BackMerge v5.1-rc5 into drm-next
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "cwsr_trap_handler.h"
30 #include "kfd_iommu.h"
31 #include "amdgpu_amdkfd.h"
32
33 #define MQD_SIZE_ALIGNED 768
34
35 /*
36  * kfd_locked is used to lock the kfd driver during suspend or reset
37  * once locked, kfd driver will stop any further GPU execution.
38  * create process (open) will return -EAGAIN.
39  */
40 static atomic_t kfd_locked = ATOMIC_INIT(0);
41
42 #ifdef KFD_SUPPORT_IOMMU_V2
43 static const struct kfd_device_info kaveri_device_info = {
44         .asic_family = CHIP_KAVERI,
45         .max_pasid_bits = 16,
46         /* max num of queues for KV.TODO should be a dynamic value */
47         .max_no_of_hqd  = 24,
48         .doorbell_size  = 4,
49         .ih_ring_entry_size = 4 * sizeof(uint32_t),
50         .event_interrupt_class = &event_interrupt_class_cik,
51         .num_of_watch_points = 4,
52         .mqd_size_aligned = MQD_SIZE_ALIGNED,
53         .supports_cwsr = false,
54         .needs_iommu_device = true,
55         .needs_pci_atomics = false,
56         .num_sdma_engines = 2,
57         .num_sdma_queues_per_engine = 2,
58 };
59
60 static const struct kfd_device_info carrizo_device_info = {
61         .asic_family = CHIP_CARRIZO,
62         .max_pasid_bits = 16,
63         /* max num of queues for CZ.TODO should be a dynamic value */
64         .max_no_of_hqd  = 24,
65         .doorbell_size  = 4,
66         .ih_ring_entry_size = 4 * sizeof(uint32_t),
67         .event_interrupt_class = &event_interrupt_class_cik,
68         .num_of_watch_points = 4,
69         .mqd_size_aligned = MQD_SIZE_ALIGNED,
70         .supports_cwsr = true,
71         .needs_iommu_device = true,
72         .needs_pci_atomics = false,
73         .num_sdma_engines = 2,
74         .num_sdma_queues_per_engine = 2,
75 };
76
77 static const struct kfd_device_info raven_device_info = {
78         .asic_family = CHIP_RAVEN,
79         .max_pasid_bits = 16,
80         .max_no_of_hqd  = 24,
81         .doorbell_size  = 8,
82         .ih_ring_entry_size = 8 * sizeof(uint32_t),
83         .event_interrupt_class = &event_interrupt_class_v9,
84         .num_of_watch_points = 4,
85         .mqd_size_aligned = MQD_SIZE_ALIGNED,
86         .supports_cwsr = true,
87         .needs_iommu_device = true,
88         .needs_pci_atomics = true,
89         .num_sdma_engines = 1,
90         .num_sdma_queues_per_engine = 2,
91 };
92 #endif
93
94 static const struct kfd_device_info hawaii_device_info = {
95         .asic_family = CHIP_HAWAII,
96         .max_pasid_bits = 16,
97         /* max num of queues for KV.TODO should be a dynamic value */
98         .max_no_of_hqd  = 24,
99         .doorbell_size  = 4,
100         .ih_ring_entry_size = 4 * sizeof(uint32_t),
101         .event_interrupt_class = &event_interrupt_class_cik,
102         .num_of_watch_points = 4,
103         .mqd_size_aligned = MQD_SIZE_ALIGNED,
104         .supports_cwsr = false,
105         .needs_iommu_device = false,
106         .needs_pci_atomics = false,
107         .num_sdma_engines = 2,
108         .num_sdma_queues_per_engine = 2,
109 };
110
111 static const struct kfd_device_info tonga_device_info = {
112         .asic_family = CHIP_TONGA,
113         .max_pasid_bits = 16,
114         .max_no_of_hqd  = 24,
115         .doorbell_size  = 4,
116         .ih_ring_entry_size = 4 * sizeof(uint32_t),
117         .event_interrupt_class = &event_interrupt_class_cik,
118         .num_of_watch_points = 4,
119         .mqd_size_aligned = MQD_SIZE_ALIGNED,
120         .supports_cwsr = false,
121         .needs_iommu_device = false,
122         .needs_pci_atomics = true,
123         .num_sdma_engines = 2,
124         .num_sdma_queues_per_engine = 2,
125 };
126
127 static const struct kfd_device_info fiji_device_info = {
128         .asic_family = CHIP_FIJI,
129         .max_pasid_bits = 16,
130         .max_no_of_hqd  = 24,
131         .doorbell_size  = 4,
132         .ih_ring_entry_size = 4 * sizeof(uint32_t),
133         .event_interrupt_class = &event_interrupt_class_cik,
134         .num_of_watch_points = 4,
135         .mqd_size_aligned = MQD_SIZE_ALIGNED,
136         .supports_cwsr = true,
137         .needs_iommu_device = false,
138         .needs_pci_atomics = true,
139         .num_sdma_engines = 2,
140         .num_sdma_queues_per_engine = 2,
141 };
142
143 static const struct kfd_device_info fiji_vf_device_info = {
144         .asic_family = CHIP_FIJI,
145         .max_pasid_bits = 16,
146         .max_no_of_hqd  = 24,
147         .doorbell_size  = 4,
148         .ih_ring_entry_size = 4 * sizeof(uint32_t),
149         .event_interrupt_class = &event_interrupt_class_cik,
