Merge tag 'drm-intel-next-2018-07-19' of git://anongit.freedesktop.org/drm/drm-intel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58                 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59                                 addr, size);
60                 return false;
61         }
62         return true;
63 }
64
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69                  "invalid guest gmadr %llx\n", g_addr))
70                 return -EACCES;
71
72         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
74                           + (g_addr - vgpu_aperture_offset(vgpu));
75         else
76                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
77                           + (g_addr - vgpu_hidden_offset(vgpu));
78         return 0;
79 }
80
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85                  "invalid host gmadr %llx\n", h_addr))
86                 return -EACCES;
87
88         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
90                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91         else
92                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
93                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94         return 0;
95 }
96
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98                              unsigned long *h_index)
99 {
100         u64 h_addr;
101         int ret;
102
103         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104                                        &h_addr);
105         if (ret)
106                 return ret;
107
108         *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109         return 0;
110 }
111
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113                              unsigned long *g_index)
114 {
115         u64 g_addr;
116         int ret;
117
118         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119                                        &g_addr);
120         if (ret)
121                 return ret;
122
123         *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124         return 0;
125 }
126
127 #define gtt_type_is_entry(type) \
128         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131
132 #define gtt_type_is_pt(type) \
133         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134
135 #define gtt_type_is_pte_pt(type) \
136         (type == GTT_TYPE_PPGTT_PTE_PT)
137
138 #define gtt_type_is_root_pointer(type) \
139         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140
141 #define gtt_init_entry(e, t, p, v) do { \
142         (e)->type = t; \
143         (e)->pdev = p; \
144         memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162
163 struct gtt_type_table_entry {
164         int entry_type;
165         int pt_type;
166         int next_pt_type;
167         int pse_entry_type;
168 };
169
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171         [type] = { \
172                 .entry_type = e_type, \
173                 .pt_type = cpt_type, \
174                 .next_pt_type = npt_type, \
175                 .pse_entry_type = pse_type, \
176         }
177
178 static struct gtt_type_table_entry gtt_type_table[] = {
179         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181                         GTT_TYPE_INVALID,
182                         GTT_TYPE_PPGTT_PML4_PT,
183                         GTT_TYPE_INVALID),
184         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185                         GTT_TYPE_PPGTT_PML4_ENTRY,
186                         GTT_TYPE_PPGTT_PML4_PT,
187                         GTT_TYPE_PPGTT_PDP_PT,
188                         GTT_TYPE_INVALID),
189         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190                         GTT_TYPE_PPGTT_PML4_ENTRY,
191                         GTT_TYPE_PPGTT_PML4_PT,
192                         GTT_TYPE_PPGTT_PDP_PT,
193                         GTT_TYPE_INVALID),
194         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195                         GTT_TYPE_PPGTT_PDP_ENTRY,
196                         GTT_TYPE_PPGTT_PDP_PT,
197                         GTT_TYPE_PPGTT_PDE_PT,
198                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201                         GTT_TYPE_INVALID,
202                         GTT_TYPE_PPGTT_PDE_PT,
203                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205                         GTT_TYPE_PPGTT_PDP_ENTRY,
206                         GTT_TYPE_PPGTT_PDP_PT,
207                         GTT_TYPE_PPGTT_PDE_PT,
208                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210                         GTT_TYPE_PPGTT_PDE_ENTRY,
211                         GTT_TYPE_PPGTT_PDE_PT,
212                         GTT_TYPE_PPGTT_PTE_PT,
213                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215                         GTT_TYPE_PPGTT_PDE_ENTRY,
216                         GTT_TYPE_PPGTT_PDE_PT,
217                         GTT_TYPE_PPGTT_PTE_PT,
218                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219         /* We take IPS bit as 'PSE' for PTE level. */
220         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
221                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
222                         GTT_TYPE_PPGTT_PTE_PT,
223                         GTT_TYPE_INVALID,
224                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
225         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
227                         GTT_TYPE_PPGTT_PTE_PT,
228                         GTT_TYPE_INVALID,
229                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
230         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
231                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232                         GTT_TYPE_PPGTT_PTE_PT,
233                         GTT_TYPE_INVALID,
234                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
236                         GTT_TYPE_PPGTT_PDE_ENTRY,
237                         GTT_TYPE_PPGTT_PDE_PT,
238                         GTT_TYPE_INVALID,
239                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
240         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
241                         GTT_TYPE_PPGTT_PDP_ENTRY,
242                         GTT_TYPE_PPGTT_PDP_PT,
243                         GTT_TYPE_INVALID,
244                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
245         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
246                         GTT_TYPE_GGTT_PTE,
247                         GTT_TYPE_INVALID,
248                         GTT_TYPE_INVALID,
249                         GTT_TYPE_INVALID),
250 };
251
252 static inline int get_next_pt_type(int type)
253 {
254         return gtt_type_table[type].next_pt_type;
255 }
256
257 static inline int get_pt_type(int type)
258 {
259         return gtt_type_table[type].pt_type;
260 }
261
262 static inline int get_entry_type(int type)
263 {
264         return gtt_type_table[type].entry_type;
265 }
266
267 static inline int get_pse_type(int type)
268 {
269         return gtt_type_table[type].pse_entry_type;
270 }
271
272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
273 {
274         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
275
276         return readq(addr);
277 }
278
279 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
280 {
281         mmio_hw_access_pre(dev_priv);
282         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
283         mmio_hw_access_post(dev_priv);
284 }
285
286 static void write_pte64(struct drm_i915_private *dev_priv,
287                 unsigned long index, u64 pte)
288 {
289         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
290
291         writeq(pte, addr);
292 }
293
294 static inline int gtt_get_entry64(void *pt,
295                 struct intel_gvt_gtt_entry *e,
296                 unsigned long index, bool hypervisor_access, unsigned long gpa,
297                 struct intel_vgpu *vgpu)
298 {
299         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
300         int ret;
301
302         if (WARN_ON(info->gtt_entry_size != 8))
303                 return -EINVAL;
304
305         if (hypervisor_access) {
306                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
307                                 (index << info->gtt_entry_size_shift),
308                                 &e->val64, 8);
309                 if (WARN_ON(ret))
310                         return ret;
311         } else if (!pt) {
312                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
313         } else {
314                 e->val64 = *((u64 *)pt + index);
315         }
316         return 0;
317 }
318
319 static inline int gtt_set_entry64(void *pt,
320                 struct intel_gvt_gtt_entry *e,
321                 unsigned long index, bool hypervisor_access, unsigned long gpa,
322                 struct intel_vgpu *vgpu)
323 {
324         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
325         int ret;
326
327         if (WARN_ON(info->gtt_entry_size != 8))
328                 return -EINVAL;
329
330         if (hypervisor_access) {
331                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
332                                 (index << info->gtt_entry_size_shift),
333                                 &e->val64, 8);
334                 if (WARN_ON(ret))
335                         return ret;
336         } else if (!pt) {
337                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
338         } else {
339                 *((u64 *)pt + index) = e->val64;
340         }
341         return 0;
342 }
343
344 #define GTT_HAW 46
345
346 #define ADDR_1G_MASK    GENMASK_ULL(GTT_HAW - 1, 30)
347 #define ADDR_2M_MASK    GENMASK_ULL(GTT_HAW - 1, 21)
348 #define ADDR_64K_MASK   GENMASK_ULL(GTT_HAW - 1, 16)
349 #define ADDR_4K_MASK    GENMASK_ULL(GTT_HAW - 1, 12)
350
351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
353
354 #define GTT_64K_PTE_STRIDE 16
355
356 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
357 {
358         unsigned long pfn;
359
360         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
361                 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
362         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
363                 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
364         else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
365                 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
366         else
367                 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
368         return pfn;
369 }
370
371 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
372 {
373         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
374                 e->val64 &= ~ADDR_1G_MASK;
375                 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
376         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
377                 e->val64 &= ~ADDR_2M_MASK;
378                 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
379         } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
380                 e->val64 &= ~ADDR_64K_MASK;
381                 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
382         } else {
383                 e->val64 &= ~ADDR_4K_MASK;
384                 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
385         }
386
387         e->val64 |= (pfn << PAGE_SHIFT);
388 }
389
390 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
391 {
392         return !!(e->val64 & _PAGE_PSE);
393 }
394
395 static void gen8_gtt_clear_pse(struct intel_gvt_gtt_entry *e)
396 {
397         if (gen8_gtt_test_pse(e)) {
398                 switch (e->type) {
399                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
400                         e->val64 &= ~_PAGE_PSE;
401                         e->type = GTT_TYPE_PPGTT_PDE_ENTRY;
402                         break;
403                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
404                         e->type = GTT_TYPE_PPGTT_PDP_ENTRY;
405                         e->val64 &= ~_PAGE_PSE;
406                         break;
407                 default:
408                         WARN_ON(1);
409                 }
410         }
411 }
412
413 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
414 {
415         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
416                 return false;
417
418         return !!(e->val64 & GEN8_PDE_IPS_64K);
419 }
420
421 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
422 {
423         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
424                 return;
425
426         e->val64 &= ~GEN8_PDE_IPS_64K;
427 }
428
429 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
430 {
431         /*
432          * i915 writes PDP root pointer registers without present bit,
433          * it also works, so we need to treat root pointer entry
434          * specifically.
