Merge branches 'arm/rockchip', 'arm/exynos', 'arm/smmu', 'x86/vt-d', 'x86/amd', ...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdkfd / kfd_topology.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/types.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/errno.h>
27 #include <linux/acpi.h>
28 #include <linux/hash.h>
29 #include <linux/cpufreq.h>
30 #include <linux/log2.h>
31
32 #include "kfd_priv.h"
33 #include "kfd_crat.h"
34 #include "kfd_topology.h"
35
36 static struct list_head topology_device_list;
37 static int topology_crat_parsed;
38 static struct kfd_system_properties sys_props;
39
40 static DECLARE_RWSEM(topology_lock);
41
42 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
43 {
44         struct kfd_topology_device *top_dev;
45         struct kfd_dev *device = NULL;
46
47         down_read(&topology_lock);
48
49         list_for_each_entry(top_dev, &topology_device_list, list)
50                 if (top_dev->gpu_id == gpu_id) {
51                         device = top_dev->gpu;
52                         break;
53                 }
54
55         up_read(&topology_lock);
56
57         return device;
58 }
59
60 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
61 {
62         struct kfd_topology_device *top_dev;
63         struct kfd_dev *device = NULL;
64
65         down_read(&topology_lock);
66
67         list_for_each_entry(top_dev, &topology_device_list, list)
68                 if (top_dev->gpu->pdev == pdev) {
69                         device = top_dev->gpu;
70                         break;
71                 }
72
73         up_read(&topology_lock);
74
75         return device;
76 }
77
78 static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size)
79 {
80         struct acpi_table_header *crat_table;
81         acpi_status status;
82
83         if (!size)
84                 return -EINVAL;
85
86         /*
87          * Fetch the CRAT table from ACPI
88          */
89         status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
90         if (status == AE_NOT_FOUND) {
91                 pr_warn("CRAT table not found\n");
92                 return -ENODATA;
93         } else if (ACPI_FAILURE(status)) {
94                 const char *err = acpi_format_exception(status);
95
96                 pr_err("CRAT table error: %s\n", err);
97                 return -EINVAL;
98         }
99
100         if (*size >= crat_table->length && crat_image != NULL)
101                 memcpy(crat_image, crat_table, crat_table->length);
102
103         *size = crat_table->length;
104
105         return 0;
106 }
107
108 static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
109                 struct crat_subtype_computeunit *cu)
110 {
111         BUG_ON(!dev);
112         BUG_ON(!cu);
113
114         dev->node_props.cpu_cores_count = cu->num_cpu_cores;
115         dev->node_props.cpu_core_id_base = cu->processor_id_low;
116         if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
117                 dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
118
119         pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
120                         cu->processor_id_low);
121 }
122
123 static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
124                 struct crat_subtype_computeunit *cu)
125 {
126         BUG_ON(!dev);
127         BUG_ON(!cu);
128
129         dev->node_props.simd_id_base = cu->processor_id_low;
130         dev->node_props.simd_count = cu->num_simd_cores;
131         dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
132         dev->node_props.max_waves_per_simd = cu->max_waves_simd;
133         dev->node_props.wave_front_size = cu->wave_front_size;
134         dev->node_props.mem_banks_count = cu->num_banks;
135         dev->node_props.array_count = cu->num_arrays;
136         dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
137         dev->node_props.simd_per_cu = cu->num_simd_per_cu;
138         dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
139         if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
140                 dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
141         pr_info("CU GPU: simds=%d id_base=%d\n", cu->num_simd_cores,
142                                 cu->processor_id_low);
143 }
144
145 /* kfd_parse_subtype_cu is called when the topology mutex is already acquired */
146 static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu)
147 {
148         struct kfd_topology_device *dev;
149         int i = 0;
150
151         BUG_ON(!cu);
152
153         pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
154                         cu->proximity_domain, cu->hsa_capability);
155         list_for_each_entry(dev, &topology_device_list, list) {
156                 if (cu->proximity_domain == i) {
157                         if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
158                                 kfd_populated_cu_info_cpu(dev, cu);
159
160                         if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
161                                 kfd_populated_cu_info_gpu(dev, cu);
162                         break;
163                 }
164                 i++;
165         }
166
167         return 0;
168 }
169
170 /*
171  * kfd_parse_subtype_mem is called when the topology mutex is
172  * already acquired
173  */
174 static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem)
175 {
176         struct kfd_mem_properties *props;
177         struct kfd_topology_device *dev;
178         int i = 0;
179
180         BUG_ON(!mem);
181
182         pr_info("Found memory entry in CRAT table with proximity_domain=%d\n",
183                         mem->promixity_domain);
184         list_for_each_entry(dev, &topology_device_list, list) {
185                 if (mem->promixity_domain == i) {
186                         props = kfd_alloc_struct(props);
187                         if (props == NULL)
