Merge tag 'drm-misc-fixes-2017-11-13' of git://anongit.freedesktop.org/drm/drm-misc...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 static bool enable_out_of_sync = false;
42 static int preallocated_oos_pages = 8192;
43
44 /*
45  * validate a gm address and related range size,
46  * translate it to host gm address
47  */
48 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
49 {
50         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
51                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
52                 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
53                                 addr, size);
54                 return false;
55         }
56         return true;
57 }
58
59 /* translate a guest gmadr to host gmadr */
60 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
61 {
62         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
63                  "invalid guest gmadr %llx\n", g_addr))
64                 return -EACCES;
65
66         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
67                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
68                           + (g_addr - vgpu_aperture_offset(vgpu));
69         else
70                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
71                           + (g_addr - vgpu_hidden_offset(vgpu));
72         return 0;
73 }
74
75 /* translate a host gmadr to guest gmadr */
76 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
77 {
78         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
79                  "invalid host gmadr %llx\n", h_addr))
80                 return -EACCES;
81
82         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
83                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
84                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
85         else
86                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
87                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
88         return 0;
89 }
90
91 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
92                              unsigned long *h_index)
93 {
94         u64 h_addr;
95         int ret;
96
97         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << GTT_PAGE_SHIFT,
98                                        &h_addr);
99         if (ret)
100                 return ret;
101
102         *h_index = h_addr >> GTT_PAGE_SHIFT;
103         return 0;
104 }
105
106 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
107                              unsigned long *g_index)
108 {
109         u64 g_addr;
110         int ret;
111
112         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << GTT_PAGE_SHIFT,
113                                        &g_addr);
114         if (ret)
115                 return ret;
116
117         *g_index = g_addr >> GTT_PAGE_SHIFT;
118         return 0;
119 }
120
121 #define gtt_type_is_entry(type) \
122         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
123          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
124          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
125
126 #define gtt_type_is_pt(type) \
127         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
128
129 #define gtt_type_is_pte_pt(type) \
130         (type == GTT_TYPE_PPGTT_PTE_PT)
131
132 #define gtt_type_is_root_pointer(type) \
133         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
134
135 #define gtt_init_entry(e, t, p, v) do { \
136         (e)->type = t; \
137         (e)->pdev = p; \
138         memcpy(&(e)->val64, &v, sizeof(v)); \
139 } while (0)
140
141 /*
142  * Mappings between GTT_TYPE* enumerations.
143  * Following information can be found according to the given type:
144  * - type of next level page table
145  * - type of entry inside this level page table
146  * - type of entry with PSE set
147  *
148  * If the given type doesn't have such a kind of information,
149  * e.g. give a l4 root entry type, then request to get its PSE type,
150  * give a PTE page table type, then request to get its next level page
151  * table type, as we know l4 root entry doesn't have a PSE bit,
152  * and a PTE page table doesn't have a next level page table type,
153  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
154  * page table.
155  */
156
157 struct gtt_type_table_entry {
158         int entry_type;
159         int next_pt_type;
160         int pse_entry_type;
161 };
162
163 #define GTT_TYPE_TABLE_ENTRY(type, e_type, npt_type, pse_type) \
164         [type] = { \
165                 .entry_type = e_type, \
166                 .next_pt_type = npt_type, \
167                 .pse_entry_type = pse_type, \
168         }
169
170 static struct gtt_type_table_entry gtt_type_table[] = {
171         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
172                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
173                         GTT_TYPE_PPGTT_PML4_PT,
174                         GTT_TYPE_INVALID),
175         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
176                         GTT_TYPE_PPGTT_PML4_ENTRY,
177                         GTT_TYPE_PPGTT_PDP_PT,
178                         GTT_TYPE_INVALID),
179         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
180                         GTT_TYPE_PPGTT_PML4_ENTRY,
181                         GTT_TYPE_PPGTT_PDP_PT,
182                         GTT_TYPE_INVALID),
183         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
184                         GTT_TYPE_PPGTT_PDP_ENTRY,
185                         GTT_TYPE_PPGTT_PDE_PT,
186                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
187         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
188                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
189                         GTT_TYPE_PPGTT_PDE_PT,
190                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
191         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
192                         GTT_TYPE_PPGTT_PDP_ENTRY,
193                         GTT_TYPE_PPGTT_PDE_PT,
194                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
195         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
196                         GTT_TYPE_PPGTT_PDE_ENTRY,
197                         GTT_TYPE_PPGTT_PTE_PT,
198                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
200                         GTT_TYPE_PPGTT_PDE_ENTRY,
201                         GTT_TYPE_PPGTT_PTE_PT,
202                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
203         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
204                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
205                         GTT_TYPE_INVALID,
206                         GTT_TYPE_INVALID),
207         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
208                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
209                         GTT_TYPE_INVALID,
210                         GTT_TYPE_INVALID),
211         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
212                         GTT_TYPE_PPGTT_PDE_ENTRY,
213                         GTT_TYPE_INVALID,
214                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
215         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
216                         GTT_TYPE_PPGTT_PDP_ENTRY,
217                         GTT_TYPE_INVALID,
218                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
219         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
220                         GTT_TYPE_GGTT_PTE,
221                         GTT_TYPE_INVALID,
222                         GTT_TYPE_INVALID),
223 };
224
225 static inline int get_next_pt_type(int type)
226 {
227         return gtt_type_table[type].next_pt_type;
228 }
229
230 static inline int get_entry_type(int type)
231 {
232         return gtt_type_table[type].entry_type;
233 }
234
235 static inline int get_pse_type(int type)
236 {
237         return gtt_type_table[type].pse_entry_type;
238 }
239
240 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
241 {
242         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
243
244         return readq(addr);
245 }
246
247 static void gtt_invalidate(struct drm_i915_private *dev_priv)
248 {
249         mmio_hw_access_pre(dev_priv);
250         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
251         mmio_hw_access_post(dev_priv);
252 }
253
254 static void write_pte64(struct drm_i915_private *dev_priv,
255                 unsigned long index, u64 pte)
256 {
257         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
258
259         writeq(pte, addr);
260 }
261
262 static inline int gtt_get_entry64(void *pt,
263                 struct intel_gvt_gtt_entry *e,
264                 unsigned long index, bool hypervisor_access, unsigned long gpa,
265                 struct intel_vgpu *vgpu)
266 {
267         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
268         int ret;
269
270         if (WARN_ON(info->gtt_entry_size != 8))
271                 return -EINVAL;
272
273         if (hypervisor_access) {
274                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
275                                 (index << info->gtt_entry_size_shift),
276                                 &e->val64, 8);
277                 if (WARN_ON(ret))
278                         return ret;
279         } else if (!pt) {
280                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
281         } else {
282                 e->val64 = *((u64 *)pt + index);
283         }
284         return 0;
285 }
286
287 static inline int gtt_set_entry64(void *pt,
288                 struct intel_gvt_gtt_entry *e,
289                 unsigned long index, bool hypervisor_access, unsigned long gpa,
290                 struct intel_vgpu *vgpu)
291 {
292         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
293         int ret;
294
295         if (WARN_ON(info->gtt_entry_size != 8))
296                 return -EINVAL;
297
298         if (hypervisor_access) {
299                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
300                                 (index << info->gtt_entry_size_shift),
301                                 &e->val64, 8);
302                 if (WARN_ON(ret))
303                         return ret;
304         } else if (!pt) {
305                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
306         } else {
307                 *((u64 *)pt + index) = e->val64;
308         }
309         return 0;
310 }
311
312 #define GTT_HAW 46
313
314 #define ADDR_1G_MASK (((1UL << (GTT_HAW - 30 + 1)) - 1) << 30)
315 #define ADDR_2M_MASK (((1UL << (GTT_HAW - 21 + 1)) - 1) << 21)
316 #define ADDR_4K_MASK (((1UL << (GTT_HAW - 12 + 1)) - 1) << 12)
317
318 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
319 {
320         unsigned long pfn;
321
322         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
323                 pfn = (e->val64 & ADDR_1G_MASK) >> 12;
324         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
325                 pfn = (e->val64 & ADDR_2M_MASK) >> 12;
326         else
327                 pfn = (e->val64 & ADDR_4K_MASK) >> 12;
328         return pfn;
329 }
330
331 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
332 {
333         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
334                 e->val64 &= ~ADDR_1G_MASK;
335                 pfn &= (ADDR_1G_MASK >> 12);
336         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
337                 e->val64 &= ~ADDR_2M_MASK;
338                 pfn &= (ADDR_2M_MASK >> 12);
339         } else {
340                 e->val64 &= ~ADDR_4K_MASK;
341                 pfn &= (ADDR_4K_MASK >> 12);
342         }
343
344         e->val64 |= (pfn << 12);
345 }
346
347 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
348 {
349         /* Entry doesn't have PSE bit. */
350         if (get_pse_type(e->type) == GTT_TYPE_INVALID)
351                 return false;
352
353         e->type = get_entry_type(e->type);
354         if (!(e->val64 & (1 << 7)))
355                 return false;
356
357         e->type = get_pse_type(e->type);
358         return true;
359 }
360
361 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
362 {
363         /*
364          * i915 writes PDP root pointer registers without present bit,
365          * it also works, so we need to treat root pointer entry
366          * specifically.
367          */
368         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
369                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
370                 return (e->val64 != 0);
371         else
372                 return (e->val64 & (1 << 0));
373 }
374
375 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
376 {
377         e->val64 &= ~(1 << 0);
378 }
379
380 /*
381  * Per-platform GMA routines.