435          */
436         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
437                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
438                 return (e->val64 != 0);
439         else
440                 return (e->val64 & _PAGE_PRESENT);
441 }
442
443 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
444 {
445         e->val64 &= ~_PAGE_PRESENT;
446 }
447
448 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
449 {
450         e->val64 |= _PAGE_PRESENT;
451 }
452
453 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
454 {
455         return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
456 }
457
458 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
459 {
460         e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
461 }
462
463 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
464 {
465         e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
466 }
467
468 /*
469  * Per-platform GMA routines.
470  */
471 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
472 {
473         unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
474
475         trace_gma_index(__func__, gma, x);
476         return x;
477 }
478
479 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
480 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
481 { \
482         unsigned long x = (exp); \
483         trace_gma_index(__func__, gma, x); \
484         return x; \
485 }
486
487 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
488 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
489 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
490 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
491 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
492
493 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
494         .get_entry = gtt_get_entry64,
495         .set_entry = gtt_set_entry64,
496         .clear_present = gtt_entry_clear_present,
497         .set_present = gtt_entry_set_present,
498         .test_present = gen8_gtt_test_present,
499         .test_pse = gen8_gtt_test_pse,
500         .clear_pse = gen8_gtt_clear_pse,
501         .clear_ips = gen8_gtt_clear_ips,
502         .test_ips = gen8_gtt_test_ips,
503         .clear_64k_splited = gen8_gtt_clear_64k_splited,
504         .set_64k_splited = gen8_gtt_set_64k_splited,
505         .test_64k_splited = gen8_gtt_test_64k_splited,
506         .get_pfn = gen8_gtt_get_pfn,
507         .set_pfn = gen8_gtt_set_pfn,
508 };
509
510 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
511         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
512         .gma_to_pte_index = gen8_gma_to_pte_index,
513         .gma_to_pde_index = gen8_gma_to_pde_index,
514         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
515         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
516         .gma_to_pml4_index = gen8_gma_to_pml4_index,
517 };
518
519 /* Update entry type per pse and ips bit. */
520 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
521         struct intel_gvt_gtt_entry *entry, bool ips)
522 {
523         switch (entry->type) {
524         case GTT_TYPE_PPGTT_PDE_ENTRY:
525         case GTT_TYPE_PPGTT_PDP_ENTRY:
526                 if (pte_ops->test_pse(entry))
527                         entry->type = get_pse_type(entry->type);
528                 break;
529         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
530                 if (ips)
531                         entry->type = get_pse_type(entry->type);
532                 break;
533         default:
534                 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
535         }
536
537         GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
538 }
539
540 /*
541  * MM helpers.
542  */
543 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
544                 struct intel_gvt_gtt_entry *entry, unsigned long index,
545                 bool guest)
546 {
547         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
548
549         GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
550
551         entry->type = mm->ppgtt_mm.root_entry_type;
552         pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
553                            mm->ppgtt_mm.shadow_pdps,
554                            entry, index, false, 0, mm->vgpu);
555         update_entry_type_for_real(pte_ops, entry, false);
556 }
557
558 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
559                 struct intel_gvt_gtt_entry *entry, unsigned long index)
560 {
561         _ppgtt_get_root_entry(mm, entry, index, true);
562 }
563
564 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
565                 struct intel_gvt_gtt_entry *entry, unsigned long index)
566 {
567         _ppgtt_get_root_entry(mm, entry, index, false);
568 }
569
570 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
571                 struct intel_gvt_gtt_entry *entry, unsigned long index,
572                 bool guest)
573 {
574         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
575
576         pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
577                            mm->ppgtt_mm.shadow_pdps,
578                            entry, index, false, 0, mm->vgpu);
579 }
580
581 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
582                 struct intel_gvt_gtt_entry *entry, unsigned long index)
583 {
584         _ppgtt_set_root_entry(mm, entry, index, true);
585 }
586
587 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
588                 struct intel_gvt_gtt_entry *entry, unsigned long index)
589 {
590         _ppgtt_set_root_entry(mm, entry, index, false);
591 }
592
593 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
594                 struct intel_gvt_gtt_entry *entry, unsigned long index)
595 {
596         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
597
598         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
599
600         entry->type = GTT_TYPE_GGTT_PTE;
601         pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
602                            false, 0, mm->vgpu);
603 }
604
605 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
606                 struct intel_gvt_gtt_entry *entry, unsigned long index)
607 {
608         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609
610         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611
612         pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
613                            false, 0, mm->vgpu);
614 }
615
616 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
617                 struct intel_gvt_gtt_entry *entry, unsigned long index)
618 {
619         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
620
621         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
622
623         pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
624 }
625
626 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
627                 struct intel_gvt_gtt_entry *entry, unsigned long index)
628 {
629         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
630
631         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
632
633         pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
634 }
635
636 /*
637  * PPGTT shadow page table helpers.
638  */
639 static inline int ppgtt_spt_get_entry(
640                 struct intel_vgpu_ppgtt_spt *spt,
641                 void *page_table, int type,
642                 struct intel_gvt_gtt_entry *e, unsigned long index,
643                 bool guest)
644 {
645         struct intel_gvt *gvt = spt->vgpu->gvt;
646         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
647         int ret;
648
649         e->type = get_entry_type(type);
650
651         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
652                 return -EINVAL;
653
654         ret = ops->get_entry(page_table, e, index, guest,
655                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
656                         spt->vgpu);
657         if (ret)
658                 return ret;
659
660         update_entry_type_for_real(ops, e, guest ?
661                                    spt->guest_page.pde_ips : false);
662
663         gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
664                     type, e->type, index, e->val64);
665         return 0;
666 }
667
668 static inline int ppgtt_spt_set_entry(
669                 struct intel_vgpu_ppgtt_spt *spt,
670                 void *page_table, int type,
671                 struct intel_gvt_gtt_entry *e, unsigned long index,
672                 bool guest)
673 {
674         struct intel_gvt *gvt = spt->vgpu->gvt;
675         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
676
677         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
678                 return -EINVAL;
679
680         gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
681                     type, e->type, index, e->val64);
682
683         return ops->set_entry(page_table, e, index, guest,
684                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
685                         spt->vgpu);
686 }
687
688 #define ppgtt_get_guest_entry(spt, e, index) \
689         ppgtt_spt_get_entry(spt, NULL, \
690                 spt->guest_page.type, e, index, true)
691
692 #define ppgtt_set_guest_entry(spt, e, index) \
693         ppgtt_spt_set_entry(spt, NULL, \
694                 spt->guest_page.type, e, index, true)
695
696 #define ppgtt_get_shadow_entry(spt, e, index) \
697         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
698                 spt->shadow_page.type, e, index, false)
699
700 #define ppgtt_set_shadow_entry(spt, e, index) \
701         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
702                 spt->shadow_page.type, e, index, false)
703
704 static void *alloc_spt(gfp_t gfp_mask)
705 {
706         struct intel_vgpu_ppgtt_spt *spt;
707
708         spt = kzalloc(sizeof(*spt), gfp_mask);
709         if (!spt)
710                 return NULL;
711
712         spt->shadow_page.page = alloc_page(gfp_mask);
713         if (!spt->shadow_page.page) {
714                 kfree(spt);
715                 return NULL;
716         }
717         return spt;
718 }
719
720 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
721 {
722         __free_page(spt->shadow_page.page);
723         kfree(spt);
724 }
725
726 static int detach_oos_page(struct intel_vgpu *vgpu,
727                 struct intel_vgpu_oos_page *oos_page);
728
729 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
730 {
731         struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
732
733         trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
734
735         dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
736                        PCI_DMA_BIDIRECTIONAL);
737
738         radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
739
740         if (spt->guest_page.gfn) {
741                 if (spt->guest_page.oos_page)
742                         detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
743
744                 intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
745         }
746
747         list_del_init(&spt->post_shadow_list);
748         free_spt(spt);
749 }
750
751 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
752 {
753         struct intel_vgpu_ppgtt_spt *spt;
754         struct radix_tree_iter iter;
755         void **slot;
756
757         radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
758                 spt = radix_tree_deref_slot(slot);
759                 ppgtt_free_spt(spt);
760         }
761 }
762
763 static int ppgtt_handle_guest_write_page_table_bytes(
764                 struct intel_vgpu_ppgtt_spt *spt,
765                 u64 pa, void *p_data, int bytes);
766
767 static int ppgtt_write_protection_handler(
768                 struct intel_vgpu_page_track *page_track,
769                 u64 gpa, void *data, int bytes)
770 {
771         struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
772
773         int ret;
774
775         if (bytes != 4 && bytes != 8)
776                 return -EINVAL;
777
778         ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
779         if (ret)
780                 return ret;
781         return ret;
782 }
783
784 /* Find a spt by guest gfn. */
785 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
786                 struct intel_vgpu *vgpu, unsigned long gfn)
787 {
788         struct intel_vgpu_page_track *track;
789
790         track = intel_vgpu_find_page_track(vgpu, gfn);
791         if (track && track->handler == ppgtt_write_protection_handler)
792                 return track->priv_data;
793
794         return NULL;
795 }
796
797 /* Find the spt by shadow page mfn. */
798 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
799                 struct intel_vgpu *vgpu, unsigned long mfn)
800 {
801         return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
802 }
803
804 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
805
806 /* Allocate shadow page table without guest page. */
807 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
808                 struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type)
809 {
810         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
811         struct intel_vgpu_ppgtt_spt *spt = NULL;
812         dma_addr_t daddr;
813         int ret;
814
815 retry:
816         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
817         if (!spt) {
818                 if (reclaim_one_ppgtt_mm(vgpu->gvt))
819                         goto retry;
820
821                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
822                 return ERR_PTR(-ENOMEM);
823         }
824
825         spt->vgpu = vgpu;
826         atomic_set(&spt->refcount, 1);
827         INIT_LIST_HEAD(&spt->post_shadow_list);
828
829         /*
830          * Init shadow_page.