188                                 return -ENOMEM;
189
190                         if (dev->node_props.cpu_cores_count == 0)
191                                 props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE;
192                         else
193                                 props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
194
195                         if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
196                                 props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
197                         if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
198                                 props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
199
200                         props->size_in_bytes =
201                                 ((uint64_t)mem->length_high << 32) +
202                                                         mem->length_low;
203                         props->width = mem->width;
204
205                         dev->mem_bank_count++;
206                         list_add_tail(&props->list, &dev->mem_props);
207
208                         break;
209                 }
210                 i++;
211         }
212
213         return 0;
214 }
215
216 /*
217  * kfd_parse_subtype_cache is called when the topology mutex
218  * is already acquired
219  */
220 static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache)
221 {
222         struct kfd_cache_properties *props;
223         struct kfd_topology_device *dev;
224         uint32_t id;
225
226         BUG_ON(!cache);
227
228         id = cache->processor_id_low;
229
230         pr_info("Found cache entry in CRAT table with processor_id=%d\n", id);
231         list_for_each_entry(dev, &topology_device_list, list)
232                 if (id == dev->node_props.cpu_core_id_base ||
233                     id == dev->node_props.simd_id_base) {
234                         props = kfd_alloc_struct(props);
235                         if (props == NULL)
236                                 return -ENOMEM;
237
238                         props->processor_id_low = id;
239                         props->cache_level = cache->cache_level;
240                         props->cache_size = cache->cache_size;
241                         props->cacheline_size = cache->cache_line_size;
242                         props->cachelines_per_tag = cache->lines_per_tag;
243                         props->cache_assoc = cache->associativity;
244                         props->cache_latency = cache->cache_latency;
245
246                         if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
247                                 props->cache_type |= HSA_CACHE_TYPE_DATA;
248                         if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
249                                 props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
250                         if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
251                                 props->cache_type |= HSA_CACHE_TYPE_CPU;
252                         if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
253                                 props->cache_type |= HSA_CACHE_TYPE_HSACU;
254
255                         dev->cache_count++;
256                         dev->node_props.caches_count++;
257                         list_add_tail(&props->list, &dev->cache_props);
258
259                         break;
260                 }
261
262         return 0;
263 }
264
265 /*
266  * kfd_parse_subtype_iolink is called when the topology mutex
267  * is already acquired
268  */
269 static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink)
270 {
271         struct kfd_iolink_properties *props;
272         struct kfd_topology_device *dev;
273         uint32_t i = 0;
274         uint32_t id_from;
275         uint32_t id_to;
276
277         BUG_ON(!iolink);
278
279         id_from = iolink->proximity_domain_from;
280         id_to = iolink->proximity_domain_to;
281
282         pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from);
283         list_for_each_entry(dev, &topology_device_list, list) {
284                 if (id_from == i) {
285                         props = kfd_alloc_struct(props);
286                         if (props == NULL)
287                                 return -ENOMEM;
288
289                         props->node_from = id_from;
290                         props->node_to = id_to;
291                         props->ver_maj = iolink->version_major;
292                         props->ver_min = iolink->version_minor;
293
294                         /*
295                          * weight factor (derived from CDIR), currently always 1
296                          */
297                         props->weight = 1;
298
299                         props->min_latency = iolink->minimum_latency;
300                         props->max_latency = iolink->maximum_latency;
301                         props->min_bandwidth = iolink->minimum_bandwidth_mbs;
302                         props->max_bandwidth = iolink->maximum_bandwidth_mbs;
303                         props->rec_transfer_size =
304                                         iolink->recommended_transfer_size;
305
306                         dev->io_link_count++;
307                         dev->node_props.io_links_count++;
308                         list_add_tail(&props->list, &dev->io_link_props);
309
310                         break;
311                 }
312                 i++;
313         }
314
315         return 0;
316 }
317
318 static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr)
319 {
320         struct crat_subtype_computeunit *cu;
321         struct crat_subtype_memory *mem;
322         struct crat_subtype_cache *cache;
323         struct crat_subtype_iolink *iolink;
324         int ret = 0;
325
326         BUG_ON(!sub_type_hdr);
327
328         switch (sub_type_hdr->type) {
