usb: host: xhci-plat: Fix timeout on removal of hot pluggable xhci controllers
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52                 gvt_err("vgpu%d: invalid range gmadr 0x%llx size 0x%x\n",
53                                 vgpu->id, addr, size);
54                 return false;
55         }
56         return true;
57 }
58
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63                  "invalid guest gmadr %llx\n", g_addr))
64                 return -EACCES;
65
66         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68                           + (g_addr - vgpu_aperture_offset(vgpu));
69         else
70                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71                           + (g_addr - vgpu_hidden_offset(vgpu));
72         return 0;
73 }
74
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79                  "invalid host gmadr %llx\n", h_addr))
80                 return -EACCES;
81
82         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85         else
86                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88         return 0;
89 }
90
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92                              unsigned long *h_index)
93 {
94         u64 h_addr;
95         int ret;
96
97         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98                                        &h_addr);
99         if (ret)
100                 return ret;
101
102         *h_index = h_addr >> GTT_PAGE_SHIFT;
103         return 0;
104 }
105
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107                              unsigned long *g_index)
108 {
109         u64 g_addr;
110         int ret;
111
112         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113                                        &g_addr);
114         if (ret)
115                 return ret;
116
117         *g_index = g_addr >> GTT_PAGE_SHIFT;
118         return 0;
119 }
120
121 #define gtt_type_is_entry(type) \
122         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125
126 #define gtt_type_is_pt(type) \
127         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128
129 #define gtt_type_is_pte_pt(type) \
130         (type == GTT_TYPE_PPGTT_PTE_PT)
131
132 #define gtt_type_is_root_pointer(type) \
133         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134
135 #define gtt_init_entry(e, t, p, v) do { \
136         (e)->type = t; \
137         (e)->pdev = p; \
138         memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156
157 struct gtt_type_table_entry {
158         int entry_type;
159         int next_pt_type;
160         int pse_entry_type;
161 };
162
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164         [type] = { \
165                 .entry_type = e_type, \
166                 .next_pt_type = npt_type, \
167                 .pse_entry_type = pse_type, \
168         }
169
170 static struct gtt_type_table_entry gtt_type_table[] = {
171         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173                         GTT_TYPE_PPGTT_PML4_PT,
174                         GTT_TYPE_INVALID),
175         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176                         GTT_TYPE_PPGTT_PML4_ENTRY,
177                         GTT_TYPE_PPGTT_PDP_PT,
178                         GTT_TYPE_INVALID),
179         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180                         GTT_TYPE_PPGTT_PML4_ENTRY,
181                         GTT_TYPE_PPGTT_PDP_PT,
182                         GTT_TYPE_INVALID),
183         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184                         GTT_TYPE_PPGTT_PDP_ENTRY,
185                         GTT_TYPE_PPGTT_PDE_PT,
186                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189                         GTT_TYPE_PPGTT_PDE_PT,
190                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192                         GTT_TYPE_PPGTT_PDP_ENTRY,
193                         GTT_TYPE_PPGTT_PDE_PT,
194                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196                         GTT_TYPE_PPGTT_PDE_ENTRY,
197                         GTT_TYPE_PPGTT_PTE_PT,
198                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200                         GTT_TYPE_PPGTT_PDE_ENTRY,
201                         GTT_TYPE_PPGTT_PTE_PT,
202                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205                         GTT_TYPE_INVALID,
206                         GTT_TYPE_INVALID),
207         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209                         GTT_TYPE_INVALID,
210                         GTT_TYPE_INVALID),
211         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212                         GTT_TYPE_PPGTT_PDE_ENTRY,
213                         GTT_TYPE_INVALID,
214                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216                         GTT_TYPE_PPGTT_PDP_ENTRY,
217                         GTT_TYPE_INVALID,
218                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220                         GTT_TYPE_GGTT_PTE,
221                         GTT_TYPE_INVALID,
222                         GTT_TYPE_INVALID),
223 };
224
225 static inline int get_next_pt_type(int type)
226 {
227         return gtt_type_table[type].next_pt_type;
228 }
229
230 static inline int get_entry_type(int type)
231 {
232         return gtt_type_table[type].entry_type;
233 }
234
235 static inline int get_pse_type(int type)
236 {
237         return gtt_type_table[type].pse_entry_type;
238 }
239
240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243
244         return readq(addr);
245 }
246
247 static void write_pte64(struct drm_i915_private *dev_priv,
248                 unsigned long index, u64 pte)
249 {
250         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
251
252         writeq(pte, addr);
253
254         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
255         POSTING_READ(GFX_FLSH_CNTL_GEN6);
256 }
257
258 static inline struct intel_gvt_gtt_entry *gtt_get_entry64(void *pt,
259                 struct intel_gvt_gtt_entry *e,
260                 unsigned long index, bool hypervisor_access, unsigned long gpa,
261                 struct intel_vgpu *vgpu)
262 {
263         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
264         int ret;
265
266         if (WARN_ON(info->gtt_entry_size != 8))
267                 return e;
268
269         if (hypervisor_access) {
270                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
271                                 (index << info->gtt_entry_size_shift),
272                                 &e->val64, 8);
273                 WARN_ON(ret);
274         } else if (!pt) {
275                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
276         } else {
277                 e->val64 = *((u64 *)pt + index);
278         }
279         return e;
280 }
281
282 static inline struct intel_gvt_gtt_entry *gtt_set_entry64(void *pt,
283                 struct intel_gvt_gtt_entry *e,
284                 unsigned long index, bool hypervisor_access, unsigned long gpa,
285                 struct intel_vgpu *vgpu)
286 {
287         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
288         int ret;
289
290         if (WARN_ON(info->gtt_entry_size != 8))
291                 return e;
292
293         if (hypervisor_access) {
294                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
295                                 (index << info->gtt_entry_size_shift),
296                                 &e->val64, 8);
297                 WARN_ON(ret);
298         } else if (!pt) {
299                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
300         } else {
301                 *((u64 *)pt + index) = e->val64;
302         }
303         return e;
304 }
305
306 #define GTT_HAW 46
307
308 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
309 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
310 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
311
312 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
313 {
314         unsigned long pfn;
315
316         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
317                 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
318         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
319                 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
320         else
321                 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
322         return pfn;
323 }
324
325 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
326 {
327         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
328                 e->val64 &= ~ADDR_1G_MASK;
329                 pfn &= (ADDR_1G_MASK >> 12);
330         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
331                 e->val64 &= ~ADDR_2M_MASK;
332                 pfn &= (ADDR_2M_MASK >> 12);
333         } else {
334                 e->val64 &= ~ADDR_4K_MASK;
335                 pfn &= (ADDR_4K_MASK >> 12);
336         }
337
338         e->val64 |= (pfn << 12);
339 }
340
341 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
342 {
343         /* Entry doesn't have PSE bit. */
344         if (get_pse_type(e->type) == GTT_TYPE_INVALID)
345                 return false;
346
347         e->type = get_entry_type(e->type);
348         if (!(e->val64 & (1 << 7)))
349                 return false;
350
351         e->type = get_pse_type(e->type);
352         return true;
353 }
354
355 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
356 {
357         /*
358          * i915 writes PDP root pointer registers without present bit,
359          * it also works, so we need to treat root pointer entry
360          * specifically.
361          */
362         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
363                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
364                 return (e->val64 != 0);
365         else
366                 return (e->val64 & (1 << 0));
367 }
368
369 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
370 {
371         e->val64 &= ~(1 << 0);
372 }
373
374 /*
375  * Per-platform GMA routines.