831          */
832         spt->shadow_page.type = type;
833         daddr = dma_map_page(kdev, spt->shadow_page.page,
834                              0, 4096, PCI_DMA_BIDIRECTIONAL);
835         if (dma_mapping_error(kdev, daddr)) {
836                 gvt_vgpu_err("fail to map dma addr\n");
837                 ret = -EINVAL;
838                 goto err_free_spt;
839         }
840         spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
841         spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
842
843         ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
844         if (ret)
845                 goto err_unmap_dma;
846
847         return spt;
848
849 err_unmap_dma:
850         dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
851 err_free_spt:
852         free_spt(spt);
853         return ERR_PTR(ret);
854 }
855
856 /* Allocate shadow page table associated with specific gfn. */
857 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt_gfn(
858                 struct intel_vgpu *vgpu, intel_gvt_gtt_type_t type,
859                 unsigned long gfn, bool guest_pde_ips)
860 {
861         struct intel_vgpu_ppgtt_spt *spt;
862         int ret;
863
864         spt = ppgtt_alloc_spt(vgpu, type);
865         if (IS_ERR(spt))
866                 return spt;
867
868         /*
869          * Init guest_page.
870          */
871         ret = intel_vgpu_register_page_track(vgpu, gfn,
872                         ppgtt_write_protection_handler, spt);
873         if (ret) {
874                 ppgtt_free_spt(spt);
875                 return ERR_PTR(ret);
876         }
877
878         spt->guest_page.type = type;
879         spt->guest_page.gfn = gfn;
880         spt->guest_page.pde_ips = guest_pde_ips;
881
882         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
883
884         return spt;
885 }
886
887 #define pt_entry_size_shift(spt) \
888         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
889
890 #define pt_entries(spt) \
891         (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
892
893 #define for_each_present_guest_entry(spt, e, i) \
894         for (i = 0; i < pt_entries(spt); \
895              i += spt->guest_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
896                 if (!ppgtt_get_guest_entry(spt, e, i) && \
897                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
898
899 #define for_each_present_shadow_entry(spt, e, i) \
900         for (i = 0; i < pt_entries(spt); \
901              i += spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1) \
902                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
903                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
904
905 #define for_each_shadow_entry(spt, e, i) \
906         for (i = 0; i < pt_entries(spt); \
907              i += (spt->shadow_page.pde_ips ? GTT_64K_PTE_STRIDE : 1)) \
908                 if (!ppgtt_get_shadow_entry(spt, e, i))
909
910 static inline void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
911 {
912         int v = atomic_read(&spt->refcount);
913
914         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
915         atomic_inc(&spt->refcount);
916 }
917
918 static inline int ppgtt_put_spt(struct intel_vgpu_ppgtt_spt *spt)
919 {
920         int v = atomic_read(&spt->refcount);
921
922         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
923         return atomic_dec_return(&spt->refcount);
924 }
925
926 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
927
928 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
929                 struct intel_gvt_gtt_entry *e)
930 {
931         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
932         struct intel_vgpu_ppgtt_spt *s;
933         intel_gvt_gtt_type_t cur_pt_type;
934
935         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
936
937         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
938                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
939                 cur_pt_type = get_next_pt_type(e->type) + 1;
940                 if (ops->get_pfn(e) ==
941                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
942                         return 0;
943         }
944         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
945         if (!s) {
946                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
947                                 ops->get_pfn(e));
948                 return -ENXIO;
949         }
950         return ppgtt_invalidate_spt(s);
951 }
952
953 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
954                 struct intel_gvt_gtt_entry *entry)
955 {
956         struct intel_vgpu *vgpu = spt->vgpu;
957         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
958         unsigned long pfn;
959         int type;
960
961         pfn = ops->get_pfn(entry);
962         type = spt->shadow_page.type;
963
964         /* Uninitialized spte or unshadowed spte. */
965         if (!pfn || pfn == vgpu->gtt.scratch_pt[type].page_mfn)
966                 return;
967
968         intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
969 }
970
971 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
972 {
973         struct intel_vgpu *vgpu = spt->vgpu;
974         struct intel_gvt_gtt_entry e;
975         unsigned long index;
976         int ret;
977
978         trace_spt_change(spt->vgpu->id, "die", spt,
979                         spt->guest_page.gfn, spt->shadow_page.type);
980
981         if (ppgtt_put_spt(spt) > 0)
982                 return 0;
983
984         for_each_present_shadow_entry(spt, &e, index) {
985                 switch (e.type) {
986                 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
987                         gvt_vdbg_mm("invalidate 4K entry\n");
988                         ppgtt_invalidate_pte(spt, &e);
989                         break;
990                 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
991                         /* We don't setup 64K shadow entry so far. */
992                         WARN(1, "suspicious 64K gtt entry\n");
993                         continue;
994                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
995                         gvt_vdbg_mm("invalidate 2M entry\n");
996                         continue;
997                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
998                         WARN(1, "GVT doesn't support 1GB page\n");
999                         continue;
1000                 case GTT_TYPE_PPGTT_PML4_ENTRY:
1001                 case GTT_TYPE_PPGTT_PDP_ENTRY:
1002                 case GTT_TYPE_PPGTT_PDE_ENTRY:
1003                         gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
1004                         ret = ppgtt_invalidate_spt_by_shadow_entry(
1005                                         spt->vgpu, &e);
1006                         if (ret)
1007                                 goto fail;
1008                         break;
1009                 default:
1010                         GEM_BUG_ON(1);
1011                 }
1012         }
1013
1014         trace_spt_change(spt->vgpu->id, "release", spt,
1015                          spt->guest_page.gfn, spt->shadow_page.type);
1016         ppgtt_free_spt(spt);
1017         return 0;
1018 fail:
1019         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
1020                         spt, e.val64, e.type);
1021         return ret;
1022 }
1023
1024 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
1025 {
1026         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1027
1028         if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
1029                 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
1030                         GAMW_ECO_ENABLE_64K_IPS_FIELD;
1031
1032                 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
1033         } else if (INTEL_GEN(dev_priv) >= 11) {
1034                 /* 64K paging only controlled by IPS bit in PTE now. */
1035                 return true;
1036         } else
1037                 return false;
1038 }
1039
1040 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
1041
1042 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
1043                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
1044 {
1045         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1046         struct intel_vgpu_ppgtt_spt *spt = NULL;
1047         bool ips = false;
1048         int ret;
1049
1050         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
1051
1052         if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1053                 ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1054
1055         spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
1056         if (spt) {
1057                 ppgtt_get_spt(spt);
1058
1059                 if (ips != spt->guest_page.pde_ips) {
1060                         spt->guest_page.pde_ips = ips;
1061
1062                         gvt_dbg_mm("reshadow PDE since ips changed\n");
1063                         clear_page(spt->shadow_page.vaddr);
1064                         ret = ppgtt_populate_spt(spt);
1065                         if (ret) {
1066                                 ppgtt_put_spt(spt);
1067                                 goto err;
1068                         }
1069                 }
1070         } else {
1071                 int type = get_next_pt_type(we->type);
1072
1073                 spt = ppgtt_alloc_spt_gfn(vgpu, type, ops->get_pfn(we), ips);
1074                 if (IS_ERR(spt)) {
1075                         ret = PTR_ERR(spt);
1076                         goto err;
1077                 }
1078
1079                 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1080                 if (ret)
1081                         goto err_free_spt;
1082
1083                 ret = ppgtt_populate_spt(spt);
1084                 if (ret)
1085                         goto err_free_spt;
1086
1087                 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1088                                  spt->shadow_page.type);
1089         }
1090         return spt;
1091
1092 err_free_spt:
1093         ppgtt_free_spt(spt);
1094 err:
1095         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1096                      spt, we->val64, we->type);
1097         return ERR_PTR(ret);
1098 }
1099
1100 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1101                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1102 {
1103         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1104
1105         se->type = ge->type;
1106         se->val64 = ge->val64;
1107
1108         /* Because we always split 64KB pages, so clear IPS in shadow PDE. */
1109         if (se->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1110                 ops->clear_ips(se);
1111
1112         ops->set_pfn(se, s->shadow_page.mfn);
1113 }
1114
1115 /**
1116  * Return 1 if 2MB huge gtt shadowing is possilbe, 0 if miscondition,
1117  * negtive if found err.
