posix-cpu-timers: Remove useless call to check_dl_overrun()
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / display / dc / dce110 / dce110_hw_sequencer.c
1 /*
2  * Copyright 2015 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 #include "dm_services.h"
26 #include "dc.h"
27 #include "dc_bios_types.h"
28 #include "core_types.h"
29 #include "core_status.h"
30 #include "resource.h"
31 #include "dm_helpers.h"
32 #include "dce110_hw_sequencer.h"
33 #include "dce110_timing_generator.h"
34 #include "dce/dce_hwseq.h"
35 #include "gpio_service_interface.h"
36
37 #include "dce110_compressor.h"
38
39 #include "bios/bios_parser_helper.h"
40 #include "timing_generator.h"
41 #include "mem_input.h"
42 #include "opp.h"
43 #include "ipp.h"
44 #include "transform.h"
45 #include "stream_encoder.h"
46 #include "link_encoder.h"
47 #include "link_hwss.h"
48 #include "clock_source.h"
49 #include "abm.h"
50 #include "audio.h"
51 #include "reg_helper.h"
52
53 /* include DCE11 register header files */
54 #include "dce/dce_11_0_d.h"
55 #include "dce/dce_11_0_sh_mask.h"
56 #include "custom_float.h"
57
58 #include "atomfirmware.h"
59
60 /*
61  * All values are in milliseconds;
62  * For eDP, after power-up/power/down,
63  * 300/500 msec max. delay from LCDVCC to black video generation
64  */
65 #define PANEL_POWER_UP_TIMEOUT 300
66 #define PANEL_POWER_DOWN_TIMEOUT 500
67 #define HPD_CHECK_INTERVAL 10
68
69 #define CTX \
70         hws->ctx
71
72 #define DC_LOGGER_INIT()
73
74 #define REG(reg)\
75         hws->regs->reg
76
77 #undef FN
78 #define FN(reg_name, field_name) \
79         hws->shifts->field_name, hws->masks->field_name
80
81 struct dce110_hw_seq_reg_offsets {
82         uint32_t crtc;
83 };
84
85 static const struct dce110_hw_seq_reg_offsets reg_offsets[] = {
86 {
87         .crtc = (mmCRTC0_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
88 },
89 {
90         .crtc = (mmCRTC1_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
91 },
92 {
93         .crtc = (mmCRTC2_CRTC_GSL_CONTROL - mmCRTC_GSL_CONTROL),
94 },
95 {
96         .crtc = (mmCRTCV_GSL_CONTROL - mmCRTC_GSL_CONTROL),
97 }
98 };
99
100 #define HW_REG_BLND(reg, id)\
101         (reg + reg_offsets[id].blnd)
102
103 #define HW_REG_CRTC(reg, id)\
104         (reg + reg_offsets[id].crtc)
105
106 #define MAX_WATERMARK 0xFFFF
107 #define SAFE_NBP_MARK 0x7FFF
108
109 /*******************************************************************************
110  * Private definitions
111  ******************************************************************************/
112 /***************************PIPE_CONTROL***********************************/
113 static void dce110_init_pte(struct dc_context *ctx)
114 {
115         uint32_t addr;
116         uint32_t value = 0;
117         uint32_t chunk_int = 0;
118         uint32_t chunk_mul = 0;
119
120         addr = mmUNP_DVMM_PTE_CONTROL;
121         value = dm_read_reg(ctx, addr);
122
123         set_reg_field_value(
124                 value,
125                 0,
126                 DVMM_PTE_CONTROL,
127                 DVMM_USE_SINGLE_PTE);
128
129         set_reg_field_value(
130                 value,
131                 1,
132                 DVMM_PTE_CONTROL,
133                 DVMM_PTE_BUFFER_MODE0);
134
135         set_reg_field_value(
136                 value,
137                 1,
138                 DVMM_PTE_CONTROL,
139                 DVMM_PTE_BUFFER_MODE1);
140
141         dm_write_reg(ctx, addr, value);
142
143         addr = mmDVMM_PTE_REQ;
144         value = dm_read_reg(ctx, addr);
145
146         chunk_int = get_reg_field_value(
147                 value,
148                 DVMM_PTE_REQ,
149                 HFLIP_PTEREQ_PER_CHUNK_INT);
150
151         chunk_mul = get_reg_field_value(
152                 value,
153                 DVMM_PTE_REQ,
154                 HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
155
156         if (chunk_int != 0x4 || chunk_mul != 0x4) {
157
158                 set_reg_field_value(
159                         value,
160                         255,
161                         DVMM_PTE_REQ,
162                         MAX_PTEREQ_TO_ISSUE);
163
164                 set_reg_field_value(
165                         value,
166                         4,
167                         DVMM_PTE_REQ,
168                         HFLIP_PTEREQ_PER_CHUNK_INT);
169
170                 set_reg_field_value(
171                         value,
172                         4,
173                         DVMM_PTE_REQ,
174                         HFLIP_PTEREQ_PER_CHUNK_MULTIPLIER);
175
176                 dm_write_reg(ctx, addr, value);
177         }
178 }
179 /**************************************************************************/
180
181 static void enable_display_pipe_clock_gating(
182         struct dc_context *ctx,
183         bool clock_gating)
184 {
185         /*TODO*/
186 }
187
188 static bool dce110_enable_display_power_gating(
189         struct dc *dc,
190         uint8_t controller_id,
191         struct dc_bios *dcb,
192         enum pipe_gating_control power_gating)
193 {
194         enum bp_result bp_result = BP_RESULT_OK;
195         enum bp_pipe_control_action cntl;
196         struct dc_context *ctx = dc->ctx;
197         unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
198
199         if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment))
200                 return true;
201
202         if (power_gating == PIPE_GATING_CONTROL_INIT)
203                 cntl = ASIC_PIPE_INIT;
204         else if (power_gating == PIPE_GATING_CONTROL_ENABLE)
205                 cntl = ASIC_PIPE_ENABLE;
206         else
207                 cntl = ASIC_PIPE_DISABLE;
208
209         if (controller_id == underlay_idx)
210                 controller_id = CONTROLLER_ID_UNDERLAY0 - 1;
211
212         if (power_gating != PIPE_GATING_CONTROL_INIT || controller_id == 0){
213
214                 bp_result = dcb->funcs->enable_disp_power_gating(
215                                                 dcb, controller_id + 1, cntl);
216
217                 /* Revert MASTER_UPDATE_MODE to 0 because bios sets it 2
218                  * by default when command table is called
219                  *
220                  * Bios parser accepts controller_id = 6 as indicative of
221                  * underlay pipe in dce110. But we do not support more
222                  * than 3.
223                  */
224                 if (controller_id < CONTROLLER_ID_MAX - 1)
225                         dm_write_reg(ctx,
226                                 HW_REG_CRTC(mmCRTC_MASTER_UPDATE_MODE, controller_id),
227                                 0);
228         }
229
230         if (power_gating != PIPE_GATING_CONTROL_ENABLE)
231                 dce110_init_pte(ctx);
232
233         if (bp_result == BP_RESULT_OK)
234                 return true;
235         else
236                 return false;
237 }
238
239 static void build_prescale_params(struct ipp_prescale_params *prescale_params,
240                 const struct dc_plane_state *plane_state)
241 {
242         prescale_params->mode = IPP_PRESCALE_MODE_FIXED_UNSIGNED;
243
244         switch (plane_state->format) {
245         case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
246         case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
247                 prescale_params->scale = 0x2020;
248                 break;
249         case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
250         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
251                 prescale_params->scale = 0x2008;
252                 break;
253         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
254         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
255                 prescale_params->scale = 0x2000;
256                 break;
257         default:
258                 ASSERT(false);
259                 break;
260         }
261 }
262
263 static bool
264 dce110_set_input_transfer_func(struct pipe_ctx *pipe_ctx,
265                                const struct dc_plane_state *plane_state)
266 {
267         struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
268         const struct dc_transfer_func *tf = NULL;
269         struct ipp_prescale_params prescale_params = { 0 };
270         bool result = true;
271
272         if (ipp == NULL)
273                 return false;
274
275         if (plane_state->in_transfer_func)
276                 tf = plane_state->in_transfer_func;
277
278         build_prescale_params(&prescale_params, plane_state);
279         ipp->funcs->ipp_program_prescale(ipp, &prescale_params);
280
281         if (plane_state->gamma_correction &&
282                         !plane_state->gamma_correction->is_identity &&
283                         dce_use_lut(plane_state->format))
284                 ipp->funcs->ipp_program_input_lut(ipp, plane_state->gamma_correction);
285
286         if (tf == NULL) {
287                 /* Default case if no input transfer function specified */
288                 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
289         } else if (tf->type == TF_TYPE_PREDEFINED) {
290                 switch (tf->tf) {
291                 case TRANSFER_FUNCTION_SRGB:
292                         ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_sRGB);
293                         break;
294                 case TRANSFER_FUNCTION_BT709:
295                         ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_HW_xvYCC);
296                         break;
297                 case TRANSFER_FUNCTION_LINEAR:
298                         ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
299                         break;
300                 case TRANSFER_FUNCTION_PQ:
301                 default:
302                         result = false;
303                         break;
304                 }
305         } else if (tf->type == TF_TYPE_BYPASS) {
306                 ipp->funcs->ipp_set_degamma(ipp, IPP_DEGAMMA_MODE_BYPASS);
307         } else {
308                 /*TF_TYPE_DISTRIBUTED_POINTS - Not supported in DCE 11*/
309                 result = false;
310         }
311
312         return result;
313 }
314
315 static bool convert_to_custom_float(struct pwl_result_data *rgb_resulted,
316                                     struct curve_points *arr_points,
317                                     uint32_t hw_points_num)
318 {
319         struct custom_float_format fmt;
320
321         struct pwl_result_data *rgb = rgb_resulted;
322
323         uint32_t i = 0;
324
325         fmt.exponenta_bits = 6;
326         fmt.mantissa_bits = 12;
327         fmt.sign = true;
328
329         if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
330                                             &arr_points[0].custom_float_x)) {
331                 BREAK_TO_DEBUGGER();
332                 return false;
333         }
334
335         if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
336                                             &arr_points[0].custom_float_offset)) {
337                 BREAK_TO_DEBUGGER();
338                 return false;
339         }
340
341         if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
342                                             &arr_points[0].custom_float_slope)) {
343                 BREAK_TO_DEBUGGER();
344                 return false;
345         }
346
347         fmt.mantissa_bits = 10;
348         fmt.sign = false;
349
350         if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
351                                             &arr_points[1].custom_float_x)) {
352                 BREAK_TO_DEBUGGER();
353                 return false;
354         }
355
356         if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
357                                             &arr_points[1].custom_float_y)) {
358                 BREAK_TO_DEBUGGER();
359                 return false;
360         }
361
362         if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
363                                             &arr_points[1].custom_float_slope)) {
364                 BREAK_TO_DEBUGGER();
365                 return false;
366         }
367
368         fmt.mantissa_bits = 12;
369         fmt.sign = true;
370
371         while (i != hw_points_num) {
372                 if (!convert_to_custom_float_format(rgb->red, &fmt,
373                                                     &rgb->red_reg)) {
374                         BREAK_TO_DEBUGGER();
375                         return false;
376                 }
377
378                 if (!convert_to_custom_float_format(rgb->green, &fmt,
379                                                     &rgb->green_reg)) {
380                         BREAK_TO_DEBUGGER();
381                         return false;
382                 }
383
384                 if (!convert_to_custom_float_format(rgb->blue, &fmt,
385                                                     &rgb->blue_reg)) {
386                         BREAK_TO_DEBUGGER();
387                         return false;
388                 }
389
390                 if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
391                                                     &rgb->delta_red_reg)) {
392                         BREAK_TO_DEBUGGER();
393                         return false;
394                 }
395
396                 if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
397                                                     &rgb->delta_green_reg)) {
398                         BREAK_TO_DEBUGGER();
399                         return false;
400                 }
401
402                 if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
403                                                     &rgb->delta_blue_reg)) {
404                         BREAK_TO_DEBUGGER();
405                         return false;
406                 }
407
408                 ++rgb;
409                 ++i;
410         }
411
412         return true;
413 }
414
415 #define MAX_LOW_POINT      25
416 #define NUMBER_REGIONS     16
417 #define NUMBER_SW_SEGMENTS 16
418
419 static bool
420 dce110_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
421                                       struct pwl_params *regamma_params)
422 {
423         struct curve_points *arr_points;
424         struct pwl_result_data *rgb_resulted;
425         struct pwl_result_data *rgb;
426         struct pwl_result_data *rgb_plus_1;
427         struct fixed31_32 y_r;
428         struct fixed31_32 y_g;
429         struct fixed31_32 y_b;
430         struct fixed31_32 y1_min;
431         struct fixed31_32 y3_max;
432
433         int32_t region_start, region_end;
434         uint32_t i, j, k, seg_distr[NUMBER_REGIONS], increment, start_index, hw_points;
435
436         if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
437                 return false;
438
439         arr_points = regamma_params->arr_points;
440         rgb_resulted = regamma_params->rgb_resulted;
441         hw_points = 0;
442
443         memset(regamma_params, 0, sizeof(struct pwl_params));
444
445         if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
446                 /* 16 segments
447                  * segments are from 2^-11 to 2^5
448                  */
449                 region_start = -11;
450                 region_end = region_start + NUMBER_REGIONS;
451
452                 for (i = 0; i < NUMBER_REGIONS; i++)
453                         seg_distr[i] = 4;
454
455         } else {
456                 /* 10 segments
457                  * segment is from 2^-10 to 2^1
458                  * We include an extra segment for range [2^0, 2^1). This is to
459                  * ensure that colors with normalized values of 1 don't miss the
460                  * LUT.
