Merge remote-tracking branch 'asoc/fix/mtk' into asoc-linus
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / display / dc / dcn10 / dcn10_timing_generator.c
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "reg_helper.h"
27 #include "dcn10_timing_generator.h"
28 #include "dc.h"
29
30 #define REG(reg)\
31         tgn10->tg_regs->reg
32
33 #define CTX \
34         tgn10->base.ctx
35
36 #undef FN
37 #define FN(reg_name, field_name) \
38         tgn10->tg_shift->field_name, tgn10->tg_mask->field_name
39
40 #define STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN 0x100
41
42 /**
43 * apply_front_porch_workaround  TODO FPGA still need?
44 *
45 * This is a workaround for a bug that has existed since R5xx and has not been
46 * fixed keep Front porch at minimum 2 for Interlaced mode or 1 for progressive.
47 */
48 static void tgn10_apply_front_porch_workaround(
49         struct timing_generator *tg,
50         struct dc_crtc_timing *timing)
51 {
52         if (timing->flags.INTERLACE == 1) {
53                 if (timing->v_front_porch < 2)
54                         timing->v_front_porch = 2;
55         } else {
56                 if (timing->v_front_porch < 1)
57                         timing->v_front_porch = 1;
58         }
59 }
60
61 static void tgn10_program_global_sync(
62                 struct timing_generator *tg)
63 {
64         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
65
66         if (tg->dlg_otg_param.vstartup_start == 0) {
67                 BREAK_TO_DEBUGGER();
68                 return;
69         }
70
71         REG_SET(OTG_VSTARTUP_PARAM, 0,
72                 VSTARTUP_START, tg->dlg_otg_param.vstartup_start);
73
74         REG_SET_2(OTG_VUPDATE_PARAM, 0,
75                         VUPDATE_OFFSET, tg->dlg_otg_param.vupdate_offset,
76                         VUPDATE_WIDTH, tg->dlg_otg_param.vupdate_width);
77
78         REG_SET(OTG_VREADY_PARAM, 0,
79                         VREADY_OFFSET, tg->dlg_otg_param.vready_offset);
80 }
81
82 static void tgn10_disable_stereo(struct timing_generator *tg)
83 {
84         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
85
86         REG_SET(OTG_STEREO_CONTROL, 0,
87                 OTG_STEREO_EN, 0);
88
89         REG_SET_3(OTG_3D_STRUCTURE_CONTROL, 0,
90                 OTG_3D_STRUCTURE_EN, 0,
91                 OTG_3D_STRUCTURE_V_UPDATE_MODE, 0,
92                 OTG_3D_STRUCTURE_STEREO_SEL_OVR, 0);
93
94         REG_UPDATE(OPPBUF_CONTROL,
95                 OPPBUF_ACTIVE_WIDTH, 0);
96         REG_UPDATE(OPPBUF_3D_PARAMETERS_0,
97                 OPPBUF_3D_VACT_SPACE1_SIZE, 0);
98 }
99
100 /**
101  * program_timing_generator   used by mode timing set
102  * Program CRTC Timing Registers - OTG_H_*, OTG_V_*, Pixel repetition.
103  * Including SYNC. Call BIOS command table to program Timings.
104  */
105 static void tgn10_program_timing(
106         struct timing_generator *tg,
107         const struct dc_crtc_timing *dc_crtc_timing,
108         bool use_vbios)
109 {
110         struct dc_crtc_timing patched_crtc_timing;
111         uint32_t vesa_sync_start;
112         uint32_t asic_blank_end;
113         uint32_t asic_blank_start;
114         uint32_t v_total;
115         uint32_t v_sync_end;
116         uint32_t v_init, v_fp2;
117         uint32_t h_sync_polarity, v_sync_polarity;
118         uint32_t interlace_factor;
119         uint32_t start_point = 0;
120         uint32_t field_num = 0;
121         uint32_t h_div_2;
122         int32_t vertical_line_start;
123
124         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
125
126         patched_crtc_timing = *dc_crtc_timing;
127         tgn10_apply_front_porch_workaround(tg, &patched_crtc_timing);
128
129         /* Load horizontal timing */
130
131         /* CRTC_H_TOTAL = vesa.h_total - 1 */
132         REG_SET(OTG_H_TOTAL, 0,
133                         OTG_H_TOTAL,  patched_crtc_timing.h_total - 1);
134
135         /* h_sync_start = 0, h_sync_end = vesa.h_sync_width */
136         REG_UPDATE_2(OTG_H_SYNC_A,
137                         OTG_H_SYNC_A_START, 0,
138                         OTG_H_SYNC_A_END, patched_crtc_timing.h_sync_width);
139
140         /* asic_h_blank_end = HsyncWidth + HbackPorch =
141          * vesa. usHorizontalTotal - vesa. usHorizontalSyncStart -
142          * vesa.h_left_border
143          */
144         vesa_sync_start = patched_crtc_timing.h_addressable +
145                         patched_crtc_timing.h_border_right +
146                         patched_crtc_timing.h_front_porch;
147
148         asic_blank_end = patched_crtc_timing.h_total -
149                         vesa_sync_start -
150                         patched_crtc_timing.h_border_left;
151
152         /* h_blank_start = v_blank_end + v_active */
153         asic_blank_start = asic_blank_end +
154                         patched_crtc_timing.h_border_left +
155                         patched_crtc_timing.h_addressable +
156                         patched_crtc_timing.h_border_right;
157
158         REG_UPDATE_2(OTG_H_BLANK_START_END,
159                         OTG_H_BLANK_START, asic_blank_start,
160                         OTG_H_BLANK_END, asic_blank_end);
161
162         /* h_sync polarity */
163         h_sync_polarity = patched_crtc_timing.flags.HSYNC_POSITIVE_POLARITY ?
