Merge branch 'i2c-mux/for-next' of https://github.com/peda-r/i2c-mux into i2c/for-5.2
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42
43 #define INVALID_OP    (~0U)
44
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX        16
50
51 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
52
53 struct sub_op_bits {
54         int hi;
55         int low;
56 };
57 struct decode_info {
58         const char *name;
59         int op_len;
60         int nr_sub_op;
61         const struct sub_op_bits *sub_op;
62 };
63
64 #define   MAX_CMD_BUDGET                        0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72
73 /* Render Command Map */
74
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
100
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E                            0x2E  /* BDW+ */
115 #define OP_MI_2F                            0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
120
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
165
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
176
177 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
178 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
179 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
180 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
181
182 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
183 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
184 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
185 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
186 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
187 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
188 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
189 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
190 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
191 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
192 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
193 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
194 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
195 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
196 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
197 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
198 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
199 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
200 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
201 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
202 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
203 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
204 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
205 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
206 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
207 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
208 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
209 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
211 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
212 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
213 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
224 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
225 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
226 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
227 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
240 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
242 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
248
249 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
250 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
251 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
252 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
253 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
254 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
255 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
256 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
257 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
258 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
259 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
260
261 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
262 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
263 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
264 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
265 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
266 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
267 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
268 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
269 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
270 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
271 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
272 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
273 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
274 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
275 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
281 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
282 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
283 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
284 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
285 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
286 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
287 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
288 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
289
290 /* VCCP Command Parser */
291
292 /*
293  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
294  * git://anongit.freedesktop.org/vaapi/intel-driver
295  * src/i965_defines.h
296  *
297  */
298
299 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
300         (3 << 13 | \
301          (pipeline) << 11 | \
302          (op) << 8 | \
303          (sub_opa) << 5 | \
304          (sub_opb))
305
306 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
307 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
308 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
309 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
310 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
311 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
312 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
313 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
314 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
315 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
316 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
317
318 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
319
320 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
321 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
322 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
323 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
324 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
325 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
326 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
327 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
328 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
329 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
330 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
331 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
332
333 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
334 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
335 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
336 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
337 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
338
339 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
340 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
341 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
342 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
343 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
344
345 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
346 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
347 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
348
349 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
350 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
351 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
352
353 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
354         (3 << 13 | \
355          (pipeline) << 11 | \
356          (op) << 8 | \
357          (sub_opa) << 5 | \
358          (sub_opb))
359
360 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
361 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
362 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
363
364 struct parser_exec_state;
365
366 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
367
368 #define GVT_CMD_HASH_BITS   7
369
370 /* which DWords need address fix */
371 #define ADDR_FIX_1(x1)                  (1 << (x1))
372 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
373 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
374 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
375 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
376
377 struct cmd_info {
378         const char *name;
379         u32 opcode;
380
381 #define F_LEN_MASK      (1U<<0)
382 #define F_LEN_CONST  1U
383 #define F_LEN_VAR    0U
384
385 /*
386  * command has its own ip advance logic
387  * e.g. MI_BATCH_START, MI_BATCH_END
388  */
389 #define F_IP_ADVANCE_CUSTOM (1<<1)
390
391 #define F_POST_HANDLE   (1<<2)
392         u32 flag;
393
394 #define R_RCS   (1 << RCS)
395 #define R_VCS1  (1 << VCS)
396 #define R_VCS2  (1 << VCS2)
397 #define R_VCS   (R_VCS1 | R_VCS2)
398 #define R_BCS   (1 << BCS)
399 #define R_VECS  (1 << VECS)
400 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
401         /* rings that support this cmd: BLT/RCS/VCS/VECS */
402         u16 rings;
403
404         /* devices that support this cmd: SNB/IVB/HSW/... */
405         u16 devices;
406
407         /* which DWords are address that need fix up.
408          * bit 0 means a 32-bit non address operand in command
409          * bit 1 means address operand, which could be 32-bit
410          * or 64-bit depending on different architectures.(
411          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
412          * No matter the address length, each address only takes
413          * one bit in the bitmap.
414          */
415         u16 addr_bitmap;
416
417         /* flag == F_LEN_CONST : command length
418          * flag == F_LEN_VAR : length bias bits
419          * Note: length is in DWord
420          */
421         u8 len;
422
423         parser_cmd_handler handler;
424 };
425
426 struct cmd_entry {
427         struct hlist_node hlist;
428         const struct cmd_info *info;
429 };
430
431 enum {
432         RING_BUFFER_INSTRUCTION,
433         BATCH_BUFFER_INSTRUCTION,
434         BATCH_BUFFER_2ND_LEVEL,
435 };
436
437 enum {
438         GTT_BUFFER,
439         PPGTT_BUFFER
440 };
441
442 struct parser_exec_state {
443         struct intel_vgpu *vgpu;
444         int ring_id;
445
446         int buf_type;
447
448         /* batch buffer address type */
449         int buf_addr_type;
450
451         /* graphics memory address of ring buffer start */
452         unsigned long ring_start;
453         unsigned long ring_size;
454         unsigned long ring_head;
455         unsigned long ring_tail;
456
457         /* instruction graphics memory address */
458         unsigned long ip_gma;
459
460         /* mapped va of the instr_gma */
461         void *ip_va;
462         void *rb_va;
463
464         void *ret_bb_va;
465         /* next instruction when return from  batch buffer to ring buffer */
466         unsigned long ret_ip_gma_ring;
467
468         /* next instruction when return from 2nd batch buffer to batch buffer */
469         unsigned long ret_ip_gma_bb;
470
471         /* batch buffer address type (GTT or PPGTT)
472          * used when ret from 2nd level batch buffer
473          */
474         int saved_buf_addr_type;
475         bool is_ctx_wa;
476
477         const struct cmd_info *info;
478
479         struct intel_vgpu_workload *workload;
480 };
481
482 #define gmadr_dw_number(s)      \
483         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
484
485 static unsigned long bypass_scan_mask = 0;
486
487 /* ring ALL, type = 0 */
488 static const struct sub_op_bits sub_op_mi[] = {
489         {31, 29},
490         {28, 23},
491 };
492
493 static const struct decode_info decode_info_mi = {
494         "MI",
495         OP_LEN_MI,
496         ARRAY_SIZE(sub_op_mi),
497         sub_op_mi,
498 };
499
500 /* ring RCS, command type 2 */
501 static const struct sub_op_bits sub_op_2d[] = {
502         {31, 29},
503         {28, 22},
504 };
505
506 static const struct decode_info decode_info_2d = {
507         "2D",
508         OP_LEN_2D,
509         ARRAY_SIZE(sub_op_2d),
510         sub_op_2d,
511 };
512
513 /* ring RCS, command type 3 */
514 static const struct sub_op_bits sub_op_3d_media[] = {
515         {31, 29},
516         {28, 27},
517         {26, 24},
518         {23, 16},
519 };
520
521 static const struct decode_info decode_info_3d_media = {
522         "3D_Media",
523         OP_LEN_3D_MEDIA,
524         ARRAY_SIZE(sub_op_3d_media),
525         sub_op_3d_media,
526 };
527
528 /* ring VCS, command type 3 */
529 static const struct sub_op_bits sub_op_mfx_vc[] = {
530         {31, 29},
531         {28, 27},
532         {26, 24},
533         {23, 21},
534         {20, 16},
535 };
536
537 static const struct decode_info decode_info_mfx_vc = {
538         "MFX_VC",
539         OP_LEN_MFX_VC,
540         ARRAY_SIZE(sub_op_mfx_vc),
541         sub_op_mfx_vc,
542 };
543
544 /* ring VECS, command type 3 */
545 static const struct sub_op_bits sub_op_vebox[] = {
546         {31, 29},
547         {28, 27},
548         {26, 24},
549         {23, 21},
550         {20, 16},
551 };
552
553 static const struct decode_info decode_info_vebox = {
554         "VEBOX",
555         OP_LEN_VEBOX,
556         ARRAY_SIZE(sub_op_vebox),
557         sub_op_vebox,
558 };
559
560 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
561         [RCS] = {
562                 &decode_info_mi,
563                 NULL,
564                 NULL,
565                 &decode_info_3d_media,
566                 NULL,
567                 NULL,
568                 NULL,
569                 NULL,
570         },
571
572         [VCS] = {
573                 &decode_info_mi,
574                 NULL,
575                 NULL,
576                 &decode_info_mfx_vc,
577                 NULL,
578                 NULL,
579                 NULL,
580                 NULL,
581         },
582
583         [BCS] = {
584                 &decode_info_mi,
585                 NULL,
586                 &decode_info_2d,
587                 NULL,
588                 NULL,
589                 NULL,
590                 NULL,
591                 NULL,
592         },
593
594         [VECS] = {
595                 &decode_info_mi,
596                 NULL,
597                 NULL,
598                 &decode_info_vebox,
599                 NULL,
600                 NULL,
601                 NULL,
602                 NULL,
603         },
604
605         [VCS2] = {
606                 &decode_info_mi,
607                 NULL,
608                 NULL,
609                 &decode_info_mfx_vc,
610                 NULL,
611                 NULL,
612                 NULL,
613                 NULL,
614         },
615 };
616
617 static inline u32 get_opcode(u32 cmd, int ring_id)
618 {
619         const struct decode_info *d_info;
620
621         d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
622         if (d_info == NULL)
623                 return INVALID_OP;
624
625         return cmd >> (32 - d_info->op_len);
626 }
627
628 static inline const struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
629                 unsigned int opcode, int ring_id)
630 {
631         struct cmd_entry *e;
632
633         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
634                 if ((opcode == e->info->opcode) &&
635                                 (e->info->rings & (1 << ring_id)))
636                         return e->info;
637         }
638         return NULL;
639 }
640
641 static inline const struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
642                 u32 cmd, int ring_id)
643 {
644         u32 opcode;
645
646         opcode = get_opcode(cmd, ring_id);
647         if (opcode == INVALID_OP)
648                 return NULL;
649
650         return find_cmd_entry(gvt, opcode, ring_id);
651 }
652
653 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
654 {
655         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
656 }
657
658 static inline void print_opcode(u32 cmd, int ring_id)
659 {
660         const struct decode_info *d_info;
661         int i;
662
663         d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
664         if (d_info == NULL)
665                 return;
666
667         gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
668                         cmd >> (32 - d_info->op_len), d_info->name);
669
670         for (i = 0; i < d_info->nr_sub_op; i++)
671                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
672                                         d_info->sub_op[i].low));
673
674         pr_err("\n");
675 }
676
677 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
678 {
679         return s->ip_va + (index << 2);
680 }
681
682 static inline u32 cmd_val(struct parser_exec_state *s, int index)
683 {
684         return *cmd_ptr(s, index);
685 }
686
687 static void parser_exec_state_dump(struct parser_exec_state *s)
688 {
689         int cnt = 0;
690         int i;
691
692         gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
693                         " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
694                         s->ring_id, s->ring_start, s->ring_start + s->ring_size,
695                         s->ring_head, s->ring_tail);
696
697         gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
698                         s->buf_type == RING_BUFFER_INSTRUCTION ?
