Merge tag 'drm-next-2019-07-19' of git://anongit.freedesktop.org/drm/drm
[sfrench/cifs-2.6.git] / drivers / gpu / drm / arm / display / komeda / komeda_pipeline_state.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
4  * Author: James.Qian.Wang <james.qian.wang@arm.com>
5  *
6  */
7
8 #include <drm/drm_print.h>
9 #include <linux/clk.h>
10 #include "komeda_dev.h"
11 #include "komeda_kms.h"
12 #include "komeda_pipeline.h"
13 #include "komeda_framebuffer.h"
14
15 static inline bool is_switching_user(void *old, void *new)
16 {
17         if (!old || !new)
18                 return false;
19
20         return old != new;
21 }
22
23 static struct komeda_pipeline_state *
24 komeda_pipeline_get_state(struct komeda_pipeline *pipe,
25                           struct drm_atomic_state *state)
26 {
27         struct drm_private_state *priv_st;
28
29         priv_st = drm_atomic_get_private_obj_state(state, &pipe->obj);
30         if (IS_ERR(priv_st))
31                 return ERR_CAST(priv_st);
32
33         return priv_to_pipe_st(priv_st);
34 }
35
36 struct komeda_pipeline_state *
37 komeda_pipeline_get_old_state(struct komeda_pipeline *pipe,
38                               struct drm_atomic_state *state)
39 {
40         struct drm_private_state *priv_st;
41
42         priv_st = drm_atomic_get_old_private_obj_state(state, &pipe->obj);
43         if (priv_st)
44                 return priv_to_pipe_st(priv_st);
45         return NULL;
46 }
47
48 static struct komeda_pipeline_state *
49 komeda_pipeline_get_new_state(struct komeda_pipeline *pipe,
50                               struct drm_atomic_state *state)
51 {
52         struct drm_private_state *priv_st;
53
54         priv_st = drm_atomic_get_new_private_obj_state(state, &pipe->obj);
55         if (priv_st)
56                 return priv_to_pipe_st(priv_st);
57         return NULL;
58 }
59
60 /* Assign pipeline for crtc */
61 static struct komeda_pipeline_state *
62 komeda_pipeline_get_state_and_set_crtc(struct komeda_pipeline *pipe,
63                                        struct drm_atomic_state *state,
64                                        struct drm_crtc *crtc)
65 {
66         struct komeda_pipeline_state *st;
67
68         st = komeda_pipeline_get_state(pipe, state);
69         if (IS_ERR(st))
70                 return st;
71
72         if (is_switching_user(crtc, st->crtc)) {
73                 DRM_DEBUG_ATOMIC("CRTC%d required pipeline%d is busy.\n",
74                                  drm_crtc_index(crtc), pipe->id);
75                 return ERR_PTR(-EBUSY);
76         }
77
78         /* pipeline only can be disabled when the it is free or unused */
79         if (!crtc && st->active_comps) {
80                 DRM_DEBUG_ATOMIC("Disabling a busy pipeline:%d.\n", pipe->id);
81                 return ERR_PTR(-EBUSY);
82         }
83
84         st->crtc = crtc;
85
86         if (crtc) {
87                 struct komeda_crtc_state *kcrtc_st;
88
89                 kcrtc_st = to_kcrtc_st(drm_atomic_get_new_crtc_state(state,
90                                                                      crtc));
91
92                 kcrtc_st->active_pipes |= BIT(pipe->id);
93                 kcrtc_st->affected_pipes |= BIT(pipe->id);
94         }
95         return st;
96 }
97
98 static struct komeda_component_state *
99 komeda_component_get_state(struct komeda_component *c,
100                            struct drm_atomic_state *state)
101 {
102         struct drm_private_state *priv_st;
103
104         WARN_ON(!drm_modeset_is_locked(&c->pipeline->obj.lock));
105
106         priv_st = drm_atomic_get_private_obj_state(state, &c->obj);
107         if (IS_ERR(priv_st))
108                 return ERR_CAST(priv_st);
109
110         return priv_to_comp_st(priv_st);
111 }
112
113 static struct komeda_component_state *
114 komeda_component_get_old_state(struct komeda_component *c,
115                                struct drm_atomic_state *state)
116 {
117         struct drm_private_state *priv_st;
118
119         priv_st = drm_atomic_get_old_private_obj_state(state, &c->obj);
120         if (priv_st)
121                 return priv_to_comp_st(priv_st);
122         return NULL;
123 }
124
125 /**
126  * komeda_component_get_state_and_set_user()
127  *
128  * @c: component to get state and set user
129  * @state: global atomic state
130  * @user: direct user, the binding user
131  * @crtc: the CRTC user, the big boss :)
132  *
133  * This function accepts two users:
134  * -   The direct user: can be plane/crtc/wb_connector depends on component
135  * -   The big boss (CRTC)
136  * CRTC is the big boss (the final user), because all component resources
137  * eventually will be assigned to CRTC, like the layer will be binding to
138  * kms_plane, but kms plane will be binding to a CRTC eventually.
139  *
140  * The big boss (CRTC) is for pipeline assignment, since &komeda_component isn't
141  * independent and can be assigned to CRTC freely, but belongs to a specific
142  * pipeline, only pipeline can be shared between crtc, and pipeline as a whole
143  * (include all the internal components) assigned to a specific CRTC.
144  *
145  * So when set a user to komeda_component, need first to check the status of
146  * component->pipeline to see if the pipeline is available on this specific
147  * CRTC. if the pipeline is busy (assigned to another CRTC), even the required
148  * component is free, the component still cannot be assigned to the direct user.