1118  */
1119 static int is_2MB_gtt_possible(struct intel_vgpu *vgpu,
1120         struct intel_gvt_gtt_entry *entry)
1121 {
1122         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1123         unsigned long pfn;
1124
1125         if (!HAS_PAGE_SIZES(vgpu->gvt->dev_priv, I915_GTT_PAGE_SIZE_2M))
1126                 return 0;
1127
1128         pfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, ops->get_pfn(entry));
1129         if (pfn == INTEL_GVT_INVALID_ADDR)
1130                 return -EINVAL;
1131
1132         return PageTransHuge(pfn_to_page(pfn));
1133 }
1134
1135 static int split_2MB_gtt_entry(struct intel_vgpu *vgpu,
1136         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1137         struct intel_gvt_gtt_entry *se)
1138 {
1139         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1140         struct intel_vgpu_ppgtt_spt *sub_spt;
1141         struct intel_gvt_gtt_entry sub_se;
1142         unsigned long start_gfn;
1143         dma_addr_t dma_addr;
1144         unsigned long sub_index;
1145         int ret;
1146
1147         gvt_dbg_mm("Split 2M gtt entry, index %lu\n", index);
1148
1149         start_gfn = ops->get_pfn(se);
1150
1151         sub_spt = ppgtt_alloc_spt(vgpu, GTT_TYPE_PPGTT_PTE_PT);
1152         if (IS_ERR(sub_spt))
1153                 return PTR_ERR(sub_spt);
1154
1155         for_each_shadow_entry(sub_spt, &sub_se, sub_index) {
1156                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1157                                 start_gfn + sub_index, PAGE_SIZE, &dma_addr);
1158                 if (ret) {
1159                         ppgtt_invalidate_spt(spt);
1160                         return ret;
1161                 }
1162                 sub_se.val64 = se->val64;
1163
1164                 /* Copy the PAT field from PDE. */
1165                 sub_se.val64 &= ~_PAGE_PAT;
1166                 sub_se.val64 |= (se->val64 & _PAGE_PAT_LARGE) >> 5;
1167
1168                 ops->set_pfn(&sub_se, dma_addr >> PAGE_SHIFT);
1169                 ppgtt_set_shadow_entry(sub_spt, &sub_se, sub_index);
1170         }
1171
1172         /* Clear dirty field. */
1173         se->val64 &= ~_PAGE_DIRTY;
1174
1175         ops->clear_pse(se);
1176         ops->clear_ips(se);
1177         ops->set_pfn(se, sub_spt->shadow_page.mfn);
1178         ppgtt_set_shadow_entry(spt, se, index);
1179         return 0;
1180 }
1181
1182 static int split_64KB_gtt_entry(struct intel_vgpu *vgpu,
1183         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1184         struct intel_gvt_gtt_entry *se)
1185 {
1186         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1187         struct intel_gvt_gtt_entry entry = *se;
1188         unsigned long start_gfn;
1189         dma_addr_t dma_addr;
1190         int i, ret;
1191
1192         gvt_vdbg_mm("Split 64K gtt entry, index %lu\n", index);
1193
1194         GEM_BUG_ON(index % GTT_64K_PTE_STRIDE);
1195
1196         start_gfn = ops->get_pfn(se);
1197
1198         entry.type = GTT_TYPE_PPGTT_PTE_4K_ENTRY;
1199         ops->set_64k_splited(&entry);
1200
1201         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1202                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu,
1203                                         start_gfn + i, PAGE_SIZE, &dma_addr);
1204                 if (ret)
1205                         return ret;
1206
1207                 ops->set_pfn(&entry, dma_addr >> PAGE_SHIFT);
1208                 ppgtt_set_shadow_entry(spt, &entry, index + i);
1209         }
1210         return 0;
1211 }
1212
1213 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1214         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1215         struct intel_gvt_gtt_entry *ge)
1216 {
1217         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1218         struct intel_gvt_gtt_entry se = *ge;
1219         unsigned long gfn, page_size = PAGE_SIZE;
1220         dma_addr_t dma_addr;
1221         int ret;
1222
1223         if (!pte_ops->test_present(ge))
1224                 return 0;
1225
1226         gfn = pte_ops->get_pfn(ge);
1227
1228         switch (ge->type) {
1229         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1230                 gvt_vdbg_mm("shadow 4K gtt entry\n");
1231                 break;
1232         case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1233                 gvt_vdbg_mm("shadow 64K gtt entry\n");
1234                 /*
1235                  * The layout of 64K page is special, the page size is
1236                  * controlled by uper PDE. To be simple, we always split
1237                  * 64K page to smaller 4K pages in shadow PT.
1238                  */
1239                 return split_64KB_gtt_entry(vgpu, spt, index, &se);
1240         case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1241                 gvt_vdbg_mm("shadow 2M gtt entry\n");
1242                 ret = is_2MB_gtt_possible(vgpu, ge);
1243                 if (ret == 0)
1244                         return split_2MB_gtt_entry(vgpu, spt, index, &se);
1245                 else if (ret < 0)
1246                         return ret;
1247                 page_size = I915_GTT_PAGE_SIZE_2M;
1248                 break;
1249         case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1250                 gvt_vgpu_err("GVT doesn't support 1GB entry\n");
1251                 return -EINVAL;
1252         default:
1253                 GEM_BUG_ON(1);
1254         };
1255
1256         /* direct shadow */
1257         ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, page_size,
1258                                                       &dma_addr);
1259         if (ret)
1260                 return -ENXIO;
1261
1262         pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1263         ppgtt_set_shadow_entry(spt, &se, index);
1264         return 0;
1265 }
1266
1267 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1268 {
1269         struct intel_vgpu *vgpu = spt->vgpu;
1270         struct intel_gvt *gvt = vgpu->gvt;
1271         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1272         struct intel_vgpu_ppgtt_spt *s;
1273         struct intel_gvt_gtt_entry se, ge;
1274         unsigned long gfn, i;
1275         int ret;
1276
1277         trace_spt_change(spt->vgpu->id, "born", spt,
1278                          spt->guest_page.gfn, spt->shadow_page.type);
1279
1280         for_each_present_guest_entry(spt, &ge, i) {
1281                 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1282                         s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1283                         if (IS_ERR(s)) {
1284                                 ret = PTR_ERR(s);
1285                                 goto fail;
1286                         }
1287                         ppgtt_get_shadow_entry(spt, &se, i);
1288                         ppgtt_generate_shadow_entry(&se, s, &ge);
1289                         ppgtt_set_shadow_entry(spt, &se, i);
1290                 } else {
1291                         gfn = ops->get_pfn(&ge);
1292                         if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1293                                 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1294                                 ppgtt_set_shadow_entry(spt, &se, i);
1295                                 continue;
1296                         }
1297
1298                         ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1299                         if (ret)
1300                                 goto fail;
1301                 }
1302         }
1303         return 0;
1304 fail:
1305         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1306                         spt, ge.val64, ge.type);
1307         return ret;
1308 }
1309
1310 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1311                 struct intel_gvt_gtt_entry *se, unsigned long index)
1312 {
1313         struct intel_vgpu *vgpu = spt->vgpu;
1314         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1315         int ret;
1316
1317         trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1318                                spt->shadow_page.type, se->val64, index);
1319
1320         gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1321                     se->type, index, se->val64);
1322
1323         if (!ops->test_present(se))
1324                 return 0;
1325
1326         if (ops->get_pfn(se) ==
1327             vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1328                 return 0;
1329
1330         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1331                 struct intel_vgpu_ppgtt_spt *s =
1332                         intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1333                 if (!s) {
1334                         gvt_vgpu_err("fail to find guest page\n");
1335                         ret = -ENXIO;
1336                         goto fail;
1337                 }
1338                 ret = ppgtt_invalidate_spt(s);
1339                 if (ret)
1340                         goto fail;
1341         } else {
1342                 /* We don't setup 64K shadow entry so far. */
1343                 WARN(se->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY,
1344                      "suspicious 64K entry\n");
1345                 ppgtt_invalidate_pte(spt, se);
1346         }
1347
1348         return 0;
1349 fail:
1350         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1351                         spt, se->val64, se->type);
1352         return ret;
1353 }
1354
1355 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1356                 struct intel_gvt_gtt_entry *we, unsigned long index)
1357 {
1358         struct intel_vgpu *vgpu = spt->vgpu;
1359         struct intel_gvt_gtt_entry m;
1360         struct intel_vgpu_ppgtt_spt *s;
1361         int ret;
1362
1363         trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1364                                we->val64, index);
1365
1366         gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1367                     we->type, index, we->val64);
1368
1369         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1370                 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1371                 if (IS_ERR(s)) {
1372                         ret = PTR_ERR(s);
1373                         goto fail;
1374                 }
1375                 ppgtt_get_shadow_entry(spt, &m, index);
1376                 ppgtt_generate_shadow_entry(&m, s, we);
1377                 ppgtt_set_shadow_entry(spt, &m, index);
1378         } else {
1379                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1380                 if (ret)
1381                         goto fail;
1382         }
1383         return 0;
1384 fail:
1385         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1386                 spt, we->val64, we->type);
1387         return ret;
1388 }
1389
1390 static int sync_oos_page(struct intel_vgpu *vgpu,
1391                 struct intel_vgpu_oos_page *oos_page)
1392 {
1393         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1394         struct intel_gvt *gvt = vgpu->gvt;
1395         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1396         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1397         struct intel_gvt_gtt_entry old, new;
1398         int index;
1399         int ret;