699                         "RING_BUFFER" : "BATCH_BUFFER",
700                         s->buf_addr_type == GTT_BUFFER ?
701                         "GTT" : "PPGTT", s->ip_gma);
702
703         if (s->ip_va == NULL) {
704                 gvt_dbg_cmd(" ip_va(NULL)");
705                 return;
706         }
707
708         gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
709                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
710                         cmd_val(s, 2), cmd_val(s, 3));
711
712         print_opcode(cmd_val(s, 0), s->ring_id);
713
714         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
715
716         while (cnt < 1024) {
717                 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
718                 for (i = 0; i < 8; i++)
719                         gvt_dbg_cmd("%08x ", cmd_val(s, i));
720                 gvt_dbg_cmd("\n");
721
722                 s->ip_va += 8 * sizeof(u32);
723                 cnt += 8;
724         }
725 }
726
727 static inline void update_ip_va(struct parser_exec_state *s)
728 {
729         unsigned long len = 0;
730
731         if (WARN_ON(s->ring_head == s->ring_tail))
732                 return;
733
734         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
735                 unsigned long ring_top = s->ring_start + s->ring_size;
736
737                 if (s->ring_head > s->ring_tail) {
738                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
739                                 len = (s->ip_gma - s->ring_head);
740                         else if (s->ip_gma >= s->ring_start &&
741                                         s->ip_gma <= s->ring_tail)
742                                 len = (ring_top - s->ring_head) +
743                                         (s->ip_gma - s->ring_start);
744                 } else
745                         len = (s->ip_gma - s->ring_head);
746
747                 s->ip_va = s->rb_va + len;
748         } else {/* shadow batch buffer */
749                 s->ip_va = s->ret_bb_va;
750         }
751 }
752
753 static inline int ip_gma_set(struct parser_exec_state *s,
754                 unsigned long ip_gma)
755 {
756         WARN_ON(!IS_ALIGNED(ip_gma, 4));
757
758         s->ip_gma = ip_gma;
759         update_ip_va(s);
760         return 0;
761 }
762
763 static inline int ip_gma_advance(struct parser_exec_state *s,
764                 unsigned int dw_len)
765 {
766         s->ip_gma += (dw_len << 2);
767
768         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
769                 if (s->ip_gma >= s->ring_start + s->ring_size)
770                         s->ip_gma -= s->ring_size;
771                 update_ip_va(s);
772         } else {
773                 s->ip_va += (dw_len << 2);
774         }
775
776         return 0;
777 }
778
779 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
780 {
781         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
782                 return info->len;
783         else
784                 return (cmd & ((1U << info->len) - 1)) + 2;
785         return 0;
786 }
787
788 static inline int cmd_length(struct parser_exec_state *s)
789 {
790         return get_cmd_length(s->info, cmd_val(s, 0));
791 }
792
793 /* do not remove this, some platform may need clflush here */
794 #define patch_value(s, addr, val) do { \
795         *addr = val; \
796 } while (0)
797
798 static bool is_shadowed_mmio(unsigned int offset)
799 {
800         bool ret = false;
801
802         if ((offset == 0x2168) || /*BB current head register UDW */
803             (offset == 0x2140) || /*BB current header register */
804             (offset == 0x211c) || /*second BB header register UDW */
805             (offset == 0x2114)) { /*second BB header register UDW */
806                 ret = true;
807         }
808         return ret;
809 }
810
811 static inline bool is_force_nonpriv_mmio(unsigned int offset)
812 {
813         return (offset >= 0x24d0 && offset < 0x2500);
814 }
815
816 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
817                 unsigned int offset, unsigned int index, char *cmd)
818 {
819         struct intel_gvt *gvt = s->vgpu->gvt;
820         unsigned int data;
821         u32 ring_base;
822         u32 nopid;
823         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
824
825         if (!strcmp(cmd, "lri"))
826                 data = cmd_val(s, index + 1);
827         else {
828                 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
829                         offset, cmd);
830                 return -EINVAL;
831         }
832
833         ring_base = dev_priv->engine[s->ring_id]->mmio_base;
834         nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
835
836         if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
837                         data != nopid) {
838                 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
839                         offset, data);
840                 patch_value(s, cmd_ptr(s, index), nopid);
841                 return 0;
842         }
843         return 0;
844 }
845
846 static inline bool is_mocs_mmio(unsigned int offset)
847 {
848         return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
849                 ((offset >= 0xb020) && (offset <= 0xb0a0));
850 }
851
852 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
853                                 unsigned int offset, unsigned int index)
854 {
855         if (!is_mocs_mmio(offset))
856                 return -EINVAL;
857         vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
858         return 0;
859 }
860
861 static int cmd_reg_handler(struct parser_exec_state *s,
862         unsigned int offset, unsigned int index, char *cmd)
863 {
864         struct intel_vgpu *vgpu = s->vgpu;
865         struct intel_gvt *gvt = vgpu->gvt;
866         u32 ctx_sr_ctl;
867
868         if (offset + 4 > gvt->device_info.mmio_size) {
869                 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
870                                 cmd, offset);
871                 return -EFAULT;
872         }
873
874         if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
875                 gvt_vgpu_err("%s access to non-render register (%x)\n",
876                                 cmd, offset);
877                 return -EBADRQC;
878         }
879
880         if (is_shadowed_mmio(offset)) {
881                 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
882                 return 0;
883         }
884
885         if (is_mocs_mmio(offset) &&
886             mocs_cmd_reg_handler(s, offset, index))
887                 return -EINVAL;
888
889         if (is_force_nonpriv_mmio(offset) &&
890                 force_nonpriv_reg_handler(s, offset, index, cmd))
891                 return -EPERM;
892
893         if (offset == i915_mmio_reg_offset(DERRMR) ||
894                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
895                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
896                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
897         }
898
899         /* TODO
900          * Right now only scan LRI command on KBL and in inhibit context.
901          * It's good enough to support initializing mmio by lri command in
902          * vgpu inhibit context on KBL.
