Merge branch 'for-5.4/ish' into for-linus
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdkfd / kfd_chardev.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/device.h>
24 #include <linux/export.h>
25 #include <linux/err.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/uaccess.h>
31 #include <linux/compat.h>
32 #include <uapi/linux/kfd_ioctl.h>
33 #include <linux/time.h>
34 #include <linux/mm.h>
35 #include <linux/mman.h>
36 #include <linux/dma-buf.h>
37 #include <asm/processor.h>
38 #include "kfd_priv.h"
39 #include "kfd_device_queue_manager.h"
40 #include "kfd_dbgmgr.h"
41 #include "amdgpu_amdkfd.h"
42
43 static long kfd_ioctl(struct file *, unsigned int, unsigned long);
44 static int kfd_open(struct inode *, struct file *);
45 static int kfd_mmap(struct file *, struct vm_area_struct *);
46
47 static const char kfd_dev_name[] = "kfd";
48
49 static const struct file_operations kfd_fops = {
50         .owner = THIS_MODULE,
51         .unlocked_ioctl = kfd_ioctl,
52         .compat_ioctl = kfd_ioctl,
53         .open = kfd_open,
54         .mmap = kfd_mmap,
55 };
56
57 static int kfd_char_dev_major = -1;
58 static struct class *kfd_class;
59 struct device *kfd_device;
60
61 int kfd_chardev_init(void)
62 {
63         int err = 0;
64
65         kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
66         err = kfd_char_dev_major;
67         if (err < 0)
68                 goto err_register_chrdev;
69
70         kfd_class = class_create(THIS_MODULE, kfd_dev_name);
71         err = PTR_ERR(kfd_class);
72         if (IS_ERR(kfd_class))
73                 goto err_class_create;
74
75         kfd_device = device_create(kfd_class, NULL,
76                                         MKDEV(kfd_char_dev_major, 0),
77                                         NULL, kfd_dev_name);
78         err = PTR_ERR(kfd_device);
79         if (IS_ERR(kfd_device))
80                 goto err_device_create;
81
82         return 0;
83
84 err_device_create:
85         class_destroy(kfd_class);
86 err_class_create:
87         unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
88 err_register_chrdev:
89         return err;
90 }
91
92 void kfd_chardev_exit(void)
93 {
94         device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
95         class_destroy(kfd_class);
96         unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
97 }
98
99 struct device *kfd_chardev(void)
100 {
101         return kfd_device;
102 }
103
104
105 static int kfd_open(struct inode *inode, struct file *filep)
106 {
107         struct kfd_process *process;
108         bool is_32bit_user_mode;
109
110         if (iminor(inode) != 0)
111                 return -ENODEV;
112
113         is_32bit_user_mode = in_compat_syscall();
114
115         if (is_32bit_user_mode) {
116                 dev_warn(kfd_device,
117                         "Process %d (32-bit) failed to open /dev/kfd\n"
118                         "32-bit processes are not supported by amdkfd\n",
119                         current->pid);
120                 return -EPERM;
121         }
122
123         process = kfd_create_process(filep);
124         if (IS_ERR(process))
125                 return PTR_ERR(process);
126
127         if (kfd_is_locked())
128                 return -EAGAIN;
129
130         dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
131                 process->pasid, process->is_32bit_user_mode);
132
133         return 0;
134 }
135
136 static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
137                                         void *data)
138 {
139         struct kfd_ioctl_get_version_args *args = data;
140
141         args->major_version = KFD_IOCTL_MAJOR_VERSION;
142         args->minor_version = KFD_IOCTL_MINOR_VERSION;
143
144         return 0;
145 }
146
147 static int set_queue_properties_from_user(struct queue_properties *q_properties,
148                                 struct kfd_ioctl_create_queue_args *args)
149 {
150         if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
151                 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
152                 return -EINVAL;
153         }
154
155         if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
156                 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
157                 return -EINVAL;
158         }
159
160         if ((args->ring_base_address) &&
161                 (!access_ok((const void __user *) args->ring_base_address,
162                         sizeof(uint64_t)))) {
163                 pr_err("Can't access ring base address\n");
164                 return -EFAULT;
165         }
166
167         if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
168                 pr_err("Ring size must be a power of 2 or 0\n");
169                 return -EINVAL;
170         }
171
172         if (!access_ok((const void __user *) args->read_pointer_address,
173                         sizeof(uint32_t))) {
174                 pr_err("Can't access read pointer\n");
175                 return -EFAULT;
176         }
177
178         if (!access_ok((const void __user *) args->write_pointer_address,
179                         sizeof(uint32_t))) {
180                 pr_err("Can't access write pointer\n");