461                  */
462                 region_start = -10;
463                 region_end = 1;
464
465                 seg_distr[0] = 4;
466                 seg_distr[1] = 4;
467                 seg_distr[2] = 4;
468                 seg_distr[3] = 4;
469                 seg_distr[4] = 4;
470                 seg_distr[5] = 4;
471                 seg_distr[6] = 4;
472                 seg_distr[7] = 4;
473                 seg_distr[8] = 4;
474                 seg_distr[9] = 4;
475                 seg_distr[10] = 0;
476                 seg_distr[11] = -1;
477                 seg_distr[12] = -1;
478                 seg_distr[13] = -1;
479                 seg_distr[14] = -1;
480                 seg_distr[15] = -1;
481         }
482
483         for (k = 0; k < 16; k++) {
484                 if (seg_distr[k] != -1)
485                         hw_points += (1 << seg_distr[k]);
486         }
487
488         j = 0;
489         for (k = 0; k < (region_end - region_start); k++) {
490                 increment = NUMBER_SW_SEGMENTS / (1 << seg_distr[k]);
491                 start_index = (region_start + k + MAX_LOW_POINT) *
492                                 NUMBER_SW_SEGMENTS;
493                 for (i = start_index; i < start_index + NUMBER_SW_SEGMENTS;
494                                 i += increment) {
495                         if (j == hw_points - 1)
496                                 break;
497                         rgb_resulted[j].red = output_tf->tf_pts.red[i];
498                         rgb_resulted[j].green = output_tf->tf_pts.green[i];
499                         rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
500                         j++;
501                 }
502         }
503
504         /* last point */
505         start_index = (region_end + MAX_LOW_POINT) * NUMBER_SW_SEGMENTS;
506         rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
507         rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
508         rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];
509
510         arr_points[0].x = dc_fixpt_pow(dc_fixpt_from_int(2),
511                                              dc_fixpt_from_int(region_start));
512         arr_points[1].x = dc_fixpt_pow(dc_fixpt_from_int(2),
513                                              dc_fixpt_from_int(region_end));
514
515         y_r = rgb_resulted[0].red;
516         y_g = rgb_resulted[0].green;
517         y_b = rgb_resulted[0].blue;
518
519         y1_min = dc_fixpt_min(y_r, dc_fixpt_min(y_g, y_b));
520
521         arr_points[0].y = y1_min;
522         arr_points[0].slope = dc_fixpt_div(arr_points[0].y,
523                                                  arr_points[0].x);
524
525         y_r = rgb_resulted[hw_points - 1].red;
526         y_g = rgb_resulted[hw_points - 1].green;
527         y_b = rgb_resulted[hw_points - 1].blue;
528
529         /* see comment above, m_arrPoints[1].y should be the Y value for the
530          * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
531          */
532         y3_max = dc_fixpt_max(y_r, dc_fixpt_max(y_g, y_b));
533
534         arr_points[1].y = y3_max;
535
536         arr_points[1].slope = dc_fixpt_zero;
537
538         if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
539                 /* for PQ, we want to have a straight line from last HW X point,
540                  * and the slope to be such that we hit 1.0 at 10000 nits.
541                  */
542                 const struct fixed31_32 end_value = dc_fixpt_from_int(125);
543
544                 arr_points[1].slope = dc_fixpt_div(
545                                 dc_fixpt_sub(dc_fixpt_one, arr_points[1].y),
546                                 dc_fixpt_sub(end_value, arr_points[1].x));
547         }
548
549         regamma_params->hw_points_num = hw_points;
550
551         i = 1;
552         for (k = 0; k < 16 && i < 16; k++) {
553                 if (seg_distr[k] != -1) {
554                         regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
555                         regamma_params->arr_curve_points[i].offset =
556                                         regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
557                 }
558                 i++;
559         }
560
561         if (seg_distr[k] != -1)
562                 regamma_params->arr_curve_points[k].segments_num = seg_distr[k];
563
564         rgb = rgb_resulted;
565         rgb_plus_1 = rgb_resulted + 1;
566
567         i = 1;
568
569         while (i != hw_points + 1) {
570                 if (dc_fixpt_lt(rgb_plus_1->red, rgb->red))
571                         rgb_plus_1->red = rgb->red;
572                 if (dc_fixpt_lt(rgb_plus_1->green, rgb->green))
573                         rgb_plus_1->green = rgb->green;
574                 if (dc_fixpt_lt(rgb_plus_1->blue, rgb->blue))
575                         rgb_plus_1->blue = rgb->blue;
576
577                 rgb->delta_red = dc_fixpt_sub(rgb_plus_1->red, rgb->red);
578                 rgb->delta_green = dc_fixpt_sub(rgb_plus_1->green, rgb->green);
579                 rgb->delta_blue = dc_fixpt_sub(rgb_plus_1->blue, rgb->blue);
580
581                 ++rgb_plus_1;
582                 ++rgb;
583                 ++i;
584         }
585
586         convert_to_custom_float(rgb_resulted, arr_points, hw_points);
587
588         return true;
589 }
590
591 static bool
592 dce110_set_output_transfer_func(struct pipe_ctx *pipe_ctx,
593                                 const struct dc_stream_state *stream)
594 {
595         struct transform *xfm = pipe_ctx->plane_res.xfm;
596
597         xfm->funcs->opp_power_on_regamma_lut(xfm, true);
598         xfm->regamma_params.hw_points_num = GAMMA_HW_POINTS_NUM;
599
600         if (stream->out_transfer_func &&
601             stream->out_transfer_func->type == TF_TYPE_PREDEFINED &&
602             stream->out_transfer_func->tf == TRANSFER_FUNCTION_SRGB) {
603                 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_SRGB);
604         } else if (dce110_translate_regamma_to_hw_format(stream->out_transfer_func,
605                                                          &xfm->regamma_params)) {
606                 xfm->funcs->opp_program_regamma_pwl(xfm, &xfm->regamma_params);
607                 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_USER);
608         } else {
609                 xfm->funcs->opp_set_regamma_mode(xfm, OPP_REGAMMA_BYPASS);
610         }
611
612         xfm->funcs->opp_power_on_regamma_lut(xfm, false);
613
614         return true;
615 }
616
617 static enum dc_status bios_parser_crtc_source_select(
618                 struct pipe_ctx *pipe_ctx)
619 {
620         struct dc_bios *dcb;
621         /* call VBIOS table to set CRTC source for the HW
622          * encoder block
623          * note: video bios clears all FMT setting here. */
624         struct bp_crtc_source_select crtc_source_select = {0};
625         const struct dc_sink *sink = pipe_ctx->stream->sink;
626
627         crtc_source_select.engine_id = pipe_ctx->stream_res.stream_enc->id;
628         crtc_source_select.controller_id = pipe_ctx->stream_res.tg->inst + 1;
629         /*TODO: Need to un-hardcode color depth, dp_audio and account for
630          * the case where signal and sink signal is different (translator
631          * encoder)*/
632         crtc_source_select.signal = pipe_ctx->stream->signal;
633         crtc_source_select.enable_dp_audio = false;
634         crtc_source_select.sink_signal = pipe_ctx->stream->signal;
635
636         switch (pipe_ctx->stream->timing.display_color_depth) {
637         case COLOR_DEPTH_666:
638                 crtc_source_select.display_output_bit_depth = PANEL_6BIT_COLOR;
639                 break;
640         case COLOR_DEPTH_888:
641                 crtc_source_select.display_output_bit_depth = PANEL_8BIT_COLOR;
642                 break;
643         case COLOR_DEPTH_101010:
644                 crtc_source_select.display_output_bit_depth = PANEL_10BIT_COLOR;
645                 break;
646         case COLOR_DEPTH_121212:
647                 crtc_source_select.display_output_bit_depth = PANEL_12BIT_COLOR;
648                 break;
649         default:
650                 BREAK_TO_DEBUGGER();
651                 crtc_source_select.display_output_bit_depth = PANEL_8BIT_COLOR;
652                 break;
653         }
654
655         dcb = sink->ctx->dc_bios;
656
657         if (BP_RESULT_OK != dcb->funcs->crtc_source_select(
658                 dcb,
659                 &crtc_source_select)) {
660                 return DC_ERROR_UNEXPECTED;
661         }
662
663         return DC_OK;
664 }
665
666 void dce110_update_info_frame(struct pipe_ctx *pipe_ctx)
667 {
668         bool is_hdmi;
669         bool is_dp;
670
671         ASSERT(pipe_ctx->stream);
672
673         if (pipe_ctx->stream_res.stream_enc == NULL)
674                 return;  /* this is not root pipe */
675
676         is_hdmi = dc_is_hdmi_signal(pipe_ctx->stream->signal);
677         is_dp = dc_is_dp_signal(pipe_ctx->stream->signal);
678
679         if (!is_hdmi && !is_dp)
680                 return;
681
682         if (is_hdmi)
683                 pipe_ctx->stream_res.stream_enc->funcs->update_hdmi_info_packets(
684                         pipe_ctx->stream_res.stream_enc,
685                         &pipe_ctx->stream_res.encoder_info_frame);
686         else
687                 pipe_ctx->stream_res.stream_enc->funcs->update_dp_info_packets(
688                         pipe_ctx->stream_res.stream_enc,
689                         &pipe_ctx->stream_res.encoder_info_frame);
690 }
691
692 void dce110_enable_stream(struct pipe_ctx *pipe_ctx)
693 {
694         enum dc_lane_count lane_count =
695                 pipe_ctx->stream->sink->link->cur_link_settings.lane_count;
696
697         struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
698         struct dc_link *link = pipe_ctx->stream->sink->link;
699
700
701         uint32_t active_total_with_borders;
702         uint32_t early_control = 0;
703         struct timing_generator *tg = pipe_ctx->stream_res.tg;
704
705         /* For MST, there are multiply stream go to only one link.
706          * connect DIG back_end to front_end while enable_stream and
707          * disconnect them during disable_stream
708          * BY this, it is logic clean to separate stream and link */
709         link->link_enc->funcs->connect_dig_be_to_fe(link->link_enc,
710                                                     pipe_ctx->stream_res.stream_enc->id, true);
711
712         /* update AVI info frame (HDMI, DP)*/
713         /* TODO: FPGA may change to hwss.update_info_frame */
714         dce110_update_info_frame(pipe_ctx);
715
716         /* enable early control to avoid corruption on DP monitor*/
717         active_total_with_borders =
718                         timing->h_addressable
719                                 + timing->h_border_left
720                                 + timing->h_border_right;
721
722         if (lane_count != 0)
723                 early_control = active_total_with_borders % lane_count;
724
725         if (early_control == 0)
726                 early_control = lane_count;
727
728         tg->funcs->set_early_control(tg, early_control);
729
730         /* enable audio only within mode set */
731         if (pipe_ctx->stream_res.audio != NULL) {
732                 if (dc_is_dp_signal(pipe_ctx->stream->signal))
733                         pipe_ctx->stream_res.stream_enc->funcs->dp_audio_enable(pipe_ctx->stream_res.stream_enc);
734         }
735
736
737
738
739 }
740
741 /*todo: cloned in stream enc, fix*/
742 static bool is_panel_backlight_on(struct dce_hwseq *hws)
743 {
744         uint32_t value;
745
746         REG_GET(LVTMA_PWRSEQ_CNTL, LVTMA_BLON, &value);
747
748         return value;
749 }
750
751 static bool is_panel_powered_on(struct dce_hwseq *hws)
752 {
753         uint32_t pwr_seq_state, dig_on, dig_on_ovrd;
754
755
756         REG_GET(LVTMA_PWRSEQ_STATE, LVTMA_PWRSEQ_TARGET_STATE_R, &pwr_seq_state);
757
758         REG_GET_2(LVTMA_PWRSEQ_CNTL, LVTMA_DIGON, &dig_on, LVTMA_DIGON_OVRD, &dig_on_ovrd);
759
760         return (pwr_seq_state == 1) || (dig_on == 1 && dig_on_ovrd == 1);
761 }
762
763 static enum bp_result link_transmitter_control(
764                 struct dc_bios *bios,
765         struct bp_transmitter_control *cntl)
766 {
767         enum bp_result result;
768
769         result = bios->funcs->transmitter_control(bios, cntl);
770
771         return result;
772 }
773
774 /*
775  * @brief
776  * eDP only.
777  */
778 void hwss_edp_wait_for_hpd_ready(
779                 struct dc_link *link,
780                 bool power_up)
781 {
782         struct dc_context *ctx = link->ctx;
783         struct graphics_object_id connector = link->link_enc->connector;
784         struct gpio *hpd;
785         bool edp_hpd_high = false;
786         uint32_t time_elapsed = 0;
787         uint32_t timeout = power_up ?
788                 PANEL_POWER_UP_TIMEOUT : PANEL_POWER_DOWN_TIMEOUT;
789
790         if (dal_graphics_object_id_get_connector_id(connector)
791                         != CONNECTOR_ID_EDP) {
792                 BREAK_TO_DEBUGGER();
793                 return;
794         }
795
796         if (!power_up)
797                 /*
798                  * From KV, we will not HPD low after turning off VCC -
799                  * instead, we will check the SW timer in power_up().
800                  */
801                 return;
802
803         /*
804          * When we power on/off the eDP panel,
805          * we need to wait until SENSE bit is high/low.
