Merge tag 'drm-for-v4.15-part2' of git://people.freedesktop.org/~airlied/linux
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / powerplay / hwmgr / ppatomctrl.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include "pp_debug.h"
24 #include <linux/module.h>
25 #include <linux/slab.h>
26
27 #include "ppatomctrl.h"
28 #include "atombios.h"
29 #include "cgs_common.h"
30 #include "ppevvmath.h"
31
32 #define MEM_ID_MASK           0xff000000
33 #define MEM_ID_SHIFT          24
34 #define CLOCK_RANGE_MASK      0x00ffffff
35 #define CLOCK_RANGE_SHIFT     0
36 #define LOW_NIBBLE_MASK       0xf
37 #define DATA_EQU_PREV         0
38 #define DATA_FROM_TABLE       4
39
40 union voltage_object_info {
41         struct _ATOM_VOLTAGE_OBJECT_INFO v1;
42         struct _ATOM_VOLTAGE_OBJECT_INFO_V2 v2;
43         struct _ATOM_VOLTAGE_OBJECT_INFO_V3_1 v3;
44 };
45
46 static int atomctrl_retrieve_ac_timing(
47                 uint8_t index,
48                 ATOM_INIT_REG_BLOCK *reg_block,
49                 pp_atomctrl_mc_reg_table *table)
50 {
51         uint32_t i, j;
52         uint8_t tmem_id;
53         ATOM_MEMORY_SETTING_DATA_BLOCK *reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
54                 ((uint8_t *)reg_block + (2 * sizeof(uint16_t)) + le16_to_cpu(reg_block->usRegIndexTblSize));
55
56         uint8_t num_ranges = 0;
57
58         while (*(uint32_t *)reg_data != END_OF_REG_DATA_BLOCK &&
59                         num_ranges < VBIOS_MAX_AC_TIMING_ENTRIES) {
60                 tmem_id = (uint8_t)((*(uint32_t *)reg_data & MEM_ID_MASK) >> MEM_ID_SHIFT);
61
62                 if (index == tmem_id) {
63                         table->mc_reg_table_entry[num_ranges].mclk_max =
64                                 (uint32_t)((*(uint32_t *)reg_data & CLOCK_RANGE_MASK) >>
65                                                 CLOCK_RANGE_SHIFT);
66
67                         for (i = 0, j = 1; i < table->last; i++) {
68                                 if ((table->mc_reg_address[i].uc_pre_reg_data &
69                                                         LOW_NIBBLE_MASK) == DATA_FROM_TABLE) {
70                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
71                                                 (uint32_t)*((uint32_t *)reg_data + j);
72                                         j++;
73                                 } else if ((table->mc_reg_address[i].uc_pre_reg_data &
74                                                         LOW_NIBBLE_MASK) == DATA_EQU_PREV) {
75                                         table->mc_reg_table_entry[num_ranges].mc_data[i] =
76                                                 table->mc_reg_table_entry[num_ranges].mc_data[i-1];
77                                 }
78                         }
79                         num_ranges++;
80                 }
81
82                 reg_data = (ATOM_MEMORY_SETTING_DATA_BLOCK *)
83                         ((uint8_t *)reg_data + le16_to_cpu(reg_block->usRegDataBlkSize)) ;
84         }
85
86         PP_ASSERT_WITH_CODE((*(uint32_t *)reg_data == END_OF_REG_DATA_BLOCK),
87                         "Invalid VramInfo table.", return -1);
88         table->num_entries = num_ranges;
89
90         return 0;
91 }
92
93 /**
94  * Get memory clock AC timing registers index from VBIOS table
95  * VBIOS set end of memory clock AC timing registers by ucPreRegDataLength bit6 = 1
96  * @param    reg_block the address ATOM_INIT_REG_BLOCK
97  * @param    table the address of MCRegTable
98  * @return   0
99  */
100 static int atomctrl_set_mc_reg_address_table(
101                 ATOM_INIT_REG_BLOCK *reg_block,
102                 pp_atomctrl_mc_reg_table *table)
103 {
104         uint8_t i = 0;
105         uint8_t num_entries = (uint8_t)((le16_to_cpu(reg_block->usRegIndexTblSize))
106                         / sizeof(ATOM_INIT_REG_INDEX_FORMAT));
107         ATOM_INIT_REG_INDEX_FORMAT *format = &reg_block->asRegIndexBuf[0];
108
109         num_entries--;        /* subtract 1 data end mark entry */
110
111         PP_ASSERT_WITH_CODE((num_entries <= VBIOS_MC_REGISTER_ARRAY_SIZE),
112                         "Invalid VramInfo table.", return -1);
113
114         /* ucPreRegDataLength bit6 = 1 is the end of memory clock AC timing registers */
115         while ((!(format->ucPreRegDataLength & ACCESS_PLACEHOLDER)) &&
116                         (i < num_entries)) {
117                 table->mc_reg_address[i].s1 =
118                         (uint16_t)(le16_to_cpu(format->usRegIndex));
119                 table->mc_reg_address[i].uc_pre_reg_data =
120                         format->ucPreRegDataLength;
121
122                 i++;
123                 format = (ATOM_INIT_REG_INDEX_FORMAT *)
124                         ((uint8_t *)format + sizeof(ATOM_INIT_REG_INDEX_FORMAT));
125         }
126
127         table->last = i;
128         return 0;
129 }
130
131
132 int atomctrl_initialize_mc_reg_table(
133                 struct pp_hwmgr *hwmgr,
134                 uint8_t module_index,
135                 pp_atomctrl_mc_reg_table *table)
136 {
137         ATOM_VRAM_INFO_HEADER_V2_1 *vram_info;
138         ATOM_INIT_REG_BLOCK *reg_block;
139         int result = 0;
140         u8 frev, crev;
141         u16 size;
142
143         vram_info = (ATOM_VRAM_INFO_HEADER_V2_1 *)
144                 cgs_atom_get_data_table(hwmgr->device,
145                                 GetIndexIntoMasterTable(DATA, VRAM_Info), &size, &frev, &crev);
146
147         if (module_index >= vram_info->ucNumOfVRAMModule) {
148                 pr_err("Invalid VramInfo table.");
149                 result = -1;
150         } else if (vram_info->sHeader.ucTableFormatRevision < 2) {
151                 pr_err("Invalid VramInfo table.");
152                 result = -1;
153         }
154
155         if (0 == result) {
156                 reg_block = (ATOM_INIT_REG_BLOCK *)
157                         ((uint8_t *)vram_info + le16_to_cpu(vram_info->usMemClkPatchTblOffset));
158                 result = atomctrl_set_mc_reg_address_table(reg_block, table);
159         }
160
161         if (0 == result) {
162                 result = atomctrl_retrieve_ac_timing(module_index,
163                                         reg_block, table);
164         }
165
166         return result;
167 }
168
169 /**
170  * Set DRAM timings based on engine clock and memory clock.
171  */
172 int atomctrl_set_engine_dram_timings_rv770(
173                 struct pp_hwmgr *hwmgr,
174                 uint32_t engine_clock,
175                 uint32_t memory_clock)
176 {
177         SET_ENGINE_CLOCK_PS_ALLOCATION engine_clock_parameters;
178
179         /* They are both in 10KHz Units. */
180         engine_clock_parameters.ulTargetEngineClock =
181                 cpu_to_le32((engine_clock & SET_CLOCK_FREQ_MASK) |
182                             ((COMPUTE_ENGINE_PLL_PARAM << 24)));
183
184         /* in 10 khz units.*/
185         engine_clock_parameters.sReserved.ulClock =
186                 cpu_to_le32(memory_clock & SET_CLOCK_FREQ_MASK);
187         return cgs_atom_exec_cmd_table(hwmgr->device,
188                         GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
189                         &engine_clock_parameters);
190 }
191
192 /**
193  * Private Function to get the PowerPlay Table Address.
194  * WARNING: The tabled returned by this function is in
195  * dynamically allocated memory.
196  * The caller has to release if by calling kfree.