150         .num_of_watch_points = 4,
151         .mqd_size_aligned = MQD_SIZE_ALIGNED,
152         .supports_cwsr = true,
153         .needs_iommu_device = false,
154         .needs_pci_atomics = false,
155         .num_sdma_engines = 2,
156         .num_sdma_queues_per_engine = 2,
157 };
158
159
160 static const struct kfd_device_info polaris10_device_info = {
161         .asic_family = CHIP_POLARIS10,
162         .max_pasid_bits = 16,
163         .max_no_of_hqd  = 24,
164         .doorbell_size  = 4,
165         .ih_ring_entry_size = 4 * sizeof(uint32_t),
166         .event_interrupt_class = &event_interrupt_class_cik,
167         .num_of_watch_points = 4,
168         .mqd_size_aligned = MQD_SIZE_ALIGNED,
169         .supports_cwsr = true,
170         .needs_iommu_device = false,
171         .needs_pci_atomics = true,
172         .num_sdma_engines = 2,
173         .num_sdma_queues_per_engine = 2,
174 };
175
176 static const struct kfd_device_info polaris10_vf_device_info = {
177         .asic_family = CHIP_POLARIS10,
178         .max_pasid_bits = 16,
179         .max_no_of_hqd  = 24,
180         .doorbell_size  = 4,
181         .ih_ring_entry_size = 4 * sizeof(uint32_t),
182         .event_interrupt_class = &event_interrupt_class_cik,
183         .num_of_watch_points = 4,
184         .mqd_size_aligned = MQD_SIZE_ALIGNED,
185         .supports_cwsr = true,
186         .needs_iommu_device = false,
187         .needs_pci_atomics = false,
188         .num_sdma_engines = 2,
189         .num_sdma_queues_per_engine = 2,
190 };
191
192 static const struct kfd_device_info polaris11_device_info = {
193         .asic_family = CHIP_POLARIS11,
194         .max_pasid_bits = 16,
195         .max_no_of_hqd  = 24,
196         .doorbell_size  = 4,
197         .ih_ring_entry_size = 4 * sizeof(uint32_t),
198         .event_interrupt_class = &event_interrupt_class_cik,
199         .num_of_watch_points = 4,
200         .mqd_size_aligned = MQD_SIZE_ALIGNED,
201         .supports_cwsr = true,
202         .needs_iommu_device = false,
203         .needs_pci_atomics = true,
204         .num_sdma_engines = 2,
205         .num_sdma_queues_per_engine = 2,
206 };
207
208 static const struct kfd_device_info polaris12_device_info = {
209         .asic_family = CHIP_POLARIS12,
210         .max_pasid_bits = 16,
211         .max_no_of_hqd  = 24,
212         .doorbell_size  = 4,
213         .ih_ring_entry_size = 4 * sizeof(uint32_t),
214         .event_interrupt_class = &event_interrupt_class_cik,
215         .num_of_watch_points = 4,
216         .mqd_size_aligned = MQD_SIZE_ALIGNED,
217         .supports_cwsr = true,
218         .needs_iommu_device = false,
219         .needs_pci_atomics = true,
220         .num_sdma_engines = 2,
221         .num_sdma_queues_per_engine = 2,
222 };
223
224 static const struct kfd_device_info vega10_device_info = {
225         .asic_family = CHIP_VEGA10,
226         .max_pasid_bits = 16,
227         .max_no_of_hqd  = 24,
228         .doorbell_size  = 8,
229         .ih_ring_entry_size = 8 * sizeof(uint32_t),
230         .event_interrupt_class = &event_interrupt_class_v9,
231         .num_of_watch_points = 4,
232         .mqd_size_aligned = MQD_SIZE_ALIGNED,
233         .supports_cwsr = true,
234         .needs_iommu_device = false,
235         .needs_pci_atomics = false,
236         .num_sdma_engines = 2,
237         .num_sdma_queues_per_engine = 2,
238 };
239
240 static const struct kfd_device_info vega10_vf_device_info = {
241         .asic_family = CHIP_VEGA10,
242         .max_pasid_bits = 16,
243         .max_no_of_hqd  = 24,
244         .doorbell_size  = 8,
245         .ih_ring_entry_size = 8 * sizeof(uint32_t),
246         .event_interrupt_class = &event_interrupt_class_v9,
247         .num_of_watch_points = 4,
248         .mqd_size_aligned = MQD_SIZE_ALIGNED,
249         .supports_cwsr = true,
250         .needs_iommu_device = false,
251         .needs_pci_atomics = false,
252         .num_sdma_engines = 2,
253         .num_sdma_queues_per_engine = 2,
254 };
255
256 static const struct kfd_device_info vega12_device_info = {
257         .asic_family = CHIP_VEGA12,
258         .max_pasid_bits = 16,
259         .max_no_of_hqd  = 24,
260         .doorbell_size  = 8,
261         .ih_ring_entry_size = 8 * sizeof(uint32_t),
262         .event_interrupt_class = &event_interrupt_class_v9,
263         .num_of_watch_points = 4,
264         .mqd_size_aligned = MQD_SIZE_ALIGNED,
265         .supports_cwsr = true,
266         .needs_iommu_device = false,
267         .needs_pci_atomics = false,
268         .num_sdma_engines = 2,
269         .num_sdma_queues_per_engine = 2,
270 };
271