149  */
150 static struct komeda_component_state *
151 komeda_component_get_state_and_set_user(struct komeda_component *c,
152                                         struct drm_atomic_state *state,
153                                         void *user,
154                                         struct drm_crtc *crtc)
155 {
156         struct komeda_pipeline_state *pipe_st;
157         struct komeda_component_state *st;
158
159         /* First check if the pipeline is available */
160         pipe_st = komeda_pipeline_get_state_and_set_crtc(c->pipeline,
161                                                          state, crtc);
162         if (IS_ERR(pipe_st))
163                 return ERR_CAST(pipe_st);
164
165         st = komeda_component_get_state(c, state);
166         if (IS_ERR(st))
167                 return st;
168
169         /* check if the component has been occupied */
170         if (is_switching_user(user, st->binding_user)) {
171                 DRM_DEBUG_ATOMIC("required %s is busy.\n", c->name);
172                 return ERR_PTR(-EBUSY);
173         }
174
175         st->binding_user = user;
176         /* mark the component as active if user is valid */
177         if (st->binding_user)
178                 pipe_st->active_comps |= BIT(c->id);
179
180         return st;
181 }
182
183 static void
184 komeda_component_add_input(struct komeda_component_state *state,
185                            struct komeda_component_output *input,
186                            int idx)
187 {
188         struct komeda_component *c = state->component;
189
190         WARN_ON((idx < 0 || idx >= c->max_active_inputs));
191
192         /* since the inputs[i] is only valid when it is active. So if a input[i]
193          * is a newly enabled input which switches from disable to enable, then
194          * the old inputs[i] is undefined (NOT zeroed), we can not rely on
195          * memcmp, but directly mark it changed
196          */
197         if (!has_bit(idx, state->affected_inputs) ||
198             memcmp(&state->inputs[idx], input, sizeof(*input))) {
199                 memcpy(&state->inputs[idx], input, sizeof(*input));
200                 state->changed_active_inputs |= BIT(idx);
201         }
202         state->active_inputs |= BIT(idx);
203         state->affected_inputs |= BIT(idx);
204 }
205
206 static int
207 komeda_component_check_input(struct komeda_component_state *state,
208                              struct komeda_component_output *input,
209                              int idx)
210 {
211         struct komeda_component *c = state->component;
212
213         if ((idx < 0) || (idx >= c->max_active_inputs)) {
214                 DRM_DEBUG_ATOMIC("%s required an invalid %s-input[%d].\n",
215                                  input->component->name, c->name, idx);
216                 return -EINVAL;
217         }
218
219         if (has_bit(idx, state->active_inputs)) {
220                 DRM_DEBUG_ATOMIC("%s required %s-input[%d] has been occupied already.\n",
221                                  input->component->name, c->name, idx);
222                 return -EINVAL;
223         }
224
225         return 0;
226 }
227
228 static void
229 komeda_component_set_output(struct komeda_component_output *output,
230                             struct komeda_component *comp,
231                             u8 output_port)
232 {
233         output->component = comp;
234         output->output_port = output_port;
235 }
236
237 static int
238 komeda_component_validate_private(struct komeda_component *c,
239                                   struct komeda_component_state *st)
240 {
241         int err;
242
243         if (!c->funcs->validate)
244                 return 0;
245
246         err = c->funcs->validate(c, st);
247         if (err)
248                 DRM_DEBUG_ATOMIC("%s validate private failed.\n", c->name);
249
250         return err;
251 }
252
253 /* Get current available scaler from the component->supported_outputs */
254 static struct komeda_scaler *
255 komeda_component_get_avail_scaler(struct komeda_component *c,
256                                   struct drm_atomic_state *state)
257 {
258         struct komeda_pipeline_state *pipe_st;
259         u32 avail_scalers;
260
261         pipe_st = komeda_pipeline_get_state(c->pipeline, state);
262         if (!pipe_st)
263                 return NULL;
264
265         avail_scalers = (pipe_st->active_comps & KOMEDA_PIPELINE_SCALERS) ^
266                         KOMEDA_PIPELINE_SCALERS;
267
268         c = komeda_component_pickup_output(c, avail_scalers);
269
270         return to_scaler(c);
271 }
272
273 static void
274 komeda_rotate_data_flow(struct komeda_data_flow_cfg *dflow, u32 rot)
275 {
276         if (drm_rotation_90_or_270(rot)) {
277                 swap(dflow->in_h, dflow->in_w);
278                 swap(dflow->total_in_h, dflow->total_in_w);
279         }
280 }
281
282 static int
283 komeda_layer_check_cfg(struct komeda_layer *layer,
284                        struct komeda_fb *kfb,
285                        struct komeda_data_flow_cfg *dflow)
286 {
287         u32 src_x, src_y, src_w, src_h;
288
289         if (!komeda_fb_is_layer_supported(kfb, layer->layer_type, dflow->rot))
290                 return -EINVAL;
291
292         if (layer->base.id == KOMEDA_COMPONENT_WB_LAYER) {
293                 src_x = dflow->out_x;
294                 src_y = dflow->out_y;
295                 src_w = dflow->out_w;
296                 src_h = dflow->out_h;
297         } else {
298                 src_x = dflow->in_x;
299                 src_y = dflow->in_y;
300                 src_w = dflow->in_w;
301                 src_h = dflow->in_h;
302         }
303
304         if (komeda_fb_check_src_coords(kfb, src_x, src_y, src_w, src_h))
305                 return -EINVAL;
306
307         if (!in_range(&layer->hsize_in, src_w)) {
308                 DRM_DEBUG_ATOMIC("invalidate src_w %d.\n", src_w);
309                 return -EINVAL;
310         }
311
312         if (!in_range(&layer->vsize_in, src_h)) {
313                 DRM_DEBUG_ATOMIC("invalidate src_h %d.\n", src_h);
314                 return -EINVAL;
315         }
316
317         return 0;
318 }
319
320 static int
321 komeda_layer_validate(struct komeda_layer *layer,
322                       struct komeda_plane_state *kplane_st,
323                       struct komeda_data_flow_cfg *dflow)
324 {
325         struct drm_plane_state *plane_st = &kplane_st->base;
326         struct drm_framebuffer *fb = plane_st->fb;
327         struct komeda_fb *kfb = to_kfb(fb);
328         struct komeda_component_state *c_st;
329         struct komeda_layer_state *st;
330         int i, err;
331
332         err = komeda_layer_check_cfg(layer, kfb, dflow);
333         if (err)
334                 return err;
335
336         c_st = komeda_component_get_state_and_set_user(&layer->base,
337                         plane_st->state, plane_st->plane, plane_st->crtc);
338         if (IS_ERR(c_st))
339                 return PTR_ERR(c_st);
340
341         st = to_layer_st(c_st);
342
343         st->rot = dflow->rot;
344
345         if (fb->modifier) {
346                 st->hsize = kfb->aligned_w;
347                 st->vsize = kfb->aligned_h;
348                 st->afbc_crop_l = dflow->in_x;
349                 st->afbc_crop_r = kfb->aligned_w - dflow->in_x - dflow->in_w;
350                 st->afbc_crop_t = dflow->in_y;
351                 st->afbc_crop_b = kfb->aligned_h - dflow->in_y - dflow->in_h;
352         } else {
353                 st->hsize = dflow->in_w;
354                 st->vsize = dflow->in_h;
355                 st->afbc_crop_l = 0;
356                 st->afbc_crop_r = 0;
357                 st->afbc_crop_t = 0;
358                 st->afbc_crop_b = 0;
359         }
360
361         for (i = 0; i < fb->format->num_planes; i++)
362                 st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->in_x,
363                                                        dflow->in_y, i);
364
365         err = komeda_component_validate_private(&layer->base, c_st);
366         if (err)
367                 return err;
368
369         /* update the data flow for the next stage */
370         komeda_component_set_output(&dflow->input, &layer->base, 0);
371
372         /*
373          * The rotation has been handled by layer, so adjusted the data flow for
374          * the next stage.