164                         0 : 1;
165
166         REG_UPDATE(OTG_H_SYNC_A_CNTL,
167                         OTG_H_SYNC_A_POL, h_sync_polarity);
168
169         /* Load vertical timing */
170
171         /* CRTC_V_TOTAL = v_total - 1 */
172         if (patched_crtc_timing.flags.INTERLACE) {
173                 interlace_factor = 2;
174                 v_total = 2 * patched_crtc_timing.v_total;
175         } else {
176                 interlace_factor = 1;
177                 v_total = patched_crtc_timing.v_total - 1;
178         }
179         REG_SET(OTG_V_TOTAL, 0,
180                         OTG_V_TOTAL, v_total);
181
182         /* In case of V_TOTAL_CONTROL is on, make sure OTG_V_TOTAL_MAX and
183          * OTG_V_TOTAL_MIN are equal to V_TOTAL.
184          */
185         REG_SET(OTG_V_TOTAL_MAX, 0,
186                 OTG_V_TOTAL_MAX, v_total);
187         REG_SET(OTG_V_TOTAL_MIN, 0,
188                 OTG_V_TOTAL_MIN, v_total);
189
190         /* v_sync_start = 0, v_sync_end = v_sync_width */
191         v_sync_end = patched_crtc_timing.v_sync_width * interlace_factor;
192
193         REG_UPDATE_2(OTG_V_SYNC_A,
194                         OTG_V_SYNC_A_START, 0,
195                         OTG_V_SYNC_A_END, v_sync_end);
196
197         vesa_sync_start = patched_crtc_timing.v_addressable +
198                         patched_crtc_timing.v_border_bottom +
199                         patched_crtc_timing.v_front_porch;
200
201         asic_blank_end = (patched_crtc_timing.v_total -
202                         vesa_sync_start -
203                         patched_crtc_timing.v_border_top)
204                         * interlace_factor;
205
206         /* v_blank_start = v_blank_end + v_active */
207         asic_blank_start = asic_blank_end +
208                         (patched_crtc_timing.v_border_top +
209                         patched_crtc_timing.v_addressable +
210                         patched_crtc_timing.v_border_bottom)
211                         * interlace_factor;
212
213         REG_UPDATE_2(OTG_V_BLANK_START_END,
214                         OTG_V_BLANK_START, asic_blank_start,
215                         OTG_V_BLANK_END, asic_blank_end);
216
217         /* Use OTG_VERTICAL_INTERRUPT2 replace VUPDATE interrupt,
218          * program the reg for interrupt postition.
219          */
220         vertical_line_start = asic_blank_end - tg->dlg_otg_param.vstartup_start + 1;
221         if (vertical_line_start < 0) {
222                 ASSERT(0);
223                 vertical_line_start = 0;
224         }
225         REG_SET(OTG_VERTICAL_INTERRUPT2_POSITION, 0,
226                         OTG_VERTICAL_INTERRUPT2_LINE_START, vertical_line_start);
227
228         /* v_sync polarity */
229         v_sync_polarity = patched_crtc_timing.flags.VSYNC_POSITIVE_POLARITY ?
230                         0 : 1;
231
232         REG_UPDATE(OTG_V_SYNC_A_CNTL,
233                         OTG_V_SYNC_A_POL, v_sync_polarity);
234
235         v_init = asic_blank_start;
236         if (tg->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT ||
237                 tg->dlg_otg_param.signal == SIGNAL_TYPE_DISPLAY_PORT_MST ||
238                 tg->dlg_otg_param.signal == SIGNAL_TYPE_EDP) {
239                 start_point = 1;
240                 if (patched_crtc_timing.flags.INTERLACE == 1)
241                         field_num = 1;
242         }
243         v_fp2 = 0;
244         if (tg->dlg_otg_param.vstartup_start > asic_blank_end)
245                 v_fp2 = tg->dlg_otg_param.vstartup_start > asic_blank_end;
246
247         /* Interlace */
248         if (patched_crtc_timing.flags.INTERLACE == 1) {
249                 REG_UPDATE(OTG_INTERLACE_CONTROL,
250                                 OTG_INTERLACE_ENABLE, 1);
251                 v_init = v_init / 2;
252                 if ((tg->dlg_otg_param.vstartup_start/2)*2 > asic_blank_end)
253                         v_fp2 = v_fp2 / 2;
254         }
255         else
256                 REG_UPDATE(OTG_INTERLACE_CONTROL,
257                                 OTG_INTERLACE_ENABLE, 0);
258
259
260         /* VTG enable set to 0 first VInit */
261         REG_UPDATE(CONTROL,
262                         VTG0_ENABLE, 0);
263
264         REG_UPDATE_2(CONTROL,
265                         VTG0_FP2, v_fp2,
266                         VTG0_VCOUNT_INIT, v_init);
267
268         /* original code is using VTG offset to address OTG reg, seems wrong */
269         REG_UPDATE_2(OTG_CONTROL,
270                         OTG_START_POINT_CNTL, start_point,
271                         OTG_FIELD_NUMBER_CNTL, field_num);
272
273         tgn10_program_global_sync(tg);
274
275         /* TODO
276          * patched_crtc_timing.flags.HORZ_COUNT_BY_TWO == 1
277          * program_horz_count_by_2
278          * for DVI 30bpp mode, 0 otherwise
279          * program_horz_count_by_2(tg, &patched_crtc_timing);
280          */
281
282         /* Enable stereo - only when we need to pack 3D frame. Other types
283          * of stereo handled in explicit call
284          */
285         h_div_2 = (dc_crtc_timing->pixel_encoding == PIXEL_ENCODING_YCBCR420) ?
286                         1 : 0;
287
288         REG_UPDATE(OTG_H_TIMING_CNTL,
289                         OTG_H_TIMING_DIV_BY2, h_div_2);
290
291 }
292
293 /**
294  * unblank_crtc
295  * Call ASIC Control Object to UnBlank CRTC.
