Merge tag 'drm-intel-next-2019-05-24' of git://anongit.freedesktop.org/drm/drm-intel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "i915_drv.h"
39 #include "i915_gem_pm.h"
40 #include "gvt.h"
41
42 #define RING_CTX_OFF(x) \
43         offsetof(struct execlist_ring_context, x)
44
45 static void set_context_pdp_root_pointer(
46                 struct execlist_ring_context *ring_context,
47                 u32 pdp[8])
48 {
49         int i;
50
51         for (i = 0; i < 8; i++)
52                 ring_context->pdps[i].val = pdp[7 - i];
53 }
54
55 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
56 {
57         struct drm_i915_gem_object *ctx_obj =
58                 workload->req->hw_context->state->obj;
59         struct execlist_ring_context *shadow_ring_context;
60         struct page *page;
61
62         if (WARN_ON(!workload->shadow_mm))
63                 return;
64
65         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
66                 return;
67
68         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
69         shadow_ring_context = kmap(page);
70         set_context_pdp_root_pointer(shadow_ring_context,
71                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
72         kunmap(page);
73 }
74
75 /*
76  * when populating shadow ctx from guest, we should not overrride oa related
77  * registers, so that they will not be overlapped by guest oa configs. Thus
78  * made it possible to capture oa data from host for both host and guests.
79  */
80 static void sr_oa_regs(struct intel_vgpu_workload *workload,
81                 u32 *reg_state, bool save)
82 {
83         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
84         u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
85         u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
86         int i = 0;
87         u32 flex_mmio[] = {
88                 i915_mmio_reg_offset(EU_PERF_CNTL0),
89                 i915_mmio_reg_offset(EU_PERF_CNTL1),
90                 i915_mmio_reg_offset(EU_PERF_CNTL2),
91                 i915_mmio_reg_offset(EU_PERF_CNTL3),
92                 i915_mmio_reg_offset(EU_PERF_CNTL4),
93                 i915_mmio_reg_offset(EU_PERF_CNTL5),
94                 i915_mmio_reg_offset(EU_PERF_CNTL6),
95         };
96
97         if (workload->ring_id != RCS0)
98                 return;
99
100         if (save) {
101                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
102
103                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
104                         u32 state_offset = ctx_flexeu0 + i * 2;
105
106                         workload->flex_mmio[i] = reg_state[state_offset + 1];
107                 }
108         } else {
109                 reg_state[ctx_oactxctrl] =
110                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
111                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
112
113                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
114                         u32 state_offset = ctx_flexeu0 + i * 2;
115                         u32 mmio = flex_mmio[i];
116
117                         reg_state[state_offset] = mmio;
118                         reg_state[state_offset + 1] = workload->flex_mmio[i];
119                 }
120         }
121 }
122
123 static int populate_shadow_context(struct intel_vgpu_workload *workload)
124 {
125         struct intel_vgpu *vgpu = workload->vgpu;
126         struct intel_gvt *gvt = vgpu->gvt;
127         int ring_id = workload->ring_id;
128         struct drm_i915_gem_object *ctx_obj =
129                 workload->req->hw_context->state->obj;
130         struct execlist_ring_context *shadow_ring_context;
131         struct page *page;
132         void *dst;
133         unsigned long context_gpa, context_page_num;
134         int i;
135
136         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
137         shadow_ring_context = kmap(page);
138
139         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
140 #define COPY_REG(name) \
141         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
142                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
143 #define COPY_REG_MASKED(name) {\
144                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145                                               + RING_CTX_OFF(name.val),\
146                                               &shadow_ring_context->name.val, 4);\
147                 shadow_ring_context->name.val |= 0xffff << 16;\
148         }
149
150         COPY_REG_MASKED(ctx_ctrl);
151         COPY_REG(ctx_timestamp);
152
153         if (ring_id == RCS0) {
154                 COPY_REG(bb_per_ctx_ptr);
155                 COPY_REG(rcs_indirect_ctx);
156                 COPY_REG(rcs_indirect_ctx_offset);
157         }
158 #undef COPY_REG
159 #undef COPY_REG_MASKED
160
161         intel_gvt_hypervisor_read_gpa(vgpu,
162                         workload->ring_context_gpa +
163                         sizeof(*shadow_ring_context),
164                         (void *)shadow_ring_context +
165                         sizeof(*shadow_ring_context),
166                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
167
168         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
169         kunmap(page);
170
171         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
172                 return 0;
173
174         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
175                         workload->ctx_desc.lrca);
176
177         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
178
179         context_page_num = context_page_num >> PAGE_SHIFT;
180
181         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
182                 context_page_num = 19;
183
184         i = 2;
185         while (i < context_page_num) {
186                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
187                                 (u32)((workload->ctx_desc.lrca + i) <<
188                                 I915_GTT_PAGE_SHIFT));
189                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
190                         gvt_vgpu_err("Invalid guest context descriptor\n");
191                         return -EFAULT;
192                 }
193
194                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
195                 dst = kmap(page);
196                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
197                                 I915_GTT_PAGE_SIZE);
198                 kunmap(page);
199                 i++;
200         }
201         return 0;
202 }
203
204 static inline bool is_gvt_request(struct i915_request *req)
205 {
206         return i915_gem_context_force_single_submission(req->gem_context);
207 }
208
209 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
210 {
211         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
212         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
213         i915_reg_t reg;
214
215         reg = RING_INSTDONE(ring_base);
216         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
217         reg = RING_ACTHD(ring_base);
218         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
219         reg = RING_ACTHD_UDW(ring_base);
220         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
221 }
222
223 static int shadow_context_status_change(struct notifier_block *nb,
224                 unsigned long action, void *data)