1400
1401         trace_oos_change(vgpu->id, "sync", oos_page->id,
1402                          spt, spt->guest_page.type);
1403
1404         old.type = new.type = get_entry_type(spt->guest_page.type);
1405         old.val64 = new.val64 = 0;
1406
1407         for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1408                                 info->gtt_entry_size_shift); index++) {
1409                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1410                 ops->get_entry(NULL, &new, index, true,
1411                                spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1412
1413                 if (old.val64 == new.val64
1414                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1415                         continue;
1416
1417                 trace_oos_sync(vgpu->id, oos_page->id,
1418                                 spt, spt->guest_page.type,
1419                                 new.val64, index);
1420
1421                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1422                 if (ret)
1423                         return ret;
1424
1425                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1426         }
1427
1428         spt->guest_page.write_cnt = 0;
1429         list_del_init(&spt->post_shadow_list);
1430         return 0;
1431 }
1432
1433 static int detach_oos_page(struct intel_vgpu *vgpu,
1434                 struct intel_vgpu_oos_page *oos_page)
1435 {
1436         struct intel_gvt *gvt = vgpu->gvt;
1437         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1438
1439         trace_oos_change(vgpu->id, "detach", oos_page->id,
1440                          spt, spt->guest_page.type);
1441
1442         spt->guest_page.write_cnt = 0;
1443         spt->guest_page.oos_page = NULL;
1444         oos_page->spt = NULL;
1445
1446         list_del_init(&oos_page->vm_list);
1447         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1448
1449         return 0;
1450 }
1451
1452 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1453                 struct intel_vgpu_ppgtt_spt *spt)
1454 {
1455         struct intel_gvt *gvt = spt->vgpu->gvt;
1456         int ret;
1457
1458         ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1459                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1460                         oos_page->mem, I915_GTT_PAGE_SIZE);
1461         if (ret)
1462                 return ret;
1463
1464         oos_page->spt = spt;
1465         spt->guest_page.oos_page = oos_page;
1466
1467         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1468
1469         trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1470                          spt, spt->guest_page.type);
1471         return 0;
1472 }
1473
1474 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1475 {
1476         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1477         int ret;
1478
1479         ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1480         if (ret)
1481                 return ret;
1482
1483         trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1484                          spt, spt->guest_page.type);
1485
1486         list_del_init(&oos_page->vm_list);
1487         return sync_oos_page(spt->vgpu, oos_page);
1488 }
1489
1490 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1491 {
1492         struct intel_gvt *gvt = spt->vgpu->gvt;
1493         struct intel_gvt_gtt *gtt = &gvt->gtt;
1494         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1495         int ret;
1496
1497         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1498
1499         if (list_empty(&gtt->oos_page_free_list_head)) {
1500                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1501                         struct intel_vgpu_oos_page, list);
1502                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1503                 if (ret)
1504                         return ret;
1505                 ret = detach_oos_page(spt->vgpu, oos_page);
1506                 if (ret)
1507                         return ret;
1508         } else
1509                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1510                         struct intel_vgpu_oos_page, list);
1511         return attach_oos_page(oos_page, spt);
1512 }
1513
1514 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1515 {
1516         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1517
1518         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1519                 return -EINVAL;
1520
1521         trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1522                          spt, spt->guest_page.type);
1523
1524         list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1525         return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1526 }
1527
1528 /**
1529  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1530  * @vgpu: a vGPU
1531  *
1532  * This function is called before submitting a guest workload to host,
1533  * to sync all the out-of-synced shadow for vGPU
1534  *
1535  * Returns:
1536  * Zero on success, negative error code if failed.
1537  */
1538 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1539 {
1540         struct list_head *pos, *n;
1541         struct intel_vgpu_oos_page *oos_page;
1542         int ret;
1543
1544         if (!enable_out_of_sync)
1545                 return 0;
1546
1547         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1548                 oos_page = container_of(pos,
1549                                 struct intel_vgpu_oos_page, vm_list);
1550                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1551                 if (ret)
1552                         return ret;
1553         }
1554         return 0;
1555 }
1556
1557 /*
1558  * The heart of PPGTT shadow page table.
1559  */
1560 static int ppgtt_handle_guest_write_page_table(
1561                 struct intel_vgpu_ppgtt_spt *spt,
1562                 struct intel_gvt_gtt_entry *we, unsigned long index)
1563 {
1564         struct intel_vgpu *vgpu = spt->vgpu;
1565         int type = spt->shadow_page.type;
1566         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1567         struct intel_gvt_gtt_entry old_se;
1568         int new_present;
1569         int i, ret;
1570
1571         new_present = ops->test_present(we);
1572
1573         /*
1574          * Adding the new entry first and then removing the old one, that can
1575          * guarantee the ppgtt table is validated during the window between
1576          * adding and removal.
1577          */
1578         ppgtt_get_shadow_entry(spt, &old_se, index);
1579
1580         if (new_present) {
1581                 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1582                 if (ret)
1583                         goto fail;
1584         }
1585
1586         ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1587         if (ret)
1588                 goto fail;
1589
1590         if (!new_present) {
1591                 /* For 64KB splited entries, we need clear them all. */
1592                 if (ops->test_64k_splited(&old_se) &&
1593                     !(index % GTT_64K_PTE_STRIDE)) {
1594                         gvt_vdbg_mm("remove splited 64K shadow entries\n");
1595                         for (i = 0; i < GTT_64K_PTE_STRIDE; i++) {
1596                                 ops->clear_64k_splited(&old_se);
1597                                 ops->set_pfn(&old_se,
1598                                         vgpu->gtt.scratch_pt[type].page_mfn);
1599                                 ppgtt_set_shadow_entry(spt, &old_se, index + i);
1600                         }
1601                 } else if (old_se.type == GTT_TYPE_PPGTT_PTE_2M_ENTRY ||
1602                            old_se.type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
1603                         ops->clear_pse(&old_se);
1604                         ops->set_pfn(&old_se,
1605                                      vgpu->gtt.scratch_pt[type].page_mfn);
1606                         ppgtt_set_shadow_entry(spt, &old_se, index);
1607                 } else {
1608                         ops->set_pfn(&old_se,
1609                                      vgpu->gtt.scratch_pt[type].page_mfn);
1610                         ppgtt_set_shadow_entry(spt, &old_se, index);
1611                 }
1612         }
1613
1614         return 0;
1615 fail:
1616         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1617                         spt, we->val64, we->type);
1618         return ret;
1619 }
1620
1621
1622
1623 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1624 {
1625         return enable_out_of_sync
1626                 && gtt_type_is_pte_pt(spt->guest_page.type)
1627                 && spt->guest_page.write_cnt >= 2;
1628 }
1629
1630 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1631                 unsigned long index)
1632 {
1633         set_bit(index, spt->post_shadow_bitmap);
1634         if (!list_empty(&spt->post_shadow_list))
1635                 return;
1636
1637         list_add_tail(&spt->post_shadow_list,
1638                         &spt->vgpu->gtt.post_shadow_list_head);
1639 }
1640
1641 /**
1642  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1643  * @vgpu: a vGPU
1644  *
1645  * This function is called before submitting a guest workload to host,
1646  * to flush all the post shadows for a vGPU.
1647  *
1648  * Returns:
1649  * Zero on success, negative error code if failed.
1650  */
1651 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1652 {
1653         struct list_head *pos, *n;
1654         struct intel_vgpu_ppgtt_spt *spt;
1655         struct intel_gvt_gtt_entry ge;
1656         unsigned long index;
1657         int ret;
1658
1659         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1660                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1661                                 post_shadow_list);
1662
1663                 for_each_set_bit(index, spt->post_shadow_bitmap,
1664                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1665                         ppgtt_get_guest_entry(spt, &ge, index);
1666
1667                         ret = ppgtt_handle_guest_write_page_table(spt,
1668                                                         &ge, index);
1669                         if (ret)
1670                                 return ret;
1671                         clear_bit(index, spt->post_shadow_bitmap);
1672                 }
1673                 list_del_init(&spt->post_shadow_list);
1674         }
1675         return 0;
1676 }
1677
1678 static int ppgtt_handle_guest_write_page_table_bytes(
1679                 struct intel_vgpu_ppgtt_spt *spt,
1680                 u64 pa, void *p_data, int bytes)
1681 {
1682         struct intel_vgpu *vgpu = spt->vgpu;
1683         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1684         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1685         struct intel_gvt_gtt_entry we, se;
1686         unsigned long index;
1687         int ret;
1688
1689         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1690
1691         ppgtt_get_guest_entry(spt, &we, index);
1692
1693         /*
1694          * For page table which has 64K gtt entry, only PTE#0, PTE#16,
1695          * PTE#32, ... PTE#496 are used. Unused PTEs update should be
1696          * ignored.
