(m, "Render p-state limit: %d\n",
1206                            rp_state_limits & 0xff);
1207                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1208                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1209                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1210                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1211                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1212                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1213                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1214                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1215                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1216                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1217                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1218                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1219                 seq_printf(m, "Up threshold: %d%%\n",
1220                            dev_priv->rps.up_threshold);
1221
1222                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1223                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1224                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1225                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1226                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1227                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1228                 seq_printf(m, "Down threshold: %d%%\n",
1229                            dev_priv->rps.down_threshold);
1230
1231                 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 0 :
1232                             rp_state_cap >> 16) & 0xff;
1233                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1234                              GEN9_FREQ_SCALER : 1);
1235                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1236                            intel_gpu_freq(dev_priv, max_freq));
1237
1238                 max_freq = (rp_state_cap & 0xff00) >> 8;
1239                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1240                              GEN9_FREQ_SCALER : 1);
1241                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1242                            intel_gpu_freq(dev_priv, max_freq));
1243
1244                 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 16 :
1245                             rp_state_cap >> 0) & 0xff;
1246                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1247                              GEN9_FREQ_SCALER : 1);
1248                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1249                            intel_gpu_freq(dev_priv, max_freq));
1250                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1251                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1252
1253                 seq_printf(m, "Current freq: %d MHz\n",
1254                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1255                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1256                 seq_printf(m, "Idle freq: %d MHz\n",
1257                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1258                 seq_printf(m, "Min freq: %d MHz\n",
1259                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1260                 seq_printf(m, "Boost freq: %d MHz\n",
1261                            intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1262                 seq_printf(m, "Max freq: %d MHz\n",
1263                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1264                 seq_printf(m,
1265                            "efficient (RPe) frequency: %d MHz\n",
1266                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1267         } else {
1268                 seq_puts(m, "no P-state info available\n");
1269         }
1270
1271         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1272         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1273         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1274
1275 out:
1276         intel_runtime_pm_put(dev_priv);
1277         return ret;
1278 }
1279
1280 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1281 {
1282         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1283         struct intel_engine_cs *engine;
1284         u64 acthd[I915_NUM_ENGINES];
1285         u32 seqno[I915_NUM_ENGINES];
1286         u32 instdone[I915_NUM_INSTDONE_REG];
1287         enum intel_engine_id id;
1288         int j;
1289
1290         if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1291                 seq_printf(m, "Wedged\n");
1292         if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
1293                 seq_printf(m, "Reset in progress\n");
1294         if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1295                 seq_printf(m, "Waiter holding struct mutex\n");
1296         if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1297                 seq_printf(m, "struct_mutex blocked for reset\n");
1298
1299         if (!i915.enable_hangcheck) {
1300                 seq_printf(m, "Hangcheck disabled\n");
1301                 return 0;
1302         }
1303
1304         intel_runtime_pm_get(dev_priv);
1305
1306         for_each_engine_id(engine, dev_priv, id) {
1307                 acthd[id] = intel_engine_get_active_head(engine);
1308                 seqno[id] = intel_engine_get_seqno(engine);
1309         }
1310
1311         i915_get_extra_instdone(dev_priv, instdone);
1312
1313         intel_runtime_pm_put(dev_priv);
1314
1315         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1316                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1317                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1318                                             jiffies));
1319         } else
1320                 seq_printf(m, "Hangcheck inactive\n");
1321
1322         for_each_engine_id(engine, dev_priv, id) {
1323                 seq_printf(m, "%s:\n", engine->name);
1324                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1325                            engine->hangcheck.seqno,
1326                            seqno[id],
1327                            engine->last_submitted_seqno);
1328                 seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
1329                            yesno(intel_engine_has_waiter(engine)),
1330                            yesno(test_bit(engine->id,
1331                                           &dev_priv->gpu_error.missed_irq_rings)));
1332                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1333                            (long long)engine->hangcheck.acthd,
1334                            (long long)acthd[id]);
1335                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1336                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1337
1338                 if (engine->id == RCS) {
1339                         seq_puts(m, "\tinstdone read =");
1340
1341                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1342                                 seq_printf(m, " 0x%08x", instdone[j]);
1343
1344                         seq_puts(m, "\n\tinstdone accu =");
1345
1346                         for (j = 0; j < I915_NUM_INSTDONE_REG; j++)
1347                                 seq_printf(m, " 0x%08x",
1348                                            engine->hangcheck.instdone[j]);
1349
1350                         seq_puts(m, "\n");
1351                 }
1352         }
1353
1354         return 0;
1355 }
1356
1357 static int ironlake_drpc_info(struct seq_file *m)
1358 {
1359         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1360         struct drm_device *dev = &dev_priv->drm;
1361         u32 rgvmodectl, rstdbyctl;
1362         u16 crstandvid;
1363         int ret;
1364
1365         ret = mutex_lock_interruptible(&dev->struct_mutex);
1366         if (ret)
1367                 return ret;
1368         intel_runtime_pm_get(dev_priv);
1369
1370         rgvmodectl = I915_READ(MEMMODECTL);
1371         rstdbyctl = I915_READ(RSTDBYCTL);
1372         crstandvid = I915_READ16(CRSTANDVID);
1373
1374         intel_runtime_pm_put(dev_priv);
1375         mutex_unlock(&dev->struct_mutex);
1376
1377         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1378         seq_printf(m, "Boost freq: %d\n",
1379                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1380                    MEMMODE_BOOST_FREQ_SHIFT);
1381         seq_printf(m, "HW control enabled: %s\n",
1382                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1383         seq_printf(m, "SW control enabled: %s\n",
1384                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1385         seq_printf(m, "Gated voltage change: %s\n",
1386                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1387         seq_printf(m, "Starting frequency: P%d\n",
1388                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1389         seq_printf(m, "Max P-state: P%d\n",
1390                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1391         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1392         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1393         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1394         seq_printf(m, "Render standby enabled: %s\n",
1395                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1396         seq_puts(m, "Current RS state: ");
1397         switch (rstdbyctl & RSX_STATUS_MASK) {
1398         case RSX_STATUS_ON:
1399                 seq_puts(m, "on\n");
1400                 break;
1401         case RSX_STATUS_RC1:
1402                 seq_puts(m, "RC1\n");
1403                 break;
1404         case RSX_STATUS_RC1E:
1405                 seq_puts(m, "RC1E\n");
1406                 break;
1407         case RSX_STATUS_RS1:
1408                 seq_puts(m, "RS1\n");
1409                 break;
1410         case RSX_STATUS_RS2:
1411                 seq_puts(m, "RS2 (RC6)\n");
1412                 break;
1413         case RSX_STATUS_RS3:
1414                 seq_puts(m, "RC3 (RC6+)\n");
1415                 break;
1416         default:
1417                 seq_puts(m, "unknown\n");
1418                 break;
1419         }
1420
1421         return 0;
1422 }
1423
1424 static int i915_forcewake_domains(struct seq_file *m, void *data)
1425 {
1426         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1427         struct intel_uncore_forcewake_domain *fw_domain;
1428
1429         spin_lock_irq(&dev_priv->uncore.lock);
1430         for_each_fw_domain(fw_domain, dev_priv) {
1431                 seq_printf(m, "%s.wake_count = %u\n",
1432                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1433                            fw_domain->wake_count);
1434         }
1435         spin_unlock_irq(&dev_priv->uncore.lock);
1436
1437         return 0;
1438 }
1439
1440 static int vlv_drpc_info(struct seq_file *m)
1441 {
1442         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1443         u32 rpmodectl1, rcctl1, pw_status;
1444
1445         intel_runtime_pm_get(dev_priv);
1446
1447         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1448         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1449         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1450
1451         intel_runtime_pm_put(dev_priv);
1452
1453         seq_printf(m, "Video Turbo Mode: %s\n",
1454                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1455         seq_printf(m, "Turbo enabled: %s\n",
1456                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1457         seq_printf(m, "HW control enabled: %s\n",
1458                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1459         seq_printf(m, "SW control enabled: %s\n",
1460                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1461                           GEN6_RP_MEDIA_SW_MODE));
1462         seq_printf(m, "RC6 Enabled: %s\n",
1463                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1464                                         GEN6_RC_CTL_EI_MODE(1))));
1465         seq_printf(m, "Render Power Well: %s\n",
1466                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1467         seq_printf(m, "Media Power Well: %s\n",
1468                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1469
1470         seq_printf(m, "Render RC6 residency since boot: %u\n",
1471                    I915_READ(VLV_GT_RENDER_RC6));
1472         seq_printf(m, "Media RC6 residency since boot: %u\n",
1473                    I915_READ(VLV_GT_MEDIA_RC6));
1474
1475         return i915_forcewake_domains(m, NULL);
1476 }
1477
1478 static int gen6_drpc_info(struct seq_file *m)
1479 {
1480         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1481         struct drm_device *dev = &dev_priv->drm;
1482         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1483         u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1484         unsigned forcewake_count;
1485         int count = 0, ret;
1486
1487         ret = mutex_lock_interruptible(&dev->struct_mutex);
1488         if (ret)
1489                 return ret;
1490         intel_runtime_pm_get(dev_priv);
1491
1492         spin_lock_irq(&dev_priv->uncore.lock);
1493         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1494         spin_unlock_irq(&dev_priv->uncore.lock);
1495
1496         if (forcewake_count) {
1497                 seq_puts(m, "RC information inaccurate because somebody "
1498                             "holds a forcewake reference \n");
1499         } else {
1500                 /* NB: we cannot use forcewake, else we read the wrong values */
1501                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1502                         udelay(10);
1503                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1504         }
1505
1506         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1507         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1508
1509         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1510         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1511         if (INTEL_GEN(dev_priv) >= 9) {
1512                 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1513                 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1514         }
1515         mutex_unlock(&dev->struct_mutex);
1516         mutex_lock(&dev_priv->rps.hw_lock);
1517         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1518         mutex_unlock(&dev_priv->rps.hw_lock);
1519
1520         intel_runtime_pm_put(dev_priv);
1521
1522         seq_printf(m, "Video Turbo Mode: %s\n",
1523                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1524         seq_printf(m, "HW control enabled: %s\n",
1525                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1526         seq_printf(m, "SW control enabled: %s\n",
1527                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1528                           GEN6_RP_MEDIA_SW_MODE));
1529         seq_printf(m, "RC1e Enabled: %s\n",
1530                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1531         seq_printf(m, "RC6 Enabled: %s\n",
1532                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1533         if (INTEL_GEN(dev_priv) >= 9) {
1534                 seq_printf(m, "Render Well Gating Enabled: %s\n",
1535                         yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1536                 seq_printf(m, "Media Well Gating Enabled: %s\n",
1537                         yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1538         }
1539         seq_printf(m, "Deep RC6 Enabled: %s\n",
1540                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1541         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1542                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1543         seq_puts(m, "Current RC state: ");
1544         switch (gt_core_status & GEN6_RCn_MASK) {
1545         case GEN6_RC0:
1546                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1547                         seq_puts(m, "Core Power Down\n");
1548                 else
1549                         seq_puts(m, "on\n");
1550                 break;
1551         case GEN6_RC3:
1552                 seq_puts(m, "RC3\n");
1553                 break;
1554         case GEN6_RC6:
1555                 seq_puts(m, "RC6\n");
1556                 break;
1557         case GEN6_RC7:
1558                 seq_puts(m, "RC7\n");
1559                 break;
1560         default:
1561                 seq_puts(m, "Unknown\n");
1562                 break;
1563         }
1564
1565         seq_printf(m, "Core Power Down: %s\n",
1566                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1567         if (INTEL_GEN(dev_priv) >= 9) {
1568                 seq_printf(m, "Render Power Well: %s\n",
1569                         (gen9_powergate_status &
1570                          GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1571                 seq_printf(m, "Media Power Well: %s\n",
1572                         (gen9_powergate_status &
1573                          GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1574         }
1575
1576         /* Not exactly sure what this is */
1577         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1578                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1579         seq_printf(m, "RC6 residency since boot: %u\n",
1580                    I915_READ(GEN6_GT_GFX_RC6));
1581         seq_printf(m, "RC6+ residency since boot: %u\n",
1582                    I915_READ(GEN6_GT_GFX_RC6p));
1583         seq_printf(m, "RC6++ residency since boot: %u\n",
1584                    I915_READ(GEN6_GT_GFX_RC6pp));
1585
1586         seq_printf(m, "RC6   voltage: %dmV\n",
1587                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1588         seq_printf(m, "RC6+  voltage: %dmV\n",
1589                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1590         seq_printf(m, "RC6++ voltage: %dmV\n",
1591                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1592         return i915_forcewake_domains(m, NULL);
1593 }
1594
1595 static int i915_drpc_info(struct seq_file *m, void *unused)
1596 {
1597         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1598
1599         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1600                 return vlv_drpc_info(m);
1601         else if (INTEL_GEN(dev_priv) >= 6)
1602                 return gen6_drpc_info(m);
1603         else
1604                 return ironlake_drpc_info(m);
1605 }
1606
1607 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1608 {
1609         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1610
1611         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1612                    dev_priv->fb_tracking.busy_bits);
1613
1614         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1615                    dev_priv->fb_tracking.flip_bits);
1616
1617         return 0;
1618 }
1619
1620 static int i915_fbc_status(struct seq_file *m, void *unused)
1621 {
1622         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1623
1624         if (!HAS_FBC(dev_priv)) {
1625                 seq_puts(m, "FBC unsupported on this chipset\n");
1626                 return 0;
1627         }
1628
1629         intel_runtime_pm_get(dev_priv);
1630         mutex_lock(&dev_priv->fbc.lock);
1631
1632         if (intel_fbc_is_active(dev_priv))
1633                 seq_puts(m, "FBC enabled\n");
1634         else
1635                 seq_printf(m, "FBC disabled: %s\n",
1636                            dev_priv->fbc.no_fbc_reason);
1637
1638         if (INTEL_GEN(dev_priv) >= 7)
1639                 seq_printf(m, "Compressing: %s\n",
1640                            yesno(I915_READ(FBC_STATUS2) &
1641                                  FBC_COMPRESSION_MASK));
1642
1643         mutex_unlock(&dev_priv->fbc.lock);
1644         intel_runtime_pm_put(dev_priv);
1645
1646         return 0;
1647 }
1648
1649 static int i915_fbc_fc_get(void *data, u64 *val)
1650 {
1651         struct drm_i915_private *dev_priv = data;
1652
1653         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1654                 return -ENODEV;
1655
1656         *val = dev_priv->fbc.false_color;
1657
1658         return 0;
1659 }
1660
1661 static int i915_fbc_fc_set(void *data, u64 val)
1662 {
1663         struct drm_i915_private *dev_priv = data;
1664         u32 reg;
1665
1666         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1667                 return -ENODEV;
1668
1669         mutex_lock(&dev_priv->fbc.lock);
1670
1671         reg = I915_READ(ILK_DPFC_CONTROL);
1672         dev_priv->fbc.false_color = val;