806          */
807
808         /* obtain HPD */
809         /* TODO what to do with this? */
810         hpd = get_hpd_gpio(ctx->dc_bios, connector, ctx->gpio_service);
811
812         if (!hpd) {
813                 BREAK_TO_DEBUGGER();
814                 return;
815         }
816
817         dal_gpio_open(hpd, GPIO_MODE_INTERRUPT);
818
819         /* wait until timeout or panel detected */
820
821         do {
822                 uint32_t detected = 0;
823
824                 dal_gpio_get_value(hpd, &detected);
825
826                 if (!(detected ^ power_up)) {
827                         edp_hpd_high = true;
828                         break;
829                 }
830
831                 msleep(HPD_CHECK_INTERVAL);
832
833                 time_elapsed += HPD_CHECK_INTERVAL;
834         } while (time_elapsed < timeout);
835
836         dal_gpio_close(hpd);
837
838         dal_gpio_destroy_irq(&hpd);
839
840         if (false == edp_hpd_high) {
841                 DC_LOG_ERROR(
842                                 "%s: wait timed out!\n", __func__);
843         }
844 }
845
846 void hwss_edp_power_control(
847                 struct dc_link *link,
848                 bool power_up)
849 {
850         struct dc_context *ctx = link->ctx;
851         struct dce_hwseq *hwseq = ctx->dc->hwseq;
852         struct bp_transmitter_control cntl = { 0 };
853         enum bp_result bp_result;
854
855
856         if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
857                         != CONNECTOR_ID_EDP) {
858                 BREAK_TO_DEBUGGER();
859                 return;
860         }
861
862         if (power_up != is_panel_powered_on(hwseq)) {
863                 /* Send VBIOS command to prompt eDP panel power */
864                 if (power_up) {
865                         unsigned long long current_ts = dm_get_timestamp(ctx);
866                         unsigned long long duration_in_ms =
867                                         div64_u64(dm_get_elapse_time_in_ns(
868                                                         ctx,
869                                                         current_ts,
870                                                         link->link_trace.time_stamp.edp_poweroff), 1000000);
871                         unsigned long long wait_time_ms = 0;
872
873                         /* max 500ms from LCDVDD off to on */
874                         unsigned long long edp_poweroff_time_ms = 500;
875
876                         if (link->local_sink != NULL)
877                                 edp_poweroff_time_ms =
878                                                 500 + link->local_sink->edid_caps.panel_patch.extra_t12_ms;
879                         if (link->link_trace.time_stamp.edp_poweroff == 0)
880                                 wait_time_ms = edp_poweroff_time_ms;
881                         else if (duration_in_ms < edp_poweroff_time_ms)
882                                 wait_time_ms = edp_poweroff_time_ms - duration_in_ms;
883
884                         if (wait_time_ms) {
885                                 msleep(wait_time_ms);
886                                 dm_output_to_console("%s: wait %lld ms to power on eDP.\n",
887                                                 __func__, wait_time_ms);
888                         }
889
890                 }
891
892                 DC_LOG_HW_RESUME_S3(
893                                 "%s: Panel Power action: %s\n",
894                                 __func__, (power_up ? "On":"Off"));
895
896                 cntl.action = power_up ?
897                         TRANSMITTER_CONTROL_POWER_ON :
898                         TRANSMITTER_CONTROL_POWER_OFF;
899                 cntl.transmitter = link->link_enc->transmitter;
900                 cntl.connector_obj_id = link->link_enc->connector;
901                 cntl.coherent = false;
902                 cntl.lanes_number = LANE_COUNT_FOUR;
903                 cntl.hpd_sel = link->link_enc->hpd_source;
904                 bp_result = link_transmitter_control(ctx->dc_bios, &cntl);
905
906                 if (!power_up)
907                         /*save driver power off time stamp*/
908                         link->link_trace.time_stamp.edp_poweroff = dm_get_timestamp(ctx);
909                 else
910                         link->link_trace.time_stamp.edp_poweron = dm_get_timestamp(ctx);
911
912                 if (bp_result != BP_RESULT_OK)
913                         DC_LOG_ERROR(
914                                         "%s: Panel Power bp_result: %d\n",
915                                         __func__, bp_result);
916         } else {
917                 DC_LOG_HW_RESUME_S3(
918                                 "%s: Skipping Panel Power action: %s\n",
919                                 __func__, (power_up ? "On":"Off"));
920         }
921 }
922
923 /*todo: cloned in stream enc, fix*/
924 /*
925  * @brief
926  * eDP only. Control the backlight of the eDP panel
927  */
928 void hwss_edp_backlight_control(
929                 struct dc_link *link,
930                 bool enable)
931 {
932         struct dc_context *ctx = link->ctx;
933         struct dce_hwseq *hws = ctx->dc->hwseq;
934         struct bp_transmitter_control cntl = { 0 };
935
936         if (dal_graphics_object_id_get_connector_id(link->link_enc->connector)
937                 != CONNECTOR_ID_EDP) {
938                 BREAK_TO_DEBUGGER();
939                 return;
940         }
941
942         if (enable && is_panel_backlight_on(hws)) {
943                 DC_LOG_HW_RESUME_S3(
944                                 "%s: panel already powered up. Do nothing.\n",
945                                 __func__);
946                 return;
947         }
948
949         /* Send VBIOS command to control eDP panel backlight */
950
951         DC_LOG_HW_RESUME_S3(
952                         "%s: backlight action: %s\n",
953                         __func__, (enable ? "On":"Off"));
954
955         cntl.action = enable ?
956                 TRANSMITTER_CONTROL_BACKLIGHT_ON :
957                 TRANSMITTER_CONTROL_BACKLIGHT_OFF;
958
959         /*cntl.engine_id = ctx->engine;*/
960         cntl.transmitter = link->link_enc->transmitter;
961         cntl.connector_obj_id = link->link_enc->connector;
962         /*todo: unhardcode*/
963         cntl.lanes_number = LANE_COUNT_FOUR;
964         cntl.hpd_sel = link->link_enc->hpd_source;
965         cntl.signal = SIGNAL_TYPE_EDP;
966
967         /* For eDP, the following delays might need to be considered
968          * after link training completed:
969          * idle period - min. accounts for required BS-Idle pattern,
970          * max. allows for source frame synchronization);
971          * 50 msec max. delay from valid video data from source
972          * to video on dislpay or backlight enable.
973          *
974          * Disable the delay for now.
975          * Enable it in the future if necessary.
976          */
977         /* dc_service_sleep_in_milliseconds(50); */
978                 /*edp 1.2*/
979         if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_ON)
980                 edp_receiver_ready_T7(link);
981         link_transmitter_control(ctx->dc_bios, &cntl);
982         /*edp 1.2*/
983         if (cntl.action == TRANSMITTER_CONTROL_BACKLIGHT_OFF)
984                 edp_receiver_ready_T9(link);
985 }
986
987 void dce110_enable_audio_stream(struct pipe_ctx *pipe_ctx)
988 {
989         struct dc *core_dc = pipe_ctx->stream->ctx->dc;
990         /* notify audio driver for audio modes of monitor */
991         struct pp_smu_funcs_rv *pp_smu = core_dc->res_pool->pp_smu;
992         unsigned int i, num_audio = 1;
993
994         if (pipe_ctx->stream_res.audio) {
995                 for (i = 0; i < MAX_PIPES; i++) {
996                         /*current_state not updated yet*/
997                         if (core_dc->current_state->res_ctx.pipe_ctx[i].stream_res.audio != NULL)
998                                 num_audio++;
999                 }
1000
1001                 pipe_ctx->stream_res.audio->funcs->az_enable(pipe_ctx->stream_res.audio);
1002
1003                 if (num_audio == 1 && pp_smu != NULL && pp_smu->set_pme_wa_enable != NULL)
1004                         /*this is the first audio. apply the PME w/a in order to wake AZ from D3*/
1005                         pp_smu->set_pme_wa_enable(&pp_smu->pp_smu);
1006                 /* un-mute audio */
1007                 /* TODO: audio should be per stream rather than per link */
1008                 pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1009                         pipe_ctx->stream_res.stream_enc, false);
1010         }
1011 }
1012
1013 void dce110_disable_audio_stream(struct pipe_ctx *pipe_ctx, int option)
1014 {
1015         struct dc *dc = pipe_ctx->stream->ctx->dc;
1016
1017         pipe_ctx->stream_res.stream_enc->funcs->audio_mute_control(
1018                         pipe_ctx->stream_res.stream_enc, true);
1019         if (pipe_ctx->stream_res.audio) {
1020                 if (option != KEEP_ACQUIRED_RESOURCE ||
1021                                 !dc->debug.az_endpoint_mute_only) {
1022                         /*only disalbe az_endpoint if power down or free*/
1023                         pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio);
1024                 }
1025
1026                 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1027                         pipe_ctx->stream_res.stream_enc->funcs->dp_audio_disable(
1028                                         pipe_ctx->stream_res.stream_enc);
1029                 else
1030                         pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_disable(
1031                                         pipe_ctx->stream_res.stream_enc);
1032                 /*don't free audio if it is from retrain or internal disable stream*/
1033                 if (option == FREE_ACQUIRED_RESOURCE && dc->caps.dynamic_audio == true) {
1034                         /*we have to dynamic arbitrate the audio endpoints*/
1035                         /*we free the resource, need reset is_audio_acquired*/
1036                         update_audio_usage(&dc->current_state->res_ctx, dc->res_pool, pipe_ctx->stream_res.audio, false);
1037                         pipe_ctx->stream_res.audio = NULL;
1038                 }
1039
1040                 /* TODO: notify audio driver for if audio modes list changed
1041                  * add audio mode list change flag */
1042                 /* dal_audio_disable_azalia_audio_jack_presence(stream->audio,
1043                  * stream->stream_engine_id);
1044                  */
1045         }
1046 }
1047
1048 void dce110_disable_stream(struct pipe_ctx *pipe_ctx, int option)
1049 {
1050         struct dc_stream_state *stream = pipe_ctx->stream;
1051         struct dc_link *link = stream->sink->link;
1052         struct dc *dc = pipe_ctx->stream->ctx->dc;
1053
1054         if (dc_is_hdmi_signal(pipe_ctx->stream->signal))
1055                 pipe_ctx->stream_res.stream_enc->funcs->stop_hdmi_info_packets(
1056                         pipe_ctx->stream_res.stream_enc);
1057
1058         if (dc_is_dp_signal(pipe_ctx->stream->signal))
1059                 pipe_ctx->stream_res.stream_enc->funcs->stop_dp_info_packets(
1060                         pipe_ctx->stream_res.stream_enc);
1061
1062         dc->hwss.disable_audio_stream(pipe_ctx, option);
1063
1064         link->link_enc->funcs->connect_dig_be_to_fe(
1065                         link->link_enc,
1066                         pipe_ctx->stream_res.stream_enc->id,
1067                         false);
1068
1069 }
1070
1071 void dce110_unblank_stream(struct pipe_ctx *pipe_ctx,
1072                 struct dc_link_settings *link_settings)
1073 {
1074         struct encoder_unblank_param params = { { 0 } };
1075         struct dc_stream_state *stream = pipe_ctx->stream;
1076         struct dc_link *link = stream->sink->link;
1077
1078         /* only 3 items below are used by unblank */
1079         params.pixel_clk_khz =
1080                 pipe_ctx->stream->timing.pix_clk_khz;
1081         params.link_settings.link_rate = link_settings->link_rate;
1082
1083         if (dc_is_dp_signal(pipe_ctx->stream->signal))
1084                 pipe_ctx->stream_res.stream_enc->funcs->dp_unblank(pipe_ctx->stream_res.stream_enc, &params);
1085
1086         if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1087                 link->dc->hwss.edp_backlight_control(link, true);
1088                 stream->bl_pwm_level = EDP_BACKLIGHT_RAMP_DISABLE_LEVEL;
1089         }
1090 }
1091 void dce110_blank_stream(struct pipe_ctx *pipe_ctx)
1092 {
1093         struct dc_stream_state *stream = pipe_ctx->stream;
1094         struct dc_link *link = stream->sink->link;
1095
1096         if (link->local_sink && link->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1097                 link->dc->hwss.edp_backlight_control(link, false);
1098                 dc_link_set_abm_disable(link);
1099         }
1100
1101         if (dc_is_dp_signal(pipe_ctx->stream->signal))
1102                 pipe_ctx->stream_res.stream_enc->funcs->dp_blank(pipe_ctx->stream_res.stream_enc);
1103 }
1104
1105
1106 void dce110_set_avmute(struct pipe_ctx *pipe_ctx, bool enable)
1107 {
1108         if (pipe_ctx != NULL && pipe_ctx->stream_res.stream_enc != NULL)
1109                 pipe_ctx->stream_res.stream_enc->funcs->set_avmute(pipe_ctx->stream_res.stream_enc, enable);
1110 }
1111
1112 static enum audio_dto_source translate_to_dto_source(enum controller_id crtc_id)
1113 {
1114         switch (crtc_id) {
1115         case CONTROLLER_ID_D0:
1116                 return DTO_SOURCE_ID0;
1117         case CONTROLLER_ID_D1:
1118                 return DTO_SOURCE_ID1;
1119         case CONTROLLER_ID_D2:
1120                 return DTO_SOURCE_ID2;
1121         case CONTROLLER_ID_D3:
1122                 return DTO_SOURCE_ID3;
1123         case CONTROLLER_ID_D4:
1124                 return DTO_SOURCE_ID4;
1125         case CONTROLLER_ID_D5:
1126                 return DTO_SOURCE_ID5;
1127         default:
1128                 return DTO_SOURCE_UNKNOWN;
1129         }
1130 }
1131
1132 static void build_audio_output(
1133         struct dc_state *state,
1134         const struct pipe_ctx *pipe_ctx,
1135         struct audio_output *audio_output)
1136 {
1137         const struct dc_stream_state *stream = pipe_ctx->stream;
1138         audio_output->engine_id = pipe_ctx->stream_res.stream_enc->id;
1139
1140         audio_output->signal = pipe_ctx->stream->signal;
1141
1142         /* audio_crtc_info  */
1143
1144         audio_output->crtc_info.h_total =
1145                 stream->timing.h_total;
1146
1147         /*
1148          * Audio packets are sent during actual CRTC blank physical signal, we
1149          * need to specify actual active signal portion
1150          */
1151         audio_output->crtc_info.h_active =
1152                         stream->timing.h_addressable
1153                         + stream->timing.h_border_left
1154                         + stream->timing.h_border_right;
1155
1156         audio_output->crtc_info.v_active =
1157                         stream->timing.v_addressable
1158                         + stream->timing.v_border_top
1159                         + stream->timing.v_border_bottom;
1160
1161         audio_output->crtc_info.pixel_repetition = 1;
1162
1163         audio_output->crtc_info.interlaced =
1164                         stream->timing.flags.INTERLACE;
1165
1166         audio_output->crtc_info.refresh_rate =
1167                 (stream->timing.pix_clk_khz*1000)/
1168                 (stream->timing.h_total*stream->timing.v_total);
1169
1170         audio_output->crtc_info.color_depth =
1171                 stream->timing.display_color_depth;
1172
1173         audio_output->crtc_info.requested_pixel_clock =
1174                         pipe_ctx->stream_res.pix_clk_params.requested_pix_clk;
1175
1176         audio_output->crtc_info.calculated_pixel_clock =
1177                         pipe_ctx->stream_res.pix_clk_params.requested_pix_clk;
1178
1179 /*for HDMI, audio ACR is with deep color ratio factor*/
1180         if (dc_is_hdmi_signal(pipe_ctx->stream->signal) &&
1181                 audio_output->crtc_info.requested_pixel_clock ==
1182                                 stream->timing.pix_clk_khz) {
1183                 if (pipe_ctx->stream_res.pix_clk_params.pixel_encoding == PIXEL_ENCODING_YCBCR420) {