376  */
377 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
378 {
379         unsigned long x = (gma >> GTT_PAGE_SHIFT);
380
381         trace_gma_index(__func__, gma, x);
382         return x;
383 }
384
385 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
386 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
387 { \
388         unsigned long x = (exp); \
389         trace_gma_index(__func__, gma, x); \
390         return x; \
391 }
392
393 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
394 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
395 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
396 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
397 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
398
399 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
400         .get_entry = gtt_get_entry64,
401         .set_entry = gtt_set_entry64,
402         .clear_present = gtt_entry_clear_present,
403         .test_present = gen8_gtt_test_present,
404         .test_pse = gen8_gtt_test_pse,
405         .get_pfn = gen8_gtt_get_pfn,
406         .set_pfn = gen8_gtt_set_pfn,
407 };
408
409 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
410         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
411         .gma_to_pte_index = gen8_gma_to_pte_index,
412         .gma_to_pde_index = gen8_gma_to_pde_index,
413         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
414         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
415         .gma_to_pml4_index = gen8_gma_to_pml4_index,
416 };
417
418 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
419                 struct intel_gvt_gtt_entry *m)
420 {
421         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
422         unsigned long gfn, mfn;
423
424         *m = *p;
425
426         if (!ops->test_present(p))
427                 return 0;
428
429         gfn = ops->get_pfn(p);
430
431         mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
432         if (mfn == INTEL_GVT_INVALID_ADDR) {
433                 gvt_err("fail to translate gfn: 0x%lx\n", gfn);
434                 return -ENXIO;
435         }
436
437         ops->set_pfn(m, mfn);
438         return 0;
439 }
440
441 /*
442  * MM helpers.
443  */
444 struct intel_gvt_gtt_entry *intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
445                 void *page_table, struct intel_gvt_gtt_entry *e,
446                 unsigned long index)
447 {
448         struct intel_gvt *gvt = mm->vgpu->gvt;
449         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
450
451         e->type = mm->page_table_entry_type;
452
453         ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
454         ops->test_pse(e);
455         return e;
456 }
457
458 struct intel_gvt_gtt_entry *intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
459                 void *page_table, struct intel_gvt_gtt_entry *e,
460                 unsigned long index)
461 {
462         struct intel_gvt *gvt = mm->vgpu->gvt;
463         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
464
465         return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
466 }
467
468 /*
469  * PPGTT shadow page table helpers.
470  */
471 static inline struct intel_gvt_gtt_entry *ppgtt_spt_get_entry(
472                 struct intel_vgpu_ppgtt_spt *spt,
473                 void *page_table, int type,
474                 struct intel_gvt_gtt_entry *e, unsigned long index,
475                 bool guest)
476 {
477         struct intel_gvt *gvt = spt->vgpu->gvt;
478         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
479
480         e->type = get_entry_type(type);
481
482         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
483                 return e;
484
485         ops->get_entry(page_table, e, index, guest,
486                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
487                         spt->vgpu);
488         ops->test_pse(e);
489         return e;
490 }
491
492 static inline struct intel_gvt_gtt_entry *ppgtt_spt_set_entry(
493                 struct intel_vgpu_ppgtt_spt *spt,
494                 void *page_table, int type,
495                 struct intel_gvt_gtt_entry *e, unsigned long index,
496                 bool guest)
497 {
498         struct intel_gvt *gvt = spt->vgpu->gvt;
499         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
500
501         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
502                 return e;
503
504         return ops->set_entry(page_table, e, index, guest,
505                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
506                         spt->vgpu);
507 }
508
509 #define ppgtt_get_guest_entry(spt, e, index) \
510         ppgtt_spt_get_entry(spt, NULL, \
511                 spt->guest_page_type, e, index, true)
512
513 #define ppgtt_set_guest_entry(spt, e, index) \
514         ppgtt_spt_set_entry(spt, NULL, \
515                 spt->guest_page_type, e, index, true)
516
517 #define ppgtt_get_shadow_entry(spt, e, index) \
518         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
519                 spt->shadow_page.type, e, index, false)
520
521 #define ppgtt_set_shadow_entry(spt, e, index) \
522         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
523                 spt->shadow_page.type, e, index, false)
524
525 /**
526  * intel_vgpu_init_guest_page - init a guest page data structure
527  * @vgpu: a vGPU
528  * @p: a guest page data structure
529  * @gfn: guest memory page frame number
530  * @handler: function will be called when target guest memory page has
531  * been modified.
532  *
533  * This function is called when user wants to track a guest memory page.
534  *
535  * Returns:
536  * Zero on success, negative error code if failed.
537  */
538 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
539                 struct intel_vgpu_guest_page *p,
540                 unsigned long gfn,
541                 int (*handler)(void *, u64, void *, int),
542                 void *data)
543 {
544         INIT_HLIST_NODE(&p->node);
545
546         p->writeprotection = false;
547         p->gfn = gfn;
548         p->handler = handler;
549         p->data = data;
550         p->oos_page = NULL;
551         p->write_cnt = 0;
552
553         hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
554         return 0;
555 }
556
557 static int detach_oos_page(struct intel_vgpu *vgpu,
558                 struct intel_vgpu_oos_page *oos_page);
559
560 /**
561  * intel_vgpu_clean_guest_page - release the resource owned by guest page data
562  * structure
563  * @vgpu: a vGPU
564  * @p: a tracked guest page
565  *
566  * This function is called when user tries to stop tracking a guest memory
567  * page.
568  */
569 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
570                 struct intel_vgpu_guest_page *p)
571 {
572         if (!hlist_unhashed(&p->node))
573                 hash_del(&p->node);
574
575         if (p->oos_page)
576                 detach_oos_page(vgpu, p->oos_page);
577
578         if (p->writeprotection)
579                 intel_gvt_hypervisor_unset_wp_page(vgpu, p);
580 }
581
582 /**
583  * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
584  * @vgpu: a vGPU
585  * @gfn: guest memory page frame number
586  *
587  * This function is called when emulation logic wants to know if a trapped GFN
588  * is a tracked guest page.
589  *
590  * Returns:
591  * Pointer to guest page data structure, NULL if failed.
592  */
593 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
594                 struct intel_vgpu *vgpu, unsigned long gfn)
595 {
596         struct intel_vgpu_guest_page *p;
597
598         hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
599                 p, node, gfn) {
600                 if (p->gfn == gfn)
601                         return p;
602         }
603         return NULL;
604 }
605
606 static inline int init_shadow_page(struct intel_vgpu *vgpu,
607                 struct intel_vgpu_shadow_page *p, int type)
608 {
609         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
610         dma_addr_t daddr;
611
612         daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
613         if (dma_mapping_error(kdev, daddr)) {
614                 gvt_err("fail to map dma addr\n");
615                 return -EINVAL;
616         }
617
618         p->vaddr = page_address(p->page);
619         p->type = type;
620
621         INIT_HLIST_NODE(&p->node);
622
623         p->mfn = daddr >> GTT_PAGE_SHIFT;
624         hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
625         return 0;
626 }
627
628 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
629                 struct intel_vgpu_shadow_page *p)
630 {
631         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
632
633         dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096,
634                         PCI_DMA_BIDIRECTIONAL);
635
636         if (!hlist_unhashed(&p->node))
637                 hash_del(&p->node);
638 }
639
640 static inline struct intel_vgpu_shadow_page *find_shadow_page(
641                 struct intel_vgpu *vgpu, unsigned long mfn)
642 {
643         struct intel_vgpu_shadow_page *p;
644
645         hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
646                 p, node, mfn) {
647                 if (p->mfn == mfn)
648                         return p;
649         }
650         return NULL;
651 }
652
653 #define guest_page_to_ppgtt_spt(ptr) \
654         container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
655
656 #define shadow_page_to_ppgtt_spt(ptr) \
657         container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
658
659 static void *alloc_spt(gfp_t gfp_mask)
660 {
661         struct intel_vgpu_ppgtt_spt *spt;
662
663         spt = kzalloc(sizeof(*spt), gfp_mask);
664         if (!spt)
665                 return NULL;
666
667         spt->shadow_page.page = alloc_page(gfp_mask);
668         if (!spt->shadow_page.page) {
669                 kfree(spt);
670                 return NULL;
671         }
672         return spt;
673 }
674
675 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
676 {
677         __free_page(spt->shadow_page.page);
678         kfree(spt);
679 }
680
681 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
682 {
683         trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
684
685         clean_shadow_page(spt->vgpu, &spt->shadow_page);
686         intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
687         list_del_init(&spt->post_shadow_list);
688
689         free_spt(spt);
690 }
691
692 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
693 {
694         struct hlist_node *n;
695         struct intel_vgpu_shadow_page *sp;
696         int i;
697
698         hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
699                 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
700 }
701
702 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
703                 u64 pa, void *p_data, int bytes);
704
705 static int ppgtt_write_protection_handler(void *gp, u64 pa,
706                 void *p_data, int bytes)
707 {
708         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
709         int ret;
710
711         if (bytes != 4 && bytes != 8)
712                 return -EINVAL;
713
714         if (!gpt->writeprotection)
715                 return -EINVAL;
716
717         ret = ppgtt_handle_guest_write_page_table_bytes(gp,
718                 pa, p_data, bytes);
719         if (ret)
720                 return ret;
721         return ret;
722 }
723
724 static int reclaim_one_mm(struct intel_gvt *gvt);
725
726 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
727                 struct intel_vgpu *vgpu, int type, unsigned long gfn)
728 {
729         struct intel_vgpu_ppgtt_spt *spt = NULL;
730         int ret;
731
732 retry:
733         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
734         if (!spt) {
735                 if (reclaim_one_mm(vgpu->gvt))
736                         goto retry;
737
738                 gvt_err("fail to allocate ppgtt shadow page\n");
739                 return ERR_PTR(-ENOMEM);
740         }
741
742         spt->vgpu = vgpu;
743         spt->guest_page_type = type;
744         atomic_set(&spt->refcount, 1);
745         INIT_LIST_HEAD(&spt->post_shadow_list);
746
747         /*
748          * TODO: guest page type may be different with shadow page type,
749          *       when we support PSE page in future.