382  */
383 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
384 {
385         unsigned long x = (gma >> GTT_PAGE_SHIFT);
386
387         trace_gma_index(__func__, gma, x);
388         return x;
389 }
390
391 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
392 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
393 { \
394         unsigned long x = (exp); \
395         trace_gma_index(__func__, gma, x); \
396         return x; \
397 }
398
399 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
400 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
401 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
402 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
403 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
404
405 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
406         .get_entry = gtt_get_entry64,
407         .set_entry = gtt_set_entry64,
408         .clear_present = gtt_entry_clear_present,
409         .test_present = gen8_gtt_test_present,
410         .test_pse = gen8_gtt_test_pse,
411         .get_pfn = gen8_gtt_get_pfn,
412         .set_pfn = gen8_gtt_set_pfn,
413 };
414
415 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
416         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
417         .gma_to_pte_index = gen8_gma_to_pte_index,
418         .gma_to_pde_index = gen8_gma_to_pde_index,
419         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
420         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
421         .gma_to_pml4_index = gen8_gma_to_pml4_index,
422 };
423
424 static int gtt_entry_p2m(struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *p,
425                 struct intel_gvt_gtt_entry *m)
426 {
427         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
428         unsigned long gfn, mfn;
429
430         *m = *p;
431
432         if (!ops->test_present(p))
433                 return 0;
434
435         gfn = ops->get_pfn(p);
436
437         mfn = intel_gvt_hypervisor_gfn_to_mfn(vgpu, gfn);
438         if (mfn == INTEL_GVT_INVALID_ADDR) {
439                 gvt_vgpu_err("fail to translate gfn: 0x%lx\n", gfn);
440                 return -ENXIO;
441         }
442
443         ops->set_pfn(m, mfn);
444         return 0;
445 }
446
447 /*
448  * MM helpers.
449  */
450 int intel_vgpu_mm_get_entry(struct intel_vgpu_mm *mm,
451                 void *page_table, struct intel_gvt_gtt_entry *e,
452                 unsigned long index)
453 {
454         struct intel_gvt *gvt = mm->vgpu->gvt;
455         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
456         int ret;
457
458         e->type = mm->page_table_entry_type;
459
460         ret = ops->get_entry(page_table, e, index, false, 0, mm->vgpu);
461         if (ret)
462                 return ret;
463
464         ops->test_pse(e);
465         return 0;
466 }
467
468 int intel_vgpu_mm_set_entry(struct intel_vgpu_mm *mm,
469                 void *page_table, struct intel_gvt_gtt_entry *e,
470                 unsigned long index)
471 {
472         struct intel_gvt *gvt = mm->vgpu->gvt;
473         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
474
475         return ops->set_entry(page_table, e, index, false, 0, mm->vgpu);
476 }
477
478 /*
479  * PPGTT shadow page table helpers.
480  */
481 static inline int ppgtt_spt_get_entry(
482                 struct intel_vgpu_ppgtt_spt *spt,
483                 void *page_table, int type,
484                 struct intel_gvt_gtt_entry *e, unsigned long index,
485                 bool guest)
486 {
487         struct intel_gvt *gvt = spt->vgpu->gvt;
488         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
489         int ret;
490
491         e->type = get_entry_type(type);
492
493         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
494                 return -EINVAL;
495
496         ret = ops->get_entry(page_table, e, index, guest,
497                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
498                         spt->vgpu);
499         if (ret)
500                 return ret;
501
502         ops->test_pse(e);
503         return 0;
504 }
505
506 static inline int ppgtt_spt_set_entry(
507                 struct intel_vgpu_ppgtt_spt *spt,
508                 void *page_table, int type,
509                 struct intel_gvt_gtt_entry *e, unsigned long index,
510                 bool guest)
511 {
512         struct intel_gvt *gvt = spt->vgpu->gvt;
513         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
514
515         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
516                 return -EINVAL;
517
518         return ops->set_entry(page_table, e, index, guest,
519                         spt->guest_page.gfn << GTT_PAGE_SHIFT,
520                         spt->vgpu);
521 }
522
523 #define ppgtt_get_guest_entry(spt, e, index) \
524         ppgtt_spt_get_entry(spt, NULL, \
525                 spt->guest_page_type, e, index, true)
526
527 #define ppgtt_set_guest_entry(spt, e, index) \
528         ppgtt_spt_set_entry(spt, NULL, \
529                 spt->guest_page_type, e, index, true)
530
531 #define ppgtt_get_shadow_entry(spt, e, index) \
532         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
533                 spt->shadow_page.type, e, index, false)
534
535 #define ppgtt_set_shadow_entry(spt, e, index) \
536         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
537                 spt->shadow_page.type, e, index, false)
538
539 /**
540  * intel_vgpu_init_guest_page - init a guest page data structure
541  * @vgpu: a vGPU
542  * @p: a guest page data structure
543  * @gfn: guest memory page frame number
544  * @handler: function will be called when target guest memory page has
545  * been modified.
546  *
547  * This function is called when user wants to track a guest memory page.
548  *
549  * Returns:
550  * Zero on success, negative error code if failed.
551  */
552 int intel_vgpu_init_guest_page(struct intel_vgpu *vgpu,
553                 struct intel_vgpu_guest_page *p,
554                 unsigned long gfn,
555                 int (*handler)(void *, u64, void *, int),
556                 void *data)
557 {
558         INIT_HLIST_NODE(&p->node);
559
560         p->writeprotection = false;
561         p->gfn = gfn;
562         p->handler = handler;
563         p->data = data;
564         p->oos_page = NULL;
565         p->write_cnt = 0;
566
567         hash_add(vgpu->gtt.guest_page_hash_table, &p->node, p->gfn);
568         return 0;
569 }
570
571 static int detach_oos_page(struct intel_vgpu *vgpu,
572                 struct intel_vgpu_oos_page *oos_page);
573
574 /**
575  * intel_vgpu_clean_guest_page - release the resource owned by guest page data
576  * structure
577  * @vgpu: a vGPU
578  * @p: a tracked guest page
579  *
580  * This function is called when user tries to stop tracking a guest memory
581  * page.
582  */
583 void intel_vgpu_clean_guest_page(struct intel_vgpu *vgpu,
584                 struct intel_vgpu_guest_page *p)
585 {
586         if (!hlist_unhashed(&p->node))
587                 hash_del(&p->node);
588
589         if (p->oos_page)
590                 detach_oos_page(vgpu, p->oos_page);
591
592         if (p->writeprotection)
593                 intel_gvt_hypervisor_unset_wp_page(vgpu, p);
594 }
595
596 /**
597  * intel_vgpu_find_guest_page - find a guest page data structure by GFN.
598  * @vgpu: a vGPU
599  * @gfn: guest memory page frame number
600  *
601  * This function is called when emulation logic wants to know if a trapped GFN
602  * is a tracked guest page.
603  *
604  * Returns:
605  * Pointer to guest page data structure, NULL if failed.