1673
1674         I915_WRITE(ILK_DPFC_CONTROL, val ?
1675                    (reg | FBC_CTL_FALSE_COLOR) :
1676                    (reg & ~FBC_CTL_FALSE_COLOR));
1677
1678         mutex_unlock(&dev_priv->fbc.lock);
1679         return 0;
1680 }
1681
1682 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1683                         i915_fbc_fc_get, i915_fbc_fc_set,
1684                         "%llu\n");
1685
1686 static int i915_ips_status(struct seq_file *m, void *unused)
1687 {
1688         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1689
1690         if (!HAS_IPS(dev_priv)) {
1691                 seq_puts(m, "not supported\n");
1692                 return 0;
1693         }
1694
1695         intel_runtime_pm_get(dev_priv);
1696
1697         seq_printf(m, "Enabled by kernel parameter: %s\n",
1698                    yesno(i915.enable_ips));
1699
1700         if (INTEL_GEN(dev_priv) >= 8) {
1701                 seq_puts(m, "Currently: unknown\n");
1702         } else {
1703                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1704                         seq_puts(m, "Currently: enabled\n");
1705                 else
1706                         seq_puts(m, "Currently: disabled\n");
1707         }
1708
1709         intel_runtime_pm_put(dev_priv);
1710
1711         return 0;
1712 }
1713
1714 static int i915_sr_status(struct seq_file *m, void *unused)
1715 {
1716         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1717         bool sr_enabled = false;
1718
1719         intel_runtime_pm_get(dev_priv);
1720
1721         if (HAS_PCH_SPLIT(dev_priv))
1722                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1723         else if (IS_CRESTLINE(dev_priv) || IS_G4X(dev_priv) ||
1724                  IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1725                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1726         else if (IS_I915GM(dev_priv))
1727                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1728         else if (IS_PINEVIEW(dev_priv))
1729                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1730         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1731                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1732
1733         intel_runtime_pm_put(dev_priv);
1734
1735         seq_printf(m, "self-refresh: %s\n",
1736                    sr_enabled ? "enabled" : "disabled");
1737
1738         return 0;
1739 }
1740
1741 static int i915_emon_status(struct seq_file *m, void *unused)
1742 {
1743         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1744         struct drm_device *dev = &dev_priv->drm;
1745         unsigned long temp, chipset, gfx;
1746         int ret;
1747
1748         if (!IS_GEN5(dev_priv))
1749                 return -ENODEV;
1750
1751         ret = mutex_lock_interruptible(&dev->struct_mutex);
1752         if (ret)
1753                 return ret;
1754
1755         temp = i915_mch_val(dev_priv);
1756         chipset = i915_chipset_val(dev_priv);
1757         gfx = i915_gfx_val(dev_priv);
1758         mutex_unlock(&dev->struct_mutex);
1759
1760         seq_printf(m, "GMCH temp: %ld\n", temp);
1761         seq_printf(m, "Chipset power: %ld\n", chipset);
1762         seq_printf(m, "GFX power: %ld\n", gfx);
1763         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1764
1765         return 0;
1766 }
1767
1768 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1769 {
1770         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1771         int ret = 0;
1772         int gpu_freq, ia_freq;
1773         unsigned int max_gpu_freq, min_gpu_freq;
1774
1775         if (!HAS_LLC(dev_priv)) {
1776                 seq_puts(m, "unsupported on this chipset\n");
1777                 return 0;
1778         }
1779
1780         intel_runtime_pm_get(dev_priv);
1781
1782         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1783         if (ret)
1784                 goto out;
1785
1786         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1787                 /* Convert GT frequency to 50 HZ units */
1788                 min_gpu_freq =
1789                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1790                 max_gpu_freq =
1791                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1792         } else {
1793                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1794                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1795         }
1796
1797         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1798
1799         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1800                 ia_freq = gpu_freq;
1801                 sandybridge_pcode_read(dev_priv,
1802                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1803                                        &ia_freq);
1804                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1805                            intel_gpu_freq(dev_priv, (gpu_freq *
1806                                 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1807                                  GEN9_FREQ_SCALER : 1))),
1808                            ((ia_freq >> 0) & 0xff) * 100,
1809                            ((ia_freq >> 8) & 0xff) * 100);
1810         }
1811
1812         mutex_unlock(&dev_priv->rps.hw_lock);
1813
1814 out:
1815         intel_runtime_pm_put(dev_priv);
1816         return ret;
1817 }
1818
1819 static int i915_opregion(struct seq_file *m, void *unused)
1820 {
1821         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1822         struct drm_device *dev = &dev_priv->drm;
1823         struct intel_opregion *opregion = &dev_priv->opregion;
1824         int ret;
1825
1826         ret = mutex_lock_interruptible(&dev->struct_mutex);
1827         if (ret)
1828                 goto out;
1829
1830         if (opregion->header)
1831                 seq_write(m, opregion->header, OPREGION_SIZE);
1832
1833         mutex_unlock(&dev->struct_mutex);
1834
1835 out:
1836         return 0;
1837 }
1838
1839 static int i915_vbt(struct seq_file *m, void *unused)
1840 {
1841         struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1842
1843         if (opregion->vbt)
1844                 seq_write(m, opregion->vbt, opregion->vbt_size);
1845
1846         return 0;
1847 }
1848
1849 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1850 {
1851         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1852         struct drm_device *dev = &dev_priv->drm;
1853         struct intel_framebuffer *fbdev_fb = NULL;
1854         struct drm_framebuffer *drm_fb;
1855         int ret;
1856
1857         ret = mutex_lock_interruptible(&dev->struct_mutex);
1858         if (ret)
1859                 return ret;
1860
1861 #ifdef CONFIG_DRM_FBDEV_EMULATION
1862         if (dev_priv->fbdev) {
1863                 fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1864
1865                 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1866                            fbdev_fb->base.width,
1867                            fbdev_fb->base.height,
1868                            fbdev_fb->base.depth,
1869                            fbdev_fb->base.bits_per_pixel,
1870                            fbdev_fb->base.modifier[0],
1871                            drm_framebuffer_read_refcount(&fbdev_fb->base));
1872                 describe_obj(m, fbdev_fb->obj);
1873                 seq_putc(m, '\n');
1874         }
1875 #endif
1876
1877         mutex_lock(&dev->mode_config.fb_lock);
1878         drm_for_each_fb(drm_fb, dev) {
1879                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1880                 if (fb == fbdev_fb)
1881                         continue;
1882
1883                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1884                            fb->base.width,
1885                            fb->base.height,
1886                            fb->base.depth,
1887                            fb->base.bits_per_pixel,
1888                            fb->base.modifier[0],
1889                            drm_framebuffer_read_refcount(&fb->base));
1890                 describe_obj(m, fb->obj);
1891                 seq_putc(m, '\n');
1892         }
1893         mutex_unlock(&dev->mode_config.fb_lock);
1894         mutex_unlock(&dev->struct_mutex);
1895
1896         return 0;
1897 }
1898
1899 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1900 {
1901         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1902                    ring->space, ring->head, ring->tail,
1903                    ring->last_retired_head);
1904 }
1905
1906 static int i915_context_status(struct seq_file *m, void *unused)
1907 {
1908         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1909         struct drm_device *dev = &dev_priv->drm;
1910         struct intel_engine_cs *engine;
1911         struct i915_gem_context *ctx;
1912         int ret;
1913
1914         ret = mutex_lock_interruptible(&dev->struct_mutex);
1915         if (ret)
1916                 return ret;
1917
1918         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1919                 seq_printf(m, "HW context %u ", ctx->hw_id);
1920                 if (ctx->pid) {
1921                         struct task_struct *task;
1922
1923                         task = get_pid_task(ctx->pid, PIDTYPE_PID);
1924                         if (task) {
1925                                 seq_printf(m, "(%s [%d]) ",
1926                                            task->comm, task->pid);
1927                                 put_task_struct(task);
1928                         }
1929                 } else if (IS_ERR(ctx->file_priv)) {
1930                         seq_puts(m, "(deleted) ");
1931                 } else {
1932                         seq_puts(m, "(kernel) ");
1933                 }
1934
1935                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1936                 seq_putc(m, '\n');
1937
1938                 for_each_engine(engine, dev_priv) {
1939                         struct intel_context *ce = &ctx->engine[engine->id];
1940
1941                         seq_printf(m, "%s: ", engine->name);
1942                         seq_putc(m, ce->initialised ? 'I' : 'i');
1943                         if (ce->state)
1944                                 describe_obj(m, ce->state->obj);
1945                         if (ce->ring)
1946                                 describe_ctx_ring(m, ce->ring);
1947                         seq_putc(m, '\n');
1948                 }
1949
1950                 seq_putc(m, '\n');
1951         }
1952
1953         mutex_unlock(&dev->struct_mutex);
1954
1955         return 0;
1956 }
1957
1958 static void i915_dump_lrc_obj(struct seq_file *m,
1959                               struct i915_gem_context *ctx,
1960                               struct intel_engine_cs *engine)
1961 {
1962         struct i915_vma *vma = ctx->engine[engine->id].state;
1963         struct page *page;
1964         int j;
1965
1966         seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
1967
1968         if (!vma) {
1969                 seq_puts(m, "\tFake context\n");
1970                 return;
1971         }
1972
1973         if (vma->flags & I915_VMA_GLOBAL_BIND)
1974                 seq_printf(m, "\tBound in GGTT at 0x%08x\n",
1975                            i915_ggtt_offset(vma));
1976
1977         if (i915_gem_object_get_pages(vma->obj)) {
1978                 seq_puts(m, "\tFailed to get pages for context object\n\n");
1979                 return;
1980         }
1981
1982         page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
1983         if (page) {
1984                 u32 *reg_state = kmap_atomic(page);
1985
1986                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1987                         seq_printf(m,
1988                                    "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1989                                    j * 4,
1990                                    reg_state[j], reg_state[j + 1],
1991                                    reg_state[j + 2], reg_state[j + 3]);
1992                 }
1993                 kunmap_atomic(reg_state);
1994         }
1995
1996         seq_putc(m, '\n');
1997 }
1998
1999 static int i915_dump_lrc(struct seq_file *m, void *unused)
2000 {
2001         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2002         struct drm_device *dev = &dev_priv->drm;
2003         struct intel_engine_cs *engine;
2004         struct i915_gem_context *ctx;
2005         int ret;
2006
2007         if (!i915.enable_execlists) {
2008                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2009                 return 0;
2010         }
2011
2012         ret = mutex_lock_interruptible(&dev->struct_mutex);
2013         if (ret)
2014                 return ret;
2015
2016         list_for_each_entry(ctx, &dev_priv->context_list, link)
2017                 for_each_engine(engine, dev_priv)
2018                         i915_dump_lrc_obj(m, ctx, engine);
2019
2020         mutex_unlock(&dev->struct_mutex);
2021
2022         return 0;
2023 }
2024
2025 static int i915_execlists(struct seq_file *m, void *data)
2026 {
2027         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2028         struct drm_device *dev = &dev_priv->drm;
2029         struct intel_engine_cs *engine;
2030         u32 status_pointer;
2031         u8 read_pointer;
2032         u8 write_pointer;
2033         u32 status;
2034         u32 ctx_id;
2035         struct list_head *cursor;
2036         int i, ret;
2037
2038         if (!i915.enable_execlists) {
2039                 seq_puts(m, "Logical Ring Contexts are disabled\n");
2040                 return 0;
2041         }
2042
2043         ret = mutex_lock_interruptible(&dev->struct_mutex);
2044         if (ret)
2045                 return ret;
2046
2047         intel_runtime_pm_get(dev_priv);
2048
2049         for_each_engine(engine, dev_priv) {
2050                 struct drm_i915_gem_request *head_req = NULL;
2051                 int count = 0;
2052
2053                 seq_printf(m, "%s\n", engine->name);
2054
2055                 status = I915_READ(RING_EXECLIST_STATUS_LO(engine));
2056                 ctx_id = I915_READ(RING_EXECLIST_STATUS_HI(engine));
2057                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
2058                            status, ctx_id);
2059
2060                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
2061                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
2062
2063                 read_pointer = GEN8_CSB_READ_PTR(status_pointer);
2064                 write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2065                 if (read_pointer > write_pointer)
2066                         write_pointer += GEN8_CSB_ENTRIES;
2067                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
2068                            read_pointer, write_pointer);
2069
2070                 for (i = 0; i < GEN8_CSB_ENTRIES; i++) {
2071                         status = I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, i));
2072                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, i));
2073
2074                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
2075                                    i, status, ctx_id);
2076                 }
2077
2078                 spin_lock_bh(&engine->execlist_lock);
2079                 list_for_each(cursor, &engine->execlist_queue)
2080                         count++;
2081                 head_req = list_first_entry_or_null(&engine->execlist_queue,
2082                                                     struct drm_i915_gem_request,
2083                                                     execlist_link);
2084                 spin_unlock_bh(&engine->execlist_lock);
2085
2086                 seq_printf(m, "\t%d requests in queue\n", count);
2087                 if (head_req) {
2088                         seq_printf(m, "\tHead request context: %u\n",
2089                                    head_req->ctx->hw_id);
2090                         seq_printf(m, "\tHead request tail: %u\n",
2091                                    head_req->tail);
2092                 }
2093
2094                 seq_putc(m, '\n');
2095         }
2096
2097         intel_runtime_pm_put(dev_priv);
2098         mutex_unlock(&dev->struct_mutex);
2099
2100         return 0;
2101 }
2102
2103 static const char *swizzle_string(unsigned swizzle)
2104 {
2105         switch (swizzle) {
2106         case I915_BIT_6_SWIZZLE_NONE:
2107                 return "none";
2108         case I915_BIT_6_SWIZZLE_9:
2109                 return "bit9";
2110         case I915_BIT_6_SWIZZLE_9_10:
2111                 return "bit9/bit10";
2112         case I915_BIT_6_SWIZZLE_9_11:
2113                 return "bit9/bit11";
2114         case I915_BIT_6_SWIZZLE_9_10_11:
2115                 return "bit9/bit10/bit11";
2116         case I915_BIT_6_SWIZZLE_9_17:
2117                 return "bit9/bit17";
2118         case I915_BIT_6_SWIZZLE_9_10_17:
2119                 return "bit9/bit10/bit17";
2120         case I915_BIT_6_SWIZZLE_UNKNOWN:
2121                 return "unknown";
2122         }
2123
2124         return "bug";
2125 }
2126
2127 static int i915_swizzle_info(struct seq_file *m, void *data)
2128 {
2129         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2130         struct drm_device *dev = &dev_priv->drm;
2131         int ret;
2132
2133         ret = mutex_lock_interruptible(&dev->struct_mutex);
2134         if (ret)
2135                 return ret;
2136         intel_runtime_pm_get(dev_priv);
2137
2138         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2139                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2140         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2141                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2142
2143         if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2144                 seq_printf(m, "DDC = 0x%08x\n",
2145                            I915_READ(DCC));
2146                 seq_printf(m, "DDC2 = 0x%08x\n",
2147                            I915_READ(DCC2));
2148                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2149                            I915_READ16(C0DRB3));
2150                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2151                            I915_READ16(C1DRB3));
2152         } else if (INTEL_GEN(dev_priv) >= 6) {
2153                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2154                            I915_READ(MAD_DIMM_C0));
2155                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2156                            I915_READ(MAD_DIMM_C1));
2157                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2158                            I915_READ(MAD_DIMM_C2));
2159                 seq_printf(m, "TILECTL = 0x%08x\n",
2160                            I915_READ(TILECTL));
2161                 if (INTEL_GEN(dev_priv) >= 8)
2162                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2163                                    I915_READ(GAMTARBMODE));
2164                 else
2165                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2166                                    I915_READ(ARB_MODE));
2167                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2168                            I915_READ(DISP_ARB_CTL));
2169         }
2170
2171         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2172                 seq_puts(m, "L-shaped memory detected\n");
2173
2174         intel_runtime_pm_put(dev_priv);
2175         mutex_unlock(&dev->struct_mutex);
2176
2177         return 0;
2178 }
2179
2180 static int per_file_ctx(int id, void *ptr, void *data)
2181 {
2182         struct i915_gem_context *ctx = ptr;
2183         struct seq_file *m = data;
2184         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2185
2186         if (!ppgtt) {
2187                 seq_printf(m, "  no ppgtt for context %d\n",
2188                            ctx->user_handle);
2189                 return 0;
2190         }
2191
2192         if (i915_gem_context_is_default(ctx))
2193                 seq_puts(m, "  default context:\n");
2194         else
2195                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2196         ppgtt->debug_dump(ppgtt, m);
2197
2198         return 0;
2199 }
2200
2201 static void gen8_ppgtt_info(struct seq_file *m,
2202                             struct drm_i915_private *dev_priv)
2203 {
2204         struct intel_engine_cs *engine;
2205         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2206         int i;
2207
2208         if (!ppgtt)
2209                 return;
2210
2211         for_each_engine(engine, dev_priv) {
2212                 seq_printf(m, "%s\n", engine->name);
2213                 for (i = 0; i < 4; i++) {
2214                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2215                         pdp <<= 32;
2216                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2217                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2218                 }
2219         }
2220 }
2221
2222 static void gen6_ppgtt_info(struct seq_file *m,
2223                             struct drm_i915_private *dev_priv)
2224 {
2225         struct intel_engine_cs *engine;
2226
2227         if (IS_GEN6(dev_priv))
2228                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2229
2230         for_each_engine(engine, dev_priv) {
2231                 seq_printf(m, "%s\n", engine->name);
2232                 if (IS_GEN7(dev_priv))
2233                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2234                                    I915_READ(RING_MODE_GEN7(engine)));
2235                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2236                            I915_READ(RING_PP_DIR_BASE(engine)));
2237                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2238                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2239                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2240                            I915_READ(RING_PP_DIR_DCLV(engine)));
2241         }
2242         if (dev_priv->mm.aliasing_ppgtt) {
2243                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2244
2245                 seq_puts(m, "aliasing PPGTT:\n");
2246                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2247
2248                 ppgtt->debug_dump(ppgtt, m);
2249         }
2250
2251         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2252 }
2253
2254 static int i915_ppgtt_info(struct seq_file *m, void *data)
2255 {
2256         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2257         struct drm_device *dev = &dev_priv->drm;
2258         struct drm_file *file;
2259         int ret;
2260
2261         mutex_lock(&dev->filelist_mutex);
2262         ret = mutex_lock_interruptible(&dev->struct_mutex);
2263         if (ret)
2264                 goto out_unlock;
2265
2266         intel_runtime_pm_get(dev_priv);
2267
2268         if (INTEL_GEN(dev_priv) >= 8)
2269                 gen8_ppgtt_info(m, dev_priv);
2270         else if (INTEL_GEN(dev_priv) >= 6)
2271                 gen6_ppgtt_info(m, dev_priv);
2272
2273         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2274                 struct drm_i915_file_private *file_priv = file->driver_priv;
2275                 struct task_struct *task;
2276
2277                 task = get_pid_task(file->pid, PIDTYPE_PID);