197  */
198 static ATOM_VOLTAGE_OBJECT_INFO *get_voltage_info_table(void *device)
199 {
200         int index = GetIndexIntoMasterTable(DATA, VoltageObjectInfo);
201         u8 frev, crev;
202         u16 size;
203         union voltage_object_info *voltage_info;
204
205         voltage_info = (union voltage_object_info *)
206                 cgs_atom_get_data_table(device, index,
207                         &size, &frev, &crev);
208
209         if (voltage_info != NULL)
210                 return (ATOM_VOLTAGE_OBJECT_INFO *) &(voltage_info->v3);
211         else
212                 return NULL;
213 }
214
215 static const ATOM_VOLTAGE_OBJECT_V3 *atomctrl_lookup_voltage_type_v3(
216                 const ATOM_VOLTAGE_OBJECT_INFO_V3_1 * voltage_object_info_table,
217                 uint8_t voltage_type, uint8_t voltage_mode)
218 {
219         unsigned int size = le16_to_cpu(voltage_object_info_table->sHeader.usStructureSize);
220         unsigned int offset = offsetof(ATOM_VOLTAGE_OBJECT_INFO_V3_1, asVoltageObj[0]);
221         uint8_t *start = (uint8_t *)voltage_object_info_table;
222
223         while (offset < size) {
224                 const ATOM_VOLTAGE_OBJECT_V3 *voltage_object =
225                         (const ATOM_VOLTAGE_OBJECT_V3 *)(start + offset);
226
227                 if (voltage_type == voltage_object->asGpioVoltageObj.sHeader.ucVoltageType &&
228                         voltage_mode == voltage_object->asGpioVoltageObj.sHeader.ucVoltageMode)
229                         return voltage_object;
230
231                 offset += le16_to_cpu(voltage_object->asGpioVoltageObj.sHeader.usSize);
232         }
233
234         return NULL;
235 }
236
237 /** atomctrl_get_memory_pll_dividers_si().
238  *
239  * @param hwmgr                 input parameter: pointer to HwMgr
240  * @param clock_value             input parameter: memory clock
241  * @param dividers                 output parameter: memory PLL dividers
242  * @param strobe_mode            input parameter: 1 for strobe mode,  0 for performance mode
243  */
244 int atomctrl_get_memory_pll_dividers_si(
245                 struct pp_hwmgr *hwmgr,
246                 uint32_t clock_value,
247                 pp_atomctrl_memory_clock_param *mpll_param,
248                 bool strobe_mode)
249 {
250         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_1 mpll_parameters;
251         int result;
252
253         mpll_parameters.ulClock = cpu_to_le32(clock_value);
254         mpll_parameters.ucInputFlag = (uint8_t)((strobe_mode) ? 1 : 0);
255
256         result = cgs_atom_exec_cmd_table
257                 (hwmgr->device,
258                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
259                  &mpll_parameters);
260
261         if (0 == result) {
262                 mpll_param->mpll_fb_divider.clk_frac =
263                         le16_to_cpu(mpll_parameters.ulFbDiv.usFbDivFrac);
264                 mpll_param->mpll_fb_divider.cl_kf =
265                         le16_to_cpu(mpll_parameters.ulFbDiv.usFbDiv);
266                 mpll_param->mpll_post_divider =
267                         (uint32_t)mpll_parameters.ucPostDiv;
268                 mpll_param->vco_mode =
269                         (uint32_t)(mpll_parameters.ucPllCntlFlag &
270                                         MPLL_CNTL_FLAG_VCO_MODE_MASK);
271                 mpll_param->yclk_sel =
272                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
273                                                 MPLL_CNTL_FLAG_BYPASS_DQ_PLL) ? 1 : 0);
274                 mpll_param->qdr =
275                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
276                                                 MPLL_CNTL_FLAG_QDR_ENABLE) ? 1 : 0);
277                 mpll_param->half_rate =
278                         (uint32_t)((mpll_parameters.ucPllCntlFlag &
279                                                 MPLL_CNTL_FLAG_AD_HALF_RATE) ? 1 : 0);
280                 mpll_param->dll_speed =
281                         (uint32_t)(mpll_parameters.ucDllSpeed);
282                 mpll_param->bw_ctrl =
283                         (uint32_t)(mpll_parameters.ucBWCntl);
284         }
285
286         return result;
287 }
288
289 /** atomctrl_get_memory_pll_dividers_vi().
290  *
291  * @param hwmgr                 input parameter: pointer to HwMgr
292  * @param clock_value             input parameter: memory clock
293  * @param dividers               output parameter: memory PLL dividers
294  */
295 int atomctrl_get_memory_pll_dividers_vi(struct pp_hwmgr *hwmgr,
296                 uint32_t clock_value, pp_atomctrl_memory_clock_param *mpll_param)
297 {
298         COMPUTE_MEMORY_CLOCK_PARAM_PARAMETERS_V2_2 mpll_parameters;
299         int result;
300
301         mpll_parameters.ulClock.ulClock = cpu_to_le32(clock_value);
302
303         result = cgs_atom_exec_cmd_table(hwmgr->device,
304                         GetIndexIntoMasterTable(COMMAND, ComputeMemoryClockParam),
305                         &mpll_parameters);
306
307         if (!result)
308                 mpll_param->mpll_post_divider =
309                                 (uint32_t)mpll_parameters.ulClock.ucPostDiv;
310
311         return result;
312 }
313
314 int atomctrl_get_engine_pll_dividers_kong(struct pp_hwmgr *hwmgr,
315                                           uint32_t clock_value,
316                                           pp_atomctrl_clock_dividers_kong *dividers)
317 {
318         COMPUTE_MEMORY_ENGINE_PLL_PARAMETERS_V4 pll_parameters;
319         int result;
320
321         pll_parameters.ulClock = cpu_to_le32(clock_value);
322
323         result = cgs_atom_exec_cmd_table
324                 (hwmgr->device,
325                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
326                  &pll_parameters);
327
328         if (0 == result) {
329                 dividers->pll_post_divider = pll_parameters.ucPostDiv;
330                 dividers->real_clock = le32_to_cpu(pll_parameters.ulClock);
331         }
332
333         return result;
334 }
335
336 int atomctrl_get_engine_pll_dividers_vi(
337                 struct pp_hwmgr *hwmgr,
338                 uint32_t clock_value,
339                 pp_atomctrl_clock_dividers_vi *dividers)
340 {
341         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
342         int result;
343
344         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
345         pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
346
347         result = cgs_atom_exec_cmd_table
348                 (hwmgr->device,
349                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
350                  &pll_patameters);
351
352         if (0 == result) {
353                 dividers->pll_post_divider =
354                         pll_patameters.ulClock.ucPostDiv;
355                 dividers->real_clock =
356                         le32_to_cpu(pll_patameters.ulClock.ulClock);
357
358                 dividers->ul_fb_div.ul_fb_div_frac =
359                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
360                 dividers->ul_fb_div.ul_fb_div =
361                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
362
363                 dividers->uc_pll_ref_div =
364                         pll_patameters.ucPllRefDiv;
365                 dividers->uc_pll_post_div =
366                         pll_patameters.ucPllPostDiv;
367                 dividers->uc_pll_cntl_flag =
368                         pll_patameters.ucPllCntlFlag;
369         }
370
371         return result;
372 }
373
374 int atomctrl_get_engine_pll_dividers_ai(struct pp_hwmgr *hwmgr,
375                 uint32_t clock_value,
376                 pp_atomctrl_clock_dividers_ai *dividers)
377 {
378         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_7 pll_patameters;
379         int result;
380
381         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
382         pll_patameters.ulClock.ucPostDiv = COMPUTE_GPUCLK_INPUT_FLAG_SCLK;
383
384         result = cgs_atom_exec_cmd_table
385                 (hwmgr->device,
386                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
387                  &pll_patameters);
388
389         if (0 == result) {
390                 dividers->usSclk_fcw_frac     = le16_to_cpu(pll_patameters.usSclk_fcw_frac);
391                 dividers->usSclk_fcw_int      = le16_to_cpu(pll_patameters.usSclk_fcw_int);
392                 dividers->ucSclkPostDiv       = pll_patameters.ucSclkPostDiv;
393                 dividers->ucSclkVcoMode       = pll_patameters.ucSclkVcoMode;
394                 dividers->ucSclkPllRange      = pll_patameters.ucSclkPllRange;
395                 dividers->ucSscEnable         = pll_patameters.ucSscEnable;
396                 dividers->usSsc_fcw1_frac     = le16_to_cpu(pll_patameters.usSsc_fcw1_frac);
397                 dividers->usSsc_fcw1_int      = le16_to_cpu(pll_patameters.usSsc_fcw1_int);
398                 dividers->usPcc_fcw_int       = le16_to_cpu(pll_patameters.usPcc_fcw_int);
399                 dividers->usSsc_fcw_slew_frac = le16_to_cpu(pll_patameters.usSsc_fcw_slew_frac);
400                 dividers->usPcc_fcw_slew_frac = le16_to_cpu(pll_patameters.usPcc_fcw_slew_frac);
401         }
402         return result;
403 }
404
405 int atomctrl_get_dfs_pll_dividers_vi(
406                 struct pp_hwmgr *hwmgr,
407                 uint32_t clock_value,
408                 pp_atomctrl_clock_dividers_vi *dividers)
409 {
410         COMPUTE_GPU_CLOCK_OUTPUT_PARAMETERS_V1_6 pll_patameters;
411         int result;
412
413         pll_patameters.ulClock.ulClock = cpu_to_le32(clock_value);
414         pll_patameters.ulClock.ucPostDiv =
415                 COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK;
416
417         result = cgs_atom_exec_cmd_table
418                 (hwmgr->device,
419                  GetIndexIntoMasterTable(COMMAND, ComputeMemoryEnginePLL),
420                  &pll_patameters);
421
422         if (0 == result) {
423                 dividers->pll_post_divider =
424                         pll_patameters.ulClock.ucPostDiv;
425                 dividers->real_clock =
426                         le32_to_cpu(pll_patameters.ulClock.ulClock);
427
428                 dividers->ul_fb_div.ul_fb_div_frac =
429                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDivFrac);
430                 dividers->ul_fb_div.ul_fb_div =
431                         le16_to_cpu(pll_patameters.ulFbDiv.usFbDiv);
432
433                 dividers->uc_pll_ref_div =
434                         pll_patameters.ucPllRefDiv;
435                 dividers->uc_pll_post_div =
436                         pll_patameters.ucPllPostDiv;
437                 dividers->uc_pll_cntl_flag =
438                         pll_patameters.ucPllCntlFlag;
439         }
440
441         return result;
442 }
443
444 /**
445  * Get the reference clock in 10KHz
446  */
447 uint32_t atomctrl_get_reference_clock(struct pp_hwmgr *hwmgr)
448 {
449         ATOM_FIRMWARE_INFO *fw_info;
450         u8 frev, crev;
451         u16 size;
452         uint32_t clock;
453
454         fw_info = (ATOM_FIRMWARE_INFO *)
455                 cgs_atom_get_data_table(hwmgr->device,
456                         GetIndexIntoMasterTable(DATA, FirmwareInfo),
457                         &size, &frev, &crev);
458
459         if (fw_info == NULL)
460                 clock = 2700;
461         else
462                 clock = (uint32_t)(le16_to_cpu(fw_info->usReferenceClock));
463
464         return clock;
465 }
466
467 /**
468  * Returns true if the given voltage type is controlled by GPIO pins.