1184                         audio_output->crtc_info.requested_pixel_clock =
1185                                         audio_output->crtc_info.requested_pixel_clock/2;
1186                         audio_output->crtc_info.calculated_pixel_clock =
1187                                         pipe_ctx->stream_res.pix_clk_params.requested_pix_clk/2;
1188
1189                 }
1190         }
1191
1192         if (pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT ||
1193                         pipe_ctx->stream->signal == SIGNAL_TYPE_DISPLAY_PORT_MST) {
1194                 audio_output->pll_info.dp_dto_source_clock_in_khz =
1195                                 state->dis_clk->funcs->get_dp_ref_clk_frequency(
1196                                                 state->dis_clk);
1197         }
1198
1199         audio_output->pll_info.feed_back_divider =
1200                         pipe_ctx->pll_settings.feedback_divider;
1201
1202         audio_output->pll_info.dto_source =
1203                 translate_to_dto_source(
1204                         pipe_ctx->stream_res.tg->inst + 1);
1205
1206         /* TODO hard code to enable for now. Need get from stream */
1207         audio_output->pll_info.ss_enabled = true;
1208
1209         audio_output->pll_info.ss_percentage =
1210                         pipe_ctx->pll_settings.ss_percentage;
1211 }
1212
1213 static void get_surface_visual_confirm_color(const struct pipe_ctx *pipe_ctx,
1214                 struct tg_color *color)
1215 {
1216         uint32_t color_value = MAX_TG_COLOR_VALUE * (4 - pipe_ctx->stream_res.tg->inst) / 4;
1217
1218         switch (pipe_ctx->plane_res.scl_data.format) {
1219         case PIXEL_FORMAT_ARGB8888:
1220                 /* set boarder color to red */
1221                 color->color_r_cr = color_value;
1222                 break;
1223
1224         case PIXEL_FORMAT_ARGB2101010:
1225                 /* set boarder color to blue */
1226                 color->color_b_cb = color_value;
1227                 break;
1228         case PIXEL_FORMAT_420BPP8:
1229                 /* set boarder color to green */
1230                 color->color_g_y = color_value;
1231                 break;
1232         case PIXEL_FORMAT_420BPP10:
1233                 /* set boarder color to yellow */
1234                 color->color_g_y = color_value;
1235                 color->color_r_cr = color_value;
1236                 break;
1237         case PIXEL_FORMAT_FP16:
1238                 /* set boarder color to white */
1239                 color->color_r_cr = color_value;
1240                 color->color_b_cb = color_value;
1241                 color->color_g_y = color_value;
1242                 break;
1243         default:
1244                 break;
1245         }
1246 }
1247
1248 static void program_scaler(const struct dc *dc,
1249                 const struct pipe_ctx *pipe_ctx)
1250 {
1251         struct tg_color color = {0};
1252
1253 #if defined(CONFIG_DRM_AMD_DC_DCN1_0)
1254         /* TOFPGA */
1255         if (pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth == NULL)
1256                 return;
1257 #endif
1258
1259         if (dc->debug.visual_confirm == VISUAL_CONFIRM_SURFACE)
1260                 get_surface_visual_confirm_color(pipe_ctx, &color);
1261         else
1262                 color_space_to_black_color(dc,
1263                                 pipe_ctx->stream->output_color_space,
1264                                 &color);
1265
1266         pipe_ctx->plane_res.xfm->funcs->transform_set_pixel_storage_depth(
1267                 pipe_ctx->plane_res.xfm,
1268                 pipe_ctx->plane_res.scl_data.lb_params.depth,
1269                 &pipe_ctx->stream->bit_depth_params);
1270
1271         if (pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color)
1272                 pipe_ctx->stream_res.tg->funcs->set_overscan_blank_color(
1273                                 pipe_ctx->stream_res.tg,
1274                                 &color);
1275
1276         pipe_ctx->plane_res.xfm->funcs->transform_set_scaler(pipe_ctx->plane_res.xfm,
1277                 &pipe_ctx->plane_res.scl_data);
1278 }
1279
1280 static enum dc_status dce110_enable_stream_timing(
1281                 struct pipe_ctx *pipe_ctx,
1282                 struct dc_state *context,
1283                 struct dc *dc)
1284 {
1285         struct dc_stream_state *stream = pipe_ctx->stream;
1286         struct pipe_ctx *pipe_ctx_old = &dc->current_state->res_ctx.
1287                         pipe_ctx[pipe_ctx->pipe_idx];
1288         struct tg_color black_color = {0};
1289         struct drr_params params = {0};
1290         unsigned int event_triggers = 0;
1291
1292         if (!pipe_ctx_old->stream) {
1293
1294                 /* program blank color */
1295                 color_space_to_black_color(dc,
1296                                 stream->output_color_space, &black_color);
1297                 pipe_ctx->stream_res.tg->funcs->set_blank_color(
1298                                 pipe_ctx->stream_res.tg,
1299                                 &black_color);
1300
1301                 /*
1302                  * Must blank CRTC after disabling power gating and before any
1303                  * programming, otherwise CRTC will be hung in bad state
1304                  */
1305                 pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, true);
1306
1307                 if (false == pipe_ctx->clock_source->funcs->program_pix_clk(
1308                                 pipe_ctx->clock_source,
1309                                 &pipe_ctx->stream_res.pix_clk_params,
1310                                 &pipe_ctx->pll_settings)) {
1311                         BREAK_TO_DEBUGGER();
1312                         return DC_ERROR_UNEXPECTED;
1313                 }
1314
1315                 pipe_ctx->stream_res.tg->funcs->program_timing(
1316                                 pipe_ctx->stream_res.tg,
1317                                 &stream->timing,
1318                                 true);
1319
1320                 params.vertical_total_min = stream->adjust.v_total_min;
1321                 params.vertical_total_max = stream->adjust.v_total_max;
1322                 if (pipe_ctx->stream_res.tg->funcs->set_drr)
1323                         pipe_ctx->stream_res.tg->funcs->set_drr(
1324                                 pipe_ctx->stream_res.tg, &params);
1325
1326                 // DRR should set trigger event to monitor surface update event
1327                 if (stream->adjust.v_total_min != 0 &&
1328                                 stream->adjust.v_total_max != 0)
1329                         event_triggers = 0x80;
1330                 if (pipe_ctx->stream_res.tg->funcs->set_static_screen_control)
1331                         pipe_ctx->stream_res.tg->funcs->set_static_screen_control(
1332                                 pipe_ctx->stream_res.tg, event_triggers);
1333         }
1334
1335         if (!pipe_ctx_old->stream) {
1336                 if (false == pipe_ctx->stream_res.tg->funcs->enable_crtc(
1337                                 pipe_ctx->stream_res.tg)) {
1338                         BREAK_TO_DEBUGGER();
1339                         return DC_ERROR_UNEXPECTED;
1340                 }
1341         }
1342
1343         return DC_OK;
1344 }
1345
1346 static enum dc_status apply_single_controller_ctx_to_hw(
1347                 struct pipe_ctx *pipe_ctx,
1348                 struct dc_state *context,
1349                 struct dc *dc)
1350 {
1351         struct dc_stream_state *stream = pipe_ctx->stream;
1352
1353         if (pipe_ctx->stream_res.audio != NULL) {
1354                 struct audio_output audio_output;
1355
1356                 build_audio_output(context, pipe_ctx, &audio_output);
1357
1358                 if (dc_is_dp_signal(pipe_ctx->stream->signal))
1359                         pipe_ctx->stream_res.stream_enc->funcs->dp_audio_setup(
1360                                         pipe_ctx->stream_res.stream_enc,
1361                                         pipe_ctx->stream_res.audio->inst,
1362                                         &pipe_ctx->stream->audio_info);
1363                 else
1364                         pipe_ctx->stream_res.stream_enc->funcs->hdmi_audio_setup(
1365                                         pipe_ctx->stream_res.stream_enc,
1366                                         pipe_ctx->stream_res.audio->inst,
1367                                         &pipe_ctx->stream->audio_info,
1368                                         &audio_output.crtc_info);
1369
1370                 pipe_ctx->stream_res.audio->funcs->az_configure(
1371                                 pipe_ctx->stream_res.audio,
1372                                 pipe_ctx->stream->signal,
1373                                 &audio_output.crtc_info,
1374                                 &pipe_ctx->stream->audio_info);
1375         }
1376
1377         /*  */
1378         dc->hwss.enable_stream_timing(pipe_ctx, context, dc);
1379
1380         /* TODO: move to stream encoder */
1381         if (pipe_ctx->stream->signal != SIGNAL_TYPE_VIRTUAL)
1382                 if (DC_OK != bios_parser_crtc_source_select(pipe_ctx)) {
1383                         BREAK_TO_DEBUGGER();
1384                         return DC_ERROR_UNEXPECTED;
1385                 }
1386
1387         pipe_ctx->stream_res.opp->funcs->opp_set_dyn_expansion(
1388                         pipe_ctx->stream_res.opp,
1389                         COLOR_SPACE_YCBCR601,
1390                         stream->timing.display_color_depth,
1391                         pipe_ctx->stream->signal);
1392
1393         pipe_ctx->stream_res.opp->funcs->opp_program_fmt(
1394                 pipe_ctx->stream_res.opp,
1395                 &stream->bit_depth_params,
1396                 &stream->clamping);
1397
1398         if (!stream->dpms_off)
1399                 core_link_enable_stream(context, pipe_ctx);
1400
1401         pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
1402
1403         pipe_ctx->stream->sink->link->psr_enabled = false;
1404
1405         return DC_OK;
1406 }
1407
1408 /******************************************************************************/
1409
1410 static void power_down_encoders(struct dc *dc)
1411 {
1412         int i;
1413         enum connector_id connector_id;
1414         enum signal_type signal = SIGNAL_TYPE_NONE;
1415
1416         /* do not know BIOS back-front mapping, simply blank all. It will not
1417          * hurt for non-DP
1418          */
1419         for (i = 0; i < dc->res_pool->stream_enc_count; i++) {
1420                 dc->res_pool->stream_enc[i]->funcs->dp_blank(
1421                                         dc->res_pool->stream_enc[i]);
1422         }
1423
1424         for (i = 0; i < dc->link_count; i++) {
1425                 connector_id = dal_graphics_object_id_get_connector_id(dc->links[i]->link_id);
1426                 if ((connector_id == CONNECTOR_ID_DISPLAY_PORT) ||
1427                         (connector_id == CONNECTOR_ID_EDP)) {
1428
1429                         if (!dc->links[i]->wa_flags.dp_keep_receiver_powered)
1430                                 dp_receiver_power_ctrl(dc->links[i], false);
1431                         if (connector_id == CONNECTOR_ID_EDP)
1432                                 signal = SIGNAL_TYPE_EDP;
1433                 }
1434
1435                 dc->links[i]->link_enc->funcs->disable_output(
1436                                 dc->links[i]->link_enc, signal);
1437         }
1438 }
1439
1440 static void power_down_controllers(struct dc *dc)
1441 {
1442         int i;
1443
1444         for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1445                 dc->res_pool->timing_generators[i]->funcs->disable_crtc(
1446                                 dc->res_pool->timing_generators[i]);
1447         }
1448 }
1449
1450 static void power_down_clock_sources(struct dc *dc)
1451 {
1452         int i;
1453
1454         if (dc->res_pool->dp_clock_source->funcs->cs_power_down(
1455                 dc->res_pool->dp_clock_source) == false)
1456                 dm_error("Failed to power down pll! (dp clk src)\n");
1457
1458         for (i = 0; i < dc->res_pool->clk_src_count; i++) {
1459                 if (dc->res_pool->clock_sources[i]->funcs->cs_power_down(
1460                                 dc->res_pool->clock_sources[i]) == false)
1461                         dm_error("Failed to power down pll! (clk src index=%d)\n", i);
1462         }
1463 }
1464
1465 static void power_down_all_hw_blocks(struct dc *dc)
1466 {
1467         power_down_encoders(dc);
1468
1469         power_down_controllers(dc);
1470
1471         power_down_clock_sources(dc);
1472
1473         if (dc->fbc_compressor)
1474                 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
1475 }
1476
1477 static void disable_vga_and_power_gate_all_controllers(
1478                 struct dc *dc)
1479 {
1480         int i;
1481         struct timing_generator *tg;
1482         struct dc_context *ctx = dc->ctx;
1483
1484         for (i = 0; i < dc->res_pool->timing_generator_count; i++) {
1485                 tg = dc->res_pool->timing_generators[i];
1486
1487                 if (tg->funcs->disable_vga)
1488                         tg->funcs->disable_vga(tg);
1489         }
1490         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1491                 /* Enable CLOCK gating for each pipe BEFORE controller
1492                  * powergating. */
1493                 enable_display_pipe_clock_gating(ctx,
1494                                 true);
1495
1496                 dc->current_state->res_ctx.pipe_ctx[i].pipe_idx = i;
1497                 dc->hwss.disable_plane(dc,
1498                         &dc->current_state->res_ctx.pipe_ctx[i]);
1499         }
1500 }
1501
1502 static struct dc_link *get_link_for_edp(struct dc *dc)
1503 {
1504         int i;
1505
1506         for (i = 0; i < dc->link_count; i++) {
1507                 if (dc->links[i]->connector_signal == SIGNAL_TYPE_EDP)
1508                         return dc->links[i];
1509         }
1510         return NULL;
1511 }
1512
1513 static struct dc_link *get_link_for_edp_not_in_use(
1514                 struct dc *dc,
1515                 struct dc_state *context)
1516 {
1517         int i;
1518         struct dc_link *link = NULL;
1519
1520         /* check if eDP panel is suppose to be set mode, if yes, no need to disable */
1521         for (i = 0; i < context->stream_count; i++) {
1522                 if (context->streams[i]->signal == SIGNAL_TYPE_EDP)
1523                         return NULL;
1524         }
1525
1526         /* check if there is an eDP panel not in use */
1527         for (i = 0; i < dc->link_count; i++) {
1528                 if (dc->links[i]->local_sink &&
1529                         dc->links[i]->local_sink->sink_signal == SIGNAL_TYPE_EDP) {
1530                         link = dc->links[i];
1531                         break;
1532                 }
1533         }
1534
1535         return link;
1536 }
1537
1538 /**
1539  * When ASIC goes from VBIOS/VGA mode to driver/accelerated mode we need:
1540  *  1. Power down all DC HW blocks
1541  *  2. Disable VGA engine on all controllers
1542  *  3. Enable power gating for controller
1543  *  4. Set acc_mode_change bit (VBIOS will clear this bit when going to FSDOS)
1544  */
1545 void dce110_enable_accelerated_mode(struct dc *dc, struct dc_state *context)
1546 {
1547         int i;
1548         struct dc_link *edp_link_to_turnoff = NULL;
1549         struct dc_link *edp_link = get_link_for_edp(dc);
1550         bool can_edp_fast_boot_optimize = false;
1551         bool apply_edp_fast_boot_optimization = false;
1552
1553         if (edp_link) {
1554                 /* this seems to cause blank screens on DCE8 */
1555                 if ((dc->ctx->dce_version == DCE_VERSION_8_0) ||
1556                     (dc->ctx->dce_version == DCE_VERSION_8_1) ||
1557                     (dc->ctx->dce_version == DCE_VERSION_8_3))
1558                         can_edp_fast_boot_optimize = false;
1559                 else
1560                         can_edp_fast_boot_optimize =
1561                                 edp_link->link_enc->funcs->is_dig_enabled(edp_link->link_enc);
1562         }
1563
1564         if (can_edp_fast_boot_optimize)
1565                 edp_link_to_turnoff = get_link_for_edp_not_in_use(dc, context);
1566
1567         /* if OS doesn't light up eDP and eDP link is available, we want to disable
1568          * If resume from S4/S5, should optimization.