272 static const struct kfd_device_info vega20_device_info = {
273         .asic_family = CHIP_VEGA20,
274         .max_pasid_bits = 16,
275         .max_no_of_hqd  = 24,
276         .doorbell_size  = 8,
277         .ih_ring_entry_size = 8 * sizeof(uint32_t),
278         .event_interrupt_class = &event_interrupt_class_v9,
279         .num_of_watch_points = 4,
280         .mqd_size_aligned = MQD_SIZE_ALIGNED,
281         .supports_cwsr = true,
282         .needs_iommu_device = false,
283         .needs_pci_atomics = false,
284         .num_sdma_engines = 2,
285         .num_sdma_queues_per_engine = 8,
286 };
287
288 struct kfd_deviceid {
289         unsigned short did;
290         const struct kfd_device_info *device_info;
291 };
292
293 static const struct kfd_deviceid supported_devices[] = {
294 #ifdef KFD_SUPPORT_IOMMU_V2
295         { 0x1304, &kaveri_device_info },        /* Kaveri */
296         { 0x1305, &kaveri_device_info },        /* Kaveri */
297         { 0x1306, &kaveri_device_info },        /* Kaveri */
298         { 0x1307, &kaveri_device_info },        /* Kaveri */
299         { 0x1309, &kaveri_device_info },        /* Kaveri */
300         { 0x130A, &kaveri_device_info },        /* Kaveri */
301         { 0x130B, &kaveri_device_info },        /* Kaveri */
302         { 0x130C, &kaveri_device_info },        /* Kaveri */
303         { 0x130D, &kaveri_device_info },        /* Kaveri */
304         { 0x130E, &kaveri_device_info },        /* Kaveri */
305         { 0x130F, &kaveri_device_info },        /* Kaveri */
306         { 0x1310, &kaveri_device_info },        /* Kaveri */
307         { 0x1311, &kaveri_device_info },        /* Kaveri */
308         { 0x1312, &kaveri_device_info },        /* Kaveri */
309         { 0x1313, &kaveri_device_info },        /* Kaveri */
310         { 0x1315, &kaveri_device_info },        /* Kaveri */
311         { 0x1316, &kaveri_device_info },        /* Kaveri */
312         { 0x1317, &kaveri_device_info },        /* Kaveri */
313         { 0x1318, &kaveri_device_info },        /* Kaveri */
314         { 0x131B, &kaveri_device_info },        /* Kaveri */
315         { 0x131C, &kaveri_device_info },        /* Kaveri */
316         { 0x131D, &kaveri_device_info },        /* Kaveri */
317         { 0x9870, &carrizo_device_info },       /* Carrizo */
318         { 0x9874, &carrizo_device_info },       /* Carrizo */
319         { 0x9875, &carrizo_device_info },       /* Carrizo */
320         { 0x9876, &carrizo_device_info },       /* Carrizo */
321         { 0x9877, &carrizo_device_info },       /* Carrizo */
322         { 0x15DD, &raven_device_info },         /* Raven */
323         { 0x15D8, &raven_device_info },         /* Raven */
324 #endif
325         { 0x67A0, &hawaii_device_info },        /* Hawaii */
326         { 0x67A1, &hawaii_device_info },        /* Hawaii */
327         { 0x67A2, &hawaii_device_info },        /* Hawaii */
328         { 0x67A8, &hawaii_device_info },        /* Hawaii */
329         { 0x67A9, &hawaii_device_info },        /* Hawaii */
330         { 0x67AA, &hawaii_device_info },        /* Hawaii */
331         { 0x67B0, &hawaii_device_info },        /* Hawaii */
332         { 0x67B1, &hawaii_device_info },        /* Hawaii */
333         { 0x67B8, &hawaii_device_info },        /* Hawaii */
334         { 0x67B9, &hawaii_device_info },        /* Hawaii */
335         { 0x67BA, &hawaii_device_info },        /* Hawaii */
336         { 0x67BE, &hawaii_device_info },        /* Hawaii */
337         { 0x6920, &tonga_device_info },         /* Tonga */
338         { 0x6921, &tonga_device_info },         /* Tonga */
339         { 0x6928, &tonga_device_info },         /* Tonga */
340         { 0x6929, &tonga_device_info },         /* Tonga */
341         { 0x692B, &tonga_device_info },         /* Tonga */
342         { 0x6938, &tonga_device_info },         /* Tonga */
343         { 0x6939, &tonga_device_info },         /* Tonga */
344         { 0x7300, &fiji_device_info },          /* Fiji */
345         { 0x730F, &fiji_vf_device_info },       /* Fiji vf*/
346         { 0x67C0, &polaris10_device_info },     /* Polaris10 */
347         { 0x67C1, &polaris10_device_info },     /* Polaris10 */
348         { 0x67C2, &polaris10_device_info },     /* Polaris10 */
349         { 0x67C4, &polaris10_device_info },     /* Polaris10 */
350         { 0x67C7, &polaris10_device_info },     /* Polaris10 */
351         { 0x67C8, &polaris10_device_info },     /* Polaris10 */
352         { 0x67C9, &polaris10_device_info },     /* Polaris10 */
353         { 0x67CA, &polaris10_device_info },     /* Polaris10 */
354         { 0x67CC, &polaris10_device_info },     /* Polaris10 */