375          */
376         komeda_rotate_data_flow(dflow, st->rot);
377
378         return 0;
379 }
380
381 static int
382 komeda_wb_layer_validate(struct komeda_layer *wb_layer,
383                          struct drm_connector_state *conn_st,
384                          struct komeda_data_flow_cfg *dflow)
385 {
386         struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
387         struct komeda_component_state *c_st;
388         struct komeda_layer_state *st;
389         int i, err;
390
391         err = komeda_layer_check_cfg(wb_layer, kfb, dflow);
392         if (err)
393                 return err;
394
395         c_st = komeda_component_get_state_and_set_user(&wb_layer->base,
396                         conn_st->state, conn_st->connector, conn_st->crtc);
397         if (IS_ERR(c_st))
398                 return PTR_ERR(c_st);
399
400         st = to_layer_st(c_st);
401
402         st->hsize = dflow->out_w;
403         st->vsize = dflow->out_h;
404
405         for (i = 0; i < kfb->base.format->num_planes; i++)
406                 st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->out_x,
407                                                        dflow->out_y, i);
408
409         komeda_component_add_input(&st->base, &dflow->input, 0);
410         komeda_component_set_output(&dflow->input, &wb_layer->base, 0);
411
412         return 0;
413 }
414
415 static bool scaling_ratio_valid(u32 size_in, u32 size_out,
416                                 u32 max_upscaling, u32 max_downscaling)
417 {
418         if (size_out > size_in * max_upscaling)
419                 return false;
420         else if (size_in > size_out * max_downscaling)
421                 return false;
422         return true;
423 }
424
425 static int
426 komeda_scaler_check_cfg(struct komeda_scaler *scaler,
427                         struct komeda_crtc_state *kcrtc_st,
428                         struct komeda_data_flow_cfg *dflow)
429 {
430         u32 hsize_in, vsize_in, hsize_out, vsize_out;
431         u32 max_upscaling;
432
433         hsize_in = dflow->in_w;
434         vsize_in = dflow->in_h;
435         hsize_out = dflow->out_w;
436         vsize_out = dflow->out_h;
437
438         if (!in_range(&scaler->hsize, hsize_in) ||
439             !in_range(&scaler->hsize, hsize_out)) {
440                 DRM_DEBUG_ATOMIC("Invalid horizontal sizes");
441                 return -EINVAL;
442         }
443
444         if (!in_range(&scaler->vsize, vsize_in) ||
445             !in_range(&scaler->vsize, vsize_out)) {
446                 DRM_DEBUG_ATOMIC("Invalid vertical sizes");
447                 return -EINVAL;
448         }
449
450         /* If input comes from compiz that means the scaling is for writeback
451          * and scaler can not do upscaling for writeback
452          */
453         if (has_bit(dflow->input.component->id, KOMEDA_PIPELINE_COMPIZS))
454                 max_upscaling = 1;
455         else
456                 max_upscaling = scaler->max_upscaling;
457
458         if (!scaling_ratio_valid(hsize_in, hsize_out, max_upscaling,
459                                  scaler->max_downscaling)) {
460                 DRM_DEBUG_ATOMIC("Invalid horizontal scaling ratio");
461                 return -EINVAL;
462         }
463
464         if (!scaling_ratio_valid(vsize_in, vsize_out, max_upscaling,
465                                  scaler->max_downscaling)) {
466                 DRM_DEBUG_ATOMIC("Invalid vertical scaling ratio");
467                 return -EINVAL;
468         }
469
470         if (hsize_in > hsize_out || vsize_in > vsize_out) {
471                 struct komeda_pipeline *pipe = scaler->base.pipeline;
472                 int err;
473
474                 err = pipe->funcs->downscaling_clk_check(pipe,
475                                         &kcrtc_st->base.adjusted_mode,
476                                         komeda_calc_aclk(kcrtc_st), dflow);
477                 if (err) {
478                         DRM_DEBUG_ATOMIC("aclk can't satisfy the clock requirement of the downscaling\n");
479                         return err;
480                 }
481         }
482
483         return 0;
484 }
485
486 static int
487 komeda_scaler_validate(void *user,
488                        struct komeda_crtc_state *kcrtc_st,
489                        struct komeda_data_flow_cfg *dflow)
490 {
491         struct drm_atomic_state *drm_st = kcrtc_st->base.state;
492         struct komeda_component_state *c_st;
493         struct komeda_scaler_state *st;
494         struct komeda_scaler *scaler;
495         int err = 0;
496
497         if (!(dflow->en_scaling || dflow->en_img_enhancement))
498                 return 0;
499
500         scaler = komeda_component_get_avail_scaler(dflow->input.component,
501                                                    drm_st);
502         if (!scaler) {
503                 DRM_DEBUG_ATOMIC("No scaler available");
504                 return -EINVAL;
505         }
506
507         err = komeda_scaler_check_cfg(scaler, kcrtc_st, dflow);
508         if (err)
509                 return err;
510
511         c_st = komeda_component_get_state_and_set_user(&scaler->base,
512                         drm_st, user, kcrtc_st->base.crtc);
513         if (IS_ERR(c_st))
514                 return PTR_ERR(c_st);
515
516         st = to_scaler_st(c_st);
517
518         st->hsize_in = dflow->in_w;
519         st->vsize_in = dflow->in_h;
520         st->hsize_out = dflow->out_w;
521         st->vsize_out = dflow->out_h;
522         st->right_crop = dflow->right_crop;
523         st->left_crop = dflow->left_crop;
524         st->total_vsize_in = dflow->total_in_h;
525         st->total_hsize_in = dflow->total_in_w;
526         st->total_hsize_out = dflow->total_out_w;
527
528         /* Enable alpha processing if the next stage needs the pixel alpha */
529         st->en_alpha = dflow->pixel_blend_mode != DRM_MODE_BLEND_PIXEL_NONE;