225 {
226         struct i915_request *req = data;
227         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
228                                 shadow_ctx_notifier_block[req->engine->id]);
229         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
230         enum intel_engine_id ring_id = req->engine->id;
231         struct intel_vgpu_workload *workload;
232         unsigned long flags;
233
234         if (!is_gvt_request(req)) {
235                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
236                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
237                     scheduler->engine_owner[ring_id]) {
238                         /* Switch ring from vGPU to host. */
239                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
240                                               NULL, ring_id);
241                         scheduler->engine_owner[ring_id] = NULL;
242                 }
243                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
244
245                 return NOTIFY_OK;
246         }
247
248         workload = scheduler->current_workload[ring_id];
249         if (unlikely(!workload))
250                 return NOTIFY_OK;
251
252         switch (action) {
253         case INTEL_CONTEXT_SCHEDULE_IN:
254                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
255                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
256                         /* Switch ring from host to vGPU or vGPU to vGPU. */
257                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
258                                               workload->vgpu, ring_id);
259                         scheduler->engine_owner[ring_id] = workload->vgpu;
260                 } else
261                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
262                                       ring_id, workload->vgpu->id);
263                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
264                 atomic_set(&workload->shadow_ctx_active, 1);
265                 break;
266         case INTEL_CONTEXT_SCHEDULE_OUT:
267                 save_ring_hw_state(workload->vgpu, ring_id);
268                 atomic_set(&workload->shadow_ctx_active, 0);
269                 break;
270         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
271                 save_ring_hw_state(workload->vgpu, ring_id);
272                 break;
273         default:
274                 WARN_ON(1);
275                 return NOTIFY_OK;
276         }
277         wake_up(&workload->shadow_ctx_status_wq);
278         return NOTIFY_OK;
279 }
280
281 static void
282 shadow_context_descriptor_update(struct intel_context *ce,
283                                  struct intel_vgpu_workload *workload)
284 {
285         u64 desc = ce->lrc_desc;
286
287         /*
288          * Update bits 0-11 of the context descriptor which includes flags
289          * like GEN8_CTX_* cached in desc_template
290          */
291         desc &= U64_MAX << 12;
292         desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
293
294         desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
295         desc |= workload->ctx_desc.addressing_mode <<
296                 GEN8_CTX_ADDRESSING_MODE_SHIFT;
297
298         ce->lrc_desc = desc;
299 }
300
301 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
302 {
303         struct intel_vgpu *vgpu = workload->vgpu;
304         struct i915_request *req = workload->req;
305         void *shadow_ring_buffer_va;
306         u32 *cs;
307         int err;
308
309         if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
310                 intel_vgpu_restore_inhibit_context(vgpu, req);
311
312         /*
313          * To track whether a request has started on HW, we can emit a
314          * breadcrumb at the beginning of the request and check its
315          * timeline's HWSP to see if the breadcrumb has advanced past the
316          * start of this request. Actually, the request must have the
317          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
318          * scheduler might get a wrong state of it during reset. Since the
319          * requests from gvt always set the has_init_breadcrumb flag, here
320          * need to do the emit_init_breadcrumb for all the requests.
321          */
322         if (req->engine->emit_init_breadcrumb) {
323                 err = req->engine->emit_init_breadcrumb(req);
324                 if (err) {
325                         gvt_vgpu_err("fail to emit init breadcrumb\n");
326                         return err;
327                 }
328         }
329
330         /* allocate shadow ring buffer */
331         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
332         if (IS_ERR(cs)) {
333                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
334                         workload->rb_len);
335                 return PTR_ERR(cs);
336         }
337
338         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
339
340         /* get shadow ring buffer va */
341         workload->shadow_ring_buffer_va = cs;
342
343         memcpy(cs, shadow_ring_buffer_va,
344                         workload->rb_len);
345
346         cs += workload->rb_len / sizeof(u32);
347         intel_ring_advance(workload->req, cs);
348
349         return 0;
350 }
351
352 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
353 {
354         if (!wa_ctx->indirect_ctx.obj)
355                 return;
356
357         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
358         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
359
360         wa_ctx->indirect_ctx.obj = NULL;
361         wa_ctx->indirect_ctx.shadow_va = NULL;
362 }
363
364 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
365                                          struct i915_gem_context *ctx)
366 {
367         struct intel_vgpu_mm *mm = workload->shadow_mm;
368         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
369         int i = 0;
370
371         if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
372                 return -EINVAL;
373
374         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
375                 px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
376         } else {
377                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
378                         px_dma(ppgtt->pdp.page_directory[i]) =
379                                 mm->ppgtt_mm.shadow_pdps[i];
380                 }
381         }
382
383         return 0;
384 }
385
386 static int
387 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
388 {
389         struct intel_vgpu *vgpu = workload->vgpu;
390         struct intel_vgpu_submission *s = &vgpu->submission;
391         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
392         struct i915_request *rq;
393
394         lockdep_assert_held(&dev_priv->drm.struct_mutex);
395
396         if (workload->req)
397                 return 0;
398
399         rq = i915_request_create(s->shadow[workload->ring_id]);
400         if (IS_ERR(rq)) {
401                 gvt_vgpu_err("fail to allocate gem request\n");
402                 return PTR_ERR(rq);
403         }
404
405         workload->req = i915_request_get(rq);
406         return 0;
407 }
408
409 /**
410  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
411  * shadow it as well, include ringbuffer,wa_ctx and ctx.