355         { 0x67CF, &polaris10_device_info },     /* Polaris10 */
356         { 0x67D0, &polaris10_vf_device_info },  /* Polaris10 vf*/
357         { 0x67DF, &polaris10_device_info },     /* Polaris10 */
358         { 0x67E0, &polaris11_device_info },     /* Polaris11 */
359         { 0x67E1, &polaris11_device_info },     /* Polaris11 */
360         { 0x67E3, &polaris11_device_info },     /* Polaris11 */
361         { 0x67E7, &polaris11_device_info },     /* Polaris11 */
362         { 0x67E8, &polaris11_device_info },     /* Polaris11 */
363         { 0x67E9, &polaris11_device_info },     /* Polaris11 */
364         { 0x67EB, &polaris11_device_info },     /* Polaris11 */
365         { 0x67EF, &polaris11_device_info },     /* Polaris11 */
366         { 0x67FF, &polaris11_device_info },     /* Polaris11 */
367         { 0x6980, &polaris12_device_info },     /* Polaris12 */
368         { 0x6981, &polaris12_device_info },     /* Polaris12 */
369         { 0x6985, &polaris12_device_info },     /* Polaris12 */
370         { 0x6986, &polaris12_device_info },     /* Polaris12 */
371         { 0x6987, &polaris12_device_info },     /* Polaris12 */
372         { 0x6995, &polaris12_device_info },     /* Polaris12 */
373         { 0x6997, &polaris12_device_info },     /* Polaris12 */
374         { 0x699F, &polaris12_device_info },     /* Polaris12 */
375         { 0x6860, &vega10_device_info },        /* Vega10 */
376         { 0x6861, &vega10_device_info },        /* Vega10 */
377         { 0x6862, &vega10_device_info },        /* Vega10 */
378         { 0x6863, &vega10_device_info },        /* Vega10 */
379         { 0x6864, &vega10_device_info },        /* Vega10 */
380         { 0x6867, &vega10_device_info },        /* Vega10 */
381         { 0x6868, &vega10_device_info },        /* Vega10 */
382         { 0x6869, &vega10_device_info },        /* Vega10 */
383         { 0x686A, &vega10_device_info },        /* Vega10 */
384         { 0x686B, &vega10_device_info },        /* Vega10 */
385         { 0x686C, &vega10_vf_device_info },     /* Vega10  vf*/
386         { 0x686D, &vega10_device_info },        /* Vega10 */
387         { 0x686E, &vega10_device_info },        /* Vega10 */
388         { 0x686F, &vega10_device_info },        /* Vega10 */
389         { 0x687F, &vega10_device_info },        /* Vega10 */
390         { 0x69A0, &vega12_device_info },        /* Vega12 */
391         { 0x69A1, &vega12_device_info },        /* Vega12 */
392         { 0x69A2, &vega12_device_info },        /* Vega12 */
393         { 0x69A3, &vega12_device_info },        /* Vega12 */
394         { 0x69AF, &vega12_device_info },        /* Vega12 */
395         { 0x66a0, &vega20_device_info },        /* Vega20 */
396         { 0x66a1, &vega20_device_info },        /* Vega20 */
397         { 0x66a2, &vega20_device_info },        /* Vega20 */
398         { 0x66a3, &vega20_device_info },        /* Vega20 */
399         { 0x66a4, &vega20_device_info },        /* Vega20 */
400         { 0x66a7, &vega20_device_info },        /* Vega20 */
401         { 0x66af, &vega20_device_info }         /* Vega20 */
402 };
403
404 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
405                                 unsigned int chunk_size);
406 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
407
408 static int kfd_resume(struct kfd_dev *kfd);
409
410 static const struct kfd_device_info *lookup_device_info(unsigned short did)
411 {
412         size_t i;
413
414         for (i = 0; i < ARRAY_SIZE(supported_devices); i++) {
415                 if (supported_devices[i].did == did) {
416                         WARN_ON(!supported_devices[i].device_info);
417                         return supported_devices[i].device_info;
418                 }
419         }
420
421         dev_warn(kfd_device, "DID %04x is missing in supported_devices\n",
422                  did);
423
424         return NULL;
425 }
426
427 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
428         struct pci_dev *pdev, const struct kfd2kgd_calls *f2g)
429 {
430         struct kfd_dev *kfd;
431         int ret;
432         const struct kfd_device_info *device_info =
433                                         lookup_device_info(pdev->device);
434
435         if (!device_info) {
436                 dev_err(kfd_device, "kgd2kfd_probe failed\n");
437                 return NULL;
438         }
439
440         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
441         if (!kfd)
442                 return NULL;
443
444         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
445          * 32 and 64-bit requests are possible and must be
446          * supported.