530         st->en_scaling = dflow->en_scaling;
531         st->en_img_enhancement = dflow->en_img_enhancement;
532         st->en_split = dflow->en_split;
533         st->right_part = dflow->right_part;
534
535         komeda_component_add_input(&st->base, &dflow->input, 0);
536         komeda_component_set_output(&dflow->input, &scaler->base, 0);
537         return err;
538 }
539
540 static void komeda_split_data_flow(struct komeda_scaler *scaler,
541                                    struct komeda_data_flow_cfg *dflow,
542                                    struct komeda_data_flow_cfg *l_dflow,
543                                    struct komeda_data_flow_cfg *r_dflow);
544
545 static int
546 komeda_splitter_validate(struct komeda_splitter *splitter,
547                          struct drm_connector_state *conn_st,
548                          struct komeda_data_flow_cfg *dflow,
549                          struct komeda_data_flow_cfg *l_output,
550                          struct komeda_data_flow_cfg *r_output)
551 {
552         struct komeda_component_state *c_st;
553         struct komeda_splitter_state *st;
554
555         if (!splitter) {
556                 DRM_DEBUG_ATOMIC("Current HW doesn't support splitter.\n");
557                 return -EINVAL;
558         }
559
560         if (!in_range(&splitter->hsize, dflow->in_w)) {
561                 DRM_DEBUG_ATOMIC("split in_w:%d is out of the acceptable range.\n",
562                                  dflow->in_w);
563                 return -EINVAL;
564         }
565
566         if (!in_range(&splitter->vsize, dflow->in_h)) {
567                 DRM_DEBUG_ATOMIC("split in_in: %d exceed the acceptable range.\n",
568                                  dflow->in_w);
569                 return -EINVAL;
570         }
571
572         c_st = komeda_component_get_state_and_set_user(&splitter->base,
573                         conn_st->state, conn_st->connector, conn_st->crtc);
574
575         if (IS_ERR(c_st))
576                 return PTR_ERR(c_st);
577
578         komeda_split_data_flow(splitter->base.pipeline->scalers[0],
579                                dflow, l_output, r_output);
580
581         st = to_splitter_st(c_st);
582         st->hsize = dflow->in_w;
583         st->vsize = dflow->in_h;
584         st->overlap = dflow->overlap;
585
586         komeda_component_add_input(&st->base, &dflow->input, 0);
587         komeda_component_set_output(&l_output->input, &splitter->base, 0);
588         komeda_component_set_output(&r_output->input, &splitter->base, 1);
589
590         return 0;
591 }
592
593 static int
594 komeda_merger_validate(struct komeda_merger *merger,
595                        void *user,
596                        struct komeda_crtc_state *kcrtc_st,
597                        struct komeda_data_flow_cfg *left_input,
598                        struct komeda_data_flow_cfg *right_input,
599                        struct komeda_data_flow_cfg *output)
600 {
601         struct komeda_component_state *c_st;
602         struct komeda_merger_state *st;
603         int err = 0;
604
605         if (!merger) {
606                 DRM_DEBUG_ATOMIC("No merger is available");
607                 return -EINVAL;
608         }
609
610         if (!in_range(&merger->hsize_merged, output->out_w)) {
611                 DRM_DEBUG_ATOMIC("merged_w: %d is out of the accepted range.\n",
612                                  output->out_w);
613                 return -EINVAL;
614         }
615
616         if (!in_range(&merger->vsize_merged, output->out_h)) {
617                 DRM_DEBUG_ATOMIC("merged_h: %d is out of the accepted range.\n",
618                                  output->out_h);
619                 return -EINVAL;
620         }
621
622         c_st = komeda_component_get_state_and_set_user(&merger->base,
623                         kcrtc_st->base.state, kcrtc_st->base.crtc, kcrtc_st->base.crtc);
624
625         if (IS_ERR(c_st))
626                 return PTR_ERR(c_st);
627
628         st = to_merger_st(c_st);
629         st->hsize_merged = output->out_w;
630         st->vsize_merged = output->out_h;
631
632         komeda_component_add_input(c_st, &left_input->input, 0);
633         komeda_component_add_input(c_st, &right_input->input, 1);
634         komeda_component_set_output(&output->input, &merger->base, 0);
635
636         return err;
637 }
638
639 void pipeline_composition_size(struct komeda_crtc_state *kcrtc_st,
640                                u16 *hsize, u16 *vsize)
641 {
642         struct drm_display_mode *m = &kcrtc_st->base.adjusted_mode;
643
644         if (hsize)
645                 *hsize = m->hdisplay;
646         if (vsize)
647                 *vsize = m->vdisplay;
648 }
649
650 static int
651 komeda_compiz_set_input(struct komeda_compiz *compiz,
652                         struct komeda_crtc_state *kcrtc_st,
653                         struct komeda_data_flow_cfg *dflow)
654 {
655         struct drm_atomic_state *drm_st = kcrtc_st->base.state;
656         struct komeda_component_state *c_st, *old_st;
657         struct komeda_compiz_input_cfg *cin;
658         u16 compiz_w, compiz_h;
659         int idx = dflow->blending_zorder;
660
661         pipeline_composition_size(kcrtc_st, &compiz_w, &compiz_h);
662         /* check display rect */
663         if ((dflow->out_x + dflow->out_w > compiz_w) ||
664             (dflow->out_y + dflow->out_h > compiz_h) ||
665              dflow->out_w == 0 || dflow->out_h == 0) {
666                 DRM_DEBUG_ATOMIC("invalid disp rect [x=%d, y=%d, w=%d, h=%d]\n",
667                                  dflow->out_x, dflow->out_y,
668                                  dflow->out_w, dflow->out_h);
669                 return -EINVAL;
670         }
671
672         c_st = komeda_component_get_state_and_set_user(&compiz->base, drm_st,