1569          */
1570         if (can_edp_fast_boot_optimize && !edp_link_to_turnoff) {
1571                 /* Find eDP stream and set optimization flag */
1572                 for (i = 0; i < context->stream_count; i++) {
1573                         if (context->streams[i]->signal == SIGNAL_TYPE_EDP) {
1574                                 context->streams[i]->apply_edp_fast_boot_optimization = true;
1575                                 apply_edp_fast_boot_optimization = true;
1576                         }
1577                 }
1578         }
1579
1580         if (!apply_edp_fast_boot_optimization) {
1581                 if (edp_link_to_turnoff) {
1582                         /*turn off backlight before DP_blank and encoder powered down*/
1583                         dc->hwss.edp_backlight_control(edp_link_to_turnoff, false);
1584                 }
1585                 /*resume from S3, no vbios posting, no need to power down again*/
1586                 power_down_all_hw_blocks(dc);
1587                 disable_vga_and_power_gate_all_controllers(dc);
1588                 if (edp_link_to_turnoff)
1589                         dc->hwss.edp_power_control(edp_link_to_turnoff, false);
1590         }
1591         bios_set_scratch_acc_mode_change(dc->ctx->dc_bios);
1592 }
1593
1594 static uint32_t compute_pstate_blackout_duration(
1595         struct bw_fixed blackout_duration,
1596         const struct dc_stream_state *stream)
1597 {
1598         uint32_t total_dest_line_time_ns;
1599         uint32_t pstate_blackout_duration_ns;
1600
1601         pstate_blackout_duration_ns = 1000 * blackout_duration.value >> 24;
1602
1603         total_dest_line_time_ns = 1000000UL *
1604                 stream->timing.h_total /
1605                 stream->timing.pix_clk_khz +
1606                 pstate_blackout_duration_ns;
1607
1608         return total_dest_line_time_ns;
1609 }
1610
1611 static void dce110_set_displaymarks(
1612         const struct dc *dc,
1613         struct dc_state *context)
1614 {
1615         uint8_t i, num_pipes;
1616         unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
1617
1618         for (i = 0, num_pipes = 0; i < MAX_PIPES; i++) {
1619                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1620                 uint32_t total_dest_line_time_ns;
1621
1622                 if (pipe_ctx->stream == NULL)
1623                         continue;
1624
1625                 total_dest_line_time_ns = compute_pstate_blackout_duration(
1626                         dc->bw_vbios->blackout_duration, pipe_ctx->stream);
1627                 pipe_ctx->plane_res.mi->funcs->mem_input_program_display_marks(
1628                         pipe_ctx->plane_res.mi,
1629                         context->bw.dce.nbp_state_change_wm_ns[num_pipes],
1630                         context->bw.dce.stutter_exit_wm_ns[num_pipes],
1631                         context->bw.dce.stutter_entry_wm_ns[num_pipes],
1632                         context->bw.dce.urgent_wm_ns[num_pipes],
1633                         total_dest_line_time_ns);
1634                 if (i == underlay_idx) {
1635                         num_pipes++;
1636                         pipe_ctx->plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1637                                 pipe_ctx->plane_res.mi,
1638                                 context->bw.dce.nbp_state_change_wm_ns[num_pipes],
1639                                 context->bw.dce.stutter_exit_wm_ns[num_pipes],
1640                                 context->bw.dce.urgent_wm_ns[num_pipes],
1641                                 total_dest_line_time_ns);
1642                 }
1643                 num_pipes++;
1644         }
1645 }
1646
1647 void dce110_set_safe_displaymarks(
1648                 struct resource_context *res_ctx,
1649                 const struct resource_pool *pool)
1650 {
1651         int i;
1652         int underlay_idx = pool->underlay_pipe_index;
1653         struct dce_watermarks max_marks = {
1654                 MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK, MAX_WATERMARK };
1655         struct dce_watermarks nbp_marks = {
1656                 SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK, SAFE_NBP_MARK };
1657         struct dce_watermarks min_marks = { 0, 0, 0, 0};
1658
1659         for (i = 0; i < MAX_PIPES; i++) {
1660                 if (res_ctx->pipe_ctx[i].stream == NULL || res_ctx->pipe_ctx[i].plane_res.mi == NULL)
1661                         continue;
1662
1663                 res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_display_marks(
1664                                 res_ctx->pipe_ctx[i].plane_res.mi,
1665                                 nbp_marks,
1666                                 max_marks,
1667                                 min_marks,
1668                                 max_marks,
1669                                 MAX_WATERMARK);
1670
1671                 if (i == underlay_idx)
1672                         res_ctx->pipe_ctx[i].plane_res.mi->funcs->mem_input_program_chroma_display_marks(
1673                                 res_ctx->pipe_ctx[i].plane_res.mi,
1674                                 nbp_marks,
1675                                 max_marks,
1676                                 max_marks,
1677                                 MAX_WATERMARK);
1678
1679         }
1680 }
1681
1682 /*******************************************************************************
1683  * Public functions
1684  ******************************************************************************/
1685
1686 static void set_drr(struct pipe_ctx **pipe_ctx,
1687                 int num_pipes, int vmin, int vmax)
1688 {
1689         int i = 0;
1690         struct drr_params params = {0};
1691         // DRR should set trigger event to monitor surface update event
1692         unsigned int event_triggers = 0x80;
1693
1694         params.vertical_total_max = vmax;
1695         params.vertical_total_min = vmin;
1696
1697         /* TODO: If multiple pipes are to be supported, you need
1698          * some GSL stuff. Static screen triggers may be programmed differently
1699          * as well.
1700          */
1701         for (i = 0; i < num_pipes; i++) {
1702                 pipe_ctx[i]->stream_res.tg->funcs->set_drr(
1703                         pipe_ctx[i]->stream_res.tg, &params);
1704
1705                 if (vmax != 0 && vmin != 0)
1706                         pipe_ctx[i]->stream_res.tg->funcs->set_static_screen_control(
1707                                         pipe_ctx[i]->stream_res.tg,
1708                                         event_triggers);
1709         }
1710 }
1711
1712 static void get_position(struct pipe_ctx **pipe_ctx,
1713                 int num_pipes,
1714                 struct crtc_position *position)
1715 {
1716         int i = 0;
1717
1718         /* TODO: handle pipes > 1
1719          */
1720         for (i = 0; i < num_pipes; i++)
1721                 pipe_ctx[i]->stream_res.tg->funcs->get_position(pipe_ctx[i]->stream_res.tg, position);
1722 }
1723
1724 static void set_static_screen_control(struct pipe_ctx **pipe_ctx,
1725                 int num_pipes, const struct dc_static_screen_events *events)
1726 {
1727         unsigned int i;
1728         unsigned int value = 0;
1729
1730         if (events->overlay_update)
1731                 value |= 0x100;
1732         if (events->surface_update)
1733                 value |= 0x80;
1734         if (events->cursor_update)
1735                 value |= 0x2;
1736         if (events->force_trigger)
1737                 value |= 0x1;
1738
1739         value |= 0x84;
1740
1741         for (i = 0; i < num_pipes; i++)
1742                 pipe_ctx[i]->stream_res.tg->funcs->
1743                         set_static_screen_control(pipe_ctx[i]->stream_res.tg, value);
1744 }
1745
1746 /* unit: in_khz before mode set, get pixel clock from context. ASIC register
1747  * may not be programmed yet
1748  */
1749 static uint32_t get_max_pixel_clock_for_all_paths(
1750         struct dc *dc,
1751         struct dc_state *context)
1752 {
1753         uint32_t max_pix_clk = 0;
1754         int i;
1755
1756         for (i = 0; i < MAX_PIPES; i++) {
1757                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1758
1759                 if (pipe_ctx->stream == NULL)
1760                         continue;
1761
1762                 /* do not check under lay */
1763                 if (pipe_ctx->top_pipe)
1764                         continue;
1765
1766                 if (pipe_ctx->stream_res.pix_clk_params.requested_pix_clk > max_pix_clk)
1767                         max_pix_clk =
1768                                 pipe_ctx->stream_res.pix_clk_params.requested_pix_clk;
1769         }
1770
1771         return max_pix_clk;
1772 }
1773
1774 /*
1775  *  Check if FBC can be enabled
1776  */
1777 static bool should_enable_fbc(struct dc *dc,
1778                               struct dc_state *context,
1779                               uint32_t *pipe_idx)
1780 {
1781         uint32_t i;
1782         struct pipe_ctx *pipe_ctx = NULL;
1783         struct resource_context *res_ctx = &context->res_ctx;
1784
1785
1786         ASSERT(dc->fbc_compressor);
1787
1788         /* FBC memory should be allocated */
1789         if (!dc->ctx->fbc_gpu_addr)
1790                 return false;
1791
1792         /* Only supports single display */
1793         if (context->stream_count != 1)
1794                 return false;
1795
1796         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1797                 if (res_ctx->pipe_ctx[i].stream) {
1798                         pipe_ctx = &res_ctx->pipe_ctx[i];
1799                         *pipe_idx = i;
1800                         break;
1801                 }
1802         }
1803
1804         /* Pipe context should be found */
1805         ASSERT(pipe_ctx);
1806
1807         /* Only supports eDP */
1808         if (pipe_ctx->stream->sink->link->connector_signal != SIGNAL_TYPE_EDP)
1809                 return false;
1810
1811         /* PSR should not be enabled */
1812         if (pipe_ctx->stream->sink->link->psr_enabled)
1813                 return false;
1814
1815         /* Nothing to compress */
1816         if (!pipe_ctx->plane_state)
1817                 return false;
1818
1819         /* Only for non-linear tiling */
1820         if (pipe_ctx->plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
1821                 return false;
1822
1823         return true;
1824 }
1825
1826 /*
1827  *  Enable FBC
1828  */
1829 static void enable_fbc(struct dc *dc,
1830                        struct dc_state *context)
1831 {
1832         uint32_t pipe_idx = 0;
1833
1834         if (should_enable_fbc(dc, context, &pipe_idx)) {
1835                 /* Program GRPH COMPRESSED ADDRESS and PITCH */
1836                 struct compr_addr_and_pitch_params params = {0, 0, 0};
1837                 struct compressor *compr = dc->fbc_compressor;
1838                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
1839
1840
1841                 params.source_view_width = pipe_ctx->stream->timing.h_addressable;
1842                 params.source_view_height = pipe_ctx->stream->timing.v_addressable;
1843
1844                 compr->compr_surface_address.quad_part = dc->ctx->fbc_gpu_addr;
1845
1846                 compr->funcs->surface_address_and_pitch(compr, &params);
1847                 compr->funcs->set_fbc_invalidation_triggers(compr, 1);
1848
1849                 compr->funcs->enable_fbc(compr, &params);
1850         }
1851 }
1852
1853 static void dce110_reset_hw_ctx_wrap(
1854                 struct dc *dc,
1855                 struct dc_state *context)
1856 {
1857         int i;
1858
1859         /* Reset old context */
1860         /* look up the targets that have been removed since last commit */
1861         for (i = 0; i < MAX_PIPES; i++) {
1862                 struct pipe_ctx *pipe_ctx_old =
1863                         &dc->current_state->res_ctx.pipe_ctx[i];
1864                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1865
1866                 /* Note: We need to disable output if clock sources change,
1867                  * since bios does optimization and doesn't apply if changing
1868                  * PHY when not already disabled.
1869                  */
1870
1871                 /* Skip underlay pipe since it will be handled in commit surface*/
1872                 if (!pipe_ctx_old->stream || pipe_ctx_old->top_pipe)
1873                         continue;
1874
1875                 if (!pipe_ctx->stream ||
1876                                 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
1877                         struct clock_source *old_clk = pipe_ctx_old->clock_source;
1878
1879                         /* Disable if new stream is null. O/w, if stream is
1880                          * disabled already, no need to disable again.
