Merge tag 'locks-v4.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42
43 #define INVALID_OP    (~0U)
44
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX        16
50
51 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
52
53 struct sub_op_bits {
54         int hi;
55         int low;
56 };
57 struct decode_info {
58         char *name;
59         int op_len;
60         int nr_sub_op;
61         struct sub_op_bits *sub_op;
62 };
63
64 #define   MAX_CMD_BUDGET                        0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72
73 /* Render Command Map */
74
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
100
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E                            0x2E  /* BDW+ */
115 #define OP_MI_2F                            0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
120
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
165
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175
176 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
177 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
178 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
179 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
180
181 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
182 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
183 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
184 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
185 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
186 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
187 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
188 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
189 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
190 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
191 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
192 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
193 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
194 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
195 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
196 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
197 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
198 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
199 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
200 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
201 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
202 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
203 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
204 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
205 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
206 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
207 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
208 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
209 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
211 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
212 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
213 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
218 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
223 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
224 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
225 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
226 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
227 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
232 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
238 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
240 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
242 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
247
248 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
249 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
250 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
251 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
252 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
253 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
254 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
255 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
256 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
257 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
258 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
259
260 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
261 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
262 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
263 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
264 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
265 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
266 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
267 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
268 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
269 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
270 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
271 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
272 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
273 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
274 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
275 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
280 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
281 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
282 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
283 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
284 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
285 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
286 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
287 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
288
289 /* VCCP Command Parser */
290
291 /*
292  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
293  * git://anongit.freedesktop.org/vaapi/intel-driver
294  * src/i965_defines.h
295  *
296  */
297
298 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
299         (3 << 13 | \
300          (pipeline) << 11 | \
301          (op) << 8 | \
302          (sub_opa) << 5 | \
303          (sub_opb))
304
305 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
306 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
307 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
308 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
309 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
310 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
311 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
312 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
313 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
314 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
315 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
316
317 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
318
319 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
320 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
321 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
322 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
323 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
324 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
325 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
326 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
327 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
328 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
329 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
330 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
331
332 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
333 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
334 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
335 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
336 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
337
338 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
339 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
340 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
341 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
342 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
343
344 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
345 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
346 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
347
348 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
349 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
350 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
351
352 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
353         (3 << 13 | \
354          (pipeline) << 11 | \
355          (op) << 8 | \
356          (sub_opa) << 5 | \
357          (sub_opb))
358
359 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
360 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
361 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
362
363 struct parser_exec_state;
364
365 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
366
367 #define GVT_CMD_HASH_BITS   7
368
369 /* which DWords need address fix */
370 #define ADDR_FIX_1(x1)                  (1 << (x1))
371 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
372 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
373 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
374 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
375
376 struct cmd_info {
377         char *name;
378         u32 opcode;
379
380 #define F_LEN_MASK      (1U<<0)
381 #define F_LEN_CONST  1U
382 #define F_LEN_VAR    0U
383
384 /*
385  * command has its own ip advance logic
386  * e.g. MI_BATCH_START, MI_BATCH_END
387  */
388 #define F_IP_ADVANCE_CUSTOM (1<<1)
389
390 #define F_POST_HANDLE   (1<<2)
391         u32 flag;
392
393 #define R_RCS   (1 << RCS)
394 #define R_VCS1  (1 << VCS)
395 #define R_VCS2  (1 << VCS2)
396 #define R_VCS   (R_VCS1 | R_VCS2)
397 #define R_BCS   (1 << BCS)
398 #define R_VECS  (1 << VECS)
399 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
400         /* rings that support this cmd: BLT/RCS/VCS/VECS */
401         uint16_t rings;
402
403         /* devices that support this cmd: SNB/IVB/HSW/... */
404         uint16_t devices;
405
406         /* which DWords are address that need fix up.
407          * bit 0 means a 32-bit non address operand in command
408          * bit 1 means address operand, which could be 32-bit
409          * or 64-bit depending on different architectures.(
410          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
411          * No matter the address length, each address only takes
412          * one bit in the bitmap.
413          */
414         uint16_t addr_bitmap;
415
416         /* flag == F_LEN_CONST : command length
417          * flag == F_LEN_VAR : length bias bits
418          * Note: length is in DWord
419          */
420         uint8_t len;
421
422         parser_cmd_handler handler;
423 };
424
425 struct cmd_entry {
426         struct hlist_node hlist;
427         struct cmd_info *info;
428 };
429
430 enum {
431         RING_BUFFER_INSTRUCTION,
432         BATCH_BUFFER_INSTRUCTION,
433         BATCH_BUFFER_2ND_LEVEL,
434 };
435
436 enum {
437         GTT_BUFFER,
438         PPGTT_BUFFER
439 };
440
441 struct parser_exec_state {
442         struct intel_vgpu *vgpu;
443         int ring_id;
444
445         int buf_type;
446
447         /* batch buffer address type */
448         int buf_addr_type;
449
450         /* graphics memory address of ring buffer start */
451         unsigned long ring_start;
452         unsigned long ring_size;
453         unsigned long ring_head;
454         unsigned long ring_tail;
455
456         /* instruction graphics memory address */
457         unsigned long ip_gma;
458
459         /* mapped va of the instr_gma */
460         void *ip_va;
461         void *rb_va;
462
463         void *ret_bb_va;
464         /* next instruction when return from  batch buffer to ring buffer */
465         unsigned long ret_ip_gma_ring;
466
467         /* next instruction when return from 2nd batch buffer to batch buffer */
468         unsigned long ret_ip_gma_bb;
469
470         /* batch buffer address type (GTT or PPGTT)
471          * used when ret from 2nd level batch buffer
472          */
473         int saved_buf_addr_type;
474         bool is_ctx_wa;
475
476         struct cmd_info *info;
477
478         struct intel_vgpu_workload *workload;
479 };
480
481 #define gmadr_dw_number(s)      \
482         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
483
484 static unsigned long bypass_scan_mask = 0;
485
486 /* ring ALL, type = 0 */
487 static struct sub_op_bits sub_op_mi[] = {
488         {31, 29},
489         {28, 23},
490 };
491
492 static struct decode_info decode_info_mi = {
493         "MI",
494         OP_LEN_MI,
495         ARRAY_SIZE(sub_op_mi),
496         sub_op_mi,
497 };
498
499 /* ring RCS, command type 2 */
500 static struct sub_op_bits sub_op_2d[] = {
501         {31, 29},
502         {28, 22},
503 };
504
505 static struct decode_info decode_info_2d = {
506         "2D",
507         OP_LEN_2D,
508         ARRAY_SIZE(sub_op_2d),
509         sub_op_2d,
510 };
511
512 /* ring RCS, command type 3 */
513 static struct sub_op_bits sub_op_3d_media[] = {
514         {31, 29},
515         {28, 27},
516         {26, 24},
517         {23, 16},
518 };
519
520 static struct decode_info decode_info_3d_media = {
521         "3D_Media",
522         OP_LEN_3D_MEDIA,
523         ARRAY_SIZE(sub_op_3d_media),
524         sub_op_3d_media,
525 };
526
527 /* ring VCS, command type 3 */
528 static struct sub_op_bits sub_op_mfx_vc[] = {
529         {31, 29},
530         {28, 27},
531         {26, 24},
532         {23, 21},
533         {20, 16},
534 };
535
536 static struct decode_info decode_info_mfx_vc = {
537         "MFX_VC",
538         OP_LEN_MFX_VC,
539         ARRAY_SIZE(sub_op_mfx_vc),
540         sub_op_mfx_vc,
541 };
542
543 /* ring VECS, command type 3 */
544 static struct sub_op_bits sub_op_vebox[] = {
545         {31, 29},
546         {28, 27},
547         {26, 24},
548         {23, 21},
549         {20, 16},
550 };
551
552 static struct decode_info decode_info_vebox = {
553         "VEBOX",
554         OP_LEN_VEBOX,
555         ARRAY_SIZE(sub_op_vebox),
556         sub_op_vebox,
557 };
558
559 static struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
560         [RCS] = {
561                 &decode_info_mi,
562                 NULL,
563                 NULL,
564                 &decode_info_3d_media,
565                 NULL,
566                 NULL,
567                 NULL,
568                 NULL,
569         },
570
571         [VCS] = {
572                 &decode_info_mi,
573                 NULL,
574                 NULL,
575                 &decode_info_mfx_vc,
576                 NULL,
577                 NULL,
578                 NULL,
579                 NULL,
580         },
581
582         [BCS] = {
583                 &decode_info_mi,
584                 NULL,
585                 &decode_info_2d,
586                 NULL,
587                 NULL,
588                 NULL,
589                 NULL,
590                 NULL,
591         },
592
593         [VECS] = {
594                 &decode_info_mi,
595                 NULL,
596                 NULL,
597                 &decode_info_vebox,
598                 NULL,
599                 NULL,
600                 NULL,
601                 NULL,
602         },
603
604         [VCS2] = {
605                 &decode_info_mi,
606                 NULL,
607                 NULL,
608                 &decode_info_mfx_vc,
609                 NULL,
610                 NULL,
611                 NULL,
612                 NULL,
613         },
614 };
615
616 static inline u32 get_opcode(u32 cmd, int ring_id)
617 {
618         struct decode_info *d_info;
619
620         d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
621         if (d_info == NULL)
622                 return INVALID_OP;
623
624         return cmd >> (32 - d_info->op_len);
625 }
626
627 static inline struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
628                 unsigned int opcode, int ring_id)
629 {
630         struct cmd_entry *e;
631
632         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
633                 if ((opcode == e->info->opcode) &&
634                                 (e->info->rings & (1 << ring_id)))
635                         return e->info;
636         }
637         return NULL;
638 }
639
640 static inline struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
641                 u32 cmd, int ring_id)
642 {
643         u32 opcode;
644
645         opcode = get_opcode(cmd, ring_id);
646         if (opcode == INVALID_OP)
647                 return NULL;
648
649         return find_cmd_entry(gvt, opcode, ring_id);
650 }
651
652 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
653 {
654         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
655 }
656
657 static inline void print_opcode(u32 cmd, int ring_id)
658 {
659         struct decode_info *d_info;
660         int i;
661
662         d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
663         if (d_info == NULL)
664                 return;
665
666         gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
667                         cmd >> (32 - d_info->op_len), d_info->name);
668
669         for (i = 0; i < d_info->nr_sub_op; i++)
670                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
671                                         d_info->sub_op[i].low));
672
673         pr_err("\n");
674 }
675
676 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
677 {
678         return s->ip_va + (index << 2);
679 }
680
681 static inline u32 cmd_val(struct parser_exec_state *s, int index)
682 {
683         return *cmd_ptr(s, index);
684 }
685
686 static void parser_exec_state_dump(struct parser_exec_state *s)
687 {
688         int cnt = 0;
689         int i;
690
691         gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
692                         " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
693                         s->ring_id, s->ring_start, s->ring_start + s->ring_size,
694                         s->ring_head, s->ring_tail);
695
696         gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
697                         s->buf_type == RING_BUFFER_INSTRUCTION ?
