Merge tag 'trace-v4.17-rc1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rosted...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58                 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59                                 addr, size);
60                 return false;
61         }
62         return true;
63 }
64
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69                  "invalid guest gmadr %llx\n", g_addr))
70                 return -EACCES;
71
72         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
74                           + (g_addr - vgpu_aperture_offset(vgpu));
75         else
76                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
77                           + (g_addr - vgpu_hidden_offset(vgpu));
78         return 0;
79 }
80
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85                  "invalid host gmadr %llx\n", h_addr))
86                 return -EACCES;
87
88         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
90                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91         else
92                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
93                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94         return 0;
95 }
96
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98                              unsigned long *h_index)
99 {
100         u64 h_addr;
101         int ret;
102
103         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104                                        &h_addr);
105         if (ret)
106                 return ret;
107
108         *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109         return 0;
110 }
111
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113                              unsigned long *g_index)
114 {
115         u64 g_addr;
116         int ret;
117
118         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119                                        &g_addr);
120         if (ret)
121                 return ret;
122
123         *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124         return 0;
125 }
126
127 #define gtt_type_is_entry(type) \
128         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131
132 #define gtt_type_is_pt(type) \
133         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134
135 #define gtt_type_is_pte_pt(type) \
136         (type == GTT_TYPE_PPGTT_PTE_PT)
137
138 #define gtt_type_is_root_pointer(type) \
139         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140
141 #define gtt_init_entry(e, t, p, v) do { \
142         (e)->type = t; \
143         (e)->pdev = p; \
144         memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162
163 struct gtt_type_table_entry {
164         int entry_type;
165         int pt_type;
166         int next_pt_type;
167         int pse_entry_type;
168 };
169
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171         [type] = { \
172                 .entry_type = e_type, \
173                 .pt_type = cpt_type, \
174                 .next_pt_type = npt_type, \
175                 .pse_entry_type = pse_type, \
176         }
177
178 static struct gtt_type_table_entry gtt_type_table[] = {
179         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181                         GTT_TYPE_INVALID,
182                         GTT_TYPE_PPGTT_PML4_PT,
183                         GTT_TYPE_INVALID),
184         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185                         GTT_TYPE_PPGTT_PML4_ENTRY,
186                         GTT_TYPE_PPGTT_PML4_PT,
187                         GTT_TYPE_PPGTT_PDP_PT,
188                         GTT_TYPE_INVALID),
189         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190                         GTT_TYPE_PPGTT_PML4_ENTRY,
191                         GTT_TYPE_PPGTT_PML4_PT,
192                         GTT_TYPE_PPGTT_PDP_PT,
193                         GTT_TYPE_INVALID),
194         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195                         GTT_TYPE_PPGTT_PDP_ENTRY,
196                         GTT_TYPE_PPGTT_PDP_PT,
197                         GTT_TYPE_PPGTT_PDE_PT,
198                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201                         GTT_TYPE_INVALID,
202                         GTT_TYPE_PPGTT_PDE_PT,
203                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205                         GTT_TYPE_PPGTT_PDP_ENTRY,
206                         GTT_TYPE_PPGTT_PDP_PT,
207                         GTT_TYPE_PPGTT_PDE_PT,
208                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210                         GTT_TYPE_PPGTT_PDE_ENTRY,
211                         GTT_TYPE_PPGTT_PDE_PT,
212                         GTT_TYPE_PPGTT_PTE_PT,
213                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215                         GTT_TYPE_PPGTT_PDE_ENTRY,
216                         GTT_TYPE_PPGTT_PDE_PT,
217                         GTT_TYPE_PPGTT_PTE_PT,
218                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
220                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
221                         GTT_TYPE_PPGTT_PTE_PT,
222                         GTT_TYPE_INVALID,
223                         GTT_TYPE_INVALID),
224         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
225                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226                         GTT_TYPE_PPGTT_PTE_PT,
227                         GTT_TYPE_INVALID,
228                         GTT_TYPE_INVALID),
229         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
230                         GTT_TYPE_PPGTT_PDE_ENTRY,
231                         GTT_TYPE_PPGTT_PDE_PT,
232                         GTT_TYPE_INVALID,
233                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
234         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
235                         GTT_TYPE_PPGTT_PDP_ENTRY,
236                         GTT_TYPE_PPGTT_PDP_PT,
237                         GTT_TYPE_INVALID,
238                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
239         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
240                         GTT_TYPE_GGTT_PTE,
241                         GTT_TYPE_INVALID,
242                         GTT_TYPE_INVALID,
243                         GTT_TYPE_INVALID),
244 };
245
246 static inline int get_next_pt_type(int type)
247 {
248         return gtt_type_table[type].next_pt_type;
249 }
250
251 static inline int get_pt_type(int type)
252 {
253         return gtt_type_table[type].pt_type;
254 }
255
256 static inline int get_entry_type(int type)
257 {
258         return gtt_type_table[type].entry_type;
259 }
260
261 static inline int get_pse_type(int type)
262 {
263         return gtt_type_table[type].pse_entry_type;
264 }
265
266 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
267 {
268         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
269
270         return readq(addr);
271 }
272
273 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
274 {
275         mmio_hw_access_pre(dev_priv);
276         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
277         mmio_hw_access_post(dev_priv);
278 }
279
280 static void write_pte64(struct drm_i915_private *dev_priv,
281                 unsigned long index, u64 pte)
282 {
283         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
284
285         writeq(pte, addr);
286 }
287
288 static inline int gtt_get_entry64(void *pt,
289                 struct intel_gvt_gtt_entry *e,
290                 unsigned long index, bool hypervisor_access, unsigned long gpa,
291                 struct intel_vgpu *vgpu)
292 {
293         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
294         int ret;
295
296         if (WARN_ON(info->gtt_entry_size != 8))
297                 return -EINVAL;
298
299         if (hypervisor_access) {
300                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
301                                 (index << info->gtt_entry_size_shift),
302                                 &e->val64, 8);
303                 if (WARN_ON(ret))
304                         return ret;
305         } else if (!pt) {
306                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
307         } else {
308                 e->val64 = *((u64 *)pt + index);
309         }
310         return 0;
311 }
312
313 static inline int gtt_set_entry64(void *pt,
314                 struct intel_gvt_gtt_entry *e,
315                 unsigned long index, bool hypervisor_access, unsigned long gpa,
316                 struct intel_vgpu *vgpu)
317 {
318         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
319         int ret;
320
321         if (WARN_ON(info->gtt_entry_size != 8))
322                 return -EINVAL;
323
324         if (hypervisor_access) {
325                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
326                                 (index << info->gtt_entry_size_shift),
327                                 &e->val64, 8);
328                 if (WARN_ON(ret))
329                         return ret;
330         } else if (!pt) {
331                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
332         } else {
333                 *((u64 *)pt + index) = e->val64;
334         }
335         return 0;
336 }
337
338 #define GTT_HAW 46
339
340 #define ADDR_1G_MASK    GENMASK_ULL(GTT_HAW - 1, 30)
341 #define ADDR_2M_MASK    GENMASK_ULL(GTT_HAW - 1, 21)
342 #define ADDR_4K_MASK    GENMASK_ULL(GTT_HAW - 1, 12)
343
344 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
345 {
346         unsigned long pfn;
347
348         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
349                 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
350         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
351                 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
352         else
353                 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
354         return pfn;
355 }
356
357 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
358 {
359         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
360                 e->val64 &= ~ADDR_1G_MASK;
361                 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
362         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
363                 e->val64 &= ~ADDR_2M_MASK;
364                 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
365         } else {
366                 e->val64 &= ~ADDR_4K_MASK;
367                 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
368         }
369
370         e->val64 |= (pfn << PAGE_SHIFT);
371 }
372
373 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
374 {
375         /* Entry doesn't have PSE bit. */
376         if (get_pse_type(e->type) == GTT_TYPE_INVALID)
377                 return false;
378
379         e->type = get_entry_type(e->type);
380         if (!(e->val64 & _PAGE_PSE))
381                 return false;
382
383         e->type = get_pse_type(e->type);
384         return true;
385 }
386
387 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
388 {
389         /*
390          * i915 writes PDP root pointer registers without present bit,
391          * it also works, so we need to treat root pointer entry
392          * specifically.