329         case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
330                 cu = (struct crat_subtype_computeunit *)sub_type_hdr;
331                 ret = kfd_parse_subtype_cu(cu);
332                 break;
333         case CRAT_SUBTYPE_MEMORY_AFFINITY:
334                 mem = (struct crat_subtype_memory *)sub_type_hdr;
335                 ret = kfd_parse_subtype_mem(mem);
336                 break;
337         case CRAT_SUBTYPE_CACHE_AFFINITY:
338                 cache = (struct crat_subtype_cache *)sub_type_hdr;
339                 ret = kfd_parse_subtype_cache(cache);
340                 break;
341         case CRAT_SUBTYPE_TLB_AFFINITY:
342                 /*
343                  * For now, nothing to do here
344                  */
345                 pr_info("Found TLB entry in CRAT table (not processing)\n");
346                 break;
347         case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
348                 /*
349                  * For now, nothing to do here
350                  */
351                 pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n");
352                 break;
353         case CRAT_SUBTYPE_IOLINK_AFFINITY:
354                 iolink = (struct crat_subtype_iolink *)sub_type_hdr;
355                 ret = kfd_parse_subtype_iolink(iolink);
356                 break;
357         default:
358                 pr_warn("Unknown subtype (%d) in CRAT\n",
359                                 sub_type_hdr->type);
360         }
361
362         return ret;
363 }
364
365 static void kfd_release_topology_device(struct kfd_topology_device *dev)
366 {
367         struct kfd_mem_properties *mem;
368         struct kfd_cache_properties *cache;
369         struct kfd_iolink_properties *iolink;
370
371         BUG_ON(!dev);
372
373         list_del(&dev->list);
374
375         while (dev->mem_props.next != &dev->mem_props) {
376                 mem = container_of(dev->mem_props.next,
377                                 struct kfd_mem_properties, list);
378                 list_del(&mem->list);
379                 kfree(mem);
380         }
381
382         while (dev->cache_props.next != &dev->cache_props) {
383                 cache = container_of(dev->cache_props.next,
384                                 struct kfd_cache_properties, list);
385                 list_del(&cache->list);
386                 kfree(cache);
387         }
388
389         while (dev->io_link_props.next != &dev->io_link_props) {
390                 iolink = container_of(dev->io_link_props.next,
391                                 struct kfd_iolink_properties, list);
392                 list_del(&iolink->list);
393                 kfree(iolink);
394         }
395
396         kfree(dev);
397
398         sys_props.num_devices--;
399 }
400
401 static void kfd_release_live_view(void)
402 {
403         struct kfd_topology_device *dev;
404
405         while (topology_device_list.next != &topology_device_list) {
406                 dev = container_of(topology_device_list.next,
407                                  struct kfd_topology_device, list);
408                 kfd_release_topology_device(dev);
409 }
410
411         memset(&sys_props, 0, sizeof(sys_props));
412 }
413
414 static struct kfd_topology_device *kfd_create_topology_device(void)
415 {
416         struct kfd_topology_device *dev;
417
418         dev = kfd_alloc_struct(dev);
419         if (dev == NULL) {
420                 pr_err("No memory to allocate a topology device");
421                 return NULL;
422         }
423
424         INIT_LIST_HEAD(&dev->mem_props);
425         INIT_LIST_HEAD(&dev->cache_props);
426         INIT_LIST_HEAD(&dev->io_link_props);
427
428         list_add_tail(&dev->list, &topology_device_list);
429         sys_props.num_devices++;
430
431         return dev;
432 }
433
434 static int kfd_parse_crat_table(void *crat_image)
435 {
436         struct kfd_topology_device *top_dev;
437         struct crat_subtype_generic *sub_type_hdr;
438         uint16_t node_id;
439         int ret;
440         struct crat_header *crat_table = (struct crat_header *)crat_image;
441         uint16_t num_nodes;
442         uint32_t image_len;
443
444         if (!crat_image)
445                 return -EINVAL;
446
447         num_nodes = crat_table->num_domains;
448         image_len = crat_table->length;
449
450         pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
451
452         for (node_id = 0; node_id < num_nodes; node_id++) {
453                 top_dev = kfd_create_topology_device();
454                 if (!top_dev) {
455                         kfd_release_live_view();
456                         return -ENOMEM;
457                 }
458         }
459
460         sys_props.platform_id =
461                 (*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK;
462         sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id);
463         sys_props.platform_rev = crat_table->revision;
464
465         sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
466         while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
467                         ((char *)crat_image) + image_len) {
468                 if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
469                         ret = kfd_parse_subtype(sub_type_hdr);
470                         if (ret != 0) {
471                                 kfd_release_live_view();
472                                 return ret;
473                         }
474                 }
475
476                 sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
477                                 sub_type_hdr->length);
478         }
479
480         sys_props.generation_count++;
481         topology_crat_parsed = 1;
482
483         return 0;
484 }
485
486
487 #define sysfs_show_gen_prop(buffer, fmt, ...) \
488                 snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
489 #define sysfs_show_32bit_prop(buffer, name, value) \
