drm/i915: Update DRIVER_DATE to 20171117
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52                 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53                                 addr, size);
54                 return false;
55         }
56         return true;
57 }
58
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63                  "invalid guest gmadr %llx\n", g_addr))
64                 return -EACCES;
65
66         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68                           + (g_addr - vgpu_aperture_offset(vgpu));
69         else
70                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71                           + (g_addr - vgpu_hidden_offset(vgpu));
72         return 0;
73 }
74
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79                  "invalid host gmadr %llx\n", h_addr))
80                 return -EACCES;
81
82         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85         else
86                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88         return 0;
89 }
90
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92                              unsigned long *h_index)
93 {
94         u64 h_addr;
95         int ret;
96
97         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
98                                        &h_addr);
99         if (ret)
100                 return ret;
101
102         *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
103         return 0;
104 }
105
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107                              unsigned long *g_index)
108 {
109         u64 g_addr;
110         int ret;
111
112         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
113                                        &g_addr);
114         if (ret)
115                 return ret;
116
117         *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
118         return 0;
119 }
120
121 #define gtt_type_is_entry(type) \
122         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125
126 #define gtt_type_is_pt(type) \
127         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128
129 #define gtt_type_is_pte_pt(type) \
130         (type == GTT_TYPE_PPGTT_PTE_PT)
131
132 #define gtt_type_is_root_pointer(type) \
133         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134
135 #define gtt_init_entry(e, t, p, v) do { \
136         (e)->type = t; \
137         (e)->pdev = p; \
138         memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156
157 struct gtt_type_table_entry {
158         int entry_type;
159         int pt_type;
160         int next_pt_type;
161         int pse_entry_type;
162 };
163
164 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
165         [type] = { \
166                 .entry_type = e_type, \
167                 .pt_type = cpt_type, \
168                 .next_pt_type = npt_type, \
169                 .pse_entry_type = pse_type, \
170         }
171
172 static struct gtt_type_table_entry gtt_type_table[] = {
173         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
174                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
175                         GTT_TYPE_INVALID,
176                         GTT_TYPE_PPGTT_PML4_PT,
177                         GTT_TYPE_INVALID),
178         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
179                         GTT_TYPE_PPGTT_PML4_ENTRY,
180                         GTT_TYPE_PPGTT_PML4_PT,
181                         GTT_TYPE_PPGTT_PDP_PT,
182                         GTT_TYPE_INVALID),
183         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
184                         GTT_TYPE_PPGTT_PML4_ENTRY,
185                         GTT_TYPE_PPGTT_PML4_PT,
186                         GTT_TYPE_PPGTT_PDP_PT,
187                         GTT_TYPE_INVALID),
188         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
189                         GTT_TYPE_PPGTT_PDP_ENTRY,
190                         GTT_TYPE_PPGTT_PDP_PT,
191                         GTT_TYPE_PPGTT_PDE_PT,
192                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
193         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
194                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
195                         GTT_TYPE_INVALID,
196                         GTT_TYPE_PPGTT_PDE_PT,
197                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
198         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
199                         GTT_TYPE_PPGTT_PDP_ENTRY,
200                         GTT_TYPE_PPGTT_PDP_PT,
201                         GTT_TYPE_PPGTT_PDE_PT,
202                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
203         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
204                         GTT_TYPE_PPGTT_PDE_ENTRY,
205                         GTT_TYPE_PPGTT_PDE_PT,
206                         GTT_TYPE_PPGTT_PTE_PT,
207                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
208         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
209                         GTT_TYPE_PPGTT_PDE_ENTRY,
210                         GTT_TYPE_PPGTT_PDE_PT,
211                         GTT_TYPE_PPGTT_PTE_PT,
212                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
213         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
214                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
215                         GTT_TYPE_PPGTT_PTE_PT,
216                         GTT_TYPE_INVALID,
217                         GTT_TYPE_INVALID),
218         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
219                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
220                         GTT_TYPE_PPGTT_PTE_PT,
221                         GTT_TYPE_INVALID,
222                         GTT_TYPE_INVALID),
223         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
224                         GTT_TYPE_PPGTT_PDE_ENTRY,
225                         GTT_TYPE_PPGTT_PDE_PT,
226                         GTT_TYPE_INVALID,
227                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
228         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
229                         GTT_TYPE_PPGTT_PDP_ENTRY,
230                         GTT_TYPE_PPGTT_PDP_PT,
231                         GTT_TYPE_INVALID,
232                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
233         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
234                         GTT_TYPE_GGTT_PTE,
235                         GTT_TYPE_INVALID,
236                         GTT_TYPE_INVALID,
237                         GTT_TYPE_INVALID),
238 };
239
240 static inline int get_next_pt_type(int type)
241 {
242         return gtt_type_table[type].next_pt_type;
243 }
244
245 static inline int get_pt_type(int type)
246 {
247         return gtt_type_table[type].pt_type;
248 }
249
250 static inline int get_entry_type(int type)
251 {
252         return gtt_type_table[type].entry_type;
253 }
254
255 static inline int get_pse_type(int type)
256 {
257         return gtt_type_table[type].pse_entry_type;
258 }
259
260 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
261 {
262         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
263
264         return readq(addr);
265 }
266
267 static void gtt_invalidate(struct drm_i915_private *dev_priv)
268 {
269         mmio_hw_access_pre(dev_priv);
270         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
271         mmio_hw_access_post(dev_priv);
272 }
273
274 static void write_pte64(struct drm_i915_private *dev_priv,
275                 unsigned long index, u64 pte)
276 {
277         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
278
279         writeq(pte, addr);
280 }
281
282 static inline int gtt_get_entry64(void *pt,
283                 struct intel_gvt_gtt_entry *e,
284                 unsigned long index, bool hypervisor_access, unsigned long gpa,
285                 struct intel_vgpu *vgpu)
286 {
287         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
288         int ret;
289
290         if (WARN_ON(info->gtt_entry_size != 8))
291                 return -EINVAL;
292
293         if (hypervisor_access) {
294                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
295                                 (index << info->gtt_entry_size_shift),
296                                 &e->val64, 8);
297                 if (WARN_ON(ret))
298                         return ret;
299         } else if (!pt) {
300                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
301         } else {
302                 e->val64 = *((u64 *)pt + index);
303         }
304         return 0;
305 }
306
307 static inline int gtt_set_entry64(void *pt,
308                 struct intel_gvt_gtt_entry *e,
309                 unsigned long index, bool hypervisor_access, unsigned long gpa,
310                 struct intel_vgpu *vgpu)
311 {
312         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
313         int ret;
314
315         if (WARN_ON(info->gtt_entry_size != 8))
316                 return -EINVAL;
317
318         if (hypervisor_access) {
319                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
320                                 (index << info->gtt_entry_size_shift),
321                                 &e->val64, 8);
322                 if (WARN_ON(ret))
323                         return ret;
324         } else if (!pt) {
325                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
326         } else {
327                 *((u64 *)pt + index) = e->val64;
328         }
329         return 0;
330 }
331
332 #define GTT_HAW 46
333
334 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
335 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
336 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
337
338 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
339 {
340         unsigned long pfn;
341
342         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
343                 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
344         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
345                 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
346         else
347                 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
348         return pfn;
349 }
350
351 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
352 {
353         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
354                 e->val64 &= ~ADDR_1G_MASK;
355                 pfn &= (ADDR_1G_MASK >> 12);
356         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
357                 e->val64 &= ~ADDR_2M_MASK;
358                 pfn &= (ADDR_2M_MASK >> 12);
359         } else {
360                 e->val64 &= ~ADDR_4K_MASK;
361                 pfn &= (ADDR_4K_MASK >> 12);
362         }
363
364         e->val64 |= (pfn << 12);
365 }
366
367 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
368 {
369         /* Entry doesn't have PSE bit. */
370         if (get_pse_type(e->type) == GTT_TYPE_INVALID)
371                 return false;
372
373         e->type = get_entry_type(e->type);
374         if (!(e->val64 & BIT(7)))
375                 return false;
376
377         e->type = get_pse_type(e->type);
378         return true;
379 }
380
381 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
382 {
383         /*
384          * i915 writes PDP root pointer registers without present bit,
385          * it also works, so we need to treat root pointer entry
386          * specifically.