673                         kcrtc_st->base.crtc, kcrtc_st->base.crtc);
674         if (IS_ERR(c_st))
675                 return PTR_ERR(c_st);
676
677         if (komeda_component_check_input(c_st, &dflow->input, idx))
678                 return -EINVAL;
679
680         cin = &(to_compiz_st(c_st)->cins[idx]);
681
682         cin->hsize   = dflow->out_w;
683         cin->vsize   = dflow->out_h;
684         cin->hoffset = dflow->out_x;
685         cin->voffset = dflow->out_y;
686         cin->pixel_blend_mode = dflow->pixel_blend_mode;
687         cin->layer_alpha = dflow->layer_alpha;
688
689         old_st = komeda_component_get_old_state(&compiz->base, drm_st);
690         WARN_ON(!old_st);
691
692         /* compare with old to check if this input has been changed */
693         if (memcmp(&(to_compiz_st(old_st)->cins[idx]), cin, sizeof(*cin)))
694                 c_st->changed_active_inputs |= BIT(idx);
695
696         komeda_component_add_input(c_st, &dflow->input, idx);
697         komeda_component_set_output(&dflow->input, &compiz->base, 0);
698
699         return 0;
700 }
701
702 static int
703 komeda_compiz_validate(struct komeda_compiz *compiz,
704                        struct komeda_crtc_state *state,
705                        struct komeda_data_flow_cfg *dflow)
706 {
707         struct komeda_component_state *c_st;
708         struct komeda_compiz_state *st;
709
710         c_st = komeda_component_get_state_and_set_user(&compiz->base,
711                         state->base.state, state->base.crtc, state->base.crtc);
712         if (IS_ERR(c_st))
713                 return PTR_ERR(c_st);
714
715         st = to_compiz_st(c_st);
716
717         pipeline_composition_size(state, &st->hsize, &st->vsize);
718
719         komeda_component_set_output(&dflow->input, &compiz->base, 0);
720
721         /* compiz output dflow will be fed to the next pipeline stage, prepare
722          * the data flow configuration for the next stage
723          */
724         if (dflow) {
725                 dflow->in_w = st->hsize;
726                 dflow->in_h = st->vsize;
727                 dflow->out_w = dflow->in_w;
728                 dflow->out_h = dflow->in_h;
729                 /* the output data of compiz doesn't have alpha, it only can be
730                  * used as bottom layer when blend it with master layers
731                  */
732                 dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
733                 dflow->layer_alpha = 0xFF;
734                 dflow->blending_zorder = 0;
735         }
736
737         return 0;
738 }
739
740 static int
741 komeda_improc_validate(struct komeda_improc *improc,
742                        struct komeda_crtc_state *kcrtc_st,
743                        struct komeda_data_flow_cfg *dflow)
744 {
745         struct drm_crtc *crtc = kcrtc_st->base.crtc;
746         struct komeda_component_state *c_st;
747         struct komeda_improc_state *st;
748
749         c_st = komeda_component_get_state_and_set_user(&improc->base,
750                         kcrtc_st->base.state, crtc, crtc);
751         if (IS_ERR(c_st))
752                 return PTR_ERR(c_st);
753
754         st = to_improc_st(c_st);
755
756         st->hsize = dflow->in_w;
757         st->vsize = dflow->in_h;
758
759         komeda_component_add_input(&st->base, &dflow->input, 0);
760         komeda_component_set_output(&dflow->input, &improc->base, 0);
761
762         return 0;
763 }
764
765 static int
766 komeda_timing_ctrlr_validate(struct komeda_timing_ctrlr *ctrlr,
767                              struct komeda_crtc_state *kcrtc_st,
768                              struct komeda_data_flow_cfg *dflow)
769 {
770         struct drm_crtc *crtc = kcrtc_st->base.crtc;
771         struct komeda_timing_ctrlr_state *st;
772         struct komeda_component_state *c_st;
773
774         c_st = komeda_component_get_state_and_set_user(&ctrlr->base,
775                         kcrtc_st->base.state, crtc, crtc);
776         if (IS_ERR(c_st))
777                 return PTR_ERR(c_st);
778
779         st = to_ctrlr_st(c_st);
780
781         komeda_component_add_input(&st->base, &dflow->input, 0);
782         komeda_component_set_output(&dflow->input, &ctrlr->base, 0);
783
784         return 0;
785 }
786
787 void komeda_complete_data_flow_cfg(struct komeda_layer *layer,
788                                    struct komeda_data_flow_cfg *dflow,
789                                    struct drm_framebuffer *fb)
790 {
791         struct komeda_scaler *scaler = layer->base.pipeline->scalers[0];
792         u32 w = dflow->in_w;
793         u32 h = dflow->in_h;
794
795         dflow->total_in_w = dflow->in_w;
796         dflow->total_in_h = dflow->in_h;
797         dflow->total_out_w = dflow->out_w;
798
799         /* if format doesn't have alpha, fix blend mode to PIXEL_NONE */
800         if (!fb->format->has_alpha)
801                 dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
802
803         if (drm_rotation_90_or_270(dflow->rot))
804                 swap(w, h);
805
806         dflow->en_scaling = (w != dflow->out_w) || (h != dflow->out_h);
807         dflow->is_yuv = fb->format->is_yuv;
808
809         /* try to enable image enhancer if data flow is a 2x+ upscaling */
810         dflow->en_img_enhancement = dflow->out_w >= 2 * w ||
811                                     dflow->out_h >= 2 * h;
812
813         /* try to enable split if scaling exceed the scaler's acceptable
814          * input/output range.
815          */
816         if (dflow->en_scaling && scaler)
817                 dflow->en_split = !in_range(&scaler->hsize, dflow->in_w) ||
818                                   !in_range(&scaler->hsize, dflow->out_w);
819 }
820
821 static bool merger_is_available(struct komeda_pipeline *pipe,
822                                 struct komeda_data_flow_cfg *dflow)
823 {
824         u32 avail_inputs = pipe->merger ?