490                 sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
491 #define sysfs_show_64bit_prop(buffer, name, value) \
492                 sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
493 #define sysfs_show_32bit_val(buffer, value) \
494                 sysfs_show_gen_prop(buffer, "%u\n", value)
495 #define sysfs_show_str_val(buffer, value) \
496                 sysfs_show_gen_prop(buffer, "%s\n", value)
497
498 static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
499                 char *buffer)
500 {
501         ssize_t ret;
502
503         /* Making sure that the buffer is an empty string */
504         buffer[0] = 0;
505
506         if (attr == &sys_props.attr_genid) {
507                 ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
508         } else if (attr == &sys_props.attr_props) {
509                 sysfs_show_64bit_prop(buffer, "platform_oem",
510                                 sys_props.platform_oem);
511                 sysfs_show_64bit_prop(buffer, "platform_id",
512                                 sys_props.platform_id);
513                 ret = sysfs_show_64bit_prop(buffer, "platform_rev",
514                                 sys_props.platform_rev);
515         } else {
516                 ret = -EINVAL;
517         }
518
519         return ret;
520 }
521
522 static const struct sysfs_ops sysprops_ops = {
523         .show = sysprops_show,
524 };
525
526 static struct kobj_type sysprops_type = {
527         .sysfs_ops = &sysprops_ops,
528 };
529
530 static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
531                 char *buffer)
532 {
533         ssize_t ret;
534         struct kfd_iolink_properties *iolink;
535
536         /* Making sure that the buffer is an empty string */
537         buffer[0] = 0;
538
539         iolink = container_of(attr, struct kfd_iolink_properties, attr);
540         sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
541         sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
542         sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
543         sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
544         sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
545         sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
546         sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
547         sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
548         sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
549         sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
550         sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
551                         iolink->rec_transfer_size);
552         ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
553
554         return ret;
555 }
556
557 static const struct sysfs_ops iolink_ops = {
558         .show = iolink_show,
559 };
560
561 static struct kobj_type iolink_type = {
562         .sysfs_ops = &iolink_ops,
563 };
564
565 static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
566                 char *buffer)
567 {
568         ssize_t ret;
569         struct kfd_mem_properties *mem;
570
571         /* Making sure that the buffer is an empty string */
572         buffer[0] = 0;
573
574         mem = container_of(attr, struct kfd_mem_properties, attr);
575         sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
576         sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
577         sysfs_show_32bit_prop(buffer, "flags", mem->flags);
578         sysfs_show_32bit_prop(buffer, "width", mem->width);
579         ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
580
581         return ret;
582 }
583
584 static const struct sysfs_ops mem_ops = {
585         .show = mem_show,
586 };
587
588 static struct kobj_type mem_type = {
589         .sysfs_ops = &mem_ops,
590 };
591
592 static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
593                 char *buffer)
594 {
595         ssize_t ret;
596         uint32_t i;
597         struct kfd_cache_properties *cache;
598
599         /* Making sure that the buffer is an empty string */
600         buffer[0] = 0;
601
602         cache = container_of(attr, struct kfd_cache_properties, attr);
603         sysfs_show_32bit_prop(buffer, "processor_id_low",
604                         cache->processor_id_low);
605         sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
606         sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
607         sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
608         sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
609                         cache->cachelines_per_tag);
610         sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
611         sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
612         sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
613         snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
614         for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++)
615                 ret = snprintf(buffer, PAGE_SIZE, "%s%d%s",
616                                 buffer, cache->sibling_map[i],
617                                 (i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ?
618                                                 "\n" : ",");
619
620         return ret;
621 }
622
623 static const struct sysfs_ops cache_ops = {
624         .show = kfd_cache_show,
625 };
626
627 static struct kobj_type cache_type = {
628         .sysfs_ops = &cache_ops,
629 };
630
631 static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
632                 char *buffer)
633 {
634         struct kfd_topology_device *dev;
635         char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
636         uint32_t i;
637         uint32_t log_max_watch_addr;
638
639         /* Making sure that the buffer is an empty string */
640         buffer[0] = 0;
641
642         if (strcmp(attr->name, "gpu_id") == 0) {