412  * @workload: an abstract entity for each execlist submission.
413  *
414  * This function is called before the workload submitting to i915, to make
415  * sure the content of the workload is valid.
416  */
417 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
418 {
419         struct intel_vgpu *vgpu = workload->vgpu;
420         struct intel_vgpu_submission *s = &vgpu->submission;
421         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
422         int ret;
423
424         lockdep_assert_held(&dev_priv->drm.struct_mutex);
425
426         if (workload->shadow)
427                 return 0;
428
429         if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
430                 shadow_context_descriptor_update(s->shadow[workload->ring_id],
431                                                  workload);
432
433         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
434         if (ret)
435                 return ret;
436
437         if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
438                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
439                 if (ret)
440                         goto err_shadow;
441         }
442
443         workload->shadow = true;
444         return 0;
445 err_shadow:
446         release_shadow_wa_ctx(&workload->wa_ctx);
447         return ret;
448 }
449
450 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
451
452 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
453 {
454         struct intel_gvt *gvt = workload->vgpu->gvt;
455         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
456         struct intel_vgpu_shadow_bb *bb;
457         int ret;
458
459         list_for_each_entry(bb, &workload->shadow_bb, list) {
460                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
461                  * is only updated into ring_scan_buffer, not real ring address
462                  * allocated in later copy_workload_to_ring_buffer. pls be noted
463                  * shadow_ring_buffer_va is now pointed to real ring buffer va
464                  * in copy_workload_to_ring_buffer.
465                  */
466
467                 if (bb->bb_offset)
468                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
469                                 + bb->bb_offset;
470
471                 if (bb->ppgtt) {
472                         /* for non-priv bb, scan&shadow is only for
473                          * debugging purpose, so the content of shadow bb
474                          * is the same as original bb. Therefore,
475                          * here, rather than switch to shadow bb's gma
476                          * address, we directly use original batch buffer's
477                          * gma address, and send original bb to hardware
478                          * directly
479                          */
480                         if (bb->clflush & CLFLUSH_AFTER) {
481                                 drm_clflush_virt_range(bb->va,
482                                                 bb->obj->base.size);
483                                 bb->clflush &= ~CLFLUSH_AFTER;
484                         }
485                         i915_gem_obj_finish_shmem_access(bb->obj);
486                         bb->accessing = false;
487
488                 } else {
489                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
490                                         NULL, 0, 0, 0);
491                         if (IS_ERR(bb->vma)) {
492                                 ret = PTR_ERR(bb->vma);
493                                 goto err;
494                         }
495
496                         /* relocate shadow batch buffer */
497                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
498                         if (gmadr_bytes == 8)
499                                 bb->bb_start_cmd_va[2] = 0;
500
501                         /* No one is going to touch shadow bb from now on. */
502                         if (bb->clflush & CLFLUSH_AFTER) {
503                                 drm_clflush_virt_range(bb->va,
504                                                 bb->obj->base.size);
505                                 bb->clflush &= ~CLFLUSH_AFTER;
506                         }
507
508                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
509                                         false);
510                         if (ret)
511                                 goto err;
512
513                         i915_gem_obj_finish_shmem_access(bb->obj);
514                         bb->accessing = false;
515
516                         ret = i915_vma_move_to_active(bb->vma,
517                                                       workload->req,
518                                                       0);
519                         if (ret)
520                                 goto err;
521                 }
522         }
523         return 0;
524 err:
525         release_shadow_batch_buffer(workload);
526         return ret;
527 }
528
529 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
530 {
531         struct intel_vgpu_workload *workload =
532                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
533         struct i915_request *rq = workload->req;
534         struct execlist_ring_context *shadow_ring_context =
535                 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
536
537         shadow_ring_context->bb_per_ctx_ptr.val =
538                 (shadow_ring_context->bb_per_ctx_ptr.val &
539                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
540         shadow_ring_context->rcs_indirect_ctx.val =
541                 (shadow_ring_context->rcs_indirect_ctx.val &
542                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
543 }
544
545 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
546 {
547         struct i915_vma *vma;
548         unsigned char *per_ctx_va =
549                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
550                 wa_ctx->indirect_ctx.size;
551
552         if (wa_ctx->indirect_ctx.size == 0)
553                 return 0;
554
555         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
556                                        0, CACHELINE_BYTES, 0);
557         if (IS_ERR(vma))
558                 return PTR_ERR(vma);
559
560         /* FIXME: we are not tracking our pinned VMA leaving it
561          * up to the core to fix up the stray pin_count upon
562          * free.