387          */
388         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
389                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
390                 return (e->val64 != 0);
391         else
392                 return (e->val64 & BIT(0));
393 }
394
395 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
396 {
397         e->val64 &= ~BIT(0);
398 }
399
400 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
401 {
402         e->val64 |= BIT(0);
403 }
404
405 /*
406  * Per-platform GMA routines.
407  */
408 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
409 {
410         unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
411
412         trace_gma_index(__func__, gma, x);
413         return x;
414 }
415
416 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
417 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
418 { \
419         unsigned long x = (exp); \
420         trace_gma_index(__func__, gma, x); \
421         return x; \
422 }
423
424 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
425 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
426 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
427 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
428 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
429
430 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
431         .get_entry = gtt_get_entry64,
432         .set_entry = gtt_set_entry64,
433         .clear_present = gtt_entry_clear_present,
434         .set_present = gtt_entry_set_present,
435         .test_present = gen8_gtt_test_present,
436         .test_pse = gen8_gtt_test_pse,
437         .get_pfn = gen8_gtt_get_pfn,
438         .set_pfn = gen8_gtt_set_pfn,
439 };
440
441 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
442         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
443         .gma_to_pte_index = gen8_gma_to_pte_index,
444         .gma_to_pde_index = gen8_gma_to_pde_index,
445         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
446         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
447         .gma_to_pml4_index = gen8_gma_to_pml4_index,
448 };
449
450 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
451                 struct intel_gvt_gtt_entry *m)
452 {
453         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
454         unsigned long gfn, mfn;
455
456         *m = *p;
457
458         if (!ops->test_present(p))
459                 return 0;
460
461         gfn = ops->get_pfn(p);
462
463         mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
464         if (mfn == INTEL_GVT_INVALID_ADDR) {
465                 gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
466                 return -ENXIO;
467         }
468
469         ops->set_pfn(m, mfn);
470         return 0;
471 }
472
473 /*
474  * MM helpers.
475  */
476 int intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
477                 void *page_table, struct intel_gvt_gtt_entry *e,
478                 unsigned long index)
479 {
480         struct intel_gvt *gvt = mm->vgpu->gvt;
481         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
482         int ret;
483
484         e->type = mm->page_table_entry_type;
485
486         ret = ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
487         if (ret)
488                 return ret;
489
490         ops->test_pse(e);
491         return 0;
492 }
493
494 int intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
495                 void *page_table, struct intel_gvt_gtt_entry *e,
496                 unsigned long index)
497 {
498         struct intel_gvt *gvt = mm->vgpu->gvt;
499         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
500
501         return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
502 }
503
504 /*
505  * PPGTT shadow page table helpers.
506  */
507 static inline int ppgtt_spt_get_entry(
508                 struct intel_vgpu_ppgtt_spt *spt,
509                 void *page_table, int type,
510                 struct intel_gvt_gtt_entry *e, unsigned long index,
511                 bool guest)
512 {
513         struct intel_gvt *gvt = spt->vgpu->gvt;
514         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
515         int ret;
516
517         e->type = get_entry_type(type);
518
519         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
520                 return -EINVAL;
521
522         ret = ops->get_entry(page_table, e, index, guest,
523                         spt->guest_page.track.gfn << I915_GTT_PAGE_SHIFT,
524                         spt->vgpu);
525         if (ret)
526                 return ret;
527
528         ops->test_pse(e);
529         return 0;
530 }
531
532 static inline int ppgtt_spt_set_entry(
533                 struct intel_vgpu_ppgtt_spt *spt,
534                 void *page_table, int type,
535                 struct intel_gvt_gtt_entry *e, unsigned long index,
536                 bool guest)
537 {
538         struct intel_gvt *gvt = spt->vgpu->gvt;
539         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
540
541         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
542                 return -EINVAL;
543
544         return ops->set_entry(page_table, e, index, guest,
545                         spt->guest_page.track.gfn << I915_GTT_PAGE_SHIFT,
546                         spt->vgpu);
547 }
548
549 #define ppgtt_get_guest_entry(spt, e, index) \
550         ppgtt_spt_get_entry(spt, NULL, \
551                 spt->guest_page_type, e, index, true)
552
553 #define ppgtt_set_guest_entry(spt, e, index) \
554         ppgtt_spt_set_entry(spt, NULL, \
555                 spt->guest_page_type, e, index, true)
556
557 #define ppgtt_get_shadow_entry(spt, e, index) \
558         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
559                 spt->shadow_page.type, e, index, false)
560
561 #define ppgtt_set_shadow_entry(spt, e, index) \
562         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
563                 spt->shadow_page.type, e, index, false)
564
565 /**
566  * intel_vgpu_init_page_track - init a page track data structure
567  * @vgpu: a vGPU
568  * @t: a page track data structure
569  * @gfn: guest memory page frame number
570  * @handler: the function will be called when target guest memory page has
571  * been modified.
572  *
573  * This function is called when a user wants to prepare a page track data
574  * structure to track a guest memory page.
575  *
576  * Returns:
577  * Zero on success, negative error code if failed.
578  */
579 int intel_vgpu_init_page_track(struct intel_vgpu *vgpu,
580                 struct intel_vgpu_page_track *t,
581                 unsigned long gfn,
582                 int (*handler)(void *, u64, void *, int),
583                 void *data)
584 {
585         INIT_HLIST_NODE(&t->node);
586
587         t->tracked = false;
588         t->gfn = gfn;
589         t->handler = handler;
590         t->data = data;
591
592         hash_add(vgpu->gtt.tracked_guest_page_hash_table, &t->node, t->gfn);
593         return 0;
594 }
595
596 /**
597  * intel_vgpu_clean_page_track - release a page track data structure
598  * @vgpu: a vGPU
599  * @t: a page track data structure
600  *
601  * This function is called before a user frees a page track data structure.
602  */
603 void intel_vgpu_clean_page_track(struct intel_vgpu *vgpu,
604                 struct intel_vgpu_page_track *t)
605 {
606         if (!hlist_unhashed(&t->node))
607                 hash_del(&t->node);
608
609         if (t->tracked)
610                 intel_gvt_hypervisor_disable_page_track(vgpu, t);
611 }
612
613 /**
614  * intel_vgpu_find_tracked_page - find a tracked guest page
615  * @vgpu: a vGPU
616  * @gfn: guest memory page frame number
617  *
618  * This function is called when the emulation layer wants to figure out if a
619  * trapped GFN is a tracked guest page.
620  *
621  * Returns:
622  * Pointer to page track data structure, NULL if not found.