393          */
394         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
395                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
396                 return (e->val64 != 0);
397         else
398                 return (e->val64 & _PAGE_PRESENT);
399 }
400
401 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
402 {
403         e->val64 &= ~_PAGE_PRESENT;
404 }
405
406 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
407 {
408         e->val64 |= _PAGE_PRESENT;
409 }
410
411 /*
412  * Per-platform GMA routines.
413  */
414 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
415 {
416         unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
417
418         trace_gma_index(__func__, gma, x);
419         return x;
420 }
421
422 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
423 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
424 { \
425         unsigned long x = (exp); \
426         trace_gma_index(__func__, gma, x); \
427         return x; \
428 }
429
430 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
431 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
432 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
433 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
434 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
435
436 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
437         .get_entry = gtt_get_entry64,
438         .set_entry = gtt_set_entry64,
439         .clear_present = gtt_entry_clear_present,
440         .set_present = gtt_entry_set_present,
441         .test_present = gen8_gtt_test_present,
442         .test_pse = gen8_gtt_test_pse,
443         .get_pfn = gen8_gtt_get_pfn,
444         .set_pfn = gen8_gtt_set_pfn,
445 };
446
447 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
448         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
449         .gma_to_pte_index = gen8_gma_to_pte_index,
450         .gma_to_pde_index = gen8_gma_to_pde_index,
451         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
452         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
453         .gma_to_pml4_index = gen8_gma_to_pml4_index,
454 };
455
456 /*
457  * MM helpers.
458  */
459 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
460                 struct intel_gvt_gtt_entry *entry, unsigned long index,
461                 bool guest)
462 {
463         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
464
465         GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
466
467         entry->type = mm->ppgtt_mm.root_entry_type;
468         pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
469                            mm->ppgtt_mm.shadow_pdps,
470                            entry, index, false, 0, mm->vgpu);
471
472         pte_ops->test_pse(entry);
473 }
474
475 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
476                 struct intel_gvt_gtt_entry *entry, unsigned long index)
477 {
478         _ppgtt_get_root_entry(mm, entry, index, true);
479 }
480
481 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
482                 struct intel_gvt_gtt_entry *entry, unsigned long index)
483 {
484         _ppgtt_get_root_entry(mm, entry, index, false);
485 }
486
487 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
488                 struct intel_gvt_gtt_entry *entry, unsigned long index,
489                 bool guest)
490 {
491         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
492
493         pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
494                            mm->ppgtt_mm.shadow_pdps,
495                            entry, index, false, 0, mm->vgpu);
496 }
497
498 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
499                 struct intel_gvt_gtt_entry *entry, unsigned long index)
500 {
501         _ppgtt_set_root_entry(mm, entry, index, true);
502 }
503
504 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
505                 struct intel_gvt_gtt_entry *entry, unsigned long index)
506 {
507         _ppgtt_set_root_entry(mm, entry, index, false);
508 }
509
510 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
511                 struct intel_gvt_gtt_entry *entry, unsigned long index)
512 {
513         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
514
515         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
516
517         entry->type = GTT_TYPE_GGTT_PTE;
518         pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
519                            false, 0, mm->vgpu);
520 }
521
522 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
523                 struct intel_gvt_gtt_entry *entry, unsigned long index)
524 {
525         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
526
527         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
528
529         pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
530                            false, 0, mm->vgpu);
531 }
532
533 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
534                 struct intel_gvt_gtt_entry *entry, unsigned long index)
535 {
536         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
537
538         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
539
540         pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
541 }
542
543 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
544                 struct intel_gvt_gtt_entry *entry, unsigned long index)
545 {
546         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
547
548         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
549
550         pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
551 }
552
553 /*
554  * PPGTT shadow page table helpers.
555  */
556 static inline int ppgtt_spt_get_entry(
557                 struct intel_vgpu_ppgtt_spt *spt,
558                 void *page_table, int type,
559                 struct intel_gvt_gtt_entry *e, unsigned long index,
560                 bool guest)
561 {
562         struct intel_gvt *gvt = spt->vgpu->gvt;
563         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
564         int ret;
565
566         e->type = get_entry_type(type);
567
568         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
569                 return -EINVAL;
570
571         ret = ops->get_entry(page_table, e, index, guest,
572                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
573                         spt->vgpu);
574         if (ret)
575                 return ret;
576
577         ops->test_pse(e);
578
579         gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
580                     type, e->type, index, e->val64);
581         return 0;
582 }
583
584 static inline int ppgtt_spt_set_entry(
585                 struct intel_vgpu_ppgtt_spt *spt,
586                 void *page_table, int type,
587                 struct intel_gvt_gtt_entry *e, unsigned long index,
588                 bool guest)
589 {
590         struct intel_gvt *gvt = spt->vgpu->gvt;
591         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
592
593         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
594                 return -EINVAL;
595
596         gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
597                     type, e->type, index, e->val64);
598
599         return ops->set_entry(page_table, e, index, guest,
600                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
601                         spt->vgpu);
602 }
603
604 #define ppgtt_get_guest_entry(spt, e, index) \
605         ppgtt_spt_get_entry(spt, NULL, \
606                 spt->guest_page.type, e, index, true)
607
608 #define ppgtt_set_guest_entry(spt, e, index) \
609         ppgtt_spt_set_entry(spt, NULL, \
610                 spt->guest_page.type, e, index, true)
611
612 #define ppgtt_get_shadow_entry(spt, e, index) \
613         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
614                 spt->shadow_page.type, e, index, false)
615
616 #define ppgtt_set_shadow_entry(spt, e, index) \
617         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
618                 spt->shadow_page.type, e, index, false)
619
620 static void *alloc_spt(gfp_t gfp_mask)
621 {
622         struct intel_vgpu_ppgtt_spt *spt;
623
624         spt = kzalloc(sizeof(*spt), gfp_mask);
625         if (!spt)
626                 return NULL;
627
628         spt->shadow_page.page = alloc_page(gfp_mask);
629         if (!spt->shadow_page.page) {
630                 kfree(spt);
631                 return NULL;
632         }
633         return spt;
634 }
635
636 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
637 {
638         __free_page(spt->shadow_page.page);
639         kfree(spt);
640 }
641
642 static int detach_oos_page(struct intel_vgpu *vgpu,
643                 struct intel_vgpu_oos_page *oos_page);
644
645 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
646 {
647         struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
648
649         trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
650
651         dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
652                        PCI_DMA_BIDIRECTIONAL);
653
654         radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
655
656         if (spt->guest_page.oos_page)
657                 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
658
659         intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
660
661         list_del_init(&spt->post_shadow_list);
662         free_spt(spt);
663 }
664
665 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
666 {
667         struct intel_vgpu_ppgtt_spt *spt;
668         struct radix_tree_iter iter;
669         void **slot;
670
671         radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
672                 spt = radix_tree_deref_slot(slot);
673                 ppgtt_free_spt(spt);
674         }
675 }
676
677 static int ppgtt_handle_guest_write_page_table_bytes(
678                 struct intel_vgpu_ppgtt_spt *spt,
679                 u64 pa, void *p_data, int bytes);
680
681 static int ppgtt_write_protection_handler(
682                 struct intel_vgpu_page_track *page_track,
683                 u64 gpa, void *data, int bytes)
684 {
685         struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
686
687         int ret;
688
689         if (bytes != 4 && bytes != 8)
690                 return -EINVAL;
691
692         ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
693         if (ret)
694                 return ret;
695         return ret;
696 }
697
698 /* Find a spt by guest gfn. */
699 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
700                 struct intel_vgpu *vgpu, unsigned long gfn)
701 {
702         struct intel_vgpu_page_track *track;
703
704         track = intel_vgpu_find_page_track(vgpu, gfn);
705         if (track && track->handler == ppgtt_write_protection_handler)
706                 return track->priv_data;
707
708         return NULL;
709 }
710
711 /* Find the spt by shadow page mfn. */
712 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
713                 struct intel_vgpu *vgpu, unsigned long mfn)
714 {
715         return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
716 }
717
718 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
719
720 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
721                 struct intel_vgpu *vgpu, int type, unsigned long gfn)
722 {
723         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
724         struct intel_vgpu_ppgtt_spt *spt = NULL;
725         dma_addr_t daddr;
726         int ret;
727
728 retry:
729         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
730         if (!spt) {
731                 if (reclaim_one_ppgtt_mm(vgpu->gvt))
732                         goto retry;
733
734                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
735                 return ERR_PTR(-ENOMEM);
736         }
737
738         spt->vgpu = vgpu;
739         atomic_set(&spt->refcount, 1);
740         INIT_LIST_HEAD(&spt->post_shadow_list);
741
742         /*
743          * Init shadow_page.