606  */
607 struct intel_vgpu_guest_page *intel_vgpu_find_guest_page(
608                 struct intel_vgpu *vgpu, unsigned long gfn)
609 {
610         struct intel_vgpu_guest_page *p;
611
612         hash_for_each_possible(vgpu->gtt.guest_page_hash_table,
613                 p, node, gfn) {
614                 if (p->gfn == gfn)
615                         return p;
616         }
617         return NULL;
618 }
619
620 static inline int init_shadow_page(struct intel_vgpu *vgpu,
621                 struct intel_vgpu_shadow_page *p, int type)
622 {
623         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
624         dma_addr_t daddr;
625
626         daddr = dma_map_page(kdev, p->page, 0, 4096, PCI_DMA_BIDIRECTIONAL);
627         if (dma_mapping_error(kdev, daddr)) {
628                 gvt_vgpu_err("fail to map dma addr\n");
629                 return -EINVAL;
630         }
631
632         p->vaddr = page_address(p->page);
633         p->type = type;
634
635         INIT_HLIST_NODE(&p->node);
636
637         p->mfn = daddr >> GTT_PAGE_SHIFT;
638         hash_add(vgpu->gtt.shadow_page_hash_table, &p->node, p->mfn);
639         return 0;
640 }
641
642 static inline void clean_shadow_page(struct intel_vgpu *vgpu,
643                 struct intel_vgpu_shadow_page *p)
644 {
645         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
646
647         dma_unmap_page(kdev, p->mfn << GTT_PAGE_SHIFT, 4096,
648                         PCI_DMA_BIDIRECTIONAL);
649
650         if (!hlist_unhashed(&p->node))
651                 hash_del(&p->node);
652 }
653
654 static inline struct intel_vgpu_shadow_page *find_shadow_page(
655                 struct intel_vgpu *vgpu, unsigned long mfn)
656 {
657         struct intel_vgpu_shadow_page *p;
658
659         hash_for_each_possible(vgpu->gtt.shadow_page_hash_table,
660                 p, node, mfn) {
661                 if (p->mfn == mfn)
662                         return p;
663         }
664         return NULL;
665 }
666
667 #define guest_page_to_ppgtt_spt(ptr) \
668         container_of(ptr, struct intel_vgpu_ppgtt_spt, guest_page)
669
670 #define shadow_page_to_ppgtt_spt(ptr) \
671         container_of(ptr, struct intel_vgpu_ppgtt_spt, shadow_page)
672
673 static void *alloc_spt(gfp_t gfp_mask)
674 {
675         struct intel_vgpu_ppgtt_spt *spt;
676
677         spt = kzalloc(sizeof(*spt), gfp_mask);
678         if (!spt)
679                 return NULL;
680
681         spt->shadow_page.page = alloc_page(gfp_mask);
682         if (!spt->shadow_page.page) {
683                 kfree(spt);
684                 return NULL;
685         }
686         return spt;
687 }
688
689 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
690 {
691         __free_page(spt->shadow_page.page);
692         kfree(spt);
693 }
694
695 static void ppgtt_free_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
696 {
697         trace_spt_free(spt->vgpu->id, spt, spt->shadow_page.type);
698
699         clean_shadow_page(spt->vgpu, &spt->shadow_page);
700         intel_vgpu_clean_guest_page(spt->vgpu, &spt->guest_page);
701         list_del_init(&spt->post_shadow_list);
702
703         free_spt(spt);
704 }
705
706 static void ppgtt_free_all_shadow_page(struct intel_vgpu *vgpu)
707 {
708         struct hlist_node *n;
709         struct intel_vgpu_shadow_page *sp;
710         int i;
711
712         hash_for_each_safe(vgpu->gtt.shadow_page_hash_table, i, n, sp, node)
713                 ppgtt_free_shadow_page(shadow_page_to_ppgtt_spt(sp));
714 }
715
716 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
717                 u64 pa, void *p_data, int bytes);
718
719 static int ppgtt_write_protection_handler(void *gp, u64 pa,
720                 void *p_data, int bytes)
721 {
722         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
723         int ret;
724
725         if (bytes != 4 && bytes != 8)
726                 return -EINVAL;
727
728         if (!gpt->writeprotection)
729                 return -EINVAL;
730
731         ret = ppgtt_handle_guest_write_page_table_bytes(gp,
732                 pa, p_data, bytes);
733         if (ret)
734                 return ret;
735         return ret;
736 }
737
738 static int reclaim_one_mm(struct intel_gvt *gvt);
739
740 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_shadow_page(
741                 struct intel_vgpu *vgpu, int type, unsigned long gfn)
742 {
743         struct intel_vgpu_ppgtt_spt *spt = NULL;
744         int ret;
745
746 retry:
747         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
748         if (!spt) {
749                 if (reclaim_one_mm(vgpu->gvt))
750                         goto retry;
751
752                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
753                 return ERR_PTR(-ENOMEM);
754         }
755
756         spt->vgpu = vgpu;
757         spt->guest_page_type = type;
758         atomic_set(&spt->refcount, 1);
759         INIT_LIST_HEAD(&spt->post_shadow_list);
760
761         /*
762          * TODO: guest page type may be different with shadow page type,
763          *       when we support PSE page in future.
764          */
765         ret = init_shadow_page(vgpu, &spt->shadow_page, type);
766         if (ret) {
767                 gvt_vgpu_err("fail to initialize shadow page for spt\n");
768                 goto err;
769         }
770
771         ret = intel_vgpu_init_guest_page(vgpu, &spt->guest_page,
772                         gfn, ppgtt_write_protection_handler, NULL);
773         if (ret) {
774                 gvt_vgpu_err("fail to initialize guest page for spt\n");
775                 goto err;
776         }
777
778         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
779         return spt;
780 err:
781         ppgtt_free_shadow_page(spt);
782         return ERR_PTR(ret);
783 }
784
785 static struct intel_vgpu_ppgtt_spt *ppgtt_find_shadow_page(
786                 struct intel_vgpu *vgpu, unsigned long mfn)
787 {
788         struct intel_vgpu_shadow_page *p = find_shadow_page(vgpu, mfn);
789
790         if (p)
791                 return shadow_page_to_ppgtt_spt(p);
792
793         gvt_vgpu_err("fail to find ppgtt shadow page: 0x%lx\n", mfn);
794         return NULL;
795 }
796
797 #define pt_entry_size_shift(spt) \
798         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
799
800 #define pt_entries(spt) \
801         (GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
802
803 #define for_each_present_guest_entry(spt, e, i) \
804         for (i = 0; i < pt_entries(spt); i++) \
805                 if (!ppgtt_get_guest_entry(spt, e, i) && \
806                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
807
808 #define for_each_present_shadow_entry(spt, e, i) \
809         for (i = 0; i < pt_entries(spt); i++) \
810                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
811                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
812
813 static void ppgtt_get_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
814 {
815         int v = atomic_read(&spt->refcount);
816
817         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
818
819         atomic_inc(&spt->refcount);
820 }
821
822 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
823
824 static int ppgtt_invalidate_shadow_page_by_shadow_entry(struct intel_vgpu *vgpu,
825                 struct intel_gvt_gtt_entry *e)
826 {
827         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
828         struct intel_vgpu_ppgtt_spt *s;
829         intel_gvt_gtt_type_t cur_pt_type;
830
831         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(e->type))))
832                 return -EINVAL;
833
834         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
835                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
836                 cur_pt_type = get_next_pt_type(e->type) + 1;
837                 if (ops->get_pfn(e) ==
838                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
839                         return 0;
840         }
841         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
842         if (!s) {
843                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
844                                 ops->get_pfn(e));
845                 return -ENXIO;
846         }
847         return ppgtt_invalidate_shadow_page(s);
848 }
849
850 static int ppgtt_invalidate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
851 {
852         struct intel_vgpu *vgpu = spt->vgpu;
853         struct intel_gvt_gtt_entry e;
854         unsigned long index;
855         int ret;
856         int v = atomic_read(&spt->refcount);
857
858         trace_spt_change(spt->vgpu->id, "die", spt,
859                         spt->guest_page.gfn, spt->shadow_page.type);
860
861         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
862
863         if (atomic_dec_return(&spt->refcount) > 0)
864                 return 0;
865
866         if (gtt_type_is_pte_pt(spt->shadow_page.type))
867                 goto release;
868
869         for_each_present_shadow_entry(spt, &e, index) {
870                 if (!gtt_type_is_pt(get_next_pt_type(e.type))) {
871                         gvt_vgpu_err("GVT doesn't support pse bit for now\n");
872                         return -EINVAL;
873                 }
874                 ret = ppgtt_invalidate_shadow_page_by_shadow_entry(
875                                 spt->vgpu, &e);
876                 if (ret)
877                         goto fail;
878         }
879 release:
880         trace_spt_change(spt->vgpu->id, "release", spt,
881                         spt->guest_page.gfn, spt->shadow_page.type);
882         ppgtt_free_shadow_page(spt);
883         return 0;
884 fail:
885         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
886                         spt, e.val64, e.type);
887         return ret;
888 }
889
890 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt);
891
892 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_shadow_page_by_guest_entry(
893                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
894 {
895         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
896         struct intel_vgpu_ppgtt_spt *s = NULL;
897         struct intel_vgpu_guest_page *g;
898         int ret;
899
900         if (WARN_ON(!gtt_type_is_pt(get_next_pt_type(we->type)))) {
901                 ret = -EINVAL;
902                 goto fail;
903         }
904
905         g = intel_vgpu_find_guest_page(vgpu, ops->get_pfn(we));
906         if (g) {
907                 s = guest_page_to_ppgtt_spt(g);
908                 ppgtt_get_shadow_page(s);
909         } else {
910                 int type = get_next_pt_type(we->type);
911
912                 s = ppgtt_alloc_shadow_page(vgpu, type, ops->get_pfn(we));
913                 if (IS_ERR(s)) {
914                         ret = PTR_ERR(s);
915                         goto fail;
916                 }
917
918                 ret = intel_gvt_hypervisor_set_wp_page(vgpu, &s->guest_page);
919                 if (ret)
920                         goto fail;
921
922                 ret = ppgtt_populate_shadow_page(s);
923                 if (ret)
924                         goto fail;
925
926                 trace_spt_change(vgpu->id, "new", s, s->guest_page.gfn,
927                         s->shadow_page.type);
928         }
929         return s;
930 fail:
931         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
932                         s, we->val64, we->type);
933         return ERR_PTR(ret);
934 }
935
936 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