1881                          */
1882                         if (!pipe_ctx->stream || !pipe_ctx->stream->dpms_off)
1883                                 core_link_disable_stream(pipe_ctx_old, FREE_ACQUIRED_RESOURCE);
1884
1885                         pipe_ctx_old->stream_res.tg->funcs->set_blank(pipe_ctx_old->stream_res.tg, true);
1886                         if (!hwss_wait_for_blank_complete(pipe_ctx_old->stream_res.tg)) {
1887                                 dm_error("DC: failed to blank crtc!\n");
1888                                 BREAK_TO_DEBUGGER();
1889                         }
1890                         pipe_ctx_old->stream_res.tg->funcs->disable_crtc(pipe_ctx_old->stream_res.tg);
1891                         pipe_ctx_old->plane_res.mi->funcs->free_mem_input(
1892                                         pipe_ctx_old->plane_res.mi, dc->current_state->stream_count);
1893
1894                         if (old_clk && 0 == resource_get_clock_source_reference(&context->res_ctx,
1895                                                                                 dc->res_pool,
1896                                                                                 old_clk))
1897                                 old_clk->funcs->cs_power_down(old_clk);
1898
1899                         dc->hwss.disable_plane(dc, pipe_ctx_old);
1900
1901                         pipe_ctx_old->stream = NULL;
1902                 }
1903         }
1904 }
1905
1906 static void dce110_setup_audio_dto(
1907                 struct dc *dc,
1908                 struct dc_state *context)
1909 {
1910         int i;
1911
1912         /* program audio wall clock. use HDMI as clock source if HDMI
1913          * audio active. Otherwise, use DP as clock source
1914          * first, loop to find any HDMI audio, if not, loop find DP audio
1915          */
1916         /* Setup audio rate clock source */
1917         /* Issue:
1918         * Audio lag happened on DP monitor when unplug a HDMI monitor
1919         *
1920         * Cause:
1921         * In case of DP and HDMI connected or HDMI only, DCCG_AUDIO_DTO_SEL
1922         * is set to either dto0 or dto1, audio should work fine.
1923         * In case of DP connected only, DCCG_AUDIO_DTO_SEL should be dto1,
1924         * set to dto0 will cause audio lag.
1925         *
1926         * Solution:
1927         * Not optimized audio wall dto setup. When mode set, iterate pipe_ctx,
1928         * find first available pipe with audio, setup audio wall DTO per topology
1929         * instead of per pipe.
1930         */
1931         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1932                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1933
1934                 if (pipe_ctx->stream == NULL)
1935                         continue;
1936
1937                 if (pipe_ctx->top_pipe)
1938                         continue;
1939
1940                 if (pipe_ctx->stream->signal != SIGNAL_TYPE_HDMI_TYPE_A)
1941                         continue;
1942
1943                 if (pipe_ctx->stream_res.audio != NULL) {
1944                         struct audio_output audio_output;
1945
1946                         build_audio_output(context, pipe_ctx, &audio_output);
1947
1948                         pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
1949                                 pipe_ctx->stream_res.audio,
1950                                 pipe_ctx->stream->signal,
1951                                 &audio_output.crtc_info,
1952                                 &audio_output.pll_info);
1953                         break;
1954                 }
1955         }
1956
1957         /* no HDMI audio is found, try DP audio */
1958         if (i == dc->res_pool->pipe_count) {
1959                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1960                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1961
1962                         if (pipe_ctx->stream == NULL)
1963                                 continue;
1964
1965                         if (pipe_ctx->top_pipe)
1966                                 continue;
1967
1968                         if (!dc_is_dp_signal(pipe_ctx->stream->signal))
1969                                 continue;
1970
1971                         if (pipe_ctx->stream_res.audio != NULL) {
1972                                 struct audio_output audio_output;
1973
1974                                 build_audio_output(context, pipe_ctx, &audio_output);
1975
1976                                 pipe_ctx->stream_res.audio->funcs->wall_dto_setup(
1977                                         pipe_ctx->stream_res.audio,
1978                                         pipe_ctx->stream->signal,
1979                                         &audio_output.crtc_info,
1980                                         &audio_output.pll_info);
1981                                 break;
1982                         }
1983                 }
1984         }
1985 }
1986
1987 enum dc_status dce110_apply_ctx_to_hw(
1988                 struct dc *dc,
1989                 struct dc_state *context)
1990 {
1991         struct dc_bios *dcb = dc->ctx->dc_bios;
1992         enum dc_status status;
1993         int i;
1994
1995         /* Reset old context */
1996         /* look up the targets that have been removed since last commit */
1997         dc->hwss.reset_hw_ctx_wrap(dc, context);
1998
1999         /* Skip applying if no targets */
2000         if (context->stream_count <= 0)
2001                 return DC_OK;
2002
2003         /* Apply new context */
2004         dcb->funcs->set_scratch_critical_state(dcb, true);
2005
2006         /* below is for real asic only */
2007         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2008                 struct pipe_ctx *pipe_ctx_old =
2009                                         &dc->current_state->res_ctx.pipe_ctx[i];
2010                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2011
2012                 if (pipe_ctx->stream == NULL || pipe_ctx->top_pipe)
2013                         continue;
2014
2015                 if (pipe_ctx->stream == pipe_ctx_old->stream) {
2016                         if (pipe_ctx_old->clock_source != pipe_ctx->clock_source)
2017                                 dce_crtc_switch_to_clk_src(dc->hwseq,
2018                                                 pipe_ctx->clock_source, i);
2019                         continue;
2020                 }
2021
2022                 dc->hwss.enable_display_power_gating(
2023                                 dc, i, dc->ctx->dc_bios,
2024                                 PIPE_GATING_CONTROL_DISABLE);
2025         }
2026
2027         if (dc->fbc_compressor)
2028                 dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2029
2030         dce110_setup_audio_dto(dc, context);
2031
2032         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2033                 struct pipe_ctx *pipe_ctx_old =
2034                                         &dc->current_state->res_ctx.pipe_ctx[i];
2035                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2036
2037                 if (pipe_ctx->stream == NULL)
2038                         continue;
2039
2040                 if (pipe_ctx->stream == pipe_ctx_old->stream)
2041                         continue;
2042
2043                 if (pipe_ctx_old->stream && !pipe_need_reprogram(pipe_ctx_old, pipe_ctx))
2044                         continue;
2045
2046                 if (pipe_ctx->top_pipe)
2047                         continue;
2048
2049                 status = apply_single_controller_ctx_to_hw(
2050                                 pipe_ctx,
2051                                 context,
2052                                 dc);
2053
2054                 if (DC_OK != status)
2055                         return status;
2056         }
2057
2058         dcb->funcs->set_scratch_critical_state(dcb, false);
2059
2060         if (dc->fbc_compressor)
2061                 enable_fbc(dc, context);
2062
2063         return DC_OK;
2064 }
2065
2066 /*******************************************************************************
2067  * Front End programming
2068  ******************************************************************************/
2069 static void set_default_colors(struct pipe_ctx *pipe_ctx)
2070 {
2071         struct default_adjustment default_adjust = { 0 };
2072
2073         default_adjust.force_hw_default = false;
2074         default_adjust.in_color_space = pipe_ctx->plane_state->color_space;
2075         default_adjust.out_color_space = pipe_ctx->stream->output_color_space;
2076         default_adjust.csc_adjust_type = GRAPHICS_CSC_ADJUST_TYPE_SW;
2077         default_adjust.surface_pixel_format = pipe_ctx->plane_res.scl_data.format;
2078
2079         /* display color depth */
2080         default_adjust.color_depth =
2081                 pipe_ctx->stream->timing.display_color_depth;
2082
2083         /* Lb color depth */
2084         default_adjust.lb_color_depth = pipe_ctx->plane_res.scl_data.lb_params.depth;
2085
2086         pipe_ctx->plane_res.xfm->funcs->opp_set_csc_default(
2087                                         pipe_ctx->plane_res.xfm, &default_adjust);
2088 }
2089
2090
2091 /*******************************************************************************
2092  * In order to turn on/off specific surface we will program
2093  * Blender + CRTC
2094  *
2095  * In case that we have two surfaces and they have a different visibility
2096  * we can't turn off the CRTC since it will turn off the entire display
2097  *
2098  * |----------------------------------------------- |
2099  * |bottom pipe|curr pipe  |              |         |
2100  * |Surface    |Surface    | Blender      |  CRCT   |
2101  * |visibility |visibility | Configuration|         |
2102  * |------------------------------------------------|
2103  * |   off     |    off    | CURRENT_PIPE | blank   |
2104  * |   off     |    on     | CURRENT_PIPE | unblank |
2105  * |   on      |    off    | OTHER_PIPE   | unblank |
2106  * |   on      |    on     | BLENDING     | unblank |
2107  * -------------------------------------------------|
2108  *
2109  ******************************************************************************/
2110 static void program_surface_visibility(const struct dc *dc,
2111                 struct pipe_ctx *pipe_ctx)
2112 {
2113         enum blnd_mode blender_mode = BLND_MODE_CURRENT_PIPE;
2114         bool blank_target = false;
2115
2116         if (pipe_ctx->bottom_pipe) {
2117
2118                 /* For now we are supporting only two pipes */
2119                 ASSERT(pipe_ctx->bottom_pipe->bottom_pipe == NULL);
2120
2121                 if (pipe_ctx->bottom_pipe->plane_state->visible) {
2122                         if (pipe_ctx->plane_state->visible)
2123                                 blender_mode = BLND_MODE_BLENDING;
2124                         else
2125                                 blender_mode = BLND_MODE_OTHER_PIPE;
2126
2127                 } else if (!pipe_ctx->plane_state->visible)
2128                         blank_target = true;
2129
2130         } else if (!pipe_ctx->plane_state->visible)
2131                 blank_target = true;
2132
2133         dce_set_blender_mode(dc->hwseq, pipe_ctx->stream_res.tg->inst, blender_mode);
2134         pipe_ctx->stream_res.tg->funcs->set_blank(pipe_ctx->stream_res.tg, blank_target);
2135
2136 }
2137
2138 static void program_gamut_remap(struct pipe_ctx *pipe_ctx)
2139 {
2140         int i = 0;
2141         struct xfm_grph_csc_adjustment adjust;
2142         memset(&adjust, 0, sizeof(adjust));
2143         adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2144
2145
2146         if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2147                 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2148
2149                 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2150                         adjust.temperature_matrix[i] =
2151                                 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2152         }
2153
2154         pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2155 }
2156 static void update_plane_addr(const struct dc *dc,
2157                 struct pipe_ctx *pipe_ctx)
2158 {
2159         struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2160
2161         if (plane_state == NULL)
2162                 return;
2163
2164         pipe_ctx->plane_res.mi->funcs->mem_input_program_surface_flip_and_addr(
2165                         pipe_ctx->plane_res.mi,
2166                         &plane_state->address,
2167                         plane_state->flip_immediate);
2168
2169         plane_state->status.requested_address = plane_state->address;
2170 }
2171
2172 static void dce110_update_pending_status(struct pipe_ctx *pipe_ctx)
2173 {
2174         struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2175
2176         if (plane_state == NULL)
2177                 return;
2178
2179         plane_state->status.is_flip_pending =
2180                         pipe_ctx->plane_res.mi->funcs->mem_input_is_flip_pending(
2181                                         pipe_ctx->plane_res.mi);
2182
2183         if (plane_state->status.is_flip_pending && !plane_state->visible)
2184                 pipe_ctx->plane_res.mi->current_address = pipe_ctx->plane_res.mi->request_address;
2185
2186         plane_state->status.current_address = pipe_ctx->plane_res.mi->current_address;
2187         if (pipe_ctx->plane_res.mi->current_address.type == PLN_ADDR_TYPE_GRPH_STEREO &&
2188                         pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye) {
2189                 plane_state->status.is_right_eye =\
2190                                 !pipe_ctx->stream_res.tg->funcs->is_stereo_left_eye(pipe_ctx->stream_res.tg);
2191         }
2192 }
2193
2194 void dce110_power_down(struct dc *dc)
2195 {
2196         power_down_all_hw_blocks(dc);
2197         disable_vga_and_power_gate_all_controllers(dc);
2198 }
2199
2200 static bool wait_for_reset_trigger_to_occur(
2201         struct dc_context *dc_ctx,
2202         struct timing_generator *tg)
2203 {
2204         bool rc = false;
2205
2206         /* To avoid endless loop we wait at most
2207          * frames_to_wait_on_triggered_reset frames for the reset to occur. */
2208         const uint32_t frames_to_wait_on_triggered_reset = 10;
2209         uint32_t i;
2210
2211         for (i = 0; i < frames_to_wait_on_triggered_reset; i++) {
2212
2213                 if (!tg->funcs->is_counter_moving(tg)) {
2214                         DC_ERROR("TG counter is not moving!\n");
2215                         break;
2216                 }
2217
2218                 if (tg->funcs->did_triggered_reset_occur(tg)) {
2219                         rc = true;
2220                         /* usually occurs at i=1 */
2221                         DC_SYNC_INFO("GSL: reset occurred at wait count: %d\n",
2222                                         i);
2223                         break;
2224                 }
2225
2226                 /* Wait for one frame. */
2227                 tg->funcs->wait_for_state(tg, CRTC_STATE_VACTIVE);
2228                 tg->funcs->wait_for_state(tg, CRTC_STATE_VBLANK);
2229         }
2230
2231         if (false == rc)
2232                 DC_ERROR("GSL: Timeout on reset trigger!\n");
2233
2234         return rc;
2235 }
2236
2237 /* Enable timing synchronization for a group of Timing Generators. */
2238 static void dce110_enable_timing_synchronization(
2239                 struct dc *dc,
2240                 int group_index,
2241                 int group_size,
2242                 struct pipe_ctx *grouped_pipes[])
2243 {
2244         struct dc_context *dc_ctx = dc->ctx;
2245         struct dcp_gsl_params gsl_params = { 0 };
2246         int i;
2247
2248         DC_SYNC_INFO("GSL: Setting-up...\n");
2249
2250         /* Designate a single TG in the group as a master.