825                            pipe->merger->base.supported_inputs : 0;
826
827         return has_bit(dflow->input.component->id, avail_inputs);
828 }
829
830 int komeda_build_layer_data_flow(struct komeda_layer *layer,
831                                  struct komeda_plane_state *kplane_st,
832                                  struct komeda_crtc_state *kcrtc_st,
833                                  struct komeda_data_flow_cfg *dflow)
834 {
835         struct drm_plane *plane = kplane_st->base.plane;
836         struct komeda_pipeline *pipe = layer->base.pipeline;
837         int err;
838
839         DRM_DEBUG_ATOMIC("%s handling [PLANE:%d:%s]: src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
840                          layer->base.name, plane->base.id, plane->name,
841                          dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
842                          dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
843
844         err = komeda_layer_validate(layer, kplane_st, dflow);
845         if (err)
846                 return err;
847
848         err = komeda_scaler_validate(plane, kcrtc_st, dflow);
849         if (err)
850                 return err;
851
852         /* if split, check if can put the data flow into merger */
853         if (dflow->en_split && merger_is_available(pipe, dflow))
854                 return 0;
855
856         err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
857
858         return err;
859 }
860
861 /*
862  * Split is introduced for workaround scaler's input/output size limitation.
863  * The idea is simple, if one scaler can not fit the requirement, use two.
864  * So split splits the big source image to two half parts (left/right) and do
865  * the scaling by two scaler separately and independently.
866  * But split also imports an edge problem in the middle of the image when
867  * scaling, to avoid it, split isn't a simple half-and-half, but add an extra
868  * pixels (overlap) to both side, after split the left/right will be:
869  * - left: [0, src_length/2 + overlap]
870  * - right: [src_length/2 - overlap, src_length]
871  * The extra overlap do eliminate the edge problem, but which may also generates
872  * unnecessary pixels when scaling, we need to crop them before scaler output
873  * the result to the next stage. and for the how to crop, it depends on the
874  * unneeded pixels, another words the position where overlay has been added.
875  * - left: crop the right
876  * - right: crop the left
877  *
878  * The diagram for how to do the split
879  *
880  *  <---------------------left->out_w ---------------->
881  * |--------------------------------|---right_crop-----| <- left after split
882  *  \                                \                /
883  *   \                                \<--overlap--->/
884  *   |-----------------|-------------|(Middle)------|-----------------| <- src
885  *                     /<---overlap--->\                               \
886  *                    /                 \                               \
887  * right after split->|-----left_crop---|--------------------------------|
888  *                    ^<------------------- right->out_w --------------->^
889  *
890  * NOTE: To consistent with HW the output_w always contains the crop size.
891  */
892
893 static void komeda_split_data_flow(struct komeda_scaler *scaler,
894                                    struct komeda_data_flow_cfg *dflow,
895                                    struct komeda_data_flow_cfg *l_dflow,
896                                    struct komeda_data_flow_cfg *r_dflow)
897 {
898         bool r90 = drm_rotation_90_or_270(dflow->rot);
899         bool flip_h = has_flip_h(dflow->rot);
900         u32 l_out, r_out, overlap;
901
902         memcpy(l_dflow, dflow, sizeof(*dflow));
903         memcpy(r_dflow, dflow, sizeof(*dflow));
904
905         l_dflow->right_part = false;
906         r_dflow->right_part = true;
907         r_dflow->blending_zorder = dflow->blending_zorder + 1;
908
909         overlap = 0;
910         if (dflow->en_scaling && scaler)
911                 overlap += scaler->scaling_split_overlap;
912
913         /* original dflow may fed into splitter, and which doesn't need
914          * enhancement overlap
915          */
916         dflow->overlap = overlap;
917
918         if (dflow->en_img_enhancement && scaler)
919                 overlap += scaler->enh_split_overlap;
920
921         l_dflow->overlap = overlap;
922         r_dflow->overlap = overlap;
923
924         /* split the origin content */
925         /* left/right here always means the left/right part of display image,
926          * not the source Image
927          */
928         /* DRM rotation is anti-clockwise */
929         if (r90) {
930                 if (dflow->en_scaling) {
931                         l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
932                         r_dflow->in_h = l_dflow->in_h;
933                 } else if (dflow->en_img_enhancement) {
934                         /* enhancer only */
935                         l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
936                         r_dflow->in_h = dflow->in_h / 2 + r_dflow->overlap;
937                 } else {
938                         /* split without scaler, no overlap */
939                         l_dflow->in_h = ALIGN(((dflow->in_h + 1) >> 1), 2);
940                         r_dflow->in_h = dflow->in_h - l_dflow->in_h;
941                 }
942
943                 /* Consider YUV format, after split, the split source w/h
944                  * may not aligned to 2. we have two choices for such case.
945                  * 1. scaler is enabled (overlap != 0), we can do a alignment
946                  *    both left/right and crop the extra data by scaler.