643                 dev = container_of(attr, struct kfd_topology_device,
644                                 attr_gpuid);
645                 return sysfs_show_32bit_val(buffer, dev->gpu_id);
646         }
647
648         if (strcmp(attr->name, "name") == 0) {
649                 dev = container_of(attr, struct kfd_topology_device,
650                                 attr_name);
651                 for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
652                         public_name[i] =
653                                         (char)dev->node_props.marketing_name[i];
654                         if (dev->node_props.marketing_name[i] == 0)
655                                 break;
656                 }
657                 public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
658                 return sysfs_show_str_val(buffer, public_name);
659         }
660
661         dev = container_of(attr, struct kfd_topology_device,
662                         attr_props);
663         sysfs_show_32bit_prop(buffer, "cpu_cores_count",
664                         dev->node_props.cpu_cores_count);
665         sysfs_show_32bit_prop(buffer, "simd_count",
666                         dev->node_props.simd_count);
667
668         if (dev->mem_bank_count < dev->node_props.mem_banks_count) {
669                 pr_warn("kfd: mem_banks_count truncated from %d to %d\n",
670                                 dev->node_props.mem_banks_count,
671                                 dev->mem_bank_count);
672                 sysfs_show_32bit_prop(buffer, "mem_banks_count",
673                                 dev->mem_bank_count);
674         } else {
675                 sysfs_show_32bit_prop(buffer, "mem_banks_count",
676                                 dev->node_props.mem_banks_count);
677         }
678
679         sysfs_show_32bit_prop(buffer, "caches_count",
680                         dev->node_props.caches_count);
681         sysfs_show_32bit_prop(buffer, "io_links_count",
682                         dev->node_props.io_links_count);
683         sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
684                         dev->node_props.cpu_core_id_base);
685         sysfs_show_32bit_prop(buffer, "simd_id_base",
686                         dev->node_props.simd_id_base);
687         sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
688                         dev->node_props.max_waves_per_simd);
689         sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
690                         dev->node_props.lds_size_in_kb);
691         sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
692                         dev->node_props.gds_size_in_kb);
693         sysfs_show_32bit_prop(buffer, "wave_front_size",
694                         dev->node_props.wave_front_size);
695         sysfs_show_32bit_prop(buffer, "array_count",
696                         dev->node_props.array_count);
697         sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
698                         dev->node_props.simd_arrays_per_engine);
699         sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
700                         dev->node_props.cu_per_simd_array);
701         sysfs_show_32bit_prop(buffer, "simd_per_cu",
702                         dev->node_props.simd_per_cu);
703         sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
704                         dev->node_props.max_slots_scratch_cu);
705         sysfs_show_32bit_prop(buffer, "vendor_id",
706                         dev->node_props.vendor_id);
707         sysfs_show_32bit_prop(buffer, "device_id",
708                         dev->node_props.device_id);
709         sysfs_show_32bit_prop(buffer, "location_id",
710                         dev->node_props.location_id);
711
712         if (dev->gpu) {
713                 log_max_watch_addr =
714                         __ilog2_u32(dev->gpu->device_info->num_of_watch_points);
715
716                 if (log_max_watch_addr) {
717                         dev->node_props.capability |=
718                                         HSA_CAP_WATCH_POINTS_SUPPORTED;
719
720                         dev->node_props.capability |=
721                                 ((log_max_watch_addr <<
722                                         HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
723                                 HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
724                 }
725
726                 sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
727                         dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(
728                                         dev->gpu->kgd));
729
730                 sysfs_show_64bit_prop(buffer, "local_mem_size",
731                                 (unsigned long long int) 0);
732
733                 sysfs_show_32bit_prop(buffer, "fw_version",
734                         dev->gpu->kfd2kgd->get_fw_version(
735                                                 dev->gpu->kgd,
736                                                 KGD_ENGINE_MEC1));
737                 sysfs_show_32bit_prop(buffer, "capability",
738                                 dev->node_props.capability);
739         }
740
741         return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
742                                         cpufreq_quick_get_max(0)/1000);
743 }
744
745 static const struct sysfs_ops node_ops = {
746         .show = node_show,
747 };
748
749 static struct kobj_type node_type = {
750         .sysfs_ops = &node_ops,
751 };
752
753 static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
754 {
755         sysfs_remove_file(kobj, attr);
756         kobject_del(kobj);
757         kobject_put(kobj);
758 }
759
760 static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
761 {
762         struct kfd_iolink_properties *iolink;
763         struct kfd_cache_properties *cache;