469  * voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC,
470  * SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
471  * voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
472  */
473 bool atomctrl_is_voltage_controlled_by_gpio_v3(
474                 struct pp_hwmgr *hwmgr,
475                 uint8_t voltage_type,
476                 uint8_t voltage_mode)
477 {
478         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
479                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
480         bool ret;
481
482         PP_ASSERT_WITH_CODE((NULL != voltage_info),
483                         "Could not find Voltage Table in BIOS.", return false;);
484
485         ret = (NULL != atomctrl_lookup_voltage_type_v3
486                         (voltage_info, voltage_type, voltage_mode)) ? true : false;
487
488         return ret;
489 }
490
491 int atomctrl_get_voltage_table_v3(
492                 struct pp_hwmgr *hwmgr,
493                 uint8_t voltage_type,
494                 uint8_t voltage_mode,
495                 pp_atomctrl_voltage_table *voltage_table)
496 {
497         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
498                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
499         const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
500         unsigned int i;
501
502         PP_ASSERT_WITH_CODE((NULL != voltage_info),
503                         "Could not find Voltage Table in BIOS.", return -1;);
504
505         voltage_object = atomctrl_lookup_voltage_type_v3
506                 (voltage_info, voltage_type, voltage_mode);
507
508         if (voltage_object == NULL)
509                 return -1;
510
511         PP_ASSERT_WITH_CODE(
512                         (voltage_object->asGpioVoltageObj.ucGpioEntryNum <=
513                         PP_ATOMCTRL_MAX_VOLTAGE_ENTRIES),
514                         "Too many voltage entries!",
515                         return -1;
516                         );
517
518         for (i = 0; i < voltage_object->asGpioVoltageObj.ucGpioEntryNum; i++) {
519                 voltage_table->entries[i].value =
520                         le16_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].usVoltageValue);
521                 voltage_table->entries[i].smio_low =
522                         le32_to_cpu(voltage_object->asGpioVoltageObj.asVolGpioLut[i].ulVoltageId);
523         }
524
525         voltage_table->mask_low    =
526                 le32_to_cpu(voltage_object->asGpioVoltageObj.ulGpioMaskVal);
527         voltage_table->count      =
528                 voltage_object->asGpioVoltageObj.ucGpioEntryNum;
529         voltage_table->phase_delay =
530                 voltage_object->asGpioVoltageObj.ucPhaseDelay;
531
532         return 0;
533 }
534
535 static bool atomctrl_lookup_gpio_pin(
536                 ATOM_GPIO_PIN_LUT * gpio_lookup_table,
537                 const uint32_t pinId,
538                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
539 {
540         unsigned int size = le16_to_cpu(gpio_lookup_table->sHeader.usStructureSize);
541         unsigned int offset = offsetof(ATOM_GPIO_PIN_LUT, asGPIO_Pin[0]);
542         uint8_t *start = (uint8_t *)gpio_lookup_table;
543
544         while (offset < size) {
545                 const ATOM_GPIO_PIN_ASSIGNMENT *pin_assignment =
546                         (const ATOM_GPIO_PIN_ASSIGNMENT *)(start + offset);
547
548                 if (pinId == pin_assignment->ucGPIO_ID) {
549                         gpio_pin_assignment->uc_gpio_pin_bit_shift =
550                                 pin_assignment->ucGpioPinBitShift;
551                         gpio_pin_assignment->us_gpio_pin_aindex =
552                                 le16_to_cpu(pin_assignment->usGpioPin_AIndex);
553                         return true;
554                 }
555
556                 offset += offsetof(ATOM_GPIO_PIN_ASSIGNMENT, ucGPIO_ID) + 1;
557         }
558
559         return false;
560 }
561
562 /**
563  * Private Function to get the PowerPlay Table Address.
564  * WARNING: The tabled returned by this function is in
565  * dynamically allocated memory.
566  * The caller has to release if by calling kfree.
567  */
568 static ATOM_GPIO_PIN_LUT *get_gpio_lookup_table(void *device)
569 {
570         u8 frev, crev;
571         u16 size;
572         void *table_address;
573
574         table_address = (ATOM_GPIO_PIN_LUT *)
575                 cgs_atom_get_data_table(device,
576                                 GetIndexIntoMasterTable(DATA, GPIO_Pin_LUT),
577                                 &size, &frev, &crev);
578
579         PP_ASSERT_WITH_CODE((NULL != table_address),
580                         "Error retrieving BIOS Table Address!", return NULL;);
581
582         return (ATOM_GPIO_PIN_LUT *)table_address;
583 }
584
585 /**
586  * Returns 1 if the given pin id find in lookup table.