296  */
297 static void tgn10_unblank_crtc(struct timing_generator *tg)
298 {
299         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
300         uint32_t vertical_interrupt_enable = 0;
301
302         REG_GET(OTG_VERTICAL_INTERRUPT2_CONTROL,
303                         OTG_VERTICAL_INTERRUPT2_INT_ENABLE, &vertical_interrupt_enable);
304
305         /* temporary work around for vertical interrupt, once vertical interrupt enabled,
306          * this check will be removed.
307          */
308         if (vertical_interrupt_enable)
309                 REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
310                                 OTG_BLANK_DATA_DOUBLE_BUFFER_EN, 1);
311
312         REG_UPDATE_2(OTG_BLANK_CONTROL,
313                         OTG_BLANK_DATA_EN, 0,
314                         OTG_BLANK_DE_MODE, 0);
315 }
316
317 /**
318  * blank_crtc
319  * Call ASIC Control Object to Blank CRTC.
320  */
321
322 static void tgn10_blank_crtc(struct timing_generator *tg)
323 {
324         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
325
326         REG_UPDATE_2(OTG_BLANK_CONTROL,
327                         OTG_BLANK_DATA_EN, 1,
328                         OTG_BLANK_DE_MODE, 0);
329
330         /* todo: why are we waiting for BLANK_DATA_EN?  shouldn't we be waiting
331          * for status?
332          */
333         REG_WAIT(OTG_BLANK_CONTROL,
334                         OTG_BLANK_DATA_EN, 1,
335                         1, 100000);
336
337         REG_UPDATE(OTG_DOUBLE_BUFFER_CONTROL,
338                         OTG_BLANK_DATA_DOUBLE_BUFFER_EN, 0);
339 }
340
341 static void tgn10_set_blank(struct timing_generator *tg,
342                 bool enable_blanking)
343 {
344         if (enable_blanking)
345                 tgn10_blank_crtc(tg);
346         else
347                 tgn10_unblank_crtc(tg);
348 }
349
350 static bool tgn10_is_blanked(struct timing_generator *tg)
351 {
352         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
353         uint32_t blank_en;
354         uint32_t blank_state;
355
356         REG_GET_2(OTG_BLANK_CONTROL,
357                         OTG_BLANK_DATA_EN, &blank_en,
358                         OTG_CURRENT_BLANK_STATE, &blank_state);
359
360         return blank_en && blank_state;
361 }
362
363 static void tgn10_enable_optc_clock(struct timing_generator *tg, bool enable)
364 {
365         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
366
367         if (enable) {
368                 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
369                                 OPTC_INPUT_CLK_EN, 1,
370                                 OPTC_INPUT_CLK_GATE_DIS, 1);
371
372                 REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
373                                 OPTC_INPUT_CLK_ON, 1,
374                                 1, 1000);
375
376                 /* Enable clock */
377                 REG_UPDATE_2(OTG_CLOCK_CONTROL,
378                                 OTG_CLOCK_EN, 1,
379                                 OTG_CLOCK_GATE_DIS, 1);
380                 REG_WAIT(OTG_CLOCK_CONTROL,
381                                 OTG_CLOCK_ON, 1,
382                                 1, 1000);
383         } else  {
384                 REG_UPDATE_2(OTG_CLOCK_CONTROL,
385                                 OTG_CLOCK_GATE_DIS, 0,
386                                 OTG_CLOCK_EN, 0);
387
388                 if (tg->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
389                         REG_WAIT(OTG_CLOCK_CONTROL,
390                                         OTG_CLOCK_ON, 0,
391                                         1, 1000);
392
393                 REG_UPDATE_2(OPTC_INPUT_CLOCK_CONTROL,
394                                 OPTC_INPUT_CLK_GATE_DIS, 0,
395                                 OPTC_INPUT_CLK_EN, 0);
396
397                 if (tg->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
398                         REG_WAIT(OPTC_INPUT_CLOCK_CONTROL,
399                                         OPTC_INPUT_CLK_ON, 0,
400                                         1, 1000);
401         }
402 }
403
404 /**
405  * Enable CRTC
406  * Enable CRTC - call ASIC Control Object to enable Timing generator.
407  */
408 static bool tgn10_enable_crtc(struct timing_generator *tg)
409 {
410         /* TODO FPGA wait for answer
411          * OTG_MASTER_UPDATE_MODE != CRTC_MASTER_UPDATE_MODE
412          * OTG_MASTER_UPDATE_LOCK != CRTC_MASTER_UPDATE_LOCK
413          */
414         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
415
416         /* opp instance for OTG. For DCN1.0, ODM is remoed.