764         struct kfd_mem_properties *mem;
765
766         BUG_ON(!dev);
767
768         if (dev->kobj_iolink) {
769                 list_for_each_entry(iolink, &dev->io_link_props, list)
770                         if (iolink->kobj) {
771                                 kfd_remove_sysfs_file(iolink->kobj,
772                                                         &iolink->attr);
773                                 iolink->kobj = NULL;
774                         }
775                 kobject_del(dev->kobj_iolink);
776                 kobject_put(dev->kobj_iolink);
777                 dev->kobj_iolink = NULL;
778         }
779
780         if (dev->kobj_cache) {
781                 list_for_each_entry(cache, &dev->cache_props, list)
782                         if (cache->kobj) {
783                                 kfd_remove_sysfs_file(cache->kobj,
784                                                         &cache->attr);
785                                 cache->kobj = NULL;
786                         }
787                 kobject_del(dev->kobj_cache);
788                 kobject_put(dev->kobj_cache);
789                 dev->kobj_cache = NULL;
790         }
791
792         if (dev->kobj_mem) {
793                 list_for_each_entry(mem, &dev->mem_props, list)
794                         if (mem->kobj) {
795                                 kfd_remove_sysfs_file(mem->kobj, &mem->attr);
796                                 mem->kobj = NULL;
797                         }
798                 kobject_del(dev->kobj_mem);
799                 kobject_put(dev->kobj_mem);
800                 dev->kobj_mem = NULL;
801         }
802
803         if (dev->kobj_node) {
804                 sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
805                 sysfs_remove_file(dev->kobj_node, &dev->attr_name);
806                 sysfs_remove_file(dev->kobj_node, &dev->attr_props);
807                 kobject_del(dev->kobj_node);
808                 kobject_put(dev->kobj_node);
809                 dev->kobj_node = NULL;
810         }
811 }
812
813 static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
814                 uint32_t id)
815 {
816         struct kfd_iolink_properties *iolink;
817         struct kfd_cache_properties *cache;
818         struct kfd_mem_properties *mem;
819         int ret;
820         uint32_t i;
821
822         BUG_ON(!dev);
823
824         /*
825          * Creating the sysfs folders
826          */
827         BUG_ON(dev->kobj_node);
828         dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
829         if (!dev->kobj_node)
830                 return -ENOMEM;
831
832         ret = kobject_init_and_add(dev->kobj_node, &node_type,
833                         sys_props.kobj_nodes, "%d", id);
834         if (ret < 0)
835                 return ret;
836
837         dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
838         if (!dev->kobj_mem)
839                 return -ENOMEM;
840
841         dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
842         if (!dev->kobj_cache)
843                 return -ENOMEM;
844
845         dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
846         if (!dev->kobj_iolink)
847                 return -ENOMEM;
848
849         /*
850          * Creating sysfs files for node properties
851          */
852         dev->attr_gpuid.name = "gpu_id";
853         dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
854         sysfs_attr_init(&dev->attr_gpuid);
855         dev->attr_name.name = "name";
856         dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
857         sysfs_attr_init(&dev->attr_name);
858         dev->attr_props.name = "properties";
859         dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
860         sysfs_attr_init(&dev->attr_props);
861         ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
862         if (ret < 0)
863                 return ret;
864         ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
865         if (ret < 0)
866                 return ret;
867         ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
868         if (ret < 0)
869                 return ret;
870
871         i = 0;
872         list_for_each_entry(mem, &dev->mem_props, list) {
873                 mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
874                 if (!mem->kobj)
875                         return -ENOMEM;
876                 ret = kobject_init_and_add(mem->kobj, &mem_type,
877                                 dev->kobj_mem, "%d", i);
878                 if (ret < 0)
879                         return ret;
880
881                 mem->attr.name = "properties";
882                 mem->attr.mode = KFD_SYSFS_FILE_MODE;
883                 sysfs_attr_init(&mem->attr);
884                 ret = sysfs_create_file(mem->kobj, &mem->attr);
885                 if (ret < 0)
886                         return ret;
887                 i++;
888         }
889
890         i = 0;
891         list_for_each_entry(cache, &dev->cache_props, list) {
892                 cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
893                 if (!cache->kobj)
894                         return -ENOMEM;
895                 ret = kobject_init_and_add(cache->kobj, &cache_type,
896                                 dev->kobj_cache, "%d", i);
897                 if (ret < 0)
898                         return ret;
899
900                 cache->attr.name = "properties";
901                 cache->attr.mode = KFD_SYSFS_FILE_MODE;
902                 sysfs_attr_init(&cache->attr);
903                 ret = sysfs_create_file(cache->kobj, &cache->attr);
904                 if (ret < 0)
905                         return ret;
906                 i++;
907         }
908
909         i = 0;
910         list_for_each_entry(iolink, &dev->io_link_props, list) {
911                 iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
912                 if (!iolink->kobj)