698                         "RING_BUFFER" : "BATCH_BUFFER",
699                         s->buf_addr_type == GTT_BUFFER ?
700                         "GTT" : "PPGTT", s->ip_gma);
701
702         if (s->ip_va == NULL) {
703                 gvt_dbg_cmd(" ip_va(NULL)");
704                 return;
705         }
706
707         gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
708                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
709                         cmd_val(s, 2), cmd_val(s, 3));
710
711         print_opcode(cmd_val(s, 0), s->ring_id);
712
713         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
714
715         while (cnt < 1024) {
716                 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
717                 for (i = 0; i < 8; i++)
718                         gvt_dbg_cmd("%08x ", cmd_val(s, i));
719                 gvt_dbg_cmd("\n");
720
721                 s->ip_va += 8 * sizeof(u32);
722                 cnt += 8;
723         }
724 }
725
726 static inline void update_ip_va(struct parser_exec_state *s)
727 {
728         unsigned long len = 0;
729
730         if (WARN_ON(s->ring_head == s->ring_tail))
731                 return;
732
733         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
734                 unsigned long ring_top = s->ring_start + s->ring_size;
735
736                 if (s->ring_head > s->ring_tail) {
737                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
738                                 len = (s->ip_gma - s->ring_head);
739                         else if (s->ip_gma >= s->ring_start &&
740                                         s->ip_gma <= s->ring_tail)
741                                 len = (ring_top - s->ring_head) +
742                                         (s->ip_gma - s->ring_start);
743                 } else
744                         len = (s->ip_gma - s->ring_head);
745
746                 s->ip_va = s->rb_va + len;
747         } else {/* shadow batch buffer */
748                 s->ip_va = s->ret_bb_va;
749         }
750 }
751
752 static inline int ip_gma_set(struct parser_exec_state *s,
753                 unsigned long ip_gma)
754 {
755         WARN_ON(!IS_ALIGNED(ip_gma, 4));
756
757         s->ip_gma = ip_gma;
758         update_ip_va(s);
759         return 0;
760 }
761
762 static inline int ip_gma_advance(struct parser_exec_state *s,
763                 unsigned int dw_len)
764 {
765         s->ip_gma += (dw_len << 2);
766
767         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
768                 if (s->ip_gma >= s->ring_start + s->ring_size)
769                         s->ip_gma -= s->ring_size;
770                 update_ip_va(s);
771         } else {
772                 s->ip_va += (dw_len << 2);
773         }
774
775         return 0;
776 }
777
778 static inline int get_cmd_length(struct cmd_info *info, u32 cmd)
779 {
780         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
781                 return info->len;
782         else
783                 return (cmd & ((1U << info->len) - 1)) + 2;
784         return 0;
785 }
786
787 static inline int cmd_length(struct parser_exec_state *s)
788 {
789         return get_cmd_length(s->info, cmd_val(s, 0));
790 }
791
792 /* do not remove this, some platform may need clflush here */
793 #define patch_value(s, addr, val) do { \
794         *addr = val; \
795 } while (0)
796
797 static bool is_shadowed_mmio(unsigned int offset)
798 {
799         bool ret = false;
800
801         if ((offset == 0x2168) || /*BB current head register UDW */
802             (offset == 0x2140) || /*BB current header register */
803             (offset == 0x211c) || /*second BB header register UDW */
804             (offset == 0x2114)) { /*second BB header register UDW */
805                 ret = true;
806         }
807         return ret;
808 }
809
810 static inline bool is_force_nonpriv_mmio(unsigned int offset)
811 {
812         return (offset >= 0x24d0 && offset < 0x2500);
813 }
814
815 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
816                 unsigned int offset, unsigned int index, char *cmd)
817 {
818         struct intel_gvt *gvt = s->vgpu->gvt;
819         unsigned int data;
820         u32 ring_base;
821         u32 nopid;
822         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
823
824         if (!strcmp(cmd, "lri"))
825                 data = cmd_val(s, index + 1);
826         else {
827                 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
828                         offset, cmd);
829                 return -EINVAL;
830         }
831
832         ring_base = dev_priv->engine[s->ring_id]->mmio_base;
833         nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
834
835         if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
836                         data != nopid) {
837                 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
838                         offset, data);
839                 patch_value(s, cmd_ptr(s, index), nopid);
840                 return 0;
841         }
842         return 0;
843 }
844
845 static inline bool is_mocs_mmio(unsigned int offset)
846 {
847         return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
848                 ((offset >= 0xb020) && (offset <= 0xb0a0));
849 }
850
851 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
852                                 unsigned int offset, unsigned int index)
853 {
854         if (!is_mocs_mmio(offset))
855                 return -EINVAL;
856         vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
857         return 0;
858 }
859
860 static int cmd_reg_handler(struct parser_exec_state *s,
861         unsigned int offset, unsigned int index, char *cmd)
862 {
863         struct intel_vgpu *vgpu = s->vgpu;
864         struct intel_gvt *gvt = vgpu->gvt;
865         u32 ctx_sr_ctl;
866
867         if (offset + 4 > gvt->device_info.mmio_size) {
868                 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
869                                 cmd, offset);
870                 return -EFAULT;
871         }
872
873         if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
874                 gvt_vgpu_err("%s access to non-render register (%x)\n",
875                                 cmd, offset);
876                 return 0;
877         }
878
879         if (is_shadowed_mmio(offset)) {
880                 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
881                 return 0;
882         }
883
884         if (is_mocs_mmio(offset) &&
885             mocs_cmd_reg_handler(s, offset, index))
886                 return -EINVAL;
887
888         if (is_force_nonpriv_mmio(offset) &&
889                 force_nonpriv_reg_handler(s, offset, index, cmd))
890                 return -EPERM;
891
892         if (offset == i915_mmio_reg_offset(DERRMR) ||
893                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
894                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
895                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
896         }
897
898         /* TODO
899          * Right now only scan LRI command on KBL and in inhibit context.
900          * It's good enough to support initializing mmio by lri command in
901          * vgpu inhibit context on KBL.