750          */
751         ret = init_shadow_page(vgpu, &spt->shadow_page, type);
752         if (ret) {
753                 gvt_err("fail to initialize shadow page for spt\n");
754                 goto err;
755         }
756
757         ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
758                         gfn, ppgtt_write_protection_handler, NULL);
759         if (ret) {
760                 gvt_err("fail to initialize guest page for spt\n");
761                 goto err;
762         }
763
764         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
765         return spt;
766 err:
767         ppgtt_free_shadow_page(spt);
768         return ERR_PTR(ret);
769 }
770
771 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
772                 struct intel_vgpu *vgpu, unsigned long mfn)
773 {
774         struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
775
776         if (p)
777                 return shadow_page_to_ppgtt_spt(p);
778
779         gvt_err("vgpu%d: fail to find ppgtt shadow page: 0x%lx\n",
780                         vgpu->id, mfn);
781         return NULL;
782 }
783
784 #define pt_entry_size_shift(spt) \
785         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
786
787 #define pt_entries(spt) \
788         (GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
789
790 #define for_each_present_guest_entry(spt, e, i) \
791         for (i = 0; i < pt_entries(spt); i++) \
792         if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
793                 ppgtt_get_guest_entry(spt, e, i)))
794
795 #define for_each_present_shadow_entry(spt, e, i) \
796         for (i = 0; i < pt_entries(spt); i++) \
797         if (spt->vgpu->gvt->gtt.pte_ops->test_present( \
798                 ppgtt_get_shadow_entry(spt, e, i)))
799
800 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
801 {
802         int v = atomic_read(&spt->refcount);
803
804         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
805
806         atomic_inc(&spt->refcount);
807 }
808
809 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
810
811 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
812                 struct intel_gvt_gtt_entry *e)
813 {
814         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
815         struct intel_vgpu_ppgtt_spt *s;
816         intel_gvt_gtt_type_t cur_pt_type;
817
818         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
819                 return -EINVAL;
820
821         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
822                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
823                 cur_pt_type = get_next_pt_type(e->type) + 1;
824                 if (ops->get_pfn(e) ==
825                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
826                         return 0;
827         }
828         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
829         if (!s) {
830                 gvt_err("vgpu%d: fail to find shadow page: mfn: 0x%lx\n",
831                                 vgpu->id, ops->get_pfn(e));
832                 return -ENXIO;
833         }
834         return ppgtt_invalidate_shadow_page(s);
835 }
836
837 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
838 {
839         struct intel_gvt_gtt_entry e;
840         unsigned long index;
841         int ret;
842         int v = atomic_read(&spt->refcount);
843
844         trace_spt_change(spt->vgpu->id, "die", spt,
845                         spt->guest_page.gfn, spt->shadow_page.type);
846
847         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
848
849         if (atomic_dec_return(&spt->refcount) > 0)
850                 return 0;
851
852         if (gtt_type_is_pte_pt(spt->shadow_page.type))
853                 goto release;
854
855         for_each_present_shadow_entry(spt, &e, index) {
856                 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
857                         gvt_err("GVT doesn't support pse bit for now\n");
858                         return -EINVAL;
859                 }
860                 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
861                                 spt->vgpu, &e);
862                 if (ret)
863                         goto fail;
864         }
865 release:
866         trace_spt_change(spt->vgpu->id, "release", spt,
867                         spt->guest_page.gfn, spt->shadow_page.type);
868         ppgtt_free_shadow_page(spt);
869         return 0;
870 fail:
871         gvt_err("vgpu%d: fail: shadow page %p shadow entry 0x%llx type %d\n",
872                         spt->vgpu->id, spt, e.val64, e.type);
873         return ret;
874 }
875
876 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
877
878 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
879                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
880 {
881         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
882         struct intel_vgpu_ppgtt_spt *s = NULL;
883         struct intel_vgpu_guest_page *g;
884         int ret;
885
886         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
887                 ret = -EINVAL;
888                 goto fail;
889         }
890
891         g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
892         if (g) {
893                 s = guest_page_to_ppgtt_spt(g);
894                 ppgtt_get_shadow_page(s);
895         } else {
896                 int type = get_next_pt_type(we->type);
897
898                 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
899                 if (IS_ERR(s)) {
900                         ret = PTR_ERR(s);
901                         goto fail;
902                 }
903
904                 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
905                 if (ret)
906                         goto fail;
907
908                 ret = ppgtt_populate_shadow_page(s);
909                 if (ret)
910                         goto fail;
911
912                 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
913                         s->shadow_page.type);
914         }
915         return s;
916 fail:
917         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
918                         vgpu->id, s, we->val64, we->type);
919         return ERR_PTR(ret);
920 }
921
922 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
923                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
924 {
925         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
926
927         se->type = ge->type;
928         se->val64 = ge->val64;
929
930         ops->set_pfn(se, s->shadow_page.mfn);
931 }
932
933 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
934 {
935         struct intel_vgpu *vgpu = spt->vgpu;
936         struct intel_vgpu_ppgtt_spt *s;
937         struct intel_gvt_gtt_entry se, ge;
938         unsigned long i;
939         int ret;
940
941         trace_spt_change(spt->vgpu->id, "born", spt,
942                         spt->guest_page.gfn, spt->shadow_page.type);
943
944         if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
945                 for_each_present_guest_entry(spt, &ge, i) {
946                         ret = gtt_entry_p2m(vgpu, &ge, &se);
947                         if (ret)
948                                 goto fail;
949                         ppgtt_set_shadow_entry(spt, &se, i);
950                 }
951                 return 0;
952         }
953
954         for_each_present_guest_entry(spt, &ge, i) {
955                 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
956                         gvt_err("GVT doesn't support pse bit now\n");
957                         ret = -EINVAL;
958                         goto fail;
959                 }
960
961                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
962                 if (IS_ERR(s)) {
963                         ret = PTR_ERR(s);
964                         goto fail;
965                 }
966                 ppgtt_get_shadow_entry(spt, &se, i);
967                 ppgtt_generate_shadow_entry(&se, s, &ge);
968                 ppgtt_set_shadow_entry(spt, &se, i);
969         }
970         return 0;
971 fail:
972         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
973                         vgpu->id, spt, ge.val64, ge.type);
974         return ret;
975 }
976
977 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
978                 unsigned long index)
979 {
980         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
981         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
982         struct intel_vgpu *vgpu = spt->vgpu;
983         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
984         struct intel_gvt_gtt_entry e;
985         int ret;
986
987         ppgtt_get_shadow_entry(spt, &e, index);
988
989         trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, e.val64,
990                          index);
991
992         if (!ops->test_present(&e))
993                 return 0;
994