417          * OPP and OPTC should 1:1 mapping
418          */
419         REG_UPDATE(OPTC_DATA_SOURCE_SELECT,
420                         OPTC_SRC_SEL, tg->inst);
421
422         /* VTG enable first is for HW workaround */
423         REG_UPDATE(CONTROL,
424                         VTG0_ENABLE, 1);
425
426         /* Enable CRTC */
427         REG_UPDATE_2(OTG_CONTROL,
428                         OTG_DISABLE_POINT_CNTL, 3,
429                         OTG_MASTER_EN, 1);
430
431         return true;
432 }
433
434 /* disable_crtc - call ASIC Control Object to disable Timing generator. */
435 static bool tgn10_disable_crtc(struct timing_generator *tg)
436 {
437         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
438
439         /* disable otg request until end of the first line
440          * in the vertical blank region
441          */
442         REG_UPDATE_2(OTG_CONTROL,
443                         OTG_DISABLE_POINT_CNTL, 3,
444                         OTG_MASTER_EN, 0);
445
446         REG_UPDATE(CONTROL,
447                         VTG0_ENABLE, 0);
448
449         /* CRTC disabled, so disable  clock. */
450         REG_WAIT(OTG_CLOCK_CONTROL,
451                         OTG_BUSY, 0,
452                         1, 100000);
453
454         return true;
455 }
456
457
458 static void tgn10_program_blank_color(
459                 struct timing_generator *tg,
460                 const struct tg_color *black_color)
461 {
462         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
463
464         REG_SET_3(OTG_BLACK_COLOR, 0,
465                         OTG_BLACK_COLOR_B_CB, black_color->color_b_cb,
466                         OTG_BLACK_COLOR_G_Y, black_color->color_g_y,
467                         OTG_BLACK_COLOR_R_CR, black_color->color_r_cr);
468 }
469
470 static bool tgn10_validate_timing(
471         struct timing_generator *tg,
472         const struct dc_crtc_timing *timing)
473 {
474         uint32_t interlace_factor;
475         uint32_t v_blank;
476         uint32_t h_blank;
477         uint32_t min_v_blank;
478         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
479
480         ASSERT(timing != NULL);
481
482         interlace_factor = timing->flags.INTERLACE ? 2 : 1;
483         v_blank = (timing->v_total - timing->v_addressable -
484                                         timing->v_border_top - timing->v_border_bottom) *
485                                         interlace_factor;
486
487         h_blank = (timing->h_total - timing->h_addressable -
488                 timing->h_border_right -
489                 timing->h_border_left);
490
491         if (timing->timing_3d_format != TIMING_3D_FORMAT_NONE &&
492                 timing->timing_3d_format != TIMING_3D_FORMAT_HW_FRAME_PACKING &&
493                 timing->timing_3d_format != TIMING_3D_FORMAT_TOP_AND_BOTTOM &&
494                 timing->timing_3d_format != TIMING_3D_FORMAT_SIDE_BY_SIDE &&
495                 timing->timing_3d_format != TIMING_3D_FORMAT_FRAME_ALTERNATE &&
496                 timing->timing_3d_format != TIMING_3D_FORMAT_INBAND_FA)
497                 return false;
498
499         /* Temporarily blocking interlacing mode until it's supported */
500         if (timing->flags.INTERLACE == 1)
501                 return false;
502
503         /* Check maximum number of pixels supported by Timing Generator
504          * (Currently will never fail, in order to fail needs display which
505          * needs more than 8192 horizontal and
506          * more than 8192 vertical total pixels)
507          */
508         if (timing->h_total > tgn10->max_h_total ||
509                 timing->v_total > tgn10->max_v_total)
510                 return false;
511
512
513         if (h_blank < tgn10->min_h_blank)
514                 return false;
515
516         if (timing->h_sync_width  < tgn10->min_h_sync_width ||
517                  timing->v_sync_width  < tgn10->min_v_sync_width)
518                 return false;
519
520         min_v_blank = timing->flags.INTERLACE?tgn10->min_v_blank_interlace:tgn10->min_v_blank;
521
522         if (v_blank < min_v_blank)
523                 return false;
524
525         return true;
526
527 }
528
529 /*
530  * get_vblank_counter
531  *
532  * @brief
533  * Get counter for vertical blanks. use register CRTC_STATUS_FRAME_COUNT which
534  * holds the counter of frames.
535  *
536  * @param
537  * struct timing_generator *tg - [in] timing generator which controls the
538  * desired CRTC
539  *
540  * @return
541  * Counter of frames, which should equal to number of vblanks.
542  */
543 static uint32_t tgn10_get_vblank_counter(struct timing_generator *tg)
544 {
545         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
546         uint32_t frame_count;
547
548         REG_GET(OTG_STATUS_FRAME_COUNT,
549                 OTG_FRAME_COUNT, &frame_count);
550
551         return frame_count;
552 }
553
554 static void tgn10_lock(struct timing_generator *tg)
555 {
556         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
557
558         REG_SET(OTG_GLOBAL_CONTROL0, 0,
559                         OTG_MASTER_UPDATE_LOCK_SEL, tg->inst);
560         REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
561                         OTG_MASTER_UPDATE_LOCK, 1);
562
563         if (tg->ctx->dce_environment != DCE_ENV_FPGA_MAXIMUS)
564                 REG_WAIT(OTG_MASTER_UPDATE_LOCK,
565                                 UPDATE_LOCK_STATUS, 1,
566                                 1, 100);
567 }
568
569 static void tgn10_unlock(struct timing_generator *tg)
570 {
571         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
572
573         REG_SET(OTG_MASTER_UPDATE_LOCK, 0,
574                         OTG_MASTER_UPDATE_LOCK, 0);
575
576         /* why are we waiting here? */
577         REG_WAIT(OTG_DOUBLE_BUFFER_CONTROL,
578                         OTG_UPDATE_PENDING, 0,
579                         1, 100000);
580 }
581
582 static void tgn10_get_position(struct timing_generator *tg,
583                 struct crtc_position *position)
584 {
585         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
586
587         REG_GET_2(OTG_STATUS_POSITION,
588                         OTG_HORZ_COUNT, &position->horizontal_count,
589                         OTG_VERT_COUNT, &position->vertical_count);
590
591         REG_GET(OTG_NOM_VERT_POSITION,
592                         OTG_VERT_COUNT_NOM, &position->nominal_vcount);
593 }
594
595 static bool tgn10_is_counter_moving(struct timing_generator *tg)
596 {
597         struct crtc_position position1, position2;
598
599         tg->funcs->get_position(tg, &position1);
600         tg->funcs->get_position(tg, &position2);
601
602         if (position1.horizontal_count == position2.horizontal_count &&
603                 position1.vertical_count == position2.vertical_count)
604                 return false;
605         else
606                 return true;