623  */
624 struct intel_vgpu_page_track *intel_vgpu_find_tracked_page(
625                 struct intel_vgpu *vgpu, unsigned long gfn)
626 {
627         struct intel_vgpu_page_track *t;
628
629         hash_for_each_possible(vgpu->gtt.tracked_guest_page_hash_table,
630                         t, node, gfn) {
631                 if (t->gfn == gfn)
632                         return t;
633         }
634         return NULL;
635 }
636
637 static int init_guest_page(struct intel_vgpu *vgpu,
638                 struct intel_vgpu_guest_page *p,
639                 unsigned long gfn,
640                 int (*handler)(void *, u64, void *, int),
641                 void *data)
642 {
643         p->oos_page = NULL;
644         p->write_cnt = 0;
645
646         return intel_vgpu_init_page_track(vgpu, &p->track, gfn, handler, data);
647 }
648
649 static int detach_oos_page(struct intel_vgpu *vgpu,
650                 struct intel_vgpu_oos_page *oos_page);
651
652 static void clean_guest_page(struct intel_vgpu *vgpu,
653                 struct intel_vgpu_guest_page *p)
654 {
655         if (p->oos_page)
656                 detach_oos_page(vgpu, p->oos_page);
657
658         intel_vgpu_clean_page_track(vgpu, &p->track);
659 }
660
661 static inline int init_shadow_page(struct intel_vgpu *vgpu,
662                 struct intel_vgpu_shadow_page *p, int type, bool hash)
663 {
664         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
665         dma_addr_t daddr;
666
667         daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
668         if (dma_mapping_error(kdev, daddr)) {
669                 gvt_vgpu_err("fail to map dma addr\n");
670                 return -EINVAL;
671         }
672
673         p->vaddr = page_address(p->page);
674         p->type = type;
675
676         INIT_HLIST_NODE(&p->node);
677
678         p->mfn = daddr >> I915_GTT_PAGE_SHIFT;
679         if (hash)
680                 hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
681         return 0;
682 }
683
684 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
685                 struct intel_vgpu_shadow_page *p)
686 {
687         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
688
689         dma_unmap_page(kdev, p->mfn << I915_GTT_PAGE_SHIFT, 4096,
690                         PCI_DMA_BIDIRECTIONAL);
691
692         if (!hlist_unhashed(&p->node))
693                 hash_del(&p->node);
694 }
695
696 static inline struct intel_vgpu_shadow_page *find_shadow_page(
697                 struct intel_vgpu *vgpu, unsigned long mfn)
698 {
699         struct intel_vgpu_shadow_page *p;
700
701         hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
702                 p, node, mfn) {
703                 if (p->mfn == mfn)
704                         return p;
705         }
706         return NULL;
707 }
708
709 #define page_track_to_guest_page(ptr) \
710         container_of(ptr, struct intel_vgpu_guest_page, track)
711
712 #define guest_page_to_ppgtt_spt(ptr) \
713         container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
714
715 #define shadow_page_to_ppgtt_spt(ptr) \
716         container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
717
718 static void *alloc_spt(gfp_t gfp_mask)
719 {
720         struct intel_vgpu_ppgtt_spt *spt;
721
722         spt = kzalloc(sizeof(*spt), gfp_mask);
723         if (!spt)
724                 return NULL;
725
726         spt->shadow_page.page = alloc_page(gfp_mask);
727         if (!spt->shadow_page.page) {
728                 kfree(spt);
729                 return NULL;
730         }
731         return spt;
732 }
733
734 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
735 {
736         __free_page(spt->shadow_page.page);
737         kfree(spt);
738 }
739
740 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
741 {
742         trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
743
744         clean_shadow_page(spt->vgpu, &spt->shadow_page);
745         clean_guest_page(spt->vgpu, &spt->guest_page);
746         list_del_init(&spt->post_shadow_list);
747
748         free_spt(spt);
749 }
750
751 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
752 {
753         struct hlist_node *n;
754         struct intel_vgpu_shadow_page *sp;
755         int i;
756
757         hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
758                 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
759 }
760
761 static int ppgtt_handle_guest_write_page_table_bytes(
762                 struct intel_vgpu_guest_page *gpt,
763                 u64 pa, void *p_data, int bytes);
764
765 static int ppgtt_write_protection_handler(void *data, u64 pa,
766                 void *p_data, int bytes)
767 {
768         struct intel_vgpu_page_track *t = data;
769         struct intel_vgpu_guest_page *p = page_track_to_guest_page(t);
770         int ret;
771
772         if (bytes != 4 && bytes != 8)
773                 return -EINVAL;
774
775         if (!t->tracked)
776                 return -EINVAL;
777
778         ret = ppgtt_handle_guest_write_page_table_bytes(p,
779                 pa, p_data, bytes);
780         if (ret)
781                 return ret;
782         return ret;
783 }
784
785 static int reclaim_one_mm(struct intel_gvt *gvt);
786
787 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
788                 struct intel_vgpu *vgpu, int type, unsigned long gfn)
789 {
790         struct intel_vgpu_ppgtt_spt *spt = NULL;
791         int ret;
792
793 retry:
794         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
795         if (!spt) {
796                 if (reclaim_one_mm(vgpu->gvt))
797                         goto retry;
798
799                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
800                 return ERR_PTR(-ENOMEM);
801         }
802
803         spt->vgpu = vgpu;
804         spt->guest_page_type = type;
805         atomic_set(&spt->refcount, 1);
806         INIT_LIST_HEAD(&spt->post_shadow_list);
807
808         /*
809          * TODO: guest page type may be different with shadow page type,
810          *       when we support PSE page in future.
811          */
812         ret = init_shadow_page(vgpu, &spt->shadow_page, type, true);
813         if (ret) {
814                 gvt_vgpu_err("fail to initialize shadow page for spt\n");
815                 goto err;
816         }
817
818         ret = init_guest_page(vgpu, &spt->guest_page,
819                         gfn, ppgtt_write_protection_handler, NULL);
820         if (ret) {
821                 gvt_vgpu_err("fail to initialize guest page for spt\n");
822                 goto err;
823         }
824
825         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
826         return spt;
827 err:
828         ppgtt_free_shadow_page(spt);
829         return ERR_PTR(ret);
830 }
831
832 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
833                 struct intel_vgpu *vgpu, unsigned long mfn)
834 {
835         struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
836
837         if (p)
838                 return shadow_page_to_ppgtt_spt(p);
839
840         gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
841         return NULL;
842 }
843
844 #define pt_entry_size_shift(spt) \
845         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
846
847 #define pt_entries(spt) \
848         (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
849
850 #define for_each_present_guest_entry(spt, e, i) \
851         for (i = 0; i < pt_entries(spt); i++) \
852                 if (!ppgtt_get_guest_entry(spt, e, i) && \
853                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
854
855 #define for_each_present_shadow_entry(spt, e, i) \
856         for (i = 0; i < pt_entries(spt); i++) \
857                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
858                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
859
860 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
861 {
862         int v = atomic_read(&spt->refcount);
863
864         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
865
866         atomic_inc(&spt->refcount);
867 }
868
869 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
870
871 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
872                 struct intel_gvt_gtt_entry *e)
873 {
874         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
875         struct intel_vgpu_ppgtt_spt *s;
876         intel_gvt_gtt_type_t cur_pt_type;
877
878         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
879                 return -EINVAL;
880
881         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
882                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
883                 cur_pt_type = get_next_pt_type(e->type) + 1;
884                 if (ops->get_pfn(e) ==
885                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
886                         return 0;
887         }
888         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
889         if (!s) {
890                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
891                                 ops->get_pfn(e));
892                 return -ENXIO;
893         }
894         return ppgtt_invalidate_shadow_page(s);
895 }
896
897 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
898 {
899         struct intel_vgpu *vgpu = spt->vgpu;
900         struct intel_gvt_gtt_entry e;
901         unsigned long index;
902         int ret;
903         int v = atomic_read(&spt->refcount);
904
905         trace_spt_change(spt->vgpu->id, "die", spt,
906                         spt->guest_page.track.gfn, spt->shadow_page.type);
907
908         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
909
910         if (atomic_dec_return(&spt->refcount) > 0)
911                 return 0;
912
913         if (gtt_type_is_pte_pt(spt->shadow_page.type))
914                 goto release;
915
916         for_each_present_shadow_entry(spt, &e, index) {
917                 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
918                         gvt_vgpu_err("GVT doesn't support pse bit for now\n");
919                         return -EINVAL;
920                 }
921                 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
922                                 spt->vgpu, &e);
923                 if (ret)
924                         goto fail;
925         }
926 release:
927         trace_spt_change(spt->vgpu->id, "release", spt,
928                         spt->guest_page.track.gfn, spt->shadow_page.type);
929         ppgtt_free_shadow_page(spt);
930         return 0;
931 fail:
932         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
933                         spt, e.val64, e.type);
934         return ret;
935 }
936
937 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
938
939 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
940                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
941 {
942         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
943         struct intel_vgpu_ppgtt_spt *s = NULL;
944         struct intel_vgpu_guest_page *g;
945         struct intel_vgpu_page_track *t;
946         int ret;
947
948         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
949                 ret = -EINVAL;
950                 goto fail;
951         }
952
953         t = intel_vgpu_find_tracked_page(vgpu, ops->get_pfn(we));
954         if (t) {
955                 g = page_track_to_guest_page(t);
956                 s = guest_page_to_ppgtt_spt(g);
957                 ppgtt_get_shadow_page(s);
958         } else {
959                 int type = get_next_pt_type(we->type);
960
961                 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
962                 if (IS_ERR(s)) {