447          */
448         ret = pci_enable_atomic_ops_to_root(pdev,
449                         PCI_EXP_DEVCAP2_ATOMIC_COMP32 |
450                         PCI_EXP_DEVCAP2_ATOMIC_COMP64);
451         if (device_info->needs_pci_atomics && ret < 0) {
452                 dev_info(kfd_device,
453                          "skipped device %x:%x, PCI rejects atomics\n",
454                          pdev->vendor, pdev->device);
455                 kfree(kfd);
456                 return NULL;
457         } else if (!ret)
458                 kfd->pci_atomic_requested = true;
459
460         kfd->kgd = kgd;
461         kfd->device_info = device_info;
462         kfd->pdev = pdev;
463         kfd->init_complete = false;
464         kfd->kfd2kgd = f2g;
465
466         mutex_init(&kfd->doorbell_mutex);
467         memset(&kfd->doorbell_available_index, 0,
468                 sizeof(kfd->doorbell_available_index));
469
470         atomic_set(&kfd->sram_ecc_flag, 0);
471
472         return kfd;
473 }
474
475 static void kfd_cwsr_init(struct kfd_dev *kfd)
476 {
477         if (cwsr_enable && kfd->device_info->supports_cwsr) {
478                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
479                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
480                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
481                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
482                 } else {
483                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
484                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
485                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
486                 }
487
488                 kfd->cwsr_enabled = true;
489         }
490 }
491
492 bool kgd2kfd_device_init(struct kfd_dev *kfd,
493                          const struct kgd2kfd_shared_resources *gpu_resources)
494 {
495         unsigned int size;
496
497         kfd->mec_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
498                         KGD_ENGINE_MEC1);
499         kfd->sdma_fw_version = kfd->kfd2kgd->get_fw_version(kfd->kgd,
500                         KGD_ENGINE_SDMA1);
501         kfd->shared_resources = *gpu_resources;
502
503         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
504         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
505         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
506                         - kfd->vm_info.first_vmid_kfd + 1;
507
508         /* Verify module parameters regarding mapped process number*/
509         if ((hws_max_conc_proc < 0)
510                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
511                 dev_err(kfd_device,
512                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
513                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
514                         kfd->vm_info.vmid_num_kfd);
515                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
516         } else
517                 kfd->max_proc_per_quantum = hws_max_conc_proc;
518
519         /* calculate max size of mqds needed for queues */
520         size = max_num_of_queues_per_device *
521                         kfd->device_info->mqd_size_aligned;
522
523         /*
524          * calculate max size of runlist packet.