744          */
745         spt->shadow_page.type = type;
746         daddr = dma_map_page(kdev, spt->shadow_page.page,
747                              0, 4096, PCI_DMA_BIDIRECTIONAL);
748         if (dma_mapping_error(kdev, daddr)) {
749                 gvt_vgpu_err("fail to map dma addr\n");
750                 ret = -EINVAL;
751                 goto err_free_spt;
752         }
753         spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
754         spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
755
756         /*
757          * Init guest_page.
758          */
759         spt->guest_page.type = type;
760         spt->guest_page.gfn = gfn;
761
762         ret = intel_vgpu_register_page_track(vgpu, spt->guest_page.gfn,
763                                         ppgtt_write_protection_handler, spt);
764         if (ret)
765                 goto err_unmap_dma;
766
767         ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
768         if (ret)
769                 goto err_unreg_page_track;
770
771         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
772         return spt;
773
774 err_unreg_page_track:
775         intel_vgpu_unregister_page_track(vgpu, spt->guest_page.gfn);
776 err_unmap_dma:
777         dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
778 err_free_spt:
779         free_spt(spt);
780         return ERR_PTR(ret);
781 }
782
783 #define pt_entry_size_shift(spt) \
784         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
785
786 #define pt_entries(spt) \
787         (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
788
789 #define for_each_present_guest_entry(spt, e, i) \
790         for (i = 0; i < pt_entries(spt); i++) \
791                 if (!ppgtt_get_guest_entry(spt, e, i) && \
792                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
793
794 #define for_each_present_shadow_entry(spt, e, i) \
795         for (i = 0; i < pt_entries(spt); i++) \
796                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
797                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
798
799 static void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
800 {
801         int v = atomic_read(&spt->refcount);
802
803         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
804
805         atomic_inc(&spt->refcount);
806 }
807
808 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
809
810 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
811                 struct intel_gvt_gtt_entry *e)
812 {
813         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
814         struct intel_vgpu_ppgtt_spt *s;
815         intel_gvt_gtt_type_t cur_pt_type;
816
817         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
818
819         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
820                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
821                 cur_pt_type = get_next_pt_type(e->type) + 1;
822                 if (ops->get_pfn(e) ==
823                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
824                         return 0;
825         }
826         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
827         if (!s) {
828                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
829                                 ops->get_pfn(e));
830                 return -ENXIO;
831         }
832         return ppgtt_invalidate_spt(s);
833 }
834
835 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
836                 struct intel_gvt_gtt_entry *entry)
837 {
838         struct intel_vgpu *vgpu = spt->vgpu;
839         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
840         unsigned long pfn;
841         int type;
842
843         pfn = ops->get_pfn(entry);
844         type = spt->shadow_page.type;
845
846         if (pfn == vgpu->gtt.scratch_pt[type].page_mfn)
847                 return;
848
849         intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
850 }
851
852 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
853 {
854         struct intel_vgpu *vgpu = spt->vgpu;
855         struct intel_gvt_gtt_entry e;
856         unsigned long index;
857         int ret;
858         int v = atomic_read(&spt->refcount);
859
860         trace_spt_change(spt->vgpu->id, "die", spt,
861                         spt->guest_page.gfn, spt->shadow_page.type);
862
863         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
864
865         if (atomic_dec_return(&spt->refcount) > 0)
866                 return 0;
867
868         for_each_present_shadow_entry(spt, &e, index) {
869                 switch (e.type) {
870                 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
871                         gvt_vdbg_mm("invalidate 4K entry\n");
872                         ppgtt_invalidate_pte(spt, &e);
873                         break;
874                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
875                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
876                         WARN(1, "GVT doesn't support 2M/1GB page\n");
877                         continue;
878                 case GTT_TYPE_PPGTT_PML4_ENTRY:
879                 case GTT_TYPE_PPGTT_PDP_ENTRY:
880                 case GTT_TYPE_PPGTT_PDE_ENTRY:
881                         gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
882                         ret = ppgtt_invalidate_spt_by_shadow_entry(
883                                         spt->vgpu, &e);
884                         if (ret)
885                                 goto fail;
886                         break;
887                 default:
888                         GEM_BUG_ON(1);
889                 }
890         }
891
892         trace_spt_change(spt->vgpu->id, "release", spt,
893                          spt->guest_page.gfn, spt->shadow_page.type);
894         ppgtt_free_spt(spt);
895         return 0;
896 fail:
897         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
898                         spt, e.val64, e.type);
899         return ret;
900 }
901
902 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
903
904 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
905                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
906 {
907         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
908         struct intel_vgpu_ppgtt_spt *spt = NULL;
909         int ret;
910
911         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
912
913         spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
914         if (spt)
915                 ppgtt_get_spt(spt);
916         else {
917                 int type = get_next_pt_type(we->type);
918
919                 spt = ppgtt_alloc_spt(vgpu, type, ops->get_pfn(we));
920                 if (IS_ERR(spt)) {
921                         ret = PTR_ERR(spt);
922                         goto fail;
923                 }
924
925                 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
926                 if (ret)
927                         goto fail;
928
929                 ret = ppgtt_populate_spt(spt);
930                 if (ret)
931                         goto fail;
932
933                 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
934                                  spt->shadow_page.type);
935         }
936         return spt;
937 fail:
938         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
939                      spt, we->val64, we->type);
940         return ERR_PTR(ret);
941 }
942
943 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
944                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
945 {
946         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
947
948         se->type = ge->type;
949         se->val64 = ge->val64;
950
951         ops->set_pfn(se, s->shadow_page.mfn);
952 }
953
954 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
955         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
956         struct intel_gvt_gtt_entry *ge)
957 {
958         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
959         struct intel_gvt_gtt_entry se = *ge;
960         unsigned long gfn;
961         dma_addr_t dma_addr;
962         int ret;
963
964         if (!pte_ops->test_present(ge))
965                 return 0;
966
967         gfn = pte_ops->get_pfn(ge);
968
969         switch (ge->type) {
970         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
971                 gvt_vdbg_mm("shadow 4K gtt entry\n");
972                 break;
973         case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
974         case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
975                 gvt_vgpu_err("GVT doesn't support 2M/1GB entry\n");
976                 return -EINVAL;
977         default:
978                 GEM_BUG_ON(1);
979         };
980
981         /* direct shadow */
982         ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, &dma_addr);
983         if (ret)
984                 return -ENXIO;
985
986         pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
987         ppgtt_set_shadow_entry(spt, &se, index);
988         return 0;
989 }
990
991 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
992 {
993         struct intel_vgpu *vgpu = spt->vgpu;
994         struct intel_gvt *gvt = vgpu->gvt;
995         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
996         struct intel_vgpu_ppgtt_spt *s;
997         struct intel_gvt_gtt_entry se, ge;
998         unsigned long gfn, i;
999         int ret;
1000
1001         trace_spt_change(spt->vgpu->id, "born", spt,
1002                          spt->guest_page.gfn, spt->shadow_page.type);
1003
1004         for_each_present_guest_entry(spt, &ge, i) {
1005                 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1006                         s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1007                         if (IS_ERR(s)) {
1008                                 ret = PTR_ERR(s);
1009                                 goto fail;
1010                         }
1011                         ppgtt_get_shadow_entry(spt, &se, i);
1012                         ppgtt_generate_shadow_entry(&se, s, &ge);