2278                 if (!task) {
2279                         ret = -ESRCH;
2280                         goto out_rpm;
2281                 }
2282                 seq_printf(m, "\nproc: %s\n", task->comm);
2283                 put_task_struct(task);
2284                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2285                              (void *)(unsigned long)m);
2286         }
2287
2288 out_rpm:
2289         intel_runtime_pm_put(dev_priv);
2290         mutex_unlock(&dev->struct_mutex);
2291 out_unlock:
2292         mutex_unlock(&dev->filelist_mutex);
2293         return ret;
2294 }
2295
2296 static int count_irq_waiters(struct drm_i915_private *i915)
2297 {
2298         struct intel_engine_cs *engine;
2299         int count = 0;
2300
2301         for_each_engine(engine, i915)
2302                 count += intel_engine_has_waiter(engine);
2303
2304         return count;
2305 }
2306
2307 static const char *rps_power_to_str(unsigned int power)
2308 {
2309         static const char * const strings[] = {
2310                 [LOW_POWER] = "low power",
2311                 [BETWEEN] = "mixed",
2312                 [HIGH_POWER] = "high power",
2313         };
2314
2315         if (power >= ARRAY_SIZE(strings) || !strings[power])
2316                 return "unknown";
2317
2318         return strings[power];
2319 }
2320
2321 static int i915_rps_boost_info(struct seq_file *m, void *data)
2322 {
2323         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2324         struct drm_device *dev = &dev_priv->drm;
2325         struct drm_file *file;
2326
2327         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2328         seq_printf(m, "GPU busy? %s [%x]\n",
2329                    yesno(dev_priv->gt.awake), dev_priv->gt.active_engines);
2330         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2331         seq_printf(m, "Frequency requested %d\n",
2332                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2333         seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2334                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2335                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2336                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2337                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2338         seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2339                    intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2340                    intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2341                    intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2342
2343         mutex_lock(&dev->filelist_mutex);
2344         spin_lock(&dev_priv->rps.client_lock);
2345         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2346                 struct drm_i915_file_private *file_priv = file->driver_priv;
2347                 struct task_struct *task;
2348
2349                 rcu_read_lock();
2350                 task = pid_task(file->pid, PIDTYPE_PID);
2351                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2352                            task ? task->comm : "<unknown>",
2353                            task ? task->pid : -1,
2354                            file_priv->rps.boosts,
2355                            list_empty(&file_priv->rps.link) ? "" : ", active");
2356                 rcu_read_unlock();
2357         }
2358         seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2359         spin_unlock(&dev_priv->rps.client_lock);
2360         mutex_unlock(&dev->filelist_mutex);
2361
2362         if (INTEL_GEN(dev_priv) >= 6 &&
2363             dev_priv->rps.enabled &&
2364             dev_priv->gt.active_engines) {
2365                 u32 rpup, rpupei;
2366                 u32 rpdown, rpdownei;
2367
2368                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2369                 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2370                 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2371                 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2372                 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2373                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2374
2375                 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2376                            rps_power_to_str(dev_priv->rps.power));
2377                 seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2378                            100 * rpup / rpupei,
2379                            dev_priv->rps.up_threshold);
2380                 seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2381                            100 * rpdown / rpdownei,
2382                            dev_priv->rps.down_threshold);
2383         } else {
2384                 seq_puts(m, "\nRPS Autotuning inactive\n");
2385         }
2386
2387         return 0;
2388 }
2389
2390 static int i915_llc(struct seq_file *m, void *data)
2391 {
2392         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2393         const bool edram = INTEL_GEN(dev_priv) > 8;
2394
2395         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2396         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2397                    intel_uncore_edram_size(dev_priv)/1024/1024);
2398
2399         return 0;
2400 }
2401
2402 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2403 {
2404         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2405         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2406         u32 tmp, i;
2407
2408         if (!HAS_GUC_UCODE(dev_priv))
2409                 return 0;
2410
2411         seq_printf(m, "GuC firmware status:\n");
2412         seq_printf(m, "\tpath: %s\n",
2413                 guc_fw->guc_fw_path);
2414         seq_printf(m, "\tfetch: %s\n",
2415                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2416         seq_printf(m, "\tload: %s\n",
2417                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2418         seq_printf(m, "\tversion wanted: %d.%d\n",
2419                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2420         seq_printf(m, "\tversion found: %d.%d\n",
2421                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2422         seq_printf(m, "\theader: offset is %d; size = %d\n",
2423                 guc_fw->header_offset, guc_fw->header_size);
2424         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2425                 guc_fw->ucode_offset, guc_fw->ucode_size);
2426         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2427                 guc_fw->rsa_offset, guc_fw->rsa_size);
2428
2429         tmp = I915_READ(GUC_STATUS);
2430
2431         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2432         seq_printf(m, "\tBootrom status = 0x%x\n",
2433                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2434         seq_printf(m, "\tuKernel status = 0x%x\n",
2435                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2436         seq_printf(m, "\tMIA Core status = 0x%x\n",
2437                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2438         seq_puts(m, "\nScratch registers:\n");
2439         for (i = 0; i < 16; i++)
2440                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2441
2442         return 0;
2443 }
2444
2445 static void i915_guc_client_info(struct seq_file *m,
2446                                  struct drm_i915_private *dev_priv,
2447                                  struct i915_guc_client *client)
2448 {
2449         struct intel_engine_cs *engine;
2450         enum intel_engine_id id;
2451         uint64_t tot = 0;
2452
2453         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2454                 client->priority, client->ctx_index, client->proc_desc_offset);
2455         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2456                 client->doorbell_id, client->doorbell_offset, client->cookie);
2457         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2458                 client->wq_size, client->wq_offset, client->wq_tail);
2459
2460         seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2461         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2462         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2463
2464         for_each_engine_id(engine, dev_priv, id) {
2465                 u64 submissions = client->submissions[id];
2466                 tot += submissions;
2467                 seq_printf(m, "\tSubmissions: %llu %s\n",
2468                                 submissions, engine->name);
2469         }
2470         seq_printf(m, "\tTotal: %llu\n", tot);
2471 }
2472
2473 static int i915_guc_info(struct seq_file *m, void *data)
2474 {
2475         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2476         struct drm_device *dev = &dev_priv->drm;
2477         struct intel_guc guc;
2478         struct i915_guc_client client = {};
2479         struct intel_engine_cs *engine;
2480         enum intel_engine_id id;
2481         u64 total = 0;
2482
2483         if (!HAS_GUC_SCHED(dev_priv))
2484                 return 0;
2485
2486         if (mutex_lock_interruptible(&dev->struct_mutex))
2487                 return 0;
2488
2489         /* Take a local copy of the GuC data, so we can dump it at leisure */
2490         guc = dev_priv->guc;
2491         if (guc.execbuf_client)
2492                 client = *guc.execbuf_client;
2493
2494         mutex_unlock(&dev->struct_mutex);
2495
2496         seq_printf(m, "Doorbell map:\n");
2497         seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2498         seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2499
2500         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2501         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2502         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2503         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2504         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2505
2506         seq_printf(m, "\nGuC submissions:\n");
2507         for_each_engine_id(engine, dev_priv, id) {
2508                 u64 submissions = guc.submissions[id];
2509                 total += submissions;
2510                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2511                         engine->name, submissions, guc.last_seqno[id]);
2512         }
2513         seq_printf(m, "\t%s: %llu\n", "Total", total);
2514
2515         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2516         i915_guc_client_info(m, dev_priv, &client);
2517
2518         /* Add more as required ... */
2519
2520         return 0;
2521 }
2522
2523 static int i915_guc_log_dump(struct seq_file *m, void *data)
2524 {
2525         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2526         struct drm_i915_gem_object *obj;
2527         int i = 0, pg;
2528
2529         if (!dev_priv->guc.log_vma)
2530                 return 0;
2531
2532         obj = dev_priv->guc.log_vma->obj;
2533         for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2534                 u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2535
2536                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2537                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2538                                    *(log + i), *(log + i + 1),
2539                                    *(log + i + 2), *(log + i + 3));
2540
2541                 kunmap_atomic(log);
2542         }
2543
2544         seq_putc(m, '\n');
2545
2546         return 0;
2547 }
2548
2549 static int i915_edp_psr_status(struct seq_file *m, void *data)
2550 {
2551         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2552         u32 psrperf = 0;
2553         u32 stat[3];
2554         enum pipe pipe;
2555         bool enabled = false;
2556
2557         if (!HAS_PSR(dev_priv)) {
2558                 seq_puts(m, "PSR not supported\n");
2559                 return 0;
2560         }
2561
2562         intel_runtime_pm_get(dev_priv);
2563
2564         mutex_lock(&dev_priv->psr.lock);
2565         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2566         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2567         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2568         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2569         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2570                    dev_priv->psr.busy_frontbuffer_bits);
2571         seq_printf(m, "Re-enable work scheduled: %s\n",
2572                    yesno(work_busy(&dev_priv->psr.work.work)));
2573
2574         if (HAS_DDI(dev_priv))
2575                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2576         else {
2577                 for_each_pipe(dev_priv, pipe) {
2578                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2579                                 VLV_EDP_PSR_CURR_STATE_MASK;
2580                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2581                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2582                                 enabled = true;
2583                 }
2584         }
2585
2586         seq_printf(m, "Main link in standby mode: %s\n",
2587                    yesno(dev_priv->psr.link_standby));
2588
2589         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2590
2591         if (!HAS_DDI(dev_priv))
2592                 for_each_pipe(dev_priv, pipe) {
2593                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2594                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2595                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2596                 }
2597         seq_puts(m, "\n");
2598
2599         /*
2600          * VLV/CHV PSR has no kind of performance counter
2601          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2602          */
2603         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2604                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2605                         EDP_PSR_PERF_CNT_MASK;
2606
2607                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2608         }
2609         mutex_unlock(&dev_priv->psr.lock);
2610
2611         intel_runtime_pm_put(dev_priv);
2612         return 0;
2613 }
2614
2615 static int i915_sink_crc(struct seq_file *m, void *data)
2616 {
2617         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2618         struct drm_device *dev = &dev_priv->drm;
2619         struct intel_connector *connector;
2620         struct intel_dp *intel_dp = NULL;
2621         int ret;
2622         u8 crc[6];
2623
2624         drm_modeset_lock_all(dev);
2625         for_each_intel_connector(dev, connector) {
2626                 struct drm_crtc *crtc;
2627
2628                 if (!connector->base.state->best_encoder)
2629                         continue;
2630
2631                 crtc = connector->base.state->crtc;
2632                 if (!crtc->state->active)
2633                         continue;
2634
2635                 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2636                         continue;
2637
2638                 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2639
2640                 ret = intel_dp_sink_crc(intel_dp, crc);
2641                 if (ret)
2642                         goto out;
2643
2644                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2645                            crc[0], crc[1], crc[2],
2646                            crc[3], crc[4], crc[5]);
2647                 goto out;
2648         }
2649         ret = -ENODEV;
2650 out:
2651         drm_modeset_unlock_all(dev);
2652         return ret;
2653 }
2654
2655 static int i915_energy_uJ(struct seq_file *m, void *data)
2656 {
2657         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2658         u64 power;
2659         u32 units;
2660
2661         if (INTEL_GEN(dev_priv) < 6)
2662                 return -ENODEV;
2663
2664         intel_runtime_pm_get(dev_priv);
2665
2666         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2667         power = (power & 0x1f00) >> 8;
2668         units = 1000000 / (1 << power); /* convert to uJ */
2669         power = I915_READ(MCH_SECP_NRG_STTS);
2670         power *= units;
2671
2672         intel_runtime_pm_put(dev_priv);
2673
2674         seq_printf(m, "%llu", (long long unsigned)power);
2675
2676         return 0;
2677 }
2678
2679 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2680 {
2681         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2682         struct pci_dev *pdev = dev_priv->drm.pdev;
2683
2684         if (!HAS_RUNTIME_PM(dev_priv))
2685                 seq_puts(m, "Runtime power management not supported\n");
2686
2687         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2688         seq_printf(m, "IRQs disabled: %s\n",
2689                    yesno(!intel_irqs_enabled(dev_priv)));
2690 #ifdef CONFIG_PM
2691         seq_printf(m, "Usage count: %d\n",
2692                    atomic_read(&dev_priv->drm.dev->power.usage_count));
2693 #else
2694         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2695 #endif
2696         seq_printf(m, "PCI device power state: %s [%d]\n",
2697                    pci_power_name(pdev->current_state),
2698                    pdev->current_state);
2699
2700         return 0;
2701 }
2702
2703 static int i915_power_domain_info(struct seq_file *m, void *unused)
2704 {
2705         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2706         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2707         int i;
2708
2709         mutex_lock(&power_domains->lock);
2710
2711         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2712         for (i = 0; i < power_domains->power_well_count; i++) {
2713                 struct i915_power_well *power_well;
2714                 enum intel_display_power_domain power_domain;
2715
2716                 power_well = &power_domains->power_wells[i];
2717                 seq_printf(m, "%-25s %d\n", power_well->name,
2718                            power_well->count);
2719
2720                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2721                      power_domain++) {
2722                         if (!(BIT(power_domain) & power_well->domains))
2723                                 continue;
2724
2725                         seq_printf(m, "  %-23s %d\n",
2726                                  intel_display_power_domain_str(power_domain),
2727                                  power_domains->domain_use_count[power_domain]);
2728                 }
2729         }
2730
2731         mutex_unlock(&power_domains->lock);
2732
2733         return 0;
2734 }
2735
2736 static int i915_dmc_info(struct seq_file *m, void *unused)
2737 {
2738         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2739         struct intel_csr *csr;
2740
2741         if (!HAS_CSR(dev_priv)) {
2742                 seq_puts(m, "not supported\n");
2743                 return 0;
2744         }
2745
2746         csr = &dev_priv->csr;
2747
2748         intel_runtime_pm_get(dev_priv);
2749
2750         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2751         seq_printf(m, "path: %s\n", csr->fw_path);
2752
2753         if (!csr->dmc_payload)
2754                 goto out;
2755
2756         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2757                    CSR_VERSION_MINOR(csr->version));
2758
2759         if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2760                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2761                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2762                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2763                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2764         } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2765                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2766                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2767         }
2768
2769 out:
2770         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2771         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2772         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2773
2774         intel_runtime_pm_put(dev_priv);
2775
2776         return 0;
2777 }
2778
2779 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2780                                  struct drm_display_mode *mode)
2781 {
2782         int i;
2783
2784         for (i = 0; i < tabs; i++)
2785                 seq_putc(m, '\t');
2786
2787         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2788                    mode->base.id, mode->name,
2789                    mode->vrefresh, mode->clock,
2790                    mode->hdisplay, mode->hsync_start,
2791                    mode->hsync_end, mode->htotal,
2792                    mode->vdisplay, mode->vsync_start,
2793                    mode->vsync_end, mode->vtotal,
2794                    mode->type, mode->flags);
2795 }
2796
2797 static void intel_encoder_info(struct seq_file *m,
2798                                struct intel_crtc *intel_crtc,
2799                                struct intel_encoder *intel_encoder)
2800 {
2801         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2802         struct drm_device *dev = &dev_priv->drm;
2803         struct drm_crtc *crtc = &intel_crtc->base;
2804         struct intel_connector *intel_connector;
2805         struct drm_encoder *encoder;
2806
2807         encoder = &intel_encoder->base;
2808         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2809                    encoder->base.id, encoder->name);
2810         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2811                 struct drm_connector *connector = &intel_connector->base;
2812                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2813                            connector->base.id,
2814                            connector->name,
2815                            drm_get_connector_status_name(connector->status));
2816                 if (connector->status == connector_status_connected) {
2817                         struct drm_display_mode *mode = &crtc->mode;
2818                         seq_printf(m, ", mode:\n");
2819                         intel_seq_print_mode(m, 2, mode);
2820                 } else {
2821                         seq_putc(m, '\n');
2822                 }
2823         }
2824 }
2825
2826 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2827 {
2828         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2829         struct drm_device *dev = &dev_priv->drm;
2830         struct drm_crtc *crtc = &intel_crtc->base;
2831         struct intel_encoder *intel_encoder;
2832         struct drm_plane_state *plane_state = crtc->primary->state;
2833         struct drm_framebuffer *fb = plane_state->fb;
2834
2835         if (fb)
2836                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2837                            fb->base.id, plane_state->src_x >> 16,
2838                            plane_state->src_y >> 16, fb->width, fb->height);
2839         else
2840                 seq_puts(m, "\tprimary plane disabled\n");
2841         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2842                 intel_encoder_info(m, intel_crtc, intel_encoder);
2843 }
2844
2845 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2846 {
2847         struct drm_display_mode *mode = panel->fixed_mode;
2848
2849         seq_printf(m, "\tfixed mode:\n");
2850         intel_seq_print_mode(m, 2, mode);