563          */
564
565         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
566
567         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
568         memset(per_ctx_va, 0, CACHELINE_BYTES);
569
570         update_wa_ctx_2_shadow_ctx(wa_ctx);
571         return 0;
572 }
573
574 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
575 {
576         struct intel_vgpu *vgpu = workload->vgpu;
577         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
578         struct intel_vgpu_shadow_bb *bb, *pos;
579
580         if (list_empty(&workload->shadow_bb))
581                 return;
582
583         bb = list_first_entry(&workload->shadow_bb,
584                         struct intel_vgpu_shadow_bb, list);
585
586         mutex_lock(&dev_priv->drm.struct_mutex);
587
588         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
589                 if (bb->obj) {
590                         if (bb->accessing)
591                                 i915_gem_obj_finish_shmem_access(bb->obj);
592
593                         if (bb->va && !IS_ERR(bb->va))
594                                 i915_gem_object_unpin_map(bb->obj);
595
596                         if (bb->vma && !IS_ERR(bb->vma)) {
597                                 i915_vma_unpin(bb->vma);
598                                 i915_vma_close(bb->vma);
599                         }
600                         __i915_gem_object_release_unless_active(bb->obj);
601                 }
602                 list_del(&bb->list);
603                 kfree(bb);
604         }
605
606         mutex_unlock(&dev_priv->drm.struct_mutex);
607 }
608
609 static int prepare_workload(struct intel_vgpu_workload *workload)
610 {
611         struct intel_vgpu *vgpu = workload->vgpu;
612         int ret = 0;
613
614         ret = intel_vgpu_pin_mm(workload->shadow_mm);
615         if (ret) {
616                 gvt_vgpu_err("fail to vgpu pin mm\n");
617                 return ret;
618         }
619
620         update_shadow_pdps(workload);
621
622         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
623         if (ret) {
624                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
625                 goto err_unpin_mm;
626         }
627
628         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
629         if (ret) {
630                 gvt_vgpu_err("fail to flush post shadow\n");
631                 goto err_unpin_mm;
632         }
633
634         ret = copy_workload_to_ring_buffer(workload);
635         if (ret) {
636                 gvt_vgpu_err("fail to generate request\n");
637                 goto err_unpin_mm;
638         }
639
640         ret = prepare_shadow_batch_buffer(workload);
641         if (ret) {
642                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
643                 goto err_unpin_mm;
644         }
645
646         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
647         if (ret) {
648                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
649                 goto err_shadow_batch;
650         }
651
652         if (workload->prepare) {
653                 ret = workload->prepare(workload);
654                 if (ret)
655                         goto err_shadow_wa_ctx;
656         }
657
658         return 0;
659 err_shadow_wa_ctx:
660         release_shadow_wa_ctx(&workload->wa_ctx);
661 err_shadow_batch:
662         release_shadow_batch_buffer(workload);
663 err_unpin_mm:
664         intel_vgpu_unpin_mm(workload->shadow_mm);
665         return ret;
666 }
667
668 static int dispatch_workload(struct intel_vgpu_workload *workload)
669 {
670         struct intel_vgpu *vgpu = workload->vgpu;
671         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
672         struct intel_vgpu_submission *s = &vgpu->submission;
673         struct i915_request *rq;
674         int ring_id = workload->ring_id;
675         int ret;
676
677         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
678                 ring_id, workload);
679
680         mutex_lock(&vgpu->vgpu_lock);
681         mutex_lock(&dev_priv->drm.struct_mutex);
682
683         ret = set_context_ppgtt_from_shadow(workload,
684                                             s->shadow[ring_id]->gem_context);
685         if (ret < 0) {
686                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
687                 goto err_req;
688         }
689
690         ret = intel_gvt_workload_req_alloc(workload);
691         if (ret)
692                 goto err_req;
693
694         ret = intel_gvt_scan_and_shadow_workload(workload);
695         if (ret)
696                 goto out;
697
698         ret = populate_shadow_context(workload);
699         if (ret) {
700                 release_shadow_wa_ctx(&workload->wa_ctx);
701                 goto out;
702         }
703
704         ret = prepare_workload(workload);
705 out:
706         if (ret) {
707                 /* We might still need to add request with
708                  * clean ctx to retire it properly..
709                  */
710                 rq = fetch_and_zero(&workload->req);
711                 i915_request_put(rq);
712         }
713
714         if (!IS_ERR_OR_NULL(workload->req)) {
715                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
716                                 ring_id, workload->req);
717                 i915_request_add(workload->req);
718                 workload->dispatched = true;
719         }
720 err_req:
721         if (ret)
722                 workload->status = ret;
723         mutex_unlock(&dev_priv->drm.struct_mutex);
724         mutex_unlock(&vgpu->vgpu_lock);
725         return ret;
726 }
727
728 static struct intel_vgpu_workload *pick_next_workload(
729                 struct intel_gvt *gvt, int ring_id)
730 {
731         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
732         struct intel_vgpu_workload *workload = NULL;
733
734         mutex_lock(&gvt->sched_lock);
735
736         /*
737          * no current vgpu / will be scheduled out / no workload
738          * bail out
739          */
740         if (!scheduler->current_vgpu) {
741                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
742                 goto out;
743         }
744
745         if (scheduler->need_reschedule) {
746                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
747                 goto out;
748         }
749
750         if (!scheduler->current_vgpu->active ||
751             list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
752                 goto out;
753
754         /*
755          * still have current workload, maybe the workload disptacher
756          * fail to submit it for some reason, resubmit it.
757          */
758         if (scheduler->current_workload[ring_id]) {
759                 workload = scheduler->current_workload[ring_id];
760                 gvt_dbg_sched("ring id %d still have current workload %p\n",
761                                 ring_id, workload);
762                 goto out;
763         }
764
765         /*
766          * pick a workload as current workload
767          * once current workload is set, schedule policy routines
768          * will wait the current workload is finished when trying to
769          * schedule out a vgpu.