1013                         ppgtt_set_shadow_entry(spt, &se, i);
1014                 } else {
1015                         gfn = ops->get_pfn(&ge);
1016                         if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1017                                 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1018                                 ppgtt_set_shadow_entry(spt, &se, i);
1019                                 continue;
1020                         }
1021
1022                         ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1023                         if (ret)
1024                                 goto fail;
1025                 }
1026         }
1027         return 0;
1028 fail:
1029         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1030                         spt, ge.val64, ge.type);
1031         return ret;
1032 }
1033
1034 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1035                 struct intel_gvt_gtt_entry *se, unsigned long index)
1036 {
1037         struct intel_vgpu *vgpu = spt->vgpu;
1038         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1039         int ret;
1040
1041         trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1042                                spt->shadow_page.type, se->val64, index);
1043
1044         gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1045                     se->type, index, se->val64);
1046
1047         if (!ops->test_present(se))
1048                 return 0;
1049
1050         if (ops->get_pfn(se) ==
1051             vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1052                 return 0;
1053
1054         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1055                 struct intel_vgpu_ppgtt_spt *s =
1056                         intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1057                 if (!s) {
1058                         gvt_vgpu_err("fail to find guest page\n");
1059                         ret = -ENXIO;
1060                         goto fail;
1061                 }
1062                 ret = ppgtt_invalidate_spt(s);
1063                 if (ret)
1064                         goto fail;
1065         } else
1066                 ppgtt_invalidate_pte(spt, se);
1067
1068         return 0;
1069 fail:
1070         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1071                         spt, se->val64, se->type);
1072         return ret;
1073 }
1074
1075 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1076                 struct intel_gvt_gtt_entry *we, unsigned long index)
1077 {
1078         struct intel_vgpu *vgpu = spt->vgpu;
1079         struct intel_gvt_gtt_entry m;
1080         struct intel_vgpu_ppgtt_spt *s;
1081         int ret;
1082
1083         trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1084                                we->val64, index);
1085
1086         gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1087                     we->type, index, we->val64);
1088
1089         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1090                 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1091                 if (IS_ERR(s)) {
1092                         ret = PTR_ERR(s);
1093                         goto fail;
1094                 }
1095                 ppgtt_get_shadow_entry(spt, &m, index);
1096                 ppgtt_generate_shadow_entry(&m, s, we);
1097                 ppgtt_set_shadow_entry(spt, &m, index);
1098         } else {
1099                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1100                 if (ret)
1101                         goto fail;
1102         }
1103         return 0;
1104 fail:
1105         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1106                 spt, we->val64, we->type);
1107         return ret;
1108 }
1109
1110 static int sync_oos_page(struct intel_vgpu *vgpu,
1111                 struct intel_vgpu_oos_page *oos_page)
1112 {
1113         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1114         struct intel_gvt *gvt = vgpu->gvt;
1115         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1116         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1117         struct intel_gvt_gtt_entry old, new;
1118         int index;
1119         int ret;
1120
1121         trace_oos_change(vgpu->id, "sync", oos_page->id,
1122                          spt, spt->guest_page.type);
1123
1124         old.type = new.type = get_entry_type(spt->guest_page.type);
1125         old.val64 = new.val64 = 0;
1126
1127         for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1128                                 info->gtt_entry_size_shift); index++) {
1129                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1130                 ops->get_entry(NULL, &new, index, true,
1131                                spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1132
1133                 if (old.val64 == new.val64
1134                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1135                         continue;
1136
1137                 trace_oos_sync(vgpu->id, oos_page->id,
1138                                 spt, spt->guest_page.type,
1139                                 new.val64, index);
1140
1141                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1142                 if (ret)
1143                         return ret;
1144
1145                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1146         }
1147
1148         spt->guest_page.write_cnt = 0;
1149         list_del_init(&spt->post_shadow_list);
1150         return 0;
1151 }
1152
1153 static int detach_oos_page(struct intel_vgpu *vgpu,
1154                 struct intel_vgpu_oos_page *oos_page)
1155 {
1156         struct intel_gvt *gvt = vgpu->gvt;
1157         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1158
1159         trace_oos_change(vgpu->id, "detach", oos_page->id,
1160                          spt, spt->guest_page.type);
1161
1162         spt->guest_page.write_cnt = 0;
1163         spt->guest_page.oos_page = NULL;
1164         oos_page->spt = NULL;
1165
1166         list_del_init(&oos_page->vm_list);
1167         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1168
1169         return 0;
1170 }
1171
1172 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1173                 struct intel_vgpu_ppgtt_spt *spt)
1174 {
1175         struct intel_gvt *gvt = spt->vgpu->gvt;
1176         int ret;
1177
1178         ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1179                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1180                         oos_page->mem, I915_GTT_PAGE_SIZE);
1181         if (ret)
1182                 return ret;
1183
1184         oos_page->spt = spt;
1185         spt->guest_page.oos_page = oos_page;
1186
1187         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1188
1189         trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1190                          spt, spt->guest_page.type);
1191         return 0;
1192 }
1193
1194 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1195 {
1196         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1197         int ret;
1198
1199         ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1200         if (ret)
1201                 return ret;
1202
1203         trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1204                          spt, spt->guest_page.type);
1205
1206         list_del_init(&oos_page->vm_list);
1207         return sync_oos_page(spt->vgpu, oos_page);
1208 }
1209
1210 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1211 {
1212         struct intel_gvt *gvt = spt->vgpu->gvt;
1213         struct intel_gvt_gtt *gtt = &gvt->gtt;
1214         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1215         int ret;
1216
1217         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1218
1219         if (list_empty(&gtt->oos_page_free_list_head)) {
1220                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1221                         struct intel_vgpu_oos_page, list);
1222                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1223                 if (ret)
1224                         return ret;
1225                 ret = detach_oos_page(spt->vgpu, oos_page);
1226                 if (ret)
1227                         return ret;
1228         } else
1229                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1230                         struct intel_vgpu_oos_page, list);
1231         return attach_oos_page(oos_page, spt);
1232 }
1233
1234 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1235 {
1236         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1237
1238         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1239                 return -EINVAL;
1240
1241         trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1242                          spt, spt->guest_page.type);
1243
1244         list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1245         return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1246 }
1247
1248 /**
1249  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1250  * @vgpu: a vGPU
1251  *
1252  * This function is called before submitting a guest workload to host,
1253  * to sync all the out-of-synced shadow for vGPU
1254  *
1255  * Returns:
1256  * Zero on success, negative error code if failed.
1257  */
1258 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1259 {
1260         struct list_head *pos, *n;
1261         struct intel_vgpu_oos_page *oos_page;
1262         int ret;
1263
1264         if (!enable_out_of_sync)
1265                 return 0;
1266
1267         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1268                 oos_page = container_of(pos,
1269                                 struct intel_vgpu_oos_page, vm_list);
1270                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1271                 if (ret)
1272                         return ret;
1273         }
1274         return 0;
1275 }
1276
1277 /*
1278  * The heart of PPGTT shadow page table.