963                         ret = PTR_ERR(s);
964                         goto fail;
965                 }
966
967                 ret = intel_gvt_hypervisor_enable_page_track(vgpu,
968                                 &s->guest_page.track);
969                 if (ret)
970                         goto fail;
971
972                 ret = ppgtt_populate_shadow_page(s);
973                 if (ret)
974                         goto fail;
975
976                 trace_spt_change(vgpu->id, "new", s, s->guest_page.track.gfn,
977                         s->shadow_page.type);
978         }
979         return s;
980 fail:
981         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
982                         s, we->val64, we->type);
983         return ERR_PTR(ret);
984 }
985
986 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
987                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
988 {
989         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
990
991         se->type = ge->type;
992         se->val64 = ge->val64;
993
994         ops->set_pfn(se, s->shadow_page.mfn);
995 }
996
997 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
998 {
999         struct intel_vgpu *vgpu = spt->vgpu;
1000         struct intel_vgpu_ppgtt_spt *s;
1001         struct intel_gvt_gtt_entry se, ge;
1002         unsigned long i;
1003         int ret;
1004
1005         trace_spt_change(spt->vgpu->id, "born", spt,
1006                         spt->guest_page.track.gfn, spt->shadow_page.type);
1007
1008         if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
1009                 for_each_present_guest_entry(spt, &ge, i) {
1010                         ret = gtt_entry_p2m(vgpu, &ge, &se);
1011                         if (ret)
1012                                 goto fail;
1013                         ppgtt_set_shadow_entry(spt, &se, i);
1014                 }
1015                 return 0;
1016         }
1017
1018         for_each_present_guest_entry(spt, &ge, i) {
1019                 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
1020                         gvt_vgpu_err("GVT doesn't support pse bit now\n");
1021                         ret = -EINVAL;
1022                         goto fail;
1023                 }
1024
1025                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1026                 if (IS_ERR(s)) {
1027                         ret = PTR_ERR(s);
1028                         goto fail;
1029                 }
1030                 ppgtt_get_shadow_entry(spt, &se, i);
1031                 ppgtt_generate_shadow_entry(&se, s, &ge);
1032                 ppgtt_set_shadow_entry(spt, &se, i);
1033         }
1034         return 0;
1035 fail:
1036         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1037                         spt, ge.val64, ge.type);
1038         return ret;
1039 }
1040
1041 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
1042                 struct intel_gvt_gtt_entry *se, unsigned long index)
1043 {
1044         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1045         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1046         struct intel_vgpu *vgpu = spt->vgpu;
1047         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1048         int ret;
1049
1050         trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, se->val64,
1051                          index);
1052
1053         if (!ops->test_present(se))
1054                 return 0;
1055
1056         if (ops->get_pfn(se) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
1057                 return 0;
1058
1059         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1060                 struct intel_vgpu_ppgtt_spt *s =
1061                         ppgtt_find_shadow_page(vgpu, ops->get_pfn(se));
1062                 if (!s) {
1063                         gvt_vgpu_err("fail to find guest page\n");
1064                         ret = -ENXIO;
1065                         goto fail;
1066                 }
1067                 ret = ppgtt_invalidate_shadow_page(s);
1068                 if (ret)
1069                         goto fail;
1070         }
1071         return 0;
1072 fail:
1073         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1074                         spt, se->val64, se->type);
1075         return ret;
1076 }
1077
1078 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1079                 struct intel_gvt_gtt_entry *we, unsigned long index)
1080 {
1081         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1082         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1083         struct intel_vgpu *vgpu = spt->vgpu;
1084         struct intel_gvt_gtt_entry m;
1085         struct intel_vgpu_ppgtt_spt *s;
1086         int ret;
1087
1088         trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1089                 we->val64, index);
1090
1091         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1092                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1093                 if (IS_ERR(s)) {
1094                         ret = PTR_ERR(s);
1095                         goto fail;
1096                 }
1097                 ppgtt_get_shadow_entry(spt, &m, index);
1098                 ppgtt_generate_shadow_entry(&m, s, we);
1099                 ppgtt_set_shadow_entry(spt, &m, index);
1100         } else {
1101                 ret = gtt_entry_p2m(vgpu, we, &m);
1102                 if (ret)
1103                         goto fail;
1104                 ppgtt_set_shadow_entry(spt, &m, index);
1105         }
1106         return 0;
1107 fail:
1108         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1109                 spt, we->val64, we->type);
1110         return ret;
1111 }
1112
1113 static int sync_oos_page(struct intel_vgpu *vgpu,
1114                 struct intel_vgpu_oos_page *oos_page)
1115 {
1116         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1117         struct intel_gvt *gvt = vgpu->gvt;
1118         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1119         struct intel_vgpu_ppgtt_spt *spt =
1120                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1121         struct intel_gvt_gtt_entry old, new, m;
1122         int index;
1123         int ret;
1124
1125         trace_oos_change(vgpu->id, "sync", oos_page->id,
1126                         oos_page->guest_page, spt->guest_page_type);
1127
1128         old.type = new.type = get_entry_type(spt->guest_page_type);
1129         old.val64 = new.val64 = 0;
1130
1131         for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1132                                 info->gtt_entry_size_shift); index++) {
1133                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1134                 ops->get_entry(NULL, &new, index, true,
1135                         oos_page->guest_page->track.gfn << PAGE_SHIFT, vgpu);
1136
1137                 if (old.val64 == new.val64
1138                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1139                         continue;
1140
1141                 trace_oos_sync(vgpu->id, oos_page->id,
1142                                 oos_page->guest_page, spt->guest_page_type,
1143                                 new.val64, index);
1144
1145                 ret = gtt_entry_p2m(vgpu, &new, &m);
1146                 if (ret)
1147                         return ret;
1148
1149                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1150                 ppgtt_set_shadow_entry(spt, &m, index);
1151         }
1152
1153         oos_page->guest_page->write_cnt = 0;
1154         list_del_init(&spt->post_shadow_list);
1155         return 0;
1156 }
1157
1158 static int detach_oos_page(struct intel_vgpu *vgpu,
1159                 struct intel_vgpu_oos_page *oos_page)
1160 {
1161         struct intel_gvt *gvt = vgpu->gvt;
1162         struct intel_vgpu_ppgtt_spt *spt =
1163                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1164
1165         trace_oos_change(vgpu->id, "detach", oos_page->id,
1166                         oos_page->guest_page, spt->guest_page_type);
1167
1168         oos_page->guest_page->write_cnt = 0;
1169         oos_page->guest_page->oos_page = NULL;
1170         oos_page->guest_page = NULL;
1171
1172         list_del_init(&oos_page->vm_list);
1173         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1174
1175         return 0;
1176 }
1177
1178 static int attach_oos_page(struct intel_vgpu *vgpu,
1179                 struct intel_vgpu_oos_page *oos_page,
1180                 struct intel_vgpu_guest_page *gpt)
1181 {
1182         struct intel_gvt *gvt = vgpu->gvt;
1183         int ret;
1184
1185         ret = intel_gvt_hypervisor_read_gpa(vgpu,
1186                         gpt->track.gfn << I915_GTT_PAGE_SHIFT,
1187                         oos_page->mem, I915_GTT_PAGE_SIZE);
1188         if (ret)
1189                 return ret;
1190
1191         oos_page->guest_page = gpt;
1192         gpt->oos_page = oos_page;
1193
1194         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1195
1196         trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1197                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1198         return 0;
1199 }
1200
1201 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1202                 struct intel_vgpu_guest_page *gpt)
1203 {
1204         int ret;
1205
1206         ret = intel_gvt_hypervisor_enable_page_track(vgpu, &gpt->track);
1207         if (ret)
1208                 return ret;
1209
1210         trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1211                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1212
1213         list_del_init(&gpt->oos_page->vm_list);
1214         return sync_oos_page(vgpu, gpt->oos_page);
1215 }
1216
1217 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1218                 struct intel_vgpu_guest_page *gpt)
1219 {
1220         struct intel_gvt *gvt = vgpu->gvt;
1221         struct intel_gvt_gtt *gtt = &gvt->gtt;
1222         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1223         int ret;
1224
1225         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1226
1227         if (list_empty(&gtt->oos_page_free_list_head)) {
1228                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1229                         struct intel_vgpu_oos_page, list);
1230                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1231                 if (ret)
1232                         return ret;
1233                 ret = detach_oos_page(vgpu, oos_page);
1234                 if (ret)
1235                         return ret;
1236         } else
1237                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1238                         struct intel_vgpu_oos_page, list);
1239         return attach_oos_page(vgpu, oos_page, gpt);
1240 }
1241
1242 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1243                 struct intel_vgpu_guest_page *gpt)
1244 {
1245         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1246
1247         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1248                 return -EINVAL;
1249
1250         trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1251                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1252
1253         list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1254         return intel_gvt_hypervisor_disable_page_track(vgpu, &gpt->track);
1255 }
1256
1257 /**
1258  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1259  * @vgpu: a vGPU
1260  *
1261  * This function is called before submitting a guest workload to host,
1262  * to sync all the out-of-synced shadow for vGPU
1263  *
1264  * Returns:
1265  * Zero on success, negative error code if failed.