525          * There can be only 2 packets at once
526          */
527         size += (KFD_MAX_NUM_OF_PROCESSES * sizeof(struct pm4_mes_map_process) +
528                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
529                 + sizeof(struct pm4_mes_runlist)) * 2;
530
531         /* Add size of HIQ & DIQ */
532         size += KFD_KERNEL_QUEUE_SIZE * 2;
533
534         /* add another 512KB for all other allocations on gart (HPD, fences) */
535         size += 512 * 1024;
536
537         if (amdgpu_amdkfd_alloc_gtt_mem(
538                         kfd->kgd, size, &kfd->gtt_mem,
539                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
540                         false)) {
541                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
542                 goto out;
543         }
544
545         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
546
547         /* Initialize GTT sa with 512 byte chunk size */
548         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
549                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
550                 goto kfd_gtt_sa_init_error;
551         }
552
553         if (kfd_doorbell_init(kfd)) {
554                 dev_err(kfd_device,
555                         "Error initializing doorbell aperture\n");
556                 goto kfd_doorbell_error;
557         }
558
559         if (kfd->kfd2kgd->get_hive_id)
560                 kfd->hive_id = kfd->kfd2kgd->get_hive_id(kfd->kgd);
561
562         if (kfd_topology_add_device(kfd)) {
563                 dev_err(kfd_device, "Error adding device to topology\n");
564                 goto kfd_topology_add_device_error;
565         }
566
567         if (kfd_interrupt_init(kfd)) {
568                 dev_err(kfd_device, "Error initializing interrupts\n");
569                 goto kfd_interrupt_error;
570         }
571
572         kfd->dqm = device_queue_manager_init(kfd);
573         if (!kfd->dqm) {
574                 dev_err(kfd_device, "Error initializing queue manager\n");
575                 goto device_queue_manager_error;
576         }
577
578         if (kfd_iommu_device_init(kfd)) {
579                 dev_err(kfd_device, "Error initializing iommuv2\n");
580                 goto device_iommu_error;
581         }
582
583         kfd_cwsr_init(kfd);
584
585         if (kfd_resume(kfd))
586                 goto kfd_resume_error;
587
588         kfd->dbgmgr = NULL;
589
590         kfd->init_complete = true;
591         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
592                  kfd->pdev->device);
593
594         pr_debug("Starting kfd with the following scheduling policy %d\n",
595                 kfd->dqm->sched_policy);
596
597         goto out;
598
599 kfd_resume_error:
600 device_iommu_error:
601         device_queue_manager_uninit(kfd->dqm);
602 device_queue_manager_error:
603         kfd_interrupt_exit(kfd);
604 kfd_interrupt_error:
605         kfd_topology_remove_device(kfd);
606 kfd_topology_add_device_error:
607         kfd_doorbell_fini(kfd);
608 kfd_doorbell_error:
609         kfd_gtt_sa_fini(kfd);
610 kfd_gtt_sa_init_error:
611         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
612         dev_err(kfd_device,
613                 "device %x:%x NOT added due to errors\n",
614                 kfd->pdev->vendor, kfd->pdev->device);
615 out:
616         return kfd->init_complete;
617 }
618
619 void kgd2kfd_device_exit(struct kfd_dev *kfd)
620 {
621         if (kfd->init_complete) {
622                 kgd2kfd_suspend(kfd);
623                 device_queue_manager_uninit(kfd->dqm);
624                 kfd_interrupt_exit(kfd);
625                 kfd_topology_remove_device(kfd);
626                 kfd_doorbell_fini(kfd);
627                 kfd_gtt_sa_fini(kfd);
628                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
629         }
630
631         kfree(kfd);
632 }
633
634 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
635 {
636         if (!kfd->init_complete)
637                 return 0;
638         kgd2kfd_suspend(kfd);
639
640         /* hold dqm->lock to prevent further execution*/
641         dqm_lock(kfd->dqm);
642
643         kfd_signal_reset_event(kfd);
644         return 0;
645 }
646
647 /*
648  * Fix me. KFD won't be able to resume existing process for now.
649  * We will keep all existing process in a evicted state and
650  * wait the process to be terminated.
651  */
652
653 int kgd2kfd_post_reset(struct kfd_dev *kfd)
654 {
655         int ret, count;
656
657         if (!kfd->init_complete)
658                 return 0;
659
660         dqm_unlock(kfd->dqm);
661
662         ret = kfd_resume(kfd);
663         if (ret)
664                 return ret;
665         count = atomic_dec_return(&kfd_locked);
666         WARN_ONCE(count != 0, "KFD reset ref. error");
667
668         atomic_set(&kfd->sram_ecc_flag, 0);
669
670         return 0;
671 }
672
673 bool kfd_is_locked(void)
674 {
675         return  (atomic_read(&kfd_locked) > 0);
676 }
677
678 void kgd2kfd_suspend(struct kfd_dev *kfd)
679 {
680         if (!kfd->init_complete)
681                 return;
682
683         /* For first KFD device suspend all the KFD processes */
684         if (atomic_inc_return(&kfd_locked) == 1)
685                 kfd_suspend_all_processes();
686
687         kfd->dqm->ops.stop(kfd->dqm);
688
689         kfd_iommu_suspend(kfd);
690 }
691
692 int kgd2kfd_resume(struct kfd_dev *kfd)
693 {
694         int ret, count;
695
696         if (!kfd->init_complete)
697                 return 0;
698
699         ret = kfd_resume(kfd);
700         if (ret)
701                 return ret;
702
703         count = atomic_dec_return(&kfd_locked);
704         WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
705         if (count == 0)
706                 ret = kfd_resume_all_processes();
707
708         return ret;
709 }
710
711 static int kfd_resume(struct kfd_dev *kfd)
712 {
713         int err = 0;
714
715         err = kfd_iommu_resume(kfd);