903          */
904         if ((IS_KABYLAKE(s->vgpu->gvt->dev_priv)
905                 || IS_COFFEELAKE(s->vgpu->gvt->dev_priv)) &&
906                         intel_gvt_mmio_is_in_ctx(gvt, offset) &&
907                         !strncmp(cmd, "lri", 3)) {
908                 intel_gvt_hypervisor_read_gpa(s->vgpu,
909                         s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
910                 /* check inhibit context */
911                 if (ctx_sr_ctl & 1) {
912                         u32 data = cmd_val(s, index + 1);
913
914                         if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
915                                 intel_vgpu_mask_mmio_write(vgpu,
916                                                         offset, &data, 4);
917                         else
918                                 vgpu_vreg(vgpu, offset) = data;
919                 }
920         }
921
922         /* TODO: Update the global mask if this MMIO is a masked-MMIO */
923         intel_gvt_mmio_set_cmd_accessed(gvt, offset);
924         return 0;
925 }
926
927 #define cmd_reg(s, i) \
928         (cmd_val(s, i) & GENMASK(22, 2))
929
930 #define cmd_reg_inhibit(s, i) \
931         (cmd_val(s, i) & GENMASK(22, 18))
932
933 #define cmd_gma(s, i) \
934         (cmd_val(s, i) & GENMASK(31, 2))
935
936 #define cmd_gma_hi(s, i) \
937         (cmd_val(s, i) & GENMASK(15, 0))
938
939 static int cmd_handler_lri(struct parser_exec_state *s)
940 {
941         int i, ret = 0;
942         int cmd_len = cmd_length(s);
943         struct intel_gvt *gvt = s->vgpu->gvt;
944
945         for (i = 1; i < cmd_len; i += 2) {
946                 if (IS_BROADWELL(gvt->dev_priv) &&
947                                 (s->ring_id != RCS)) {
948                         if (s->ring_id == BCS &&
949                                         cmd_reg(s, i) ==
950                                         i915_mmio_reg_offset(DERRMR))
951                                 ret |= 0;
952                         else
953                                 ret |= (cmd_reg_inhibit(s, i)) ?
954                                         -EBADRQC : 0;
955                 }
956                 if (ret)
957                         break;
958                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
959                 if (ret)
960                         break;
961         }
962         return ret;
963 }
964
965 static int cmd_handler_lrr(struct parser_exec_state *s)
966 {
967         int i, ret = 0;
968         int cmd_len = cmd_length(s);
969
970         for (i = 1; i < cmd_len; i += 2) {
971                 if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
972                         ret |= ((cmd_reg_inhibit(s, i) ||
973                                         (cmd_reg_inhibit(s, i + 1)))) ?
974                                 -EBADRQC : 0;
975                 if (ret)
976                         break;
977                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
978                 if (ret)
979                         break;
980                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
981                 if (ret)
982                         break;
983         }
984         return ret;
985 }
986
987 static inline int cmd_address_audit(struct parser_exec_state *s,
988                 unsigned long guest_gma, int op_size, bool index_mode);
989
990 static int cmd_handler_lrm(struct parser_exec_state *s)
991 {
992         struct intel_gvt *gvt = s->vgpu->gvt;
993         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
994         unsigned long gma;
995         int i, ret = 0;
996         int cmd_len = cmd_length(s);
997
998         for (i = 1; i < cmd_len;) {
999                 if (IS_BROADWELL(gvt->dev_priv))
1000                         ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1001                 if (ret)
1002                         break;
1003                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1004                 if (ret)
1005                         break;
1006                 if (cmd_val(s, 0) & (1 << 22)) {
1007                         gma = cmd_gma(s, i + 1);
1008                         if (gmadr_bytes == 8)
1009                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1010                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1011                         if (ret)
1012                                 break;
1013                 }
1014                 i += gmadr_dw_number(s) + 1;
1015         }
1016         return ret;
1017 }
1018
1019 static int cmd_handler_srm(struct parser_exec_state *s)
1020 {
1021         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1022         unsigned long gma;
1023         int i, ret = 0;
1024         int cmd_len = cmd_length(s);
1025
1026         for (i = 1; i < cmd_len;) {
1027                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1028                 if (ret)
1029                         break;
1030                 if (cmd_val(s, 0) & (1 << 22)) {
1031                         gma = cmd_gma(s, i + 1);
1032                         if (gmadr_bytes == 8)
1033                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1034                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1035                         if (ret)
1036                                 break;
1037                 }
1038                 i += gmadr_dw_number(s) + 1;
1039         }
1040         return ret;
1041 }
1042
1043 struct cmd_interrupt_event {
1044         int pipe_control_notify;
1045         int mi_flush_dw;
1046         int mi_user_interrupt;
1047 };
1048
1049 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1050         [RCS] = {
1051                 .pipe_control_notify = RCS_PIPE_CONTROL,
1052                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1053                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1054         },
1055         [BCS] = {
1056                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1057                 .mi_flush_dw = BCS_MI_FLUSH_DW,
1058                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1059         },
1060         [VCS] = {
1061                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1062                 .mi_flush_dw = VCS_MI_FLUSH_DW,
1063                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1064         },
1065         [VCS2] = {
1066                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1067                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1068                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1069         },
1070         [VECS] = {
1071                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1072                 .mi_flush_dw = VECS_MI_FLUSH_DW,
1073                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1074         },
1075 };
1076
1077 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1078 {
1079         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1080         unsigned long gma;
1081         bool index_mode = false;
1082         unsigned int post_sync;
1083         int ret = 0;
1084
1085         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1086
1087         /* LRI post sync */
1088         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1089                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1090         /* post sync */
1091         else if (post_sync) {
1092                 if (post_sync == 2)
1093                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1094                 else if (post_sync == 3)
1095                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1096                 else if (post_sync == 1) {
1097                         /* check ggtt*/
1098                         if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1099                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1100                                 if (gmadr_bytes == 8)
1101                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1102                                 /* Store Data Index */
1103                                 if (cmd_val(s, 1) & (1 << 21))
1104                                         index_mode = true;
1105                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1106                                                 index_mode);
1107                         }
1108                 }
1109         }
1110
1111         if (ret)
1112                 return ret;
1113
1114         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1115                 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1116                                 s->workload->pending_events);
1117         return 0;
1118 }
1119
1120 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1121 {
1122         set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1123                         s->workload->pending_events);
1124         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1125         return 0;
1126 }
1127
1128 static int cmd_advance_default(struct parser_exec_state *s)
1129 {
1130         return ip_gma_advance(s, cmd_length(s));
1131 }
1132
1133 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1134 {
1135         int ret;
1136
1137         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1138                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1139                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1140                 s->buf_addr_type = s->saved_buf_addr_type;
1141         } else {
1142                 s->buf_type = RING_BUFFER_INSTRUCTION;
1143                 s->buf_addr_type = GTT_BUFFER;
1144                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1145                         s->ret_ip_gma_ring -= s->ring_size;
1146                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1147         }
1148         return ret;
1149 }
1150
1151 struct mi_display_flip_command_info {
1152         int pipe;
1153         int plane;
1154         int event;
1155         i915_reg_t stride_reg;
1156         i915_reg_t ctrl_reg;
1157         i915_reg_t surf_reg;
1158         u64 stride_val;
1159         u64 tile_val;
1160         u64 surf_val;
1161         bool async_flip;
1162 };
1163
1164 struct plane_code_mapping {
1165         int pipe;
1166         int plane;
1167         int event;
1168 };
1169
1170 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1171                 struct mi_display_flip_command_info *info)
1172 {
1173         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1174         struct plane_code_mapping gen8_plane_code[] = {
1175                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1176                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1177                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1178                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1179                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1180                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1181         };
1182         u32 dword0, dword1, dword2;
1183         u32 v;
1184
1185         dword0 = cmd_val(s, 0);
1186         dword1 = cmd_val(s, 1);
1187         dword2 = cmd_val(s, 2);
1188
1189         v = (dword0 & GENMASK(21, 19)) >> 19;
1190         if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1191                 return -EBADRQC;
1192
1193         info->pipe = gen8_plane_code[v].pipe;
1194         info->plane = gen8_plane_code[v].plane;
1195         info->event = gen8_plane_code[v].event;
1196         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1197         info->tile_val = (dword1 & 0x1);
1198         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1199         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1200
1201         if (info->plane == PLANE_A) {
1202                 info->ctrl_reg = DSPCNTR(info->pipe);
1203                 info->stride_reg = DSPSTRIDE(info->pipe);
1204                 info->surf_reg = DSPSURF(info->pipe);
1205         } else if (info->plane == PLANE_B) {
1206                 info->ctrl_reg = SPRCTL(info->pipe);
1207                 info->stride_reg = SPRSTRIDE(info->pipe);
1208                 info->surf_reg = SPRSURF(info->pipe);
1209         } else {
1210                 WARN_ON(1);
1211                 return -EBADRQC;
1212         }
1213         return 0;
1214 }
1215
1216 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1217                 struct mi_display_flip_command_info *info)
1218 {
1219         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1220         struct intel_vgpu *vgpu = s->vgpu;
1221         u32 dword0 = cmd_val(s, 0);
1222         u32 dword1 = cmd_val(s, 1);
1223         u32 dword2 = cmd_val(s, 2);
1224         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1225
1226         info->plane = PRIMARY_PLANE;
1227
1228         switch (plane) {
1229         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1230                 info->pipe = PIPE_A;
1231                 info->event = PRIMARY_A_FLIP_DONE;
1232                 break;
1233         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1234                 info->pipe = PIPE_B;
1235                 info->event = PRIMARY_B_FLIP_DONE;
1236                 break;
1237         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1238                 info->pipe = PIPE_C;
1239                 info->event = PRIMARY_C_FLIP_DONE;
1240                 break;
1241
1242         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1243                 info->pipe = PIPE_A;
1244                 info->event = SPRITE_A_FLIP_DONE;
1245                 info->plane = SPRITE_PLANE;
1246                 break;