947                  * 2. scaler is not enabled, only align the split left
948                  *    src/disp, and the rest part assign to right
949                  */
950                 if ((overlap != 0) && dflow->is_yuv) {
951                         l_dflow->in_h = ALIGN(l_dflow->in_h, 2);
952                         r_dflow->in_h = ALIGN(r_dflow->in_h, 2);
953                 }
954
955                 if (flip_h)
956                         l_dflow->in_y = dflow->in_y + dflow->in_h - l_dflow->in_h;
957                 else
958                         r_dflow->in_y = dflow->in_y + dflow->in_h - r_dflow->in_h;
959         } else {
960                 if (dflow->en_scaling) {
961                         l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
962                         r_dflow->in_w = l_dflow->in_w;
963                 } else if (dflow->en_img_enhancement) {
964                         l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
965                         r_dflow->in_w = dflow->in_w / 2 + r_dflow->overlap;
966                 } else {
967                         l_dflow->in_w = ALIGN(((dflow->in_w + 1) >> 1), 2);
968                         r_dflow->in_w = dflow->in_w - l_dflow->in_w;
969                 }
970
971                 /* do YUV alignment when scaler enabled */
972                 if ((overlap != 0) && dflow->is_yuv) {
973                         l_dflow->in_w = ALIGN(l_dflow->in_w, 2);
974                         r_dflow->in_w = ALIGN(r_dflow->in_w, 2);
975                 }
976
977                 /* on flip_h, the left display content from the right-source */
978                 if (flip_h)
979                         l_dflow->in_x = dflow->in_w + dflow->in_x - l_dflow->in_w;
980                 else
981                         r_dflow->in_x = dflow->in_w + dflow->in_x - r_dflow->in_w;
982         }
983
984         /* split the disp_rect */
985         if (dflow->en_scaling || dflow->en_img_enhancement)
986                 l_dflow->out_w = ((dflow->out_w + 1) >> 1);
987         else
988                 l_dflow->out_w = ALIGN(((dflow->out_w + 1) >> 1), 2);
989
990         r_dflow->out_w = dflow->out_w - l_dflow->out_w;
991
992         l_dflow->out_x = dflow->out_x;
993         r_dflow->out_x = l_dflow->out_w + l_dflow->out_x;
994
995         /* calculate the scaling crop */
996         /* left scaler output more data and do crop */
997         if (r90) {
998                 l_out = (dflow->out_w * l_dflow->in_h) / dflow->in_h;
999                 r_out = (dflow->out_w * r_dflow->in_h) / dflow->in_h;
1000         } else {
1001                 l_out = (dflow->out_w * l_dflow->in_w) / dflow->in_w;
1002                 r_out = (dflow->out_w * r_dflow->in_w) / dflow->in_w;
1003         }
1004
1005         l_dflow->left_crop  = 0;
1006         l_dflow->right_crop = l_out - l_dflow->out_w;
1007         r_dflow->left_crop  = r_out - r_dflow->out_w;
1008         r_dflow->right_crop = 0;
1009
1010         /* out_w includes the crop length */
1011         l_dflow->out_w += l_dflow->right_crop + l_dflow->left_crop;
1012         r_dflow->out_w += r_dflow->right_crop + r_dflow->left_crop;
1013 }
1014
1015 /* For layer split, a plane state will be split to two data flows and handled
1016  * by two separated komeda layer input pipelines. komeda supports two types of
1017  * layer split:
1018  * - none-scaling split:
1019  *             / layer-left -> \
1020  * plane_state                  compiz-> ...
1021  *             \ layer-right-> /
1022  *
1023  * - scaling split:
1024  *             / layer-left -> scaler->\
1025  * plane_state                          merger -> compiz-> ...
1026  *             \ layer-right-> scaler->/
1027  *
1028  * Since merger only supports scaler as input, so for none-scaling split, two
1029  * layer data flows will be output to compiz directly. for scaling_split, two
1030  * data flow will be merged by merger firstly, then merger outputs one merged
1031  * data flow to compiz.
1032  */
1033 int komeda_build_layer_split_data_flow(struct komeda_layer *left,
1034                                        struct komeda_plane_state *kplane_st,
1035                                        struct komeda_crtc_state *kcrtc_st,
1036                                        struct komeda_data_flow_cfg *dflow)
1037 {
1038         struct drm_plane *plane = kplane_st->base.plane;
1039         struct komeda_pipeline *pipe = left->base.pipeline;
1040         struct komeda_layer *right = left->right;
1041         struct komeda_data_flow_cfg l_dflow, r_dflow;
1042         int err;
1043
1044         komeda_split_data_flow(pipe->scalers[0], dflow, &l_dflow, &r_dflow);
1045
1046         DRM_DEBUG_ATOMIC("Assign %s + %s to [PLANE:%d:%s]: "
1047                          "src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
1048                          left->base.name, right->base.name,
1049                          plane->base.id, plane->name,
1050                          dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
1051                          dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
1052
1053         err = komeda_build_layer_data_flow(left, kplane_st, kcrtc_st, &l_dflow);
1054         if (err)
1055                 return err;
1056
1057         err = komeda_build_layer_data_flow(right, kplane_st, kcrtc_st, &r_dflow);
1058         if (err)
1059                 return err;
1060
1061         /* The rotation has been handled by layer, so adjusted the data flow */
1062         komeda_rotate_data_flow(dflow, dflow->rot);
1063
1064         /* left and right dflow has been merged to compiz already,
1065          * no need merger to merge them anymore.
1066          */
1067         if (r_dflow.input.component == l_dflow.input.component)
1068                 return 0;
1069
1070         /* line merger path */
1071         err = komeda_merger_validate(pipe->merger, plane, kcrtc_st,
1072                                      &l_dflow, &r_dflow, dflow);
1073         if (err)
1074                 return err;
1075
1076         err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
1077
1078         return err;
1079 }
1080
1081 /* writeback data path: compiz -> scaler -> wb_layer -> memory */
1082 int komeda_build_wb_data_flow(struct komeda_layer *wb_layer,
1083                               struct drm_connector_state *conn_st,
1084                               struct komeda_crtc_state *kcrtc_st,
1085                               struct komeda_data_flow_cfg *dflow)
1086 {
1087         struct drm_connector *conn = conn_st->connector;
1088         int err;
1089
1090         err = komeda_scaler_validate(conn, kcrtc_st, dflow);
1091         if (err)
1092                 return err;
1093
1094         return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
1095 }
1096
1097 /* writeback scaling split data path:
1098  *                   /-> scaler ->\
1099  * compiz -> splitter              merger -> wb_layer -> memory
1100  *                   \-> scaler ->/
1101  */
1102 int komeda_build_wb_split_data_flow(struct komeda_layer *wb_layer,