2851 }
2852
2853 static void intel_dp_info(struct seq_file *m,
2854                           struct intel_connector *intel_connector)
2855 {
2856         struct intel_encoder *intel_encoder = intel_connector->encoder;
2857         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2858
2859         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2860         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2861         if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2862                 intel_panel_info(m, &intel_connector->panel);
2863
2864         drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2865                                 &intel_dp->aux);
2866 }
2867
2868 static void intel_hdmi_info(struct seq_file *m,
2869                             struct intel_connector *intel_connector)
2870 {
2871         struct intel_encoder *intel_encoder = intel_connector->encoder;
2872         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2873
2874         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2875 }
2876
2877 static void intel_lvds_info(struct seq_file *m,
2878                             struct intel_connector *intel_connector)
2879 {
2880         intel_panel_info(m, &intel_connector->panel);
2881 }
2882
2883 static void intel_connector_info(struct seq_file *m,
2884                                  struct drm_connector *connector)
2885 {
2886         struct intel_connector *intel_connector = to_intel_connector(connector);
2887         struct intel_encoder *intel_encoder = intel_connector->encoder;
2888         struct drm_display_mode *mode;
2889
2890         seq_printf(m, "connector %d: type %s, status: %s\n",
2891                    connector->base.id, connector->name,
2892                    drm_get_connector_status_name(connector->status));
2893         if (connector->status == connector_status_connected) {
2894                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2895                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2896                            connector->display_info.width_mm,
2897                            connector->display_info.height_mm);
2898                 seq_printf(m, "\tsubpixel order: %s\n",
2899                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2900                 seq_printf(m, "\tCEA rev: %d\n",
2901                            connector->display_info.cea_rev);
2902         }
2903
2904         if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
2905                 return;
2906
2907         switch (connector->connector_type) {
2908         case DRM_MODE_CONNECTOR_DisplayPort:
2909         case DRM_MODE_CONNECTOR_eDP:
2910                 intel_dp_info(m, intel_connector);
2911                 break;
2912         case DRM_MODE_CONNECTOR_LVDS:
2913                 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2914                         intel_lvds_info(m, intel_connector);
2915                 break;
2916         case DRM_MODE_CONNECTOR_HDMIA:
2917                 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
2918                     intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
2919                         intel_hdmi_info(m, intel_connector);
2920                 break;
2921         default:
2922                 break;
2923         }
2924
2925         seq_printf(m, "\tmodes:\n");
2926         list_for_each_entry(mode, &connector->modes, head)
2927                 intel_seq_print_mode(m, 2, mode);
2928 }
2929
2930 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
2931 {
2932         u32 state;
2933
2934         if (IS_845G(dev_priv) || IS_I865G(dev_priv))
2935                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2936         else
2937                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2938
2939         return state;
2940 }
2941
2942 static bool cursor_position(struct drm_i915_private *dev_priv,
2943                             int pipe, int *x, int *y)
2944 {
2945         u32 pos;
2946
2947         pos = I915_READ(CURPOS(pipe));
2948
2949         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2950         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2951                 *x = -*x;
2952
2953         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2954         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2955                 *y = -*y;
2956
2957         return cursor_active(dev_priv, pipe);
2958 }
2959
2960 static const char *plane_type(enum drm_plane_type type)
2961 {
2962         switch (type) {
2963         case DRM_PLANE_TYPE_OVERLAY:
2964                 return "OVL";
2965         case DRM_PLANE_TYPE_PRIMARY:
2966                 return "PRI";
2967         case DRM_PLANE_TYPE_CURSOR:
2968                 return "CUR";
2969         /*
2970          * Deliberately omitting default: to generate compiler warnings
2971          * when a new drm_plane_type gets added.
2972          */
2973         }
2974
2975         return "unknown";
2976 }
2977
2978 static const char *plane_rotation(unsigned int rotation)
2979 {
2980         static char buf[48];
2981         /*
2982          * According to doc only one DRM_ROTATE_ is allowed but this
2983          * will print them all to visualize if the values are misused
2984          */
2985         snprintf(buf, sizeof(buf),
2986                  "%s%s%s%s%s%s(0x%08x)",
2987                  (rotation & DRM_ROTATE_0) ? "0 " : "",
2988                  (rotation & DRM_ROTATE_90) ? "90 " : "",
2989                  (rotation & DRM_ROTATE_180) ? "180 " : "",
2990                  (rotation & DRM_ROTATE_270) ? "270 " : "",
2991                  (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
2992                  (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
2993                  rotation);
2994
2995         return buf;
2996 }
2997
2998 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2999 {
3000         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3001         struct drm_device *dev = &dev_priv->drm;
3002         struct intel_plane *intel_plane;
3003
3004         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3005                 struct drm_plane_state *state;
3006                 struct drm_plane *plane = &intel_plane->base;
3007                 char *format_name;
3008
3009                 if (!plane->state) {
3010                         seq_puts(m, "plane->state is NULL!\n");
3011                         continue;
3012                 }
3013
3014                 state = plane->state;
3015
3016                 if (state->fb) {
3017                         format_name = drm_get_format_name(state->fb->pixel_format);
3018                 } else {
3019                         format_name = kstrdup("N/A", GFP_KERNEL);
3020                 }
3021
3022                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3023                            plane->base.id,
3024                            plane_type(intel_plane->base.type),
3025                            state->crtc_x, state->crtc_y,
3026                            state->crtc_w, state->crtc_h,
3027                            (state->src_x >> 16),
3028                            ((state->src_x & 0xffff) * 15625) >> 10,
3029                            (state->src_y >> 16),
3030                            ((state->src_y & 0xffff) * 15625) >> 10,
3031                            (state->src_w >> 16),
3032                            ((state->src_w & 0xffff) * 15625) >> 10,
3033                            (state->src_h >> 16),
3034                            ((state->src_h & 0xffff) * 15625) >> 10,
3035                            format_name,
3036                            plane_rotation(state->rotation));
3037
3038                 kfree(format_name);
3039         }
3040 }
3041
3042 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3043 {
3044         struct intel_crtc_state *pipe_config;
3045         int num_scalers = intel_crtc->num_scalers;
3046         int i;
3047
3048         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3049
3050         /* Not all platformas have a scaler */
3051         if (num_scalers) {
3052                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3053                            num_scalers,
3054                            pipe_config->scaler_state.scaler_users,
3055                            pipe_config->scaler_state.scaler_id);
3056
3057                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3058                         struct intel_scaler *sc =
3059                                         &pipe_config->scaler_state.scalers[i];
3060
3061                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3062                                    i, yesno(sc->in_use), sc->mode);
3063                 }
3064                 seq_puts(m, "\n");
3065         } else {
3066                 seq_puts(m, "\tNo scalers available on this platform\n");
3067         }
3068 }
3069
3070 static int i915_display_info(struct seq_file *m, void *unused)
3071 {
3072         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3073         struct drm_device *dev = &dev_priv->drm;
3074         struct intel_crtc *crtc;
3075         struct drm_connector *connector;
3076
3077         intel_runtime_pm_get(dev_priv);
3078         drm_modeset_lock_all(dev);
3079         seq_printf(m, "CRTC info\n");
3080         seq_printf(m, "---------\n");
3081         for_each_intel_crtc(dev, crtc) {
3082                 bool active;
3083                 struct intel_crtc_state *pipe_config;
3084                 int x, y;
3085
3086                 pipe_config = to_intel_crtc_state(crtc->base.state);
3087
3088                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3089                            crtc->base.base.id, pipe_name(crtc->pipe),
3090                            yesno(pipe_config->base.active),
3091                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3092                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3093
3094                 if (pipe_config->base.active) {
3095                         intel_crtc_info(m, crtc);
3096
3097                         active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3098                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3099                                    yesno(crtc->cursor_base),
3100                                    x, y, crtc->base.cursor->state->crtc_w,
3101                                    crtc->base.cursor->state->crtc_h,
3102                                    crtc->cursor_addr, yesno(active));
3103                         intel_scaler_info(m, crtc);
3104                         intel_plane_info(m, crtc);
3105                 }
3106
3107                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3108                            yesno(!crtc->cpu_fifo_underrun_disabled),
3109                            yesno(!crtc->pch_fifo_underrun_disabled));
3110         }
3111
3112         seq_printf(m, "\n");
3113         seq_printf(m, "Connector info\n");
3114         seq_printf(m, "--------------\n");
3115         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3116                 intel_connector_info(m, connector);
3117         }
3118         drm_modeset_unlock_all(dev);
3119         intel_runtime_pm_put(dev_priv);
3120
3121         return 0;
3122 }
3123
3124 static int i915_semaphore_status(struct seq_file *m, void *unused)
3125 {
3126         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3127         struct drm_device *dev = &dev_priv->drm;
3128         struct intel_engine_cs *engine;
3129         int num_rings = INTEL_INFO(dev_priv)->num_rings;
3130         enum intel_engine_id id;
3131         int j, ret;
3132
3133         if (!i915.semaphores) {
3134                 seq_puts(m, "Semaphores are disabled\n");
3135                 return 0;
3136         }
3137
3138         ret = mutex_lock_interruptible(&dev->struct_mutex);
3139         if (ret)
3140                 return ret;
3141         intel_runtime_pm_get(dev_priv);
3142
3143         if (IS_BROADWELL(dev_priv)) {
3144                 struct page *page;
3145                 uint64_t *seqno;
3146
3147                 page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3148
3149                 seqno = (uint64_t *)kmap_atomic(page);
3150                 for_each_engine_id(engine, dev_priv, id) {
3151                         uint64_t offset;
3152
3153                         seq_printf(m, "%s\n", engine->name);
3154
3155                         seq_puts(m, "  Last signal:");
3156                         for (j = 0; j < num_rings; j++) {
3157                                 offset = id * I915_NUM_ENGINES + j;
3158                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3159                                            seqno[offset], offset * 8);
3160                         }
3161                         seq_putc(m, '\n');
3162
3163                         seq_puts(m, "  Last wait:  ");
3164                         for (j = 0; j < num_rings; j++) {
3165                                 offset = id + (j * I915_NUM_ENGINES);
3166                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3167                                            seqno[offset], offset * 8);
3168                         }
3169                         seq_putc(m, '\n');
3170
3171                 }
3172                 kunmap_atomic(seqno);
3173         } else {
3174                 seq_puts(m, "  Last signal:");
3175                 for_each_engine(engine, dev_priv)
3176                         for (j = 0; j < num_rings; j++)
3177                                 seq_printf(m, "0x%08x\n",
3178                                            I915_READ(engine->semaphore.mbox.signal[j]));
3179                 seq_putc(m, '\n');
3180         }
3181
3182         seq_puts(m, "\nSync seqno:\n");
3183         for_each_engine(engine, dev_priv) {
3184                 for (j = 0; j < num_rings; j++)
3185                         seq_printf(m, "  0x%08x ",
3186                                    engine->semaphore.sync_seqno[j]);
3187                 seq_putc(m, '\n');
3188         }
3189         seq_putc(m, '\n');
3190
3191         intel_runtime_pm_put(dev_priv);
3192         mutex_unlock(&dev->struct_mutex);
3193         return 0;
3194 }
3195
3196 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3197 {
3198         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3199         struct drm_device *dev = &dev_priv->drm;
3200         int i;
3201
3202         drm_modeset_lock_all(dev);
3203         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3204                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3205
3206                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3207                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3208                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3209                 seq_printf(m, " tracked hardware state:\n");
3210                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3211                 seq_printf(m, " dpll_md: 0x%08x\n",
3212                            pll->config.hw_state.dpll_md);
3213                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3214                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3215                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3216         }
3217         drm_modeset_unlock_all(dev);
3218
3219         return 0;
3220 }
3221
3222 static int i915_wa_registers(struct seq_file *m, void *unused)
3223 {
3224         int i;
3225         int ret;
3226         struct intel_engine_cs *engine;
3227         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3228         struct drm_device *dev = &dev_priv->drm;
3229         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3230         enum intel_engine_id id;
3231
3232         ret = mutex_lock_interruptible(&dev->struct_mutex);
3233         if (ret)
3234                 return ret;
3235
3236         intel_runtime_pm_get(dev_priv);
3237
3238         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3239         for_each_engine_id(engine, dev_priv, id)
3240                 seq_printf(m, "HW whitelist count for %s: %d\n",
3241                            engine->name, workarounds->hw_whitelist_count[id]);
3242         for (i = 0; i < workarounds->count; ++i) {
3243                 i915_reg_t addr;
3244                 u32 mask, value, read;
3245                 bool ok;
3246
3247                 addr = workarounds->reg[i].addr;
3248                 mask = workarounds->reg[i].mask;
3249                 value = workarounds->reg[i].value;
3250                 read = I915_READ(addr);
3251                 ok = (value & mask) == (read & mask);
3252                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3253                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3254         }
3255
3256         intel_runtime_pm_put(dev_priv);
3257         mutex_unlock(&dev->struct_mutex);
3258
3259         return 0;
3260 }
3261
3262 static int i915_ddb_info(struct seq_file *m, void *unused)
3263 {
3264         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3265         struct drm_device *dev = &dev_priv->drm;
3266         struct skl_ddb_allocation *ddb;
3267         struct skl_ddb_entry *entry;
3268         enum pipe pipe;
3269         int plane;
3270
3271         if (INTEL_GEN(dev_priv) < 9)
3272                 return 0;
3273
3274         drm_modeset_lock_all(dev);
3275
3276         ddb = &dev_priv->wm.skl_hw.ddb;
3277
3278         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3279
3280         for_each_pipe(dev_priv, pipe) {
3281                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3282
3283                 for_each_plane(dev_priv, pipe, plane) {
3284                         entry = &ddb->plane[pipe][plane];
3285                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3286                                    entry->start, entry->end,
3287                                    skl_ddb_entry_size(entry));
3288                 }
3289
3290                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3291                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3292                            entry->end, skl_ddb_entry_size(entry));
3293         }
3294
3295         drm_modeset_unlock_all(dev);
3296
3297         return 0;
3298 }
3299
3300 static void drrs_status_per_crtc(struct seq_file *m,
3301                                  struct drm_device *dev,
3302                                  struct intel_crtc *intel_crtc)
3303 {
3304         struct drm_i915_private *dev_priv = to_i915(dev);
3305         struct i915_drrs *drrs = &dev_priv->drrs;
3306         int vrefresh = 0;
3307         struct drm_connector *connector;
3308
3309         drm_for_each_connector(connector, dev) {
3310                 if (connector->state->crtc != &intel_crtc->base)
3311                         continue;
3312
3313                 seq_printf(m, "%s:\n", connector->name);
3314         }
3315
3316         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3317                 seq_puts(m, "\tVBT: DRRS_type: Static");
3318         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3319                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3320         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3321                 seq_puts(m, "\tVBT: DRRS_type: None");
3322         else
3323                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3324
3325         seq_puts(m, "\n\n");
3326
3327         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3328                 struct intel_panel *panel;
3329
3330                 mutex_lock(&drrs->mutex);
3331                 /* DRRS Supported */
3332                 seq_puts(m, "\tDRRS Supported: Yes\n");
3333
3334                 /* disable_drrs() will make drrs->dp NULL */
3335                 if (!drrs->dp) {
3336                         seq_puts(m, "Idleness DRRS: Disabled");
3337                         mutex_unlock(&drrs->mutex);
3338                         return;
3339                 }
3340
3341                 panel = &drrs->dp->attached_connector->panel;
3342                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3343                                         drrs->busy_frontbuffer_bits);
3344
3345                 seq_puts(m, "\n\t\t");
3346                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3347                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3348                         vrefresh = panel->fixed_mode->vrefresh;
3349                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3350                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3351                         vrefresh = panel->downclock_mode->vrefresh;
3352                 } else {
3353                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3354                                                 drrs->refresh_rate_type);
3355                         mutex_unlock(&drrs->mutex);
3356                         return;
3357                 }
3358                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3359
3360                 seq_puts(m, "\n\t\t");
3361                 mutex_unlock(&drrs->mutex);
3362         } else {
3363                 /* DRRS not supported. Print the VBT parameter*/
3364                 seq_puts(m, "\tDRRS Supported : No");
3365         }
3366         seq_puts(m, "\n");
3367 }
3368
3369 static int i915_drrs_status(struct seq_file *m, void *unused)
3370 {
3371         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3372         struct drm_device *dev = &dev_priv->drm;
3373         struct intel_crtc *intel_crtc;
3374         int active_crtc_cnt = 0;
3375
3376         drm_modeset_lock_all(dev);
3377         for_each_intel_crtc(dev, intel_crtc) {
3378                 if (intel_crtc->base.state->active) {
3379                         active_crtc_cnt++;
3380                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3381
3382                         drrs_status_per_crtc(m, dev, intel_crtc);
3383                 }
3384         }
3385         drm_modeset_unlock_all(dev);
3386
3387         if (!active_crtc_cnt)
3388                 seq_puts(m, "No active crtc found\n");
3389
3390         return 0;
3391 }
3392
3393 struct pipe_crc_info {
3394         const char *name;
3395         struct drm_i915_private *dev_priv;
3396         enum pipe pipe;
3397 };
3398
3399 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3400 {
3401         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3402         struct drm_device *dev = &dev_priv->drm;
3403         struct intel_encoder *intel_encoder;
3404         struct intel_digital_port *intel_dig_port;
3405         struct drm_connector *connector;
3406
3407         drm_modeset_lock_all(dev);
3408         drm_for_each_connector(connector, dev) {
3409                 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3410                         continue;
3411
3412                 intel_encoder = intel_attached_encoder(connector);
3413                 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3414                         continue;
3415
3416                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3417                 if (!intel_dig_port->dp.can_mst)
3418                         continue;
3419
3420                 seq_printf(m, "MST Source Port %c\n",
3421                            port_name(intel_dig_port->port));
3422                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3423         }