1279  */
1280 static int ppgtt_handle_guest_write_page_table(
1281                 struct intel_vgpu_ppgtt_spt *spt,
1282                 struct intel_gvt_gtt_entry *we, unsigned long index)
1283 {
1284         struct intel_vgpu *vgpu = spt->vgpu;
1285         int type = spt->shadow_page.type;
1286         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1287         struct intel_gvt_gtt_entry old_se;
1288         int new_present;
1289         int ret;
1290
1291         new_present = ops->test_present(we);
1292
1293         /*
1294          * Adding the new entry first and then removing the old one, that can
1295          * guarantee the ppgtt table is validated during the window between
1296          * adding and removal.
1297          */
1298         ppgtt_get_shadow_entry(spt, &old_se, index);
1299
1300         if (new_present) {
1301                 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1302                 if (ret)
1303                         goto fail;
1304         }
1305
1306         ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1307         if (ret)
1308                 goto fail;
1309
1310         if (!new_present) {
1311                 ops->set_pfn(&old_se, vgpu->gtt.scratch_pt[type].page_mfn);
1312                 ppgtt_set_shadow_entry(spt, &old_se, index);
1313         }
1314
1315         return 0;
1316 fail:
1317         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1318                         spt, we->val64, we->type);
1319         return ret;
1320 }
1321
1322
1323
1324 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1325 {
1326         return enable_out_of_sync
1327                 && gtt_type_is_pte_pt(spt->guest_page.type)
1328                 && spt->guest_page.write_cnt >= 2;
1329 }
1330
1331 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1332                 unsigned long index)
1333 {
1334         set_bit(index, spt->post_shadow_bitmap);
1335         if (!list_empty(&spt->post_shadow_list))
1336                 return;
1337
1338         list_add_tail(&spt->post_shadow_list,
1339                         &spt->vgpu->gtt.post_shadow_list_head);
1340 }
1341
1342 /**
1343  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1344  * @vgpu: a vGPU
1345  *
1346  * This function is called before submitting a guest workload to host,
1347  * to flush all the post shadows for a vGPU.
1348  *
1349  * Returns:
1350  * Zero on success, negative error code if failed.
1351  */
1352 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1353 {
1354         struct list_head *pos, *n;
1355         struct intel_vgpu_ppgtt_spt *spt;
1356         struct intel_gvt_gtt_entry ge;
1357         unsigned long index;
1358         int ret;
1359
1360         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1361                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1362                                 post_shadow_list);
1363
1364                 for_each_set_bit(index, spt->post_shadow_bitmap,
1365                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1366                         ppgtt_get_guest_entry(spt, &ge, index);
1367
1368                         ret = ppgtt_handle_guest_write_page_table(spt,
1369                                                         &ge, index);
1370                         if (ret)
1371                                 return ret;
1372                         clear_bit(index, spt->post_shadow_bitmap);
1373                 }
1374                 list_del_init(&spt->post_shadow_list);
1375         }
1376         return 0;
1377 }
1378
1379 static int ppgtt_handle_guest_write_page_table_bytes(
1380                 struct intel_vgpu_ppgtt_spt *spt,
1381                 u64 pa, void *p_data, int bytes)
1382 {
1383         struct intel_vgpu *vgpu = spt->vgpu;
1384         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1385         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1386         struct intel_gvt_gtt_entry we, se;
1387         unsigned long index;
1388         int ret;
1389
1390         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1391
1392         ppgtt_get_guest_entry(spt, &we, index);
1393
1394         ops->test_pse(&we);
1395
1396         if (bytes == info->gtt_entry_size) {
1397                 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1398                 if (ret)
1399                         return ret;
1400         } else {
1401                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1402                         int type = spt->shadow_page.type;
1403
1404                         ppgtt_get_shadow_entry(spt, &se, index);
1405                         ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1406                         if (ret)
1407                                 return ret;
1408                         ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1409                         ppgtt_set_shadow_entry(spt, &se, index);
1410                 }
1411                 ppgtt_set_post_shadow(spt, index);
1412         }
1413
1414         if (!enable_out_of_sync)
1415                 return 0;
1416
1417         spt->guest_page.write_cnt++;
1418
1419         if (spt->guest_page.oos_page)
1420                 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1421                                 false, 0, vgpu);
1422
1423         if (can_do_out_of_sync(spt)) {
1424                 if (!spt->guest_page.oos_page)
1425                         ppgtt_allocate_oos_page(spt);
1426
1427                 ret = ppgtt_set_guest_page_oos(spt);
1428                 if (ret < 0)
1429                         return ret;
1430         }
1431         return 0;
1432 }
1433
1434 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1435 {
1436         struct intel_vgpu *vgpu = mm->vgpu;
1437         struct intel_gvt *gvt = vgpu->gvt;
1438         struct intel_gvt_gtt *gtt = &gvt->gtt;
1439         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1440         struct intel_gvt_gtt_entry se;
1441         int index;
1442
1443         if (!mm->ppgtt_mm.shadowed)
1444                 return;
1445
1446         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1447                 ppgtt_get_shadow_root_entry(mm, &se, index);
1448
1449                 if (!ops->test_present(&se))
1450                         continue;
1451
1452                 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1453                 se.val64 = 0;
1454                 ppgtt_set_shadow_root_entry(mm, &se, index);
1455
1456                 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1457                                        NULL, se.type, se.val64, index);
1458         }
1459
1460         mm->ppgtt_mm.shadowed = false;
1461 }
1462
1463
1464 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1465 {
1466         struct intel_vgpu *vgpu = mm->vgpu;
1467         struct intel_gvt *gvt = vgpu->gvt;
1468         struct intel_gvt_gtt *gtt = &gvt->gtt;
1469         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1470         struct intel_vgpu_ppgtt_spt *spt;
1471         struct intel_gvt_gtt_entry ge, se;
1472         int index, ret;
1473
1474         if (mm->ppgtt_mm.shadowed)
1475                 return 0;
1476
1477         mm->ppgtt_mm.shadowed = true;
1478
1479         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1480                 ppgtt_get_guest_root_entry(mm, &ge, index);
1481
1482                 if (!ops->test_present(&ge))
1483                         continue;
1484
1485                 trace_spt_guest_change(vgpu->id, __func__, NULL,
1486                                        ge.type, ge.val64, index);
1487
1488                 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1489                 if (IS_ERR(spt)) {
1490                         gvt_vgpu_err("fail to populate guest root pointer\n");
1491                         ret = PTR_ERR(spt);
1492                         goto fail;
1493                 }
1494                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1495                 ppgtt_set_shadow_root_entry(mm, &se, index);
1496
1497                 trace_spt_guest_change(vgpu->id, "populate root pointer",
1498                                        NULL, se.type, se.val64, index);
1499         }
1500
1501         return 0;
1502 fail:
1503         invalidate_ppgtt_mm(mm);
1504         return ret;
1505 }
1506
1507 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1508 {
1509         struct intel_vgpu_mm *mm;
1510
1511         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1512         if (!mm)
1513                 return NULL;
1514
1515         mm->vgpu = vgpu;
1516         kref_init(&mm->ref);
1517         atomic_set(&mm->pincount, 0);
1518
1519         return mm;
1520 }
1521
1522 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1523 {
1524         kfree(mm);
1525 }
1526
1527 /**
1528  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1529  * @vgpu: a vGPU
1530  * @root_entry_type: ppgtt root entry type
1531  * @pdps: guest pdps.
1532  *
1533  * This function is used to create a ppgtt mm object for a vGPU.
1534  *
1535  * Returns:
1536  * Zero on success, negative error code in pointer if failed.