1697          */
1698         if (we.type == GTT_TYPE_PPGTT_PTE_64K_ENTRY &&
1699             (index % GTT_64K_PTE_STRIDE)) {
1700                 gvt_vdbg_mm("Ignore write to unused PTE entry, index %lu\n",
1701                             index);
1702                 return 0;
1703         }
1704
1705         if (bytes == info->gtt_entry_size) {
1706                 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1707                 if (ret)
1708                         return ret;
1709         } else {
1710                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1711                         int type = spt->shadow_page.type;
1712
1713                         ppgtt_get_shadow_entry(spt, &se, index);
1714                         ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1715                         if (ret)
1716                                 return ret;
1717                         ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1718                         ppgtt_set_shadow_entry(spt, &se, index);
1719                 }
1720                 ppgtt_set_post_shadow(spt, index);
1721         }
1722
1723         if (!enable_out_of_sync)
1724                 return 0;
1725
1726         spt->guest_page.write_cnt++;
1727
1728         if (spt->guest_page.oos_page)
1729                 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1730                                 false, 0, vgpu);
1731
1732         if (can_do_out_of_sync(spt)) {
1733                 if (!spt->guest_page.oos_page)
1734                         ppgtt_allocate_oos_page(spt);
1735
1736                 ret = ppgtt_set_guest_page_oos(spt);
1737                 if (ret < 0)
1738                         return ret;
1739         }
1740         return 0;
1741 }
1742
1743 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1744 {
1745         struct intel_vgpu *vgpu = mm->vgpu;
1746         struct intel_gvt *gvt = vgpu->gvt;
1747         struct intel_gvt_gtt *gtt = &gvt->gtt;
1748         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1749         struct intel_gvt_gtt_entry se;
1750         int index;
1751
1752         if (!mm->ppgtt_mm.shadowed)
1753                 return;
1754
1755         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1756                 ppgtt_get_shadow_root_entry(mm, &se, index);
1757
1758                 if (!ops->test_present(&se))
1759                         continue;
1760
1761                 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1762                 se.val64 = 0;
1763                 ppgtt_set_shadow_root_entry(mm, &se, index);
1764
1765                 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1766                                        NULL, se.type, se.val64, index);
1767         }
1768
1769         mm->ppgtt_mm.shadowed = false;
1770 }
1771
1772
1773 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1774 {
1775         struct intel_vgpu *vgpu = mm->vgpu;
1776         struct intel_gvt *gvt = vgpu->gvt;
1777         struct intel_gvt_gtt *gtt = &gvt->gtt;
1778         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1779         struct intel_vgpu_ppgtt_spt *spt;
1780         struct intel_gvt_gtt_entry ge, se;
1781         int index, ret;
1782
1783         if (mm->ppgtt_mm.shadowed)
1784                 return 0;
1785
1786         mm->ppgtt_mm.shadowed = true;
1787
1788         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1789                 ppgtt_get_guest_root_entry(mm, &ge, index);
1790
1791                 if (!ops->test_present(&ge))
1792                         continue;
1793
1794                 trace_spt_guest_change(vgpu->id, __func__, NULL,
1795                                        ge.type, ge.val64, index);
1796
1797                 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1798                 if (IS_ERR(spt)) {
1799                         gvt_vgpu_err("fail to populate guest root pointer\n");
1800                         ret = PTR_ERR(spt);
1801                         goto fail;
1802                 }
1803                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1804                 ppgtt_set_shadow_root_entry(mm, &se, index);
1805
1806                 trace_spt_guest_change(vgpu->id, "populate root pointer",
1807                                        NULL, se.type, se.val64, index);
1808         }
1809
1810         return 0;
1811 fail:
1812         invalidate_ppgtt_mm(mm);
1813         return ret;
1814 }
1815
1816 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1817 {
1818         struct intel_vgpu_mm *mm;
1819
1820         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1821         if (!mm)
1822                 return NULL;
1823
1824         mm->vgpu = vgpu;
1825         kref_init(&mm->ref);
1826         atomic_set(&mm->pincount, 0);
1827
1828         return mm;
1829 }
1830
1831 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1832 {
1833         kfree(mm);
1834 }
1835
1836 /**
1837  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1838  * @vgpu: a vGPU
1839  * @root_entry_type: ppgtt root entry type
1840  * @pdps: guest pdps.
1841  *
1842  * This function is used to create a ppgtt mm object for a vGPU.
1843  *
1844  * Returns:
1845  * Zero on success, negative error code in pointer if failed.
1846  */
1847 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1848                 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1849 {
1850         struct intel_gvt *gvt = vgpu->gvt;
1851         struct intel_vgpu_mm *mm;
1852         int ret;
1853
1854         mm = vgpu_alloc_mm(vgpu);
1855         if (!mm)
1856                 return ERR_PTR(-ENOMEM);
1857
1858         mm->type = INTEL_GVT_MM_PPGTT;
1859
1860         GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1861                    root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1862         mm->ppgtt_mm.root_entry_type = root_entry_type;
1863
1864         INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1865         INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1866
1867         if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1868                 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1869         else
1870                 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1871                        sizeof(mm->ppgtt_mm.guest_pdps));
1872
1873         ret = shadow_ppgtt_mm(mm);
1874         if (ret) {
1875                 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1876                 vgpu_free_mm(mm);
1877                 return ERR_PTR(ret);
1878         }
1879
1880         list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1881         list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1882         return mm;
1883 }
1884
1885 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1886 {
1887         struct intel_vgpu_mm *mm;
1888         unsigned long nr_entries;
1889
1890         mm = vgpu_alloc_mm(vgpu);
1891         if (!mm)
1892                 return ERR_PTR(-ENOMEM);
1893
1894         mm->type = INTEL_GVT_MM_GGTT;
1895
1896         nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1897         mm->ggtt_mm.virtual_ggtt =
1898                 vzalloc(array_size(nr_entries,
1899                                    vgpu->gvt->device_info.gtt_entry_size));
1900         if (!mm->ggtt_mm.virtual_ggtt) {
1901                 vgpu_free_mm(mm);
1902                 return ERR_PTR(-ENOMEM);
1903         }
1904
1905         return mm;
1906 }
1907
1908 /**
1909  * _intel_vgpu_mm_release - destroy a mm object
1910  * @mm_ref: a kref object
1911  *
1912  * This function is used to destroy a mm object for vGPU
1913  *
1914  */
1915 void _intel_vgpu_mm_release(struct kref *mm_ref)
1916 {
1917         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1918
1919         if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1920                 gvt_err("vgpu mm pin count bug detected\n");
1921
1922         if (mm->type == INTEL_GVT_MM_PPGTT) {
1923                 list_del(&mm->ppgtt_mm.list);
1924                 list_del(&mm->ppgtt_mm.lru_list);
1925                 invalidate_ppgtt_mm(mm);
1926         } else {
1927                 vfree(mm->ggtt_mm.virtual_ggtt);
1928         }
1929
1930         vgpu_free_mm(mm);
1931 }
1932
1933 /**
1934  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1935  * @mm: a vGPU mm object
1936  *
1937  * This function is called when user doesn't want to use a vGPU mm object
1938  */
1939 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1940 {
1941         atomic_dec(&mm->pincount);
1942 }
1943
1944 /**
1945  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1946  * @vgpu: a vGPU
1947  *
1948  * This function is called when user wants to use a vGPU mm object. If this
1949  * mm object hasn't been shadowed yet, the shadow will be populated at this
1950  * time.
1951  *
1952  * Returns:
1953  * Zero on success, negative error code if failed.
1954  */
1955 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1956 {
1957         int ret;
1958
1959         atomic_inc(&mm->pincount);
1960
1961         if (mm->type == INTEL_GVT_MM_PPGTT) {
1962                 ret = shadow_ppgtt_mm(mm);
1963                 if (ret)
1964                         return ret;
1965
1966                 list_move_tail(&mm->ppgtt_mm.lru_list,
1967                                &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1968
1969         }
1970
1971         return 0;
1972 }
1973
1974 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1975 {
1976         struct intel_vgpu_mm *mm;
1977         struct list_head *pos, *n;
1978
1979         list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1980                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1981
1982                 if (atomic_read(&mm->pincount))
1983                         continue;
1984
1985                 list_del_init(&mm->ppgtt_mm.lru_list);
1986                 invalidate_ppgtt_mm(mm);
1987                 return 1;
1988         }
1989         return 0;
1990 }
1991
1992 /*
1993  * GMA translation APIs.
1994  */
1995 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1996                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1997 {
1998         struct intel_vgpu *vgpu = mm->vgpu;
1999         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2000         struct intel_vgpu_ppgtt_spt *s;
2001
2002         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
2003         if (!s)
2004                 return -ENXIO;
2005
2006         if (!guest)
2007                 ppgtt_get_shadow_entry(s, e, index);
2008         else
2009                 ppgtt_get_guest_entry(s, e, index);
2010         return 0;
2011 }
2012
2013 /**
2014  * intel_vgpu_gma_to_gpa - translate a gma to GPA
2015  * @mm: mm object. could be a PPGTT or GGTT mm object
2016  * @gma: graphics memory address in this mm object
2017  *
2018  * This function is used to translate a graphics memory address in specific
2019  * graphics memory space to guest physical address.