937                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
938 {
939         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
940
941         se->type = ge->type;
942         se->val64 = ge->val64;
943
944         ops->set_pfn(se, s->shadow_page.mfn);
945 }
946
947 static int ppgtt_populate_shadow_page(struct intel_vgpu_ppgtt_spt *spt)
948 {
949         struct intel_vgpu *vgpu = spt->vgpu;
950         struct intel_vgpu_ppgtt_spt *s;
951         struct intel_gvt_gtt_entry se, ge;
952         unsigned long i;
953         int ret;
954
955         trace_spt_change(spt->vgpu->id, "born", spt,
956                         spt->guest_page.gfn, spt->shadow_page.type);
957
958         if (gtt_type_is_pte_pt(spt->shadow_page.type)) {
959                 for_each_present_guest_entry(spt, &ge, i) {
960                         ret = gtt_entry_p2m(vgpu, &ge, &se);
961                         if (ret)
962                                 goto fail;
963                         ppgtt_set_shadow_entry(spt, &se, i);
964                 }
965                 return 0;
966         }
967
968         for_each_present_guest_entry(spt, &ge, i) {
969                 if (!gtt_type_is_pt(get_next_pt_type(ge.type))) {
970                         gvt_vgpu_err("GVT doesn't support pse bit now\n");
971                         ret = -EINVAL;
972                         goto fail;
973                 }
974
975                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
976                 if (IS_ERR(s)) {
977                         ret = PTR_ERR(s);
978                         goto fail;
979                 }
980                 ppgtt_get_shadow_entry(spt, &se, i);
981                 ppgtt_generate_shadow_entry(&se, s, &ge);
982                 ppgtt_set_shadow_entry(spt, &se, i);
983         }
984         return 0;
985 fail:
986         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
987                         spt, ge.val64, ge.type);
988         return ret;
989 }
990
991 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_guest_page *gpt,
992                 struct intel_gvt_gtt_entry *se, unsigned long index)
993 {
994         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
995         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
996         struct intel_vgpu *vgpu = spt->vgpu;
997         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
998         int ret;
999
1000         trace_gpt_change(spt->vgpu->id, "remove", spt, sp->type, se->val64,
1001                          index);
1002
1003         if (!ops->test_present(se))
1004                 return 0;
1005
1006         if (ops->get_pfn(se) == vgpu->gtt.scratch_pt[sp->type].page_mfn)
1007                 return 0;
1008
1009         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1010                 struct intel_vgpu_ppgtt_spt *s =
1011                         ppgtt_find_shadow_page(vgpu, ops->get_pfn(se));
1012                 if (!s) {
1013                         gvt_vgpu_err("fail to find guest page\n");
1014                         ret = -ENXIO;
1015                         goto fail;
1016                 }
1017                 ret = ppgtt_invalidate_shadow_page(s);
1018                 if (ret)
1019                         goto fail;
1020         }
1021         return 0;
1022 fail:
1023         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1024                         spt, se->val64, se->type);
1025         return ret;
1026 }
1027
1028 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_guest_page *gpt,
1029                 struct intel_gvt_gtt_entry *we, unsigned long index)
1030 {
1031         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1032         struct intel_vgpu_shadow_page *sp = &spt->shadow_page;
1033         struct intel_vgpu *vgpu = spt->vgpu;
1034         struct intel_gvt_gtt_entry m;
1035         struct intel_vgpu_ppgtt_spt *s;
1036         int ret;
1037
1038         trace_gpt_change(spt->vgpu->id, "add", spt, sp->type,
1039                 we->val64, index);
1040
1041         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1042                 s = ppgtt_populate_shadow_page_by_guest_entry(vgpu, we);
1043                 if (IS_ERR(s)) {
1044                         ret = PTR_ERR(s);
1045                         goto fail;
1046                 }
1047                 ppgtt_get_shadow_entry(spt, &m, index);
1048                 ppgtt_generate_shadow_entry(&m, s, we);
1049                 ppgtt_set_shadow_entry(spt, &m, index);
1050         } else {
1051                 ret = gtt_entry_p2m(vgpu, we, &m);
1052                 if (ret)
1053                         goto fail;
1054                 ppgtt_set_shadow_entry(spt, &m, index);
1055         }
1056         return 0;
1057 fail:
1058         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1059                 spt, we->val64, we->type);
1060         return ret;
1061 }
1062
1063 static int sync_oos_page(struct intel_vgpu *vgpu,
1064                 struct intel_vgpu_oos_page *oos_page)
1065 {
1066         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1067         struct intel_gvt *gvt = vgpu->gvt;
1068         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1069         struct intel_vgpu_ppgtt_spt *spt =
1070                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1071         struct intel_gvt_gtt_entry old, new, m;
1072         int index;
1073         int ret;
1074
1075         trace_oos_change(vgpu->id, "sync", oos_page->id,
1076                         oos_page->guest_page, spt->guest_page_type);
1077
1078         old.type = new.type = get_entry_type(spt->guest_page_type);
1079         old.val64 = new.val64 = 0;
1080
1081         for (index = 0; index < (GTT_PAGE_SIZE >> info->gtt_entry_size_shift);
1082                 index++) {
1083                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1084                 ops->get_entry(NULL, &new, index, true,
1085                         oos_page->guest_page->gfn << PAGE_SHIFT, vgpu);
1086
1087                 if (old.val64 == new.val64
1088                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1089                         continue;
1090
1091                 trace_oos_sync(vgpu->id, oos_page->id,
1092                                 oos_page->guest_page, spt->guest_page_type,
1093                                 new.val64, index);
1094
1095                 ret = gtt_entry_p2m(vgpu, &new, &m);
1096                 if (ret)
1097                         return ret;
1098
1099                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1100                 ppgtt_set_shadow_entry(spt, &m, index);
1101         }
1102
1103         oos_page->guest_page->write_cnt = 0;
1104         list_del_init(&spt->post_shadow_list);
1105         return 0;
1106 }
1107
1108 static int detach_oos_page(struct intel_vgpu *vgpu,
1109                 struct intel_vgpu_oos_page *oos_page)
1110 {
1111         struct intel_gvt *gvt = vgpu->gvt;
1112         struct intel_vgpu_ppgtt_spt *spt =
1113                 guest_page_to_ppgtt_spt(oos_page->guest_page);
1114
1115         trace_oos_change(vgpu->id, "detach", oos_page->id,
1116                         oos_page->guest_page, spt->guest_page_type);
1117
1118         oos_page->guest_page->write_cnt = 0;
1119         oos_page->guest_page->oos_page = NULL;
1120         oos_page->guest_page = NULL;
1121
1122         list_del_init(&oos_page->vm_list);
1123         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1124
1125         return 0;
1126 }
1127
1128 static int attach_oos_page(struct intel_vgpu *vgpu,
1129                 struct intel_vgpu_oos_page *oos_page,
1130                 struct intel_vgpu_guest_page *gpt)
1131 {
1132         struct intel_gvt *gvt = vgpu->gvt;
1133         int ret;
1134
1135         ret = intel_gvt_hypervisor_read_gpa(vgpu, gpt->gfn << GTT_PAGE_SHIFT,
1136                 oos_page->mem, GTT_PAGE_SIZE);
1137         if (ret)
1138                 return ret;
1139
1140         oos_page->guest_page = gpt;
1141         gpt->oos_page = oos_page;
1142
1143         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1144
1145         trace_oos_change(vgpu->id, "attach", gpt->oos_page->id,
1146                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1147         return 0;
1148 }
1149
1150 static int ppgtt_set_guest_page_sync(struct intel_vgpu *vgpu,
1151                 struct intel_vgpu_guest_page *gpt)
1152 {
1153         int ret;
1154
1155         ret = intel_gvt_hypervisor_set_wp_page(vgpu, gpt);
1156         if (ret)
1157                 return ret;
1158
1159         trace_oos_change(vgpu->id, "set page sync", gpt->oos_page->id,
1160                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1161
1162         list_del_init(&gpt->oos_page->vm_list);
1163         return sync_oos_page(vgpu, gpt->oos_page);
1164 }
1165
1166 static int ppgtt_allocate_oos_page(struct intel_vgpu *vgpu,
1167                 struct intel_vgpu_guest_page *gpt)
1168 {
1169         struct intel_gvt *gvt = vgpu->gvt;
1170         struct intel_gvt_gtt *gtt = &gvt->gtt;
1171         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1172         int ret;
1173
1174         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1175
1176         if (list_empty(&gtt->oos_page_free_list_head)) {
1177                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1178                         struct intel_vgpu_oos_page, list);
1179                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1180                 if (ret)
1181                         return ret;
1182                 ret = detach_oos_page(vgpu, oos_page);
1183                 if (ret)
1184                         return ret;
1185         } else
1186                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1187                         struct intel_vgpu_oos_page, list);
1188         return attach_oos_page(vgpu, oos_page, gpt);
1189 }
1190
1191 static int ppgtt_set_guest_page_oos(struct intel_vgpu *vgpu,
1192                 struct intel_vgpu_guest_page *gpt)
1193 {
1194         struct intel_vgpu_oos_page *oos_page = gpt->oos_page;
1195
1196         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1197                 return -EINVAL;
1198
1199         trace_oos_change(vgpu->id, "set page out of sync", gpt->oos_page->id,
1200                         gpt, guest_page_to_ppgtt_spt(gpt)->guest_page_type);
1201
1202         list_add_tail(&oos_page->vm_list, &vgpu->gtt.oos_page_list_head);
1203         return intel_gvt_hypervisor_unset_wp_page(vgpu, gpt);
1204 }
1205
1206 /**
1207  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1208  * @vgpu: a vGPU
1209  *
1210  * This function is called before submitting a guest workload to host,
1211  * to sync all the out-of-synced shadow for vGPU
1212  *
1213  * Returns:
1214  * Zero on success, negative error code if failed.
1215  */
1216 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1217 {
1218         struct list_head *pos, *n;
1219         struct intel_vgpu_oos_page *oos_page;
1220         int ret;
1221
1222         if (!enable_out_of_sync)
1223                 return 0;
1224
1225         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1226                 oos_page = container_of(pos,
1227                                 struct intel_vgpu_oos_page, vm_list);
1228                 ret = ppgtt_set_guest_page_sync(vgpu, oos_page->guest_page);
1229                 if (ret)
1230                         return ret;
1231         }
1232         return 0;
1233 }
1234
1235 /*
1236  * The heart of PPGTT shadow page table.