1537  */
1538 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1539                 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1540 {
1541         struct intel_gvt *gvt = vgpu->gvt;
1542         struct intel_vgpu_mm *mm;
1543         int ret;
1544
1545         mm = vgpu_alloc_mm(vgpu);
1546         if (!mm)
1547                 return ERR_PTR(-ENOMEM);
1548
1549         mm->type = INTEL_GVT_MM_PPGTT;
1550
1551         GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1552                    root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1553         mm->ppgtt_mm.root_entry_type = root_entry_type;
1554
1555         INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1556         INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1557
1558         if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1559                 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1560         else
1561                 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1562                        sizeof(mm->ppgtt_mm.guest_pdps));
1563
1564         ret = shadow_ppgtt_mm(mm);
1565         if (ret) {
1566                 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1567                 vgpu_free_mm(mm);
1568                 return ERR_PTR(ret);
1569         }
1570
1571         list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1572         list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1573         return mm;
1574 }
1575
1576 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1577 {
1578         struct intel_vgpu_mm *mm;
1579         unsigned long nr_entries;
1580
1581         mm = vgpu_alloc_mm(vgpu);
1582         if (!mm)
1583                 return ERR_PTR(-ENOMEM);
1584
1585         mm->type = INTEL_GVT_MM_GGTT;
1586
1587         nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1588         mm->ggtt_mm.virtual_ggtt = vzalloc(nr_entries *
1589                                         vgpu->gvt->device_info.gtt_entry_size);
1590         if (!mm->ggtt_mm.virtual_ggtt) {
1591                 vgpu_free_mm(mm);
1592                 return ERR_PTR(-ENOMEM);
1593         }
1594
1595         return mm;
1596 }
1597
1598 /**
1599  * _intel_vgpu_mm_release - destroy a mm object
1600  * @mm_ref: a kref object
1601  *
1602  * This function is used to destroy a mm object for vGPU
1603  *
1604  */
1605 void _intel_vgpu_mm_release(struct kref *mm_ref)
1606 {
1607         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1608
1609         if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1610                 gvt_err("vgpu mm pin count bug detected\n");
1611
1612         if (mm->type == INTEL_GVT_MM_PPGTT) {
1613                 list_del(&mm->ppgtt_mm.list);
1614                 list_del(&mm->ppgtt_mm.lru_list);
1615                 invalidate_ppgtt_mm(mm);
1616         } else {
1617                 vfree(mm->ggtt_mm.virtual_ggtt);
1618         }
1619
1620         vgpu_free_mm(mm);
1621 }
1622
1623 /**
1624  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1625  * @mm: a vGPU mm object
1626  *
1627  * This function is called when user doesn't want to use a vGPU mm object
1628  */
1629 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1630 {
1631         atomic_dec(&mm->pincount);
1632 }
1633
1634 /**
1635  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1636  * @vgpu: a vGPU
1637  *
1638  * This function is called when user wants to use a vGPU mm object. If this
1639  * mm object hasn't been shadowed yet, the shadow will be populated at this
1640  * time.
1641  *
1642  * Returns:
1643  * Zero on success, negative error code if failed.
1644  */
1645 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1646 {
1647         int ret;
1648
1649         atomic_inc(&mm->pincount);
1650
1651         if (mm->type == INTEL_GVT_MM_PPGTT) {
1652                 ret = shadow_ppgtt_mm(mm);
1653                 if (ret)
1654                         return ret;
1655
1656                 list_move_tail(&mm->ppgtt_mm.lru_list,
1657                                &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1658
1659         }
1660
1661         return 0;
1662 }
1663
1664 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1665 {
1666         struct intel_vgpu_mm *mm;
1667         struct list_head *pos, *n;
1668
1669         list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1670                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1671
1672                 if (atomic_read(&mm->pincount))
1673                         continue;
1674
1675                 list_del_init(&mm->ppgtt_mm.lru_list);
1676                 invalidate_ppgtt_mm(mm);
1677                 return 1;
1678         }
1679         return 0;
1680 }
1681
1682 /*
1683  * GMA translation APIs.
1684  */
1685 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1686                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1687 {
1688         struct intel_vgpu *vgpu = mm->vgpu;
1689         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1690         struct intel_vgpu_ppgtt_spt *s;
1691
1692         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
1693         if (!s)
1694                 return -ENXIO;
1695
1696         if (!guest)
1697                 ppgtt_get_shadow_entry(s, e, index);
1698         else
1699                 ppgtt_get_guest_entry(s, e, index);
1700         return 0;
1701 }
1702
1703 /**
1704  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1705  * @mm: mm object. could be a PPGTT or GGTT mm object
1706  * @gma: graphics memory address in this mm object
1707  *
1708  * This function is used to translate a graphics memory address in specific
1709  * graphics memory space to guest physical address.
1710  *
1711  * Returns:
1712  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1713  */
1714 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1715 {
1716         struct intel_vgpu *vgpu = mm->vgpu;
1717         struct intel_gvt *gvt = vgpu->gvt;
1718         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1719         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1720         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1721         unsigned long gma_index[4];
1722         struct intel_gvt_gtt_entry e;
1723         int i, levels = 0;
1724         int ret;
1725
1726         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
1727                    mm->type != INTEL_GVT_MM_PPGTT);
1728
1729         if (mm->type == INTEL_GVT_MM_GGTT) {
1730                 if (!vgpu_gmadr_is_valid(vgpu, gma))
1731                         goto err;
1732
1733                 ggtt_get_guest_entry(mm, &e,
1734                         gma_ops->gma_to_ggtt_pte_index(gma));
1735
1736                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1737                         + (gma & ~I915_GTT_PAGE_MASK);
1738
1739                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1740         } else {
1741                 switch (mm->ppgtt_mm.root_entry_type) {
1742                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
1743                         ppgtt_get_shadow_root_entry(mm, &e, 0);
1744
1745                         gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1746                         gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1747                         gma_index[2] = gma_ops->gma_to_pde_index(gma);
1748                         gma_index[3] = gma_ops->gma_to_pte_index(gma);
1749                         levels = 4;
1750                         break;
1751                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
1752                         ppgtt_get_shadow_root_entry(mm, &e,
1753                                         gma_ops->gma_to_l3_pdp_index(gma));
1754
1755                         gma_index[0] = gma_ops->gma_to_pde_index(gma);
1756                         gma_index[1] = gma_ops->gma_to_pte_index(gma);
1757                         levels = 2;
1758                         break;
1759                 default:
1760                         GEM_BUG_ON(1);
1761                 }
1762
1763                 /* walk the shadow page table and get gpa from guest entry */
1764                 for (i = 0; i < levels; i++) {
1765                         ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1766                                 (i == levels - 1));
1767                         if (ret)
1768                                 goto err;
1769
1770                         if (!pte_ops->test_present(&e)) {
1771                                 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1772                                 goto err;
1773                         }
1774                 }
1775
1776                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
1777                                         (gma & ~I915_GTT_PAGE_MASK);
1778                 trace_gma_translate(vgpu->id, "ppgtt", 0,
1779                                     mm->ppgtt_mm.root_entry_type, gma, gpa);
1780         }
1781
1782         return gpa;
1783 err:
1784         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1785         return INTEL_GVT_INVALID_ADDR;
1786 }
1787
1788 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
1789         unsigned int off, void *p_data, unsigned int bytes)
1790 {
1791         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1792         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1793         unsigned long index = off >> info->gtt_entry_size_shift;
1794         struct intel_gvt_gtt_entry e;
1795
1796         if (bytes != 4 && bytes != 8)
1797                 return -EINVAL;
1798
1799         ggtt_get_guest_entry(ggtt_mm, &e, index);
1800         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1801                         bytes);
1802         return 0;
1803 }
1804
1805 /**
1806  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1807  * @vgpu: a vGPU
1808  * @off: register offset
1809  * @p_data: data will be returned to guest
1810  * @bytes: data length
1811  *
1812  * This function is used to emulate the GTT MMIO register read
1813  *
1814  * Returns:
1815  * Zero on success, error code if failed.