1247         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1248                 info->pipe = PIPE_B;
1249                 info->event = SPRITE_B_FLIP_DONE;
1250                 info->plane = SPRITE_PLANE;
1251                 break;
1252         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1253                 info->pipe = PIPE_C;
1254                 info->event = SPRITE_C_FLIP_DONE;
1255                 info->plane = SPRITE_PLANE;
1256                 break;
1257
1258         default:
1259                 gvt_vgpu_err("unknown plane code %d\n", plane);
1260                 return -EBADRQC;
1261         }
1262
1263         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1264         info->tile_val = (dword1 & GENMASK(2, 0));
1265         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1266         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1267
1268         info->ctrl_reg = DSPCNTR(info->pipe);
1269         info->stride_reg = DSPSTRIDE(info->pipe);
1270         info->surf_reg = DSPSURF(info->pipe);
1271
1272         return 0;
1273 }
1274
1275 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1276                 struct mi_display_flip_command_info *info)
1277 {
1278         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1279         u32 stride, tile;
1280
1281         if (!info->async_flip)
1282                 return 0;
1283
1284         if (INTEL_GEN(dev_priv) >= 9) {
1285                 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1286                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1287                                 GENMASK(12, 10)) >> 10;
1288         } else {
1289                 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1290                                 GENMASK(15, 6)) >> 6;
1291                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1292         }
1293
1294         if (stride != info->stride_val)
1295                 gvt_dbg_cmd("cannot change stride during async flip\n");
1296
1297         if (tile != info->tile_val)
1298                 gvt_dbg_cmd("cannot change tile during async flip\n");
1299
1300         return 0;
1301 }
1302
1303 static int gen8_update_plane_mmio_from_mi_display_flip(
1304                 struct parser_exec_state *s,
1305                 struct mi_display_flip_command_info *info)
1306 {
1307         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1308         struct intel_vgpu *vgpu = s->vgpu;
1309
1310         set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1311                       info->surf_val << 12);
1312         if (INTEL_GEN(dev_priv) >= 9) {
1313                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1314                               info->stride_val);
1315                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1316                               info->tile_val << 10);
1317         } else {
1318                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1319                               info->stride_val << 6);
1320                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1321                               info->tile_val << 10);
1322         }
1323
1324         vgpu_vreg_t(vgpu, PIPE_FRMCOUNT_G4X(info->pipe))++;
1325         intel_vgpu_trigger_virtual_event(vgpu, info->event);
1326         return 0;
1327 }
1328
1329 static int decode_mi_display_flip(struct parser_exec_state *s,
1330                 struct mi_display_flip_command_info *info)
1331 {
1332         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1333
1334         if (IS_BROADWELL(dev_priv))
1335                 return gen8_decode_mi_display_flip(s, info);
1336         if (INTEL_GEN(dev_priv) >= 9)
1337                 return skl_decode_mi_display_flip(s, info);
1338
1339         return -ENODEV;
1340 }
1341
1342 static int check_mi_display_flip(struct parser_exec_state *s,
1343                 struct mi_display_flip_command_info *info)
1344 {
1345         return gen8_check_mi_display_flip(s, info);
1346 }
1347
1348 static int update_plane_mmio_from_mi_display_flip(
1349                 struct parser_exec_state *s,
1350                 struct mi_display_flip_command_info *info)
1351 {
1352         return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1353 }
1354
1355 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1356 {
1357         struct mi_display_flip_command_info info;
1358         struct intel_vgpu *vgpu = s->vgpu;
1359         int ret;
1360         int i;
1361         int len = cmd_length(s);
1362
1363         ret = decode_mi_display_flip(s, &info);
1364         if (ret) {
1365                 gvt_vgpu_err("fail to decode MI display flip command\n");
1366                 return ret;
1367         }
1368
1369         ret = check_mi_display_flip(s, &info);
1370         if (ret) {
1371                 gvt_vgpu_err("invalid MI display flip command\n");
1372                 return ret;
1373         }
1374
1375         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1376         if (ret) {
1377                 gvt_vgpu_err("fail to update plane mmio\n");
1378                 return ret;
1379         }
1380
1381         for (i = 0; i < len; i++)
1382                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1383         return 0;
1384 }
1385
1386 static bool is_wait_for_flip_pending(u32 cmd)
1387 {
1388         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1389                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1390                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1391                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1392                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1393                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1394 }
1395
1396 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1397 {
1398         u32 cmd = cmd_val(s, 0);
1399
1400         if (!is_wait_for_flip_pending(cmd))
1401                 return 0;
1402
1403         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1404         return 0;
1405 }
1406
1407 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1408 {
1409         unsigned long addr;
1410         unsigned long gma_high, gma_low;
1411         struct intel_vgpu *vgpu = s->vgpu;
1412         int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1413
1414         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1415                 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1416                 return INTEL_GVT_INVALID_ADDR;
1417         }
1418
1419         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1420         if (gmadr_bytes == 4) {
1421                 addr = gma_low;
1422         } else {
1423                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1424                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1425         }
1426         return addr;
1427 }
1428
1429 static inline int cmd_address_audit(struct parser_exec_state *s,
1430                 unsigned long guest_gma, int op_size, bool index_mode)
1431 {
1432         struct intel_vgpu *vgpu = s->vgpu;
1433         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1434         int i;
1435         int ret;
1436
1437         if (op_size > max_surface_size) {
1438                 gvt_vgpu_err("command address audit fail name %s\n",
1439                         s->info->name);
1440                 return -EFAULT;
1441         }
1442
1443         if (index_mode) {
1444                 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1445                         ret = -EFAULT;
1446                         goto err;
1447                 }
1448         } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1449                 ret = -EFAULT;
1450                 goto err;
1451         }
1452
1453         return 0;
1454
1455 err:
1456         gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1457                         s->info->name, guest_gma, op_size);
1458
1459         pr_err("cmd dump: ");
1460         for (i = 0; i < cmd_length(s); i++) {
1461                 if (!(i % 4))
1462                         pr_err("\n%08x ", cmd_val(s, i));
1463                 else
1464                         pr_err("%08x ", cmd_val(s, i));
1465         }
1466         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1467                         vgpu->id,
1468                         vgpu_aperture_gmadr_base(vgpu),
1469                         vgpu_aperture_gmadr_end(vgpu),
1470                         vgpu_hidden_gmadr_base(vgpu),
1471                         vgpu_hidden_gmadr_end(vgpu));
1472         return ret;
1473 }
1474
1475 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1476 {
1477         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1478         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1479         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1480         unsigned long gma, gma_low, gma_high;
1481         int ret = 0;
1482
1483         /* check ppggt */
1484         if (!(cmd_val(s, 0) & (1 << 22)))
1485                 return 0;
1486
1487         gma = cmd_val(s, 2) & GENMASK(31, 2);
1488
1489         if (gmadr_bytes == 8) {
1490                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1491                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1492                 gma = (gma_high << 32) | gma_low;
1493                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1494         }
1495         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1496         return ret;
1497 }
1498
1499 static inline int unexpected_cmd(struct parser_exec_state *s)
1500 {
1501         struct intel_vgpu *vgpu = s->vgpu;
1502
1503         gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1504
1505         return -EBADRQC;
1506 }
1507
1508 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1509 {
1510         return unexpected_cmd(s);
1511 }
1512
1513 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1514 {
1515         return unexpected_cmd(s);
1516 }
1517
1518 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1519 {
1520         return unexpected_cmd(s);
1521 }
1522
1523 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1524 {
1525         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1526         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1527                         sizeof(u32);
1528         unsigned long gma, gma_high;
1529         int ret = 0;
1530
1531         if (!(cmd_val(s, 0) & (1 << 22)))
1532                 return ret;
1533
1534         gma = cmd_val(s, 1) & GENMASK(31, 2);
1535         if (gmadr_bytes == 8) {
1536                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1537                 gma = (gma_high << 32) | gma;
1538         }
1539         ret = cmd_address_audit(s, gma, op_size, false);
1540         return ret;
1541 }
1542
1543 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1544 {
1545         return unexpected_cmd(s);
1546 }
1547
1548 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1549 {
1550         return unexpected_cmd(s);
1551 }
1552
1553 static int cmd_handler_mi_conditional_batch_buffer_end(
1554                 struct parser_exec_state *s)
1555 {
1556         return unexpected_cmd(s);
1557 }
1558
1559 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1560 {
1561         return unexpected_cmd(s);
1562 }
1563
1564 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1565 {
1566         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1567         unsigned long gma;
1568         bool index_mode = false;
1569         int ret = 0;
1570
1571         /* Check post-sync and ppgtt bit */
1572         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1573                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1574                 if (gmadr_bytes == 8)
1575                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1576                 /* Store Data Index */
1577                 if (cmd_val(s, 0) & (1 << 21))
1578                         index_mode = true;
1579                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1580         }
1581         /* Check notify bit */
1582         if ((cmd_val(s, 0) & (1 << 8)))
1583                 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1584                                 s->workload->pending_events);
1585         return ret;
1586 }
1587
1588 static void addr_type_update_snb(struct parser_exec_state *s)
1589 {
1590         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1591                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1592                 s->buf_addr_type = PPGTT_BUFFER;
1593         }
1594 }
1595
1596
1597 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1598                 unsigned long gma, unsigned long end_gma, void *va)
1599 {
1600         unsigned long copy_len, offset;
1601         unsigned long len = 0;
1602         unsigned long gpa;
1603
1604         while (gma != end_gma) {
1605                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1606                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1607                         gvt_vgpu_err("invalid gma address: %lx\n", gma);
1608                         return -EFAULT;
1609                 }
1610
1611                 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1612
1613                 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1614                         I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1615
1616                 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1617
1618                 len += copy_len;
1619                 gma += copy_len;
1620         }
1621         return len;
1622 }
1623
1624
1625 /*
1626  * Check whether a batch buffer needs to be scanned. Currently
1627  * the only criteria is based on privilege.