3424         drm_modeset_unlock_all(dev);
3425         return 0;
3426 }
3427
3428 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3429 {
3430         struct pipe_crc_info *info = inode->i_private;
3431         struct drm_i915_private *dev_priv = info->dev_priv;
3432         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3433
3434         if (info->pipe >= INTEL_INFO(dev_priv)->num_pipes)
3435                 return -ENODEV;
3436
3437         spin_lock_irq(&pipe_crc->lock);
3438
3439         if (pipe_crc->opened) {
3440                 spin_unlock_irq(&pipe_crc->lock);
3441                 return -EBUSY; /* already open */
3442         }
3443
3444         pipe_crc->opened = true;
3445         filep->private_data = inode->i_private;
3446
3447         spin_unlock_irq(&pipe_crc->lock);
3448
3449         return 0;
3450 }
3451
3452 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3453 {
3454         struct pipe_crc_info *info = inode->i_private;
3455         struct drm_i915_private *dev_priv = info->dev_priv;
3456         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3457
3458         spin_lock_irq(&pipe_crc->lock);
3459         pipe_crc->opened = false;
3460         spin_unlock_irq(&pipe_crc->lock);
3461
3462         return 0;
3463 }
3464
3465 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3466 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3467 /* account for \'0' */
3468 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3469
3470 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3471 {
3472         assert_spin_locked(&pipe_crc->lock);
3473         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3474                         INTEL_PIPE_CRC_ENTRIES_NR);
3475 }
3476
3477 static ssize_t
3478 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3479                    loff_t *pos)
3480 {
3481         struct pipe_crc_info *info = filep->private_data;
3482         struct drm_i915_private *dev_priv = info->dev_priv;
3483         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3484         char buf[PIPE_CRC_BUFFER_LEN];
3485         int n_entries;
3486         ssize_t bytes_read;
3487
3488         /*
3489          * Don't allow user space to provide buffers not big enough to hold
3490          * a line of data.
3491          */
3492         if (count < PIPE_CRC_LINE_LEN)
3493                 return -EINVAL;
3494
3495         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3496                 return 0;
3497
3498         /* nothing to read */
3499         spin_lock_irq(&pipe_crc->lock);
3500         while (pipe_crc_data_count(pipe_crc) == 0) {
3501                 int ret;
3502
3503                 if (filep->f_flags & O_NONBLOCK) {
3504                         spin_unlock_irq(&pipe_crc->lock);
3505                         return -EAGAIN;
3506                 }
3507
3508                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3509                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3510                 if (ret) {
3511                         spin_unlock_irq(&pipe_crc->lock);
3512                         return ret;
3513                 }
3514         }
3515
3516         /* We now have one or more entries to read */
3517         n_entries = count / PIPE_CRC_LINE_LEN;
3518
3519         bytes_read = 0;
3520         while (n_entries > 0) {
3521                 struct intel_pipe_crc_entry *entry =
3522                         &pipe_crc->entries[pipe_crc->tail];
3523
3524                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3525                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3526                         break;
3527
3528                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3529                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3530
3531                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3532                                        "%8u %8x %8x %8x %8x %8x\n",
3533                                        entry->frame, entry->crc[0],
3534                                        entry->crc[1], entry->crc[2],
3535                                        entry->crc[3], entry->crc[4]);
3536
3537                 spin_unlock_irq(&pipe_crc->lock);
3538
3539                 if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
3540                         return -EFAULT;
3541
3542                 user_buf += PIPE_CRC_LINE_LEN;
3543                 n_entries--;
3544
3545                 spin_lock_irq(&pipe_crc->lock);
3546         }
3547
3548         spin_unlock_irq(&pipe_crc->lock);
3549
3550         return bytes_read;
3551 }
3552
3553 static const struct file_operations i915_pipe_crc_fops = {
3554         .owner = THIS_MODULE,
3555         .open = i915_pipe_crc_open,
3556         .read = i915_pipe_crc_read,
3557         .release = i915_pipe_crc_release,
3558 };
3559
3560 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3561         {
3562                 .name = "i915_pipe_A_crc",
3563                 .pipe = PIPE_A,
3564         },
3565         {
3566                 .name = "i915_pipe_B_crc",
3567                 .pipe = PIPE_B,
3568         },
3569         {
3570                 .name = "i915_pipe_C_crc",
3571                 .pipe = PIPE_C,
3572         },
3573 };
3574
3575 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3576                                 enum pipe pipe)
3577 {
3578         struct drm_i915_private *dev_priv = to_i915(minor->dev);
3579         struct dentry *ent;
3580         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3581
3582         info->dev_priv = dev_priv;
3583         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3584                                   &i915_pipe_crc_fops);
3585         if (!ent)
3586                 return -ENOMEM;
3587
3588         return drm_add_fake_info_node(minor, ent, info);
3589 }
3590
3591 static const char * const pipe_crc_sources[] = {
3592         "none",
3593         "plane1",
3594         "plane2",
3595         "pf",
3596         "pipe",
3597         "TV",
3598         "DP-B",
3599         "DP-C",
3600         "DP-D",
3601         "auto",
3602 };
3603
3604 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3605 {
3606         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3607         return pipe_crc_sources[source];
3608 }
3609
3610 static int display_crc_ctl_show(struct seq_file *m, void *data)
3611 {
3612         struct drm_i915_private *dev_priv = m->private;
3613         int i;
3614
3615         for (i = 0; i < I915_MAX_PIPES; i++)
3616                 seq_printf(m, "%c %s\n", pipe_name(i),
3617                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3618
3619         return 0;
3620 }
3621
3622 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3623 {
3624         return single_open(file, display_crc_ctl_show, inode->i_private);
3625 }
3626
3627 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3628                                  uint32_t *val)
3629 {
3630         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3631                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3632
3633         switch (*source) {
3634         case INTEL_PIPE_CRC_SOURCE_PIPE:
3635                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3636                 break;
3637         case INTEL_PIPE_CRC_SOURCE_NONE:
3638                 *val = 0;
3639                 break;
3640         default:
3641                 return -EINVAL;
3642         }
3643
3644         return 0;
3645 }
3646
3647 static int i9xx_pipe_crc_auto_source(struct drm_i915_private *dev_priv,
3648                                      enum pipe pipe,
3649                                      enum intel_pipe_crc_source *source)
3650 {
3651         struct drm_device *dev = &dev_priv->drm;
3652         struct intel_encoder *encoder;
3653         struct intel_crtc *crtc;
3654         struct intel_digital_port *dig_port;
3655         int ret = 0;
3656
3657         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3658
3659         drm_modeset_lock_all(dev);
3660         for_each_intel_encoder(dev, encoder) {
3661                 if (!encoder->base.crtc)
3662                         continue;
3663
3664                 crtc = to_intel_crtc(encoder->base.crtc);
3665
3666                 if (crtc->pipe != pipe)
3667                         continue;
3668
3669                 switch (encoder->type) {
3670                 case INTEL_OUTPUT_TVOUT:
3671                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3672                         break;
3673                 case INTEL_OUTPUT_DP:
3674                 case INTEL_OUTPUT_EDP:
3675                         dig_port = enc_to_dig_port(&encoder->base);
3676                         switch (dig_port->port) {
3677                         case PORT_B:
3678                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3679                                 break;
3680                         case PORT_C:
3681                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3682                                 break;
3683                         case PORT_D:
3684                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3685                                 break;
3686                         default:
3687                                 WARN(1, "nonexisting DP port %c\n",
3688                                      port_name(dig_port->port));
3689                                 break;
3690                         }
3691                         break;
3692                 default:
3693                         break;
3694                 }
3695         }
3696         drm_modeset_unlock_all(dev);
3697
3698         return ret;
3699 }
3700
3701 static int vlv_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3702                                 enum pipe pipe,
3703                                 enum intel_pipe_crc_source *source,
3704                                 uint32_t *val)
3705 {
3706         bool need_stable_symbols = false;
3707
3708         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3709                 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3710                 if (ret)
3711                         return ret;
3712         }
3713
3714         switch (*source) {
3715         case INTEL_PIPE_CRC_SOURCE_PIPE:
3716                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3717                 break;
3718         case INTEL_PIPE_CRC_SOURCE_DP_B:
3719                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3720                 need_stable_symbols = true;
3721                 break;
3722         case INTEL_PIPE_CRC_SOURCE_DP_C:
3723                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3724                 need_stable_symbols = true;
3725                 break;
3726         case INTEL_PIPE_CRC_SOURCE_DP_D:
3727                 if (!IS_CHERRYVIEW(dev_priv))
3728                         return -EINVAL;
3729                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3730                 need_stable_symbols = true;
3731                 break;
3732         case INTEL_PIPE_CRC_SOURCE_NONE:
3733                 *val = 0;
3734                 break;
3735         default:
3736                 return -EINVAL;
3737         }
3738
3739         /*
3740          * When the pipe CRC tap point is after the transcoders we need
3741          * to tweak symbol-level features to produce a deterministic series of
3742          * symbols for a given frame. We need to reset those features only once
3743          * a frame (instead of every nth symbol):
3744          *   - DC-balance: used to ensure a better clock recovery from the data
3745          *     link (SDVO)
3746          *   - DisplayPort scrambling: used for EMI reduction
3747          */
3748         if (need_stable_symbols) {
3749                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3750
3751                 tmp |= DC_BALANCE_RESET_VLV;
3752                 switch (pipe) {
3753                 case PIPE_A:
3754                         tmp |= PIPE_A_SCRAMBLE_RESET;
3755                         break;
3756                 case PIPE_B:
3757                         tmp |= PIPE_B_SCRAMBLE_RESET;
3758                         break;
3759                 case PIPE_C:
3760                         tmp |= PIPE_C_SCRAMBLE_RESET;
3761                         break;
3762                 default:
3763                         return -EINVAL;
3764                 }
3765                 I915_WRITE(PORT_DFT2_G4X, tmp);
3766         }
3767
3768         return 0;
3769 }
3770
3771 static int i9xx_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3772                                  enum pipe pipe,
3773                                  enum intel_pipe_crc_source *source,
3774                                  uint32_t *val)
3775 {
3776         bool need_stable_symbols = false;
3777
3778         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3779                 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3780                 if (ret)
3781                         return ret;
3782         }
3783
3784         switch (*source) {
3785         case INTEL_PIPE_CRC_SOURCE_PIPE:
3786                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3787                 break;
3788         case INTEL_PIPE_CRC_SOURCE_TV:
3789                 if (!SUPPORTS_TV(dev_priv))
3790                         return -EINVAL;
3791                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3792                 break;
3793         case INTEL_PIPE_CRC_SOURCE_DP_B:
3794                 if (!IS_G4X(dev_priv))
3795                         return -EINVAL;
3796                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3797                 need_stable_symbols = true;
3798                 break;
3799         case INTEL_PIPE_CRC_SOURCE_DP_C:
3800                 if (!IS_G4X(dev_priv))
3801                         return -EINVAL;
3802                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3803                 need_stable_symbols = true;
3804                 break;
3805         case INTEL_PIPE_CRC_SOURCE_DP_D:
3806                 if (!IS_G4X(dev_priv))
3807                         return -EINVAL;
3808                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3809                 need_stable_symbols = true;
3810                 break;
3811         case INTEL_PIPE_CRC_SOURCE_NONE:
3812                 *val = 0;
3813                 break;
3814         default:
3815                 return -EINVAL;
3816         }
3817
3818         /*
3819          * When the pipe CRC tap point is after the transcoders we need
3820          * to tweak symbol-level features to produce a deterministic series of
3821          * symbols for a given frame. We need to reset those features only once
3822          * a frame (instead of every nth symbol):
3823          *   - DC-balance: used to ensure a better clock recovery from the data
3824          *     link (SDVO)
3825          *   - DisplayPort scrambling: used for EMI reduction
3826          */
3827         if (need_stable_symbols) {
3828                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3829
3830                 WARN_ON(!IS_G4X(dev_priv));
3831
3832                 I915_WRITE(PORT_DFT_I9XX,
3833                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3834
3835                 if (pipe == PIPE_A)
3836                         tmp |= PIPE_A_SCRAMBLE_RESET;
3837                 else
3838                         tmp |= PIPE_B_SCRAMBLE_RESET;
3839
3840                 I915_WRITE(PORT_DFT2_G4X, tmp);
3841         }
3842
3843         return 0;
3844 }
3845
3846 static void vlv_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3847                                          enum pipe pipe)
3848 {
3849         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3850
3851         switch (pipe) {
3852         case PIPE_A:
3853                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3854                 break;
3855         case PIPE_B:
3856                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3857                 break;
3858         case PIPE_C:
3859                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3860                 break;
3861         default:
3862                 return;
3863         }
3864         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3865                 tmp &= ~DC_BALANCE_RESET_VLV;
3866         I915_WRITE(PORT_DFT2_G4X, tmp);
3867
3868 }
3869
3870 static void g4x_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3871                                          enum pipe pipe)
3872 {
3873         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3874
3875         if (pipe == PIPE_A)
3876                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3877         else
3878                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3879         I915_WRITE(PORT_DFT2_G4X, tmp);
3880
3881         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3882                 I915_WRITE(PORT_DFT_I9XX,
3883                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3884         }
3885 }
3886
3887 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3888                                 uint32_t *val)
3889 {
3890         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3891                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3892
3893         switch (*source) {
3894         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3895                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3896                 break;
3897         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3898                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3899                 break;
3900         case INTEL_PIPE_CRC_SOURCE_PIPE:
3901                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3902                 break;
3903         case INTEL_PIPE_CRC_SOURCE_NONE:
3904                 *val = 0;
3905                 break;
3906         default:
3907                 return -EINVAL;
3908         }
3909
3910         return 0;
3911 }
3912
3913 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_i915_private *dev_priv,
3914                                         bool enable)
3915 {
3916         struct drm_device *dev = &dev_priv->drm;
3917         struct intel_crtc *crtc =
3918                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3919         struct intel_crtc_state *pipe_config;
3920         struct drm_atomic_state *state;
3921         int ret = 0;
3922
3923         drm_modeset_lock_all(dev);
3924         state = drm_atomic_state_alloc(dev);
3925         if (!state) {
3926                 ret = -ENOMEM;
3927                 goto out;
3928         }
3929
3930         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
3931         pipe_config = intel_atomic_get_crtc_state(state, crtc);
3932         if (IS_ERR(pipe_config)) {
3933                 ret = PTR_ERR(pipe_config);
3934                 goto out;
3935         }
3936
3937         pipe_config->pch_pfit.force_thru = enable;
3938         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
3939             pipe_config->pch_pfit.enabled != enable)
3940                 pipe_config->base.connectors_changed = true;
3941
3942         ret = drm_atomic_commit(state);
3943 out:
3944         drm_modeset_unlock_all(dev);
3945         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
3946         if (ret)
3947                 drm_atomic_state_free(state);
3948 }
3949
3950 static int ivb_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3951                                 enum pipe pipe,
3952                                 enum intel_pipe_crc_source *source,
3953                                 uint32_t *val)
3954 {
3955         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3956                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3957
3958         switch (*source) {
3959         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3960                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3961                 break;
3962         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3963                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3964                 break;
3965         case INTEL_PIPE_CRC_SOURCE_PF:
3966                 if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
3967                         hsw_trans_edp_pipe_A_crc_wa(dev_priv, true);
3968
3969                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3970                 break;
3971         case INTEL_PIPE_CRC_SOURCE_NONE:
3972                 *val = 0;
3973                 break;
3974         default:
3975                 return -EINVAL;
3976         }
3977
3978         return 0;
3979 }
3980
3981 static int pipe_crc_set_source(struct drm_i915_private *dev_priv,
3982                                enum pipe pipe,
3983                                enum intel_pipe_crc_source source)
3984 {
3985         struct drm_device *dev = &dev_priv->drm;
3986         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3987         struct intel_crtc *crtc =
3988                         to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
3989         enum intel_display_power_domain power_domain;
3990         u32 val = 0; /* shut up gcc */
3991         int ret;
3992
3993         if (pipe_crc->source == source)
3994                 return 0;
3995
3996         /* forbid changing the source without going back to 'none' */
3997         if (pipe_crc->source && source)
3998                 return -EINVAL;
3999
4000         power_domain = POWER_DOMAIN_PIPE(pipe);
4001         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4002                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4003                 return -EIO;
4004         }
4005
4006         if (IS_GEN2(dev_priv))
4007                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4008         else if (INTEL_GEN(dev_priv) < 5)
4009                 ret = i9xx_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4010         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4011                 ret = vlv_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4012         else if (IS_GEN5(dev_priv) || IS_GEN6(dev_priv))
4013                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4014         else
4015                 ret = ivb_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4016
4017         if (ret != 0)
4018                 goto out;
4019
4020         /* none -> real source transition */
4021         if (source) {
4022                 struct intel_pipe_crc_entry *entries;
4023
4024                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4025                                  pipe_name(pipe), pipe_crc_source_name(source));
4026
4027                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4028                                   sizeof(pipe_crc->entries[0]),
4029                                   GFP_KERNEL);
4030                 if (!entries) {
4031                         ret = -ENOMEM;
4032                         goto out;
4033                 }
4034
4035                 /*
4036                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4037                  * enabled and disabled dynamically based on package C states,
4038                  * user space can't make reliable use of the CRCs, so let's just
4039                  * completely disable it.