1237  */
1238 static int ppgtt_handle_guest_write_page_table(
1239                 struct intel_vgpu_guest_page *gpt,
1240                 struct intel_gvt_gtt_entry *we, unsigned long index)
1241 {
1242         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1243         struct intel_vgpu *vgpu = spt->vgpu;
1244         int type = spt->shadow_page.type;
1245         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1246         struct intel_gvt_gtt_entry se;
1247
1248         int ret;
1249         int new_present;
1250
1251         new_present = ops->test_present(we);
1252
1253         /*
1254          * Adding the new entry first and then removing the old one, that can
1255          * guarantee the ppgtt table is validated during the window between
1256          * adding and removal.
1257          */
1258         ppgtt_get_shadow_entry(spt, &se, index);
1259
1260         if (new_present) {
1261                 ret = ppgtt_handle_guest_entry_add(gpt, we, index);
1262                 if (ret)
1263                         goto fail;
1264         }
1265
1266         ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1267         if (ret)
1268                 goto fail;
1269
1270         if (!new_present) {
1271                 ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1272                 ppgtt_set_shadow_entry(spt, &se, index);
1273         }
1274
1275         return 0;
1276 fail:
1277         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1278                         spt, we->val64, we->type);
1279         return ret;
1280 }
1281
1282 static inline bool can_do_out_of_sync(struct intel_vgpu_guest_page *gpt)
1283 {
1284         return enable_out_of_sync
1285                 && gtt_type_is_pte_pt(
1286                         guest_page_to_ppgtt_spt(gpt)->guest_page_type)
1287                 && gpt->write_cnt >= 2;
1288 }
1289
1290 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1291                 unsigned long index)
1292 {
1293         set_bit(index, spt->post_shadow_bitmap);
1294         if (!list_empty(&spt->post_shadow_list))
1295                 return;
1296
1297         list_add_tail(&spt->post_shadow_list,
1298                         &spt->vgpu->gtt.post_shadow_list_head);
1299 }
1300
1301 /**
1302  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1303  * @vgpu: a vGPU
1304  *
1305  * This function is called before submitting a guest workload to host,
1306  * to flush all the post shadows for a vGPU.
1307  *
1308  * Returns:
1309  * Zero on success, negative error code if failed.
1310  */
1311 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1312 {
1313         struct list_head *pos, *n;
1314         struct intel_vgpu_ppgtt_spt *spt;
1315         struct intel_gvt_gtt_entry ge;
1316         unsigned long index;
1317         int ret;
1318
1319         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1320                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1321                                 post_shadow_list);
1322
1323                 for_each_set_bit(index, spt->post_shadow_bitmap,
1324                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1325                         ppgtt_get_guest_entry(spt, &ge, index);
1326
1327                         ret = ppgtt_handle_guest_write_page_table(
1328                                         &spt->guest_page, &ge, index);
1329                         if (ret)
1330                                 return ret;
1331                         clear_bit(index, spt->post_shadow_bitmap);
1332                 }
1333                 list_del_init(&spt->post_shadow_list);
1334         }
1335         return 0;
1336 }
1337
1338 static int ppgtt_handle_guest_write_page_table_bytes(void *gp,
1339                 u64 pa, void *p_data, int bytes)
1340 {
1341         struct intel_vgpu_guest_page *gpt = (struct intel_vgpu_guest_page *)gp;
1342         struct intel_vgpu_ppgtt_spt *spt = guest_page_to_ppgtt_spt(gpt);
1343         struct intel_vgpu *vgpu = spt->vgpu;
1344         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1345         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1346         struct intel_gvt_gtt_entry we, se;
1347         unsigned long index;
1348         int ret;
1349
1350         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1351
1352         ppgtt_get_guest_entry(spt, &we, index);
1353
1354         ops->test_pse(&we);
1355
1356         if (bytes == info->gtt_entry_size) {
1357                 ret = ppgtt_handle_guest_write_page_table(gpt, &we, index);
1358                 if (ret)
1359                         return ret;
1360         } else {
1361                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1362                         ppgtt_get_shadow_entry(spt, &se, index);
1363                         ret = ppgtt_handle_guest_entry_removal(gpt, &se, index);
1364                         if (ret)
1365                                 return ret;
1366                 }
1367
1368                 ppgtt_set_post_shadow(spt, index);
1369         }
1370
1371         if (!enable_out_of_sync)
1372                 return 0;
1373
1374         gpt->write_cnt++;
1375
1376         if (gpt->oos_page)
1377                 ops->set_entry(gpt->oos_page->mem, &we, index,
1378                                 false, 0, vgpu);
1379
1380         if (can_do_out_of_sync(gpt)) {
1381                 if (!gpt->oos_page)
1382                         ppgtt_allocate_oos_page(vgpu, gpt);
1383
1384                 ret = ppgtt_set_guest_page_oos(vgpu, gpt);
1385                 if (ret < 0)
1386                         return ret;
1387         }
1388         return 0;
1389 }
1390
1391 /*
1392  * mm page table allocation policy for bdw+
1393  *  - for ggtt, only virtual page table will be allocated.
1394  *  - for ppgtt, dedicated virtual/shadow page table will be allocated.
1395  */
1396 static int gen8_mm_alloc_page_table(struct intel_vgpu_mm *mm)
1397 {
1398         struct intel_vgpu *vgpu = mm->vgpu;
1399         struct intel_gvt *gvt = vgpu->gvt;
1400         const struct intel_gvt_device_info *info = &gvt->device_info;
1401         void *mem;
1402
1403         if (mm->type == INTEL_GVT_MM_PPGTT) {
1404                 mm->page_table_entry_cnt = 4;
1405                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1406                         info->gtt_entry_size;
1407                 mem = kzalloc(mm->has_shadow_page_table ?
1408                         mm->page_table_entry_size * 2
1409                                 : mm->page_table_entry_size, GFP_KERNEL);
1410                 if (!mem)
1411                         return -ENOMEM;
1412                 mm->virtual_page_table = mem;
1413                 if (!mm->has_shadow_page_table)
1414                         return 0;
1415                 mm->shadow_page_table = mem + mm->page_table_entry_size;
1416         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1417                 mm->page_table_entry_cnt =
1418                         (gvt_ggtt_gm_sz(gvt) >> GTT_PAGE_SHIFT);
1419                 mm->page_table_entry_size = mm->page_table_entry_cnt *
1420                         info->gtt_entry_size;
1421                 mem = vzalloc(mm->page_table_entry_size);
1422                 if (!mem)
1423                         return -ENOMEM;
1424                 mm->virtual_page_table = mem;
1425         }
1426         return 0;
1427 }
1428
1429 static void gen8_mm_free_page_table(struct intel_vgpu_mm *mm)
1430 {
1431         if (mm->type == INTEL_GVT_MM_PPGTT) {
1432                 kfree(mm->virtual_page_table);
1433         } else if (mm->type == INTEL_GVT_MM_GGTT) {
1434                 if (mm->virtual_page_table)
1435                         vfree(mm->virtual_page_table);
1436         }
1437         mm->virtual_page_table = mm->shadow_page_table = NULL;
1438 }
1439
1440 static void invalidate_mm(struct intel_vgpu_mm *mm)
1441 {
1442         struct intel_vgpu *vgpu = mm->vgpu;
1443         struct intel_gvt *gvt = vgpu->gvt;
1444         struct intel_gvt_gtt *gtt = &gvt->gtt;
1445         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1446         struct intel_gvt_gtt_entry se;
1447         int i;
1448
1449         if (WARN_ON(!mm->has_shadow_page_table || !mm->shadowed))
1450                 return;
1451
1452         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1453                 ppgtt_get_shadow_root_entry(mm, &se, i);
1454                 if (!ops->test_present(&se))
1455                         continue;
1456                 ppgtt_invalidate_shadow_page_by_shadow_entry(
1457                                 vgpu, &se);
1458                 se.val64 = 0;
1459                 ppgtt_set_shadow_root_entry(mm, &se, i);
1460
1461                 trace_gpt_change(vgpu->id, "destroy root pointer",
1462                                 NULL, se.type, se.val64, i);
1463         }
1464         mm->shadowed = false;
1465 }
1466
1467 /**
1468  * intel_vgpu_destroy_mm - destroy a mm object
1469  * @mm: a kref object
1470  *
1471  * This function is used to destroy a mm object for vGPU
1472  *
1473  */
1474 void intel_vgpu_destroy_mm(struct kref *mm_ref)
1475 {
1476         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1477         struct intel_vgpu *vgpu = mm->vgpu;
1478         struct intel_gvt *gvt = vgpu->gvt;
1479         struct intel_gvt_gtt *gtt = &gvt->gtt;
1480
1481         if (!mm->initialized)
1482                 goto out;
1483
1484         list_del(&mm->list);
1485         list_del(&mm->lru_list);
1486
1487         if (mm->has_shadow_page_table)
1488                 invalidate_mm(mm);
1489
1490         gtt->mm_free_page_table(mm);
1491 out:
1492         kfree(mm);
1493 }
1494
1495 static int shadow_mm(struct intel_vgpu_mm *mm)
1496 {
1497         struct intel_vgpu *vgpu = mm->vgpu;
1498         struct intel_gvt *gvt = vgpu->gvt;
1499         struct intel_gvt_gtt *gtt = &gvt->gtt;
1500         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1501         struct intel_vgpu_ppgtt_spt *spt;
1502         struct intel_gvt_gtt_entry ge, se;
1503         int i;
1504         int ret;
1505
1506         if (WARN_ON(!mm->has_shadow_page_table || mm->shadowed))
1507                 return 0;
1508
1509         mm->shadowed = true;
1510
1511         for (i = 0; i < mm->page_table_entry_cnt; i++) {
1512                 ppgtt_get_guest_root_entry(mm, &ge, i);
1513                 if (!ops->test_present(&ge))
1514                         continue;
1515
1516                 trace_gpt_change(vgpu->id, __func__, NULL,
1517                                 ge.type, ge.val64, i);
1518
1519                 spt = ppgtt_populate_shadow_page_by_guest_entry(vgpu, &ge);
1520                 if (IS_ERR(spt)) {
1521                         gvt_vgpu_err("fail to populate guest root pointer\n");
1522                         ret = PTR_ERR(spt);
1523                         goto fail;
1524                 }
1525                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1526                 ppgtt_set_shadow_root_entry(mm, &se, i);
1527
1528                 trace_gpt_change(vgpu->id, "populate root pointer",
1529                                 NULL, se.type, se.val64, i);
1530         }
1531         return 0;
1532 fail:
1533         invalidate_mm(mm);
1534         return ret;
1535 }
1536
1537 /**
1538  * intel_vgpu_create_mm - create a mm object for a vGPU
1539  * @vgpu: a vGPU
1540  * @mm_type: mm object type, should be PPGTT or GGTT
1541  * @virtual_page_table: page table root pointers. Could be NULL if user wants
1542  *      to populate shadow later.