1628  */
1629 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1630 {
1631         /* Decide privilege based on address space */
1632         if (cmd_val(s, 0) & (1 << 8) &&
1633                         !(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1634                 return 0;
1635         return 1;
1636 }
1637
1638 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
1639 {
1640         unsigned long gma = 0;
1641         const struct cmd_info *info;
1642         u32 cmd_len = 0;
1643         bool bb_end = false;
1644         struct intel_vgpu *vgpu = s->vgpu;
1645         u32 cmd;
1646         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1647                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1648
1649         *bb_size = 0;
1650
1651         /* get the start gm address of the batch buffer */
1652         gma = get_gma_bb_from_cmd(s, 1);
1653         if (gma == INTEL_GVT_INVALID_ADDR)
1654                 return -EFAULT;
1655
1656         cmd = cmd_val(s, 0);
1657         info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1658         if (info == NULL) {
1659                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1660                                 cmd, get_opcode(cmd, s->ring_id),
1661                                 (s->buf_addr_type == PPGTT_BUFFER) ?
1662                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
1663                 return -EBADRQC;
1664         }
1665         do {
1666                 if (copy_gma_to_hva(s->vgpu, mm,
1667                                 gma, gma + 4, &cmd) < 0)
1668                         return -EFAULT;
1669                 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1670                 if (info == NULL) {
1671                         gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1672                                 cmd, get_opcode(cmd, s->ring_id),
1673                                 (s->buf_addr_type == PPGTT_BUFFER) ?
1674                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
1675                         return -EBADRQC;
1676                 }
1677
1678                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1679                         bb_end = true;
1680                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1681                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1682                                 /* chained batch buffer */
1683                                 bb_end = true;
1684                 }
1685                 cmd_len = get_cmd_length(info, cmd) << 2;
1686                 *bb_size += cmd_len;
1687                 gma += cmd_len;
1688         } while (!bb_end);
1689
1690         return 0;
1691 }
1692
1693 static int perform_bb_shadow(struct parser_exec_state *s)
1694 {
1695         struct intel_vgpu *vgpu = s->vgpu;
1696         struct intel_vgpu_shadow_bb *bb;
1697         unsigned long gma = 0;
1698         unsigned long bb_size;
1699         int ret = 0;
1700         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1701                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1702         unsigned long gma_start_offset = 0;
1703
1704         /* get the start gm address of the batch buffer */
1705         gma = get_gma_bb_from_cmd(s, 1);
1706         if (gma == INTEL_GVT_INVALID_ADDR)
1707                 return -EFAULT;
1708
1709         ret = find_bb_size(s, &bb_size);
1710         if (ret)
1711                 return ret;
1712
1713         bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1714         if (!bb)
1715                 return -ENOMEM;
1716
1717         bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1718
1719         /* the gma_start_offset stores the batch buffer's start gma's
1720          * offset relative to page boundary. so for non-privileged batch
1721          * buffer, the shadowed gem object holds exactly the same page
1722          * layout as original gem object. This is for the convience of
1723          * replacing the whole non-privilged batch buffer page to this
1724          * shadowed one in PPGTT at the same gma address. (this replacing
1725          * action is not implemented yet now, but may be necessary in
1726          * future).
1727          * for prileged batch buffer, we just change start gma address to
1728          * that of shadowed page.
1729          */
1730         if (bb->ppgtt)
1731                 gma_start_offset = gma & ~I915_GTT_PAGE_MASK;
1732
1733         bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
1734                          roundup(bb_size + gma_start_offset, PAGE_SIZE));
1735         if (IS_ERR(bb->obj)) {
1736                 ret = PTR_ERR(bb->obj);
1737                 goto err_free_bb;
1738         }
1739
1740         ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
1741         if (ret)
1742                 goto err_free_obj;
1743
1744         bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1745         if (IS_ERR(bb->va)) {
1746                 ret = PTR_ERR(bb->va);
1747                 goto err_finish_shmem_access;
1748         }
1749
1750         if (bb->clflush & CLFLUSH_BEFORE) {
1751                 drm_clflush_virt_range(bb->va, bb->obj->base.size);
1752                 bb->clflush &= ~CLFLUSH_BEFORE;
1753         }
1754
1755         ret = copy_gma_to_hva(s->vgpu, mm,
1756                               gma, gma + bb_size,
1757                               bb->va + gma_start_offset);
1758         if (ret < 0) {
1759                 gvt_vgpu_err("fail to copy guest ring buffer\n");
1760                 ret = -EFAULT;
1761                 goto err_unmap;
1762         }
1763
1764         INIT_LIST_HEAD(&bb->list);
1765         list_add(&bb->list, &s->workload->shadow_bb);
1766
1767         bb->accessing = true;
1768         bb->bb_start_cmd_va = s->ip_va;
1769
1770         if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1771                 bb->bb_offset = s->ip_va - s->rb_va;
1772         else
1773                 bb->bb_offset = 0;
1774
1775         /*
1776          * ip_va saves the virtual address of the shadow batch buffer, while
1777          * ip_gma saves the graphics address of the original batch buffer.
1778          * As the shadow batch buffer is just a copy from the originial one,
1779          * it should be right to use shadow batch buffer'va and original batch
1780          * buffer's gma in pair. After all, we don't want to pin the shadow
1781          * buffer here (too early).