995         if (ops->get_pfn(&e) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
996                 return 0;
997
998         if (gtt_type_is_pt(get_next_pt_type(e.type))) {
999                 struct intel_vgpu_ppgtt_spt *s =
1000                         ppgtt_find_shadow_page(vgpu, ops->get_pfn(&e));
1001                 if (!s) {
1002                         gvt_err("fail to find guest page\n");
1003                         ret = -ENXIO;
1004                         goto fail;
1005                 }
1006                 ret = ppgtt_invalidate_shadow_page(s);
1007                 if (ret)
1008                         goto fail;
1009         }
1010         ops->set_pfn(&e, vgpu->gtt.scratch_pt[sp->type].page_mfn);
1011         ppgtt_set_shadow_entry(spt, &e, index);
1012         return 0;
1013 fail:
1014         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d\n",
1015                         vgpu->id, spt, e.val64, e.type);
1016         return ret;
1017 }
1018
1019 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1020                 struct intel_gvt_gtt_entry *we, unsigned long index)
1021 {
1022         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1023         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1024         struct intel_vgpu *vgpu = spt->vgpu;
1025         struct intel_gvt_gtt_entry m;
1026         struct intel_vgpu_ppgtt_spt *s;
1027         int ret;
1028
1029         trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1030                 we->val64, index);
1031
1032         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1033                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1034                 if (IS_ERR(s)) {
1035                         ret = PTR_ERR(s);
1036                         goto fail;
1037                 }
1038                 ppgtt_get_shadow_entry(spt, &m, index);
1039                 ppgtt_generate_shadow_entry(&m, s, we);
1040                 ppgtt_set_shadow_entry(spt, &m, index);
1041         } else {
1042                 ret = gtt_entry_p2m(vgpu, we, &m);
1043                 if (ret)
1044                         goto fail;
1045                 ppgtt_set_shadow_entry(spt, &m, index);
1046         }
1047         return 0;
1048 fail:
1049         gvt_err("vgpu%d: fail: spt %p guest entry 0x%llx type %d\n", vgpu->id,
1050                         spt, we->val64, we->type);
1051         return ret;
1052 }
1053
1054 static int sync_oos_page(struct intel_vgpu *vgpu,
1055                 struct intel_vgpu_oos_page *oos_page)
1056 {
1057         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1058         struct intel_gvt *gvt = vgpu->gvt;
1059         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1060         struct intel_vgpu_ppgtt_spt *spt =
1061                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1062         struct intel_gvt_gtt_entry old, new, m;
1063         int index;
1064         int ret;
1065
1066         trace_oos_change(vgpu->id, "sync", oos_page->id,
1067                         oos_page->guest_page, spt->guest_page_type);
1068
1069         old.type = new.type = get_entry_type(spt->guest_page_type);
1070         old.val64 = new.val64 = 0;
1071
1072         for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1073                 index++) {
1074                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1075                 ops->get_entry(NULL, &new, index, true,
1076                         oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1077
1078                 if (old.val64 == new.val64
1079                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1080                         continue;
1081
1082                 trace_oos_sync(vgpu->id, oos_page->id,
1083                                 oos_page->guest_page, spt->guest_page_type,
1084                                 new.val64, index);
1085
1086                 ret = gtt_entry_p2m(vgpu, &new, &m);
1087                 if (ret)
1088                         return ret;
1089
1090                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1091                 ppgtt_set_shadow_entry(spt, &m, index);
1092         }
1093
1094         oos_page->guest_page->write_cnt = 0;
1095         list_del_init(&spt->post_shadow_list);
1096         return 0;
1097 }
1098
1099 static int detach_oos_page(struct intel_vgpu *vgpu,
1100                 struct intel_vgpu_oos_page *oos_page)
1101 {
1102         struct intel_gvt *gvt = vgpu->gvt;
1103         struct intel_vgpu_ppgtt_spt *spt =
1104                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1105
1106         trace_oos_change(vgpu->id, "detach", oos_page->id,
1107                         oos_page->guest_page, spt->guest_page_type);
1108
1109         oos_page->guest_page->write_cnt = 0;
1110         oos_page->guest_page->oos_page = NULL;
1111         oos_page->guest_page = NULL;
1112
1113         list_del_init(&oos_page->vm_list);
1114         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1115
1116         return 0;
1117 }
1118
1119 static int attach_oos_page(struct intel_vgpu *vgpu,
1120                 struct intel_vgpu_oos_page *oos_page,
1121                 struct intel_vgpu_guest_page *gpt)
1122 {
1123         struct intel_gvt *gvt = vgpu->gvt;
1124         int ret;
1125
1126         ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1127                 oos_page->mem, GTT_PAGE_SIZE);
1128         if (ret)
1129                 return ret;
1130
1131         oos_page->guest_page = gpt;
1132         gpt->oos_page = oos_page;
1133
1134         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1135
1136         trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1137                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1138         return 0;
1139 }
1140
1141 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1142                 struct intel_vgpu_guest_page *gpt)
1143 {
1144         int ret;
1145
1146         ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1147         if (ret)
1148                 return ret;
1149
1150         trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1151                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1152
1153         list_del_init(&gpt->oos_page->vm_list);
1154         return sync_oos_page(vgpu, gpt->oos_page);
1155 }
1156
1157 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1158                 struct intel_vgpu_guest_page *gpt)
1159 {
1160         struct intel_gvt *gvt = vgpu->gvt;
1161         struct intel_gvt_gtt *gtt = &gvt->gtt;
1162         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1163         int ret;
1164
1165         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1166
1167         if (list_empty(&gtt->oos_page_free_list_head)) {
1168                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1169                         struct intel_vgpu_oos_page, list);
1170                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1171                 if (ret)
1172                         return ret;
1173                 ret = detach_oos_page(vgpu, oos_page);
1174                 if (ret)
1175                         return ret;
1176         } else
1177                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1178                         struct intel_vgpu_oos_page, list);
1179         return attach_oos_page(vgpu, oos_page, gpt);
1180 }
1181
1182 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1183                 struct intel_vgpu_guest_page *gpt)
1184 {
1185         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1186
1187         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1188                 return -EINVAL;
1189
1190         trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1191                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1192
1193         list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1194         return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1195 }
1196
1197 /**
1198  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1199  * @vgpu: a vGPU
1200  *
1201  * This function is called before submitting a guest workload to host,
1202  * to sync all the out-of-synced shadow for vGPU
1203  *
1204  * Returns:
1205  * Zero on success, negative error code if failed.
1206  */
1207 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1208 {
1209         struct list_head *pos, *n;
1210         struct intel_vgpu_oos_page *oos_page;
1211         int ret;
1212
1213         if (!enable_out_of_sync)
1214                 return 0;
1215
1216         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1217                 oos_page = container_of(pos,
1218                                 struct intel_vgpu_oos_page, vm_list);
1219                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1220                 if (ret)
1221                         return ret;
1222         }
1223         return 0;
1224 }
1225
1226 /*
1227  * The heart of PPGTT shadow page table.