607 }
608
609 static bool tgn10_did_triggered_reset_occur(
610         struct timing_generator *tg)
611 {
612         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
613         uint32_t occurred;
614
615         REG_GET(OTG_FORCE_COUNT_NOW_CNTL,
616                 OTG_FORCE_COUNT_NOW_OCCURRED, &occurred);
617
618         return occurred != 0;
619 }
620
621 static void tgn10_enable_reset_trigger(struct timing_generator *tg, int source_tg_inst)
622 {
623         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
624         uint32_t falling_edge;
625
626         REG_GET(OTG_V_SYNC_A_CNTL,
627                         OTG_V_SYNC_A_POL, &falling_edge);
628
629         if (falling_edge)
630                 REG_SET_3(OTG_TRIGA_CNTL, 0,
631                                 /* vsync signal from selected OTG pipe based
632                                  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
633                                  */
634                                 OTG_TRIGA_SOURCE_SELECT, 20,
635                                 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
636                                 /* always detect falling edge */
637                                 OTG_TRIGA_FALLING_EDGE_DETECT_CNTL, 1);
638         else
639                 REG_SET_3(OTG_TRIGA_CNTL, 0,
640                                 /* vsync signal from selected OTG pipe based
641                                  * on OTG_TRIG_SOURCE_PIPE_SELECT setting
642                                  */
643                                 OTG_TRIGA_SOURCE_SELECT, 20,
644                                 OTG_TRIGA_SOURCE_PIPE_SELECT, source_tg_inst,
645                                 /* always detect rising edge */
646                                 OTG_TRIGA_RISING_EDGE_DETECT_CNTL, 1);
647
648         REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
649                         /* force H count to H_TOTAL and V count to V_TOTAL in
650                          * progressive mode and V_TOTAL-1 in interlaced mode
651                          */
652                         OTG_FORCE_COUNT_NOW_MODE, 2);
653 }
654
655 static void tgn10_disable_reset_trigger(struct timing_generator *tg)
656 {
657         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
658
659         REG_WRITE(OTG_TRIGA_CNTL, 0);
660
661         REG_SET(OTG_FORCE_COUNT_NOW_CNTL, 0,
662                         OTG_FORCE_COUNT_NOW_CLEAR, 1);
663 }
664
665 static void tgn10_wait_for_state(struct timing_generator *tg,
666                 enum crtc_state state)
667 {
668         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
669
670         switch (state) {
671         case CRTC_STATE_VBLANK:
672                 REG_WAIT(OTG_STATUS,
673                                 OTG_V_BLANK, 1,
674                                 1, 100000); /* 1 vupdate at 10hz */
675                 break;
676
677         case CRTC_STATE_VACTIVE:
678                 REG_WAIT(OTG_STATUS,
679                                 OTG_V_ACTIVE_DISP, 1,
680                                 1, 100000); /* 1 vupdate at 10hz */
681                 break;
682
683         default:
684                 break;
685         }
686 }
687
688 static void tgn10_set_early_control(
689         struct timing_generator *tg,
690         uint32_t early_cntl)
691 {
692         /* asic design change, do not need this control
693          * empty for share caller logic
694          */
695 }
696
697
698 static void tgn10_set_static_screen_control(
699         struct timing_generator *tg,
700         uint32_t value)
701 {
702         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
703
704         /* Bit 8 is no longer applicable in RV for PSR case,
705          * set bit 8 to 0 if given
706          */
707         if ((value & STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN)
708                         != 0)
709                 value = value &
710                 ~STATIC_SCREEN_EVENT_MASK_RANGETIMING_DOUBLE_BUFFER_UPDATE_EN;
711
712         REG_SET_2(OTG_STATIC_SCREEN_CONTROL, 0,
713                         OTG_STATIC_SCREEN_EVENT_MASK, value,
714                         OTG_STATIC_SCREEN_FRAME_COUNT, 2);
715 }
716
717
718 /**
719  *****************************************************************************
720  *  Function: set_drr
721  *
722  *  @brief
723  *     Program dynamic refresh rate registers m_OTGx_OTG_V_TOTAL_*.
724  *
725  *****************************************************************************
726  */
727 static void tgn10_set_drr(
728         struct timing_generator *tg,
729         const struct drr_params *params)
730 {
731         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
732
733         if (params != NULL &&
734                 params->vertical_total_max > 0 &&
735                 params->vertical_total_min > 0) {
736
737                 REG_SET(OTG_V_TOTAL_MAX, 0,
738                         OTG_V_TOTAL_MAX, params->vertical_total_max - 1);
739
740                 REG_SET(OTG_V_TOTAL_MIN, 0,
741                         OTG_V_TOTAL_MIN, params->vertical_total_min - 1);
742
743                 REG_UPDATE_5(OTG_V_TOTAL_CONTROL,
744                                 OTG_V_TOTAL_MIN_SEL, 1,
745                                 OTG_V_TOTAL_MAX_SEL, 1,
746                                 OTG_FORCE_LOCK_ON_EVENT, 0,
747                                 OTG_SET_V_TOTAL_MIN_MASK_EN, 0,
748                                 OTG_SET_V_TOTAL_MIN_MASK, 0);
749         } else {
750                 REG_SET(OTG_V_TOTAL_MIN, 0,
751                         OTG_V_TOTAL_MIN, 0);
752
753                 REG_SET(OTG_V_TOTAL_MAX, 0,
754                         OTG_V_TOTAL_MAX, 0);
755
756                 REG_UPDATE_4(OTG_V_TOTAL_CONTROL,
757                                 OTG_SET_V_TOTAL_MIN_MASK, 0,
758                                 OTG_V_TOTAL_MIN_SEL, 0,
759                                 OTG_V_TOTAL_MAX_SEL, 0,
760                                 OTG_FORCE_LOCK_ON_EVENT, 0);
761         }
762 }
763
764 static void tgn10_set_test_pattern(
765         struct timing_generator *tg,
766         /* TODO: replace 'controller_dp_test_pattern' by 'test_pattern_mode'
767          * because this is not DP-specific (which is probably somewhere in DP
768          * encoder) */
769         enum controller_dp_test_pattern test_pattern,
770         enum dc_color_depth color_depth)
771 {
772         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
773         enum test_pattern_color_format bit_depth;
774         enum test_pattern_dyn_range dyn_range;
775         enum test_pattern_mode mode;
776         uint32_t pattern_mask;
777         uint32_t pattern_data;
778         /* color ramp generator mixes 16-bits color */
779         uint32_t src_bpc = 16;
780         /* requested bpc */
781         uint32_t dst_bpc;
782         uint32_t index;
783         /* RGB values of the color bars.