716         if (err) {
717                 dev_err(kfd_device,
718                         "Failed to resume IOMMU for device %x:%x\n",
719                         kfd->pdev->vendor, kfd->pdev->device);
720                 return err;
721         }
722
723         err = kfd->dqm->ops.start(kfd->dqm);
724         if (err) {
725                 dev_err(kfd_device,
726                         "Error starting queue manager for device %x:%x\n",
727                         kfd->pdev->vendor, kfd->pdev->device);
728                 goto dqm_start_error;
729         }
730
731         return err;
732
733 dqm_start_error:
734         kfd_iommu_suspend(kfd);
735         return err;
736 }
737
738 /* This is called directly from KGD at ISR. */
739 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
740 {
741         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
742         bool is_patched = false;
743         unsigned long flags;
744
745         if (!kfd->init_complete)
746                 return;
747
748         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
749                 dev_err_once(kfd_device, "Ring entry too small\n");
750                 return;
751         }
752
753         spin_lock_irqsave(&kfd->interrupt_lock, flags);
754
755         if (kfd->interrupts_active
756             && interrupt_is_wanted(kfd, ih_ring_entry,
757                                    patched_ihre, &is_patched)
758             && enqueue_ih_ring_entry(kfd,
759                                      is_patched ? patched_ihre : ih_ring_entry))
760                 queue_work(kfd->ih_wq, &kfd->interrupt_work);
761
762         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
763 }
764
765 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
766 {
767         struct kfd_process *p;
768         int r;
769
770         /* Because we are called from arbitrary context (workqueue) as opposed
771          * to process context, kfd_process could attempt to exit while we are
772          * running so the lookup function increments the process ref count.
773          */
774         p = kfd_lookup_process_by_mm(mm);
775         if (!p)
776                 return -ESRCH;
777
778         r = kfd_process_evict_queues(p);
779
780         kfd_unref_process(p);
781         return r;
782 }
783
784 int kgd2kfd_resume_mm(struct mm_struct *mm)
785 {
786         struct kfd_process *p;
787         int r;
788
789         /* Because we are called from arbitrary context (workqueue) as opposed
790          * to process context, kfd_process could attempt to exit while we are
791          * running so the lookup function increments the process ref count.
792          */
793         p = kfd_lookup_process_by_mm(mm);
794         if (!p)
795                 return -ESRCH;
796
797         r = kfd_process_restore_queues(p);
798
799         kfd_unref_process(p);
800         return r;
801 }
802
803 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
804  *   prepare for safe eviction of KFD BOs that belong to the specified
805  *   process.
806  *
807  * @mm: mm_struct that identifies the specified KFD process
808  * @fence: eviction fence attached to KFD process BOs
809  *
810  */
811 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
812                                                struct dma_fence *fence)
813 {
814         struct kfd_process *p;
815         unsigned long active_time;
816         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
817
818         if (!fence)
819                 return -EINVAL;
820
821         if (dma_fence_is_signaled(fence))
822                 return 0;
823
824         p = kfd_lookup_process_by_mm(mm);
825         if (!p)
826                 return -ENODEV;
827
828         if (fence->seqno == p->last_eviction_seqno)
829                 goto out;
830
831         p->last_eviction_seqno = fence->seqno;
832
833         /* Avoid KFD process starvation. Wait for at least
834          * PROCESS_ACTIVE_TIME_MS before evicting the process again
835          */
836         active_time = get_jiffies_64() - p->last_restore_timestamp;
837         if (delay_jiffies > active_time)
838                 delay_jiffies -= active_time;
839         else
840                 delay_jiffies = 0;
841
842         /* During process initialization eviction_work.dwork is initialized
843          * to kfd_evict_bo_worker
844          */
845         schedule_delayed_work(&p->eviction_work, delay_jiffies);
846 out:
847         kfd_unref_process(p);
848         return 0;
849 }
850
851 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
852                                 unsigned int chunk_size)
853 {
854         unsigned int num_of_longs;
855
856         if (WARN_ON(buf_size < chunk_size))
857                 return -EINVAL;
858         if (WARN_ON(buf_size == 0))
859                 return -EINVAL;
860         if (WARN_ON(chunk_size == 0))
861                 return -EINVAL;
862
863         kfd->gtt_sa_chunk_size = chunk_size;
864         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
865
866         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
867                 BITS_PER_LONG;
868
869         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
870
871         if (!kfd->gtt_sa_bitmap)
872                 return -ENOMEM;
873
874         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
875                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
876
877         mutex_init(&kfd->gtt_sa_lock);
878
879         return 0;
880
881 }
882
883 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
884 {
885         mutex_destroy(&kfd->gtt_sa_lock);
886         kfree(kfd->gtt_sa_bitmap);
887 }
888
889 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
890                                                 unsigned int bit_num,
891                                                 unsigned int chunk_size)
892 {
893         return start_addr + bit_num * chunk_size;
894 }
895
896 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