1228  */
1229 static int ppgtt_handle_guest_write_page_table(
1230                 struct intel_vgpu_guest_page *gpt,
1231                 struct intel_gvt_gtt_entry *we, unsigned long index)
1232 {
1233         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1234         struct intel_vgpu *vgpu = spt->vgpu;
1235         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1236
1237         int ret;
1238         int new_present;
1239
1240         new_present = ops->test_present(we);
1241
1242         ret = ppgtt_handle_guest_entry_removal(gpt, index);
1243         if (ret)
1244                 goto fail;
1245
1246         if (new_present) {
1247                 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1248                 if (ret)
1249                         goto fail;
1250         }
1251         return 0;
1252 fail:
1253         gvt_err("vgpu%d: fail: shadow page %p guest entry 0x%llx type %d.\n",
1254                         vgpu->id, spt, we->val64, we->type);
1255         return ret;
1256 }
1257
1258 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1259 {
1260         return enable_out_of_sync
1261                 && gtt_type_is_pte_pt(
1262                         guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1263                 && gpt->write_cnt >= 2;
1264 }
1265
1266 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1267                 unsigned long index)
1268 {
1269         set_bit(index, spt->post_shadow_bitmap);
1270         if (!list_empty(&spt->post_shadow_list))
1271                 return;
1272
1273         list_add_tail(&spt->post_shadow_list,
1274                         &spt->vgpu->gtt.post_shadow_list_head);
1275 }
1276
1277 /**
1278  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1279  * @vgpu: a vGPU
1280  *
1281  * This function is called before submitting a guest workload to host,
1282  * to flush all the post shadows for a vGPU.
1283  *
1284  * Returns:
1285  * Zero on success, negative error code if failed.
1286  */
1287 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1288 {
1289         struct list_head *pos, *n;
1290         struct intel_vgpu_ppgtt_spt *spt;
1291         struct intel_gvt_gtt_entry ge;
1292         unsigned long index;
1293         int ret;
1294
1295         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1296                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1297                                 post_shadow_list);
1298
1299                 for_each_set_bit(index, spt->post_shadow_bitmap,
1300                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1301                         ppgtt_get_guest_entry(spt, &ge, index);
1302
1303                         ret = ppgtt_handle_guest_write_page_table(
1304                                         &spt->guest_page, &ge, index);
1305                         if (ret)
1306                                 return ret;
1307                         clear_bit(index, spt->post_shadow_bitmap);
1308                 }
1309                 list_del_init(&spt->post_shadow_list);
1310         }
1311         return 0;
1312 }
1313
1314 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1315                 u64 pa, void *p_data, int bytes)
1316 {
1317         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1318         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1319         struct intel_vgpu *vgpu = spt->vgpu;
1320         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1321         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1322         struct intel_gvt_gtt_entry we;
1323         unsigned long index;
1324         int ret;
1325
1326         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1327
1328         ppgtt_get_guest_entry(spt, &we, index);
1329
1330         ops->test_pse(&we);
1331
1332         if (bytes == info->gtt_entry_size) {
1333                 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1334                 if (ret)
1335                         return ret;
1336         } else {
1337                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1338                         ret = ppgtt_handle_guest_entry_removal(gpt, index);
1339                         if (ret)
1340                                 return ret;
1341                 }
1342
1343                 ppgtt_set_post_shadow(spt, index);
1344         }
1345
1346         if (!enable_out_of_sync)
1347                 return 0;
1348
1349         gpt->write_cnt++;
1350
1351         if (gpt->oos_page)
1352                 ops->set_entry(gpt->oos_page->mem, &we, index,
1353                                 false, 0, vgpu);
1354
1355         if (can_do_out_of_sync(gpt)) {
1356                 if (!gpt->oos_page)
1357                         ppgtt_allocate_oos_page(vgpu, gpt);
1358
1359                 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1360                 if (ret < 0)
1361                         return ret;
1362         }
1363         return 0;
1364 }
1365
1366 /*
1367  * mm page table allocation policy for bdw+
1368  *  - for ggtt, only virtual page table will be allocated.
1369  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1370  */
1371 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1372 {
1373         struct intel_vgpu *vgpu = mm->vgpu;
1374         struct intel_gvt *gvt = vgpu->gvt;
1375         const struct intel_gvt_device_info *info = &gvt->device_info;
1376         void *mem;
1377
1378         if (mm->type == INTEL_GVT_MM_PPGTT) {
1379                 mm->page_table_entry_cnt = 4;
1380                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1381                         info->gtt_entry_size;
1382                 mem = kzalloc(mm->has_shadow_page_table ?
1383                         mm->page_table_entry_size * 2
1384                                 : mm->page_table_entry_size, GFP_KERNEL);
1385                 if (!mem)
1386                         return -ENOMEM;
1387                 mm->virtual_page_table = mem;
1388                 if (!mm->has_shadow_page_table)
1389                         return 0;
1390                 mm->shadow_page_table = mem + mm->page_table_entry_size;
1391         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1392                 mm->page_table_entry_cnt =
1393                         (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1394                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1395                         info->gtt_entry_size;
1396                 mem = vzalloc(mm->page_table_entry_size);
1397                 if (!mem)
1398                         return -ENOMEM;
1399                 mm->virtual_page_table = mem;
1400         }
1401         return 0;
1402 }
1403
1404 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1405 {
1406         if (mm->type == INTEL_GVT_MM_PPGTT) {
1407                 kfree(mm->virtual_page_table);
1408         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1409                 if (mm->virtual_page_table)
1410                         vfree(mm->virtual_page_table);
1411         }
1412         mm->virtual_page_table = mm->shadow_page_table = NULL;
1413 }
1414
1415 static void invalidate_mm(struct intel_vgpu_mm *mm)
1416 {
1417         struct intel_vgpu *vgpu = mm->vgpu;
1418         struct intel_gvt *gvt = vgpu->gvt;
1419         struct intel_gvt_gtt *gtt = &gvt->gtt;
1420         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1421         struct intel_gvt_gtt_entry se;
1422         int i;
1423
1424         if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1425                 return;
1426
1427         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1428                 ppgtt_get_shadow_root_entry(mm, &se, i);
1429                 if (!ops->test_present(&se))
1430                         continue;
1431                 ppgtt_invalidate_shadow_page_by_shadow_entry(
1432                                 vgpu, &se);
1433                 se.val64 = 0;
1434                 ppgtt_set_shadow_root_entry(mm, &se, i);
1435
1436                 trace_gpt_change(vgpu->id, "destroy root pointer",
1437                                 NULL, se.type, se.val64, i);
1438         }
1439         mm->shadowed = false;
1440 }
1441
1442 /**
1443  * intel_vgpu_destroy_mm - destroy a mm object
1444  * @mm: a kref object
1445  *
1446  * This function is used to destroy a mm object for vGPU
1447  *
1448  */
1449 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1450 {
1451         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1452         struct intel_vgpu *vgpu = mm->vgpu;
1453         struct intel_gvt *gvt = vgpu->gvt;
1454         struct intel_gvt_gtt *gtt = &gvt->gtt;
1455
1456         if (!mm->initialized)
1457                 goto out;
1458
1459         list_del(&mm->list);
1460         list_del(&mm->lru_list);
1461
1462         if (mm->has_shadow_page_table)
1463                 invalidate_mm(mm);
1464
1465         gtt->mm_free_page_table(mm);
1466 out:
1467         kfree(mm);
1468 }
1469
1470 static int shadow_mm(struct intel_vgpu_mm *mm)
1471 {
1472         struct intel_vgpu *vgpu = mm->vgpu;
1473         struct intel_gvt *gvt = vgpu->gvt;
1474         struct intel_gvt_gtt *gtt = &gvt->gtt;
1475         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1476         struct intel_vgpu_ppgtt_spt *spt;
1477         struct intel_gvt_gtt_entry ge, se;
1478         int i;
1479         int ret;
1480
1481         if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1482                 return 0;
1483
1484         mm->shadowed = true;
1485
1486         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1487                 ppgtt_get_guest_root_entry(mm, &ge, i);
1488                 if (!ops->test_present(&ge))
1489                         continue;
1490
1491                 trace_gpt_change(vgpu->id, __func__, NULL,
1492                                 ge.type, ge.val64, i);
1493
1494                 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1495                 if (IS_ERR(spt)) {
1496                         gvt_err("fail to populate guest root pointer\n");
1497                         ret = PTR_ERR(spt);
1498                         goto fail;
1499                 }
1500                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1501                 ppgtt_set_shadow_root_entry(mm, &se, i);
1502
1503                 trace_gpt_change(vgpu->id, "populate root pointer",
1504                                 NULL, se.type, se.val64, i);
1505         }
1506         return 0;
1507 fail:
1508         invalidate_mm(mm);
1509         return ret;
1510 }
1511
1512 /**
1513  * intel_vgpu_create_mm - create a mm object for a vGPU
1514  * @vgpu: a vGPU
1515  * @mm_type: mm object type, should be PPGTT or GGTT
1516  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1517  *      to populate shadow later.