587  */
588 bool atomctrl_get_pp_assign_pin(
589                 struct pp_hwmgr *hwmgr,
590                 const uint32_t pinId,
591                 pp_atomctrl_gpio_pin_assignment *gpio_pin_assignment)
592 {
593         bool bRet = false;
594         ATOM_GPIO_PIN_LUT *gpio_lookup_table =
595                 get_gpio_lookup_table(hwmgr->device);
596
597         PP_ASSERT_WITH_CODE((NULL != gpio_lookup_table),
598                         "Could not find GPIO lookup Table in BIOS.", return false);
599
600         bRet = atomctrl_lookup_gpio_pin(gpio_lookup_table, pinId,
601                 gpio_pin_assignment);
602
603         return bRet;
604 }
605
606 int atomctrl_calculate_voltage_evv_on_sclk(
607                 struct pp_hwmgr *hwmgr,
608                 uint8_t voltage_type,
609                 uint32_t sclk,
610                 uint16_t virtual_voltage_Id,
611                 uint16_t *voltage,
612                 uint16_t dpm_level,
613                 bool debug)
614 {
615         ATOM_ASIC_PROFILING_INFO_V3_4 *getASICProfilingInfo;
616
617         EFUSE_LINEAR_FUNC_PARAM sRO_fuse;
618         EFUSE_LINEAR_FUNC_PARAM sCACm_fuse;
619         EFUSE_LINEAR_FUNC_PARAM sCACb_fuse;
620         EFUSE_LOGISTIC_FUNC_PARAM sKt_Beta_fuse;
621         EFUSE_LOGISTIC_FUNC_PARAM sKv_m_fuse;
622         EFUSE_LOGISTIC_FUNC_PARAM sKv_b_fuse;
623         EFUSE_INPUT_PARAMETER sInput_FuseValues;
624         READ_EFUSE_VALUE_PARAMETER sOutput_FuseValues;
625
626         uint32_t ul_RO_fused, ul_CACb_fused, ul_CACm_fused, ul_Kt_Beta_fused, ul_Kv_m_fused, ul_Kv_b_fused;
627         fInt fSM_A0, fSM_A1, fSM_A2, fSM_A3, fSM_A4, fSM_A5, fSM_A6, fSM_A7;
628         fInt fMargin_RO_a, fMargin_RO_b, fMargin_RO_c, fMargin_fixed, fMargin_FMAX_mean, fMargin_Plat_mean, fMargin_FMAX_sigma, fMargin_Plat_sigma, fMargin_DC_sigma;
629         fInt fLkg_FT, repeat;
630         fInt fMicro_FMAX, fMicro_CR, fSigma_FMAX, fSigma_CR, fSigma_DC, fDC_SCLK, fSquared_Sigma_DC, fSquared_Sigma_CR, fSquared_Sigma_FMAX;
631         fInt fRLL_LoadLine, fPowerDPMx, fDerateTDP, fVDDC_base, fA_Term, fC_Term, fB_Term, fRO_DC_margin;
632         fInt fRO_fused, fCACm_fused, fCACb_fused, fKv_m_fused, fKv_b_fused, fKt_Beta_fused, fFT_Lkg_V0NORM;
633         fInt fSclk_margin, fSclk, fEVV_V;
634         fInt fV_min, fV_max, fT_prod, fLKG_Factor, fT_FT, fV_FT, fV_x, fTDP_Power, fTDP_Power_right, fTDP_Power_left, fTDP_Current, fV_NL;
635         uint32_t ul_FT_Lkg_V0NORM;
636         fInt fLn_MaxDivMin, fMin, fAverage, fRange;
637         fInt fRoots[2];
638         fInt fStepSize = GetScaledFraction(625, 100000);
639
640         int result;
641
642         getASICProfilingInfo = (ATOM_ASIC_PROFILING_INFO_V3_4 *)
643                         cgs_atom_get_data_table(hwmgr->device,
644                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
645                                         NULL, NULL, NULL);
646
647         if (!getASICProfilingInfo)
648                 return -1;
649
650         if (getASICProfilingInfo->asHeader.ucTableFormatRevision < 3 ||
651             (getASICProfilingInfo->asHeader.ucTableFormatRevision == 3 &&
652              getASICProfilingInfo->asHeader.ucTableContentRevision < 4))
653                 return -1;
654
655         /*-----------------------------------------------------------
656          *GETTING MULTI-STEP PARAMETERS RELATED TO CURRENT DPM LEVEL
657          *-----------------------------------------------------------
658          */
659         fRLL_LoadLine = Divide(getASICProfilingInfo->ulLoadLineSlop, 1000);
660
661         switch (dpm_level) {
662         case 1:
663                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm1));
664                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM1), 1000);
665                 break;
666         case 2:
667                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm2));
668                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM2), 1000);
669                 break;
670         case 3:
671                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm3));
672                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM3), 1000);
673                 break;
674         case 4:
675                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm4));
676                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM4), 1000);
677                 break;
678         case 5:
679                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm5));
680                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM5), 1000);
681                 break;
682         case 6:
683                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm6));
684                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM6), 1000);
685                 break;
686         case 7:
687                 fPowerDPMx = Convert_ULONG_ToFraction(le16_to_cpu(getASICProfilingInfo->usPowerDpm7));
688                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM7), 1000);
689                 break;
690         default:
691                 pr_err("DPM Level not supported\n");
692                 fPowerDPMx = Convert_ULONG_ToFraction(1);
693                 fDerateTDP = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulTdpDerateDPM0), 1000);
694         }
695
696         /*-------------------------
697          * DECODING FUSE VALUES
698          * ------------------------
699          */
700         /*Decode RO_Fused*/
701         sRO_fuse = getASICProfilingInfo->sRoFuse;
702
703         sInput_FuseValues.usEfuseIndex = sRO_fuse.usEfuseIndex;
704         sInput_FuseValues.ucBitShift = sRO_fuse.ucEfuseBitLSB;
705         sInput_FuseValues.ucBitLength = sRO_fuse.ucEfuseLength;
706
707         sOutput_FuseValues.sEfuse = sInput_FuseValues;
708
709         result = cgs_atom_exec_cmd_table(hwmgr->device,
710                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
711                         &sOutput_FuseValues);
712
713         if (result)
714                 return result;
715
716         /* Finally, the actual fuse value */
717         ul_RO_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
718         fMin = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseMin), 1);
719         fRange = GetScaledFraction(le32_to_cpu(sRO_fuse.ulEfuseEncodeRange), 1);
720         fRO_fused = fDecodeLinearFuse(ul_RO_fused, fMin, fRange, sRO_fuse.ucEfuseLength);
721
722         sCACm_fuse = getASICProfilingInfo->sCACm;
723
724         sInput_FuseValues.usEfuseIndex = sCACm_fuse.usEfuseIndex;
725         sInput_FuseValues.ucBitShift = sCACm_fuse.ucEfuseBitLSB;
726         sInput_FuseValues.ucBitLength = sCACm_fuse.ucEfuseLength;
727
728         sOutput_FuseValues.sEfuse = sInput_FuseValues;
729
730         result = cgs_atom_exec_cmd_table(hwmgr->device,
731                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
732                         &sOutput_FuseValues);
733
734         if (result)
735                 return result;
736
737         ul_CACm_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
738         fMin = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseMin), 1000);
739         fRange = GetScaledFraction(le32_to_cpu(sCACm_fuse.ulEfuseEncodeRange), 1000);
740
741         fCACm_fused = fDecodeLinearFuse(ul_CACm_fused, fMin, fRange, sCACm_fuse.ucEfuseLength);
742
743         sCACb_fuse = getASICProfilingInfo->sCACb;
744
745         sInput_FuseValues.usEfuseIndex = sCACb_fuse.usEfuseIndex;
746         sInput_FuseValues.ucBitShift = sCACb_fuse.ucEfuseBitLSB;
747         sInput_FuseValues.ucBitLength = sCACb_fuse.ucEfuseLength;
748         sOutput_FuseValues.sEfuse = sInput_FuseValues;
749
750         result = cgs_atom_exec_cmd_table(hwmgr->device,
751                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
752                         &sOutput_FuseValues);
753
754         if (result)
755                 return result;
756
757         ul_CACb_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
758         fMin = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseMin), 1000);
759         fRange = GetScaledFraction(le32_to_cpu(sCACb_fuse.ulEfuseEncodeRange), 1000);
760
761         fCACb_fused = fDecodeLinearFuse(ul_CACb_fused, fMin, fRange, sCACb_fuse.ucEfuseLength);
762
763         sKt_Beta_fuse = getASICProfilingInfo->sKt_b;
764
765         sInput_FuseValues.usEfuseIndex = sKt_Beta_fuse.usEfuseIndex;
766         sInput_FuseValues.ucBitShift = sKt_Beta_fuse.ucEfuseBitLSB;
767         sInput_FuseValues.ucBitLength = sKt_Beta_fuse.ucEfuseLength;
768
769         sOutput_FuseValues.sEfuse = sInput_FuseValues;
770
771         result = cgs_atom_exec_cmd_table(hwmgr->device,
772                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