770          */
771         scheduler->current_workload[ring_id] = container_of(
772                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
773                         struct intel_vgpu_workload, list);
774
775         workload = scheduler->current_workload[ring_id];
776
777         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
778
779         atomic_inc(&workload->vgpu->submission.running_workload_num);
780 out:
781         mutex_unlock(&gvt->sched_lock);
782         return workload;
783 }
784
785 static void update_guest_context(struct intel_vgpu_workload *workload)
786 {
787         struct i915_request *rq = workload->req;
788         struct intel_vgpu *vgpu = workload->vgpu;
789         struct intel_gvt *gvt = vgpu->gvt;
790         struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
791         struct execlist_ring_context *shadow_ring_context;
792         struct page *page;
793         void *src;
794         unsigned long context_gpa, context_page_num;
795         int i;
796
797         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
798                       workload->ctx_desc.lrca);
799
800         context_page_num = rq->engine->context_size;
801         context_page_num = context_page_num >> PAGE_SHIFT;
802
803         if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
804                 context_page_num = 19;
805
806         i = 2;
807
808         while (i < context_page_num) {
809                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
810                                 (u32)((workload->ctx_desc.lrca + i) <<
811                                         I915_GTT_PAGE_SHIFT));
812                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
813                         gvt_vgpu_err("invalid guest context descriptor\n");
814                         return;
815                 }
816
817                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
818                 src = kmap(page);
819                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
820                                 I915_GTT_PAGE_SIZE);
821                 kunmap(page);
822                 i++;
823         }
824
825         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
826                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
827
828         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
829         shadow_ring_context = kmap(page);
830
831 #define COPY_REG(name) \
832         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
833                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
834
835         COPY_REG(ctx_ctrl);
836         COPY_REG(ctx_timestamp);
837
838 #undef COPY_REG
839
840         intel_gvt_hypervisor_write_gpa(vgpu,
841                         workload->ring_context_gpa +
842                         sizeof(*shadow_ring_context),
843                         (void *)shadow_ring_context +
844                         sizeof(*shadow_ring_context),
845                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
846
847         kunmap(page);
848 }
849
850 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
851                                 intel_engine_mask_t engine_mask)
852 {
853         struct intel_vgpu_submission *s = &vgpu->submission;
854         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
855         struct intel_engine_cs *engine;
856         struct intel_vgpu_workload *pos, *n;
857         intel_engine_mask_t tmp;
858
859         /* free the unsubmited workloads in the queues. */
860         for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
861                 list_for_each_entry_safe(pos, n,
862                         &s->workload_q_head[engine->id], list) {
863                         list_del_init(&pos->list);
864                         intel_vgpu_destroy_workload(pos);
865                 }
866                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
867         }
868 }
869
870 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
871 {
872         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
873         struct intel_vgpu_workload *workload =
874                 scheduler->current_workload[ring_id];
875         struct intel_vgpu *vgpu = workload->vgpu;
876         struct intel_vgpu_submission *s = &vgpu->submission;
877         struct i915_request *rq = workload->req;
878         int event;
879
880         mutex_lock(&vgpu->vgpu_lock);
881         mutex_lock(&gvt->sched_lock);
882
883         /* For the workload w/ request, needs to wait for the context
884          * switch to make sure request is completed.
885          * For the workload w/o request, directly complete the workload.
886          */
887         if (rq) {
888                 wait_event(workload->shadow_ctx_status_wq,
889                            !atomic_read(&workload->shadow_ctx_active));
890
891                 /* If this request caused GPU hang, req->fence.error will
892                  * be set to -EIO. Use -EIO to set workload status so
893                  * that when this request caused GPU hang, didn't trigger
894                  * context switch interrupt to guest.
895                  */
896                 if (likely(workload->status == -EINPROGRESS)) {
897                         if (workload->req->fence.error == -EIO)
898                                 workload->status = -EIO;
899                         else
900                                 workload->status = 0;
901                 }
902
903                 if (!workload->status &&
904                     !(vgpu->resetting_eng & BIT(ring_id))) {
905                         update_guest_context(workload);
906
907                         for_each_set_bit(event, workload->pending_events,
908                                          INTEL_GVT_EVENT_MAX)
909                                 intel_vgpu_trigger_virtual_event(vgpu, event);
910                 }
911
912                 i915_request_put(fetch_and_zero(&workload->req));
913         }
914
915         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
916                         ring_id, workload, workload->status);
917
918         scheduler->current_workload[ring_id] = NULL;
919
920         list_del_init(&workload->list);
921
922         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
923                 /* if workload->status is not successful means HW GPU
924                  * has occurred GPU hang or something wrong with i915/GVT,
925                  * and GVT won't inject context switch interrupt to guest.
926                  * So this error is a vGPU hang actually to the guest.
927                  * According to this we should emunlate a vGPU hang. If
928                  * there are pending workloads which are already submitted
929                  * from guest, we should clean them up like HW GPU does.
930                  *
931                  * if it is in middle of engine resetting, the pending
932                  * workloads won't be submitted to HW GPU and will be
933                  * cleaned up during the resetting process later, so doing
934                  * the workload clean up here doesn't have any impact.