2251          * Since HW doesn't care which one, we always assign
2252          * the 1st one in the group. */
2253         gsl_params.gsl_group = 0;
2254         gsl_params.gsl_master = grouped_pipes[0]->stream_res.tg->inst;
2255
2256         for (i = 0; i < group_size; i++)
2257                 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2258                                         grouped_pipes[i]->stream_res.tg, &gsl_params);
2259
2260         /* Reset slave controllers on master VSync */
2261         DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2262
2263         for (i = 1 /* skip the master */; i < group_size; i++)
2264                 grouped_pipes[i]->stream_res.tg->funcs->enable_reset_trigger(
2265                                 grouped_pipes[i]->stream_res.tg,
2266                                 gsl_params.gsl_group);
2267
2268         for (i = 1 /* skip the master */; i < group_size; i++) {
2269                 DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2270                 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2271                 grouped_pipes[i]->stream_res.tg->funcs->disable_reset_trigger(
2272                                 grouped_pipes[i]->stream_res.tg);
2273         }
2274
2275         /* GSL Vblank synchronization is a one time sync mechanism, assumption
2276          * is that the sync'ed displays will not drift out of sync over time*/
2277         DC_SYNC_INFO("GSL: Restoring register states.\n");
2278         for (i = 0; i < group_size; i++)
2279                 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2280
2281         DC_SYNC_INFO("GSL: Set-up complete.\n");
2282 }
2283
2284 static void dce110_enable_per_frame_crtc_position_reset(
2285                 struct dc *dc,
2286                 int group_size,
2287                 struct pipe_ctx *grouped_pipes[])
2288 {
2289         struct dc_context *dc_ctx = dc->ctx;
2290         struct dcp_gsl_params gsl_params = { 0 };
2291         int i;
2292
2293         gsl_params.gsl_group = 0;
2294         gsl_params.gsl_master = grouped_pipes[0]->stream->triggered_crtc_reset.event_source->status.primary_otg_inst;
2295
2296         for (i = 0; i < group_size; i++)
2297                 grouped_pipes[i]->stream_res.tg->funcs->setup_global_swap_lock(
2298                                         grouped_pipes[i]->stream_res.tg, &gsl_params);
2299
2300         DC_SYNC_INFO("GSL: enabling trigger-reset\n");
2301
2302         for (i = 1; i < group_size; i++)
2303                 grouped_pipes[i]->stream_res.tg->funcs->enable_crtc_reset(
2304                                 grouped_pipes[i]->stream_res.tg,
2305                                 gsl_params.gsl_master,
2306                                 &grouped_pipes[i]->stream->triggered_crtc_reset);
2307
2308         DC_SYNC_INFO("GSL: waiting for reset to occur.\n");
2309         for (i = 1; i < group_size; i++)
2310                 wait_for_reset_trigger_to_occur(dc_ctx, grouped_pipes[i]->stream_res.tg);
2311
2312         for (i = 0; i < group_size; i++)
2313                 grouped_pipes[i]->stream_res.tg->funcs->tear_down_global_swap_lock(grouped_pipes[i]->stream_res.tg);
2314
2315 }
2316
2317 static void init_hw(struct dc *dc)
2318 {
2319         int i;
2320         struct dc_bios *bp;
2321         struct transform *xfm;
2322         struct abm *abm;
2323
2324         bp = dc->ctx->dc_bios;
2325         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2326                 xfm = dc->res_pool->transforms[i];
2327                 xfm->funcs->transform_reset(xfm);
2328
2329                 dc->hwss.enable_display_power_gating(
2330                                 dc, i, bp,
2331                                 PIPE_GATING_CONTROL_INIT);
2332                 dc->hwss.enable_display_power_gating(
2333                                 dc, i, bp,
2334                                 PIPE_GATING_CONTROL_DISABLE);
2335                 dc->hwss.enable_display_pipe_clock_gating(
2336                         dc->ctx,
2337                         true);
2338         }
2339
2340         dce_clock_gating_power_up(dc->hwseq, false);
2341         /***************************************/
2342
2343         for (i = 0; i < dc->link_count; i++) {
2344                 /****************************************/
2345                 /* Power up AND update implementation according to the
2346                  * required signal (which may be different from the
2347                  * default signal on connector). */
2348                 struct dc_link *link = dc->links[i];
2349
2350                 if (link->link_enc->connector.id == CONNECTOR_ID_EDP)
2351                         dc->hwss.edp_power_control(link, true);
2352
2353                 link->link_enc->funcs->hw_init(link->link_enc);
2354         }
2355
2356         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2357                 struct timing_generator *tg = dc->res_pool->timing_generators[i];
2358
2359                 tg->funcs->disable_vga(tg);
2360
2361                 /* Blank controller using driver code instead of
2362                  * command table. */
2363                 tg->funcs->set_blank(tg, true);
2364                 hwss_wait_for_blank_complete(tg);
2365         }
2366
2367         for (i = 0; i < dc->res_pool->audio_count; i++) {
2368                 struct audio *audio = dc->res_pool->audios[i];
2369                 audio->funcs->hw_init(audio);
2370         }
2371
2372         abm = dc->res_pool->abm;
2373         if (abm != NULL) {
2374                 abm->funcs->init_backlight(abm);
2375                 abm->funcs->abm_init(abm);
2376         }
2377
2378         if (dc->fbc_compressor)
2379                 dc->fbc_compressor->funcs->power_up_fbc(dc->fbc_compressor);
2380
2381 }
2382
2383 void dce110_fill_display_configs(
2384         const struct dc_state *context,
2385         struct dm_pp_display_configuration *pp_display_cfg)
2386 {
2387         int j;
2388         int num_cfgs = 0;
2389
2390         for (j = 0; j < context->stream_count; j++) {
2391                 int k;
2392
2393                 const struct dc_stream_state *stream = context->streams[j];
2394                 struct dm_pp_single_disp_config *cfg =
2395                         &pp_display_cfg->disp_configs[num_cfgs];
2396                 const struct pipe_ctx *pipe_ctx = NULL;
2397
2398                 for (k = 0; k < MAX_PIPES; k++)
2399                         if (stream == context->res_ctx.pipe_ctx[k].stream) {
2400                                 pipe_ctx = &context->res_ctx.pipe_ctx[k];
2401                                 break;
2402                         }
2403
2404                 ASSERT(pipe_ctx != NULL);
2405
2406                 /* only notify active stream */
2407                 if (stream->dpms_off)
2408                         continue;
2409
2410                 num_cfgs++;
2411                 cfg->signal = pipe_ctx->stream->signal;
2412                 cfg->pipe_idx = pipe_ctx->stream_res.tg->inst;
2413                 cfg->src_height = stream->src.height;
2414                 cfg->src_width = stream->src.width;
2415                 cfg->ddi_channel_mapping =
2416                         stream->sink->link->ddi_channel_mapping.raw;
2417                 cfg->transmitter =
2418                         stream->sink->link->link_enc->transmitter;
2419                 cfg->link_settings.lane_count =
2420                         stream->sink->link->cur_link_settings.lane_count;
2421                 cfg->link_settings.link_rate =
2422                         stream->sink->link->cur_link_settings.link_rate;
2423                 cfg->link_settings.link_spread =
2424                         stream->sink->link->cur_link_settings.link_spread;
2425                 cfg->sym_clock = stream->phy_pix_clk;
2426                 /* Round v_refresh*/
2427                 cfg->v_refresh = stream->timing.pix_clk_khz * 1000;
2428                 cfg->v_refresh /= stream->timing.h_total;
2429                 cfg->v_refresh = (cfg->v_refresh + stream->timing.v_total / 2)
2430                                                         / stream->timing.v_total;
2431         }
2432
2433         pp_display_cfg->display_count = num_cfgs;
2434 }
2435
2436 uint32_t dce110_get_min_vblank_time_us(const struct dc_state *context)
2437 {
2438         uint8_t j;
2439         uint32_t min_vertical_blank_time = -1;
2440
2441         for (j = 0; j < context->stream_count; j++) {
2442                 struct dc_stream_state *stream = context->streams[j];
2443                 uint32_t vertical_blank_in_pixels = 0;
2444                 uint32_t vertical_blank_time = 0;
2445
2446                 vertical_blank_in_pixels = stream->timing.h_total *
2447                         (stream->timing.v_total
2448                          - stream->timing.v_addressable);
2449
2450                 vertical_blank_time = vertical_blank_in_pixels
2451                         * 1000 / stream->timing.pix_clk_khz;
2452
2453                 if (min_vertical_blank_time > vertical_blank_time)
2454                         min_vertical_blank_time = vertical_blank_time;
2455         }
2456
2457         return min_vertical_blank_time;
2458 }
2459
2460 static int determine_sclk_from_bounding_box(
2461                 const struct dc *dc,
2462                 int required_sclk)
2463 {
2464         int i;
2465
2466         /*
2467          * Some asics do not give us sclk levels, so we just report the actual
2468          * required sclk
2469          */
2470         if (dc->sclk_lvls.num_levels == 0)
2471                 return required_sclk;
2472
2473         for (i = 0; i < dc->sclk_lvls.num_levels; i++) {
2474                 if (dc->sclk_lvls.clocks_in_khz[i] >= required_sclk)
2475                         return dc->sclk_lvls.clocks_in_khz[i];
2476         }
2477         /*
2478          * even maximum level could not satisfy requirement, this
2479          * is unexpected at this stage, should have been caught at
2480          * validation time
2481          */
2482         ASSERT(0);
2483         return dc->sclk_lvls.clocks_in_khz[dc->sclk_lvls.num_levels - 1];
2484 }
2485
2486 static void pplib_apply_display_requirements(
2487         struct dc *dc,
2488         struct dc_state *context)
2489 {
2490         struct dm_pp_display_configuration *pp_display_cfg = &context->pp_display_cfg;
2491
2492         pp_display_cfg->all_displays_in_sync =
2493                 context->bw.dce.all_displays_in_sync;
2494         pp_display_cfg->nb_pstate_switch_disable =
2495                         context->bw.dce.nbp_state_change_enable == false;
2496         pp_display_cfg->cpu_cc6_disable =
2497                         context->bw.dce.cpuc_state_change_enable == false;
2498         pp_display_cfg->cpu_pstate_disable =
2499                         context->bw.dce.cpup_state_change_enable == false;
2500         pp_display_cfg->cpu_pstate_separation_time =
2501                         context->bw.dce.blackout_recovery_time_us;
2502
2503         pp_display_cfg->min_memory_clock_khz = context->bw.dce.yclk_khz
2504                 / MEMORY_TYPE_MULTIPLIER;
2505
2506         pp_display_cfg->min_engine_clock_khz = determine_sclk_from_bounding_box(
2507                         dc,
2508                         context->bw.dce.sclk_khz);
2509
2510         pp_display_cfg->min_engine_clock_deep_sleep_khz
2511                         = context->bw.dce.sclk_deep_sleep_khz;
2512
2513         pp_display_cfg->avail_mclk_switch_time_us =
2514                                                 dce110_get_min_vblank_time_us(context);
2515         /* TODO: dce11.2*/
2516         pp_display_cfg->avail_mclk_switch_time_in_disp_active_us = 0;
2517
2518         pp_display_cfg->disp_clk_khz = dc->res_pool->dccg->clks.dispclk_khz;
2519
2520         dce110_fill_display_configs(context, pp_display_cfg);
2521
2522         /* TODO: is this still applicable?*/
2523         if (pp_display_cfg->display_count == 1) {
2524                 const struct dc_crtc_timing *timing =
2525                         &context->streams[0]->timing;
2526
2527                 pp_display_cfg->crtc_index =
2528                         pp_display_cfg->disp_configs[0].pipe_idx;
2529                 pp_display_cfg->line_time_in_us = timing->h_total * 1000
2530                                                         / timing->pix_clk_khz;
2531         }
2532
2533         if (memcmp(&dc->prev_display_config, pp_display_cfg, sizeof(
2534                         struct dm_pp_display_configuration)) !=  0)
2535                 dm_pp_apply_display_requirements(dc->ctx, pp_display_cfg);
2536
2537         dc->prev_display_config = *pp_display_cfg;
2538 }
2539
2540 static void dce110_set_bandwidth(
2541                 struct dc *dc,
2542                 struct dc_state *context,
2543                 bool decrease_allowed)
2544 {
2545         struct dc_clocks req_clks;
2546         struct dccg *dccg = dc->res_pool->dccg;
2547
2548         req_clks.dispclk_khz = context->bw.dce.dispclk_khz;
2549         req_clks.phyclk_khz = get_max_pixel_clock_for_all_paths(dc, context);
2550
2551         if (decrease_allowed)
2552                 dce110_set_displaymarks(dc, context);
2553         else
2554                 dce110_set_safe_displaymarks(&context->res_ctx, dc->res_pool);
2555
2556         if (dccg->funcs->update_dfs_bypass)
2557                 dccg->funcs->update_dfs_bypass(
2558                         dccg,
2559                         dc,
2560                         context,
2561                         req_clks.dispclk_khz);
2562
2563         dccg->funcs->update_clocks(
2564                         dccg,
2565                         &req_clks,
2566                         decrease_allowed);
2567         pplib_apply_display_requirements(dc, context);
2568 }
2569
2570 static void dce110_program_front_end_for_pipe(
2571                 struct dc *dc, struct pipe_ctx *pipe_ctx)
2572 {
2573         struct mem_input *mi = pipe_ctx->plane_res.mi;
2574         struct pipe_ctx *old_pipe = NULL;
2575         struct dc_plane_state *plane_state = pipe_ctx->plane_state;
2576         struct xfm_grph_csc_adjustment adjust;
2577         struct out_csc_color_matrix tbl_entry;
2578         unsigned int underlay_idx = dc->res_pool->underlay_pipe_index;
2579         unsigned int i;
2580         DC_LOGGER_INIT();
2581         memset(&tbl_entry, 0, sizeof(tbl_entry));
2582
2583         if (dc->current_state)
2584                 old_pipe = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx];
2585
2586         memset(&adjust, 0, sizeof(adjust));
2587         adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
2588
2589         dce_enable_fe_clock(dc->hwseq, mi->inst, true);
2590
2591         set_default_colors(pipe_ctx);