1782          */
1783         s->ip_va = bb->va + gma_start_offset;
1784         s->ip_gma = gma;
1785         return 0;
1786 err_unmap:
1787         i915_gem_object_unpin_map(bb->obj);
1788 err_finish_shmem_access:
1789         i915_gem_obj_finish_shmem_access(bb->obj);
1790 err_free_obj:
1791         i915_gem_object_put(bb->obj);
1792 err_free_bb:
1793         kfree(bb);
1794         return ret;
1795 }
1796
1797 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1798 {
1799         bool second_level;
1800         int ret = 0;
1801         struct intel_vgpu *vgpu = s->vgpu;
1802
1803         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1804                 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1805                 return -EFAULT;
1806         }
1807
1808         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1809         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1810                 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1811                 return -EFAULT;
1812         }
1813
1814         s->saved_buf_addr_type = s->buf_addr_type;
1815         addr_type_update_snb(s);
1816         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1817                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1818                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1819         } else if (second_level) {
1820                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1821                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1822                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1823         }
1824
1825         if (batch_buffer_needs_scan(s)) {
1826                 ret = perform_bb_shadow(s);
1827                 if (ret < 0)
1828                         gvt_vgpu_err("invalid shadow batch buffer\n");
1829         } else {
1830                 /* emulate a batch buffer end to do return right */
1831                 ret = cmd_handler_mi_batch_buffer_end(s);
1832                 if (ret < 0)
1833                         return ret;
1834         }
1835         return ret;
1836 }
1837
1838 static int mi_noop_index;
1839
1840 static const struct cmd_info cmd_info[] = {
1841         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1842
1843         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1844                 0, 1, NULL},
1845
1846         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1847                 0, 1, cmd_handler_mi_user_interrupt},
1848
1849         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1850                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1851
1852         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1853
1854         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1855                 NULL},
1856
1857         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1858                 NULL},
1859
1860         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1861                 NULL},
1862
1863         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1864                 NULL},
1865
1866         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1867                 D_ALL, 0, 1, NULL},
1868
1869         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1870                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1871                 cmd_handler_mi_batch_buffer_end},
1872
1873         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1874                 0, 1, NULL},
1875
1876         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1877                 NULL},
1878
1879         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1880                 D_ALL, 0, 1, NULL},
1881
1882         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1883                 NULL},
1884
1885         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1886                 NULL},
1887
1888         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1889                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1890
1891         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1892                 0, 8, NULL},
1893
1894         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1895
1896         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1897
1898         {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1899                 D_BDW_PLUS, 0, 8, NULL},
1900
1901         {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL,
1902                 D_BDW_PLUS, ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1903
1904         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1905                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1906
1907         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1908                 0, 8, cmd_handler_mi_store_data_index},
1909
1910         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1911                 D_ALL, 0, 8, cmd_handler_lri},
1912
1913         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1914                 cmd_handler_mi_update_gtt},
1915
1916         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1917                 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1918
1919         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1920                 cmd_handler_mi_flush_dw},
1921
1922         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1923                 10, cmd_handler_mi_clflush},
1924
1925         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1926                 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1927
1928         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1929                 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1930
1931         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1932                 D_ALL, 0, 8, cmd_handler_lrr},
1933
1934         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1935                 D_ALL, 0, 8, NULL},
1936
1937         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1938                 ADDR_FIX_1(2), 8, NULL},
1939
1940         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1941                 ADDR_FIX_1(2), 8, NULL},
1942
1943         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1944                 8, cmd_handler_mi_op_2e},
1945
1946         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1947                 8, cmd_handler_mi_op_2f},
1948
1949         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1950                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1951                 cmd_handler_mi_batch_buffer_start},
1952
1953         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1954                 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1955                 cmd_handler_mi_conditional_batch_buffer_end},
1956
1957         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1958                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1959
1960         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1961                 ADDR_FIX_2(4, 7), 8, NULL},
1962
1963         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1964                 0, 8, NULL},
1965
1966         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1967                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1968
1969         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1970
1971         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1972                 0, 8, NULL},
1973
1974         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1975                 ADDR_FIX_1(3), 8, NULL},
1976
1977         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
1978                 D_ALL, 0, 8, NULL},
1979
1980         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
1981                 ADDR_FIX_1(4), 8, NULL},
1982
1983         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1984                 ADDR_FIX_2(4, 5), 8, NULL},
1985
1986         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1987                 ADDR_FIX_1(4), 8, NULL},
1988
1989         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
1990                 ADDR_FIX_2(4, 7), 8, NULL},
1991
1992         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
1993                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
1994
1995         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1996
1997         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
1998                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
1999
2000         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2001                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2002
2003         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2004                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2005                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2006
2007         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2008                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2009
2010         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2011                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2012
2013         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2014                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2015
2016         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2017                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2018
2019         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2020                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2021
2022         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2023                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2024                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2025
2026         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2027                 ADDR_FIX_2(4, 5), 8, NULL},
2028
2029         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2030                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2031
2032         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2033                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2034                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2035
2036         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2037                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2038                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2039
2040         {"3DSTATE_BLEND_STATE_POINTERS",
2041                 OP_3DSTATE_BLEND_STATE_POINTERS,
2042                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2043
2044         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2045                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2046                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2047
2048         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2049                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2050                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2051
2052         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2053                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2054                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2055
2056         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2057                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2058                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2059
2060         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2061                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2062                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2063
2064         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2065                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2066                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2067
2068         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2069                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2070                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2071
2072         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2073                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2074                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2075
2076         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2077                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2078                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2079
2080         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2081                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2082                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2083
2084         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2085                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2086                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2087
2088         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2089                 0, 8, NULL},
2090
2091         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2092                 0, 8, NULL},
2093
2094         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2095                 0, 8, NULL},
2096
2097         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2098                 0, 8, NULL},
2099
2100         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2101                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2102
2103         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2104                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2105
2106         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2107                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2108
2109         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2110                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2111
2112         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2113                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2114
2115         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2116                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2117
2118         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2119                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2120
2121         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2122                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2123
2124         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2125                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2126
2127         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2128                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2129
2130         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2131                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2132
2133         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2134                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2135
2136         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2137                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2138
2139         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2140                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2141
2142         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2143                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2144
2145         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2146                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2147
2148         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2149                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2150
2151         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2152                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2153
2154         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2155                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2156
2157         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2158                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2159
2160         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2161                 D_BDW_PLUS, 0, 8, NULL},
2162
2163         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2164                 NULL},
2165
2166         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2167                 D_BDW_PLUS, 0, 8, NULL},
2168
2169         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2170                 D_BDW_PLUS, 0, 8, NULL},
2171
2172         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2173                 8, NULL},
2174
2175         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2176                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2177