902          */
903         if (IS_KABYLAKE(s->vgpu->gvt->dev_priv) &&
904                         intel_gvt_mmio_is_in_ctx(gvt, offset) &&
905                         !strncmp(cmd, "lri", 3)) {
906                 intel_gvt_hypervisor_read_gpa(s->vgpu,
907                         s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
908                 /* check inhibit context */
909                 if (ctx_sr_ctl & 1) {
910                         u32 data = cmd_val(s, index + 1);
911
912                         if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
913                                 intel_vgpu_mask_mmio_write(vgpu,
914                                                         offset, &data, 4);
915                         else
916                                 vgpu_vreg(vgpu, offset) = data;
917                 }
918         }
919
920         /* TODO: Update the global mask if this MMIO is a masked-MMIO */
921         intel_gvt_mmio_set_cmd_accessed(gvt, offset);
922         return 0;
923 }
924
925 #define cmd_reg(s, i) \
926         (cmd_val(s, i) & GENMASK(22, 2))
927
928 #define cmd_reg_inhibit(s, i) \
929         (cmd_val(s, i) & GENMASK(22, 18))
930
931 #define cmd_gma(s, i) \
932         (cmd_val(s, i) & GENMASK(31, 2))
933
934 #define cmd_gma_hi(s, i) \
935         (cmd_val(s, i) & GENMASK(15, 0))
936
937 static int cmd_handler_lri(struct parser_exec_state *s)
938 {
939         int i, ret = 0;
940         int cmd_len = cmd_length(s);
941         struct intel_gvt *gvt = s->vgpu->gvt;
942
943         for (i = 1; i < cmd_len; i += 2) {
944                 if (IS_BROADWELL(gvt->dev_priv) &&
945                                 (s->ring_id != RCS)) {
946                         if (s->ring_id == BCS &&
947                                         cmd_reg(s, i) ==
948                                         i915_mmio_reg_offset(DERRMR))
949                                 ret |= 0;
950                         else
951                                 ret |= (cmd_reg_inhibit(s, i)) ?
952                                         -EBADRQC : 0;
953                 }
954                 if (ret)
955                         break;
956                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
957                 if (ret)
958                         break;
959         }
960         return ret;
961 }
962
963 static int cmd_handler_lrr(struct parser_exec_state *s)
964 {
965         int i, ret = 0;
966         int cmd_len = cmd_length(s);
967
968         for (i = 1; i < cmd_len; i += 2) {
969                 if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
970                         ret |= ((cmd_reg_inhibit(s, i) ||
971                                         (cmd_reg_inhibit(s, i + 1)))) ?
972                                 -EBADRQC : 0;
973                 if (ret)
974                         break;
975                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
976                 if (ret)
977                         break;
978                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
979                 if (ret)
980                         break;
981         }
982         return ret;
983 }
984
985 static inline int cmd_address_audit(struct parser_exec_state *s,
986                 unsigned long guest_gma, int op_size, bool index_mode);
987
988 static int cmd_handler_lrm(struct parser_exec_state *s)
989 {
990         struct intel_gvt *gvt = s->vgpu->gvt;
991         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
992         unsigned long gma;
993         int i, ret = 0;
994         int cmd_len = cmd_length(s);
995
996         for (i = 1; i < cmd_len;) {
997                 if (IS_BROADWELL(gvt->dev_priv))
998                         ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
999                 if (ret)
1000                         break;
1001                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1002                 if (ret)
1003                         break;
1004                 if (cmd_val(s, 0) & (1 << 22)) {
1005                         gma = cmd_gma(s, i + 1);
1006                         if (gmadr_bytes == 8)
1007                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1008                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1009                         if (ret)
1010                                 break;
1011                 }
1012                 i += gmadr_dw_number(s) + 1;
1013         }
1014         return ret;
1015 }
1016
1017 static int cmd_handler_srm(struct parser_exec_state *s)
1018 {
1019         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1020         unsigned long gma;
1021         int i, ret = 0;
1022         int cmd_len = cmd_length(s);
1023
1024         for (i = 1; i < cmd_len;) {
1025                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1026                 if (ret)
1027                         break;
1028                 if (cmd_val(s, 0) & (1 << 22)) {
1029                         gma = cmd_gma(s, i + 1);
1030                         if (gmadr_bytes == 8)
1031                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1032                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1033                         if (ret)
1034                                 break;
1035                 }
1036                 i += gmadr_dw_number(s) + 1;
1037         }
1038         return ret;
1039 }
1040
1041 struct cmd_interrupt_event {
1042         int pipe_control_notify;
1043         int mi_flush_dw;
1044         int mi_user_interrupt;
1045 };
1046
1047 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1048         [RCS] = {
1049                 .pipe_control_notify = RCS_PIPE_CONTROL,
1050                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1051                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1052         },
1053         [BCS] = {
1054                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1055                 .mi_flush_dw = BCS_MI_FLUSH_DW,
1056                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1057         },
1058         [VCS] = {
1059                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1060                 .mi_flush_dw = VCS_MI_FLUSH_DW,
1061                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1062         },
1063         [VCS2] = {
1064                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1065                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1066                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1067         },
1068         [VECS] = {
1069                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1070                 .mi_flush_dw = VECS_MI_FLUSH_DW,
1071                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1072         },
1073 };
1074
1075 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1076 {
1077         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1078         unsigned long gma;
1079         bool index_mode = false;
1080         unsigned int post_sync;
1081         int ret = 0;
1082
1083         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1084
1085         /* LRI post sync */
1086         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1087                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1088         /* post sync */
1089         else if (post_sync) {
1090                 if (post_sync == 2)
1091                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1092                 else if (post_sync == 3)
1093                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1094                 else if (post_sync == 1) {
1095                         /* check ggtt*/
1096                         if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1097                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1098                                 if (gmadr_bytes == 8)
1099                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1100                                 /* Store Data Index */
1101                                 if (cmd_val(s, 1) & (1 << 21))
1102                                         index_mode = true;
1103                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1104                                                 index_mode);
1105                         }
1106                 }
1107         }
1108
1109         if (ret)
1110                 return ret;
1111
1112         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1113                 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1114                                 s->workload->pending_events);
1115         return 0;
1116 }
1117
1118 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1119 {
1120         set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1121                         s->workload->pending_events);
1122         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1123         return 0;
1124 }
1125
1126 static int cmd_advance_default(struct parser_exec_state *s)
1127 {
1128         return ip_gma_advance(s, cmd_length(s));
1129 }
1130
1131 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1132 {
1133         int ret;
1134
1135         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1136                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1137                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1138                 s->buf_addr_type = s->saved_buf_addr_type;
1139         } else {
1140                 s->buf_type = RING_BUFFER_INSTRUCTION;
1141                 s->buf_addr_type = GTT_BUFFER;
1142                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1143                         s->ret_ip_gma_ring -= s->ring_size;
1144                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1145         }
1146         return ret;
1147 }
1148
1149 struct mi_display_flip_command_info {
1150         int pipe;
1151         int plane;
1152         int event;
1153         i915_reg_t stride_reg;
1154         i915_reg_t ctrl_reg;
1155         i915_reg_t surf_reg;
1156         u64 stride_val;
1157         u64 tile_val;
1158         u64 surf_val;
1159         bool async_flip;
1160 };
1161
1162 struct plane_code_mapping {
1163         int pipe;
1164         int plane;
1165         int event;
1166 };
1167
1168 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1169                 struct mi_display_flip_command_info *info)
1170 {
1171         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1172         struct plane_code_mapping gen8_plane_code[] = {
1173                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1174                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1175                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1176                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1177                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1178                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1179         };
1180         u32 dword0, dword1, dword2;
1181         u32 v;
1182
1183         dword0 = cmd_val(s, 0);
1184         dword1 = cmd_val(s, 1);
1185         dword2 = cmd_val(s, 2);
1186
1187         v = (dword0 & GENMASK(21, 19)) >> 19;
1188         if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1189                 return -EBADRQC;
1190
1191         info->pipe = gen8_plane_code[v].pipe;
1192         info->plane = gen8_plane_code[v].plane;
1193         info->event = gen8_plane_code[v].event;