1103                                     struct drm_connector_state *conn_st,
1104                                     struct komeda_crtc_state *kcrtc_st,
1105                                     struct komeda_data_flow_cfg *dflow)
1106 {
1107         struct komeda_pipeline *pipe = wb_layer->base.pipeline;
1108         struct drm_connector *conn = conn_st->connector;
1109         struct komeda_data_flow_cfg l_dflow, r_dflow;
1110         int err;
1111
1112         err = komeda_splitter_validate(pipe->splitter, conn_st,
1113                                        dflow, &l_dflow, &r_dflow);
1114         if (err)
1115                 return err;
1116         err = komeda_scaler_validate(conn, kcrtc_st, &l_dflow);
1117         if (err)
1118                 return err;
1119
1120         err = komeda_scaler_validate(conn, kcrtc_st, &r_dflow);
1121         if (err)
1122                 return err;
1123
1124         err = komeda_merger_validate(pipe->merger, conn_st, kcrtc_st,
1125                                      &l_dflow, &r_dflow, dflow);
1126         if (err)
1127                 return err;
1128
1129         return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
1130 }
1131
1132 /* build display output data flow, the data path is:
1133  * compiz -> improc -> timing_ctrlr
1134  */
1135 int komeda_build_display_data_flow(struct komeda_crtc *kcrtc,
1136                                    struct komeda_crtc_state *kcrtc_st)
1137 {
1138         struct komeda_pipeline *master = kcrtc->master;
1139         struct komeda_pipeline *slave  = kcrtc->slave;
1140         struct komeda_data_flow_cfg m_dflow; /* master data flow */
1141         struct komeda_data_flow_cfg s_dflow; /* slave data flow */
1142         int err;
1143
1144         memset(&m_dflow, 0, sizeof(m_dflow));
1145         memset(&s_dflow, 0, sizeof(s_dflow));
1146
1147         if (slave && has_bit(slave->id, kcrtc_st->active_pipes)) {
1148                 err = komeda_compiz_validate(slave->compiz, kcrtc_st, &s_dflow);
1149                 if (err)
1150                         return err;
1151
1152                 /* merge the slave dflow into master pipeline */
1153                 err = komeda_compiz_set_input(master->compiz, kcrtc_st,
1154                                               &s_dflow);
1155                 if (err)
1156                         return err;
1157         }
1158
1159         err = komeda_compiz_validate(master->compiz, kcrtc_st, &m_dflow);
1160         if (err)
1161                 return err;
1162
1163         err = komeda_improc_validate(master->improc, kcrtc_st, &m_dflow);
1164         if (err)
1165                 return err;
1166
1167         err = komeda_timing_ctrlr_validate(master->ctrlr, kcrtc_st, &m_dflow);
1168         if (err)
1169                 return err;
1170
1171         return 0;
1172 }
1173
1174 static void
1175 komeda_pipeline_unbound_components(struct komeda_pipeline *pipe,
1176                                    struct komeda_pipeline_state *new)
1177 {
1178         struct drm_atomic_state *drm_st = new->obj.state;
1179         struct komeda_pipeline_state *old = priv_to_pipe_st(pipe->obj.state);
1180         struct komeda_component_state *c_st;
1181         struct komeda_component *c;
1182         u32 disabling_comps, id;
1183
1184         WARN_ON(!old);
1185
1186         disabling_comps = (~new->active_comps) & old->active_comps;
1187
1188         /* unbound all disabling component */
1189         dp_for_each_set_bit(id, disabling_comps) {
1190                 c = komeda_pipeline_get_component(pipe, id);
1191                 c_st = komeda_component_get_state_and_set_user(c,
1192                                 drm_st, NULL, new->crtc);
1193                 WARN_ON(IS_ERR(c_st));
1194         }
1195 }
1196
1197 /* release unclaimed pipeline resource */
1198 int komeda_release_unclaimed_resources(struct komeda_pipeline *pipe,
1199                                        struct komeda_crtc_state *kcrtc_st)
1200 {
1201         struct drm_atomic_state *drm_st = kcrtc_st->base.state;
1202         struct komeda_pipeline_state *st;
1203
1204         /* ignore the pipeline which is not affected */
1205         if (!pipe || !has_bit(pipe->id, kcrtc_st->affected_pipes))
1206                 return 0;
1207
1208         if (has_bit(pipe->id, kcrtc_st->active_pipes))
1209                 st = komeda_pipeline_get_new_state(pipe, drm_st);
1210         else
1211                 st = komeda_pipeline_get_state_and_set_crtc(pipe, drm_st, NULL);
1212
1213         if (WARN_ON(IS_ERR_OR_NULL(st)))
1214                 return -EINVAL;
1215
1216         komeda_pipeline_unbound_components(pipe, st);
1217
1218         return 0;
1219 }
1220
1221 void komeda_pipeline_disable(struct komeda_pipeline *pipe,
1222                              struct drm_atomic_state *old_state)
1223 {
1224         struct komeda_pipeline_state *old;
1225         struct komeda_component *c;
1226         struct komeda_component_state *c_st;
1227         u32 id, disabling_comps = 0;
1228
1229         old = komeda_pipeline_get_old_state(pipe, old_state);
1230
1231         disabling_comps = old->active_comps;
1232         DRM_DEBUG_ATOMIC("PIPE%d: disabling_comps: 0x%x.\n",
1233                          pipe->id, disabling_comps);
1234
1235         dp_for_each_set_bit(id, disabling_comps) {
1236                 c = komeda_pipeline_get_component(pipe, id);
1237                 c_st = priv_to_comp_st(c->obj.state);
1238
1239                 /*
1240                  * If we disabled a component then all active_inputs should be
1241                  * put in the list of changed_active_inputs, so they get
1242                  * re-enabled.
1243                  * This usually happens during a modeset when the pipeline is
1244                  * first disabled and then the actual state gets committed
1245                  * again.
1246                  */
1247                 c_st->changed_active_inputs |= c_st->active_inputs;
1248
1249                 c->funcs->disable(c);
1250         }
1251 }
1252
1253 void komeda_pipeline_update(struct komeda_pipeline *pipe,
1254                             struct drm_atomic_state *old_state)
1255 {
1256         struct komeda_pipeline_state *new = priv_to_pipe_st(pipe->obj.state);
1257         struct komeda_pipeline_state *old;
1258         struct komeda_component *c;
1259         u32 id, changed_comps = 0;
1260
1261         old = komeda_pipeline_get_old_state(pipe, old_state);
1262
1263         changed_comps = new->active_comps | old->active_comps;
1264
1265         DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, changed: 0x%x.\n",
1266                          pipe->id, new->active_comps, changed_comps);
1267
1268         dp_for_each_set_bit(id, changed_comps) {
1269                 c = komeda_pipeline_get_component(pipe, id);
1270
1271                 if (new->active_comps & BIT(c->id))
1272                         c->funcs->update(c, priv_to_comp_st(c->obj.state));
1273                 else
1274                         c->funcs->disable(c);
1275         }
1276 }