1266  */
1267 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1268 {
1269         struct list_head *pos, *n;
1270         struct intel_vgpu_oos_page *oos_page;
1271         int ret;
1272
1273         if (!enable_out_of_sync)
1274                 return 0;
1275
1276         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1277                 oos_page = container_of(pos,
1278                                 struct intel_vgpu_oos_page, vm_list);
1279                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1280                 if (ret)
1281                         return ret;
1282         }
1283         return 0;
1284 }
1285
1286 /*
1287  * The heart of PPGTT shadow page table.
1288  */
1289 static int ppgtt_handle_guest_write_page_table(
1290                 struct intel_vgpu_guest_page *gpt,
1291                 struct intel_gvt_gtt_entry *we, unsigned long index)
1292 {
1293         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1294         struct intel_vgpu *vgpu = spt->vgpu;
1295         int type = spt->shadow_page.type;
1296         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1297         struct intel_gvt_gtt_entry se;
1298
1299         int ret;
1300         int new_present;
1301
1302         new_present = ops->test_present(we);
1303
1304         /*
1305          * Adding the new entry first and then removing the old one, that can
1306          * guarantee the ppgtt table is validated during the window between
1307          * adding and removal.
1308          */
1309         ppgtt_get_shadow_entry(spt, &se, index);
1310
1311         if (new_present) {
1312                 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1313                 if (ret)
1314                         goto fail;
1315         }
1316
1317         ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1318         if (ret)
1319                 goto fail;
1320
1321         if (!new_present) {
1322                 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1323                 ppgtt_set_shadow_entry(spt, &se, index);
1324         }
1325
1326         return 0;
1327 fail:
1328         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1329                         spt, we->val64, we->type);
1330         return ret;
1331 }
1332
1333 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1334 {
1335         return enable_out_of_sync
1336                 && gtt_type_is_pte_pt(
1337                         guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1338                 && gpt->write_cnt >= 2;
1339 }
1340
1341 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1342                 unsigned long index)
1343 {
1344         set_bit(index, spt->post_shadow_bitmap);
1345         if (!list_empty(&spt->post_shadow_list))
1346                 return;
1347
1348         list_add_tail(&spt->post_shadow_list,
1349                         &spt->vgpu->gtt.post_shadow_list_head);
1350 }
1351
1352 /**
1353  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1354  * @vgpu: a vGPU
1355  *
1356  * This function is called before submitting a guest workload to host,
1357  * to flush all the post shadows for a vGPU.
1358  *
1359  * Returns:
1360  * Zero on success, negative error code if failed.
1361  */
1362 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1363 {
1364         struct list_head *pos, *n;
1365         struct intel_vgpu_ppgtt_spt *spt;
1366         struct intel_gvt_gtt_entry ge;
1367         unsigned long index;
1368         int ret;
1369
1370         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1371                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1372                                 post_shadow_list);
1373
1374                 for_each_set_bit(index, spt->post_shadow_bitmap,
1375                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1376                         ppgtt_get_guest_entry(spt, &ge, index);
1377
1378                         ret = ppgtt_handle_guest_write_page_table(
1379                                         &spt->guest_page, &ge, index);
1380                         if (ret)
1381                                 return ret;
1382                         clear_bit(index, spt->post_shadow_bitmap);
1383                 }
1384                 list_del_init(&spt->post_shadow_list);
1385         }
1386         return 0;
1387 }
1388
1389 static int ppgtt_handle_guest_write_page_table_bytes(
1390                 struct intel_vgpu_guest_page *gpt,
1391                 u64 pa, void *p_data, int bytes)
1392 {
1393         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1394         struct intel_vgpu *vgpu = spt->vgpu;
1395         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1396         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1397         struct intel_gvt_gtt_entry we, se;
1398         unsigned long index;
1399         int ret;
1400
1401         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1402
1403         ppgtt_get_guest_entry(spt, &we, index);
1404
1405         ops->test_pse(&we);
1406
1407         if (bytes == info->gtt_entry_size) {
1408                 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1409                 if (ret)
1410                         return ret;
1411         } else {
1412                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1413                         ppgtt_get_shadow_entry(spt, &se, index);
1414                         ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1415                         if (ret)
1416                                 return ret;
1417                 }
1418
1419                 ppgtt_set_post_shadow(spt, index);
1420         }
1421
1422         if (!enable_out_of_sync)
1423                 return 0;
1424
1425         gpt->write_cnt++;
1426
1427         if (gpt->oos_page)
1428                 ops->set_entry(gpt->oos_page->mem, &we, index,
1429                                 false, 0, vgpu);
1430
1431         if (can_do_out_of_sync(gpt)) {
1432                 if (!gpt->oos_page)
1433                         ppgtt_allocate_oos_page(vgpu, gpt);
1434
1435                 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1436                 if (ret < 0)
1437                         return ret;
1438         }
1439         return 0;
1440 }
1441
1442 /*
1443  * mm page table allocation policy for bdw+
1444  *  - for ggtt, only virtual page table will be allocated.
1445  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1446  */
1447 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1448 {
1449         struct intel_vgpu *vgpu = mm->vgpu;
1450         struct intel_gvt *gvt = vgpu->gvt;
1451         const struct intel_gvt_device_info *info = &gvt->device_info;
1452         void *mem;
1453
1454         if (mm->type == INTEL_GVT_MM_PPGTT) {
1455                 mm->page_table_entry_cnt = 4;
1456                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1457                         info->gtt_entry_size;
1458                 mem = kzalloc(mm->has_shadow_page_table ?
1459                         mm->page_table_entry_size * 2
1460                                 : mm->page_table_entry_size, GFP_KERNEL);
1461                 if (!mem)
1462                         return -ENOMEM;
1463                 mm->virtual_page_table = mem;
1464                 if (!mm->has_shadow_page_table)
1465                         return 0;
1466                 mm->shadow_page_table = mem + mm->page_table_entry_size;
1467         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1468                 mm->page_table_entry_cnt =
1469                         (gvt_ggtt_gm_sz(gvt) >> I915_GTT_PAGE_SHIFT);
1470                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1471                         info->gtt_entry_size;
1472                 mem = vzalloc(mm->page_table_entry_size);
1473                 if (!mem)
1474                         return -ENOMEM;
1475                 mm->virtual_page_table = mem;
1476         }
1477         return 0;
1478 }
1479
1480 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1481 {
1482         if (mm->type == INTEL_GVT_MM_PPGTT) {
1483                 kfree(mm->virtual_page_table);
1484         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1485                 if (mm->virtual_page_table)
1486                         vfree(mm->virtual_page_table);
1487         }
1488         mm->virtual_page_table = mm->shadow_page_table = NULL;
1489 }
1490
1491 static void invalidate_mm(struct intel_vgpu_mm *mm)
1492 {
1493         struct intel_vgpu *vgpu = mm->vgpu;
1494         struct intel_gvt *gvt = vgpu->gvt;
1495         struct intel_gvt_gtt *gtt = &gvt->gtt;
1496         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1497         struct intel_gvt_gtt_entry se;
1498         int i;
1499
1500         if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1501                 return;
1502
1503         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1504                 ppgtt_get_shadow_root_entry(mm, &se, i);
1505                 if (!ops->test_present(&se))
1506                         continue;
1507                 ppgtt_invalidate_shadow_page_by_shadow_entry(
1508                                 vgpu, &se);
1509                 se.val64 = 0;
1510                 ppgtt_set_shadow_root_entry(mm, &se, i);
1511
1512                 trace_gpt_change(vgpu->id, "destroy root pointer",
1513                                 NULL, se.type, se.val64, i);
1514         }
1515         mm->shadowed = false;
1516 }
1517
1518 /**
1519  * intel_vgpu_destroy_mm - destroy a mm object
1520  * @mm: a kref object
1521  *
1522  * This function is used to destroy a mm object for vGPU
1523  *
1524  */
1525 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1526 {
1527         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1528         struct intel_vgpu *vgpu = mm->vgpu;
1529         struct intel_gvt *gvt = vgpu->gvt;
1530         struct intel_gvt_gtt *gtt = &gvt->gtt;
1531
1532         if (!mm->initialized)
1533                 goto out;
1534
1535         list_del(&mm->list);
1536         list_del(&mm->lru_list);
1537
1538         if (mm->has_shadow_page_table)
1539                 invalidate_mm(mm);
1540
1541         gtt->mm_free_page_table(mm);
1542 out:
1543         kfree(mm);
1544 }
1545
1546 static int shadow_mm(struct intel_vgpu_mm *mm)
1547 {
1548         struct intel_vgpu *vgpu = mm->vgpu;
1549         struct intel_gvt *gvt = vgpu->gvt;
1550         struct intel_gvt_gtt *gtt = &gvt->gtt;
1551         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1552         struct intel_vgpu_ppgtt_spt *spt;
1553         struct intel_gvt_gtt_entry ge, se;
1554         int i;
1555         int ret;
1556
1557         if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1558                 return 0;
1559
1560         mm->shadowed = true;
1561
1562         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1563                 ppgtt_get_guest_root_entry(mm, &ge, i);
1564                 if (!ops->test_present(&ge))
1565                         continue;
1566
1567                 trace_gpt_change(vgpu->id, __func__, NULL,
1568                                 ge.type, ge.val64, i);
1569
1570                 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1571                 if (IS_ERR(spt)) {
1572                         gvt_vgpu_err("fail to populate guest root pointer\n");
1573                         ret = PTR_ERR(spt);
1574                         goto fail;
1575                 }
1576                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1577                 ppgtt_set_shadow_root_entry(mm, &se, i);
1578
1579                 trace_gpt_change(vgpu->id, "populate root pointer",
1580                                 NULL, se.type, se.val64, i);
1581         }
1582         return 0;
1583 fail:
1584         invalidate_mm(mm);
1585         return ret;
1586 }
1587
1588 /**
1589  * intel_vgpu_create_mm - create a mm object for a vGPU
1590  * @vgpu: a vGPU
1591  * @mm_type: mm object type, should be PPGTT or GGTT
1592  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1593  *      to populate shadow later.