1194         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1195         info->tile_val = (dword1 & 0x1);
1196         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1197         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1198
1199         if (info->plane == PLANE_A) {
1200                 info->ctrl_reg = DSPCNTR(info->pipe);
1201                 info->stride_reg = DSPSTRIDE(info->pipe);
1202                 info->surf_reg = DSPSURF(info->pipe);
1203         } else if (info->plane == PLANE_B) {
1204                 info->ctrl_reg = SPRCTL(info->pipe);
1205                 info->stride_reg = SPRSTRIDE(info->pipe);
1206                 info->surf_reg = SPRSURF(info->pipe);
1207         } else {
1208                 WARN_ON(1);
1209                 return -EBADRQC;
1210         }
1211         return 0;
1212 }
1213
1214 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1215                 struct mi_display_flip_command_info *info)
1216 {
1217         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1218         struct intel_vgpu *vgpu = s->vgpu;
1219         u32 dword0 = cmd_val(s, 0);
1220         u32 dword1 = cmd_val(s, 1);
1221         u32 dword2 = cmd_val(s, 2);
1222         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1223
1224         info->plane = PRIMARY_PLANE;
1225
1226         switch (plane) {
1227         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1228                 info->pipe = PIPE_A;
1229                 info->event = PRIMARY_A_FLIP_DONE;
1230                 break;
1231         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1232                 info->pipe = PIPE_B;
1233                 info->event = PRIMARY_B_FLIP_DONE;
1234                 break;
1235         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1236                 info->pipe = PIPE_C;
1237                 info->event = PRIMARY_C_FLIP_DONE;
1238                 break;
1239
1240         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1241                 info->pipe = PIPE_A;
1242                 info->event = SPRITE_A_FLIP_DONE;
1243                 info->plane = SPRITE_PLANE;
1244                 break;
1245         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1246                 info->pipe = PIPE_B;
1247                 info->event = SPRITE_B_FLIP_DONE;
1248                 info->plane = SPRITE_PLANE;
1249                 break;
1250         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1251                 info->pipe = PIPE_C;
1252                 info->event = SPRITE_C_FLIP_DONE;
1253                 info->plane = SPRITE_PLANE;
1254                 break;
1255
1256         default:
1257                 gvt_vgpu_err("unknown plane code %d\n", plane);
1258                 return -EBADRQC;
1259         }
1260
1261         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1262         info->tile_val = (dword1 & GENMASK(2, 0));
1263         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1264         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1265
1266         info->ctrl_reg = DSPCNTR(info->pipe);
1267         info->stride_reg = DSPSTRIDE(info->pipe);
1268         info->surf_reg = DSPSURF(info->pipe);
1269
1270         return 0;
1271 }
1272
1273 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1274                 struct mi_display_flip_command_info *info)
1275 {
1276         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1277         u32 stride, tile;
1278
1279         if (!info->async_flip)
1280                 return 0;
1281
1282         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1283                 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1284                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1285                                 GENMASK(12, 10)) >> 10;
1286         } else {
1287                 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1288                                 GENMASK(15, 6)) >> 6;
1289                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1290         }
1291
1292         if (stride != info->stride_val)
1293                 gvt_dbg_cmd("cannot change stride during async flip\n");
1294
1295         if (tile != info->tile_val)
1296                 gvt_dbg_cmd("cannot change tile during async flip\n");
1297
1298         return 0;
1299 }
1300
1301 static int gen8_update_plane_mmio_from_mi_display_flip(
1302                 struct parser_exec_state *s,
1303                 struct mi_display_flip_command_info *info)
1304 {
1305         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1306         struct intel_vgpu *vgpu = s->vgpu;
1307
1308         set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1309                       info->surf_val << 12);
1310         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1311                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1312                               info->stride_val);
1313                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1314                               info->tile_val << 10);
1315         } else {
1316                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1317                               info->stride_val << 6);
1318                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1319                               info->tile_val << 10);
1320         }
1321
1322         vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1323         intel_vgpu_trigger_virtual_event(vgpu, info->event);
1324         return 0;
1325 }
1326
1327 static int decode_mi_display_flip(struct parser_exec_state *s,
1328                 struct mi_display_flip_command_info *info)
1329 {
1330         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1331
1332         if (IS_BROADWELL(dev_priv))
1333                 return gen8_decode_mi_display_flip(s, info);
1334         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1335                 return skl_decode_mi_display_flip(s, info);
1336
1337         return -ENODEV;
1338 }
1339
1340 static int check_mi_display_flip(struct parser_exec_state *s,
1341                 struct mi_display_flip_command_info *info)
1342 {
1343         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1344
1345         if (IS_BROADWELL(dev_priv)
1346                 || IS_SKYLAKE(dev_priv)
1347                 || IS_KABYLAKE(dev_priv))
1348                 return gen8_check_mi_display_flip(s, info);
1349         return -ENODEV;
1350 }
1351
1352 static int update_plane_mmio_from_mi_display_flip(
1353                 struct parser_exec_state *s,
1354                 struct mi_display_flip_command_info *info)
1355 {
1356         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1357
1358         if (IS_BROADWELL(dev_priv)
1359                 || IS_SKYLAKE(dev_priv)
1360                 || IS_KABYLAKE(dev_priv))
1361                 return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1362         return -ENODEV;
1363 }
1364
1365 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1366 {
1367         struct mi_display_flip_command_info info;
1368         struct intel_vgpu *vgpu = s->vgpu;
1369         int ret;
1370         int i;
1371         int len = cmd_length(s);
1372
1373         ret = decode_mi_display_flip(s, &info);
1374         if (ret) {
1375                 gvt_vgpu_err("fail to decode MI display flip command\n");
1376                 return ret;
1377         }
1378
1379         ret = check_mi_display_flip(s, &info);
1380         if (ret) {
1381                 gvt_vgpu_err("invalid MI display flip command\n");
1382                 return ret;
1383         }
1384
1385         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1386         if (ret) {
1387                 gvt_vgpu_err("fail to update plane mmio\n");
1388                 return ret;
1389         }
1390
1391         for (i = 0; i < len; i++)
1392                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1393         return 0;
1394 }
1395
1396 static bool is_wait_for_flip_pending(u32 cmd)
1397 {
1398         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1399                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1400                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1401                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1402                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1403                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1404 }
1405
1406 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1407 {
1408         u32 cmd = cmd_val(s, 0);
1409
1410         if (!is_wait_for_flip_pending(cmd))
1411                 return 0;
1412
1413         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1414         return 0;
1415 }
1416
1417 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1418 {
1419         unsigned long addr;
1420         unsigned long gma_high, gma_low;
1421         struct intel_vgpu *vgpu = s->vgpu;
1422         int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1423
1424         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1425                 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1426                 return INTEL_GVT_INVALID_ADDR;
1427         }
1428
1429         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1430         if (gmadr_bytes == 4) {
1431                 addr = gma_low;
1432         } else {
1433                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1434                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1435         }
1436         return addr;
1437 }
1438
1439 static inline int cmd_address_audit(struct parser_exec_state *s,
1440                 unsigned long guest_gma, int op_size, bool index_mode)
1441 {
1442         struct intel_vgpu *vgpu = s->vgpu;
1443         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1444         int i;
1445         int ret;
1446
1447         if (op_size > max_surface_size) {
1448                 gvt_vgpu_err("command address audit fail name %s\n",
1449                         s->info->name);
1450                 return -EFAULT;
1451         }
1452
1453         if (index_mode) {
1454                 if (guest_gma >= I915_GTT_PAGE_SIZE / sizeof(u64)) {
1455                         ret = -EFAULT;
1456                         goto err;
1457                 }
1458         } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1459                 ret = -EFAULT;
1460                 goto err;
1461         }
1462
1463         return 0;
1464
1465 err:
1466         gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1467                         s->info->name, guest_gma, op_size);
1468
1469         pr_err("cmd dump: ");
1470         for (i = 0; i < cmd_length(s); i++) {
1471                 if (!(i % 4))
1472                         pr_err("\n%08x ", cmd_val(s, i));
1473                 else
1474                         pr_err("%08x ", cmd_val(s, i));
1475         }
1476         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1477                         vgpu->id,
1478                         vgpu_aperture_gmadr_base(vgpu),
1479                         vgpu_aperture_gmadr_end(vgpu),
1480                         vgpu_hidden_gmadr_base(vgpu),
1481                         vgpu_hidden_gmadr_end(vgpu));
1482         return ret;
1483 }
1484
1485 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1486 {
1487         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1488         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1489         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1490         unsigned long gma, gma_low, gma_high;