773                         &sOutput_FuseValues);
774
775         if (result)
776                 return result;
777
778         ul_Kt_Beta_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
779         fAverage = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeAverage), 1000);
780         fRange = GetScaledFraction(le32_to_cpu(sKt_Beta_fuse.ulEfuseEncodeRange), 1000);
781
782         fKt_Beta_fused = fDecodeLogisticFuse(ul_Kt_Beta_fused,
783                         fAverage, fRange, sKt_Beta_fuse.ucEfuseLength);
784
785         sKv_m_fuse = getASICProfilingInfo->sKv_m;
786
787         sInput_FuseValues.usEfuseIndex = sKv_m_fuse.usEfuseIndex;
788         sInput_FuseValues.ucBitShift = sKv_m_fuse.ucEfuseBitLSB;
789         sInput_FuseValues.ucBitLength = sKv_m_fuse.ucEfuseLength;
790
791         sOutput_FuseValues.sEfuse = sInput_FuseValues;
792
793         result = cgs_atom_exec_cmd_table(hwmgr->device,
794                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
795                         &sOutput_FuseValues);
796         if (result)
797                 return result;
798
799         ul_Kv_m_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
800         fAverage = GetScaledFraction(le32_to_cpu(sKv_m_fuse.ulEfuseEncodeAverage), 1000);
801         fRange = GetScaledFraction((le32_to_cpu(sKv_m_fuse.ulEfuseEncodeRange) & 0x7fffffff), 1000);
802         fRange = fMultiply(fRange, ConvertToFraction(-1));
803
804         fKv_m_fused = fDecodeLogisticFuse(ul_Kv_m_fused,
805                         fAverage, fRange, sKv_m_fuse.ucEfuseLength);
806
807         sKv_b_fuse = getASICProfilingInfo->sKv_b;
808
809         sInput_FuseValues.usEfuseIndex = sKv_b_fuse.usEfuseIndex;
810         sInput_FuseValues.ucBitShift = sKv_b_fuse.ucEfuseBitLSB;
811         sInput_FuseValues.ucBitLength = sKv_b_fuse.ucEfuseLength;
812         sOutput_FuseValues.sEfuse = sInput_FuseValues;
813
814         result = cgs_atom_exec_cmd_table(hwmgr->device,
815                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
816                         &sOutput_FuseValues);
817
818         if (result)
819                 return result;
820
821         ul_Kv_b_fused = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
822         fAverage = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeAverage), 1000);
823         fRange = GetScaledFraction(le32_to_cpu(sKv_b_fuse.ulEfuseEncodeRange), 1000);
824
825         fKv_b_fused = fDecodeLogisticFuse(ul_Kv_b_fused,
826                         fAverage, fRange, sKv_b_fuse.ucEfuseLength);
827
828         /* Decoding the Leakage - No special struct container */
829         /*
830          * usLkgEuseIndex=56
831          * ucLkgEfuseBitLSB=6
832          * ucLkgEfuseLength=10
833          * ulLkgEncodeLn_MaxDivMin=69077
834          * ulLkgEncodeMax=1000000
835          * ulLkgEncodeMin=1000
836          * ulEfuseLogisticAlpha=13
837          */
838
839         sInput_FuseValues.usEfuseIndex = getASICProfilingInfo->usLkgEuseIndex;
840         sInput_FuseValues.ucBitShift = getASICProfilingInfo->ucLkgEfuseBitLSB;
841         sInput_FuseValues.ucBitLength = getASICProfilingInfo->ucLkgEfuseLength;
842
843         sOutput_FuseValues.sEfuse = sInput_FuseValues;
844
845         result = cgs_atom_exec_cmd_table(hwmgr->device,
846                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
847                         &sOutput_FuseValues);
848
849         if (result)
850                 return result;
851
852         ul_FT_Lkg_V0NORM = le32_to_cpu(sOutput_FuseValues.ulEfuseValue);
853         fLn_MaxDivMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeLn_MaxDivMin), 10000);
854         fMin = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLkgEncodeMin), 10000);
855
856         fFT_Lkg_V0NORM = fDecodeLeakageID(ul_FT_Lkg_V0NORM,
857                         fLn_MaxDivMin, fMin, getASICProfilingInfo->ucLkgEfuseLength);
858         fLkg_FT = fFT_Lkg_V0NORM;
859
860         /*-------------------------------------------
861          * PART 2 - Grabbing all required values
862          *-------------------------------------------
863          */
864         fSM_A0 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A0), 1000000),
865                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A0_sign)));
866         fSM_A1 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A1), 1000000),
867                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A1_sign)));
868         fSM_A2 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A2), 100000),
869                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A2_sign)));
870         fSM_A3 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A3), 1000000),
871                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A3_sign)));
872         fSM_A4 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A4), 1000000),
873                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A4_sign)));
874         fSM_A5 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A5), 1000),
875                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A5_sign)));
876         fSM_A6 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A6), 1000),
877                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A6_sign)));
878         fSM_A7 = fMultiply(GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulSM_A7), 1000),
879                         ConvertToFraction(uPow(-1, getASICProfilingInfo->ucSM_A7_sign)));
880
881         fMargin_RO_a = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_a));
882         fMargin_RO_b = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_b));
883         fMargin_RO_c = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_RO_c));
884
885         fMargin_fixed = ConvertToFraction(le32_to_cpu(getASICProfilingInfo->ulMargin_fixed));
886
887         fMargin_FMAX_mean = GetScaledFraction(
888                 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_mean), 10000);
889         fMargin_Plat_mean = GetScaledFraction(
890                 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_mean), 10000);
891         fMargin_FMAX_sigma = GetScaledFraction(
892                 le32_to_cpu(getASICProfilingInfo->ulMargin_Fmax_sigma), 10000);
893         fMargin_Plat_sigma = GetScaledFraction(
894                 le32_to_cpu(getASICProfilingInfo->ulMargin_plat_sigma), 10000);
895
896         fMargin_DC_sigma = GetScaledFraction(
897                 le32_to_cpu(getASICProfilingInfo->ulMargin_DC_sigma), 100);
898         fMargin_DC_sigma = fDivide(fMargin_DC_sigma, ConvertToFraction(1000));
899
900         fCACm_fused = fDivide(fCACm_fused, ConvertToFraction(100));
901         fCACb_fused = fDivide(fCACb_fused, ConvertToFraction(100));
902         fKt_Beta_fused = fDivide(fKt_Beta_fused, ConvertToFraction(100));
903         fKv_m_fused =  fNegate(fDivide(fKv_m_fused, ConvertToFraction(100)));
904         fKv_b_fused = fDivide(fKv_b_fused, ConvertToFraction(10));
905
906         fSclk = GetScaledFraction(sclk, 100);
907
908         fV_max = fDivide(GetScaledFraction(
909                                  le32_to_cpu(getASICProfilingInfo->ulMaxVddc), 1000), ConvertToFraction(4));
910         fT_prod = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulBoardCoreTemp), 10);
911         fLKG_Factor = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulEvvLkgFactor), 100);
912         fT_FT = GetScaledFraction(le32_to_cpu(getASICProfilingInfo->ulLeakageTemp), 10);
913         fV_FT = fDivide(GetScaledFraction(
914                                 le32_to_cpu(getASICProfilingInfo->ulLeakageVoltage), 1000), ConvertToFraction(4));
915         fV_min = fDivide(GetScaledFraction(
916                                  le32_to_cpu(getASICProfilingInfo->ulMinVddc), 1000), ConvertToFraction(4));
917
918         /*-----------------------
919          * PART 3
920          *-----------------------
921          */
922
923         fA_Term = fAdd(fMargin_RO_a, fAdd(fMultiply(fSM_A4, fSclk), fSM_A5));
924         fB_Term = fAdd(fAdd(fMultiply(fSM_A2, fSclk), fSM_A6), fMargin_RO_b);
925         fC_Term = fAdd(fMargin_RO_c,
926                         fAdd(fMultiply(fSM_A0, fLkg_FT),
927                         fAdd(fMultiply(fSM_A1, fMultiply(fLkg_FT, fSclk)),
928                         fAdd(fMultiply(fSM_A3, fSclk),
929                         fSubtract(fSM_A7, fRO_fused)))));
930
931         fVDDC_base = fSubtract(fRO_fused,
932                         fSubtract(fMargin_RO_c,
933                                         fSubtract(fSM_A3, fMultiply(fSM_A1, fSclk))));
934         fVDDC_base = fDivide(fVDDC_base, fAdd(fMultiply(fSM_A0, fSclk), fSM_A2));
935
936         repeat = fSubtract(fVDDC_base,
937                         fDivide(fMargin_DC_sigma, ConvertToFraction(1000)));