1518  * @page_table_level: describe the page table level of the mm object
1519  * @pde_base_index: pde root pointer base in GGTT MMIO.
1520  *
1521  * This function is used to create a mm object for a vGPU.
1522  *
1523  * Returns:
1524  * Zero on success, negative error code in pointer if failed.
1525  */
1526 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1527                 int mm_type, void *virtual_page_table, int page_table_level,
1528                 u32 pde_base_index)
1529 {
1530         struct intel_gvt *gvt = vgpu->gvt;
1531         struct intel_gvt_gtt *gtt = &gvt->gtt;
1532         struct intel_vgpu_mm *mm;
1533         int ret;
1534
1535         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1536         if (!mm) {
1537                 ret = -ENOMEM;
1538                 goto fail;
1539         }
1540
1541         mm->type = mm_type;
1542
1543         if (page_table_level == 1)
1544                 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1545         else if (page_table_level == 3)
1546                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1547         else if (page_table_level == 4)
1548                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1549         else {
1550                 WARN_ON(1);
1551                 ret = -EINVAL;
1552                 goto fail;
1553         }
1554
1555         mm->page_table_level = page_table_level;
1556         mm->pde_base_index = pde_base_index;
1557
1558         mm->vgpu = vgpu;
1559         mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1560
1561         kref_init(&mm->ref);
1562         atomic_set(&mm->pincount, 0);
1563         INIT_LIST_HEAD(&mm->list);
1564         INIT_LIST_HEAD(&mm->lru_list);
1565         list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1566
1567         ret = gtt->mm_alloc_page_table(mm);
1568         if (ret) {
1569                 gvt_err("fail to allocate page table for mm\n");
1570                 goto fail;
1571         }
1572
1573         mm->initialized = true;
1574
1575         if (virtual_page_table)
1576                 memcpy(mm->virtual_page_table, virtual_page_table,
1577                                 mm->page_table_entry_size);
1578
1579         if (mm->has_shadow_page_table) {
1580                 ret = shadow_mm(mm);
1581                 if (ret)
1582                         goto fail;
1583                 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1584         }
1585         return mm;
1586 fail:
1587         gvt_err("fail to create mm\n");
1588         if (mm)
1589                 intel_gvt_mm_unreference(mm);
1590         return ERR_PTR(ret);
1591 }
1592
1593 /**
1594  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1595  * @mm: a vGPU mm object
1596  *
1597  * This function is called when user doesn't want to use a vGPU mm object
1598  */
1599 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1600 {
1601         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1602                 return;
1603
1604         atomic_dec(&mm->pincount);
1605 }
1606
1607 /**
1608  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1609  * @vgpu: a vGPU
1610  *
1611  * This function is called when user wants to use a vGPU mm object. If this
1612  * mm object hasn't been shadowed yet, the shadow will be populated at this
1613  * time.
1614  *
1615  * Returns:
1616  * Zero on success, negative error code if failed.
1617  */
1618 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1619 {
1620         int ret;
1621
1622         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1623                 return 0;
1624
1625         atomic_inc(&mm->pincount);
1626
1627         if (!mm->shadowed) {
1628                 ret = shadow_mm(mm);
1629                 if (ret)
1630                         return ret;
1631         }
1632
1633         list_del_init(&mm->lru_list);
1634         list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1635         return 0;
1636 }
1637
1638 static int reclaim_one_mm(struct intel_gvt *gvt)
1639 {
1640         struct intel_vgpu_mm *mm;
1641         struct list_head *pos, *n;
1642
1643         list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1644                 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1645
1646                 if (mm->type != INTEL_GVT_MM_PPGTT)
1647                         continue;
1648                 if (atomic_read(&mm->pincount))
1649                         continue;
1650
1651                 list_del_init(&mm->lru_list);
1652                 invalidate_mm(mm);
1653                 return 1;
1654         }
1655         return 0;
1656 }
1657
1658 /*
1659  * GMA translation APIs.
1660  */
1661 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1662                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1663 {
1664         struct intel_vgpu *vgpu = mm->vgpu;
1665         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1666         struct intel_vgpu_ppgtt_spt *s;
1667
1668         if (WARN_ON(!mm->has_shadow_page_table))
1669                 return -EINVAL;
1670
1671         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1672         if (!s)
1673                 return -ENXIO;
1674
1675         if (!guest)
1676                 ppgtt_get_shadow_entry(s, e, index);
1677         else
1678                 ppgtt_get_guest_entry(s, e, index);
1679         return 0;
1680 }
1681
1682 /**
1683  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1684  * @mm: mm object. could be a PPGTT or GGTT mm object
1685  * @gma: graphics memory address in this mm object
1686  *
1687  * This function is used to translate a graphics memory address in specific
1688  * graphics memory space to guest physical address.
1689  *
1690  * Returns:
1691  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1692  */
1693 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1694 {
1695         struct intel_vgpu *vgpu = mm->vgpu;
1696         struct intel_gvt *gvt = vgpu->gvt;
1697         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1698         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1699         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1700         unsigned long gma_index[4];
1701         struct intel_gvt_gtt_entry e;
1702         int i, index;
1703         int ret;
1704
1705         if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1706                 return INTEL_GVT_INVALID_ADDR;
1707
1708         if (mm->type == INTEL_GVT_MM_GGTT) {
1709                 if (!vgpu_gmadr_is_valid(vgpu, gma))
1710                         goto err;
1711
1712                 ggtt_get_guest_entry(mm, &e,
1713                         gma_ops->gma_to_ggtt_pte_index(gma));
1714                 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1715                         + (gma & ~GTT_PAGE_MASK);
1716
1717                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1718                 return gpa;
1719         }
1720
1721         switch (mm->page_table_level) {
1722         case 4:
1723                 ppgtt_get_shadow_root_entry(mm, &e, 0);
1724                 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1725                 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1726                 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1727                 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1728                 index = 4;
1729                 break;
1730         case 3:
1731                 ppgtt_get_shadow_root_entry(mm, &e,
1732                                 gma_ops->gma_to_l3_pdp_index(gma));
1733                 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1734                 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1735                 index = 2;
1736                 break;
1737         case 2:
1738                 ppgtt_get_shadow_root_entry(mm, &e,
1739                                 gma_ops->gma_to_pde_index(gma));
1740                 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1741                 index = 1;
1742                 break;
1743         default:
1744                 WARN_ON(1);
1745                 goto err;
1746         }
1747
1748         /* walk into the shadow page table and get gpa from guest entry */
1749         for (i = 0; i < index; i++) {
1750                 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1751                         (i == index - 1));
1752                 if (ret)
1753                         goto err;
1754         }
1755
1756         gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1757                 + (gma & ~GTT_PAGE_MASK);
1758
1759         trace_gma_translate(vgpu->id, "ppgtt", 0,
1760                         mm->page_table_level, gma, gpa);
1761         return gpa;
1762 err:
1763         gvt_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1764         return INTEL_GVT_INVALID_ADDR;
1765 }
1766
1767 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1768         unsigned int off, void *p_data, unsigned int bytes)
1769 {
1770         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1771         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1772         unsigned long index = off >> info->gtt_entry_size_shift;
1773         struct intel_gvt_gtt_entry e;
1774
1775         if (bytes != 4 && bytes != 8)
1776                 return -EINVAL;
1777
1778         ggtt_get_guest_entry(ggtt_mm, &e, index);
1779         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1780                         bytes);
1781         return 0;
1782 }
1783
1784 /**
1785  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1786  * @vgpu: a vGPU
1787  * @off: register offset
1788  * @p_data: data will be returned to guest
1789  * @bytes: data length
1790  *
1791  * This function is used to emulate the GTT MMIO register read
1792  *
1793  * Returns:
1794  * Zero on success, error code if failed.