897                                                 unsigned int bit_num,
898                                                 unsigned int chunk_size)
899 {
900         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
901 }
902
903 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
904                         struct kfd_mem_obj **mem_obj)
905 {
906         unsigned int found, start_search, cur_size;
907
908         if (size == 0)
909                 return -EINVAL;
910
911         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
912                 return -ENOMEM;
913
914         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
915         if (!(*mem_obj))
916                 return -ENOMEM;
917
918         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
919
920         start_search = 0;
921
922         mutex_lock(&kfd->gtt_sa_lock);
923
924 kfd_gtt_restart_search:
925         /* Find the first chunk that is free */
926         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
927                                         kfd->gtt_sa_num_of_chunks,
928                                         start_search);
929
930         pr_debug("Found = %d\n", found);
931
932         /* If there wasn't any free chunk, bail out */
933         if (found == kfd->gtt_sa_num_of_chunks)
934                 goto kfd_gtt_no_free_chunk;
935
936         /* Update fields of mem_obj */
937         (*mem_obj)->range_start = found;
938         (*mem_obj)->range_end = found;
939         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
940                                         kfd->gtt_start_gpu_addr,
941                                         found,
942                                         kfd->gtt_sa_chunk_size);
943         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
944                                         kfd->gtt_start_cpu_ptr,
945                                         found,
946                                         kfd->gtt_sa_chunk_size);
947
948         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
949                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
950
951         /* If we need only one chunk, mark it as allocated and get out */
952         if (size <= kfd->gtt_sa_chunk_size) {
953                 pr_debug("Single bit\n");
954                 set_bit(found, kfd->gtt_sa_bitmap);
955                 goto kfd_gtt_out;
956         }
957
958         /* Otherwise, try to see if we have enough contiguous chunks */
959         cur_size = size - kfd->gtt_sa_chunk_size;
960         do {
961                 (*mem_obj)->range_end =
962                         find_next_zero_bit(kfd->gtt_sa_bitmap,
963                                         kfd->gtt_sa_num_of_chunks, ++found);
964                 /*
965                  * If next free chunk is not contiguous than we need to
966                  * restart our search from the last free chunk we found (which
967                  * wasn't contiguous to the previous ones
968                  */
969                 if ((*mem_obj)->range_end != found) {
970                         start_search = found;
971                         goto kfd_gtt_restart_search;
972                 }
973
974                 /*
975                  * If we reached end of buffer, bail out with error
976                  */
977                 if (found == kfd->gtt_sa_num_of_chunks)
978                         goto kfd_gtt_no_free_chunk;
979
980                 /* Check if we don't need another chunk */
981                 if (cur_size <= kfd->gtt_sa_chunk_size)
982                         cur_size = 0;
983                 else
984                         cur_size -= kfd->gtt_sa_chunk_size;
985
986         } while (cur_size > 0);
987
988         pr_debug("range_start = %d, range_end = %d\n",
989                 (*mem_obj)->range_start, (*mem_obj)->range_end);
990
991         /* Mark the chunks as allocated */
992         for (found = (*mem_obj)->range_start;
993                 found <= (*mem_obj)->range_end;
994                 found++)
995                 set_bit(found, kfd->gtt_sa_bitmap);
996
997 kfd_gtt_out:
998         mutex_unlock(&kfd->gtt_sa_lock);
999         return 0;
1000
1001 kfd_gtt_no_free_chunk:
1002         pr_debug("Allocation failed with mem_obj = %p\n", mem_obj);
1003         mutex_unlock(&kfd->gtt_sa_lock);
1004         kfree(mem_obj);
1005         return -ENOMEM;
1006 }
1007
1008 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1009 {
1010         unsigned int bit;
1011
1012         /* Act like kfree when trying to free a NULL object */
1013         if (!mem_obj)
1014                 return 0;
1015
1016         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1017                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1018
1019         mutex_lock(&kfd->gtt_sa_lock);
1020
1021         /* Mark the chunks as free */
1022         for (bit = mem_obj->range_start;
1023                 bit <= mem_obj->range_end;
1024                 bit++)
1025                 clear_bit(bit, kfd->gtt_sa_bitmap);
1026
1027         mutex_unlock(&kfd->gtt_sa_lock);
1028
1029         kfree(mem_obj);
1030         return 0;
1031 }
1032
1033 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1034 {
1035         if (kfd)
1036                 atomic_inc(&kfd->sram_ecc_flag);
1037 }
1038
1039 #if defined(CONFIG_DEBUG_FS)
1040
1041 /* This function will send a package to HIQ to hang the HWS
1042  * which will trigger a GPU reset and bring the HWS back to normal state
1043  */
1044 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1045 {
1046         int r = 0;
1047
1048         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1049                 pr_err("HWS is not enabled");
1050                 return -EINVAL;
1051         }
1052
1053         r = pm_debugfs_hang_hws(&dev->dqm->packets);
1054         if (!r)
1055                 r = dqm_debugfs_execute_queues(dev->dqm);
1056
1057         return r;
1058 }
1059
1060 #endif