1816  */
1817 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1818         void *p_data, unsigned int bytes)
1819 {
1820         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1821         int ret;
1822
1823         if (bytes != 4 && bytes != 8)
1824                 return -EINVAL;
1825
1826         off -= info->gtt_start_offset;
1827         ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
1828         return ret;
1829 }
1830
1831 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
1832                 struct intel_gvt_gtt_entry *entry)
1833 {
1834         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1835         unsigned long pfn;
1836
1837         pfn = pte_ops->get_pfn(entry);
1838         if (pfn != vgpu->gvt->gtt.scratch_mfn)
1839                 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
1840                                                 pfn << PAGE_SHIFT);
1841 }
1842
1843 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1844         void *p_data, unsigned int bytes)
1845 {
1846         struct intel_gvt *gvt = vgpu->gvt;
1847         const struct intel_gvt_device_info *info = &gvt->device_info;
1848         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1849         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1850         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1851         unsigned long gma, gfn;
1852         struct intel_gvt_gtt_entry e, m;
1853         dma_addr_t dma_addr;
1854         int ret;
1855
1856         if (bytes != 4 && bytes != 8)
1857                 return -EINVAL;
1858
1859         gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
1860
1861         /* the VM may configure the whole GM space when ballooning is used */
1862         if (!vgpu_gmadr_is_valid(vgpu, gma))
1863                 return 0;
1864
1865         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1866
1867         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1868                         bytes);
1869
1870         if (ops->test_present(&e)) {
1871                 gfn = ops->get_pfn(&e);
1872                 m = e;
1873
1874                 /* one PTE update may be issued in multiple writes and the
1875                  * first write may not construct a valid gfn
1876                  */
1877                 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1878                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1879                         goto out;
1880                 }
1881
1882                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
1883                                                               &dma_addr);
1884                 if (ret) {
1885                         gvt_vgpu_err("fail to populate guest ggtt entry\n");
1886                         /* guest driver may read/write the entry when partial
1887                          * update the entry in this situation p2m will fail
1888                          * settting the shadow entry to point to a scratch page
1889                          */
1890                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1891                 } else
1892                         ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
1893         } else {
1894                 ggtt_get_host_entry(ggtt_mm, &m, g_gtt_index);
1895                 ggtt_invalidate_pte(vgpu, &m);
1896                 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1897                 ops->clear_present(&m);
1898         }
1899
1900 out:
1901         ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
1902         ggtt_invalidate(gvt->dev_priv);
1903         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1904         return 0;
1905 }
1906
1907 /*
1908  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
1909  * @vgpu: a vGPU
1910  * @off: register offset
1911  * @p_data: data from guest write
1912  * @bytes: data length
1913  *
1914  * This function is used to emulate the GTT MMIO register write
1915  *
1916  * Returns:
1917  * Zero on success, error code if failed.
1918  */
1919 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
1920                 unsigned int off, void *p_data, unsigned int bytes)
1921 {
1922         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1923         int ret;
1924
1925         if (bytes != 4 && bytes != 8)
1926                 return -EINVAL;
1927
1928         off -= info->gtt_start_offset;
1929         ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
1930         return ret;
1931 }
1932
1933 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1934                 intel_gvt_gtt_type_t type)
1935 {
1936         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1937         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1938         int page_entry_num = I915_GTT_PAGE_SIZE >>
1939                                 vgpu->gvt->device_info.gtt_entry_size_shift;
1940         void *scratch_pt;
1941         int i;
1942         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1943         dma_addr_t daddr;
1944
1945         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1946                 return -EINVAL;
1947
1948         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1949         if (!scratch_pt) {
1950                 gvt_vgpu_err("fail to allocate scratch page\n");
1951                 return -ENOMEM;
1952         }
1953
1954         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1955                         4096, PCI_DMA_BIDIRECTIONAL);
1956         if (dma_mapping_error(dev, daddr)) {
1957                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
1958                 __free_page(virt_to_page(scratch_pt));
1959                 return -ENOMEM;
1960         }
1961         gtt->scratch_pt[type].page_mfn =
1962                 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
1963         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1964         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1965                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1966
1967         /* Build the tree by full filled the scratch pt with the entries which
1968          * point to the next level scratch pt or scratch page. The
1969          * scratch_pt[type] indicate the scratch pt/scratch page used by the
1970          * 'type' pt.
1971          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1972          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1973          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1974          */
1975         if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1976                 struct intel_gvt_gtt_entry se;
1977
1978                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1979                 se.type = get_entry_type(type - 1);
1980                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1981
1982                 /* The entry parameters like present/writeable/cache type
1983                  * set to the same as i915's scratch page tree.
1984                  */
1985                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1986                 if (type == GTT_TYPE_PPGTT_PDE_PT)
1987                         se.val64 |= PPAT_CACHED;
1988
1989                 for (i = 0; i < page_entry_num; i++)
1990                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1991         }
1992
1993         return 0;
1994 }
1995
1996 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1997 {
1998         int i;
1999         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2000         dma_addr_t daddr;
2001
2002         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2003                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2004                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2005                                         I915_GTT_PAGE_SHIFT);
2006                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2007                         __free_page(vgpu->gtt.scratch_pt[i].page);
2008                         vgpu->gtt.scratch_pt[i].page = NULL;
2009                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
2010                 }
2011         }
2012
2013         return 0;
2014 }
2015
2016 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2017 {
2018         int i, ret;
2019
2020         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2021                 ret = alloc_scratch_pages(vgpu, i);
2022                 if (ret)
2023                         goto err;
2024         }
2025
2026         return 0;
2027
2028 err:
2029         release_scratch_page_tree(vgpu);
2030         return ret;
2031 }
2032
2033 /**
2034  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2035  * @vgpu: a vGPU
2036  *
2037  * This function is used to initialize per-vGPU graphics memory virtualization
2038  * components.
2039  *
2040  * Returns:
2041  * Zero on success, error code if failed.
2042  */
2043 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2044 {
2045         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2046
2047         INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2048
2049         INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2050         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2051         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2052
2053         gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2054         if (IS_ERR(gtt->ggtt_mm)) {
2055                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2056                 return PTR_ERR(gtt->ggtt_mm);
2057         }
2058
2059         intel_vgpu_reset_ggtt(vgpu, false);
2060
2061         return create_scratch_page_tree(vgpu);
2062 }
2063
2064 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2065 {
2066         struct list_head *pos, *n;
2067         struct intel_vgpu_mm *mm;
2068
2069         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2070                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2071                 intel_vgpu_destroy_mm(mm);
2072         }
2073
2074         if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2075                 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2076
2077         if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2078                 gvt_err("Why we still has spt not freed?\n");
2079                 ppgtt_free_all_spt(vgpu);
2080         }
2081 }
2082
2083 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2084 {
2085         intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2086         vgpu->gtt.ggtt_mm = NULL;
2087 }
2088
2089 /**
2090  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2091  * @vgpu: a vGPU
2092  *
2093  * This function is used to clean up per-vGPU graphics memory virtualization
2094  * components.
2095  *
2096  * Returns:
2097  * Zero on success, error code if failed.