2178         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2179                 8, NULL},
2180
2181         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2182                 NULL},
2183
2184         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2185                 NULL},
2186
2187         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2188                 NULL},
2189
2190         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2191                 D_BDW_PLUS, 0, 8, NULL},
2192
2193         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2194                 R_RCS, D_ALL, 0, 8, NULL},
2195
2196         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2197                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2198
2199         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2200                 R_RCS, D_ALL, 0, 1, NULL},
2201
2202         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2203
2204         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2205                 R_RCS, D_ALL, 0, 8, NULL},
2206
2207         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2208                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2209
2210         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2211
2212         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2213
2214         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2215
2216         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2217                 D_BDW_PLUS, 0, 8, NULL},
2218
2219         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2220                 D_BDW_PLUS, 0, 8, NULL},
2221
2222         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2223                 D_ALL, 0, 8, NULL},
2224
2225         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2226                 D_BDW_PLUS, 0, 8, NULL},
2227
2228         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2229                 D_BDW_PLUS, 0, 8, NULL},
2230
2231         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2232
2233         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2234
2235         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2236
2237         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2238                 D_ALL, 0, 8, NULL},
2239
2240         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2241
2242         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2243
2244         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2245                 R_RCS, D_ALL, 0, 8, NULL},
2246
2247         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2248                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2249
2250         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2251                 0, 8, NULL},
2252
2253         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2254                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2255
2256         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2257                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2258
2259         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2260                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2261
2262         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2263                 D_ALL, 0, 8, NULL},
2264
2265         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2266                 D_ALL, 0, 8, NULL},
2267
2268         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2269                 D_ALL, 0, 8, NULL},
2270
2271         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2272                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2273
2274         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2275                 D_BDW_PLUS, 0, 8, NULL},
2276
2277         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2278                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2279
2280         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2281                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2282
2283         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2284                 R_RCS, D_ALL, 0, 8, NULL},
2285
2286         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2287                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2288
2289         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2290                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2291
2292         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2293                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2294
2295         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2296                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2297
2298         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2299                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2300
2301         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2302                 R_RCS, D_ALL, 0, 8, NULL},
2303
2304         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2305                 D_ALL, 0, 9, NULL},
2306
2307         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2308                 ADDR_FIX_2(2, 4), 8, NULL},
2309
2310         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2311                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2312                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2313
2314         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2315                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2316
2317         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2318                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2319                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2320
2321         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2322                 D_BDW_PLUS, 0, 8, NULL},
2323
2324         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2325                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2326
2327         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2328
2329         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2330                 1, NULL},
2331
2332         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2333                 ADDR_FIX_1(1), 8, NULL},
2334
2335         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2336
2337         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2338                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2339
2340         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2341                 ADDR_FIX_1(1), 8, NULL},
2342
2343         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2344
2345         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2346
2347         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2348                 0, 8, NULL},
2349
2350         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2351                 D_SKL_PLUS, 0, 8, NULL},
2352
2353         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2354                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2355
2356         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2357                 0, 16, NULL},
2358
2359         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2360                 0, 16, NULL},
2361
2362         {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2363                 0, 16, NULL},
2364
2365         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2366
2367         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2368                 0, 16, NULL},
2369
2370         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2371                 0, 16, NULL},
2372
2373         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2374                 0, 16, NULL},
2375
2376         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2377                 0, 8, NULL},
2378
2379         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2380                 NULL},
2381
2382         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2383                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2384
2385         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2386                 R_VCS, D_ALL, 0, 12, NULL},
2387
2388         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2389                 R_VCS, D_ALL, 0, 12, NULL},
2390
2391         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2392                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2393
2394         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2395                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2396
2397         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2398                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2399
2400         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2401
2402         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2403                 R_VCS, D_ALL, 0, 12, NULL},
2404
2405         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2406                 R_VCS, D_ALL, 0, 12, NULL},
2407
2408         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2409                 R_VCS, D_ALL, 0, 12, NULL},
2410
2411         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2412                 R_VCS, D_ALL, 0, 12, NULL},
2413
2414         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2415                 R_VCS, D_ALL, 0, 12, NULL},
2416
2417         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2418                 R_VCS, D_ALL, 0, 12, NULL},
2419
2420         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2421                 R_VCS, D_ALL, 0, 6, NULL},
2422
2423         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2424                 R_VCS, D_ALL, 0, 12, NULL},
2425
2426         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2427                 R_VCS, D_ALL, 0, 12, NULL},
2428
2429         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2430                 R_VCS, D_ALL, 0, 12, NULL},
2431
2432         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2433                 R_VCS, D_ALL, 0, 12, NULL},
2434
2435         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2436                 R_VCS, D_ALL, 0, 12, NULL},
2437
2438         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2439                 R_VCS, D_ALL, 0, 12, NULL},
2440
2441         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2442                 R_VCS, D_ALL, 0, 12, NULL},
2443         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2444                 R_VCS, D_ALL, 0, 12, NULL},
2445
2446         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2447                 R_VCS, D_ALL, 0, 12, NULL},
2448
2449         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2450                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2451
2452         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2453                 R_VCS, D_ALL, 0, 12, NULL},
2454
2455         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2456                 R_VCS, D_ALL, 0, 12, NULL},
2457
2458         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2459                 R_VCS, D_ALL, 0, 12, NULL},
2460
2461         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2462                 R_VCS, D_ALL, 0, 12, NULL},
2463
2464         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2465                 R_VCS, D_ALL, 0, 12, NULL},
2466
2467         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2468                 R_VCS, D_ALL, 0, 12, NULL},
2469
2470         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2471                 R_VCS, D_ALL, 0, 12, NULL},
2472
2473         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2474                 R_VCS, D_ALL, 0, 12, NULL},
2475
2476         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2477                 R_VCS, D_ALL, 0, 12, NULL},
2478
2479         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2480                 R_VCS, D_ALL, 0, 12, NULL},
2481
2482         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2483                 R_VCS, D_ALL, 0, 12, NULL},
2484
2485         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2486                 0, 16, NULL},
2487
2488         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2489
2490         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2491
2492         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2493                 R_VCS, D_ALL, 0, 12, NULL},
2494
2495         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2496                 R_VCS, D_ALL, 0, 12, NULL},
2497
2498         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2499                 R_VCS, D_ALL, 0, 12, NULL},
2500
2501         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2502
2503         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2504                 0, 12, NULL},
2505
2506         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2507                 0, 20, NULL},
2508 };
2509
2510 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2511 {
2512         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2513 }
2514
2515 /* call the cmd handler, and advance ip */
2516 static int cmd_parser_exec(struct parser_exec_state *s)
2517 {
2518         struct intel_vgpu *vgpu = s->vgpu;
2519         const struct cmd_info *info;
2520         u32 cmd;
2521         int ret = 0;
2522
2523         cmd = cmd_val(s, 0);
2524
2525         /* fastpath for MI_NOOP */
2526         if (cmd == MI_NOOP)
2527                 info = &cmd_info[mi_noop_index];
2528         else
2529                 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2530
2531         if (info == NULL) {
2532                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2533                                 cmd, get_opcode(cmd, s->ring_id),
2534                                 (s->buf_addr_type == PPGTT_BUFFER) ?
2535                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
2536                 return -EBADRQC;
2537         }
2538
2539         s->info = info;
2540
2541         trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2542                           cmd_length(s), s->buf_type, s->buf_addr_type,
2543                           s->workload, info->name);
2544
2545         if (info->handler) {
2546                 ret = info->handler(s);
2547                 if (ret < 0) {
2548                         gvt_vgpu_err("%s handler error\n", info->name);
2549                         return ret;
2550                 }
2551         }
2552
2553         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2554                 ret = cmd_advance_default(s);
2555                 if (ret) {
2556                         gvt_vgpu_err("%s IP advance error\n", info->name);
2557                         return ret;
2558                 }
2559         }
2560         return 0;
2561 }
2562
2563 static inline bool gma_out_of_range(unsigned long gma,
2564                 unsigned long gma_head, unsigned int gma_tail)
2565 {
2566         if (gma_tail >= gma_head)
2567                 return (gma < gma_head) || (gma > gma_tail);
2568         else
2569                 return (gma > gma_tail) && (gma < gma_head);
2570 }
2571
2572 /* Keep the consistent return type, e.g EBADRQC for unknown
2573  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2574  * works as the input of VM healthy status.
2575  */
2576 static int command_scan(struct parser_exec_state *s,
2577                 unsigned long rb_head, unsigned long rb_tail,
2578                 unsigned long rb_start, unsigned long rb_len)
2579 {
2580
2581         unsigned long gma_head, gma_tail, gma_bottom;
2582         int ret = 0;
2583         struct intel_vgpu *vgpu = s->vgpu;
2584
2585         gma_head = rb_start + rb_head;
2586         gma_tail = rb_start + rb_tail;
2587         gma_bottom = rb_start +  rb_len;
2588
2589         while (s->ip_gma != gma_tail) {
2590                 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2591                         if (!(s->ip_gma >= rb_start) ||
2592                                 !(s->ip_gma < gma_bottom)) {
2593                                 gvt_vgpu_err("ip_gma %lx out of ring scope."
2594                                         "(base:0x%lx, bottom: 0x%lx)\n",
2595                                         s->ip_gma, rb_start,
2596                                         gma_bottom);
2597                                 parser_exec_state_dump(s);
2598                                 return -EFAULT;
2599                         }
2600                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2601                                 gvt_vgpu_err("ip_gma %lx out of range."