1795  */
1796 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1797         void *p_data, unsigned int bytes)
1798 {
1799         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1800         int ret;
1801
1802         if (bytes != 4 && bytes != 8)
1803                 return -EINVAL;
1804
1805         off -= info->gtt_start_offset;
1806         ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1807         return ret;
1808 }
1809
1810 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1811         void *p_data, unsigned int bytes)
1812 {
1813         struct intel_gvt *gvt = vgpu->gvt;
1814         const struct intel_gvt_device_info *info = &gvt->device_info;
1815         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1816         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1817         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1818         unsigned long gma;
1819         struct intel_gvt_gtt_entry e, m;
1820         int ret;
1821
1822         if (bytes != 4 && bytes != 8)
1823                 return -EINVAL;
1824
1825         gma = g_gtt_index << GTT_PAGE_SHIFT;
1826
1827         /* the VM may configure the whole GM space when ballooning is used */
1828         if (WARN_ONCE(!vgpu_gmadr_is_valid(vgpu, gma),
1829                                 "vgpu%d: found oob ggtt write, offset %x\n",
1830                                 vgpu->id, off)) {
1831                 return 0;
1832         }
1833
1834         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1835
1836         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1837                         bytes);
1838
1839         if (ops->test_present(&e)) {
1840                 ret = gtt_entry_p2m(vgpu, &e, &m);
1841                 if (ret) {
1842                         gvt_err("vgpu%d: fail to translate guest gtt entry\n",
1843                                         vgpu->id);
1844                         return ret;
1845                 }
1846         } else {
1847                 m = e;
1848                 m.val64 = 0;
1849         }
1850
1851         ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1852         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1853         return 0;
1854 }
1855
1856 /*
1857  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1858  * @vgpu: a vGPU
1859  * @off: register offset
1860  * @p_data: data from guest write
1861  * @bytes: data length
1862  *
1863  * This function is used to emulate the GTT MMIO register write
1864  *
1865  * Returns:
1866  * Zero on success, error code if failed.
1867  */
1868 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1869         void *p_data, unsigned int bytes)
1870 {
1871         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1872         int ret;
1873
1874         if (bytes != 4 && bytes != 8)
1875                 return -EINVAL;
1876
1877         off -= info->gtt_start_offset;
1878         ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1879         return ret;
1880 }
1881
1882 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1883                 intel_gvt_gtt_type_t type)
1884 {
1885         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1886         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1887         int page_entry_num = GTT_PAGE_SIZE >>
1888                                 vgpu->gvt->device_info.gtt_entry_size_shift;
1889         void *scratch_pt;
1890         int i;
1891         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1892         dma_addr_t daddr;
1893
1894         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1895                 return -EINVAL;
1896
1897         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1898         if (!scratch_pt) {
1899                 gvt_err("fail to allocate scratch page\n");
1900                 return -ENOMEM;
1901         }
1902
1903         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1904                         4096, PCI_DMA_BIDIRECTIONAL);
1905         if (dma_mapping_error(dev, daddr)) {
1906                 gvt_err("fail to dmamap scratch_pt\n");
1907                 __free_page(virt_to_page(scratch_pt));
1908                 return -ENOMEM;
1909         }
1910         gtt->scratch_pt[type].page_mfn =
1911                 (unsigned long)(daddr >> GTT_PAGE_SHIFT);
1912         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1913         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1914                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1915
1916         /* Build the tree by full filled the scratch pt with the entries which
1917          * point to the next level scratch pt or scratch page. The
1918          * scratch_pt[type] indicate the scratch pt/scratch page used by the
1919          * 'type' pt.
1920          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1921          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1922          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1923          */
1924         if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1925                 struct intel_gvt_gtt_entry se;
1926
1927                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1928                 se.type = get_entry_type(type - 1);
1929                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1930
1931                 /* The entry parameters like present/writeable/cache type
1932                  * set to the same as i915's scratch page tree.
1933                  */
1934                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1935                 if (type == GTT_TYPE_PPGTT_PDE_PT)
1936                         se.val64 |= PPAT_CACHED_INDEX;
1937
1938                 for (i = 0; i < page_entry_num; i++)
1939                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1940         }
1941
1942         return 0;
1943 }
1944
1945 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1946 {
1947         int i;
1948         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1949         dma_addr_t daddr;
1950
1951         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1952                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
1953                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1954                                         GTT_PAGE_SHIFT);
1955                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1956                         __free_page(vgpu->gtt.scratch_pt[i].page);
1957                         vgpu->gtt.scratch_pt[i].page = NULL;
1958                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
1959                 }
1960         }
1961
1962         return 0;
1963 }
1964
1965 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
1966 {
1967         int i, ret;
1968
1969         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1970                 ret = alloc_scratch_pages(vgpu, i);
1971                 if (ret)
1972                         goto err;
1973         }
1974
1975         return 0;
1976
1977 err:
1978         release_scratch_page_tree(vgpu);
1979         return ret;
1980 }
1981
1982 /**
1983  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
1984  * @vgpu: a vGPU
1985  *
1986  * This function is used to initialize per-vGPU graphics memory virtualization
1987  * components.
1988  *
1989  * Returns:
1990  * Zero on success, error code if failed.
1991  */
1992 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
1993 {
1994         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1995         struct intel_vgpu_mm *ggtt_mm;
1996
1997         hash_init(gtt->guest_page_hash_table);
1998         hash_init(gtt->shadow_page_hash_table);
1999
2000         INIT_LIST_HEAD(&gtt->mm_list_head);
2001         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2002         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2003
2004         intel_vgpu_reset_ggtt(vgpu);
2005
2006         ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2007                         NULL, 1, 0);
2008         if (IS_ERR(ggtt_mm)) {
2009                 gvt_err("fail to create mm for ggtt.\n");
2010                 return PTR_ERR(ggtt_mm);
2011         }
2012
2013         gtt->ggtt_mm = ggtt_mm;
2014
2015         return create_scratch_page_tree(vgpu);
2016 }
2017
2018 /**
2019  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2020  * @vgpu: a vGPU
2021  *
2022  * This function is used to clean up per-vGPU graphics memory virtualization
2023  * components.
2024  *
2025  * Returns:
2026  * Zero on success, error code if failed.