1594  * @page_table_level: describe the page table level of the mm object
1595  * @pde_base_index: pde root pointer base in GGTT MMIO.
1596  *
1597  * This function is used to create a mm object for a vGPU.
1598  *
1599  * Returns:
1600  * Zero on success, negative error code in pointer if failed.
1601  */
1602 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1603                 int mm_type, void *virtual_page_table, int page_table_level,
1604                 u32 pde_base_index)
1605 {
1606         struct intel_gvt *gvt = vgpu->gvt;
1607         struct intel_gvt_gtt *gtt = &gvt->gtt;
1608         struct intel_vgpu_mm *mm;
1609         int ret;
1610
1611         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1612         if (!mm) {
1613                 ret = -ENOMEM;
1614                 goto fail;
1615         }
1616
1617         mm->type = mm_type;
1618
1619         if (page_table_level == 1)
1620                 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1621         else if (page_table_level == 3)
1622                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1623         else if (page_table_level == 4)
1624                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1625         else {
1626                 WARN_ON(1);
1627                 ret = -EINVAL;
1628                 goto fail;
1629         }
1630
1631         mm->page_table_level = page_table_level;
1632         mm->pde_base_index = pde_base_index;
1633
1634         mm->vgpu = vgpu;
1635         mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1636
1637         kref_init(&mm->ref);
1638         atomic_set(&mm->pincount, 0);
1639         INIT_LIST_HEAD(&mm->list);
1640         INIT_LIST_HEAD(&mm->lru_list);
1641         list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1642
1643         ret = gtt->mm_alloc_page_table(mm);
1644         if (ret) {
1645                 gvt_vgpu_err("fail to allocate page table for mm\n");
1646                 goto fail;
1647         }
1648
1649         mm->initialized = true;
1650
1651         if (virtual_page_table)
1652                 memcpy(mm->virtual_page_table, virtual_page_table,
1653                                 mm->page_table_entry_size);
1654
1655         if (mm->has_shadow_page_table) {
1656                 ret = shadow_mm(mm);
1657                 if (ret)
1658                         goto fail;
1659                 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1660         }
1661         return mm;
1662 fail:
1663         gvt_vgpu_err("fail to create mm\n");
1664         if (mm)
1665                 intel_gvt_mm_unreference(mm);
1666         return ERR_PTR(ret);
1667 }
1668
1669 /**
1670  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1671  * @mm: a vGPU mm object
1672  *
1673  * This function is called when user doesn't want to use a vGPU mm object
1674  */
1675 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1676 {
1677         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1678                 return;
1679
1680         atomic_dec(&mm->pincount);
1681 }
1682
1683 /**
1684  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1685  * @vgpu: a vGPU
1686  *
1687  * This function is called when user wants to use a vGPU mm object. If this
1688  * mm object hasn't been shadowed yet, the shadow will be populated at this
1689  * time.
1690  *
1691  * Returns:
1692  * Zero on success, negative error code if failed.
1693  */
1694 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1695 {
1696         int ret;
1697
1698         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1699                 return 0;
1700
1701         if (!mm->shadowed) {
1702                 ret = shadow_mm(mm);
1703                 if (ret)
1704                         return ret;
1705         }
1706
1707         atomic_inc(&mm->pincount);
1708         list_del_init(&mm->lru_list);
1709         list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1710         return 0;
1711 }
1712
1713 static int reclaim_one_mm(struct intel_gvt *gvt)
1714 {
1715         struct intel_vgpu_mm *mm;
1716         struct list_head *pos, *n;
1717
1718         list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1719                 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1720
1721                 if (mm->type != INTEL_GVT_MM_PPGTT)
1722                         continue;
1723                 if (atomic_read(&mm->pincount))
1724                         continue;
1725
1726                 list_del_init(&mm->lru_list);
1727                 invalidate_mm(mm);
1728                 return 1;
1729         }
1730         return 0;
1731 }
1732
1733 /*
1734  * GMA translation APIs.
1735  */
1736 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1737                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1738 {
1739         struct intel_vgpu *vgpu = mm->vgpu;
1740         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1741         struct intel_vgpu_ppgtt_spt *s;
1742
1743         if (WARN_ON(!mm->has_shadow_page_table))
1744                 return -EINVAL;
1745
1746         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1747         if (!s)
1748                 return -ENXIO;
1749
1750         if (!guest)
1751                 ppgtt_get_shadow_entry(s, e, index);
1752         else
1753                 ppgtt_get_guest_entry(s, e, index);
1754         return 0;
1755 }
1756
1757 /**
1758  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1759  * @mm: mm object. could be a PPGTT or GGTT mm object
1760  * @gma: graphics memory address in this mm object
1761  *
1762  * This function is used to translate a graphics memory address in specific
1763  * graphics memory space to guest physical address.