2098  */
2099 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2100 {
2101         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2102         intel_vgpu_destroy_ggtt_mm(vgpu);
2103         release_scratch_page_tree(vgpu);
2104 }
2105
2106 static void clean_spt_oos(struct intel_gvt *gvt)
2107 {
2108         struct intel_gvt_gtt *gtt = &gvt->gtt;
2109         struct list_head *pos, *n;
2110         struct intel_vgpu_oos_page *oos_page;
2111
2112         WARN(!list_empty(&gtt->oos_page_use_list_head),
2113                 "someone is still using oos page\n");
2114
2115         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2116                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2117                 list_del(&oos_page->list);
2118                 kfree(oos_page);
2119         }
2120 }
2121
2122 static int setup_spt_oos(struct intel_gvt *gvt)
2123 {
2124         struct intel_gvt_gtt *gtt = &gvt->gtt;
2125         struct intel_vgpu_oos_page *oos_page;
2126         int i;
2127         int ret;
2128
2129         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2130         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2131
2132         for (i = 0; i < preallocated_oos_pages; i++) {
2133                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2134                 if (!oos_page) {
2135                         ret = -ENOMEM;
2136                         goto fail;
2137                 }
2138
2139                 INIT_LIST_HEAD(&oos_page->list);
2140                 INIT_LIST_HEAD(&oos_page->vm_list);
2141                 oos_page->id = i;
2142                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2143         }
2144
2145         gvt_dbg_mm("%d oos pages preallocated\n", i);
2146
2147         return 0;
2148 fail:
2149         clean_spt_oos(gvt);
2150         return ret;
2151 }
2152
2153 /**
2154  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2155  * @vgpu: a vGPU
2156  * @page_table_level: PPGTT page table level
2157  * @root_entry: PPGTT page table root pointers
2158  *
2159  * This function is used to find a PPGTT mm object from mm object pool
2160  *
2161  * Returns:
2162  * pointer to mm object on success, NULL if failed.
2163  */
2164 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2165                 u64 pdps[])
2166 {
2167         struct intel_vgpu_mm *mm;
2168         struct list_head *pos;
2169
2170         list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2171                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2172
2173                 switch (mm->ppgtt_mm.root_entry_type) {
2174                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2175                         if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2176                                 return mm;
2177                         break;
2178                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2179                         if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2180                                     sizeof(mm->ppgtt_mm.guest_pdps)))
2181                                 return mm;
2182                         break;
2183                 default:
2184                         GEM_BUG_ON(1);
2185                 }
2186         }
2187         return NULL;
2188 }
2189
2190 /**
2191  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2192  * @vgpu: a vGPU
2193  * @root_entry_type: ppgtt root entry type
2194  * @pdps: guest pdps
2195  *
2196  * This function is used to find or create a PPGTT mm object from a guest.
2197  *
2198  * Returns:
2199  * Zero on success, negative error code if failed.
2200  */
2201 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2202                 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2203 {
2204         struct intel_vgpu_mm *mm;
2205
2206         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2207         if (mm) {
2208                 intel_vgpu_mm_get(mm);
2209         } else {
2210                 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2211                 if (IS_ERR(mm))
2212                         gvt_vgpu_err("fail to create mm\n");
2213         }
2214         return mm;
2215 }
2216
2217 /**
2218  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2219  * @vgpu: a vGPU
2220  * @pdps: guest pdps
2221  *
2222  * This function is used to find a PPGTT mm object from a guest and destroy it.
2223  *
2224  * Returns:
2225  * Zero on success, negative error code if failed.
2226  */
2227 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2228 {
2229         struct intel_vgpu_mm *mm;
2230
2231         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2232         if (!mm) {
2233                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2234                 return -EINVAL;
2235         }
2236         intel_vgpu_mm_put(mm);
2237         return 0;
2238 }
2239
2240 /**
2241  * intel_gvt_init_gtt - initialize mm components of a GVT device
2242  * @gvt: GVT device
2243  *
2244  * This function is called at the initialization stage, to initialize
2245  * the mm components of a GVT device.
2246  *
2247  * Returns:
2248  * zero on success, negative error code if failed.
2249  */
2250 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2251 {
2252         int ret;
2253         void *page;
2254         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2255         dma_addr_t daddr;
2256
2257         gvt_dbg_core("init gtt\n");
2258
2259         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2260                 || IS_KABYLAKE(gvt->dev_priv)) {
2261                 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2262                 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2263         } else {
2264                 return -ENODEV;
2265         }
2266
2267         page = (void *)get_zeroed_page(GFP_KERNEL);
2268         if (!page) {
2269                 gvt_err("fail to allocate scratch ggtt page\n");
2270                 return -ENOMEM;
2271         }
2272
2273         daddr = dma_map_page(dev, virt_to_page(page), 0,
2274                         4096, PCI_DMA_BIDIRECTIONAL);
2275         if (dma_mapping_error(dev, daddr)) {
2276                 gvt_err("fail to dmamap scratch ggtt page\n");
2277                 __free_page(virt_to_page(page));
2278                 return -ENOMEM;
2279         }
2280
2281         gvt->gtt.scratch_page = virt_to_page(page);
2282         gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2283
2284         if (enable_out_of_sync) {
2285                 ret = setup_spt_oos(gvt);
2286                 if (ret) {
2287                         gvt_err("fail to initialize SPT oos\n");
2288                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2289                         __free_page(gvt->gtt.scratch_page);
2290                         return ret;
2291                 }
2292         }
2293         INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2294         return 0;
2295 }
2296
2297 /**
2298  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2299  * @gvt: GVT device
2300  *
2301  * This function is called at the driver unloading stage, to clean up the
2302  * the mm components of a GVT device.
2303  *
2304  */
2305 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2306 {
2307         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2308         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2309                                         I915_GTT_PAGE_SHIFT);
2310
2311         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2312
2313         __free_page(gvt->gtt.scratch_page);
2314
2315         if (enable_out_of_sync)
2316                 clean_spt_oos(gvt);
2317 }
2318
2319 /**
2320  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2321  * @vgpu: a vGPU
2322  *
2323  * This function is called when invalidate all PPGTT instances of a vGPU.
2324  *
2325  */
2326 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2327 {
2328         struct list_head *pos, *n;
2329         struct intel_vgpu_mm *mm;
2330
2331         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2332                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2333                 if (mm->type == INTEL_GVT_MM_PPGTT) {
2334                         list_del_init(&mm->ppgtt_mm.lru_list);
2335                         if (mm->ppgtt_mm.shadowed)
2336                                 invalidate_ppgtt_mm(mm);
2337                 }
2338         }
2339 }
2340
2341 /**
2342  * intel_vgpu_reset_ggtt - reset the GGTT entry
2343  * @vgpu: a vGPU
2344  * @invalidate_old: invalidate old entries
2345  *
2346  * This function is called at the vGPU create stage
2347  * to reset all the GGTT entries.
2348  *
2349  */
2350 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2351 {
2352         struct intel_gvt *gvt = vgpu->gvt;
2353         struct drm_i915_private *dev_priv = gvt->dev_priv;
2354         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2355         struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2356         struct intel_gvt_gtt_entry old_entry;
2357         u32 index;
2358         u32 num_entries;
2359
2360         pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2361         pte_ops->set_present(&entry);
2362
2363         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2364         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2365         while (num_entries--) {
2366                 if (invalidate_old) {
2367                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2368                         ggtt_invalidate_pte(vgpu, &old_entry);
2369                 }
2370                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2371         }
2372
2373         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2374         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2375         while (num_entries--) {
2376                 if (invalidate_old) {
2377                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2378                         ggtt_invalidate_pte(vgpu, &old_entry);
2379                 }
2380                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2381         }
2382
2383         ggtt_invalidate(dev_priv);
2384 }
2385
2386 /**
2387  * intel_vgpu_reset_gtt - reset the all GTT related status
2388  * @vgpu: a vGPU
2389  *
2390  * This function is called from vfio core to reset reset all
2391  * GTT related status, including GGTT, PPGTT, scratch page.
2392  *
2393  */
2394 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2395 {
2396         /* Shadow pages are only created when there is no page
2397          * table tracking data, so remove page tracking data after
2398          * removing the shadow pages.
2399          */
2400         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2401         intel_vgpu_reset_ggtt(vgpu, true);
2402 }