935                  **/
936                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
937         }
938
939         workload->complete(workload);
940
941         atomic_dec(&s->running_workload_num);
942         wake_up(&scheduler->workload_complete_wq);
943
944         if (gvt->scheduler.need_reschedule)
945                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
946
947         mutex_unlock(&gvt->sched_lock);
948         mutex_unlock(&vgpu->vgpu_lock);
949 }
950
951 struct workload_thread_param {
952         struct intel_gvt *gvt;
953         int ring_id;
954 };
955
956 static int workload_thread(void *priv)
957 {
958         struct workload_thread_param *p = (struct workload_thread_param *)priv;
959         struct intel_gvt *gvt = p->gvt;
960         int ring_id = p->ring_id;
961         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
962         struct intel_vgpu_workload *workload = NULL;
963         struct intel_vgpu *vgpu = NULL;
964         int ret;
965         bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
966         DEFINE_WAIT_FUNC(wait, woken_wake_function);
967
968         kfree(p);
969
970         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
971
972         while (!kthread_should_stop()) {
973                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
974                 do {
975                         workload = pick_next_workload(gvt, ring_id);
976                         if (workload)
977                                 break;
978                         wait_woken(&wait, TASK_INTERRUPTIBLE,
979                                    MAX_SCHEDULE_TIMEOUT);
980                 } while (!kthread_should_stop());
981                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
982
983                 if (!workload)
984                         break;
985
986                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
987                                 workload->ring_id, workload,
988                                 workload->vgpu->id);
989
990                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
991                                 workload->ring_id, workload);
992
993                 if (need_force_wake)
994                         intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
995                                         FORCEWAKE_ALL);
996
997                 ret = dispatch_workload(workload);
998
999                 if (ret) {
1000                         vgpu = workload->vgpu;
1001                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1002                         goto complete;
1003                 }
1004
1005                 gvt_dbg_sched("ring id %d wait workload %p\n",
1006                                 workload->ring_id, workload);
1007                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1008
1009 complete:
1010                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1011                                 workload, workload->status);
1012
1013                 complete_current_workload(gvt, ring_id);
1014
1015                 if (need_force_wake)
1016                         intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1017                                         FORCEWAKE_ALL);
1018
1019                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1020                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1021         }
1022         return 0;
1023 }
1024
1025 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1026 {
1027         struct intel_vgpu_submission *s = &vgpu->submission;
1028         struct intel_gvt *gvt = vgpu->gvt;
1029         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1030
1031         if (atomic_read(&s->running_workload_num)) {
1032                 gvt_dbg_sched("wait vgpu idle\n");
1033
1034                 wait_event(scheduler->workload_complete_wq,
1035                                 !atomic_read(&s->running_workload_num));
1036         }
1037 }
1038
1039 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1040 {
1041         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1042         struct intel_engine_cs *engine;
1043         enum intel_engine_id i;
1044
1045         gvt_dbg_core("clean workload scheduler\n");
1046
1047         for_each_engine(engine, gvt->dev_priv, i) {
1048                 atomic_notifier_chain_unregister(
1049                                         &engine->context_status_notifier,
1050                                         &gvt->shadow_ctx_notifier_block[i]);
1051                 kthread_stop(scheduler->thread[i]);
1052         }
1053 }
1054
1055 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1056 {
1057         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1058         struct workload_thread_param *param = NULL;
1059         struct intel_engine_cs *engine;
1060         enum intel_engine_id i;
1061         int ret;
1062
1063         gvt_dbg_core("init workload scheduler\n");
1064
1065         init_waitqueue_head(&scheduler->workload_complete_wq);
1066
1067         for_each_engine(engine, gvt->dev_priv, i) {
1068                 init_waitqueue_head(&scheduler->waitq[i]);
1069
1070                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1071                 if (!param) {
1072                         ret = -ENOMEM;
1073                         goto err;
1074                 }
1075
1076                 param->gvt = gvt;
1077                 param->ring_id = i;
1078
1079                 scheduler->thread[i] = kthread_run(workload_thread, param,
1080                         "gvt workload %d", i);
1081                 if (IS_ERR(scheduler->thread[i])) {
1082                         gvt_err("fail to create workload thread\n");
1083                         ret = PTR_ERR(scheduler->thread[i]);
1084                         goto err;
1085                 }
1086
1087                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1088                                         shadow_context_status_change;
1089                 atomic_notifier_chain_register(&engine->context_status_notifier,
1090                                         &gvt->shadow_ctx_notifier_block[i]);
1091         }
1092         return 0;
1093 err:
1094         intel_gvt_clean_workload_scheduler(gvt);
1095         kfree(param);
1096         param = NULL;
1097         return ret;
1098 }
1099
1100 static void
1101 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1102                                 struct i915_hw_ppgtt *ppgtt)
1103 {
1104         int i;
1105
1106         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1107                 px_dma(&ppgtt->pml4) = s->i915_context_pml4;
1108         } else {
1109                 for (i = 0; i < GEN8_3LVL_PDPES; i++)
1110                         px_dma(ppgtt->pdp.page_directory[i]) =
1111                                 s->i915_context_pdps[i];
1112         }
1113 }
1114
1115 /**
1116  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1117  * @vgpu: a vGPU
1118  *
1119  * This function is called when a vGPU is being destroyed.
1120  *
1121  */
1122 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1123 {
1124         struct intel_vgpu_submission *s = &vgpu->submission;
1125         struct intel_engine_cs *engine;
1126         enum intel_engine_id id;
1127
1128         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1129
1130         i915_context_ppgtt_root_restore(s, s->shadow[0]->gem_context->ppgtt);
1131         for_each_engine(engine, vgpu->gvt->dev_priv, id)
1132                 intel_context_unpin(s->shadow[id]);
1133
1134         kmem_cache_destroy(s->workloads);
1135 }
1136
1137
1138 /**
1139  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1140  * @vgpu: a vGPU
1141  * @engine_mask: engines expected to be reset
1142  *
1143  * This function is called when a vGPU is being destroyed.
1144  *
1145  */
1146 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1147                                  intel_engine_mask_t engine_mask)
1148 {
1149         struct intel_vgpu_submission *s = &vgpu->submission;
1150
1151         if (!s->active)
1152                 return;
1153
1154         intel_vgpu_clean_workloads(vgpu, engine_mask);
1155         s->ops->reset(vgpu, engine_mask);
1156 }
1157
1158 static void
1159 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1160                              struct i915_hw_ppgtt *ppgtt)
1161 {
1162         int i;
1163
1164         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1165                 s->i915_context_pml4 = px_dma(&ppgtt->pml4);
1166         } else {
1167                 for (i = 0; i < GEN8_3LVL_PDPES; i++)
1168                         s->i915_context_pdps[i] =
1169                                 px_dma(ppgtt->pdp.page_directory[i]);
1170         }
1171 }
1172
1173 /**
1174  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1175  * @vgpu: a vGPU
1176  *
1177  * This function is called when a vGPU is being created.