181                 return -EFAULT;
182         }
183
184         if (args->eop_buffer_address &&
185                 !access_ok((const void __user *) args->eop_buffer_address,
186                         sizeof(uint32_t))) {
187                 pr_debug("Can't access eop buffer");
188                 return -EFAULT;
189         }
190
191         if (args->ctx_save_restore_address &&
192                 !access_ok((const void __user *) args->ctx_save_restore_address,
193                         sizeof(uint32_t))) {
194                 pr_debug("Can't access ctx save restore buffer");
195                 return -EFAULT;
196         }
197
198         q_properties->is_interop = false;
199         q_properties->queue_percent = args->queue_percentage;
200         q_properties->priority = args->queue_priority;
201         q_properties->queue_address = args->ring_base_address;
202         q_properties->queue_size = args->ring_size;
203         q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
204         q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
205         q_properties->eop_ring_buffer_address = args->eop_buffer_address;
206         q_properties->eop_ring_buffer_size = args->eop_buffer_size;
207         q_properties->ctx_save_restore_area_address =
208                         args->ctx_save_restore_address;
209         q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
210         q_properties->ctl_stack_size = args->ctl_stack_size;
211         if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
212                 args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
213                 q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
214         else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
215                 q_properties->type = KFD_QUEUE_TYPE_SDMA;
216         else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
217                 q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
218         else
219                 return -ENOTSUPP;
220
221         if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
222                 q_properties->format = KFD_QUEUE_FORMAT_AQL;
223         else
224                 q_properties->format = KFD_QUEUE_FORMAT_PM4;
225
226         pr_debug("Queue Percentage: %d, %d\n",
227                         q_properties->queue_percent, args->queue_percentage);
228
229         pr_debug("Queue Priority: %d, %d\n",
230                         q_properties->priority, args->queue_priority);
231
232         pr_debug("Queue Address: 0x%llX, 0x%llX\n",
233                         q_properties->queue_address, args->ring_base_address);
234
235         pr_debug("Queue Size: 0x%llX, %u\n",
236                         q_properties->queue_size, args->ring_size);
237
238         pr_debug("Queue r/w Pointers: %px, %px\n",
239                         q_properties->read_ptr,
240                         q_properties->write_ptr);
241
242         pr_debug("Queue Format: %d\n", q_properties->format);
243
244         pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
245
246         pr_debug("Queue CTX save area: 0x%llX\n",
247                         q_properties->ctx_save_restore_area_address);
248
249         return 0;
250 }
251
252 static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
253                                         void *data)
254 {
255         struct kfd_ioctl_create_queue_args *args = data;
256         struct kfd_dev *dev;
257         int err = 0;
258         unsigned int queue_id;
259         struct kfd_process_device *pdd;
260         struct queue_properties q_properties;
261
262         memset(&q_properties, 0, sizeof(struct queue_properties));
263
264         pr_debug("Creating queue ioctl\n");
265
266         err = set_queue_properties_from_user(&q_properties, args);
267         if (err)
268                 return err;
269
270         pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
271         dev = kfd_device_by_id(args->gpu_id);
272         if (!dev) {
273                 pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
274                 return -EINVAL;
275         }
276
277         mutex_lock(&p->mutex);
278
279         pdd = kfd_bind_process_to_device(dev, p);
280         if (IS_ERR(pdd)) {
281                 err = -ESRCH;
282                 goto err_bind_process;
283         }
284
285         pr_debug("Creating queue for PASID %d on gpu 0x%x\n",
286                         p->pasid,
287                         dev->id);
288
289         err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id);
290         if (err != 0)
291                 goto err_create_queue;
292
293         args->queue_id = queue_id;
294
295
296         /* Return gpu_id as doorbell offset for mmap usage */
297         args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
298         args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
299         args->doorbell_offset <<= PAGE_SHIFT;
300         if (KFD_IS_SOC15(dev->device_info->asic_family))
301                 /* On SOC15 ASICs, doorbell allocation must be
302                  * per-device, and independent from the per-process
303                  * queue_id. Return the doorbell offset within the
304                  * doorbell aperture to user mode.