784          * Produce two RGB colors: RGB0 - white (all Fs)
785          * and RGB1 - black (all 0s)
786          * (three RGB components for two colors)
787          */
788         uint16_t src_color[6] = {0xFFFF, 0xFFFF, 0xFFFF, 0x0000,
789                                                 0x0000, 0x0000};
790         /* dest color (converted to the specified color format) */
791         uint16_t dst_color[6];
792         uint32_t inc_base;
793
794         /* translate to bit depth */
795         switch (color_depth) {
796         case COLOR_DEPTH_666:
797                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_6;
798         break;
799         case COLOR_DEPTH_888:
800                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
801         break;
802         case COLOR_DEPTH_101010:
803                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_10;
804         break;
805         case COLOR_DEPTH_121212:
806                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_12;
807         break;
808         default:
809                 bit_depth = TEST_PATTERN_COLOR_FORMAT_BPC_8;
810         break;
811         }
812
813         switch (test_pattern) {
814         case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES:
815         case CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA:
816         {
817                 dyn_range = (test_pattern ==
818                                 CONTROLLER_DP_TEST_PATTERN_COLORSQUARES_CEA ?
819                                 TEST_PATTERN_DYN_RANGE_CEA :
820                                 TEST_PATTERN_DYN_RANGE_VESA);
821                 mode = TEST_PATTERN_MODE_COLORSQUARES_RGB;
822
823                 REG_UPDATE_2(OTG_TEST_PATTERN_PARAMETERS,
824                                 OTG_TEST_PATTERN_VRES, 6,
825                                 OTG_TEST_PATTERN_HRES, 6);
826
827                 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
828                                 OTG_TEST_PATTERN_EN, 1,
829                                 OTG_TEST_PATTERN_MODE, mode,
830                                 OTG_TEST_PATTERN_DYNAMIC_RANGE, dyn_range,
831                                 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
832         }
833         break;
834
835         case CONTROLLER_DP_TEST_PATTERN_VERTICALBARS:
836         case CONTROLLER_DP_TEST_PATTERN_HORIZONTALBARS:
837         {
838                 mode = (test_pattern ==
839                         CONTROLLER_DP_TEST_PATTERN_VERTICALBARS ?
840                         TEST_PATTERN_MODE_VERTICALBARS :
841                         TEST_PATTERN_MODE_HORIZONTALBARS);
842
843                 switch (bit_depth) {
844                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
845                         dst_bpc = 6;
846                 break;
847                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
848                         dst_bpc = 8;
849                 break;
850                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
851                         dst_bpc = 10;
852                 break;
853                 default:
854                         dst_bpc = 8;
855                 break;
856                 }
857
858                 /* adjust color to the required colorFormat */
859                 for (index = 0; index < 6; index++) {
860                         /* dst = 2^dstBpc * src / 2^srcBpc = src >>
861                          * (srcBpc - dstBpc);
862                          */
863                         dst_color[index] =
864                                 src_color[index] >> (src_bpc - dst_bpc);
865                 /* CRTC_TEST_PATTERN_DATA has 16 bits,
866                  * lowest 6 are hardwired to ZERO
867                  * color bits should be left aligned aligned to MSB
868                  * XXXXXXXXXX000000 for 10 bit,
869                  * XXXXXXXX00000000 for 8 bit and XXXXXX0000000000 for 6
870                  */
871                         dst_color[index] <<= (16 - dst_bpc);
872                 }
873
874                 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
875
876                 /* We have to write the mask before data, similar to pipeline.
877                  * For example, for 8 bpc, if we want RGB0 to be magenta,
878                  * and RGB1 to be cyan,
879                  * we need to make 7 writes:
880                  * MASK   DATA
881                  * 000001 00000000 00000000                     set mask to R0
882                  * 000010 11111111 00000000     R0 255, 0xFF00, set mask to G0
883                  * 000100 00000000 00000000     G0 0,   0x0000, set mask to B0
884                  * 001000 11111111 00000000     B0 255, 0xFF00, set mask to R1
885                  * 010000 00000000 00000000     R1 0,   0x0000, set mask to G1
886                  * 100000 11111111 00000000     G1 255, 0xFF00, set mask to B1
887                  * 100000 11111111 00000000     B1 255, 0xFF00
888                  *
889                  * we will make a loop of 6 in which we prepare the mask,
890                  * then write, then prepare the color for next write.
891                  * first iteration will write mask only,
892                  * but each next iteration color prepared in
893                  * previous iteration will be written within new mask,
894                  * the last component will written separately,
895                  * mask is not changing between 6th and 7th write
896                  * and color will be prepared by last iteration
897                  */
898
899                 /* write color, color values mask in CRTC_TEST_PATTERN_MASK
900                  * is B1, G1, R1, B0, G0, R0
901                  */
902                 pattern_data = 0;
903                 for (index = 0; index < 6; index++) {
904                         /* prepare color mask, first write PATTERN_DATA
905                          * will have all zeros
906                          */
907                         pattern_mask = (1 << index);
908
909                         /* write color component */
910                         REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
911                                         OTG_TEST_PATTERN_MASK, pattern_mask,
912                                         OTG_TEST_PATTERN_DATA, pattern_data);
913
914                         /* prepare next color component,
915                          * will be written in the next iteration
916                          */
917                         pattern_data = dst_color[index];
918                 }
919                 /* write last color component,
920                  * it's been already prepared in the loop
921                  */
922                 REG_SET_2(OTG_TEST_PATTERN_COLOR, 0,
923                                 OTG_TEST_PATTERN_MASK, pattern_mask,
924                                 OTG_TEST_PATTERN_DATA, pattern_data);
925
926                 /* enable test pattern */
927                 REG_UPDATE_4(OTG_TEST_PATTERN_CONTROL,
928                                 OTG_TEST_PATTERN_EN, 1,
929                                 OTG_TEST_PATTERN_MODE, mode,
930                                 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
931                                 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
932         }
933         break;
934
935         case CONTROLLER_DP_TEST_PATTERN_COLORRAMP:
936         {
937                 mode = (bit_depth ==
938                         TEST_PATTERN_COLOR_FORMAT_BPC_10 ?
939                         TEST_PATTERN_MODE_DUALRAMP_RGB :
940                         TEST_PATTERN_MODE_SINGLERAMP_RGB);
941
942                 switch (bit_depth) {
943                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
944                         dst_bpc = 6;
945                 break;
946                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
947                         dst_bpc = 8;
948                 break;
949                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
950                         dst_bpc = 10;
951                 break;
952                 default:
953                         dst_bpc = 8;
954                 break;
955                 }
956
957                 /* increment for the first ramp for one color gradation
958                  * 1 gradation for 6-bit color is 2^10
959                  * gradations in 16-bit color
960                  */
961                 inc_base = (src_bpc - dst_bpc);
962
963                 switch (bit_depth) {
964                 case TEST_PATTERN_COLOR_FORMAT_BPC_6:
965                 {
966                         REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
967                                         OTG_TEST_PATTERN_INC0, inc_base,
968                                         OTG_TEST_PATTERN_INC1, 0,
969                                         OTG_TEST_PATTERN_HRES, 6,
970                                         OTG_TEST_PATTERN_VRES, 6,
971                                         OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
972                 }
973                 break;
974                 case TEST_PATTERN_COLOR_FORMAT_BPC_8:
975                 {
976                         REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
977                                         OTG_TEST_PATTERN_INC0, inc_base,
978                                         OTG_TEST_PATTERN_INC1, 0,
979                                         OTG_TEST_PATTERN_HRES, 8,
980                                         OTG_TEST_PATTERN_VRES, 6,
981                                         OTG_TEST_PATTERN_RAMP0_OFFSET, 0);
982                 }
983                 break;
984                 case TEST_PATTERN_COLOR_FORMAT_BPC_10:
985                 {
986                         REG_UPDATE_5(OTG_TEST_PATTERN_PARAMETERS,
987                                         OTG_TEST_PATTERN_INC0, inc_base,
988                                         OTG_TEST_PATTERN_INC1, inc_base + 2,
989                                         OTG_TEST_PATTERN_HRES, 8,
990                                         OTG_TEST_PATTERN_VRES, 5,
991                                         OTG_TEST_PATTERN_RAMP0_OFFSET, 384 << 6);
992                 }
993                 break;
994                 default:
995                 break;
996                 }
997
998                 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
999
1000                 /* enable test pattern */
1001                 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1002
1003                 REG_SET_4(OTG_TEST_PATTERN_CONTROL, 0,
1004                                 OTG_TEST_PATTERN_EN, 1,
1005                                 OTG_TEST_PATTERN_MODE, mode,
1006                                 OTG_TEST_PATTERN_DYNAMIC_RANGE, 0,
1007                                 OTG_TEST_PATTERN_COLOR_FORMAT, bit_depth);
1008         }
1009         break;
1010         case CONTROLLER_DP_TEST_PATTERN_VIDEOMODE:
1011         {
1012                 REG_WRITE(OTG_TEST_PATTERN_CONTROL, 0);
1013                 REG_WRITE(OTG_TEST_PATTERN_COLOR, 0);
1014                 REG_WRITE(OTG_TEST_PATTERN_PARAMETERS, 0);
1015         }
1016         break;
1017         default:
1018                 break;
1019
1020         }
1021 }
1022
1023 static void tgn10_get_crtc_scanoutpos(
1024         struct timing_generator *tg,
1025         uint32_t *v_blank_start,
1026         uint32_t *v_blank_end,
1027         uint32_t *h_position,
1028         uint32_t *v_position)
1029 {
1030         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
1031         struct crtc_position position;
1032
1033         REG_GET_2(OTG_V_BLANK_START_END,
1034                         OTG_V_BLANK_START, v_blank_start,
1035                         OTG_V_BLANK_END, v_blank_end);
1036
1037         tgn10_get_position(tg, &position);
1038
1039         *h_position = position.horizontal_count;
1040         *v_position = position.vertical_count;
1041 }
1042
1043
1044
1045 static void tgn10_enable_stereo(struct timing_generator *tg,
1046         const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1047 {
1048         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
1049
1050         uint32_t active_width = timing->h_addressable;
1051         uint32_t space1_size = timing->v_total - timing->v_addressable;
1052
1053         if (flags) {
1054                 uint32_t stereo_en;
1055                 stereo_en = flags->FRAME_PACKED == 0 ? 1 : 0;
1056
1057                 if (flags->PROGRAM_STEREO)
1058                         REG_UPDATE_3(OTG_STEREO_CONTROL,
1059                                 OTG_STEREO_EN, stereo_en,
1060                                 OTG_STEREO_SYNC_OUTPUT_LINE_NUM, 0,
1061                                 OTG_STEREO_SYNC_OUTPUT_POLARITY, 0);
1062
1063                 if (flags->PROGRAM_POLARITY)
1064                         REG_UPDATE(OTG_STEREO_CONTROL,
1065                                 OTG_STEREO_EYE_FLAG_POLARITY,
1066                                 flags->RIGHT_EYE_POLARITY == 0 ? 0 : 1);