1543  * @page_table_level: describe the page table level of the mm object
1544  * @pde_base_index: pde root pointer base in GGTT MMIO.
1545  *
1546  * This function is used to create a mm object for a vGPU.
1547  *
1548  * Returns:
1549  * Zero on success, negative error code in pointer if failed.
1550  */
1551 struct intel_vgpu_mm *intel_vgpu_create_mm(struct intel_vgpu *vgpu,
1552                 int mm_type, void *virtual_page_table, int page_table_level,
1553                 u32 pde_base_index)
1554 {
1555         struct intel_gvt *gvt = vgpu->gvt;
1556         struct intel_gvt_gtt *gtt = &gvt->gtt;
1557         struct intel_vgpu_mm *mm;
1558         int ret;
1559
1560         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1561         if (!mm) {
1562                 ret = -ENOMEM;
1563                 goto fail;
1564         }
1565
1566         mm->type = mm_type;
1567
1568         if (page_table_level == 1)
1569                 mm->page_table_entry_type = GTT_TYPE_GGTT_PTE;
1570         else if (page_table_level == 3)
1571                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1572         else if (page_table_level == 4)
1573                 mm->page_table_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1574         else {
1575                 WARN_ON(1);
1576                 ret = -EINVAL;
1577                 goto fail;
1578         }
1579
1580         mm->page_table_level = page_table_level;
1581         mm->pde_base_index = pde_base_index;
1582
1583         mm->vgpu = vgpu;
1584         mm->has_shadow_page_table = !!(mm_type == INTEL_GVT_MM_PPGTT);
1585
1586         kref_init(&mm->ref);
1587         atomic_set(&mm->pincount, 0);
1588         INIT_LIST_HEAD(&mm->list);
1589         INIT_LIST_HEAD(&mm->lru_list);
1590         list_add_tail(&mm->list, &vgpu->gtt.mm_list_head);
1591
1592         ret = gtt->mm_alloc_page_table(mm);
1593         if (ret) {
1594                 gvt_vgpu_err("fail to allocate page table for mm\n");
1595                 goto fail;
1596         }
1597
1598         mm->initialized = true;
1599
1600         if (virtual_page_table)
1601                 memcpy(mm->virtual_page_table, virtual_page_table,
1602                                 mm->page_table_entry_size);
1603
1604         if (mm->has_shadow_page_table) {
1605                 ret = shadow_mm(mm);
1606                 if (ret)
1607                         goto fail;
1608                 list_add_tail(&mm->lru_list, &gvt->gtt.mm_lru_list_head);
1609         }
1610         return mm;
1611 fail:
1612         gvt_vgpu_err("fail to create mm\n");
1613         if (mm)
1614                 intel_gvt_mm_unreference(mm);
1615         return ERR_PTR(ret);
1616 }
1617
1618 /**
1619  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1620  * @mm: a vGPU mm object
1621  *
1622  * This function is called when user doesn't want to use a vGPU mm object
1623  */
1624 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1625 {
1626         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1627                 return;
1628
1629         atomic_dec(&mm->pincount);
1630 }
1631
1632 /**
1633  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1634  * @vgpu: a vGPU
1635  *
1636  * This function is called when user wants to use a vGPU mm object. If this
1637  * mm object hasn't been shadowed yet, the shadow will be populated at this
1638  * time.
1639  *
1640  * Returns:
1641  * Zero on success, negative error code if failed.
1642  */
1643 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1644 {
1645         int ret;
1646
1647         if (WARN_ON(mm->type != INTEL_GVT_MM_PPGTT))
1648                 return 0;
1649
1650         if (!mm->shadowed) {
1651                 ret = shadow_mm(mm);
1652                 if (ret)
1653                         return ret;
1654         }
1655
1656         atomic_inc(&mm->pincount);
1657         list_del_init(&mm->lru_list);
1658         list_add_tail(&mm->lru_list, &mm->vgpu->gvt->gtt.mm_lru_list_head);
1659         return 0;
1660 }
1661
1662 static int reclaim_one_mm(struct intel_gvt *gvt)
1663 {
1664         struct intel_vgpu_mm *mm;
1665         struct list_head *pos, *n;
1666
1667         list_for_each_safe(pos, n, &gvt->gtt.mm_lru_list_head) {
1668                 mm = container_of(pos, struct intel_vgpu_mm, lru_list);
1669
1670                 if (mm->type != INTEL_GVT_MM_PPGTT)
1671                         continue;
1672                 if (atomic_read(&mm->pincount))
1673                         continue;
1674
1675                 list_del_init(&mm->lru_list);
1676                 invalidate_mm(mm);
1677                 return 1;
1678         }
1679         return 0;
1680 }
1681
1682 /*
1683  * GMA translation APIs.
1684  */
1685 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1686                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1687 {
1688         struct intel_vgpu *vgpu = mm->vgpu;
1689         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1690         struct intel_vgpu_ppgtt_spt *s;
1691
1692         if (WARN_ON(!mm->has_shadow_page_table))
1693                 return -EINVAL;
1694
1695         s = ppgtt_find_shadow_page(vgpu, ops->get_pfn(e));
1696         if (!s)
1697                 return -ENXIO;
1698
1699         if (!guest)
1700                 ppgtt_get_shadow_entry(s, e, index);
1701         else
1702                 ppgtt_get_guest_entry(s, e, index);
1703         return 0;
1704 }
1705
1706 /**
1707  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1708  * @mm: mm object. could be a PPGTT or GGTT mm object
1709  * @gma: graphics memory address in this mm object
1710  *
1711  * This function is used to translate a graphics memory address in specific
1712  * graphics memory space to guest physical address.
1713  *
1714  * Returns:
1715  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1716  */
1717 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1718 {
1719         struct intel_vgpu *vgpu = mm->vgpu;
1720         struct intel_gvt *gvt = vgpu->gvt;
1721         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1722         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1723         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1724         unsigned long gma_index[4];
1725         struct intel_gvt_gtt_entry e;
1726         int i, index;
1727         int ret;
1728
1729         if (mm->type != INTEL_GVT_MM_GGTT && mm->type != INTEL_GVT_MM_PPGTT)
1730                 return INTEL_GVT_INVALID_ADDR;
1731
1732         if (mm->type == INTEL_GVT_MM_GGTT) {
1733                 if (!vgpu_gmadr_is_valid(vgpu, gma))
1734                         goto err;
1735
1736                 ret = ggtt_get_guest_entry(mm, &e,
1737                                 gma_ops->gma_to_ggtt_pte_index(gma));
1738                 if (ret)
1739                         goto err;
1740                 gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1741                         + (gma & ~GTT_PAGE_MASK);
1742
1743                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1744                 return gpa;
1745         }
1746
1747         switch (mm->page_table_level) {
1748         case 4:
1749                 ret = ppgtt_get_shadow_root_entry(mm, &e, 0);
1750                 if (ret)
1751                         goto err;
1752                 gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1753                 gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1754                 gma_index[2] = gma_ops->gma_to_pde_index(gma);
1755                 gma_index[3] = gma_ops->gma_to_pte_index(gma);
1756                 index = 4;
1757                 break;
1758         case 3:
1759                 ret = ppgtt_get_shadow_root_entry(mm, &e,
1760                                 gma_ops->gma_to_l3_pdp_index(gma));
1761                 if (ret)
1762                         goto err;
1763                 gma_index[0] = gma_ops->gma_to_pde_index(gma);
1764                 gma_index[1] = gma_ops->gma_to_pte_index(gma);
1765                 index = 2;
1766                 break;
1767         case 2:
1768                 ret = ppgtt_get_shadow_root_entry(mm, &e,
1769                                 gma_ops->gma_to_pde_index(gma));
1770                 if (ret)
1771                         goto err;
1772                 gma_index[0] = gma_ops->gma_to_pte_index(gma);
1773                 index = 1;
1774                 break;
1775         default:
1776                 WARN_ON(1);
1777                 goto err;
1778         }
1779
1780         /* walk into the shadow page table and get gpa from guest entry */
1781         for (i = 0; i < index; i++) {
1782                 ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1783                         (i == index - 1));
1784                 if (ret)
1785                         goto err;
1786
1787                 if (!pte_ops->test_present(&e)) {
1788                         gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1789                         goto err;
1790                 }
1791         }
1792
1793         gpa = (pte_ops->get_pfn(&e) << GTT_PAGE_SHIFT)
1794                 + (gma & ~GTT_PAGE_MASK);
1795
1796         trace_gma_translate(vgpu->id, "ppgtt", 0,
1797                         mm->page_table_level, gma, gpa);
1798         return gpa;
1799 err:
1800         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1801         return INTEL_GVT_INVALID_ADDR;
1802 }
1803
1804 static int emulate_gtt_mmio_read(struct intel_vgpu *vgpu,
1805         unsigned int off, void *p_data, unsigned int bytes)
1806 {
1807         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1808         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1809         unsigned long index = off >> info->gtt_entry_size_shift;
1810         struct intel_gvt_gtt_entry e;
1811
1812         if (bytes != 4 && bytes != 8)
1813                 return -EINVAL;
1814
1815         ggtt_get_guest_entry(ggtt_mm, &e, index);
1816         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1817                         bytes);
1818         return 0;
1819 }
1820
1821 /**
1822  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1823  * @vgpu: a vGPU
1824  * @off: register offset
1825  * @p_data: data will be returned to guest
1826  * @bytes: data length
1827  *
1828  * This function is used to emulate the GTT MMIO register read
1829  *
1830  * Returns:
1831  * Zero on success, error code if failed.