1491         int ret = 0;
1492
1493         /* check ppggt */
1494         if (!(cmd_val(s, 0) & (1 << 22)))
1495                 return 0;
1496
1497         gma = cmd_val(s, 2) & GENMASK(31, 2);
1498
1499         if (gmadr_bytes == 8) {
1500                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1501                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1502                 gma = (gma_high << 32) | gma_low;
1503                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1504         }
1505         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1506         return ret;
1507 }
1508
1509 static inline int unexpected_cmd(struct parser_exec_state *s)
1510 {
1511         struct intel_vgpu *vgpu = s->vgpu;
1512
1513         gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1514
1515         return -EBADRQC;
1516 }
1517
1518 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1519 {
1520         return unexpected_cmd(s);
1521 }
1522
1523 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1524 {
1525         return unexpected_cmd(s);
1526 }
1527
1528 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1529 {
1530         return unexpected_cmd(s);
1531 }
1532
1533 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1534 {
1535         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1536         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1537                         sizeof(u32);
1538         unsigned long gma, gma_high;
1539         int ret = 0;
1540
1541         if (!(cmd_val(s, 0) & (1 << 22)))
1542                 return ret;
1543
1544         gma = cmd_val(s, 1) & GENMASK(31, 2);
1545         if (gmadr_bytes == 8) {
1546                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1547                 gma = (gma_high << 32) | gma;
1548         }
1549         ret = cmd_address_audit(s, gma, op_size, false);
1550         return ret;
1551 }
1552
1553 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1554 {
1555         return unexpected_cmd(s);
1556 }
1557
1558 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1559 {
1560         return unexpected_cmd(s);
1561 }
1562
1563 static int cmd_handler_mi_conditional_batch_buffer_end(
1564                 struct parser_exec_state *s)
1565 {
1566         return unexpected_cmd(s);
1567 }
1568
1569 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1570 {
1571         return unexpected_cmd(s);
1572 }
1573
1574 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1575 {
1576         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1577         unsigned long gma;
1578         bool index_mode = false;
1579         int ret = 0;
1580
1581         /* Check post-sync and ppgtt bit */
1582         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1583                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1584                 if (gmadr_bytes == 8)
1585                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1586                 /* Store Data Index */
1587                 if (cmd_val(s, 0) & (1 << 21))
1588                         index_mode = true;
1589                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1590         }
1591         /* Check notify bit */
1592         if ((cmd_val(s, 0) & (1 << 8)))
1593                 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1594                                 s->workload->pending_events);
1595         return ret;
1596 }
1597
1598 static void addr_type_update_snb(struct parser_exec_state *s)
1599 {
1600         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1601                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1602                 s->buf_addr_type = PPGTT_BUFFER;
1603         }
1604 }
1605
1606
1607 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1608                 unsigned long gma, unsigned long end_gma, void *va)
1609 {
1610         unsigned long copy_len, offset;
1611         unsigned long len = 0;
1612         unsigned long gpa;
1613
1614         while (gma != end_gma) {
1615                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1616                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1617                         gvt_vgpu_err("invalid gma address: %lx\n", gma);
1618                         return -EFAULT;
1619                 }
1620
1621                 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1622
1623                 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1624                         I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1625
1626                 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1627
1628                 len += copy_len;
1629                 gma += copy_len;
1630         }
1631         return len;
1632 }
1633
1634
1635 /*
1636  * Check whether a batch buffer needs to be scanned. Currently
1637  * the only criteria is based on privilege.
1638  */
1639 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1640 {
1641         struct intel_gvt *gvt = s->vgpu->gvt;
1642
1643         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
1644                 || IS_KABYLAKE(gvt->dev_priv)) {
1645                 /* BDW decides privilege based on address space */
1646                 if (cmd_val(s, 0) & (1 << 8) &&
1647                         !(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1648                         return 0;
1649         }
1650         return 1;
1651 }
1652
1653 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
1654 {
1655         unsigned long gma = 0;
1656         struct cmd_info *info;
1657         uint32_t cmd_len = 0;
1658         bool bb_end = false;
1659         struct intel_vgpu *vgpu = s->vgpu;
1660         u32 cmd;
1661         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1662                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1663
1664         *bb_size = 0;
1665
1666         /* get the start gm address of the batch buffer */
1667         gma = get_gma_bb_from_cmd(s, 1);
1668         if (gma == INTEL_GVT_INVALID_ADDR)
1669                 return -EFAULT;
1670
1671         cmd = cmd_val(s, 0);
1672         info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1673         if (info == NULL) {
1674                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1675                                 cmd, get_opcode(cmd, s->ring_id),
1676                                 (s->buf_addr_type == PPGTT_BUFFER) ?
1677                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
1678                 return -EBADRQC;
1679         }
1680         do {
1681                 if (copy_gma_to_hva(s->vgpu, mm,
1682                                 gma, gma + 4, &cmd) < 0)
1683                         return -EFAULT;
1684                 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1685                 if (info == NULL) {
1686                         gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1687                                 cmd, get_opcode(cmd, s->ring_id),
1688                                 (s->buf_addr_type == PPGTT_BUFFER) ?
1689                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
1690                         return -EBADRQC;
1691                 }
1692
1693                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1694                         bb_end = true;
1695                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1696                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1697                                 /* chained batch buffer */
1698                                 bb_end = true;
1699                 }
1700                 cmd_len = get_cmd_length(info, cmd) << 2;
1701                 *bb_size += cmd_len;
1702                 gma += cmd_len;
1703         } while (!bb_end);
1704
1705         return 0;
1706 }
1707
1708 static int perform_bb_shadow(struct parser_exec_state *s)
1709 {
1710         struct intel_vgpu *vgpu = s->vgpu;
1711         struct intel_vgpu_shadow_bb *bb;
1712         unsigned long gma = 0;
1713         unsigned long bb_size;
1714         int ret = 0;
1715         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1716                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1717         unsigned long gma_start_offset = 0;
1718
1719         /* get the start gm address of the batch buffer */
1720         gma = get_gma_bb_from_cmd(s, 1);
1721         if (gma == INTEL_GVT_INVALID_ADDR)
1722                 return -EFAULT;
1723
1724         ret = find_bb_size(s, &bb_size);
1725         if (ret)
1726                 return ret;
1727
1728         bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1729         if (!bb)
1730                 return -ENOMEM;
1731
1732         bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1733
1734         /* the gma_start_offset stores the batch buffer's start gma's
1735          * offset relative to page boundary. so for non-privileged batch
1736          * buffer, the shadowed gem object holds exactly the same page
1737          * layout as original gem object. This is for the convience of
1738          * replacing the whole non-privilged batch buffer page to this
1739          * shadowed one in PPGTT at the same gma address. (this replacing
1740          * action is not implemented yet now, but may be necessary in
1741          * future).
1742          * for prileged batch buffer, we just change start gma address to
1743          * that of shadowed page.
1744          */
1745         if (bb->ppgtt)
1746                 gma_start_offset = gma & ~I915_GTT_PAGE_MASK;
1747
1748         bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
1749                          roundup(bb_size + gma_start_offset, PAGE_SIZE));
1750         if (IS_ERR(bb->obj)) {
1751                 ret = PTR_ERR(bb->obj);
1752                 goto err_free_bb;
1753         }
1754
1755         ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
1756         if (ret)
1757                 goto err_free_obj;
1758
1759         bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1760         if (IS_ERR(bb->va)) {
1761                 ret = PTR_ERR(bb->va);
1762                 goto err_finish_shmem_access;
1763         }
1764
1765         if (bb->clflush & CLFLUSH_BEFORE) {
1766                 drm_clflush_virt_range(bb->va, bb->obj->base.size);
1767                 bb->clflush &= ~CLFLUSH_BEFORE;
1768         }
1769
1770         ret = copy_gma_to_hva(s->vgpu, mm,
1771                               gma, gma + bb_size,
1772                               bb->va + gma_start_offset);
1773         if (ret < 0) {
1774                 gvt_vgpu_err("fail to copy guest ring buffer\n");
1775                 ret = -EFAULT;
1776                 goto err_unmap;
1777         }
1778
1779         INIT_LIST_HEAD(&bb->list);
1780         list_add(&bb->list, &s->workload->shadow_bb);
1781
1782         bb->accessing = true;
1783         bb->bb_start_cmd_va = s->ip_va;
1784
1785         if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1786                 bb->bb_offset = s->ip_va - s->rb_va;
1787         else
1788                 bb->bb_offset = 0;
1789
1790         /*
1791          * ip_va saves the virtual address of the shadow batch buffer, while
1792          * ip_gma saves the graphics address of the original batch buffer.
1793          * As the shadow batch buffer is just a copy from the originial one,
1794          * it should be right to use shadow batch buffer'va and original batch
1795          * buffer's gma in pair. After all, we don't want to pin the shadow
1796          * buffer here (too early).