2592         if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2593                         == true) {
2594                 tbl_entry.color_space =
2595                         pipe_ctx->stream->output_color_space;
2596
2597                 for (i = 0; i < 12; i++)
2598                         tbl_entry.regval[i] =
2599                         pipe_ctx->stream->csc_color_matrix.matrix[i];
2600
2601                 pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment
2602                                 (pipe_ctx->plane_res.xfm, &tbl_entry);
2603         }
2604
2605         if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) {
2606                 adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
2607
2608                 for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++)
2609                         adjust.temperature_matrix[i] =
2610                                 pipe_ctx->stream->gamut_remap_matrix.matrix[i];
2611         }
2612
2613         pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust);
2614
2615         pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0;
2616
2617         program_scaler(dc, pipe_ctx);
2618
2619         /* fbc not applicable on Underlay pipe */
2620         if (dc->fbc_compressor && old_pipe->stream &&
2621             pipe_ctx->pipe_idx != underlay_idx) {
2622                 if (plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL)
2623                         dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor);
2624                 else
2625                         enable_fbc(dc, dc->current_state);
2626         }
2627
2628         mi->funcs->mem_input_program_surface_config(
2629                         mi,
2630                         plane_state->format,
2631                         &plane_state->tiling_info,
2632                         &plane_state->plane_size,
2633                         plane_state->rotation,
2634                         NULL,
2635                         false);
2636         if (mi->funcs->set_blank)
2637                 mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible);
2638
2639         if (dc->config.gpu_vm_support)
2640                 mi->funcs->mem_input_program_pte_vm(
2641                                 pipe_ctx->plane_res.mi,
2642                                 plane_state->format,
2643                                 &plane_state->tiling_info,
2644                                 plane_state->rotation);
2645
2646         /* Moved programming gamma from dc to hwss */
2647         if (pipe_ctx->plane_state->update_flags.bits.full_update ||
2648                         pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change ||
2649                         pipe_ctx->plane_state->update_flags.bits.gamma_change)
2650                 dc->hwss.set_input_transfer_func(pipe_ctx, pipe_ctx->plane_state);
2651
2652         if (pipe_ctx->plane_state->update_flags.bits.full_update)
2653                 dc->hwss.set_output_transfer_func(pipe_ctx, pipe_ctx->stream);
2654
2655         DC_LOG_SURFACE(
2656                         "Pipe:%d %p: addr hi:0x%x, "
2657                         "addr low:0x%x, "
2658                         "src: %d, %d, %d,"
2659                         " %d; dst: %d, %d, %d, %d;"
2660                         "clip: %d, %d, %d, %d\n",
2661                         pipe_ctx->pipe_idx,
2662                         (void *) pipe_ctx->plane_state,
2663                         pipe_ctx->plane_state->address.grph.addr.high_part,
2664                         pipe_ctx->plane_state->address.grph.addr.low_part,
2665                         pipe_ctx->plane_state->src_rect.x,
2666                         pipe_ctx->plane_state->src_rect.y,
2667                         pipe_ctx->plane_state->src_rect.width,
2668                         pipe_ctx->plane_state->src_rect.height,
2669                         pipe_ctx->plane_state->dst_rect.x,
2670                         pipe_ctx->plane_state->dst_rect.y,
2671                         pipe_ctx->plane_state->dst_rect.width,
2672                         pipe_ctx->plane_state->dst_rect.height,
2673                         pipe_ctx->plane_state->clip_rect.x,
2674                         pipe_ctx->plane_state->clip_rect.y,
2675                         pipe_ctx->plane_state->clip_rect.width,
2676                         pipe_ctx->plane_state->clip_rect.height);
2677
2678         DC_LOG_SURFACE(
2679                         "Pipe %d: width, height, x, y\n"
2680                         "viewport:%d, %d, %d, %d\n"
2681                         "recout:  %d, %d, %d, %d\n",
2682                         pipe_ctx->pipe_idx,
2683                         pipe_ctx->plane_res.scl_data.viewport.width,
2684                         pipe_ctx->plane_res.scl_data.viewport.height,
2685                         pipe_ctx->plane_res.scl_data.viewport.x,
2686                         pipe_ctx->plane_res.scl_data.viewport.y,
2687                         pipe_ctx->plane_res.scl_data.recout.width,
2688                         pipe_ctx->plane_res.scl_data.recout.height,
2689                         pipe_ctx->plane_res.scl_data.recout.x,
2690                         pipe_ctx->plane_res.scl_data.recout.y);
2691 }
2692
2693 static void dce110_apply_ctx_for_surface(
2694                 struct dc *dc,
2695                 const struct dc_stream_state *stream,
2696                 int num_planes,
2697                 struct dc_state *context)
2698 {
2699         int i;
2700
2701         if (num_planes == 0)
2702                 return;
2703
2704         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2705                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2706                 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
2707
2708                 if (stream == pipe_ctx->stream) {
2709                         if (!pipe_ctx->top_pipe &&
2710                                 (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
2711                                 dc->hwss.pipe_control_lock(dc, pipe_ctx, true);
2712                 }
2713         }
2714
2715         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2716                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2717
2718                 if (pipe_ctx->stream != stream)
2719                         continue;
2720
2721                 /* Need to allocate mem before program front end for Fiji */
2722                 pipe_ctx->plane_res.mi->funcs->allocate_mem_input(
2723                                 pipe_ctx->plane_res.mi,
2724                                 pipe_ctx->stream->timing.h_total,
2725                                 pipe_ctx->stream->timing.v_total,
2726                                 pipe_ctx->stream->timing.pix_clk_khz,
2727                                 context->stream_count);
2728
2729                 dce110_program_front_end_for_pipe(dc, pipe_ctx);
2730
2731                 dc->hwss.update_plane_addr(dc, pipe_ctx);
2732
2733                 program_surface_visibility(dc, pipe_ctx);
2734
2735         }
2736
2737         for (i = 0; i < dc->res_pool->pipe_count; i++) {
2738                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
2739                 struct pipe_ctx *old_pipe_ctx = &dc->current_state->res_ctx.pipe_ctx[i];
2740
2741                 if ((stream == pipe_ctx->stream) &&
2742                         (!pipe_ctx->top_pipe) &&
2743                         (pipe_ctx->plane_state || old_pipe_ctx->plane_state))
2744                         dc->hwss.pipe_control_lock(dc, pipe_ctx, false);
2745         }
2746 }
2747
2748 static void dce110_power_down_fe(struct dc *dc, struct pipe_ctx *pipe_ctx)
2749 {
2750         int fe_idx = pipe_ctx->plane_res.mi ?
2751                 pipe_ctx->plane_res.mi->inst : pipe_ctx->pipe_idx;
2752
2753         /* Do not power down fe when stream is active on dce*/
2754         if (dc->current_state->res_ctx.pipe_ctx[fe_idx].stream)
2755                 return;
2756
2757         dc->hwss.enable_display_power_gating(
2758                 dc, fe_idx, dc->ctx->dc_bios, PIPE_GATING_CONTROL_ENABLE);
2759
2760         dc->res_pool->transforms[fe_idx]->funcs->transform_reset(
2761                                 dc->res_pool->transforms[fe_idx]);
2762 }
2763
2764 static void dce110_wait_for_mpcc_disconnect(
2765                 struct dc *dc,
2766                 struct resource_pool *res_pool,
2767                 struct pipe_ctx *pipe_ctx)
2768 {
2769         /* do nothing*/
2770 }
2771
2772 static void program_csc_matrix(struct pipe_ctx *pipe_ctx,
2773                 enum dc_color_space colorspace,
2774                 uint16_t *matrix)
2775 {
2776         int i;
2777         struct out_csc_color_matrix tbl_entry;
2778
2779         if (pipe_ctx->stream->csc_color_matrix.enable_adjustment
2780                                 == true) {
2781                         enum dc_color_space color_space =
2782                                 pipe_ctx->stream->output_color_space;
2783
2784                         //uint16_t matrix[12];
2785                         for (i = 0; i < 12; i++)
2786                                 tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i];
2787
2788                         tbl_entry.color_space = color_space;
2789                         //tbl_entry.regval = matrix;
2790                         pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(pipe_ctx->plane_res.xfm, &tbl_entry);
2791         }
2792 }
2793
2794 void dce110_set_cursor_position(struct pipe_ctx *pipe_ctx)
2795 {
2796         struct dc_cursor_position pos_cpy = pipe_ctx->stream->cursor_position;
2797         struct input_pixel_processor *ipp = pipe_ctx->plane_res.ipp;
2798         struct mem_input *mi = pipe_ctx->plane_res.mi;
2799         struct dc_cursor_mi_param param = {
2800                 .pixel_clk_khz = pipe_ctx->stream->timing.pix_clk_khz,
2801                 .ref_clk_khz = pipe_ctx->stream->ctx->dc->res_pool->ref_clock_inKhz,
2802                 .viewport = pipe_ctx->plane_res.scl_data.viewport,
2803                 .h_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.horz,
2804                 .v_scale_ratio = pipe_ctx->plane_res.scl_data.ratios.vert,
2805                 .rotation = pipe_ctx->plane_state->rotation,
2806                 .mirror = pipe_ctx->plane_state->horizontal_mirror
2807         };
2808
2809         if (pipe_ctx->plane_state->address.type
2810                         == PLN_ADDR_TYPE_VIDEO_PROGRESSIVE)
2811                 pos_cpy.enable = false;
2812
2813         if (pipe_ctx->top_pipe && pipe_ctx->plane_state != pipe_ctx->top_pipe->plane_state)
2814                 pos_cpy.enable = false;
2815
2816         if (ipp->funcs->ipp_cursor_set_position)
2817                 ipp->funcs->ipp_cursor_set_position(ipp, &pos_cpy, &param);
2818         if (mi->funcs->set_cursor_position)
2819                 mi->funcs->set_cursor_position(mi, &pos_cpy, &param);
2820 }
2821
2822 void dce110_set_cursor_attribute(struct pipe_ctx *pipe_ctx)
2823 {
2824         struct dc_cursor_attributes *attributes = &pipe_ctx->stream->cursor_attributes;
2825
2826         if (pipe_ctx->plane_res.ipp &&
2827             pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes)
2828                 pipe_ctx->plane_res.ipp->funcs->ipp_cursor_set_attributes(
2829                                 pipe_ctx->plane_res.ipp, attributes);
2830
2831         if (pipe_ctx->plane_res.mi &&
2832             pipe_ctx->plane_res.mi->funcs->set_cursor_attributes)
2833                 pipe_ctx->plane_res.mi->funcs->set_cursor_attributes(
2834                                 pipe_ctx->plane_res.mi, attributes);
2835
2836         if (pipe_ctx->plane_res.xfm &&
2837             pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes)
2838                 pipe_ctx->plane_res.xfm->funcs->set_cursor_attributes(
2839                                 pipe_ctx->plane_res.xfm, attributes);
2840 }
2841
2842 static void ready_shared_resources(struct dc *dc, struct dc_state *context) {}
2843
2844 static void optimize_shared_resources(struct dc *dc) {}
2845
2846 static const struct hw_sequencer_funcs dce110_funcs = {
2847         .program_gamut_remap = program_gamut_remap,
2848         .program_csc_matrix = program_csc_matrix,
2849         .init_hw = init_hw,
2850         .apply_ctx_to_hw = dce110_apply_ctx_to_hw,
2851         .apply_ctx_for_surface = dce110_apply_ctx_for_surface,
2852         .update_plane_addr = update_plane_addr,
2853         .update_pending_status = dce110_update_pending_status,
2854         .set_input_transfer_func = dce110_set_input_transfer_func,
2855         .set_output_transfer_func = dce110_set_output_transfer_func,
2856         .power_down = dce110_power_down,
2857         .enable_accelerated_mode = dce110_enable_accelerated_mode,
2858         .enable_timing_synchronization = dce110_enable_timing_synchronization,
2859         .enable_per_frame_crtc_position_reset = dce110_enable_per_frame_crtc_position_reset,
2860         .update_info_frame = dce110_update_info_frame,
2861         .enable_stream = dce110_enable_stream,
2862         .disable_stream = dce110_disable_stream,
2863         .unblank_stream = dce110_unblank_stream,
2864         .blank_stream = dce110_blank_stream,
2865         .enable_audio_stream = dce110_enable_audio_stream,
2866         .disable_audio_stream = dce110_disable_audio_stream,
2867         .enable_display_pipe_clock_gating = enable_display_pipe_clock_gating,
2868         .enable_display_power_gating = dce110_enable_display_power_gating,
2869         .disable_plane = dce110_power_down_fe,
2870         .pipe_control_lock = dce_pipe_control_lock,
2871         .set_bandwidth = dce110_set_bandwidth,
2872         .set_drr = set_drr,
2873         .get_position = get_position,
2874         .set_static_screen_control = set_static_screen_control,
2875         .reset_hw_ctx_wrap = dce110_reset_hw_ctx_wrap,
2876         .enable_stream_timing = dce110_enable_stream_timing,
2877         .setup_stereo = NULL,
2878         .set_avmute = dce110_set_avmute,
2879         .wait_for_mpcc_disconnect = dce110_wait_for_mpcc_disconnect,
2880         .ready_shared_resources = ready_shared_resources,
2881         .optimize_shared_resources = optimize_shared_resources,
2882         .pplib_apply_display_requirements = pplib_apply_display_requirements,
2883         .edp_backlight_control = hwss_edp_backlight_control,
2884         .edp_power_control = hwss_edp_power_control,
2885         .edp_wait_for_hpd_ready = hwss_edp_wait_for_hpd_ready,
2886         .set_cursor_position = dce110_set_cursor_position,
2887         .set_cursor_attribute = dce110_set_cursor_attribute
2888 };
2889
2890 void dce110_hw_sequencer_construct(struct dc *dc)
2891 {
2892         dc->hwss = dce110_funcs;
2893 }
2894