1178  *
1179  * Returns:
1180  * Zero on success, negative error code if failed.
1181  *
1182  */
1183 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1184 {
1185         struct intel_vgpu_submission *s = &vgpu->submission;
1186         struct intel_engine_cs *engine;
1187         struct i915_gem_context *ctx;
1188         enum intel_engine_id i;
1189         int ret;
1190
1191         ctx = i915_gem_context_create_gvt(&vgpu->gvt->dev_priv->drm);
1192         if (IS_ERR(ctx))
1193                 return PTR_ERR(ctx);
1194
1195         i915_context_ppgtt_root_save(s, ctx->ppgtt);
1196
1197         for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1198                 struct intel_context *ce;
1199
1200                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1201                 s->shadow[i] = ERR_PTR(-EINVAL);
1202
1203                 ce = i915_gem_context_get_engine(ctx, i);
1204                 if (IS_ERR(ce)) {
1205                         ret = PTR_ERR(ce);
1206                         goto out_shadow_ctx;
1207                 }
1208
1209                 ret = intel_context_pin(ce);
1210                 intel_context_put(ce);
1211                 if (ret)
1212                         goto out_shadow_ctx;
1213
1214                 s->shadow[i] = ce;
1215         }
1216
1217         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1218
1219         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1220                                                   sizeof(struct intel_vgpu_workload), 0,
1221                                                   SLAB_HWCACHE_ALIGN,
1222                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1223                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1224                                                   NULL);
1225
1226         if (!s->workloads) {
1227                 ret = -ENOMEM;
1228                 goto out_shadow_ctx;
1229         }
1230
1231         atomic_set(&s->running_workload_num, 0);
1232         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1233
1234         i915_gem_context_put(ctx);
1235         return 0;
1236
1237 out_shadow_ctx:
1238         i915_context_ppgtt_root_restore(s, ctx->ppgtt);
1239         for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1240                 if (IS_ERR(s->shadow[i]))
1241                         break;
1242
1243                 intel_context_unpin(s->shadow[i]);
1244         }
1245         i915_gem_context_put(ctx);
1246         return ret;
1247 }
1248
1249 /**
1250  * intel_vgpu_select_submission_ops - select virtual submission interface
1251  * @vgpu: a vGPU
1252  * @engine_mask: either ALL_ENGINES or target engine mask
1253  * @interface: expected vGPU virtual submission interface
1254  *
1255  * This function is called when guest configures submission interface.
1256  *
1257  * Returns:
1258  * Zero on success, negative error code if failed.
1259  *
1260  */
1261 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1262                                      intel_engine_mask_t engine_mask,
1263                                      unsigned int interface)
1264 {
1265         struct intel_vgpu_submission *s = &vgpu->submission;
1266         const struct intel_vgpu_submission_ops *ops[] = {
1267                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1268                         &intel_vgpu_execlist_submission_ops,
1269         };
1270         int ret;
1271
1272         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1273                 return -EINVAL;
1274
1275         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1276                 return -EINVAL;
1277
1278         if (s->active)
1279                 s->ops->clean(vgpu, engine_mask);
1280
1281         if (interface == 0) {
1282                 s->ops = NULL;
1283                 s->virtual_submission_interface = 0;
1284                 s->active = false;
1285                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1286                 return 0;
1287         }
1288
1289         ret = ops[interface]->init(vgpu, engine_mask);
1290         if (ret)
1291                 return ret;
1292
1293         s->ops = ops[interface];
1294         s->virtual_submission_interface = interface;
1295         s->active = true;
1296
1297         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1298                         vgpu->id, s->ops->name);
1299
1300         return 0;
1301 }
1302
1303 /**
1304  * intel_vgpu_destroy_workload - destroy a vGPU workload
1305  * @workload: workload to destroy
1306  *
1307  * This function is called when destroy a vGPU workload.