4040                  */
4041                 hsw_disable_ips(crtc);
4042
4043                 spin_lock_irq(&pipe_crc->lock);
4044                 kfree(pipe_crc->entries);
4045                 pipe_crc->entries = entries;
4046                 pipe_crc->head = 0;
4047                 pipe_crc->tail = 0;
4048                 spin_unlock_irq(&pipe_crc->lock);
4049         }
4050
4051         pipe_crc->source = source;
4052
4053         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4054         POSTING_READ(PIPE_CRC_CTL(pipe));
4055
4056         /* real source -> none transition */
4057         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4058                 struct intel_pipe_crc_entry *entries;
4059                 struct intel_crtc *crtc =
4060                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
4061
4062                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4063                                  pipe_name(pipe));
4064
4065                 drm_modeset_lock(&crtc->base.mutex, NULL);
4066                 if (crtc->base.state->active)
4067                         intel_wait_for_vblank(dev, pipe);
4068                 drm_modeset_unlock(&crtc->base.mutex);
4069
4070                 spin_lock_irq(&pipe_crc->lock);
4071                 entries = pipe_crc->entries;
4072                 pipe_crc->entries = NULL;
4073                 pipe_crc->head = 0;
4074                 pipe_crc->tail = 0;
4075                 spin_unlock_irq(&pipe_crc->lock);
4076
4077                 kfree(entries);
4078
4079                 if (IS_G4X(dev_priv))
4080                         g4x_undo_pipe_scramble_reset(dev_priv, pipe);
4081                 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4082                         vlv_undo_pipe_scramble_reset(dev_priv, pipe);
4083                 else if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4084                         hsw_trans_edp_pipe_A_crc_wa(dev_priv, false);
4085
4086                 hsw_enable_ips(crtc);
4087         }
4088
4089         ret = 0;
4090
4091 out:
4092         intel_display_power_put(dev_priv, power_domain);
4093
4094         return ret;
4095 }
4096
4097 /*
4098  * Parse pipe CRC command strings:
4099  *   command: wsp* object wsp+ name wsp+ source wsp*
4100  *   object: 'pipe'
4101  *   name: (A | B | C)
4102  *   source: (none | plane1 | plane2 | pf)
4103  *   wsp: (#0x20 | #0x9 | #0xA)+
4104  *
4105  * eg.:
4106  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4107  *  "pipe A none"    ->  Stop CRC
4108  */
4109 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4110 {
4111         int n_words = 0;
4112
4113         while (*buf) {
4114                 char *end;
4115
4116                 /* skip leading white space */
4117                 buf = skip_spaces(buf);
4118                 if (!*buf)
4119                         break;  /* end of buffer */
4120
4121                 /* find end of word */
4122                 for (end = buf; *end && !isspace(*end); end++)
4123                         ;
4124
4125                 if (n_words == max_words) {
4126                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4127                                          max_words);
4128                         return -EINVAL; /* ran out of words[] before bytes */
4129                 }
4130
4131                 if (*end)
4132                         *end++ = '\0';
4133                 words[n_words++] = buf;
4134                 buf = end;
4135         }
4136
4137         return n_words;
4138 }
4139
4140 enum intel_pipe_crc_object {
4141         PIPE_CRC_OBJECT_PIPE,
4142 };
4143
4144 static const char * const pipe_crc_objects[] = {
4145         "pipe",
4146 };
4147
4148 static int
4149 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4150 {
4151         int i;
4152
4153         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4154                 if (!strcmp(buf, pipe_crc_objects[i])) {
4155                         *o = i;
4156                         return 0;
4157                     }
4158
4159         return -EINVAL;
4160 }
4161
4162 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4163 {
4164         const char name = buf[0];
4165
4166         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4167                 return -EINVAL;
4168
4169         *pipe = name - 'A';
4170
4171         return 0;
4172 }
4173
4174 static int
4175 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4176 {
4177         int i;
4178
4179         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4180                 if (!strcmp(buf, pipe_crc_sources[i])) {
4181                         *s = i;
4182                         return 0;
4183                     }
4184
4185         return -EINVAL;
4186 }
4187
4188 static int display_crc_ctl_parse(struct drm_i915_private *dev_priv,
4189                                  char *buf, size_t len)
4190 {
4191 #define N_WORDS 3
4192         int n_words;
4193         char *words[N_WORDS];
4194         enum pipe pipe;
4195         enum intel_pipe_crc_object object;
4196         enum intel_pipe_crc_source source;
4197
4198         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4199         if (n_words != N_WORDS) {
4200                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4201                                  N_WORDS);
4202                 return -EINVAL;
4203         }
4204
4205         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4206                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4207                 return -EINVAL;
4208         }
4209
4210         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4211                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4212                 return -EINVAL;
4213         }
4214
4215         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4216                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4217                 return -EINVAL;
4218         }
4219
4220         return pipe_crc_set_source(dev_priv, pipe, source);
4221 }
4222
4223 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4224                                      size_t len, loff_t *offp)
4225 {
4226         struct seq_file *m = file->private_data;
4227         struct drm_i915_private *dev_priv = m->private;
4228         char *tmpbuf;
4229         int ret;
4230
4231         if (len == 0)
4232                 return 0;
4233
4234         if (len > PAGE_SIZE - 1) {
4235                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4236                                  PAGE_SIZE);
4237                 return -E2BIG;
4238         }
4239
4240         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4241         if (!tmpbuf)
4242                 return -ENOMEM;
4243
4244         if (copy_from_user(tmpbuf, ubuf, len)) {
4245                 ret = -EFAULT;
4246                 goto out;
4247         }
4248         tmpbuf[len] = '\0';
4249
4250         ret = display_crc_ctl_parse(dev_priv, tmpbuf, len);
4251
4252 out:
4253         kfree(tmpbuf);
4254         if (ret < 0)
4255                 return ret;
4256
4257         *offp += len;
4258         return len;
4259 }
4260
4261 static const struct file_operations i915_display_crc_ctl_fops = {
4262         .owner = THIS_MODULE,
4263         .open = display_crc_ctl_open,
4264         .read = seq_read,
4265         .llseek = seq_lseek,
4266         .release = single_release,
4267         .write = display_crc_ctl_write
4268 };
4269
4270 static ssize_t i915_displayport_test_active_write(struct file *file,
4271                                                   const char __user *ubuf,
4272                                                   size_t len, loff_t *offp)
4273 {
4274         char *input_buffer;
4275         int status = 0;
4276         struct drm_device *dev;
4277         struct drm_connector *connector;
4278         struct list_head *connector_list;
4279         struct intel_dp *intel_dp;
4280         int val = 0;
4281
4282         dev = ((struct seq_file *)file->private_data)->private;
4283
4284         connector_list = &dev->mode_config.connector_list;
4285
4286         if (len == 0)
4287                 return 0;
4288
4289         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4290         if (!input_buffer)
4291                 return -ENOMEM;
4292
4293         if (copy_from_user(input_buffer, ubuf, len)) {
4294                 status = -EFAULT;
4295                 goto out;
4296         }
4297
4298         input_buffer[len] = '\0';
4299         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4300
4301         list_for_each_entry(connector, connector_list, head) {
4302                 if (connector->connector_type !=
4303                     DRM_MODE_CONNECTOR_DisplayPort)
4304                         continue;
4305
4306                 if (connector->status == connector_status_connected &&
4307                     connector->encoder != NULL) {
4308                         intel_dp = enc_to_intel_dp(connector->encoder);
4309                         status = kstrtoint(input_buffer, 10, &val);
4310                         if (status < 0)
4311                                 goto out;
4312                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4313                         /* To prevent erroneous activation of the compliance
4314                          * testing code, only accept an actual value of 1 here
4315                          */
4316                         if (val == 1)
4317                                 intel_dp->compliance_test_active = 1;
4318                         else
4319                                 intel_dp->compliance_test_active = 0;
4320                 }
4321         }
4322 out:
4323         kfree(input_buffer);
4324         if (status < 0)
4325                 return status;
4326
4327         *offp += len;
4328         return len;
4329 }
4330
4331 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4332 {
4333         struct drm_device *dev = m->private;
4334         struct drm_connector *connector;
4335         struct list_head *connector_list = &dev->mode_config.connector_list;
4336         struct intel_dp *intel_dp;
4337
4338         list_for_each_entry(connector, connector_list, head) {
4339                 if (connector->connector_type !=
4340                     DRM_MODE_CONNECTOR_DisplayPort)
4341                         continue;
4342
4343                 if (connector->status == connector_status_connected &&
4344                     connector->encoder != NULL) {
4345                         intel_dp = enc_to_intel_dp(connector->encoder);
4346                         if (intel_dp->compliance_test_active)
4347                                 seq_puts(m, "1");
4348                         else
4349                                 seq_puts(m, "0");
4350                 } else
4351                         seq_puts(m, "0");
4352         }
4353
4354         return 0;
4355 }
4356
4357 static int i915_displayport_test_active_open(struct inode *inode,
4358                                              struct file *file)
4359 {
4360         struct drm_i915_private *dev_priv = inode->i_private;
4361
4362         return single_open(file, i915_displayport_test_active_show,
4363                            &dev_priv->drm);
4364 }
4365
4366 static const struct file_operations i915_displayport_test_active_fops = {
4367         .owner = THIS_MODULE,
4368         .open = i915_displayport_test_active_open,
4369         .read = seq_read,
4370         .llseek = seq_lseek,
4371         .release = single_release,
4372         .write = i915_displayport_test_active_write
4373 };
4374
4375 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4376 {
4377         struct drm_device *dev = m->private;
4378         struct drm_connector *connector;
4379         struct list_head *connector_list = &dev->mode_config.connector_list;
4380         struct intel_dp *intel_dp;
4381
4382         list_for_each_entry(connector, connector_list, head) {
4383                 if (connector->connector_type !=
4384                     DRM_MODE_CONNECTOR_DisplayPort)
4385                         continue;
4386
4387                 if (connector->status == connector_status_connected &&
4388                     connector->encoder != NULL) {
4389                         intel_dp = enc_to_intel_dp(connector->encoder);
4390                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4391                 } else
4392                         seq_puts(m, "0");
4393         }
4394
4395         return 0;
4396 }
4397 static int i915_displayport_test_data_open(struct inode *inode,
4398                                            struct file *file)
4399 {
4400         struct drm_i915_private *dev_priv = inode->i_private;
4401
4402         return single_open(file, i915_displayport_test_data_show,
4403                            &dev_priv->drm);
4404 }
4405
4406 static const struct file_operations i915_displayport_test_data_fops = {
4407         .owner = THIS_MODULE,
4408         .open = i915_displayport_test_data_open,
4409         .read = seq_read,
4410         .llseek = seq_lseek,
4411         .release = single_release
4412 };
4413
4414 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4415 {
4416         struct drm_device *dev = m->private;
4417         struct drm_connector *connector;
4418         struct list_head *connector_list = &dev->mode_config.connector_list;
4419         struct intel_dp *intel_dp;
4420
4421         list_for_each_entry(connector, connector_list, head) {
4422                 if (connector->connector_type !=
4423                     DRM_MODE_CONNECTOR_DisplayPort)
4424                         continue;
4425
4426                 if (connector->status == connector_status_connected &&
4427                     connector->encoder != NULL) {
4428                         intel_dp = enc_to_intel_dp(connector->encoder);
4429                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4430                 } else
4431                         seq_puts(m, "0");
4432         }
4433
4434         return 0;
4435 }
4436
4437 static int i915_displayport_test_type_open(struct inode *inode,
4438                                        struct file *file)
4439 {
4440         struct drm_i915_private *dev_priv = inode->i_private;
4441
4442         return single_open(file, i915_displayport_test_type_show,
4443                            &dev_priv->drm);
4444 }
4445
4446 static const struct file_operations i915_displayport_test_type_fops = {
4447         .owner = THIS_MODULE,
4448         .open = i915_displayport_test_type_open,
4449         .read = seq_read,
4450         .llseek = seq_lseek,
4451         .release = single_release
4452 };
4453
4454 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4455 {