1797          */
1798         s->ip_va = bb->va + gma_start_offset;
1799         s->ip_gma = gma;
1800         return 0;
1801 err_unmap:
1802         i915_gem_object_unpin_map(bb->obj);
1803 err_finish_shmem_access:
1804         i915_gem_obj_finish_shmem_access(bb->obj);
1805 err_free_obj:
1806         i915_gem_object_put(bb->obj);
1807 err_free_bb:
1808         kfree(bb);
1809         return ret;
1810 }
1811
1812 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1813 {
1814         bool second_level;
1815         int ret = 0;
1816         struct intel_vgpu *vgpu = s->vgpu;
1817
1818         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1819                 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1820                 return -EFAULT;
1821         }
1822
1823         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1824         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1825                 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1826                 return -EFAULT;
1827         }
1828
1829         s->saved_buf_addr_type = s->buf_addr_type;
1830         addr_type_update_snb(s);
1831         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1832                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1833                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1834         } else if (second_level) {
1835                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1836                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1837                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1838         }
1839
1840         if (batch_buffer_needs_scan(s)) {
1841                 ret = perform_bb_shadow(s);
1842                 if (ret < 0)
1843                         gvt_vgpu_err("invalid shadow batch buffer\n");
1844         } else {
1845                 /* emulate a batch buffer end to do return right */
1846                 ret = cmd_handler_mi_batch_buffer_end(s);
1847                 if (ret < 0)
1848                         return ret;
1849         }
1850         return ret;
1851 }
1852
1853 static struct cmd_info cmd_info[] = {
1854         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1855
1856         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1857                 0, 1, NULL},
1858
1859         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1860                 0, 1, cmd_handler_mi_user_interrupt},
1861
1862         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1863                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1864
1865         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1866
1867         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1868                 NULL},
1869
1870         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1871                 NULL},
1872
1873         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1874                 NULL},
1875
1876         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1877                 NULL},
1878
1879         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1880                 D_ALL, 0, 1, NULL},
1881
1882         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1883                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1884                 cmd_handler_mi_batch_buffer_end},
1885
1886         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1887                 0, 1, NULL},
1888
1889         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1890                 NULL},
1891
1892         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1893                 D_ALL, 0, 1, NULL},
1894
1895         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1896                 NULL},
1897
1898         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1899                 NULL},
1900
1901         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1902                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1903
1904         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1905                 0, 8, NULL},
1906
1907         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1908
1909         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1910
1911         {"ME_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1912                 D_BDW_PLUS, 0, 8, NULL},
1913
1914         {"ME_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1915                 ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1916
1917         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1918                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1919
1920         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1921                 0, 8, cmd_handler_mi_store_data_index},
1922
1923         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1924                 D_ALL, 0, 8, cmd_handler_lri},
1925
1926         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1927                 cmd_handler_mi_update_gtt},
1928
1929         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1930                 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1931
1932         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1933                 cmd_handler_mi_flush_dw},
1934
1935         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1936                 10, cmd_handler_mi_clflush},
1937
1938         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1939                 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1940
1941         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1942                 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1943
1944         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1945                 D_ALL, 0, 8, cmd_handler_lrr},
1946
1947         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1948                 D_ALL, 0, 8, NULL},
1949
1950         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1951                 ADDR_FIX_1(2), 8, NULL},
1952
1953         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1954                 ADDR_FIX_1(2), 8, NULL},
1955
1956         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1957                 8, cmd_handler_mi_op_2e},
1958
1959         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1960                 8, cmd_handler_mi_op_2f},
1961
1962         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1963                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1964                 cmd_handler_mi_batch_buffer_start},
1965
1966         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1967                 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1968                 cmd_handler_mi_conditional_batch_buffer_end},
1969
1970         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1971                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1972
1973         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1974                 ADDR_FIX_2(4, 7), 8, NULL},
1975
1976         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1977                 0, 8, NULL},
1978
1979         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1980                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1981
1982         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1983
1984         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1985                 0, 8, NULL},
1986
1987         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1988                 ADDR_FIX_1(3), 8, NULL},
1989
1990         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1991                 D_ALL, 0, 8, NULL},
1992
1993         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1994                 ADDR_FIX_1(4), 8, NULL},
1995
1996         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1997                 ADDR_FIX_2(4, 5), 8, NULL},
1998
1999         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2000                 ADDR_FIX_1(4), 8, NULL},
2001
2002         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2003                 ADDR_FIX_2(4, 7), 8, NULL},
2004
2005         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2006                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2007
2008         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2009
2010         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2011                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2012
2013         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2014                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2015
2016         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2017                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2018                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2019
2020         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2021                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2022
2023         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2024                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2025
2026         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2027                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2028
2029         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2030                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2031
2032         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2033                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2034
2035         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2036                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2037                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2038
2039         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2040                 ADDR_FIX_2(4, 5), 8, NULL},
2041
2042         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2043                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2044
2045         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2046                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2047                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2048
2049         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2050                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2051                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2052
2053         {"3DSTATE_BLEND_STATE_POINTERS",
2054                 OP_3DSTATE_BLEND_STATE_POINTERS,
2055                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2056
2057         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2058                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2059                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2060
2061         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2062                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2063                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2064
2065         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2066                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2067                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2068
2069         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2070                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2071                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2072
2073         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2074                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2075                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2076
2077         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2078                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2079                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2080
2081         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2082                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2083                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2084
2085         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2086                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2087                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2088
2089         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2090                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2091                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2092
2093         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2094                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2095                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2096
2097         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2098                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2099                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2100
2101         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2102                 0, 8, NULL},
2103
2104         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2105                 0, 8, NULL},
2106
2107         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2108                 0, 8, NULL},
2109
2110         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2111                 0, 8, NULL},
2112
2113         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2114                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2115
2116         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2117                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2118
2119         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2120                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2121
2122         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2123                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2124
2125         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2126                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2127
2128         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2129                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2130
2131         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2132                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2133
2134         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2135                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2136
2137         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2138                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2139
2140         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2141                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2142
2143         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2144                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2145
2146         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2147                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2148
2149         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2150                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2151
2152         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2153                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2154
2155         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2156                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2157
2158         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2159                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2160
2161         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2162                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2163
2164         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2165                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2166
2167         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2168                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2169
2170         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2171                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2172
2173         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2174                 D_BDW_PLUS, 0, 8, NULL},
2175
2176         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2177                 NULL},
2178
2179         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2180                 D_BDW_PLUS, 0, 8, NULL},
2181
2182         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2183                 D_BDW_PLUS, 0, 8, NULL},
2184
2185         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2186                 8, NULL},