1832  */
1833 int intel_vgpu_emulate_gtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1834         void *p_data, unsigned int bytes)
1835 {
1836         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1837         int ret;
1838
1839         if (bytes != 4 && bytes != 8)
1840                 return -EINVAL;
1841
1842         off -= info->gtt_start_offset;
1843         ret = emulate_gtt_mmio_read(vgpu, off, p_data, bytes);
1844         return ret;
1845 }
1846
1847 static int emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1848         void *p_data, unsigned int bytes)
1849 {
1850         struct intel_gvt *gvt = vgpu->gvt;
1851         const struct intel_gvt_device_info *info = &gvt->device_info;
1852         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1853         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1854         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1855         unsigned long gma;
1856         struct intel_gvt_gtt_entry e, m;
1857         int ret;
1858
1859         if (bytes != 4 && bytes != 8)
1860                 return -EINVAL;
1861
1862         gma = g_gtt_index << GTT_PAGE_SHIFT;
1863
1864         /* the VM may configure the whole GM space when ballooning is used */
1865         if (!vgpu_gmadr_is_valid(vgpu, gma))
1866                 return 0;
1867
1868         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1869
1870         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1871                         bytes);
1872
1873         if (ops->test_present(&e)) {
1874                 ret = gtt_entry_p2m(vgpu, &e, &m);
1875                 if (ret) {
1876                         gvt_vgpu_err("fail to translate guest gtt entry\n");
1877                         /* guest driver may read/write the entry when partial
1878                          * update the entry in this situation p2m will fail
1879                          * settting the shadow entry to point to a scratch page
1880                          */
1881                         ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1882                 }
1883         } else {
1884                 m = e;
1885                 ops->set_pfn(&m, gvt->gtt.scratch_ggtt_mfn);
1886         }
1887
1888         ggtt_set_shadow_entry(ggtt_mm, &m, g_gtt_index);
1889         gtt_invalidate(gvt->dev_priv);
1890         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1891         return 0;
1892 }
1893
1894 /*
1895  * intel_vgpu_emulate_gtt_mmio_write - emulate GTT MMIO register write
1896  * @vgpu: a vGPU
1897  * @off: register offset
1898  * @p_data: data from guest write
1899  * @bytes: data length
1900  *
1901  * This function is used to emulate the GTT MMIO register write
1902  *
1903  * Returns:
1904  * Zero on success, error code if failed.
1905  */
1906 int intel_vgpu_emulate_gtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1907         void *p_data, unsigned int bytes)
1908 {
1909         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1910         int ret;
1911
1912         if (bytes != 4 && bytes != 8)
1913                 return -EINVAL;
1914
1915         off -= info->gtt_start_offset;
1916         ret = emulate_gtt_mmio_write(vgpu, off, p_data, bytes);
1917         return ret;
1918 }
1919
1920 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1921                 intel_gvt_gtt_type_t type)
1922 {
1923         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1924         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1925         int page_entry_num = GTT_PAGE_SIZE >>
1926                                 vgpu->gvt->device_info.gtt_entry_size_shift;
1927         void *scratch_pt;
1928         int i;
1929         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1930         dma_addr_t daddr;
1931
1932         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1933                 return -EINVAL;
1934
1935         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1936         if (!scratch_pt) {
1937                 gvt_vgpu_err("fail to allocate scratch page\n");
1938                 return -ENOMEM;
1939         }
1940
1941         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1942                         4096, PCI_DMA_BIDIRECTIONAL);
1943         if (dma_mapping_error(dev, daddr)) {
1944                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
1945                 __free_page(virt_to_page(scratch_pt));
1946                 return -ENOMEM;
1947         }
1948         gtt->scratch_pt[type].page_mfn =
1949                 (unsigned long)(daddr >> GTT_PAGE_SHIFT);
1950         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1951         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1952                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1953
1954         /* Build the tree by full filled the scratch pt with the entries which
1955          * point to the next level scratch pt or scratch page. The
1956          * scratch_pt[type] indicate the scratch pt/scratch page used by the
1957          * 'type' pt.
1958          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1959          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1960          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1961          */
1962         if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1963                 struct intel_gvt_gtt_entry se;
1964
1965                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1966                 se.type = get_entry_type(type - 1);
1967                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1968
1969                 /* The entry parameters like present/writeable/cache type
1970                  * set to the same as i915's scratch page tree.
1971                  */
1972                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1973                 if (type == GTT_TYPE_PPGTT_PDE_PT)
1974                         se.val64 |= PPAT_CACHED;
1975
1976                 for (i = 0; i < page_entry_num; i++)
1977                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1978         }
1979
1980         return 0;
1981 }
1982
1983 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1984 {
1985         int i;
1986         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1987         dma_addr_t daddr;
1988
1989         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1990                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
1991                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1992                                         GTT_PAGE_SHIFT);
1993                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1994                         __free_page(vgpu->gtt.scratch_pt[i].page);
1995                         vgpu->gtt.scratch_pt[i].page = NULL;
1996                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
1997                 }
1998         }
1999
2000         return 0;
2001 }
2002
2003 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2004 {
2005         int i, ret;
2006
2007         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2008                 ret = alloc_scratch_pages(vgpu, i);
2009                 if (ret)
2010                         goto err;
2011         }
2012
2013         return 0;
2014
2015 err:
2016         release_scratch_page_tree(vgpu);
2017         return ret;
2018 }
2019
2020 /**
2021  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2022  * @vgpu: a vGPU
2023  *
2024  * This function is used to initialize per-vGPU graphics memory virtualization
2025  * components.
2026  *
2027  * Returns:
2028  * Zero on success, error code if failed.
2029  */
2030 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2031 {
2032         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2033         struct intel_vgpu_mm *ggtt_mm;
2034
2035         hash_init(gtt->guest_page_hash_table);
2036         hash_init(gtt->shadow_page_hash_table);
2037
2038         INIT_LIST_HEAD(&gtt->mm_list_head);
2039         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2040         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2041
2042         intel_vgpu_reset_ggtt(vgpu);
2043
2044         ggtt_mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_GGTT,
2045                         NULL, 1, 0);
2046         if (IS_ERR(ggtt_mm)) {
2047                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2048                 return PTR_ERR(ggtt_mm);
2049         }
2050
2051         gtt->ggtt_mm = ggtt_mm;
2052
2053         return create_scratch_page_tree(vgpu);
2054 }
2055
2056 static void intel_vgpu_free_mm(struct intel_vgpu *vgpu, int type)
2057 {
2058         struct list_head *pos, *n;
2059         struct intel_vgpu_mm *mm;
2060
2061         list_for_each_safe(pos, n, &vgpu->gtt.mm_list_head) {
2062                 mm = container_of(pos, struct intel_vgpu_mm, list);
2063                 if (mm->type == type) {
2064                         vgpu->gvt->gtt.mm_free_page_table(mm);
2065                         list_del(&mm->list);
2066                         list_del(&mm->lru_list);
2067                         kfree(mm);
2068                 }
2069         }
2070 }
2071
2072 /**
2073  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2074  * @vgpu: a vGPU
2075  *
2076  * This function is used to clean up per-vGPU graphics memory virtualization
2077  * components.
2078  *
2079  * Returns:
2080  * Zero on success, error code if failed.