1067
1068                 if (flags->DISABLE_STEREO_DP_SYNC)
1069                         REG_UPDATE(OTG_STEREO_CONTROL,
1070                                 OTG_DISABLE_STEREOSYNC_OUTPUT_FOR_DP, 1);
1071
1072                 if (flags->PROGRAM_STEREO)
1073                         REG_UPDATE_3(OTG_3D_STRUCTURE_CONTROL,
1074                                 OTG_3D_STRUCTURE_EN, flags->FRAME_PACKED,
1075                                 OTG_3D_STRUCTURE_V_UPDATE_MODE, flags->FRAME_PACKED,
1076                                 OTG_3D_STRUCTURE_STEREO_SEL_OVR, flags->FRAME_PACKED);
1077
1078         }
1079
1080         REG_UPDATE(OPPBUF_CONTROL,
1081                 OPPBUF_ACTIVE_WIDTH, active_width);
1082
1083         REG_UPDATE(OPPBUF_3D_PARAMETERS_0,
1084                 OPPBUF_3D_VACT_SPACE1_SIZE, space1_size);
1085 }
1086
1087 static void tgn10_program_stereo(struct timing_generator *tg,
1088         const struct dc_crtc_timing *timing, struct crtc_stereo_flags *flags)
1089 {
1090         if (flags->PROGRAM_STEREO)
1091                 tgn10_enable_stereo(tg, timing, flags);
1092         else
1093                 tgn10_disable_stereo(tg);
1094 }
1095
1096
1097 static bool tgn10_is_stereo_left_eye(struct timing_generator *tg)
1098 {
1099         bool ret = false;
1100         uint32_t left_eye = 0;
1101         struct dcn10_timing_generator *tgn10 = DCN10TG_FROM_TG(tg);
1102
1103         REG_GET(OTG_STEREO_STATUS,
1104                 OTG_STEREO_CURRENT_EYE, &left_eye);
1105         if (left_eye == 1)
1106                 ret = true;
1107         else
1108                 ret = false;
1109
1110         return ret;
1111 }
1112
1113 void tgn10_read_otg_state(struct dcn10_timing_generator *tgn10,
1114                 struct dcn_otg_state *s)
1115 {
1116         REG_GET(OTG_CONTROL,
1117                         OTG_MASTER_EN, &s->otg_enabled);
1118
1119         REG_GET_2(OTG_V_BLANK_START_END,
1120                         OTG_V_BLANK_START, &s->v_blank_start,
1121                         OTG_V_BLANK_END, &s->v_blank_end);
1122
1123         REG_GET(OTG_V_SYNC_A_CNTL,
1124                         OTG_V_SYNC_A_POL, &s->v_sync_a_pol);
1125
1126         REG_GET(OTG_V_TOTAL,
1127                         OTG_V_TOTAL, &s->v_total);
1128
1129         REG_GET(OTG_V_TOTAL_MAX,
1130                         OTG_V_TOTAL_MAX, &s->v_total_max);
1131
1132         REG_GET(OTG_V_TOTAL_MIN,
1133                         OTG_V_TOTAL_MIN, &s->v_total_min);
1134
1135         REG_GET_2(OTG_V_SYNC_A,
1136                         OTG_V_SYNC_A_START, &s->v_sync_a_start,
1137                         OTG_V_SYNC_A_END, &s->v_sync_a_end);
1138
1139         REG_GET_2(OTG_H_BLANK_START_END,
1140                         OTG_H_BLANK_START, &s->h_blank_start,
1141                         OTG_H_BLANK_END, &s->h_blank_end);
1142
1143         REG_GET_2(OTG_H_SYNC_A,
1144                         OTG_H_SYNC_A_START, &s->h_sync_a_start,
1145                         OTG_H_SYNC_A_END, &s->h_sync_a_end);
1146
1147         REG_GET(OTG_H_SYNC_A_CNTL,
1148                         OTG_H_SYNC_A_POL, &s->h_sync_a_pol);
1149
1150         REG_GET(OTG_H_TOTAL,
1151                         OTG_H_TOTAL, &s->h_total);
1152
1153         REG_GET(OPTC_INPUT_GLOBAL_CONTROL,
1154                         OPTC_UNDERFLOW_OCCURRED_STATUS, &s->underflow_occurred_status);
1155 }
1156
1157
1158 static const struct timing_generator_funcs dcn10_tg_funcs = {
1159                 .validate_timing = tgn10_validate_timing,
1160                 .program_timing = tgn10_program_timing,
1161                 .program_global_sync = tgn10_program_global_sync,
1162                 .enable_crtc = tgn10_enable_crtc,
1163                 .disable_crtc = tgn10_disable_crtc,
1164                 /* used by enable_timing_synchronization. Not need for FPGA */
1165                 .is_counter_moving = tgn10_is_counter_moving,
1166                 .get_position = tgn10_get_position,
1167                 .get_frame_count = tgn10_get_vblank_counter,
1168                 .get_scanoutpos = tgn10_get_crtc_scanoutpos,
1169                 .set_early_control = tgn10_set_early_control,
1170                 /* used by enable_timing_synchronization. Not need for FPGA */
1171                 .wait_for_state = tgn10_wait_for_state,
1172                 .set_blank = tgn10_set_blank,
1173                 .is_blanked = tgn10_is_blanked,
1174                 .set_blank_color = tgn10_program_blank_color,
1175                 .did_triggered_reset_occur = tgn10_did_triggered_reset_occur,
1176                 .enable_reset_trigger = tgn10_enable_reset_trigger,
1177                 .disable_reset_trigger = tgn10_disable_reset_trigger,
1178                 .lock = tgn10_lock,
1179                 .unlock = tgn10_unlock,
1180                 .enable_optc_clock = tgn10_enable_optc_clock,
1181                 .set_drr = tgn10_set_drr,
1182                 .set_static_screen_control = tgn10_set_static_screen_control,
1183                 .set_test_pattern = tgn10_set_test_pattern,
1184                 .program_stereo = tgn10_program_stereo,
1185                 .is_stereo_left_eye = tgn10_is_stereo_left_eye
1186 };
1187
1188 void dcn10_timing_generator_init(struct dcn10_timing_generator *tgn10)
1189 {
1190         tgn10->base.funcs = &dcn10_tg_funcs;
1191
1192         tgn10->max_h_total = tgn10->tg_mask->OTG_H_TOTAL + 1;
1193         tgn10->max_v_total = tgn10->tg_mask->OTG_V_TOTAL + 1;
1194
1195         tgn10->min_h_blank = 32;
1196         tgn10->min_v_blank = 3;
1197         tgn10->min_v_blank_interlace = 5;
1198         tgn10->min_h_sync_width = 8;
1199         tgn10->min_v_sync_width = 1;
1200 }