2187
2188         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2189                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2190
2191         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2192                 8, NULL},
2193
2194         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2195                 NULL},
2196
2197         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2198                 NULL},
2199
2200         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2201                 NULL},
2202
2203         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2204                 D_BDW_PLUS, 0, 8, NULL},
2205
2206         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2207                 R_RCS, D_ALL, 0, 8, NULL},
2208
2209         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2210                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2211
2212         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2213                 R_RCS, D_ALL, 0, 1, NULL},
2214
2215         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2216
2217         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2218                 R_RCS, D_ALL, 0, 8, NULL},
2219
2220         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2221                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2222
2223         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2224
2225         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2226
2227         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2228
2229         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2230                 D_BDW_PLUS, 0, 8, NULL},
2231
2232         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2233                 D_BDW_PLUS, 0, 8, NULL},
2234
2235         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2236                 D_ALL, 0, 8, NULL},
2237
2238         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2239                 D_BDW_PLUS, 0, 8, NULL},
2240
2241         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2242                 D_BDW_PLUS, 0, 8, NULL},
2243
2244         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2245
2246         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2247
2248         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249
2250         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2251                 D_ALL, 0, 8, NULL},
2252
2253         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2254
2255         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2256
2257         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2258                 R_RCS, D_ALL, 0, 8, NULL},
2259
2260         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2261                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2262
2263         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2264                 0, 8, NULL},
2265
2266         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2267                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2268
2269         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2270                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2271
2272         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2273                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274
2275         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2276                 D_ALL, 0, 8, NULL},
2277
2278         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2279                 D_ALL, 0, 8, NULL},
2280
2281         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2282                 D_ALL, 0, 8, NULL},
2283
2284         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2285                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2286
2287         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2288                 D_BDW_PLUS, 0, 8, NULL},
2289
2290         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2291                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2292
2293         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2294                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2295
2296         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2297                 R_RCS, D_ALL, 0, 8, NULL},
2298
2299         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2300                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2301
2302         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2303                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2304
2305         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2306                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2307
2308         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2309                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2310
2311         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2312                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2313
2314         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2315                 R_RCS, D_ALL, 0, 8, NULL},
2316
2317         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2318                 D_ALL, 0, 9, NULL},
2319
2320         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2321                 ADDR_FIX_2(2, 4), 8, NULL},
2322
2323         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2324                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2325                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2326
2327         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2328                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2329
2330         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2331                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2332                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2333
2334         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2335                 D_BDW_PLUS, 0, 8, NULL},
2336
2337         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2338                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2339
2340         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2341
2342         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2343                 1, NULL},
2344
2345         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2346                 ADDR_FIX_1(1), 8, NULL},
2347
2348         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2349
2350         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2351                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2352
2353         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2354                 ADDR_FIX_1(1), 8, NULL},
2355
2356         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2357
2358         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2359
2360         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2361                 0, 8, NULL},
2362
2363         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2364                 D_SKL_PLUS, 0, 8, NULL},
2365
2366         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2367                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2368
2369         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2370                 0, 16, NULL},
2371
2372         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2373                 0, 16, NULL},
2374
2375         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2376
2377         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2378                 0, 16, NULL},
2379
2380         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2381                 0, 16, NULL},
2382
2383         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2384                 0, 16, NULL},
2385
2386         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2387                 0, 8, NULL},
2388
2389         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2390                 NULL},
2391
2392         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2393                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2394
2395         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2396                 R_VCS, D_ALL, 0, 12, NULL},
2397
2398         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2399                 R_VCS, D_ALL, 0, 12, NULL},
2400
2401         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2402                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2403
2404         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2405                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2406
2407         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2408                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2409
2410         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2411
2412         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2413                 R_VCS, D_ALL, 0, 12, NULL},
2414
2415         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2416                 R_VCS, D_ALL, 0, 12, NULL},
2417
2418         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2419                 R_VCS, D_ALL, 0, 12, NULL},
2420
2421         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2422                 R_VCS, D_ALL, 0, 12, NULL},
2423
2424         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2425                 R_VCS, D_ALL, 0, 12, NULL},
2426
2427         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2428                 R_VCS, D_ALL, 0, 12, NULL},
2429
2430         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2431                 R_VCS, D_ALL, 0, 6, NULL},
2432
2433         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2434                 R_VCS, D_ALL, 0, 12, NULL},
2435
2436         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2437                 R_VCS, D_ALL, 0, 12, NULL},
2438
2439         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2440                 R_VCS, D_ALL, 0, 12, NULL},
2441
2442         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2443                 R_VCS, D_ALL, 0, 12, NULL},
2444
2445         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2446                 R_VCS, D_ALL, 0, 12, NULL},
2447
2448         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2449                 R_VCS, D_ALL, 0, 12, NULL},
2450
2451         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2452                 R_VCS, D_ALL, 0, 12, NULL},
2453         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2454                 R_VCS, D_ALL, 0, 12, NULL},
2455
2456         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2457                 R_VCS, D_ALL, 0, 12, NULL},
2458
2459         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2460                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2461
2462         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2463                 R_VCS, D_ALL, 0, 12, NULL},
2464
2465         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2466                 R_VCS, D_ALL, 0, 12, NULL},
2467
2468         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2469                 R_VCS, D_ALL, 0, 12, NULL},
2470
2471         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2472                 R_VCS, D_ALL, 0, 12, NULL},
2473
2474         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2475                 R_VCS, D_ALL, 0, 12, NULL},
2476
2477         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2478                 R_VCS, D_ALL, 0, 12, NULL},
2479
2480         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2481                 R_VCS, D_ALL, 0, 12, NULL},
2482
2483         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2484                 R_VCS, D_ALL, 0, 12, NULL},
2485
2486         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2487                 R_VCS, D_ALL, 0, 12, NULL},
2488
2489         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2490                 R_VCS, D_ALL, 0, 12, NULL},
2491
2492         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2493                 R_VCS, D_ALL, 0, 12, NULL},
2494
2495         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2496                 0, 16, NULL},
2497
2498         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2499
2500         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2501
2502         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2503                 R_VCS, D_ALL, 0, 12, NULL},
2504
2505         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2506                 R_VCS, D_ALL, 0, 12, NULL},
2507
2508         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2509                 R_VCS, D_ALL, 0, 12, NULL},
2510
2511         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2512
2513         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2514                 0, 12, NULL},
2515
2516         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2517                 0, 20, NULL},
2518 };
2519
2520 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2521 {
2522         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2523 }
2524
2525 /* call the cmd handler, and advance ip */
2526 static int cmd_parser_exec(struct parser_exec_state *s)
2527 {
2528         struct intel_vgpu *vgpu = s->vgpu;
2529         struct cmd_info *info;
2530         u32 cmd;
2531         int ret = 0;
2532
2533         cmd = cmd_val(s, 0);
2534
2535         info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2536         if (info == NULL) {
2537                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2538                                 cmd, get_opcode(cmd, s->ring_id),
2539                                 (s->buf_addr_type == PPGTT_BUFFER) ?
2540                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
2541                 return -EBADRQC;
2542         }
2543
2544         s->info = info;
2545
2546         trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2547                           cmd_length(s), s->buf_type, s->buf_addr_type,
2548                           s->workload, info->name);
2549
2550         if (info->handler) {
2551                 ret = info->handler(s);
2552                 if (ret < 0) {
2553                         gvt_vgpu_err("%s handler error\n", info->name);
2554                         return ret;
2555                 }
2556         }
2557
2558         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2559                 ret = cmd_advance_default(s);
2560                 if (ret) {
2561                         gvt_vgpu_err("%s IP advance error\n", info->name);
2562                         return ret;
2563                 }
2564         }
2565         return 0;
2566 }
2567
2568 static inline bool gma_out_of_range(unsigned long gma,
2569                 unsigned long gma_head, unsigned int gma_tail)
2570 {
2571         if (gma_tail >= gma_head)
2572                 return (gma < gma_head) || (gma > gma_tail);
2573         else
2574                 return (gma > gma_tail) && (gma < gma_head);
2575 }
2576
2577 /* Keep the consistent return type, e.g EBADRQC for unknown
2578  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2579  * works as the input of VM healthy status.
2580  */
2581 static int command_scan(struct parser_exec_state *s,
2582                 unsigned long rb_head, unsigned long rb_tail,
2583                 unsigned long rb_start, unsigned long rb_len)
2584 {
2585
2586         unsigned long gma_head, gma_tail, gma_bottom;
2587         int ret = 0;
2588         struct intel_vgpu *vgpu = s->vgpu;
2589
2590         gma_head = rb_start + rb_head;
2591         gma_tail = rb_start + rb_tail;
2592         gma_bottom = rb_start +  rb_len;
2593
2594         while (s->ip_gma != gma_tail) {
2595                 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2596                         if (!(s->ip_gma >= rb_start) ||
2597                                 !(s->ip_gma < gma_bottom)) {
2598                                 gvt_vgpu_err("ip_gma %lx out of ring scope."
2599                                         "(base:0x%lx, bottom: 0x%lx)\n",
2600                                         s->ip_gma, rb_start,
2601                                         gma_bottom);
2602                                 parser_exec_state_dump(s);
2603                                 return -EFAULT;
2604                         }
2605                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2606                                 gvt_vgpu_err("ip_gma %lx out of range."