938
939         fRO_DC_margin = fAdd(fMultiply(fMargin_RO_a,
940                         fGetSquare(repeat)),
941                         fAdd(fMultiply(fMargin_RO_b, repeat),
942                         fMargin_RO_c));
943
944         fDC_SCLK = fSubtract(fRO_fused,
945                         fSubtract(fRO_DC_margin,
946                         fSubtract(fSM_A3,
947                         fMultiply(fSM_A2, repeat))));
948         fDC_SCLK = fDivide(fDC_SCLK, fAdd(fMultiply(fSM_A0, repeat), fSM_A1));
949
950         fSigma_DC = fSubtract(fSclk, fDC_SCLK);
951
952         fMicro_FMAX = fMultiply(fSclk, fMargin_FMAX_mean);
953         fMicro_CR = fMultiply(fSclk, fMargin_Plat_mean);
954         fSigma_FMAX = fMultiply(fSclk, fMargin_FMAX_sigma);
955         fSigma_CR = fMultiply(fSclk, fMargin_Plat_sigma);
956
957         fSquared_Sigma_DC = fGetSquare(fSigma_DC);
958         fSquared_Sigma_CR = fGetSquare(fSigma_CR);
959         fSquared_Sigma_FMAX = fGetSquare(fSigma_FMAX);
960
961         fSclk_margin = fAdd(fMicro_FMAX,
962                         fAdd(fMicro_CR,
963                         fAdd(fMargin_fixed,
964                         fSqrt(fAdd(fSquared_Sigma_FMAX,
965                         fAdd(fSquared_Sigma_DC, fSquared_Sigma_CR))))));
966         /*
967          fA_Term = fSM_A4 * (fSclk + fSclk_margin) + fSM_A5;
968          fB_Term = fSM_A2 * (fSclk + fSclk_margin) + fSM_A6;
969          fC_Term = fRO_DC_margin + fSM_A0 * fLkg_FT + fSM_A1 * fLkg_FT * (fSclk + fSclk_margin) + fSM_A3 * (fSclk + fSclk_margin) + fSM_A7 - fRO_fused;
970          */
971
972         fA_Term = fAdd(fMultiply(fSM_A4, fAdd(fSclk, fSclk_margin)), fSM_A5);
973         fB_Term = fAdd(fMultiply(fSM_A2, fAdd(fSclk, fSclk_margin)), fSM_A6);
974         fC_Term = fAdd(fRO_DC_margin,
975                         fAdd(fMultiply(fSM_A0, fLkg_FT),
976                         fAdd(fMultiply(fMultiply(fSM_A1, fLkg_FT),
977                         fAdd(fSclk, fSclk_margin)),
978                         fAdd(fMultiply(fSM_A3,
979                         fAdd(fSclk, fSclk_margin)),
980                         fSubtract(fSM_A7, fRO_fused)))));
981
982         SolveQuadracticEqn(fA_Term, fB_Term, fC_Term, fRoots);
983
984         if (GreaterThan(fRoots[0], fRoots[1]))
985                 fEVV_V = fRoots[1];
986         else
987                 fEVV_V = fRoots[0];
988
989         if (GreaterThan(fV_min, fEVV_V))
990                 fEVV_V = fV_min;
991         else if (GreaterThan(fEVV_V, fV_max))
992                 fEVV_V = fSubtract(fV_max, fStepSize);
993
994         fEVV_V = fRoundUpByStepSize(fEVV_V, fStepSize, 0);
995
996         /*-----------------
997          * PART 4
998          *-----------------
999          */
1000
1001         fV_x = fV_min;
1002
1003         while (GreaterThan(fAdd(fV_max, fStepSize), fV_x)) {
1004                 fTDP_Power_left = fMultiply(fMultiply(fMultiply(fAdd(
1005                                 fMultiply(fCACm_fused, fV_x), fCACb_fused), fSclk),
1006                                 fGetSquare(fV_x)), fDerateTDP);
1007
1008                 fTDP_Power_right = fMultiply(fFT_Lkg_V0NORM, fMultiply(fLKG_Factor,
1009                                 fMultiply(fExponential(fMultiply(fAdd(fMultiply(fKv_m_fused,
1010                                 fT_prod), fKv_b_fused), fV_x)), fV_x)));
1011                 fTDP_Power_right = fMultiply(fTDP_Power_right, fExponential(fMultiply(
1012                                 fKt_Beta_fused, fT_prod)));
1013                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1014                                 fAdd(fMultiply(fKv_m_fused, fT_prod), fKv_b_fused), fV_FT)));
1015                 fTDP_Power_right = fDivide(fTDP_Power_right, fExponential(fMultiply(
1016                                 fKt_Beta_fused, fT_FT)));
1017
1018                 fTDP_Power = fAdd(fTDP_Power_left, fTDP_Power_right);
1019
1020                 fTDP_Current = fDivide(fTDP_Power, fV_x);
1021
1022                 fV_NL = fAdd(fV_x, fDivide(fMultiply(fTDP_Current, fRLL_LoadLine),
1023                                 ConvertToFraction(10)));
1024
1025                 fV_NL = fRoundUpByStepSize(fV_NL, fStepSize, 0);
1026
1027                 if (GreaterThan(fV_max, fV_NL) &&
1028                         (GreaterThan(fV_NL, fEVV_V) ||
1029                         Equal(fV_NL, fEVV_V))) {
1030                         fV_NL = fMultiply(fV_NL, ConvertToFraction(1000));
1031
1032                         *voltage = (uint16_t)fV_NL.partial.real;
1033                         break;
1034                 } else
1035                         fV_x = fAdd(fV_x, fStepSize);
1036         }
1037
1038         return result;
1039 }
1040
1041 /** atomctrl_get_voltage_evv_on_sclk gets voltage via call to ATOM COMMAND table.
1042  * @param hwmgr input: pointer to hwManager
1043  * @param voltage_type            input: type of EVV voltage VDDC or VDDGFX
1044  * @param sclk                        input: in 10Khz unit. DPM state SCLK frequency
1045  *              which is define in PPTable SCLK/VDDC dependence
1046  *                              table associated with this virtual_voltage_Id
1047  * @param virtual_voltage_Id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1048  * @param voltage                      output: real voltage level in unit of mv
1049  */
1050 int atomctrl_get_voltage_evv_on_sclk(
1051                 struct pp_hwmgr *hwmgr,
1052                 uint8_t voltage_type,
1053                 uint32_t sclk, uint16_t virtual_voltage_Id,
1054                 uint16_t *voltage)
1055 {
1056         int result;
1057         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1058
1059         get_voltage_info_param_space.ucVoltageType   =
1060                 voltage_type;
1061         get_voltage_info_param_space.ucVoltageMode   =
1062                 ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1063         get_voltage_info_param_space.usVoltageLevel  =
1064                 cpu_to_le16(virtual_voltage_Id);
1065         get_voltage_info_param_space.ulSCLKFreq      =
1066                 cpu_to_le32(sclk);
1067
1068         result = cgs_atom_exec_cmd_table(hwmgr->device,
1069                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1070                         &get_voltage_info_param_space);
1071
1072         if (0 != result)
1073                 return result;
1074
1075         *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1076                                 (&get_voltage_info_param_space))->usVoltageLevel);
1077
1078         return result;
1079 }
1080
1081 /**
1082  * atomctrl_get_voltage_evv gets voltage via call to ATOM COMMAND table.
1083  * @param hwmgr input: pointer to hwManager
1084  * @param virtual_voltage_id      input: voltage id which match per voltage DPM state: 0xff01, 0xff02.. 0xff08
1085  * @param voltage                      output: real voltage level in unit of mv
1086  */
1087 int atomctrl_get_voltage_evv(struct pp_hwmgr *hwmgr,
1088                              uint16_t virtual_voltage_id,
1089                              uint16_t *voltage)
1090 {
1091         int result;
1092         int entry_id;
1093         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_2 get_voltage_info_param_space;
1094
1095         /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
1096         for (entry_id = 0; entry_id < hwmgr->dyn_state.vddc_dependency_on_sclk->count; entry_id++) {
1097                 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].v == virtual_voltage_id) {
1098                         /* found */
1099                         break;
1100                 }
1101         }
1102
1103         if (entry_id >= hwmgr->dyn_state.vddc_dependency_on_sclk->count) {
1104                 pr_debug("Can't find requested voltage id in vddc_dependency_on_sclk table!\n");
1105                 return -EINVAL;
1106         }
1107
1108         get_voltage_info_param_space.ucVoltageType = VOLTAGE_TYPE_VDDC;
1109         get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1110         get_voltage_info_param_space.usVoltageLevel = virtual_voltage_id;
1111         get_voltage_info_param_space.ulSCLKFreq =
1112                 cpu_to_le32(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[entry_id].clk);
1113
1114         result = cgs_atom_exec_cmd_table(hwmgr->device,
1115                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1116                         &get_voltage_info_param_space);
1117
1118         if (0 != result)
1119                 return result;
1120
1121         *voltage = le16_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_2 *)
1122                                 (&get_voltage_info_param_space))->usVoltageLevel);
1123
1124         return result;
1125 }
1126
1127 /**
1128  * Get the mpll reference clock in 10KHz