1308  *
1309  */
1310 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1311 {
1312         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1313
1314         release_shadow_batch_buffer(workload);
1315         release_shadow_wa_ctx(&workload->wa_ctx);
1316
1317         if (workload->shadow_mm)
1318                 intel_vgpu_mm_put(workload->shadow_mm);
1319
1320         kmem_cache_free(s->workloads, workload);
1321 }
1322
1323 static struct intel_vgpu_workload *
1324 alloc_workload(struct intel_vgpu *vgpu)
1325 {
1326         struct intel_vgpu_submission *s = &vgpu->submission;
1327         struct intel_vgpu_workload *workload;
1328
1329         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1330         if (!workload)
1331                 return ERR_PTR(-ENOMEM);
1332
1333         INIT_LIST_HEAD(&workload->list);
1334         INIT_LIST_HEAD(&workload->shadow_bb);
1335
1336         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1337         atomic_set(&workload->shadow_ctx_active, 0);
1338
1339         workload->status = -EINPROGRESS;
1340         workload->vgpu = vgpu;
1341
1342         return workload;
1343 }
1344
1345 #define RING_CTX_OFF(x) \
1346         offsetof(struct execlist_ring_context, x)
1347
1348 static void read_guest_pdps(struct intel_vgpu *vgpu,
1349                 u64 ring_context_gpa, u32 pdp[8])
1350 {
1351         u64 gpa;
1352         int i;
1353
1354         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1355
1356         for (i = 0; i < 8; i++)
1357                 intel_gvt_hypervisor_read_gpa(vgpu,
1358                                 gpa + i * 8, &pdp[7 - i], 4);
1359 }
1360
1361 static int prepare_mm(struct intel_vgpu_workload *workload)
1362 {
1363         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1364         struct intel_vgpu_mm *mm;
1365         struct intel_vgpu *vgpu = workload->vgpu;
1366         enum intel_gvt_gtt_type root_entry_type;
1367         u64 pdps[GVT_RING_CTX_NR_PDPS];
1368
1369         switch (desc->addressing_mode) {
1370         case 1: /* legacy 32-bit */
1371                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1372                 break;
1373         case 3: /* legacy 64-bit */
1374                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1375                 break;
1376         default:
1377                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1378                 return -EINVAL;
1379         }
1380
1381         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1382
1383         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1384         if (IS_ERR(mm))
1385                 return PTR_ERR(mm);
1386
1387         workload->shadow_mm = mm;
1388         return 0;
1389 }
1390
1391 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1392                 ((a)->lrca == (b)->lrca))
1393
1394 #define get_last_workload(q) \
1395         (list_empty(q) ? NULL : container_of(q->prev, \
1396         struct intel_vgpu_workload, list))
1397 /**
1398  * intel_vgpu_create_workload - create a vGPU workload
1399  * @vgpu: a vGPU
1400  * @ring_id: ring index
1401  * @desc: a guest context descriptor
1402  *
1403  * This function is called when creating a vGPU workload.
1404  *
1405  * Returns:
1406  * struct intel_vgpu_workload * on success, negative error code in
1407  * pointer if failed.
1408  *
1409  */
1410 struct intel_vgpu_workload *
1411 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1412                            struct execlist_ctx_descriptor_format *desc)
1413 {
1414         struct intel_vgpu_submission *s = &vgpu->submission;
1415         struct list_head *q = workload_q_head(vgpu, ring_id);
1416         struct intel_vgpu_workload *last_workload = get_last_workload(q);
1417         struct intel_vgpu_workload *workload = NULL;
1418         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1419         u64 ring_context_gpa;
1420         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1421         int ret;
1422
1423         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1424                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1425         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1426                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1427                 return ERR_PTR(-EINVAL);
1428         }
1429
1430         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1431                         RING_CTX_OFF(ring_header.val), &head, 4);
1432
1433         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1434                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1435
1436         head &= RB_HEAD_OFF_MASK;
1437         tail &= RB_TAIL_OFF_MASK;
1438
1439         if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1440                 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1441                 gvt_dbg_el("ctx head %x real head %lx\n", head,
1442                                 last_workload->rb_tail);
1443                 /*
1444                  * cannot use guest context head pointer here,
1445                  * as it might not be updated at this time
1446                  */
1447                 head = last_workload->rb_tail;
1448         }
1449
1450         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1451
1452         /* record some ring buffer register values for scan and shadow */
1453         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1454                         RING_CTX_OFF(rb_start.val), &start, 4);
1455         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1456                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1457         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1458                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1459
1460         workload = alloc_workload(vgpu);
1461         if (IS_ERR(workload))
1462                 return workload;
1463
1464         workload->ring_id = ring_id;
1465         workload->ctx_desc = *desc;
1466         workload->ring_context_gpa = ring_context_gpa;
1467         workload->rb_head = head;
1468         workload->rb_tail = tail;
1469         workload->rb_start = start;
1470         workload->rb_ctl = ctl;
1471
1472         if (ring_id == RCS0) {
1473                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1474                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1475                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1476                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1477
1478                 workload->wa_ctx.indirect_ctx.guest_gma =
1479                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1480                 workload->wa_ctx.indirect_ctx.size =
1481                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1482                         CACHELINE_BYTES;
1483                 workload->wa_ctx.per_ctx.guest_gma =
1484                         per_ctx & PER_CTX_ADDR_MASK;
1485                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1486         }
1487
1488         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1489                         workload, ring_id, head, tail, start, ctl);
1490
1491         ret = prepare_mm(workload);
1492         if (ret) {
1493                 kmem_cache_free(s->workloads, workload);
1494                 return ERR_PTR(ret);
1495         }
1496
1497         /* Only scan and shadow the first workload in the queue
1498          * as there is only one pre-allocated buf-obj for shadow.
1499          */
1500         if (list_empty(workload_q_head(vgpu, ring_id))) {
1501                 intel_runtime_pm_get(dev_priv);
1502                 mutex_lock(&dev_priv->drm.struct_mutex);
1503                 ret = intel_gvt_scan_and_shadow_workload(workload);
1504                 mutex_unlock(&dev_priv->drm.struct_mutex);
1505                 intel_runtime_pm_put_unchecked(dev_priv);
1506         }
1507
1508         if (ret) {
1509                 if (vgpu_is_vm_unhealthy(ret))
1510                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1511                 intel_vgpu_destroy_workload(workload);
1512                 return ERR_PTR(ret);
1513         }
1514
1515         return workload;
1516 }
1517
1518 /**
1519  * intel_vgpu_queue_workload - Qeue a vGPU workload
1520  * @workload: the workload to queue in
1521  */
1522 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1523 {
1524         list_add_tail(&workload->list,
1525                 workload_q_head(workload->vgpu, workload->ring_id));
1526         intel_gvt_kick_schedule(workload->vgpu->gvt);
1527         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1528 }