2020  *
2021  * Returns:
2022  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
2023  */
2024 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
2025 {
2026         struct intel_vgpu *vgpu = mm->vgpu;
2027         struct intel_gvt *gvt = vgpu->gvt;
2028         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
2029         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
2030         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
2031         unsigned long gma_index[4];
2032         struct intel_gvt_gtt_entry e;
2033         int i, levels = 0;
2034         int ret;
2035
2036         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
2037                    mm->type != INTEL_GVT_MM_PPGTT);
2038
2039         if (mm->type == INTEL_GVT_MM_GGTT) {
2040                 if (!vgpu_gmadr_is_valid(vgpu, gma))
2041                         goto err;
2042
2043                 ggtt_get_guest_entry(mm, &e,
2044                         gma_ops->gma_to_ggtt_pte_index(gma));
2045
2046                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
2047                         + (gma & ~I915_GTT_PAGE_MASK);
2048
2049                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
2050         } else {
2051                 switch (mm->ppgtt_mm.root_entry_type) {
2052                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2053                         ppgtt_get_shadow_root_entry(mm, &e, 0);
2054
2055                         gma_index[0] = gma_ops->gma_to_pml4_index(gma);
2056                         gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
2057                         gma_index[2] = gma_ops->gma_to_pde_index(gma);
2058                         gma_index[3] = gma_ops->gma_to_pte_index(gma);
2059                         levels = 4;
2060                         break;
2061                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2062                         ppgtt_get_shadow_root_entry(mm, &e,
2063                                         gma_ops->gma_to_l3_pdp_index(gma));
2064
2065                         gma_index[0] = gma_ops->gma_to_pde_index(gma);
2066                         gma_index[1] = gma_ops->gma_to_pte_index(gma);
2067                         levels = 2;
2068                         break;
2069                 default:
2070                         GEM_BUG_ON(1);
2071                 }
2072
2073                 /* walk the shadow page table and get gpa from guest entry */
2074                 for (i = 0; i < levels; i++) {
2075                         ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
2076                                 (i == levels - 1));
2077                         if (ret)
2078                                 goto err;
2079
2080                         if (!pte_ops->test_present(&e)) {
2081                                 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
2082                                 goto err;
2083                         }
2084                 }
2085
2086                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
2087                                         (gma & ~I915_GTT_PAGE_MASK);
2088                 trace_gma_translate(vgpu->id, "ppgtt", 0,
2089                                     mm->ppgtt_mm.root_entry_type, gma, gpa);
2090         }
2091
2092         return gpa;
2093 err:
2094         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
2095         return INTEL_GVT_INVALID_ADDR;
2096 }
2097
2098 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
2099         unsigned int off, void *p_data, unsigned int bytes)
2100 {
2101         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2102         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2103         unsigned long index = off >> info->gtt_entry_size_shift;
2104         struct intel_gvt_gtt_entry e;
2105
2106         if (bytes != 4 && bytes != 8)
2107                 return -EINVAL;
2108
2109         ggtt_get_guest_entry(ggtt_mm, &e, index);
2110         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
2111                         bytes);
2112         return 0;
2113 }
2114
2115 /**
2116  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
2117  * @vgpu: a vGPU
2118  * @off: register offset
2119  * @p_data: data will be returned to guest
2120  * @bytes: data length
2121  *
2122  * This function is used to emulate the GTT MMIO register read
2123  *
2124  * Returns:
2125  * Zero on success, error code if failed.
2126  */
2127 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
2128         void *p_data, unsigned int bytes)
2129 {
2130         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2131         int ret;
2132
2133         if (bytes != 4 && bytes != 8)
2134                 return -EINVAL;
2135
2136         off -= info->gtt_start_offset;
2137         ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
2138         return ret;
2139 }
2140
2141 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
2142                 struct intel_gvt_gtt_entry *entry)
2143 {
2144         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2145         unsigned long pfn;
2146
2147         pfn = pte_ops->get_pfn(entry);
2148         if (pfn != vgpu->gvt->gtt.scratch_mfn)
2149                 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
2150                                                 pfn << PAGE_SHIFT);
2151 }
2152
2153 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
2154         void *p_data, unsigned int bytes)
2155 {
2156         struct intel_gvt *gvt = vgpu->gvt;
2157         const struct intel_gvt_device_info *info = &gvt->device_info;
2158         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
2159         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
2160         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
2161         unsigned long gma, gfn;
2162         struct intel_gvt_gtt_entry e, m;
2163         dma_addr_t dma_addr;
2164         int ret;
2165
2166         if (bytes != 4 && bytes != 8)
2167                 return -EINVAL;
2168
2169         gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
2170
2171         /* the VM may configure the whole GM space when ballooning is used */
2172         if (!vgpu_gmadr_is_valid(vgpu, gma))
2173                 return 0;
2174
2175         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
2176
2177         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
2178                         bytes);
2179
2180         if (ops->test_present(&e)) {
2181                 gfn = ops->get_pfn(&e);
2182                 m = e;
2183
2184                 /* one PTE update may be issued in multiple writes and the
2185                  * first write may not construct a valid gfn
2186                  */
2187                 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
2188                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2189                         goto out;
2190                 }
2191
2192                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
2193                                                         PAGE_SIZE, &dma_addr);
2194                 if (ret) {
2195                         gvt_vgpu_err("fail to populate guest ggtt entry\n");
2196                         /* guest driver may read/write the entry when partial
2197                          * update the entry in this situation p2m will fail
2198                          * settting the shadow entry to point to a scratch page
2199                          */
2200                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2201                 } else
2202                         ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
2203         } else {
2204                 ggtt_get_host_entry(ggtt_mm, &m, g_gtt_index);
2205                 ggtt_invalidate_pte(vgpu, &m);
2206                 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
2207                 ops->clear_present(&m);
2208         }
2209
2210 out:
2211         ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
2212         ggtt_invalidate(gvt->dev_priv);
2213         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
2214         return 0;
2215 }
2216
2217 /*
2218  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
2219  * @vgpu: a vGPU
2220  * @off: register offset
2221  * @p_data: data from guest write
2222  * @bytes: data length
2223  *
2224  * This function is used to emulate the GTT MMIO register write
2225  *
2226  * Returns:
2227  * Zero on success, error code if failed.
2228  */
2229 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2230                 unsigned int off, void *p_data, unsigned int bytes)
2231 {
2232         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2233         int ret;
2234
2235         if (bytes != 4 && bytes != 8)
2236                 return -EINVAL;
2237
2238         off -= info->gtt_start_offset;
2239         ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2240         return ret;
2241 }
2242
2243 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2244                 intel_gvt_gtt_type_t type)
2245 {
2246         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2247         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2248         int page_entry_num = I915_GTT_PAGE_SIZE >>
2249                                 vgpu->gvt->device_info.gtt_entry_size_shift;
2250         void *scratch_pt;
2251         int i;
2252         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2253         dma_addr_t daddr;
2254
2255         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2256                 return -EINVAL;
2257
2258         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2259         if (!scratch_pt) {
2260                 gvt_vgpu_err("fail to allocate scratch page\n");
2261                 return -ENOMEM;
2262         }
2263
2264         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2265                         4096, PCI_DMA_BIDIRECTIONAL);
2266         if (dma_mapping_error(dev, daddr)) {
2267                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2268                 __free_page(virt_to_page(scratch_pt));
2269                 return -ENOMEM;
2270         }
2271         gtt->scratch_pt[type].page_mfn =
2272                 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2273         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2274         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2275                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2276
2277         /* Build the tree by full filled the scratch pt with the entries which
2278          * point to the next level scratch pt or scratch page. The
2279          * scratch_pt[type] indicate the scratch pt/scratch page used by the
2280          * 'type' pt.
2281          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2282          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2283          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2284          */
2285         if (type > GTT_TYPE_PPGTT_PTE_PT) {
2286                 struct intel_gvt_gtt_entry se;
2287
2288                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2289                 se.type = get_entry_type(type - 1);
2290                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2291
2292                 /* The entry parameters like present/writeable/cache type
2293                  * set to the same as i915's scratch page tree.
2294                  */
2295                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2296                 if (type == GTT_TYPE_PPGTT_PDE_PT)
2297                         se.val64 |= PPAT_CACHED;
2298
2299                 for (i = 0; i < page_entry_num; i++)
2300                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2301         }
2302
2303         return 0;
2304 }
2305
2306 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2307 {
2308         int i;
2309         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2310         dma_addr_t daddr;
2311
2312         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2313                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2314                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2315                                         I915_GTT_PAGE_SHIFT);
2316                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2317                         __free_page(vgpu->gtt.scratch_pt[i].page);
2318                         vgpu->gtt.scratch_pt[i].page = NULL;
2319                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
2320                 }
2321         }
2322
2323         return 0;
2324 }
2325
2326 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2327 {
2328         int i, ret;
2329
2330         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2331                 ret = alloc_scratch_pages(vgpu, i);
2332                 if (ret)
2333                         goto err;
2334         }
2335
2336         return 0;
2337
2338 err:
2339         release_scratch_page_tree(vgpu);
2340         return ret;
2341 }
2342
2343 /**
2344  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2345  * @vgpu: a vGPU
2346  *
2347  * This function is used to initialize per-vGPU graphics memory virtualization
2348  * components.
2349  *
2350  * Returns:
2351  * Zero on success, error code if failed.