4456         struct drm_i915_private *dev_priv = m->private;
4457         struct drm_device *dev = &dev_priv->drm;
4458         int level;
4459         int num_levels;
4460
4461         if (IS_CHERRYVIEW(dev_priv))
4462                 num_levels = 3;
4463         else if (IS_VALLEYVIEW(dev_priv))
4464                 num_levels = 1;
4465         else
4466                 num_levels = ilk_wm_max_level(dev) + 1;
4467
4468         drm_modeset_lock_all(dev);
4469
4470         for (level = 0; level < num_levels; level++) {
4471                 unsigned int latency = wm[level];
4472
4473                 /*
4474                  * - WM1+ latency values in 0.5us units
4475                  * - latencies are in us on gen9/vlv/chv
4476                  */
4477                 if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
4478                     IS_CHERRYVIEW(dev_priv))
4479                         latency *= 10;
4480                 else if (level > 0)
4481                         latency *= 5;
4482
4483                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4484                            level, wm[level], latency / 10, latency % 10);
4485         }
4486
4487         drm_modeset_unlock_all(dev);
4488 }
4489
4490 static int pri_wm_latency_show(struct seq_file *m, void *data)
4491 {
4492         struct drm_i915_private *dev_priv = m->private;
4493         const uint16_t *latencies;
4494
4495         if (INTEL_GEN(dev_priv) >= 9)
4496                 latencies = dev_priv->wm.skl_latency;
4497         else
4498                 latencies = dev_priv->wm.pri_latency;
4499
4500         wm_latency_show(m, latencies);
4501
4502         return 0;
4503 }
4504
4505 static int spr_wm_latency_show(struct seq_file *m, void *data)
4506 {
4507         struct drm_i915_private *dev_priv = m->private;
4508         const uint16_t *latencies;
4509
4510         if (INTEL_GEN(dev_priv) >= 9)
4511                 latencies = dev_priv->wm.skl_latency;
4512         else
4513                 latencies = dev_priv->wm.spr_latency;
4514
4515         wm_latency_show(m, latencies);
4516
4517         return 0;
4518 }
4519
4520 static int cur_wm_latency_show(struct seq_file *m, void *data)
4521 {
4522         struct drm_i915_private *dev_priv = m->private;
4523         const uint16_t *latencies;
4524
4525         if (INTEL_GEN(dev_priv) >= 9)
4526                 latencies = dev_priv->wm.skl_latency;
4527         else
4528                 latencies = dev_priv->wm.cur_latency;
4529
4530         wm_latency_show(m, latencies);
4531
4532         return 0;
4533 }
4534
4535 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4536 {
4537         struct drm_i915_private *dev_priv = inode->i_private;
4538
4539         if (INTEL_GEN(dev_priv) < 5)
4540                 return -ENODEV;
4541
4542         return single_open(file, pri_wm_latency_show, dev_priv);
4543 }
4544
4545 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4546 {
4547         struct drm_i915_private *dev_priv = inode->i_private;
4548
4549         if (HAS_GMCH_DISPLAY(dev_priv))
4550                 return -ENODEV;
4551
4552         return single_open(file, spr_wm_latency_show, dev_priv);
4553 }
4554
4555 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4556 {
4557         struct drm_i915_private *dev_priv = inode->i_private;
4558
4559         if (HAS_GMCH_DISPLAY(dev_priv))
4560                 return -ENODEV;
4561
4562         return single_open(file, cur_wm_latency_show, dev_priv);
4563 }
4564
4565 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4566                                 size_t len, loff_t *offp, uint16_t wm[8])
4567 {
4568         struct seq_file *m = file->private_data;
4569         struct drm_i915_private *dev_priv = m->private;
4570         struct drm_device *dev = &dev_priv->drm;
4571         uint16_t new[8] = { 0 };
4572         int num_levels;
4573         int level;
4574         int ret;
4575         char tmp[32];
4576
4577         if (IS_CHERRYVIEW(dev_priv))
4578                 num_levels = 3;
4579         else if (IS_VALLEYVIEW(dev_priv))
4580                 num_levels = 1;
4581         else
4582                 num_levels = ilk_wm_max_level(dev) + 1;
4583
4584         if (len >= sizeof(tmp))
4585                 return -EINVAL;
4586
4587         if (copy_from_user(tmp, ubuf, len))
4588                 return -EFAULT;
4589
4590         tmp[len] = '\0';
4591
4592         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4593                      &new[0], &new[1], &new[2], &new[3],
4594                      &new[4], &new[5], &new[6], &new[7]);
4595         if (ret != num_levels)
4596                 return -EINVAL;
4597
4598         drm_modeset_lock_all(dev);
4599
4600         for (level = 0; level < num_levels; level++)
4601                 wm[level] = new[level];
4602
4603         drm_modeset_unlock_all(dev);
4604
4605         return len;
4606 }
4607
4608
4609 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4610                                     size_t len, loff_t *offp)
4611 {
4612         struct seq_file *m = file->private_data;
4613         struct drm_i915_private *dev_priv = m->private;
4614         uint16_t *latencies;
4615
4616         if (INTEL_GEN(dev_priv) >= 9)
4617                 latencies = dev_priv->wm.skl_latency;
4618         else
4619                 latencies = dev_priv->wm.pri_latency;
4620
4621         return wm_latency_write(file, ubuf, len, offp, latencies);
4622 }
4623
4624 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4625                                     size_t len, loff_t *offp)
4626 {
4627         struct seq_file *m = file->private_data;
4628         struct drm_i915_private *dev_priv = m->private;
4629         uint16_t *latencies;
4630
4631         if (INTEL_GEN(dev_priv) >= 9)
4632                 latencies = dev_priv->wm.skl_latency;
4633         else
4634                 latencies = dev_priv->wm.spr_latency;
4635
4636         return wm_latency_write(file, ubuf, len, offp, latencies);
4637 }
4638
4639 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4640                                     size_t len, loff_t *offp)
4641 {
4642         struct seq_file *m = file->private_data;
4643         struct drm_i915_private *dev_priv = m->private;
4644         uint16_t *latencies;
4645
4646         if (INTEL_GEN(dev_priv) >= 9)
4647                 latencies = dev_priv->wm.skl_latency;
4648         else
4649                 latencies = dev_priv->wm.cur_latency;
4650
4651         return wm_latency_write(file, ubuf, len, offp, latencies);
4652 }
4653
4654 static const struct file_operations i915_pri_wm_latency_fops = {
4655         .owner = THIS_MODULE,
4656         .open = pri_wm_latency_open,
4657         .read = seq_read,
4658         .llseek = seq_lseek,
4659         .release = single_release,
4660         .write = pri_wm_latency_write
4661 };
4662
4663 static const struct file_operations i915_spr_wm_latency_fops = {
4664         .owner = THIS_MODULE,
4665         .open = spr_wm_latency_open,
4666         .read = seq_read,
4667         .llseek = seq_lseek,
4668         .release = single_release,
4669         .write = spr_wm_latency_write
4670 };
4671
4672 static const struct file_operations i915_cur_wm_latency_fops = {
4673         .owner = THIS_MODULE,
4674         .open = cur_wm_latency_open,
4675         .read = seq_read,
4676         .llseek = seq_lseek,
4677         .release = single_release,
4678         .write = cur_wm_latency_write
4679 };
4680
4681 static int
4682 i915_wedged_get(void *data, u64 *val)
4683 {
4684         struct drm_i915_private *dev_priv = data;
4685
4686         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4687
4688         return 0;
4689 }
4690
4691 static int
4692 i915_wedged_set(void *data, u64 val)
4693 {
4694         struct drm_i915_private *dev_priv = data;
4695
4696         /*
4697          * There is no safeguard against this debugfs entry colliding
4698          * with the hangcheck calling same i915_handle_error() in
4699          * parallel, causing an explosion. For now we assume that the
4700          * test harness is responsible enough not to inject gpu hangs
4701          * while it is writing to 'i915_wedged'
4702          */
4703
4704         if (i915_reset_in_progress(&dev_priv->gpu_error))
4705                 return -EAGAIN;
4706
4707         intel_runtime_pm_get(dev_priv);
4708
4709         i915_handle_error(dev_priv, val,
4710                           "Manually setting wedged to %llu", val);
4711
4712         intel_runtime_pm_put(dev_priv);
4713
4714         return 0;
4715 }
4716
4717 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4718                         i915_wedged_get, i915_wedged_set,
4719                         "%llu\n");
4720
4721 static int
4722 i915_ring_missed_irq_get(void *data, u64 *val)
4723 {
4724         struct drm_i915_private *dev_priv = data;
4725
4726         *val = dev_priv->gpu_error.missed_irq_rings;
4727         return 0;
4728 }
4729
4730 static int
4731 i915_ring_missed_irq_set(void *data, u64 val)
4732 {
4733         struct drm_i915_private *dev_priv = data;
4734         struct drm_device *dev = &dev_priv->drm;
4735         int ret;
4736
4737         /* Lock against concurrent debugfs callers */
4738         ret = mutex_lock_interruptible(&dev->struct_mutex);
4739         if (ret)
4740                 return ret;
4741         dev_priv->gpu_error.missed_irq_rings = val;
4742         mutex_unlock(&dev->struct_mutex);
4743
4744         return 0;
4745 }
4746
4747 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4748                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4749                         "0x%08llx\n");
4750
4751 static int
4752 i915_ring_test_irq_get(void *data, u64 *val)
4753 {
4754         struct drm_i915_private *dev_priv = data;
4755
4756         *val = dev_priv->gpu_error.test_irq_rings;
4757
4758         return 0;
4759 }
4760
4761 static int
4762 i915_ring_test_irq_set(void *data, u64 val)
4763 {
4764         struct drm_i915_private *dev_priv = data;
4765
4766         val &= INTEL_INFO(dev_priv)->ring_mask;
4767         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4768         dev_priv->gpu_error.test_irq_rings = val;
4769
4770         return 0;
4771 }
4772
4773 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4774                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4775                         "0x%08llx\n");
4776
4777 #define DROP_UNBOUND 0x1
4778 #define DROP_BOUND 0x2
4779 #define DROP_RETIRE 0x4
4780 #define DROP_ACTIVE 0x8
4781 #define DROP_ALL (DROP_UNBOUND | \
4782                   DROP_BOUND | \
4783                   DROP_RETIRE | \
4784                   DROP_ACTIVE)
4785 static int
4786 i915_drop_caches_get(void *data, u64 *val)
4787 {
4788         *val = DROP_ALL;
4789
4790         return 0;
4791 }
4792
4793 static int
4794 i915_drop_caches_set(void *data, u64 val)
4795 {
4796         struct drm_i915_private *dev_priv = data;
4797         struct drm_device *dev = &dev_priv->drm;
4798         int ret;
4799
4800         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4801
4802         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4803          * on ioctls on -EAGAIN. */
4804         ret = mutex_lock_interruptible(&dev->struct_mutex);
4805         if (ret)
4806                 return ret;
4807
4808         if (val & DROP_ACTIVE) {
4809                 ret = i915_gem_wait_for_idle(dev_priv,
4810                                              I915_WAIT_INTERRUPTIBLE |
4811                                              I915_WAIT_LOCKED);
4812                 if (ret)
4813                         goto unlock;
4814         }
4815
4816         if (val & (DROP_RETIRE | DROP_ACTIVE))
4817                 i915_gem_retire_requests(dev_priv);
4818
4819         if (val & DROP_BOUND)
4820                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4821
4822         if (val & DROP_UNBOUND)
4823                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4824
4825 unlock:
4826         mutex_unlock(&dev->struct_mutex);
4827
4828         return ret;
4829 }
4830
4831 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4832                         i915_drop_caches_get, i915_drop_caches_set,
4833                         "0x%08llx\n");
4834
4835 static int
4836 i915_max_freq_get(void *data, u64 *val)
4837 {
4838         struct drm_i915_private *dev_priv = data;
4839
4840         if (INTEL_GEN(dev_priv) < 6)
4841                 return -ENODEV;
4842
4843         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4844         return 0;
4845 }
4846
4847 static int
4848 i915_max_freq_set(void *data, u64 val)
4849 {
4850         struct drm_i915_private *dev_priv = data;
4851         u32 hw_max, hw_min;
4852         int ret;
4853
4854         if (INTEL_GEN(dev_priv) < 6)
4855                 return -ENODEV;
4856
4857         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4858
4859         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4860         if (ret)
4861                 return ret;
4862
4863         /*
4864          * Turbo will still be enabled, but won't go above the set value.
4865          */
4866         val = intel_freq_opcode(dev_priv, val);
4867
4868         hw_max = dev_priv->rps.max_freq;
4869         hw_min = dev_priv->rps.min_freq;
4870
4871         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
4872                 mutex_unlock(&dev_priv->rps.hw_lock);
4873                 return -EINVAL;
4874         }
4875
4876         dev_priv->rps.max_freq_softlimit = val;
4877
4878         intel_set_rps(dev_priv, val);
4879
4880         mutex_unlock(&dev_priv->rps.hw_lock);
4881
4882         return 0;
4883 }
4884
4885 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
4886                         i915_max_freq_get, i915_max_freq_set,
4887                         "%llu\n");
4888
4889 static int
4890 i915_min_freq_get(void *data, u64 *val)
4891 {
4892         struct drm_i915_private *dev_priv = data;
4893
4894         if (INTEL_GEN(dev_priv) < 6)
4895                 return -ENODEV;
4896
4897         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
4898         return 0;
4899 }
4900
4901 static int
4902 i915_min_freq_set(void *data, u64 val)
4903 {
4904         struct drm_i915_private *dev_priv = data;
4905         u32 hw_max, hw_min;
4906         int ret;
4907
4908         if (INTEL_GEN(dev_priv) < 6)
4909                 return -ENODEV;
4910
4911         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
4912
4913         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4914         if (ret)
4915                 return ret;
4916
4917         /*
4918          * Turbo will still be enabled, but won't go below the set value.