913                         return -ENOMEM;
914                 ret = kobject_init_and_add(iolink->kobj, &iolink_type,
915                                 dev->kobj_iolink, "%d", i);
916                 if (ret < 0)
917                         return ret;
918
919                 iolink->attr.name = "properties";
920                 iolink->attr.mode = KFD_SYSFS_FILE_MODE;
921                 sysfs_attr_init(&iolink->attr);
922                 ret = sysfs_create_file(iolink->kobj, &iolink->attr);
923                 if (ret < 0)
924                         return ret;
925                 i++;
926 }
927
928         return 0;
929 }
930
931 static int kfd_build_sysfs_node_tree(void)
932 {
933         struct kfd_topology_device *dev;
934         int ret;
935         uint32_t i = 0;
936
937         list_for_each_entry(dev, &topology_device_list, list) {
938                 ret = kfd_build_sysfs_node_entry(dev, i);
939                 if (ret < 0)
940                         return ret;
941                 i++;
942         }
943
944         return 0;
945 }
946
947 static void kfd_remove_sysfs_node_tree(void)
948 {
949         struct kfd_topology_device *dev;
950
951         list_for_each_entry(dev, &topology_device_list, list)
952                 kfd_remove_sysfs_node_entry(dev);
953 }
954
955 static int kfd_topology_update_sysfs(void)
956 {
957         int ret;
958
959         pr_info("Creating topology SYSFS entries\n");
960         if (sys_props.kobj_topology == NULL) {
961                 sys_props.kobj_topology =
962                                 kfd_alloc_struct(sys_props.kobj_topology);
963                 if (!sys_props.kobj_topology)
964                         return -ENOMEM;
965
966                 ret = kobject_init_and_add(sys_props.kobj_topology,
967                                 &sysprops_type,  &kfd_device->kobj,
968                                 "topology");
969                 if (ret < 0)
970                         return ret;
971
972                 sys_props.kobj_nodes = kobject_create_and_add("nodes",
973                                 sys_props.kobj_topology);
974                 if (!sys_props.kobj_nodes)
975                         return -ENOMEM;
976
977                 sys_props.attr_genid.name = "generation_id";
978                 sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
979                 sysfs_attr_init(&sys_props.attr_genid);
980                 ret = sysfs_create_file(sys_props.kobj_topology,
981                                 &sys_props.attr_genid);
982                 if (ret < 0)
983                         return ret;
984
985                 sys_props.attr_props.name = "system_properties";
986                 sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
987                 sysfs_attr_init(&sys_props.attr_props);
988                 ret = sysfs_create_file(sys_props.kobj_topology,
989                                 &sys_props.attr_props);
990                 if (ret < 0)
991                         return ret;
992         }
993
994         kfd_remove_sysfs_node_tree();
995
996         return kfd_build_sysfs_node_tree();
997 }
998
999 static void kfd_topology_release_sysfs(void)
1000 {
1001         kfd_remove_sysfs_node_tree();
1002         if (sys_props.kobj_topology) {
1003                 sysfs_remove_file(sys_props.kobj_topology,
1004                                 &sys_props.attr_genid);
1005                 sysfs_remove_file(sys_props.kobj_topology,
1006                                 &sys_props.attr_props);
1007                 if (sys_props.kobj_nodes) {
1008                         kobject_del(sys_props.kobj_nodes);
1009                         kobject_put(sys_props.kobj_nodes);
1010                         sys_props.kobj_nodes = NULL;
1011                 }
1012                 kobject_del(sys_props.kobj_topology);
1013                 kobject_put(sys_props.kobj_topology);
1014                 sys_props.kobj_topology = NULL;
1015         }
1016 }
1017
1018 int kfd_topology_init(void)
1019 {
1020         void *crat_image = NULL;
1021         size_t image_size = 0;
1022         int ret;
1023
1024         /*
1025          * Initialize the head for the topology device list
1026          */
1027         INIT_LIST_HEAD(&topology_device_list);
1028         init_rwsem(&topology_lock);
1029         topology_crat_parsed = 0;
1030
1031         memset(&sys_props, 0, sizeof(sys_props));
1032
1033         /*
1034          * Get the CRAT image from the ACPI
1035          */
1036         ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1037         if (ret == 0 && image_size > 0) {
1038                 pr_info("Found CRAT image with size=%zd\n", image_size);
1039                 crat_image = kmalloc(image_size, GFP_KERNEL);
1040                 if (!crat_image) {
1041                         ret = -ENOMEM;
1042                         pr_err("No memory for allocating CRAT image\n");
1043                         goto err;
1044                 }
1045                 ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
1046
1047                 if (ret == 0) {
1048                         down_write(&topology_lock);
1049                         ret = kfd_parse_crat_table(crat_image);
1050                         if (ret == 0)
1051                                 ret = kfd_topology_update_sysfs();
1052                         up_write(&topology_lock);
1053                 } else {
1054                         pr_err("Couldn't get CRAT table size from ACPI\n");
1055                 }
1056                 kfree(crat_image);
1057         } else if (ret == -ENODATA) {
1058                 ret = 0;
1059         } else {
1060                 pr_err("Couldn't get CRAT table size from ACPI\n");
1061         }
1062
1063 err:
1064         pr_info("Finished initializing topology ret=%d\n", ret);
1065         return ret;
1066 }
1067
1068 void kfd_topology_shutdown(void)
1069 {