2027  */
2028 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2029 {
2030         struct list_head *pos, *n;
2031         struct intel_vgpu_mm *mm;
2032
2033         ppgtt_free_all_shadow_page(vgpu);
2034         release_scratch_page_tree(vgpu);
2035
2036         list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2037                 mm = container_of(pos, struct intel_vgpu_mm, list);
2038                 vgpu->gvt->gtt.mm_free_page_table(mm);
2039                 list_del(&mm->list);
2040                 list_del(&mm->lru_list);
2041                 kfree(mm);
2042         }
2043 }
2044
2045 static void clean_spt_oos(struct intel_gvt *gvt)
2046 {
2047         struct intel_gvt_gtt *gtt = &gvt->gtt;
2048         struct list_head *pos, *n;
2049         struct intel_vgpu_oos_page *oos_page;
2050
2051         WARN(!list_empty(&gtt->oos_page_use_list_head),
2052                 "someone is still using oos page\n");
2053
2054         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2055                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2056                 list_del(&oos_page->list);
2057                 kfree(oos_page);
2058         }
2059 }
2060
2061 static int setup_spt_oos(struct intel_gvt *gvt)
2062 {
2063         struct intel_gvt_gtt *gtt = &gvt->gtt;
2064         struct intel_vgpu_oos_page *oos_page;
2065         int i;
2066         int ret;
2067
2068         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2069         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2070
2071         for (i = 0; i < preallocated_oos_pages; i++) {
2072                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2073                 if (!oos_page) {
2074                         gvt_err("fail to pre-allocate oos page\n");
2075                         ret = -ENOMEM;
2076                         goto fail;
2077                 }
2078
2079                 INIT_LIST_HEAD(&oos_page->list);
2080                 INIT_LIST_HEAD(&oos_page->vm_list);
2081                 oos_page->id = i;
2082                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2083         }
2084
2085         gvt_dbg_mm("%d oos pages preallocated\n", i);
2086
2087         return 0;
2088 fail:
2089         clean_spt_oos(gvt);
2090         return ret;
2091 }
2092
2093 /**
2094  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2095  * @vgpu: a vGPU
2096  * @page_table_level: PPGTT page table level
2097  * @root_entry: PPGTT page table root pointers
2098  *
2099  * This function is used to find a PPGTT mm object from mm object pool
2100  *
2101  * Returns:
2102  * pointer to mm object on success, NULL if failed.
2103  */
2104 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2105                 int page_table_level, void *root_entry)
2106 {
2107         struct list_head *pos;
2108         struct intel_vgpu_mm *mm;
2109         u64 *src, *dst;
2110
2111         list_for_each(pos, &vgpu->gtt.mm_list_head) {
2112                 mm = container_of(pos, struct intel_vgpu_mm, list);
2113                 if (mm->type != INTEL_GVT_MM_PPGTT)
2114                         continue;
2115
2116                 if (mm->page_table_level != page_table_level)
2117                         continue;
2118
2119                 src = root_entry;
2120                 dst = mm->virtual_page_table;
2121
2122                 if (page_table_level == 3) {
2123                         if (src[0] == dst[0]
2124                                         && src[1] == dst[1]
2125                                         && src[2] == dst[2]
2126                                         && src[3] == dst[3])
2127                                 return mm;
2128                 } else {
2129                         if (src[0] == dst[0])
2130                                 return mm;
2131                 }
2132         }
2133         return NULL;
2134 }
2135
2136 /**
2137  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2138  * g2v notification
2139  * @vgpu: a vGPU
2140  * @page_table_level: PPGTT page table level
2141  *
2142  * This function is used to create a PPGTT mm object from a guest to GVT-g
2143  * notification.
2144  *
2145  * Returns:
2146  * Zero on success, negative error code if failed.
2147  */
2148 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2149                 int page_table_level)
2150 {
2151         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2152         struct intel_vgpu_mm *mm;
2153
2154         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2155                 return -EINVAL;
2156
2157         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2158         if (mm) {
2159                 intel_gvt_mm_reference(mm);
2160         } else {
2161                 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2162                                 pdp, page_table_level, 0);
2163                 if (IS_ERR(mm)) {
2164                         gvt_err("fail to create mm\n");
2165                         return PTR_ERR(mm);
2166                 }
2167         }
2168         return 0;
2169 }
2170
2171 /**
2172  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2173  * g2v notification
2174  * @vgpu: a vGPU
2175  * @page_table_level: PPGTT page table level
2176  *
2177  * This function is used to create a PPGTT mm object from a guest to GVT-g
2178  * notification.
2179  *
2180  * Returns:
2181  * Zero on success, negative error code if failed.
2182  */
2183 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2184                 int page_table_level)
2185 {
2186         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2187         struct intel_vgpu_mm *mm;
2188
2189         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2190                 return -EINVAL;
2191
2192         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2193         if (!mm) {
2194                 gvt_err("fail to find ppgtt instance.\n");
2195                 return -EINVAL;
2196         }
2197         intel_gvt_mm_unreference(mm);
2198         return 0;
2199 }
2200
2201 /**
2202  * intel_gvt_init_gtt - initialize mm components of a GVT device
2203  * @gvt: GVT device
2204  *
2205  * This function is called at the initialization stage, to initialize
2206  * the mm components of a GVT device.
2207  *
2208  * Returns:
2209  * zero on success, negative error code if failed.
2210  */
2211 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2212 {
2213         int ret;
2214         void *page;
2215         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2216         dma_addr_t daddr;
2217
2218         gvt_dbg_core("init gtt\n");
2219
2220         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)) {
2221                 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2222                 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2223                 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2224                 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2225         } else {
2226                 return -ENODEV;
2227         }
2228
2229         page = (void *)get_zeroed_page(GFP_KERNEL);
2230         if (!page) {
2231                 gvt_err("fail to allocate scratch ggtt page\n");
2232                 return -ENOMEM;
2233         }
2234
2235         daddr = dma_map_page(dev, virt_to_page(page), 0,
2236                         4096, PCI_DMA_BIDIRECTIONAL);
2237         if (dma_mapping_error(dev, daddr)) {
2238                 gvt_err("fail to dmamap scratch ggtt page\n");
2239                 __free_page(virt_to_page(page));
2240                 return -ENOMEM;
2241         }
2242         gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2243         gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT);
2244
2245         if (enable_out_of_sync) {
2246                 ret = setup_spt_oos(gvt);
2247                 if (ret) {
2248                         gvt_err("fail to initialize SPT oos\n");
2249                         return ret;
2250                 }
2251         }
2252         INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2253         return 0;
2254 }
2255
2256 /**
2257  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2258  * @gvt: GVT device
2259  *
2260  * This function is called at the driver unloading stage, to clean up the
2261  * the mm components of a GVT device.
2262  *
2263  */
2264 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2265 {
2266         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2267         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn <<
2268                                         GTT_PAGE_SHIFT);
2269
2270         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2271
2272         __free_page(gvt->gtt.scratch_ggtt_page);
2273
2274         if (enable_out_of_sync)
2275                 clean_spt_oos(gvt);
2276 }
2277
2278 /**
2279  * intel_vgpu_reset_ggtt - reset the GGTT entry
2280  * @vgpu: a vGPU
2281  *
2282  * This function is called at the vGPU create stage
2283  * to reset all the GGTT entries.
2284  *
2285  */
2286 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2287 {
2288         struct intel_gvt *gvt = vgpu->gvt;
2289         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2290         u32 index;
2291         u32 offset;
2292         u32 num_entries;
2293         struct intel_gvt_gtt_entry e;
2294
2295         memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2296         e.type = GTT_TYPE_GGTT_PTE;
2297         ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2298         e.val64 |= _PAGE_PRESENT;
2299
2300         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2301         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2302         for (offset = 0; offset < num_entries; offset++)
2303                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2304
2305         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2306         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2307         for (offset = 0; offset < num_entries; offset++)
2308                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2309 }
2310
2311 /**
2312  * intel_vgpu_reset_gtt - reset the all GTT related status
2313  * @vgpu: a vGPU
2314  * @dmlr: true for vGPU Device Model Level Reset, false for GT Reset
2315  *
2316  * This function is called from vfio core to reset reset all
2317  * GTT related status, including GGTT, PPGTT, scratch page.
2318  *
2319  */
2320 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu, bool dmlr)
2321 {
2322         int i;
2323
2324         ppgtt_free_all_shadow_page(vgpu);
2325         if (!dmlr)
2326                 return;
2327
2328         intel_vgpu_reset_ggtt(vgpu);
2329
2330         /* clear scratch page for security */
2331         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2332                 if (vgpu->gtt.scratch_pt[i].page != NULL)
2333                         memset(page_address(vgpu->gtt.scratch_pt[i].page),
2334                                 0, PAGE_SIZE);
2335         }
2336 }