1764  *
1765  * Returns:
1766  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1767  */
1768 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1769 {
1770         struct intel_vgpu *vgpu = mm->vgpu;
1771         struct intel_gvt *gvt = vgpu->gvt;
1772         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1773         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1774         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1775         unsigned long gma_index[4];
1776         struct intel_gvt_gtt_entry e;
1777         int i, index;
1778         int ret;
1779
1780         if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1781                 return INTEL_GVT_INVALID_ADDR;
1782
1783         if (mm->type == INTEL_GVT_MM_GGTT) {
1784                 if (!vgpu_gmadr_is_valid(vgpu, gma))
1785                         goto err;
1786
1787                 ret = ggtt_get_guest_entry(mm, &e,
1788                                 gma_ops->gma_to_ggtt_pte_index(gma));
1789                 if (ret)
1790                         goto err;
1791                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1792                         + (gma & ~I915_GTT_PAGE_MASK);
1793
1794                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1795                 return gpa;
1796         }
1797
1798         switch (mm->page_table_level) {
1799         case 4:
1800                 ret = ppgtt_get_shadow_root_entry(mm, &e, 0);
1801                 if (ret)
1802                         goto err;
1803                 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1804                 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1805                 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1806                 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1807                 index = 4;
1808                 break;
1809         case 3:
1810                 ret = ppgtt_get_shadow_root_entry(mm, &e,
1811                                 gma_ops->gma_to_l3_pdp_index(gma));
1812                 if (ret)
1813                         goto err;
1814                 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1815                 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1816                 index = 2;
1817                 break;
1818         case 2:
1819                 ret = ppgtt_get_shadow_root_entry(mm, &e,
1820                                 gma_ops->gma_to_pde_index(gma));
1821                 if (ret)
1822                         goto err;
1823                 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1824                 index = 1;
1825                 break;
1826         default:
1827                 WARN_ON(1);
1828                 goto err;
1829         }
1830
1831         /* walk into the shadow page table and get gpa from guest entry */
1832         for (i = 0; i < index; i++) {
1833                 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1834                         (i == index - 1));
1835                 if (ret)
1836                         goto err;
1837
1838                 if (!pte_ops->test_present(&e)) {
1839                         gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1840                         goto err;
1841                 }
1842         }
1843
1844         gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1845                 + (gma & ~I915_GTT_PAGE_MASK);
1846
1847         trace_gma_translate(vgpu->id, "ppgtt", 0,
1848                         mm->page_table_level, gma, gpa);
1849         return gpa;
1850 err:
1851         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1852         return INTEL_GVT_INVALID_ADDR;
1853 }
1854
1855 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1856         unsigned int off, void *p_data, unsigned int bytes)
1857 {
1858         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1859         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1860         unsigned long index = off >> info->gtt_entry_size_shift;
1861         struct intel_gvt_gtt_entry e;
1862
1863         if (bytes != 4 && bytes != 8)
1864                 return -EINVAL;
1865
1866         ggtt_get_guest_entry(ggtt_mm, &e, index);
1867         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1868                         bytes);
1869         return 0;
1870 }
1871
1872 /**
1873  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1874  * @vgpu: a vGPU
1875  * @off: register offset
1876  * @p_data: data will be returned to guest
1877  * @bytes: data length
1878  *
1879  * This function is used to emulate the GTT MMIO register read
1880  *
1881  * Returns:
1882  * Zero on success, error code if failed.
1883  */
1884 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1885         void *p_data, unsigned int bytes)
1886 {
1887         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1888         int ret;
1889
1890         if (bytes != 4 && bytes != 8)
1891                 return -EINVAL;
1892
1893         off -= info->gtt_start_offset;
1894         ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1895         return ret;
1896 }
1897
1898 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1899         void *p_data, unsigned int bytes)
1900 {
1901         struct intel_gvt *gvt = vgpu->gvt;
1902         const struct intel_gvt_device_info *info = &gvt->device_info;
1903         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1904         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1905         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1906         unsigned long gma;
1907         struct intel_gvt_gtt_entry e, m;
1908         int ret;
1909
1910         if (bytes != 4 && bytes != 8)
1911                 return -EINVAL;
1912
1913         gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
1914
1915         /* the VM may configure the whole GM space when ballooning is used */
1916         if (!vgpu_gmadr_is_valid(vgpu, gma))
1917                 return 0;
1918
1919         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1920
1921         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1922                         bytes);
1923
1924         if (ops->test_present(&e)) {
1925                 ret = gtt_entry_p2m(vgpu, &e, &m);
1926                 if (ret) {
1927                         gvt_vgpu_err("fail to translate guest gtt entry\n");
1928                         /* guest driver may read/write the entry when partial
1929                          * update the entry in this situation p2m will fail
1930                          * settting the shadow entry to point to a scratch page
1931                          */
1932                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1933                 }
1934         } else {
1935                 m = e;
1936                 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1937         }
1938
1939         ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1940         gtt_invalidate(gvt->dev_priv);
1941         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1942         return 0;
1943 }
1944
1945 /*
1946  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1947  * @vgpu: a vGPU
1948  * @off: register offset
1949  * @p_data: data from guest write
1950  * @bytes: data length
1951  *
1952  * This function is used to emulate the GTT MMIO register write
1953  *
1954  * Returns:
1955  * Zero on success, error code if failed.
1956  */
1957 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1958         void *p_data, unsigned int bytes)
1959 {
1960         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1961         int ret;
1962
1963         if (bytes != 4 && bytes != 8)
1964                 return -EINVAL;
1965
1966         off -= info->gtt_start_offset;
1967         ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1968         return ret;
1969 }
1970
1971 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1972                 intel_gvt_gtt_type_t type)
1973 {
1974         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1975         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1976         int page_entry_num = I915_GTT_PAGE_SIZE >>
1977                                 vgpu->gvt->device_info.gtt_entry_size_shift;
1978         void *scratch_pt;
1979         int i;
1980         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1981         dma_addr_t daddr;
1982
1983         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1984                 return -EINVAL;
1985
1986         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1987         if (!scratch_pt) {
1988                 gvt_vgpu_err("fail to allocate scratch page\n");
1989                 return -ENOMEM;
1990         }
1991
1992         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1993                         4096, PCI_DMA_BIDIRECTIONAL);
1994         if (dma_mapping_error(dev, daddr)) {
1995                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
1996                 __free_page(virt_to_page(scratch_pt));
1997                 return -ENOMEM;
1998         }
1999         gtt->scratch_pt[type].page_mfn =
2000                 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2001         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2002         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2003                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2004
2005         /* Build the tree by full filled the scratch pt with the entries which
2006          * point to the next level scratch pt or scratch page. The
2007          * scratch_pt[type] indicate the scratch pt/scratch page used by the
2008          * 'type' pt.
2009          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2010          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2011          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2012          */
2013         if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
2014                 struct intel_gvt_gtt_entry se;
2015
2016                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2017                 se.type = get_entry_type(type - 1);
2018                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2019
2020                 /* The entry parameters like present/writeable/cache type
2021                  * set to the same as i915's scratch page tree.
2022                  */
2023                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2024                 if (type == GTT_TYPE_PPGTT_PDE_PT)
2025                         se.val64 |= PPAT_CACHED;
2026
2027                 for (i = 0; i < page_entry_num; i++)
2028                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2029         }
2030
2031         return 0;
2032 }
2033
2034 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2035 {
2036         int i;
2037         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2038         dma_addr_t daddr;
2039
2040         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2041                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2042                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2043                                         I915_GTT_PAGE_SHIFT);
2044                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2045                         __free_page(vgpu->gtt.scratch_pt[i].page);
2046                         vgpu->gtt.scratch_pt[i].page = NULL;
2047                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
2048                 }
2049         }
2050
2051         return 0;
2052 }
2053
2054 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2055 {
2056         int i, ret;
2057
2058         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2059                 ret = alloc_scratch_pages(vgpu, i);
2060                 if (ret)
2061                         goto err;
2062         }
2063
2064         return 0;
2065
2066 err:
2067         release_scratch_page_tree(vgpu);
2068         return ret;
2069 }
2070
2071 /**
2072  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2073  * @vgpu: a vGPU
2074  *
2075  * This function is used to initialize per-vGPU graphics memory virtualization
2076  * components.
2077  *
2078  * Returns:
2079  * Zero on success, error code if failed.
2080  */
2081 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2082 {
2083         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2084         struct intel_vgpu_mm *ggtt_mm;
2085
2086         hash_init(gtt->tracked_guest_page_hash_table);
2087         hash_init(gtt->shadow_page_hash_table);
2088
2089         INIT_LIST_HEAD(&gtt->mm_list_head);
2090         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2091         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2092
2093         intel_vgpu_reset_ggtt(vgpu);
2094
2095         ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2096                         NULL, 1, 0);
2097         if (IS_ERR(ggtt_mm)) {
2098                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2099                 return PTR_ERR(ggtt_mm);
2100         }
2101
2102         gtt->ggtt_mm = ggtt_mm;
2103
2104         return create_scratch_page_tree(vgpu);
2105 }
2106
2107 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2108 {
2109         struct list_head *pos, *n;
2110         struct intel_vgpu_mm *mm;
2111
2112         list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2113                 mm = container_of(pos, struct intel_vgpu_mm, list);
2114                 if (mm->type == type) {
2115                         vgpu->gvt->gtt.mm_free_page_table(mm);
2116                         list_del(&mm->list);
2117                         list_del(&mm->lru_list);
2118                         kfree(mm);
2119                 }
2120         }
2121 }
2122
2123 /**
2124  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2125  * @vgpu: a vGPU
2126  *
2127  * This function is used to clean up per-vGPU graphics memory virtualization
2128  * components.
2129  *
2130  * Returns:
2131  * Zero on success, error code if failed.