2602                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2603                                         s->ip_gma, rb_start,
2604                                         rb_head, rb_tail);
2605                                 parser_exec_state_dump(s);
2606                                 break;
2607                         }
2608                 }
2609                 ret = cmd_parser_exec(s);
2610                 if (ret) {
2611                         gvt_vgpu_err("cmd parser error\n");
2612                         parser_exec_state_dump(s);
2613                         break;
2614                 }
2615         }
2616
2617         return ret;
2618 }
2619
2620 static int scan_workload(struct intel_vgpu_workload *workload)
2621 {
2622         unsigned long gma_head, gma_tail, gma_bottom;
2623         struct parser_exec_state s;
2624         int ret = 0;
2625
2626         /* ring base is page aligned */
2627         if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2628                 return -EINVAL;
2629
2630         gma_head = workload->rb_start + workload->rb_head;
2631         gma_tail = workload->rb_start + workload->rb_tail;
2632         gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2633
2634         s.buf_type = RING_BUFFER_INSTRUCTION;
2635         s.buf_addr_type = GTT_BUFFER;
2636         s.vgpu = workload->vgpu;
2637         s.ring_id = workload->ring_id;
2638         s.ring_start = workload->rb_start;
2639         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2640         s.ring_head = gma_head;
2641         s.ring_tail = gma_tail;
2642         s.rb_va = workload->shadow_ring_buffer_va;
2643         s.workload = workload;
2644         s.is_ctx_wa = false;
2645
2646         if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2647                 gma_head == gma_tail)
2648                 return 0;
2649
2650         if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2651                 ret = -EINVAL;
2652                 goto out;
2653         }
2654
2655         ret = ip_gma_set(&s, gma_head);
2656         if (ret)
2657                 goto out;
2658
2659         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2660                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2661
2662 out:
2663         return ret;
2664 }
2665
2666 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2667 {
2668
2669         unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2670         struct parser_exec_state s;
2671         int ret = 0;
2672         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2673                                 struct intel_vgpu_workload,
2674                                 wa_ctx);
2675
2676         /* ring base is page aligned */
2677         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2678                                         I915_GTT_PAGE_SIZE)))
2679                 return -EINVAL;
2680
2681         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2682         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2683                         PAGE_SIZE);
2684         gma_head = wa_ctx->indirect_ctx.guest_gma;
2685         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2686         gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2687
2688         s.buf_type = RING_BUFFER_INSTRUCTION;
2689         s.buf_addr_type = GTT_BUFFER;
2690         s.vgpu = workload->vgpu;
2691         s.ring_id = workload->ring_id;
2692         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2693         s.ring_size = ring_size;
2694         s.ring_head = gma_head;
2695         s.ring_tail = gma_tail;
2696         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2697         s.workload = workload;
2698         s.is_ctx_wa = true;
2699
2700         if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2701                 ret = -EINVAL;
2702                 goto out;
2703         }
2704
2705         ret = ip_gma_set(&s, gma_head);
2706         if (ret)
2707                 goto out;
2708
2709         ret = command_scan(&s, 0, ring_tail,
2710                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2711 out:
2712         return ret;
2713 }
2714
2715 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2716 {
2717         struct intel_vgpu *vgpu = workload->vgpu;
2718         struct intel_vgpu_submission *s = &vgpu->submission;
2719         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2720         void *shadow_ring_buffer_va;
2721         int ring_id = workload->ring_id;
2722         int ret;
2723
2724         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2725
2726         /* calculate workload ring buffer size */
2727         workload->rb_len = (workload->rb_tail + guest_rb_size -
2728                         workload->rb_head) % guest_rb_size;
2729
2730         gma_head = workload->rb_start + workload->rb_head;
2731         gma_tail = workload->rb_start + workload->rb_tail;
2732         gma_top = workload->rb_start + guest_rb_size;
2733
2734         if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2735                 void *p;
2736
2737                 /* realloc the new ring buffer if needed */
2738                 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2739                                 GFP_KERNEL);
2740                 if (!p) {
2741                         gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2742                         return -ENOMEM;
2743                 }
2744                 s->ring_scan_buffer[ring_id] = p;
2745                 s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2746         }
2747
2748         shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2749
2750         /* get shadow ring buffer va */
2751         workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2752
2753         /* head > tail --> copy head <-> top */
2754         if (gma_head > gma_tail) {
2755                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2756                                       gma_head, gma_top, shadow_ring_buffer_va);
2757                 if (ret < 0) {
2758                         gvt_vgpu_err("fail to copy guest ring buffer\n");
2759                         return ret;
2760                 }
2761                 shadow_ring_buffer_va += ret;
2762                 gma_head = workload->rb_start;
2763         }
2764
2765         /* copy head or start <-> tail */
2766         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2767                                 shadow_ring_buffer_va);
2768         if (ret < 0) {
2769                 gvt_vgpu_err("fail to copy guest ring buffer\n");
2770                 return ret;
2771         }
2772         return 0;
2773 }
2774
2775 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2776 {
2777         int ret;
2778         struct intel_vgpu *vgpu = workload->vgpu;
2779
2780         ret = shadow_workload_ring_buffer(workload);
2781         if (ret) {
2782                 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2783                 return ret;
2784         }
2785
2786         ret = scan_workload(workload);
2787         if (ret) {
2788                 gvt_vgpu_err("scan workload error\n");
2789                 return ret;
2790         }
2791         return 0;
2792 }
2793
2794 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2795 {
2796         int ctx_size = wa_ctx->indirect_ctx.size;
2797         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2798         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2799                                         struct intel_vgpu_workload,
2800                                         wa_ctx);
2801         struct intel_vgpu *vgpu = workload->vgpu;
2802         struct drm_i915_gem_object *obj;
2803         int ret = 0;
2804         void *map;
2805
2806         obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
2807                                      roundup(ctx_size + CACHELINE_BYTES,
2808                                              PAGE_SIZE));
2809         if (IS_ERR(obj))
2810                 return PTR_ERR(obj);
2811
2812         /* get the va of the shadow batch buffer */
2813         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2814         if (IS_ERR(map)) {
2815                 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2816                 ret = PTR_ERR(map);
2817                 goto put_obj;
2818         }
2819
2820         ret = i915_gem_object_set_to_cpu_domain(obj, false);
2821         if (ret) {
2822                 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2823                 goto unmap_src;
2824         }
2825
2826         ret = copy_gma_to_hva(workload->vgpu,
2827                                 workload->vgpu->gtt.ggtt_mm,
2828                                 guest_gma, guest_gma + ctx_size,
2829                                 map);
2830         if (ret < 0) {
2831                 gvt_vgpu_err("fail to copy guest indirect ctx\n");
2832                 goto unmap_src;
2833         }
2834
2835         wa_ctx->indirect_ctx.obj = obj;
2836         wa_ctx->indirect_ctx.shadow_va = map;
2837         return 0;
2838
2839 unmap_src:
2840         i915_gem_object_unpin_map(obj);
2841 put_obj:
2842         i915_gem_object_put(obj);
2843         return ret;
2844 }
2845
2846 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2847 {
2848         u32 per_ctx_start[CACHELINE_DWORDS] = {0};
2849         unsigned char *bb_start_sva;
2850
2851         if (!wa_ctx->per_ctx.valid)
2852                 return 0;
2853
2854         per_ctx_start[0] = 0x18800001;
2855         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2856
2857         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2858                                 wa_ctx->indirect_ctx.size;
2859
2860         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2861
2862         return 0;
2863 }
2864
2865 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2866 {
2867         int ret;
2868         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2869                                         struct intel_vgpu_workload,
2870                                         wa_ctx);
2871         struct intel_vgpu *vgpu = workload->vgpu;
2872
2873         if (wa_ctx->indirect_ctx.size == 0)
2874                 return 0;
2875
2876         ret = shadow_indirect_ctx(wa_ctx);
2877         if (ret) {
2878                 gvt_vgpu_err("fail to shadow indirect ctx\n");
2879                 return ret;
2880         }
2881
2882         combine_wa_ctx(wa_ctx);
2883
2884         ret = scan_wa_ctx(wa_ctx);
2885         if (ret) {
2886                 gvt_vgpu_err("scan wa ctx error\n");
2887                 return ret;
2888         }
2889
2890         return 0;
2891 }
2892
2893 static const struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2894                 unsigned int opcode, unsigned long rings)
2895 {
2896         const struct cmd_info *info = NULL;
2897         unsigned int ring;
2898
2899         for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
2900                 info = find_cmd_entry(gvt, opcode, ring);
2901                 if (info)
2902                         break;
2903         }
2904         return info;
2905 }
2906
2907 static int init_cmd_table(struct intel_gvt *gvt)
2908 {
2909         int i;
2910         struct cmd_entry *e;
2911         const struct cmd_info *info;
2912         unsigned int gen_type;
2913
2914         gen_type = intel_gvt_get_device_type(gvt);
2915
2916         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2917                 if (!(cmd_info[i].devices & gen_type))
2918                         continue;
2919
2920                 e = kzalloc(sizeof(*e), GFP_KERNEL);
2921                 if (!e)
2922                         return -ENOMEM;
2923
2924                 e->info = &cmd_info[i];
2925                 info = find_cmd_entry_any_ring(gvt,
2926                                 e->info->opcode, e->info->rings);
2927                 if (info) {
2928                         gvt_err("%s %s duplicated\n", e->info->name,
2929                                         info->name);
2930                         kfree(e);
2931                         return -EEXIST;
2932                 }
2933                 if (cmd_info[i].opcode == OP_MI_NOOP)
2934                         mi_noop_index = i;
2935
2936                 INIT_HLIST_NODE(&e->hlist);
2937                 add_cmd_entry(gvt, e);
2938                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2939                                 e->info->name, e->info->opcode, e->info->flag,
2940                                 e->info->devices, e->info->rings);
2941         }
2942         return 0;
2943 }
2944
2945 static void clean_cmd_table(struct intel_gvt *gvt)
2946 {
2947         struct hlist_node *tmp;
2948         struct cmd_entry *e;
2949         int i;
2950
2951         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2952                 kfree(e);
2953
2954         hash_init(gvt->cmd_table);
2955 }
2956
2957 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2958 {
2959         clean_cmd_table(gvt);
2960 }
2961
2962 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2963 {
2964         int ret;
2965
2966         ret = init_cmd_table(gvt);
2967         if (ret) {
2968                 intel_gvt_clean_cmd_parser(gvt);
2969                 return ret;
2970         }
2971         return 0;
2972 }