2607                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2608                                         s->ip_gma, rb_start,
2609                                         rb_head, rb_tail);
2610                                 parser_exec_state_dump(s);
2611                                 break;
2612                         }
2613                 }
2614                 ret = cmd_parser_exec(s);
2615                 if (ret) {
2616                         gvt_vgpu_err("cmd parser error\n");
2617                         parser_exec_state_dump(s);
2618                         break;
2619                 }
2620         }
2621
2622         return ret;
2623 }
2624
2625 static int scan_workload(struct intel_vgpu_workload *workload)
2626 {
2627         unsigned long gma_head, gma_tail, gma_bottom;
2628         struct parser_exec_state s;
2629         int ret = 0;
2630
2631         /* ring base is page aligned */
2632         if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2633                 return -EINVAL;
2634
2635         gma_head = workload->rb_start + workload->rb_head;
2636         gma_tail = workload->rb_start + workload->rb_tail;
2637         gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2638
2639         s.buf_type = RING_BUFFER_INSTRUCTION;
2640         s.buf_addr_type = GTT_BUFFER;
2641         s.vgpu = workload->vgpu;
2642         s.ring_id = workload->ring_id;
2643         s.ring_start = workload->rb_start;
2644         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2645         s.ring_head = gma_head;
2646         s.ring_tail = gma_tail;
2647         s.rb_va = workload->shadow_ring_buffer_va;
2648         s.workload = workload;
2649         s.is_ctx_wa = false;
2650
2651         if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2652                 gma_head == gma_tail)
2653                 return 0;
2654
2655         if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2656                 ret = -EINVAL;
2657                 goto out;
2658         }
2659
2660         ret = ip_gma_set(&s, gma_head);
2661         if (ret)
2662                 goto out;
2663
2664         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2665                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2666
2667 out:
2668         return ret;
2669 }
2670
2671 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2672 {
2673
2674         unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2675         struct parser_exec_state s;
2676         int ret = 0;
2677         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2678                                 struct intel_vgpu_workload,
2679                                 wa_ctx);
2680
2681         /* ring base is page aligned */
2682         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2683                                         I915_GTT_PAGE_SIZE)))
2684                 return -EINVAL;
2685
2686         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(uint32_t);
2687         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2688                         PAGE_SIZE);
2689         gma_head = wa_ctx->indirect_ctx.guest_gma;
2690         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2691         gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2692
2693         s.buf_type = RING_BUFFER_INSTRUCTION;
2694         s.buf_addr_type = GTT_BUFFER;
2695         s.vgpu = workload->vgpu;
2696         s.ring_id = workload->ring_id;
2697         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2698         s.ring_size = ring_size;
2699         s.ring_head = gma_head;
2700         s.ring_tail = gma_tail;
2701         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2702         s.workload = workload;
2703         s.is_ctx_wa = true;
2704
2705         if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2706                 ret = -EINVAL;
2707                 goto out;
2708         }
2709
2710         ret = ip_gma_set(&s, gma_head);
2711         if (ret)
2712                 goto out;
2713
2714         ret = command_scan(&s, 0, ring_tail,
2715                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2716 out:
2717         return ret;
2718 }
2719
2720 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2721 {
2722         struct intel_vgpu *vgpu = workload->vgpu;
2723         struct intel_vgpu_submission *s = &vgpu->submission;
2724         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2725         void *shadow_ring_buffer_va;
2726         int ring_id = workload->ring_id;
2727         int ret;
2728
2729         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2730
2731         /* calculate workload ring buffer size */
2732         workload->rb_len = (workload->rb_tail + guest_rb_size -
2733                         workload->rb_head) % guest_rb_size;
2734
2735         gma_head = workload->rb_start + workload->rb_head;
2736         gma_tail = workload->rb_start + workload->rb_tail;
2737         gma_top = workload->rb_start + guest_rb_size;
2738
2739         if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2740                 void *p;
2741
2742                 /* realloc the new ring buffer if needed */
2743                 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2744                                 GFP_KERNEL);
2745                 if (!p) {
2746                         gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2747                         return -ENOMEM;
2748                 }
2749                 s->ring_scan_buffer[ring_id] = p;
2750                 s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2751         }
2752
2753         shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2754
2755         /* get shadow ring buffer va */
2756         workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2757
2758         /* head > tail --> copy head <-> top */
2759         if (gma_head > gma_tail) {
2760                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2761                                       gma_head, gma_top, shadow_ring_buffer_va);
2762                 if (ret < 0) {
2763                         gvt_vgpu_err("fail to copy guest ring buffer\n");
2764                         return ret;
2765                 }
2766                 shadow_ring_buffer_va += ret;
2767                 gma_head = workload->rb_start;
2768         }
2769
2770         /* copy head or start <-> tail */
2771         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2772                                 shadow_ring_buffer_va);
2773         if (ret < 0) {
2774                 gvt_vgpu_err("fail to copy guest ring buffer\n");
2775                 return ret;
2776         }
2777         return 0;
2778 }
2779
2780 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2781 {
2782         int ret;
2783         struct intel_vgpu *vgpu = workload->vgpu;
2784
2785         ret = shadow_workload_ring_buffer(workload);
2786         if (ret) {
2787                 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2788                 return ret;
2789         }
2790
2791         ret = scan_workload(workload);
2792         if (ret) {
2793                 gvt_vgpu_err("scan workload error\n");
2794                 return ret;
2795         }
2796         return 0;
2797 }
2798
2799 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2800 {
2801         int ctx_size = wa_ctx->indirect_ctx.size;
2802         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2803         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2804                                         struct intel_vgpu_workload,
2805                                         wa_ctx);
2806         struct intel_vgpu *vgpu = workload->vgpu;
2807         struct drm_i915_gem_object *obj;
2808         int ret = 0;
2809         void *map;
2810
2811         obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
2812                                      roundup(ctx_size + CACHELINE_BYTES,
2813                                              PAGE_SIZE));
2814         if (IS_ERR(obj))
2815                 return PTR_ERR(obj);
2816
2817         /* get the va of the shadow batch buffer */
2818         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2819         if (IS_ERR(map)) {
2820                 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2821                 ret = PTR_ERR(map);
2822                 goto put_obj;
2823         }
2824
2825         ret = i915_gem_object_set_to_cpu_domain(obj, false);
2826         if (ret) {
2827                 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2828                 goto unmap_src;
2829         }
2830
2831         ret = copy_gma_to_hva(workload->vgpu,
2832                                 workload->vgpu->gtt.ggtt_mm,
2833                                 guest_gma, guest_gma + ctx_size,
2834                                 map);
2835         if (ret < 0) {
2836                 gvt_vgpu_err("fail to copy guest indirect ctx\n");
2837                 goto unmap_src;
2838         }
2839
2840         wa_ctx->indirect_ctx.obj = obj;
2841         wa_ctx->indirect_ctx.shadow_va = map;
2842         return 0;
2843
2844 unmap_src:
2845         i915_gem_object_unpin_map(obj);
2846 put_obj:
2847         i915_gem_object_put(obj);
2848         return ret;
2849 }
2850
2851 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2852 {
2853         uint32_t per_ctx_start[CACHELINE_DWORDS] = {0};
2854         unsigned char *bb_start_sva;
2855
2856         if (!wa_ctx->per_ctx.valid)
2857                 return 0;
2858
2859         per_ctx_start[0] = 0x18800001;
2860         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2861
2862         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2863                                 wa_ctx->indirect_ctx.size;
2864
2865         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2866
2867         return 0;
2868 }
2869
2870 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2871 {
2872         int ret;
2873         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2874                                         struct intel_vgpu_workload,
2875                                         wa_ctx);
2876         struct intel_vgpu *vgpu = workload->vgpu;
2877
2878         if (wa_ctx->indirect_ctx.size == 0)
2879                 return 0;
2880
2881         ret = shadow_indirect_ctx(wa_ctx);
2882         if (ret) {
2883                 gvt_vgpu_err("fail to shadow indirect ctx\n");
2884                 return ret;
2885         }
2886
2887         combine_wa_ctx(wa_ctx);
2888
2889         ret = scan_wa_ctx(wa_ctx);
2890         if (ret) {
2891                 gvt_vgpu_err("scan wa ctx error\n");
2892                 return ret;
2893         }
2894
2895         return 0;
2896 }
2897
2898 static struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2899                 unsigned int opcode, unsigned long rings)
2900 {
2901         struct cmd_info *info = NULL;
2902         unsigned int ring;
2903
2904         for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
2905                 info = find_cmd_entry(gvt, opcode, ring);
2906                 if (info)
2907                         break;
2908         }
2909         return info;
2910 }
2911
2912 static int init_cmd_table(struct intel_gvt *gvt)
2913 {
2914         int i;
2915         struct cmd_entry *e;
2916         struct cmd_info *info;
2917         unsigned int gen_type;
2918
2919         gen_type = intel_gvt_get_device_type(gvt);
2920
2921         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2922                 if (!(cmd_info[i].devices & gen_type))
2923                         continue;
2924
2925                 e = kzalloc(sizeof(*e), GFP_KERNEL);
2926                 if (!e)
2927                         return -ENOMEM;
2928
2929                 e->info = &cmd_info[i];
2930                 info = find_cmd_entry_any_ring(gvt,
2931                                 e->info->opcode, e->info->rings);
2932                 if (info) {
2933                         gvt_err("%s %s duplicated\n", e->info->name,
2934                                         info->name);
2935                         kfree(e);
2936                         return -EEXIST;
2937                 }
2938
2939                 INIT_HLIST_NODE(&e->hlist);
2940                 add_cmd_entry(gvt, e);
2941                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2942                                 e->info->name, e->info->opcode, e->info->flag,
2943                                 e->info->devices, e->info->rings);
2944         }
2945         return 0;
2946 }
2947
2948 static void clean_cmd_table(struct intel_gvt *gvt)
2949 {
2950         struct hlist_node *tmp;
2951         struct cmd_entry *e;
2952         int i;
2953
2954         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2955                 kfree(e);
2956
2957         hash_init(gvt->cmd_table);
2958 }
2959
2960 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2961 {
2962         clean_cmd_table(gvt);
2963 }
2964
2965 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2966 {
2967         int ret;
2968
2969         ret = init_cmd_table(gvt);
2970         if (ret) {
2971                 intel_gvt_clean_cmd_parser(gvt);
2972                 return ret;
2973         }
2974         return 0;
2975 }