1070         kfd_topology_release_sysfs();
1071         kfd_release_live_view();
1072 }
1073
1074 static void kfd_debug_print_topology(void)
1075 {
1076         struct kfd_topology_device *dev;
1077         uint32_t i = 0;
1078
1079         pr_info("DEBUG PRINT OF TOPOLOGY:");
1080         list_for_each_entry(dev, &topology_device_list, list) {
1081                 pr_info("Node: %d\n", i);
1082                 pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no"));
1083                 pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count);
1084                 pr_info("\tSIMD count: %d", dev->node_props.simd_count);
1085                 i++;
1086         }
1087 }
1088
1089 static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
1090 {
1091         uint32_t hashout;
1092         uint32_t buf[7];
1093         int i;
1094
1095         if (!gpu)
1096                 return 0;
1097
1098         buf[0] = gpu->pdev->devfn;
1099         buf[1] = gpu->pdev->subsystem_vendor;
1100         buf[2] = gpu->pdev->subsystem_device;
1101         buf[3] = gpu->pdev->device;
1102         buf[4] = gpu->pdev->bus->number;
1103         buf[5] = (uint32_t)(gpu->kfd2kgd->get_vmem_size(gpu->kgd)
1104                         & 0xffffffff);
1105         buf[6] = (uint32_t)(gpu->kfd2kgd->get_vmem_size(gpu->kgd) >> 32);
1106
1107         for (i = 0, hashout = 0; i < 7; i++)
1108                 hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
1109
1110         return hashout;
1111 }
1112
1113 static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
1114 {
1115         struct kfd_topology_device *dev;
1116         struct kfd_topology_device *out_dev = NULL;
1117
1118         BUG_ON(!gpu);
1119
1120         list_for_each_entry(dev, &topology_device_list, list)
1121                 if (dev->gpu == NULL && dev->node_props.simd_count > 0) {
1122                         dev->gpu = gpu;
1123                         out_dev = dev;
1124                         break;
1125                 }
1126
1127         return out_dev;
1128 }
1129
1130 static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
1131 {
1132         /*
1133          * TODO: Generate an event for thunk about the arrival/removal
1134          * of the GPU
1135          */
1136 }
1137
1138 int kfd_topology_add_device(struct kfd_dev *gpu)
1139 {
1140         uint32_t gpu_id;
1141         struct kfd_topology_device *dev;
1142         int res;
1143
1144         BUG_ON(!gpu);
1145
1146         gpu_id = kfd_generate_gpu_id(gpu);
1147
1148         pr_debug("kfd: Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
1149
1150         down_write(&topology_lock);
1151         /*
1152          * Try to assign the GPU to existing topology device (generated from
1153          * CRAT table
1154          */
1155         dev = kfd_assign_gpu(gpu);
1156         if (!dev) {
1157                 pr_info("GPU was not found in the current topology. Extending.\n");
1158                 kfd_debug_print_topology();
1159                 dev = kfd_create_topology_device();
1160                 if (!dev) {
1161                         res = -ENOMEM;
1162                         goto err;
1163                 }
1164                 dev->gpu = gpu;
1165
1166                 /*
1167                  * TODO: Make a call to retrieve topology information from the
1168                  * GPU vBIOS
1169                  */
1170
1171                 /*
1172                  * Update the SYSFS tree, since we added another topology device
1173                  */
1174                 if (kfd_topology_update_sysfs() < 0)
1175                         kfd_topology_release_sysfs();
1176
1177         }
1178
1179         dev->gpu_id = gpu_id;
1180         gpu->id = gpu_id;
1181         dev->node_props.vendor_id = gpu->pdev->vendor;
1182         dev->node_props.device_id = gpu->pdev->device;
1183         dev->node_props.location_id = (gpu->pdev->bus->number << 24) +
1184                         (gpu->pdev->devfn & 0xffffff);
1185         /*
1186          * TODO: Retrieve max engine clock values from KGD
1187          */
1188
1189         res = 0;
1190
1191 err:
1192         up_write(&topology_lock);
1193
1194         if (res == 0)
1195                 kfd_notify_gpu_change(gpu_id, 1);
1196
1197         return res;
1198 }
1199
1200 int kfd_topology_remove_device(struct kfd_dev *gpu)
1201 {
1202         struct kfd_topology_device *dev;
1203         uint32_t gpu_id;
1204         int res = -ENODEV;
1205
1206         BUG_ON(!gpu);
1207
1208         down_write(&topology_lock);
1209
1210         list_for_each_entry(dev, &topology_device_list, list)
1211                 if (dev->gpu == gpu) {
1212                         gpu_id = dev->gpu_id;
1213                         kfd_remove_sysfs_node_entry(dev);
1214                         kfd_release_topology_device(dev);
1215                         res = 0;
1216                         if (kfd_topology_update_sysfs() < 0)
1217                                 kfd_topology_release_sysfs();
1218                         break;
1219                 }
1220
1221         up_write(&topology_lock);
1222
1223         if (res == 0)
1224                 kfd_notify_gpu_change(gpu_id, 0);
1225
1226         return res;
1227 }
1228
1229 /*
1230  * When idx is out of bounds, the function will return NULL
1231  */
1232 struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx)
1233 {
1234
1235         struct kfd_topology_device *top_dev;
1236         struct kfd_dev *device = NULL;
1237         uint8_t device_idx = 0;
1238
1239         down_read(&topology_lock);
1240
1241         list_for_each_entry(top_dev, &topology_device_list, list) {
1242                 if (device_idx == idx) {
1243                         device = top_dev->gpu;
1244                         break;
1245                 }
1246
1247                 device_idx++;
1248         }
1249
1250         up_read(&topology_lock);
1251
1252         return device;
1253
1254 }