2352  */
2353 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2354 {
2355         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2356
2357         INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2358
2359         INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2360         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2361         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2362
2363         gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2364         if (IS_ERR(gtt->ggtt_mm)) {
2365                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2366                 return PTR_ERR(gtt->ggtt_mm);
2367         }
2368
2369         intel_vgpu_reset_ggtt(vgpu, false);
2370
2371         return create_scratch_page_tree(vgpu);
2372 }
2373
2374 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2375 {
2376         struct list_head *pos, *n;
2377         struct intel_vgpu_mm *mm;
2378
2379         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2380                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2381                 intel_vgpu_destroy_mm(mm);
2382         }
2383
2384         if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2385                 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2386
2387         if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2388                 gvt_err("Why we still has spt not freed?\n");
2389                 ppgtt_free_all_spt(vgpu);
2390         }
2391 }
2392
2393 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2394 {
2395         intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2396         vgpu->gtt.ggtt_mm = NULL;
2397 }
2398
2399 /**
2400  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2401  * @vgpu: a vGPU
2402  *
2403  * This function is used to clean up per-vGPU graphics memory virtualization
2404  * components.
2405  *
2406  * Returns:
2407  * Zero on success, error code if failed.
2408  */
2409 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2410 {
2411         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2412         intel_vgpu_destroy_ggtt_mm(vgpu);
2413         release_scratch_page_tree(vgpu);
2414 }
2415
2416 static void clean_spt_oos(struct intel_gvt *gvt)
2417 {
2418         struct intel_gvt_gtt *gtt = &gvt->gtt;
2419         struct list_head *pos, *n;
2420         struct intel_vgpu_oos_page *oos_page;
2421
2422         WARN(!list_empty(&gtt->oos_page_use_list_head),
2423                 "someone is still using oos page\n");
2424
2425         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2426                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2427                 list_del(&oos_page->list);
2428                 kfree(oos_page);
2429         }
2430 }
2431
2432 static int setup_spt_oos(struct intel_gvt *gvt)
2433 {
2434         struct intel_gvt_gtt *gtt = &gvt->gtt;
2435         struct intel_vgpu_oos_page *oos_page;
2436         int i;
2437         int ret;
2438
2439         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2440         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2441
2442         for (i = 0; i < preallocated_oos_pages; i++) {
2443                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2444                 if (!oos_page) {
2445                         ret = -ENOMEM;
2446                         goto fail;
2447                 }
2448
2449                 INIT_LIST_HEAD(&oos_page->list);
2450                 INIT_LIST_HEAD(&oos_page->vm_list);
2451                 oos_page->id = i;
2452                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2453         }
2454
2455         gvt_dbg_mm("%d oos pages preallocated\n", i);
2456
2457         return 0;
2458 fail:
2459         clean_spt_oos(gvt);
2460         return ret;
2461 }
2462
2463 /**
2464  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2465  * @vgpu: a vGPU
2466  * @page_table_level: PPGTT page table level
2467  * @root_entry: PPGTT page table root pointers
2468  *
2469  * This function is used to find a PPGTT mm object from mm object pool
2470  *
2471  * Returns:
2472  * pointer to mm object on success, NULL if failed.
2473  */
2474 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2475                 u64 pdps[])
2476 {
2477         struct intel_vgpu_mm *mm;
2478         struct list_head *pos;
2479
2480         list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2481                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2482
2483                 switch (mm->ppgtt_mm.root_entry_type) {
2484                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2485                         if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2486                                 return mm;
2487                         break;
2488                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2489                         if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2490                                     sizeof(mm->ppgtt_mm.guest_pdps)))
2491                                 return mm;
2492                         break;
2493                 default:
2494                         GEM_BUG_ON(1);
2495                 }
2496         }
2497         return NULL;
2498 }
2499
2500 /**
2501  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2502  * @vgpu: a vGPU
2503  * @root_entry_type: ppgtt root entry type
2504  * @pdps: guest pdps
2505  *
2506  * This function is used to find or create a PPGTT mm object from a guest.
2507  *
2508  * Returns:
2509  * Zero on success, negative error code if failed.
2510  */
2511 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2512                 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2513 {
2514         struct intel_vgpu_mm *mm;
2515
2516         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2517         if (mm) {
2518                 intel_vgpu_mm_get(mm);
2519         } else {
2520                 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2521                 if (IS_ERR(mm))
2522                         gvt_vgpu_err("fail to create mm\n");
2523         }
2524         return mm;
2525 }
2526
2527 /**
2528  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2529  * @vgpu: a vGPU
2530  * @pdps: guest pdps
2531  *
2532  * This function is used to find a PPGTT mm object from a guest and destroy it.
2533  *
2534  * Returns:
2535  * Zero on success, negative error code if failed.
2536  */
2537 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2538 {
2539         struct intel_vgpu_mm *mm;
2540
2541         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2542         if (!mm) {
2543                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2544                 return -EINVAL;
2545         }
2546         intel_vgpu_mm_put(mm);
2547         return 0;
2548 }
2549
2550 /**
2551  * intel_gvt_init_gtt - initialize mm components of a GVT device
2552  * @gvt: GVT device
2553  *
2554  * This function is called at the initialization stage, to initialize
2555  * the mm components of a GVT device.
2556  *
2557  * Returns:
2558  * zero on success, negative error code if failed.
2559  */
2560 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2561 {
2562         int ret;
2563         void *page;
2564         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2565         dma_addr_t daddr;
2566
2567         gvt_dbg_core("init gtt\n");
2568
2569         gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2570         gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2571
2572         page = (void *)get_zeroed_page(GFP_KERNEL);
2573         if (!page) {
2574                 gvt_err("fail to allocate scratch ggtt page\n");
2575                 return -ENOMEM;
2576         }
2577
2578         daddr = dma_map_page(dev, virt_to_page(page), 0,
2579                         4096, PCI_DMA_BIDIRECTIONAL);
2580         if (dma_mapping_error(dev, daddr)) {
2581                 gvt_err("fail to dmamap scratch ggtt page\n");
2582                 __free_page(virt_to_page(page));
2583                 return -ENOMEM;
2584         }
2585
2586         gvt->gtt.scratch_page = virt_to_page(page);
2587         gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2588
2589         if (enable_out_of_sync) {
2590                 ret = setup_spt_oos(gvt);
2591                 if (ret) {
2592                         gvt_err("fail to initialize SPT oos\n");
2593                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2594                         __free_page(gvt->gtt.scratch_page);
2595                         return ret;
2596                 }
2597         }
2598         INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2599         return 0;
2600 }
2601
2602 /**
2603  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2604  * @gvt: GVT device
2605  *
2606  * This function is called at the driver unloading stage, to clean up the
2607  * the mm components of a GVT device.
2608  *
2609  */
2610 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2611 {
2612         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2613         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2614                                         I915_GTT_PAGE_SHIFT);
2615
2616         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2617
2618         __free_page(gvt->gtt.scratch_page);
2619
2620         if (enable_out_of_sync)
2621                 clean_spt_oos(gvt);
2622 }
2623
2624 /**
2625  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2626  * @vgpu: a vGPU
2627  *
2628  * This function is called when invalidate all PPGTT instances of a vGPU.
2629  *
2630  */
2631 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2632 {
2633         struct list_head *pos, *n;
2634         struct intel_vgpu_mm *mm;
2635
2636         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2637                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2638                 if (mm->type == INTEL_GVT_MM_PPGTT) {
2639                         list_del_init(&mm->ppgtt_mm.lru_list);
2640                         if (mm->ppgtt_mm.shadowed)
2641                                 invalidate_ppgtt_mm(mm);
2642                 }
2643         }
2644 }
2645
2646 /**
2647  * intel_vgpu_reset_ggtt - reset the GGTT entry
2648  * @vgpu: a vGPU
2649  * @invalidate_old: invalidate old entries
2650  *
2651  * This function is called at the vGPU create stage
2652  * to reset all the GGTT entries.
2653  *
2654  */
2655 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2656 {
2657         struct intel_gvt *gvt = vgpu->gvt;
2658         struct drm_i915_private *dev_priv = gvt->dev_priv;
2659         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2660         struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2661         struct intel_gvt_gtt_entry old_entry;
2662         u32 index;
2663         u32 num_entries;
2664
2665         pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2666         pte_ops->set_present(&entry);
2667
2668         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2669         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2670         while (num_entries--) {
2671                 if (invalidate_old) {
2672                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2673                         ggtt_invalidate_pte(vgpu, &old_entry);
2674                 }
2675                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2676         }
2677
2678         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2679         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2680         while (num_entries--) {
2681                 if (invalidate_old) {
2682                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2683                         ggtt_invalidate_pte(vgpu, &old_entry);
2684                 }
2685                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2686         }
2687
2688         ggtt_invalidate(dev_priv);
2689 }
2690
2691 /**
2692  * intel_vgpu_reset_gtt - reset the all GTT related status
2693  * @vgpu: a vGPU
2694  *
2695  * This function is called from vfio core to reset reset all
2696  * GTT related status, including GGTT, PPGTT, scratch page.
2697  *
2698  */
2699 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2700 {
2701         /* Shadow pages are only created when there is no page
2702          * table tracking data, so remove page tracking data after
2703          * removing the shadow pages.
2704          */
2705         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2706         intel_vgpu_reset_ggtt(vgpu, true);
2707 }