2132  */
2133 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2134 {
2135         ppgtt_free_all_shadow_page(vgpu);
2136         release_scratch_page_tree(vgpu);
2137
2138         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2139         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2140 }
2141
2142 static void clean_spt_oos(struct intel_gvt *gvt)
2143 {
2144         struct intel_gvt_gtt *gtt = &gvt->gtt;
2145         struct list_head *pos, *n;
2146         struct intel_vgpu_oos_page *oos_page;
2147
2148         WARN(!list_empty(&gtt->oos_page_use_list_head),
2149                 "someone is still using oos page\n");
2150
2151         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2152                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2153                 list_del(&oos_page->list);
2154                 kfree(oos_page);
2155         }
2156 }
2157
2158 static int setup_spt_oos(struct intel_gvt *gvt)
2159 {
2160         struct intel_gvt_gtt *gtt = &gvt->gtt;
2161         struct intel_vgpu_oos_page *oos_page;
2162         int i;
2163         int ret;
2164
2165         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2166         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2167
2168         for (i = 0; i < preallocated_oos_pages; i++) {
2169                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2170                 if (!oos_page) {
2171                         ret = -ENOMEM;
2172                         goto fail;
2173                 }
2174
2175                 INIT_LIST_HEAD(&oos_page->list);
2176                 INIT_LIST_HEAD(&oos_page->vm_list);
2177                 oos_page->id = i;
2178                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2179         }
2180
2181         gvt_dbg_mm("%d oos pages preallocated\n", i);
2182
2183         return 0;
2184 fail:
2185         clean_spt_oos(gvt);
2186         return ret;
2187 }
2188
2189 /**
2190  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2191  * @vgpu: a vGPU
2192  * @page_table_level: PPGTT page table level
2193  * @root_entry: PPGTT page table root pointers
2194  *
2195  * This function is used to find a PPGTT mm object from mm object pool
2196  *
2197  * Returns:
2198  * pointer to mm object on success, NULL if failed.
2199  */
2200 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2201                 int page_table_level, void *root_entry)
2202 {
2203         struct list_head *pos;
2204         struct intel_vgpu_mm *mm;
2205         u64 *src, *dst;
2206
2207         list_for_each(pos, &vgpu->gtt.mm_list_head) {
2208                 mm = container_of(pos, struct intel_vgpu_mm, list);
2209                 if (mm->type != INTEL_GVT_MM_PPGTT)
2210                         continue;
2211
2212                 if (mm->page_table_level != page_table_level)
2213                         continue;
2214
2215                 src = root_entry;
2216                 dst = mm->virtual_page_table;
2217
2218                 if (page_table_level == 3) {
2219                         if (src[0] == dst[0]
2220                                         && src[1] == dst[1]
2221                                         && src[2] == dst[2]
2222                                         && src[3] == dst[3])
2223                                 return mm;
2224                 } else {
2225                         if (src[0] == dst[0])
2226                                 return mm;
2227                 }
2228         }
2229         return NULL;
2230 }
2231
2232 /**
2233  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2234  * g2v notification
2235  * @vgpu: a vGPU
2236  * @page_table_level: PPGTT page table level
2237  *
2238  * This function is used to create a PPGTT mm object from a guest to GVT-g
2239  * notification.
2240  *
2241  * Returns:
2242  * Zero on success, negative error code if failed.
2243  */
2244 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2245                 int page_table_level)
2246 {
2247         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2248         struct intel_vgpu_mm *mm;
2249
2250         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2251                 return -EINVAL;
2252
2253         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2254         if (mm) {
2255                 intel_gvt_mm_reference(mm);
2256         } else {
2257                 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2258                                 pdp, page_table_level, 0);
2259                 if (IS_ERR(mm)) {
2260                         gvt_vgpu_err("fail to create mm\n");
2261                         return PTR_ERR(mm);
2262                 }
2263         }
2264         return 0;
2265 }
2266
2267 /**
2268  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2269  * g2v notification
2270  * @vgpu: a vGPU
2271  * @page_table_level: PPGTT page table level
2272  *
2273  * This function is used to create a PPGTT mm object from a guest to GVT-g
2274  * notification.
2275  *
2276  * Returns:
2277  * Zero on success, negative error code if failed.
2278  */
2279 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2280                 int page_table_level)
2281 {
2282         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2283         struct intel_vgpu_mm *mm;
2284
2285         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2286                 return -EINVAL;
2287
2288         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2289         if (!mm) {
2290                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2291                 return -EINVAL;
2292         }
2293         intel_gvt_mm_unreference(mm);
2294         return 0;
2295 }
2296
2297 /**
2298  * intel_gvt_init_gtt - initialize mm components of a GVT device
2299  * @gvt: GVT device
2300  *
2301  * This function is called at the initialization stage, to initialize
2302  * the mm components of a GVT device.
2303  *
2304  * Returns:
2305  * zero on success, negative error code if failed.
2306  */
2307 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2308 {
2309         int ret;
2310         void *page;
2311         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2312         dma_addr_t daddr;
2313
2314         gvt_dbg_core("init gtt\n");
2315
2316         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2317                 || IS_KABYLAKE(gvt->dev_priv)) {
2318                 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2319                 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2320                 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2321                 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2322         } else {
2323                 return -ENODEV;
2324         }
2325
2326         page = (void *)get_zeroed_page(GFP_KERNEL);
2327         if (!page) {
2328                 gvt_err("fail to allocate scratch ggtt page\n");
2329                 return -ENOMEM;
2330         }
2331
2332         daddr = dma_map_page(dev, virt_to_page(page), 0,
2333                         4096, PCI_DMA_BIDIRECTIONAL);
2334         if (dma_mapping_error(dev, daddr)) {
2335                 gvt_err("fail to dmamap scratch ggtt page\n");
2336                 __free_page(virt_to_page(page));
2337                 return -ENOMEM;
2338         }
2339
2340         gvt->gtt.scratch_page = virt_to_page(page);
2341         gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2342
2343         if (enable_out_of_sync) {
2344                 ret = setup_spt_oos(gvt);
2345                 if (ret) {
2346                         gvt_err("fail to initialize SPT oos\n");
2347                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2348                         __free_page(gvt->gtt.scratch_page);
2349                         return ret;
2350                 }
2351         }
2352         INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2353         return 0;
2354 }
2355
2356 /**
2357  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2358  * @gvt: GVT device
2359  *
2360  * This function is called at the driver unloading stage, to clean up the
2361  * the mm components of a GVT device.
2362  *
2363  */
2364 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2365 {
2366         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2367         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2368                                         I915_GTT_PAGE_SHIFT);
2369
2370         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2371
2372         __free_page(gvt->gtt.scratch_page);
2373
2374         if (enable_out_of_sync)
2375                 clean_spt_oos(gvt);
2376 }
2377
2378 /**
2379  * intel_vgpu_reset_ggtt - reset the GGTT entry
2380  * @vgpu: a vGPU
2381  *
2382  * This function is called at the vGPU create stage
2383  * to reset all the GGTT entries.
2384  *
2385  */
2386 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2387 {
2388         struct intel_gvt *gvt = vgpu->gvt;
2389         struct drm_i915_private *dev_priv = gvt->dev_priv;
2390         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2391         u32 index;
2392         u32 offset;
2393         u32 num_entries;
2394         struct intel_gvt_gtt_entry e;
2395
2396         memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2397         e.type = GTT_TYPE_GGTT_PTE;
2398         ops->set_pfn(&e, gvt->gtt.scratch_mfn);
2399         e.val64 |= _PAGE_PRESENT;
2400
2401         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2402         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2403         for (offset = 0; offset < num_entries; offset++)
2404                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2405
2406         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2407         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2408         for (offset = 0; offset < num_entries; offset++)
2409                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2410
2411         gtt_invalidate(dev_priv);
2412 }
2413
2414 /**
2415  * intel_vgpu_reset_gtt - reset the all GTT related status
2416  * @vgpu: a vGPU
2417  *
2418  * This function is called from vfio core to reset reset all
2419  * GTT related status, including GGTT, PPGTT, scratch page.
2420  *
2421  */
2422 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2423 {
2424         ppgtt_free_all_shadow_page(vgpu);
2425
2426         /* Shadow pages are only created when there is no page
2427          * table tracking data, so remove page tracking data after
2428          * removing the shadow pages.
2429          */
2430         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2431
2432         intel_vgpu_reset_ggtt(vgpu);
2433 }