1129  */
1130 uint32_t atomctrl_get_mpll_reference_clock(struct pp_hwmgr *hwmgr)
1131 {
1132         ATOM_COMMON_TABLE_HEADER *fw_info;
1133         uint32_t clock;
1134         u8 frev, crev;
1135         u16 size;
1136
1137         fw_info = (ATOM_COMMON_TABLE_HEADER *)
1138                 cgs_atom_get_data_table(hwmgr->device,
1139                                 GetIndexIntoMasterTable(DATA, FirmwareInfo),
1140                                 &size, &frev, &crev);
1141
1142         if (fw_info == NULL)
1143                 clock = 2700;
1144         else {
1145                 if ((fw_info->ucTableFormatRevision == 2) &&
1146                         (le16_to_cpu(fw_info->usStructureSize) >= sizeof(ATOM_FIRMWARE_INFO_V2_1))) {
1147                         ATOM_FIRMWARE_INFO_V2_1 *fwInfo_2_1 =
1148                                 (ATOM_FIRMWARE_INFO_V2_1 *)fw_info;
1149                         clock = (uint32_t)(le16_to_cpu(fwInfo_2_1->usMemoryReferenceClock));
1150                 } else {
1151                         ATOM_FIRMWARE_INFO *fwInfo_0_0 =
1152                                 (ATOM_FIRMWARE_INFO *)fw_info;
1153                         clock = (uint32_t)(le16_to_cpu(fwInfo_0_0->usReferenceClock));
1154                 }
1155         }
1156
1157         return clock;
1158 }
1159
1160 /**
1161  * Get the asic internal spread spectrum table
1162  */
1163 static ATOM_ASIC_INTERNAL_SS_INFO *asic_internal_ss_get_ss_table(void *device)
1164 {
1165         ATOM_ASIC_INTERNAL_SS_INFO *table = NULL;
1166         u8 frev, crev;
1167         u16 size;
1168
1169         table = (ATOM_ASIC_INTERNAL_SS_INFO *)
1170                 cgs_atom_get_data_table(device,
1171                         GetIndexIntoMasterTable(DATA, ASIC_InternalSS_Info),
1172                         &size, &frev, &crev);
1173
1174         return table;
1175 }
1176
1177 /**
1178  * Get the asic internal spread spectrum assignment
1179  */
1180 static int asic_internal_ss_get_ss_asignment(struct pp_hwmgr *hwmgr,
1181                 const uint8_t clockSource,
1182                 const uint32_t clockSpeed,
1183                 pp_atomctrl_internal_ss_info *ssEntry)
1184 {
1185         ATOM_ASIC_INTERNAL_SS_INFO *table;
1186         ATOM_ASIC_SS_ASSIGNMENT *ssInfo;
1187         int entry_found = 0;
1188
1189         memset(ssEntry, 0x00, sizeof(pp_atomctrl_internal_ss_info));
1190
1191         table = asic_internal_ss_get_ss_table(hwmgr->device);
1192
1193         if (NULL == table)
1194                 return -1;
1195
1196         ssInfo = &table->asSpreadSpectrum[0];
1197
1198         while (((uint8_t *)ssInfo - (uint8_t *)table) <
1199                 le16_to_cpu(table->sHeader.usStructureSize)) {
1200                 if ((clockSource == ssInfo->ucClockIndication) &&
1201                         ((uint32_t)clockSpeed <= le32_to_cpu(ssInfo->ulTargetClockRange))) {
1202                         entry_found = 1;
1203                         break;
1204                 }
1205
1206                 ssInfo = (ATOM_ASIC_SS_ASSIGNMENT *)((uint8_t *)ssInfo +
1207                                 sizeof(ATOM_ASIC_SS_ASSIGNMENT));
1208         }
1209
1210         if (entry_found) {
1211                 ssEntry->speed_spectrum_percentage =
1212                         le16_to_cpu(ssInfo->usSpreadSpectrumPercentage);
1213                 ssEntry->speed_spectrum_rate = le16_to_cpu(ssInfo->usSpreadRateInKhz);
1214
1215                 if (((GET_DATA_TABLE_MAJOR_REVISION(table) == 2) &&
1216                         (GET_DATA_TABLE_MINOR_REVISION(table) >= 2)) ||
1217                         (GET_DATA_TABLE_MAJOR_REVISION(table) == 3)) {
1218                         ssEntry->speed_spectrum_rate /= 100;
1219                 }
1220
1221                 switch (ssInfo->ucSpreadSpectrumMode) {
1222                 case 0:
1223                         ssEntry->speed_spectrum_mode =
1224                                 pp_atomctrl_spread_spectrum_mode_down;
1225                         break;
1226                 case 1:
1227                         ssEntry->speed_spectrum_mode =
1228                                 pp_atomctrl_spread_spectrum_mode_center;
1229                         break;
1230                 default:
1231                         ssEntry->speed_spectrum_mode =
1232                                 pp_atomctrl_spread_spectrum_mode_down;
1233                         break;
1234                 }
1235         }
1236
1237         return entry_found ? 0 : 1;
1238 }
1239
1240 /**
1241  * Get the memory clock spread spectrum info
1242  */
1243 int atomctrl_get_memory_clock_spread_spectrum(
1244                 struct pp_hwmgr *hwmgr,
1245                 const uint32_t memory_clock,
1246                 pp_atomctrl_internal_ss_info *ssInfo)
1247 {
1248         return asic_internal_ss_get_ss_asignment(hwmgr,
1249                         ASIC_INTERNAL_MEMORY_SS, memory_clock, ssInfo);
1250 }
1251 /**
1252  * Get the engine clock spread spectrum info
1253  */
1254 int atomctrl_get_engine_clock_spread_spectrum(
1255                 struct pp_hwmgr *hwmgr,
1256                 const uint32_t engine_clock,
1257                 pp_atomctrl_internal_ss_info *ssInfo)
1258 {
1259         return asic_internal_ss_get_ss_asignment(hwmgr,
1260                         ASIC_INTERNAL_ENGINE_SS, engine_clock, ssInfo);
1261 }
1262
1263 int atomctrl_read_efuse(void *device, uint16_t start_index,
1264                 uint16_t end_index, uint32_t mask, uint32_t *efuse)
1265 {
1266         int result;
1267         READ_EFUSE_VALUE_PARAMETER efuse_param;
1268
1269         efuse_param.sEfuse.usEfuseIndex = cpu_to_le16((start_index / 32) * 4);
1270         efuse_param.sEfuse.ucBitShift = (uint8_t)
1271                         (start_index - ((start_index / 32) * 32));
1272         efuse_param.sEfuse.ucBitLength  = (uint8_t)
1273                         ((end_index - start_index) + 1);
1274
1275         result = cgs_atom_exec_cmd_table(device,
1276                         GetIndexIntoMasterTable(COMMAND, ReadEfuseValue),
1277                         &efuse_param);
1278         if (!result)
1279                 *efuse = le32_to_cpu(efuse_param.ulEfuseValue) & mask;
1280
1281         return result;
1282 }
1283
1284 int atomctrl_set_ac_timing_ai(struct pp_hwmgr *hwmgr, uint32_t memory_clock,
1285                               uint8_t level)
1286 {
1287         DYNAMICE_MEMORY_SETTINGS_PARAMETER_V2_1 memory_clock_parameters;
1288         int result;
1289
1290         memory_clock_parameters.asDPMMCReg.ulClock.ulClockFreq =
1291                 memory_clock & SET_CLOCK_FREQ_MASK;
1292         memory_clock_parameters.asDPMMCReg.ulClock.ulComputeClockFlag =
1293                 ADJUST_MC_SETTING_PARAM;
1294         memory_clock_parameters.asDPMMCReg.ucMclkDPMState = level;
1295
1296         result = cgs_atom_exec_cmd_table
1297                 (hwmgr->device,
1298                  GetIndexIntoMasterTable(COMMAND, DynamicMemorySettings),
1299                  &memory_clock_parameters);
1300
1301         return result;
1302 }
1303
1304 int atomctrl_get_voltage_evv_on_sclk_ai(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1305                                 uint32_t sclk, uint16_t virtual_voltage_Id, uint32_t *voltage)
1306 {
1307
1308         int result;
1309         GET_VOLTAGE_INFO_INPUT_PARAMETER_V1_3 get_voltage_info_param_space;
1310
1311         get_voltage_info_param_space.ucVoltageType = voltage_type;
1312         get_voltage_info_param_space.ucVoltageMode = ATOM_GET_VOLTAGE_EVV_VOLTAGE;
1313         get_voltage_info_param_space.usVoltageLevel = cpu_to_le16(virtual_voltage_Id);
1314         get_voltage_info_param_space.ulSCLKFreq = cpu_to_le32(sclk);
1315
1316         result = cgs_atom_exec_cmd_table(hwmgr->device,
1317                         GetIndexIntoMasterTable(COMMAND, GetVoltageInfo),
1318                         &get_voltage_info_param_space);
1319
1320         if (0 != result)
1321                 return result;
1322
1323         *voltage = le32_to_cpu(((GET_EVV_VOLTAGE_INFO_OUTPUT_PARAMETER_V1_3 *)
1324                                 (&get_voltage_info_param_space))->ulVoltageLevel);
1325
1326         return result;
1327 }
1328
1329 int atomctrl_get_smc_sclk_range_table(struct pp_hwmgr *hwmgr, struct pp_atom_ctrl_sclk_range_table *table)
1330 {
1331
1332         int i;
1333         u8 frev, crev;
1334         u16 size;
1335
1336         ATOM_SMU_INFO_V2_1 *psmu_info =
1337                 (ATOM_SMU_INFO_V2_1 *)cgs_atom_get_data_table(hwmgr->device,
1338                         GetIndexIntoMasterTable(DATA, SMU_Info),
1339                         &size, &frev, &crev);
1340
1341
1342         for (i = 0; i < psmu_info->ucSclkEntryNum; i++) {
1343                 table->entry[i].ucVco_setting = psmu_info->asSclkFcwRangeEntry[i].ucVco_setting;