2081  */
2082 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2083 {
2084         ppgtt_free_all_shadow_page(vgpu);
2085         release_scratch_page_tree(vgpu);
2086
2087         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2088         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_GGTT);
2089 }
2090
2091 static void clean_spt_oos(struct intel_gvt *gvt)
2092 {
2093         struct intel_gvt_gtt *gtt = &gvt->gtt;
2094         struct list_head *pos, *n;
2095         struct intel_vgpu_oos_page *oos_page;
2096
2097         WARN(!list_empty(&gtt->oos_page_use_list_head),
2098                 "someone is still using oos page\n");
2099
2100         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2101                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2102                 list_del(&oos_page->list);
2103                 kfree(oos_page);
2104         }
2105 }
2106
2107 static int setup_spt_oos(struct intel_gvt *gvt)
2108 {
2109         struct intel_gvt_gtt *gtt = &gvt->gtt;
2110         struct intel_vgpu_oos_page *oos_page;
2111         int i;
2112         int ret;
2113
2114         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2115         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2116
2117         for (i = 0; i < preallocated_oos_pages; i++) {
2118                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2119                 if (!oos_page) {
2120                         ret = -ENOMEM;
2121                         goto fail;
2122                 }
2123
2124                 INIT_LIST_HEAD(&oos_page->list);
2125                 INIT_LIST_HEAD(&oos_page->vm_list);
2126                 oos_page->id = i;
2127                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2128         }
2129
2130         gvt_dbg_mm("%d oos pages preallocated\n", i);
2131
2132         return 0;
2133 fail:
2134         clean_spt_oos(gvt);
2135         return ret;
2136 }
2137
2138 /**
2139  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2140  * @vgpu: a vGPU
2141  * @page_table_level: PPGTT page table level
2142  * @root_entry: PPGTT page table root pointers
2143  *
2144  * This function is used to find a PPGTT mm object from mm object pool
2145  *
2146  * Returns:
2147  * pointer to mm object on success, NULL if failed.
2148  */
2149 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2150                 int page_table_level, void *root_entry)
2151 {
2152         struct list_head *pos;
2153         struct intel_vgpu_mm *mm;
2154         u64 *src, *dst;
2155
2156         list_for_each(pos, &vgpu->gtt.mm_list_head) {
2157                 mm = container_of(pos, struct intel_vgpu_mm, list);
2158                 if (mm->type != INTEL_GVT_MM_PPGTT)
2159                         continue;
2160
2161                 if (mm->page_table_level != page_table_level)
2162                         continue;
2163
2164                 src = root_entry;
2165                 dst = mm->virtual_page_table;
2166
2167                 if (page_table_level == 3) {
2168                         if (src[0] == dst[0]
2169                                         && src[1] == dst[1]
2170                                         && src[2] == dst[2]
2171                                         && src[3] == dst[3])
2172                                 return mm;
2173                 } else {
2174                         if (src[0] == dst[0])
2175                                 return mm;
2176                 }
2177         }
2178         return NULL;
2179 }
2180
2181 /**
2182  * intel_vgpu_g2v_create_ppgtt_mm - create a PPGTT mm object from
2183  * g2v notification
2184  * @vgpu: a vGPU
2185  * @page_table_level: PPGTT page table level
2186  *
2187  * This function is used to create a PPGTT mm object from a guest to GVT-g
2188  * notification.
2189  *
2190  * Returns:
2191  * Zero on success, negative error code if failed.
2192  */
2193 int intel_vgpu_g2v_create_ppgtt_mm(struct intel_vgpu *vgpu,
2194                 int page_table_level)
2195 {
2196         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2197         struct intel_vgpu_mm *mm;
2198
2199         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2200                 return -EINVAL;
2201
2202         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2203         if (mm) {
2204                 intel_gvt_mm_reference(mm);
2205         } else {
2206                 mm = intel_vgpu_create_mm(vgpu, INTEL_GVT_MM_PPGTT,
2207                                 pdp, page_table_level, 0);
2208                 if (IS_ERR(mm)) {
2209                         gvt_vgpu_err("fail to create mm\n");
2210                         return PTR_ERR(mm);
2211                 }
2212         }
2213         return 0;
2214 }
2215
2216 /**
2217  * intel_vgpu_g2v_destroy_ppgtt_mm - destroy a PPGTT mm object from
2218  * g2v notification
2219  * @vgpu: a vGPU
2220  * @page_table_level: PPGTT page table level
2221  *
2222  * This function is used to create a PPGTT mm object from a guest to GVT-g
2223  * notification.
2224  *
2225  * Returns:
2226  * Zero on success, negative error code if failed.
2227  */
2228 int intel_vgpu_g2v_destroy_ppgtt_mm(struct intel_vgpu *vgpu,
2229                 int page_table_level)
2230 {
2231         u64 *pdp = (u64 *)&vgpu_vreg64(vgpu, vgtif_reg(pdp[0]));
2232         struct intel_vgpu_mm *mm;
2233
2234         if (WARN_ON((page_table_level != 4) && (page_table_level != 3)))
2235                 return -EINVAL;
2236
2237         mm = intel_vgpu_find_ppgtt_mm(vgpu, page_table_level, pdp);
2238         if (!mm) {
2239                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2240                 return -EINVAL;
2241         }
2242         intel_gvt_mm_unreference(mm);
2243         return 0;
2244 }
2245
2246 /**
2247  * intel_gvt_init_gtt - initialize mm components of a GVT device
2248  * @gvt: GVT device
2249  *
2250  * This function is called at the initialization stage, to initialize
2251  * the mm components of a GVT device.
2252  *
2253  * Returns:
2254  * zero on success, negative error code if failed.
2255  */
2256 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2257 {
2258         int ret;
2259         void *page;
2260         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2261         dma_addr_t daddr;
2262
2263         gvt_dbg_core("init gtt\n");
2264
2265         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2266                 || IS_KABYLAKE(gvt->dev_priv)) {
2267                 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2268                 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2269                 gvt->gtt.mm_alloc_page_table = gen8_mm_alloc_page_table;
2270                 gvt->gtt.mm_free_page_table = gen8_mm_free_page_table;
2271         } else {
2272                 return -ENODEV;
2273         }
2274
2275         page = (void *)get_zeroed_page(GFP_KERNEL);
2276         if (!page) {
2277                 gvt_err("fail to allocate scratch ggtt page\n");
2278                 return -ENOMEM;
2279         }
2280
2281         daddr = dma_map_page(dev, virt_to_page(page), 0,
2282                         4096, PCI_DMA_BIDIRECTIONAL);
2283         if (dma_mapping_error(dev, daddr)) {
2284                 gvt_err("fail to dmamap scratch ggtt page\n");
2285                 __free_page(virt_to_page(page));
2286                 return -ENOMEM;
2287         }
2288         gvt->gtt.scratch_ggtt_page = virt_to_page(page);
2289         gvt->gtt.scratch_ggtt_mfn = (unsigned long)(daddr >> GTT_PAGE_SHIFT);
2290
2291         if (enable_out_of_sync) {
2292                 ret = setup_spt_oos(gvt);
2293                 if (ret) {
2294                         gvt_err("fail to initialize SPT oos\n");
2295                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2296                         __free_page(gvt->gtt.scratch_ggtt_page);
2297                         return ret;
2298                 }
2299         }
2300         INIT_LIST_HEAD(&gvt->gtt.mm_lru_list_head);
2301         return 0;
2302 }
2303
2304 /**
2305  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2306  * @gvt: GVT device
2307  *
2308  * This function is called at the driver unloading stage, to clean up the
2309  * the mm components of a GVT device.
2310  *
2311  */
2312 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2313 {
2314         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2315         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_ggtt_mfn <<
2316                                         GTT_PAGE_SHIFT);
2317
2318         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2319
2320         __free_page(gvt->gtt.scratch_ggtt_page);
2321
2322         if (enable_out_of_sync)
2323                 clean_spt_oos(gvt);
2324 }
2325
2326 /**
2327  * intel_vgpu_reset_ggtt - reset the GGTT entry
2328  * @vgpu: a vGPU
2329  *
2330  * This function is called at the vGPU create stage
2331  * to reset all the GGTT entries.
2332  *
2333  */
2334 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2335 {
2336         struct intel_gvt *gvt = vgpu->gvt;
2337         struct drm_i915_private *dev_priv = gvt->dev_priv;
2338         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2339         u32 index;
2340         u32 offset;
2341         u32 num_entries;
2342         struct intel_gvt_gtt_entry e;
2343
2344         memset(&e, 0, sizeof(struct intel_gvt_gtt_entry));
2345         e.type = GTT_TYPE_GGTT_PTE;
2346         ops->set_pfn(&e, gvt->gtt.scratch_ggtt_mfn);
2347         e.val64 |= _PAGE_PRESENT;
2348
2349         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2350         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2351         for (offset = 0; offset < num_entries; offset++)
2352                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2353
2354         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2355         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2356         for (offset = 0; offset < num_entries; offset++)
2357                 ops->set_entry(NULL, &e, index + offset, false, 0, vgpu);
2358
2359         gtt_invalidate(dev_priv);
2360 }
2361
2362 /**
2363  * intel_vgpu_reset_gtt - reset the all GTT related status
2364  * @vgpu: a vGPU
2365  *
2366  * This function is called from vfio core to reset reset all
2367  * GTT related status, including GGTT, PPGTT, scratch page.
2368  *
2369  */
2370 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2371 {
2372         int i;
2373
2374         ppgtt_free_all_shadow_page(vgpu);
2375
2376         /* Shadow pages are only created when there is no page
2377          * table tracking data, so remove page tracking data after
2378          * removing the shadow pages.
2379          */
2380         intel_vgpu_free_mm(vgpu, INTEL_GVT_MM_PPGTT);
2381
2382         intel_vgpu_reset_ggtt(vgpu);
2383
2384         /* clear scratch page for security */
2385         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2386                 if (vgpu->gtt.scratch_pt[i].page != NULL)
2387                         memset(page_address(vgpu->gtt.scratch_pt[i].page),
2388                                 0, PAGE_SIZE);
2389         }
2390 }