4919          */
4920         val = intel_freq_opcode(dev_priv, val);
4921
4922         hw_max = dev_priv->rps.max_freq;
4923         hw_min = dev_priv->rps.min_freq;
4924
4925         if (val < hw_min ||
4926             val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4927                 mutex_unlock(&dev_priv->rps.hw_lock);
4928                 return -EINVAL;
4929         }
4930
4931         dev_priv->rps.min_freq_softlimit = val;
4932
4933         intel_set_rps(dev_priv, val);
4934
4935         mutex_unlock(&dev_priv->rps.hw_lock);
4936
4937         return 0;
4938 }
4939
4940 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4941                         i915_min_freq_get, i915_min_freq_set,
4942                         "%llu\n");
4943
4944 static int
4945 i915_cache_sharing_get(void *data, u64 *val)
4946 {
4947         struct drm_i915_private *dev_priv = data;
4948         struct drm_device *dev = &dev_priv->drm;
4949         u32 snpcr;
4950         int ret;
4951
4952         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4953                 return -ENODEV;
4954
4955         ret = mutex_lock_interruptible(&dev->struct_mutex);
4956         if (ret)
4957                 return ret;
4958         intel_runtime_pm_get(dev_priv);
4959
4960         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4961
4962         intel_runtime_pm_put(dev_priv);
4963         mutex_unlock(&dev->struct_mutex);
4964
4965         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4966
4967         return 0;
4968 }
4969
4970 static int
4971 i915_cache_sharing_set(void *data, u64 val)
4972 {
4973         struct drm_i915_private *dev_priv = data;
4974         u32 snpcr;
4975
4976         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
4977                 return -ENODEV;
4978
4979         if (val > 3)
4980                 return -EINVAL;
4981
4982         intel_runtime_pm_get(dev_priv);
4983         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4984
4985         /* Update the cache sharing policy here as well */
4986         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4987         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4988         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4989         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4990
4991         intel_runtime_pm_put(dev_priv);
4992         return 0;
4993 }
4994
4995 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4996                         i915_cache_sharing_get, i915_cache_sharing_set,
4997                         "%llu\n");
4998
4999 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
5000                                           struct sseu_dev_info *sseu)
5001 {
5002         int ss_max = 2;
5003         int ss;
5004         u32 sig1[ss_max], sig2[ss_max];
5005
5006         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5007         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5008         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5009         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5010
5011         for (ss = 0; ss < ss_max; ss++) {
5012                 unsigned int eu_cnt;
5013
5014                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5015                         /* skip disabled subslice */
5016                         continue;
5017
5018                 sseu->slice_mask = BIT(0);
5019                 sseu->subslice_mask |= BIT(ss);
5020                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5021                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5022                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5023                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5024                 sseu->eu_total += eu_cnt;
5025                 sseu->eu_per_subslice = max_t(unsigned int,
5026                                               sseu->eu_per_subslice, eu_cnt);
5027         }
5028 }
5029
5030 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
5031                                     struct sseu_dev_info *sseu)
5032 {
5033         int s_max = 3, ss_max = 4;
5034         int s, ss;
5035         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5036
5037         /* BXT has a single slice and at most 3 subslices. */
5038         if (IS_BROXTON(dev_priv)) {
5039                 s_max = 1;
5040                 ss_max = 3;
5041         }
5042
5043         for (s = 0; s < s_max; s++) {
5044                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5045                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5046                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5047         }
5048
5049         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5050                      GEN9_PGCTL_SSA_EU19_ACK |
5051                      GEN9_PGCTL_SSA_EU210_ACK |
5052                      GEN9_PGCTL_SSA_EU311_ACK;
5053         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5054                      GEN9_PGCTL_SSB_EU19_ACK |
5055                      GEN9_PGCTL_SSB_EU210_ACK |
5056                      GEN9_PGCTL_SSB_EU311_ACK;
5057
5058         for (s = 0; s < s_max; s++) {
5059                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5060                         /* skip disabled slice */
5061                         continue;
5062
5063                 sseu->slice_mask |= BIT(s);
5064
5065                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
5066                         sseu->subslice_mask =
5067                                 INTEL_INFO(dev_priv)->sseu.subslice_mask;
5068
5069                 for (ss = 0; ss < ss_max; ss++) {
5070                         unsigned int eu_cnt;
5071
5072                         if (IS_BROXTON(dev_priv)) {
5073                                 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5074                                         /* skip disabled subslice */
5075                                         continue;
5076
5077                                 sseu->subslice_mask |= BIT(ss);
5078                         }
5079
5080                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5081                                                eu_mask[ss%2]);
5082                         sseu->eu_total += eu_cnt;
5083                         sseu->eu_per_subslice = max_t(unsigned int,
5084                                                       sseu->eu_per_subslice,
5085                                                       eu_cnt);
5086                 }
5087         }
5088 }
5089
5090 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
5091                                          struct sseu_dev_info *sseu)
5092 {
5093         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5094         int s;
5095
5096         sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
5097
5098         if (sseu->slice_mask) {
5099                 sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
5100                 sseu->eu_per_subslice =
5101                                 INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
5102                 sseu->eu_total = sseu->eu_per_subslice *
5103                                  sseu_subslice_total(sseu);
5104
5105                 /* subtract fused off EU(s) from enabled slice(s) */
5106                 for (s = 0; s < fls(sseu->slice_mask); s++) {
5107                         u8 subslice_7eu =
5108                                 INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
5109
5110                         sseu->eu_total -= hweight8(subslice_7eu);
5111                 }
5112         }
5113 }
5114
5115 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
5116                                  const struct sseu_dev_info *sseu)
5117 {
5118         struct drm_i915_private *dev_priv = node_to_i915(m->private);
5119         const char *type = is_available_info ? "Available" : "Enabled";
5120
5121         seq_printf(m, "  %s Slice Mask: %04x\n", type,
5122                    sseu->slice_mask);
5123         seq_printf(m, "  %s Slice Total: %u\n", type,
5124                    hweight8(sseu->slice_mask));
5125         seq_printf(m, "  %s Subslice Total: %u\n", type,
5126                    sseu_subslice_total(sseu));
5127         seq_printf(m, "  %s Subslice Mask: %04x\n", type,
5128                    sseu->subslice_mask);
5129         seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
5130                    hweight8(sseu->subslice_mask));
5131         seq_printf(m, "  %s EU Total: %u\n", type,
5132                    sseu->eu_total);
5133         seq_printf(m, "  %s EU Per Subslice: %u\n", type,
5134                    sseu->eu_per_subslice);
5135
5136         if (!is_available_info)
5137                 return;
5138
5139         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
5140         if (HAS_POOLED_EU(dev_priv))
5141                 seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
5142
5143         seq_printf(m, "  Has Slice Power Gating: %s\n",
5144                    yesno(sseu->has_slice_pg));
5145         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5146                    yesno(sseu->has_subslice_pg));
5147         seq_printf(m, "  Has EU Power Gating: %s\n",
5148                    yesno(sseu->has_eu_pg));
5149 }
5150
5151 static int i915_sseu_status(struct seq_file *m, void *unused)
5152 {
5153         struct drm_i915_private *dev_priv = node_to_i915(m->private);
5154         struct sseu_dev_info sseu;
5155
5156         if (INTEL_GEN(dev_priv) < 8)
5157                 return -ENODEV;
5158
5159         seq_puts(m, "SSEU Device Info\n");
5160         i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
5161
5162         seq_puts(m, "SSEU Device Status\n");
5163         memset(&sseu, 0, sizeof(sseu));
5164
5165         intel_runtime_pm_get(dev_priv);
5166
5167         if (IS_CHERRYVIEW(dev_priv)) {
5168                 cherryview_sseu_device_status(dev_priv, &sseu);
5169         } else if (IS_BROADWELL(dev_priv)) {
5170                 broadwell_sseu_device_status(dev_priv, &sseu);
5171         } else if (INTEL_GEN(dev_priv) >= 9) {
5172                 gen9_sseu_device_status(dev_priv, &sseu);
5173         }
5174
5175         intel_runtime_pm_put(dev_priv);
5176
5177         i915_print_sseu_info(m, false, &sseu);
5178
5179         return 0;
5180 }
5181
5182 static int i915_forcewake_open(struct inode *inode, struct file *file)
5183 {
5184         struct drm_i915_private *dev_priv = inode->i_private;
5185
5186         if (INTEL_GEN(dev_priv) < 6)
5187                 return 0;
5188
5189         intel_runtime_pm_get(dev_priv);
5190         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5191
5192         return 0;
5193 }
5194
5195 static int i915_forcewake_release(struct inode *inode, struct file *file)
5196 {
5197         struct drm_i915_private *dev_priv = inode->i_private;
5198
5199         if (INTEL_GEN(dev_priv) < 6)
5200                 return 0;
5201
5202         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5203         intel_runtime_pm_put(dev_priv);
5204
5205         return 0;
5206 }
5207
5208 static const struct file_operations i915_forcewake_fops = {
5209         .owner = THIS_MODULE,
5210         .open = i915_forcewake_open,
5211         .release = i915_forcewake_release,
5212 };
5213
5214 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5215 {
5216         struct dentry *ent;
5217
5218         ent = debugfs_create_file("i915_forcewake_user",
5219                                   S_IRUSR,
5220                                   root, to_i915(minor->dev),
5221                                   &i915_forcewake_fops);
5222         if (!ent)
5223                 return -ENOMEM;
5224
5225         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5226 }
5227
5228 static int i915_debugfs_create(struct dentry *root,
5229                                struct drm_minor *minor,
5230                                const char *name,
5231                                const struct file_operations *fops)
5232 {
5233         struct dentry *ent;
5234
5235         ent = debugfs_create_file(name,
5236                                   S_IRUGO | S_IWUSR,
5237                                   root, to_i915(minor->dev),
5238                                   fops);
5239         if (!ent)
5240                 return -ENOMEM;
5241
5242         return drm_add_fake_info_node(minor, ent, fops);
5243 }
5244
5245 static const struct drm_info_list i915_debugfs_list[] = {
5246         {"i915_capabilities", i915_capabilities, 0},
5247         {"i915_gem_objects", i915_gem_object_info, 0},
5248         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5249         {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
5250         {"i915_gem_stolen", i915_gem_stolen_list_info },
5251         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5252         {"i915_gem_request", i915_gem_request_info, 0},
5253         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5254         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5255         {"i915_gem_interrupt", i915_interrupt_info, 0},
5256         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
5257         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
5258         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
5259         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
5260         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5261         {"i915_guc_info", i915_guc_info, 0},
5262         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5263         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5264         {"i915_frequency_info", i915_frequency_info, 0},
5265         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5266         {"i915_drpc_info", i915_drpc_info, 0},
5267         {"i915_emon_status", i915_emon_status, 0},
5268         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5269         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5270         {"i915_fbc_status", i915_fbc_status, 0},
5271         {"i915_ips_status", i915_ips_status, 0},
5272         {"i915_sr_status", i915_sr_status, 0},
5273         {"i915_opregion", i915_opregion, 0},
5274         {"i915_vbt", i915_vbt, 0},
5275         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5276         {"i915_context_status", i915_context_status, 0},
5277         {"i915_dump_lrc", i915_dump_lrc, 0},
5278         {"i915_execlists", i915_execlists, 0},
5279         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5280         {"i915_swizzle_info", i915_swizzle_info, 0},
5281         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5282         {"i915_llc", i915_llc, 0},
5283         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5284         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5285         {"i915_energy_uJ", i915_energy_uJ, 0},
5286         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5287         {"i915_power_domain_info", i915_power_domain_info, 0},
5288         {"i915_dmc_info", i915_dmc_info, 0},
5289         {"i915_display_info", i915_display_info, 0},
5290         {"i915_semaphore_status", i915_semaphore_status, 0},
5291         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5292         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5293         {"i915_wa_registers", i915_wa_registers, 0},
5294         {"i915_ddb_info", i915_ddb_info, 0},
5295         {"i915_sseu_status", i915_sseu_status, 0},
5296         {"i915_drrs_status", i915_drrs_status, 0},
5297         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5298 };
5299 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5300
5301 static const struct i915_debugfs_files {
5302         const char *name;
5303         const struct file_operations *fops;
5304 } i915_debugfs_files[] = {
5305         {"i915_wedged", &i915_wedged_fops},
5306         {"i915_max_freq", &i915_max_freq_fops},
5307         {"i915_min_freq", &i915_min_freq_fops},
5308         {"i915_cache_sharing", &i915_cache_sharing_fops},
5309         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5310         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5311         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5312         {"i915_error_state", &i915_error_state_fops},
5313         {"i915_next_seqno", &i915_next_seqno_fops},
5314         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5315         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5316         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5317         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5318         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5319         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5320         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5321         {"i915_dp_test_active", &i915_displayport_test_active_fops}
5322 };
5323
5324 void intel_display_crc_init(struct drm_i915_private *dev_priv)
5325 {
5326         enum pipe pipe;
5327
5328         for_each_pipe(dev_priv, pipe) {
5329                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5330
5331                 pipe_crc->opened = false;
5332                 spin_lock_init(&pipe_crc->lock);
5333                 init_waitqueue_head(&pipe_crc->wq);
5334         }
5335 }
5336
5337 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5338 {
5339         struct drm_minor *minor = dev_priv->drm.primary;
5340         int ret, i;
5341
5342         ret = i915_forcewake_create(minor->debugfs_root, minor);
5343         if (ret)
5344                 return ret;
5345
5346         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5347                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5348                 if (ret)
5349                         return ret;
5350         }
5351
5352         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5353                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5354                                           i915_debugfs_files[i].name,
5355                                           i915_debugfs_files[i].fops);
5356                 if (ret)
5357                         return ret;
5358         }
5359
5360         return drm_debugfs_create_files(i915_debugfs_list,
5361                                         I915_DEBUGFS_ENTRIES,
5362                                         minor->debugfs_root, minor);
5363 }
5364
5365 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5366 {
5367         struct drm_minor *minor = dev_priv->drm.primary;
5368         int i;
5369
5370         drm_debugfs_remove_files(i915_debugfs_list,
5371                                  I915_DEBUGFS_ENTRIES, minor);
5372
5373         drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
5374                                  1, minor);
5375
5376         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5377                 struct drm_info_list *info_list =
5378                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5379
5380                 drm_debugfs_remove_files(info_list, 1, minor);
5381         }
5382
5383         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5384                 struct drm_info_list *info_list =
5385                         (struct drm_info_list *)i915_debugfs_files[i].fops;
5386
5387                 drm_debugfs_remove_files(info_list, 1, minor);
5388         }
5389 }
5390
5391 struct dpcd_block {
5392         /* DPCD dump start address. */
5393         unsigned int offset;
5394         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5395         unsigned int end;
5396         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5397         size_t size;
5398         /* Only valid for eDP. */
5399         bool edp;
5400 };
5401
5402 static const struct dpcd_block i915_dpcd_debug[] = {
5403         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5404         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5405         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5406         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5407         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5408         { .offset = DP_SET_POWER },
5409         { .offset = DP_EDP_DPCD_REV },
5410         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5411         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5412         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5413 };
5414
5415 static int i915_dpcd_show(struct seq_file *m, void *data)
5416 {
5417         struct drm_connector *connector = m->private;
5418         struct intel_dp *intel_dp =
5419                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5420         uint8_t buf[16];
5421         ssize_t err;
5422         int i;
5423
5424         if (connector->status != connector_status_connected)
5425                 return -ENODEV;
5426
5427         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5428                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5429                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5430
5431                 if (b->edp &&
5432                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5433                         continue;
5434
5435                 /* low tech for now */
5436                 if (WARN_ON(size > sizeof(buf)))
5437                         continue;
5438
5439                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5440                 if (err <= 0) {
5441                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5442                                   size, b->offset, err);
5443                         continue;
5444                 }
5445
5446                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5447         }
5448
5449         return 0;
5450 }
5451
5452 static int i915_dpcd_open(struct inode *inode, struct file *file)
5453 {
5454         return single_open(file, i915_dpcd_show, inode->i_private);
5455 }
5456
5457 static const struct file_operations i915_dpcd_fops = {
5458         .owner = THIS_MODULE,
5459         .open = i915_dpcd_open,
5460         .read = seq_read,
5461         .llseek = seq_lseek,
5462         .release = single_release,
5463 };
5464
5465 static int i915_panel_show(struct seq_file *m, void *data)
5466 {
5467         struct drm_connector *connector = m->private;
5468         struct intel_dp *intel_dp =
5469                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5470
5471         if (connector->status != connector_status_connected)
5472                 return -ENODEV;
5473
5474         seq_printf(m, "Panel power up delay: %d\n",
5475                    intel_dp->panel_power_up_delay);
5476         seq_printf(m, "Panel power down delay: %d\n",
5477                    intel_dp->panel_power_down_delay);
5478         seq_printf(m, "Backlight on delay: %d\n",
5479                    intel_dp->backlight_on_delay);
5480         seq_printf(m, "Backlight off delay: %d\n",
5481                    intel_dp->backlight_off_delay);
5482
5483         return 0;
5484 }
5485
5486 static int i915_panel_open(struct inode *inode, struct file *file)
5487 {
5488         return single_open(file, i915_panel_show, inode->i_private);
5489 }
5490
5491 static const struct file_operations i915_panel_fops = {
5492         .owner = THIS_MODULE,
5493         .open = i915_panel_open,
5494         .read = seq_read,
5495         .llseek = seq_lseek,
5496         .release = single_release,
5497 };
5498
5499 /**
5500  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5501  * @connector: pointer to a registered drm_connector
5502  *
5503  * Cleanup will be done by drm_connector_unregister() through a call to
5504  * drm_debugfs_connector_remove().
5505  *
5506  * Returns 0 on success, negative error codes on error.
5507  */
5508 int i915_debugfs_connector_add(struct drm_connector *connector)
5509 {
5510         struct dentry *root = connector->debugfs_entry;
5511
5512         /* The connector must have been registered beforehands. */
5513         if (!root)
5514                 return -ENODEV;
5515
5516         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5517             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5518                 debugfs_create_file("i915_dpcd", S_IRUGO, root,
5519                                     connector, &i915_dpcd_fops);
5520
5521         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5522                 debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5523                                     connector, &i915_panel_fops);
5524
5525         return 0;
5526 }