1344                 table->entry[i].ucPostdiv = psmu_info->asSclkFcwRangeEntry[i].ucPostdiv;
1345                 table->entry[i].usFcw_pcc =
1346                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_pcc);
1347                 table->entry[i].usFcw_trans_upper =
1348                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucFcw_trans_upper);
1349                 table->entry[i].usRcw_trans_lower =
1350                         le16_to_cpu(psmu_info->asSclkFcwRangeEntry[i].ucRcw_trans_lower);
1351         }
1352
1353         return 0;
1354 }
1355
1356 int atomctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
1357                                   struct pp_atom_ctrl__avfs_parameters *param)
1358 {
1359         ATOM_ASIC_PROFILING_INFO_V3_6 *profile = NULL;
1360
1361         if (param == NULL)
1362                 return -EINVAL;
1363
1364         profile = (ATOM_ASIC_PROFILING_INFO_V3_6 *)
1365                         cgs_atom_get_data_table(hwmgr->device,
1366                                         GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo),
1367                                         NULL, NULL, NULL);
1368         if (!profile)
1369                 return -1;
1370
1371         param->ulAVFS_meanNsigma_Acontant0 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant0);
1372         param->ulAVFS_meanNsigma_Acontant1 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant1);
1373         param->ulAVFS_meanNsigma_Acontant2 = le32_to_cpu(profile->ulAVFS_meanNsigma_Acontant2);
1374         param->usAVFS_meanNsigma_DC_tol_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_DC_tol_sigma);
1375         param->usAVFS_meanNsigma_Platform_mean = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_mean);
1376         param->usAVFS_meanNsigma_Platform_sigma = le16_to_cpu(profile->usAVFS_meanNsigma_Platform_sigma);
1377         param->ulGB_VDROOP_TABLE_CKSOFF_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a0);
1378         param->ulGB_VDROOP_TABLE_CKSOFF_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a1);
1379         param->ulGB_VDROOP_TABLE_CKSOFF_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSOFF_a2);
1380         param->ulGB_VDROOP_TABLE_CKSON_a0 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a0);
1381         param->ulGB_VDROOP_TABLE_CKSON_a1 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a1);
1382         param->ulGB_VDROOP_TABLE_CKSON_a2 = le32_to_cpu(profile->ulGB_VDROOP_TABLE_CKSON_a2);
1383         param->ulAVFSGB_FUSE_TABLE_CKSOFF_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_m1);
1384         param->usAVFSGB_FUSE_TABLE_CKSOFF_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSOFF_m2);
1385         param->ulAVFSGB_FUSE_TABLE_CKSOFF_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSOFF_b);
1386         param->ulAVFSGB_FUSE_TABLE_CKSON_m1 = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_m1);
1387         param->usAVFSGB_FUSE_TABLE_CKSON_m2 = le16_to_cpu(profile->usAVFSGB_FUSE_TABLE_CKSON_m2);
1388         param->ulAVFSGB_FUSE_TABLE_CKSON_b = le32_to_cpu(profile->ulAVFSGB_FUSE_TABLE_CKSON_b);
1389         param->usMaxVoltage_0_25mv = le16_to_cpu(profile->usMaxVoltage_0_25mv);
1390         param->ucEnableGB_VDROOP_TABLE_CKSOFF = profile->ucEnableGB_VDROOP_TABLE_CKSOFF;
1391         param->ucEnableGB_VDROOP_TABLE_CKSON = profile->ucEnableGB_VDROOP_TABLE_CKSON;
1392         param->ucEnableGB_FUSE_TABLE_CKSOFF = profile->ucEnableGB_FUSE_TABLE_CKSOFF;
1393         param->ucEnableGB_FUSE_TABLE_CKSON = profile->ucEnableGB_FUSE_TABLE_CKSON;
1394         param->usPSM_Age_ComFactor = le16_to_cpu(profile->usPSM_Age_ComFactor);
1395         param->ucEnableApplyAVFS_CKS_OFF_Voltage = profile->ucEnableApplyAVFS_CKS_OFF_Voltage;
1396
1397         return 0;
1398 }
1399
1400 int  atomctrl_get_svi2_info(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
1401                                 uint8_t *svd_gpio_id, uint8_t *svc_gpio_id,
1402                                 uint16_t *load_line)
1403 {
1404         ATOM_VOLTAGE_OBJECT_INFO_V3_1 *voltage_info =
1405                 (ATOM_VOLTAGE_OBJECT_INFO_V3_1 *)get_voltage_info_table(hwmgr->device);
1406
1407         const ATOM_VOLTAGE_OBJECT_V3 *voltage_object;
1408
1409         PP_ASSERT_WITH_CODE((NULL != voltage_info),
1410                         "Could not find Voltage Table in BIOS.", return -EINVAL);
1411
1412         voltage_object = atomctrl_lookup_voltage_type_v3
1413                 (voltage_info, voltage_type,  VOLTAGE_OBJ_SVID2);
1414
1415         *svd_gpio_id = voltage_object->asSVID2Obj.ucSVDGpioId;
1416         *svc_gpio_id = voltage_object->asSVID2Obj.ucSVCGpioId;
1417         *load_line = voltage_object->asSVID2Obj.usLoadLine_PSI;
1418
1419         return 0;
1420 }
1421
1422 int atomctrl_get_leakage_id_from_efuse(struct pp_hwmgr *hwmgr, uint16_t *virtual_voltage_id)
1423 {
1424         int result;
1425         SET_VOLTAGE_PS_ALLOCATION allocation;
1426         SET_VOLTAGE_PARAMETERS_V1_3 *voltage_parameters =
1427                         (SET_VOLTAGE_PARAMETERS_V1_3 *)&allocation.sASICSetVoltage;
1428
1429         voltage_parameters->ucVoltageMode = ATOM_GET_LEAKAGE_ID;
1430
1431         result = cgs_atom_exec_cmd_table(hwmgr->device,
1432                         GetIndexIntoMasterTable(COMMAND, SetVoltage),
1433                         voltage_parameters);
1434
1435         *virtual_voltage_id = voltage_parameters->usVoltageLevel;
1436
1437         return result;
1438 }
1439
1440 int atomctrl_get_leakage_vddc_base_on_leakage(struct pp_hwmgr *hwmgr,
1441                                         uint16_t *vddc, uint16_t *vddci,
1442                                         uint16_t virtual_voltage_id,
1443                                         uint16_t efuse_voltage_id)
1444 {
1445         int i, j;
1446         int ix;
1447         u16 *leakage_bin, *vddc_id_buf, *vddc_buf, *vddci_id_buf, *vddci_buf;
1448         ATOM_ASIC_PROFILING_INFO_V2_1 *profile;
1449
1450         *vddc = 0;
1451         *vddci = 0;
1452
1453         ix = GetIndexIntoMasterTable(DATA, ASIC_ProfilingInfo);
1454
1455         profile = (ATOM_ASIC_PROFILING_INFO_V2_1 *)
1456                         cgs_atom_get_data_table(hwmgr->device,
1457                                         ix,
1458                                         NULL, NULL, NULL);
1459         if (!profile)
1460                 return -EINVAL;
1461
1462         if ((profile->asHeader.ucTableFormatRevision >= 2) &&
1463                 (profile->asHeader.ucTableContentRevision >= 1) &&
1464                 (profile->asHeader.usStructureSize >= sizeof(ATOM_ASIC_PROFILING_INFO_V2_1))) {
1465                 leakage_bin = (u16 *)((char *)profile + profile->usLeakageBinArrayOffset);
1466                 vddc_id_buf = (u16 *)((char *)profile + profile->usElbVDDC_IdArrayOffset);
1467                 vddc_buf = (u16 *)((char *)profile + profile->usElbVDDC_LevelArrayOffset);
1468                 if (profile->ucElbVDDC_Num > 0) {
1469                         for (i = 0; i < profile->ucElbVDDC_Num; i++) {
1470                                 if (vddc_id_buf[i] == virtual_voltage_id) {
1471                                         for (j = 0; j < profile->ucLeakageBinNum; j++) {
1472                                                 if (efuse_voltage_id <= leakage_bin[j]) {
1473                                                         *vddc = vddc_buf[j * profile->ucElbVDDC_Num + i];
1474                                                         break;
1475                                                 }
1476                                         }
1477                                         break;
1478                                 }
1479                         }
1480                 }
1481
1482                 vddci_id_buf = (u16 *)((char *)profile + profile->usElbVDDCI_IdArrayOffset);
1483                 vddci_buf   = (u16 *)((char *)profile + profile->usElbVDDCI_LevelArrayOffset);
1484                 if (profile->ucElbVDDCI_Num > 0) {
1485                         for (i = 0; i < profile->ucElbVDDCI_Num; i++) {
1486                                 if (vddci_id_buf[i] == virtual_voltage_id) {
1487                                         for (j = 0; j < profile->ucLeakageBinNum; j++) {
1488                                                 if (efuse_voltage_id <= leakage_bin[j]) {
1489                                                         *vddci = vddci_buf[j * profile->ucElbVDDCI_Num + i];
1490                                                         break;
1491                                                 }
1492                                         }
1493                                         break;
1494                                 }
1495                         }
1496                 }
1497         }
1498
1499         return 0;
1500 }