305                  */
306                 args->doorbell_offset |= q_properties.doorbell_off;
307
308         mutex_unlock(&p->mutex);
309
310         pr_debug("Queue id %d was created successfully\n", args->queue_id);
311
312         pr_debug("Ring buffer address == 0x%016llX\n",
313                         args->ring_base_address);
314
315         pr_debug("Read ptr address    == 0x%016llX\n",
316                         args->read_pointer_address);
317
318         pr_debug("Write ptr address   == 0x%016llX\n",
319                         args->write_pointer_address);
320
321         return 0;
322
323 err_create_queue:
324 err_bind_process:
325         mutex_unlock(&p->mutex);
326         return err;
327 }
328
329 static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
330                                         void *data)
331 {
332         int retval;
333         struct kfd_ioctl_destroy_queue_args *args = data;
334
335         pr_debug("Destroying queue id %d for pasid %d\n",
336                                 args->queue_id,
337                                 p->pasid);
338
339         mutex_lock(&p->mutex);
340
341         retval = pqm_destroy_queue(&p->pqm, args->queue_id);
342
343         mutex_unlock(&p->mutex);
344         return retval;
345 }
346
347 static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
348                                         void *data)
349 {
350         int retval;
351         struct kfd_ioctl_update_queue_args *args = data;
352         struct queue_properties properties;
353
354         if (args->queue_percentage > KFD_MAX_QUEUE_PERCENTAGE) {
355                 pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
356                 return -EINVAL;
357         }
358
359         if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
360                 pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
361                 return -EINVAL;
362         }
363
364         if ((args->ring_base_address) &&
365                 (!access_ok((const void __user *) args->ring_base_address,
366                         sizeof(uint64_t)))) {
367                 pr_err("Can't access ring base address\n");
368                 return -EFAULT;
369         }
370
371         if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
372                 pr_err("Ring size must be a power of 2 or 0\n");
373                 return -EINVAL;
374         }
375
376         properties.queue_address = args->ring_base_address;
377         properties.queue_size = args->ring_size;
378         properties.queue_percent = args->queue_percentage;
379         properties.priority = args->queue_priority;
380
381         pr_debug("Updating queue id %d for pasid %d\n",
382                         args->queue_id, p->pasid);
383
384         mutex_lock(&p->mutex);
385
386         retval = pqm_update_queue(&p->pqm, args->queue_id, &properties);
387
388         mutex_unlock(&p->mutex);
389
390         return retval;
391 }
392
393 static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
394                                         void *data)
395 {
396         int retval;
397         const int max_num_cus = 1024;
398         struct kfd_ioctl_set_cu_mask_args *args = data;
399         struct queue_properties properties;
400         uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
401         size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
402
403         if ((args->num_cu_mask % 32) != 0) {
404                 pr_debug("num_cu_mask 0x%x must be a multiple of 32",
405                                 args->num_cu_mask);
406                 return -EINVAL;
407         }
408
409         properties.cu_mask_count = args->num_cu_mask;
410         if (properties.cu_mask_count == 0) {
411                 pr_debug("CU mask cannot be 0");
412                 return -EINVAL;
413         }
414
415         /* To prevent an unreasonably large CU mask size, set an arbitrary
416          * limit of max_num_cus bits.  We can then just drop any CU mask bits
417          * past max_num_cus bits and just use the first max_num_cus bits.
418          */
419         if (properties.cu_mask_count > max_num_cus) {
420                 pr_debug("CU mask cannot be greater than 1024 bits");
421                 properties.cu_mask_count = max_num_cus;
422                 cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
423         }
424
425         properties.cu_mask = kzalloc(cu_mask_size, GFP_KERNEL);
426         if (!properties.cu_mask)
427                 return -ENOMEM;
428
429         retval = copy_from_user(properties.cu_mask, cu_mask_ptr, cu_mask_size);
430         if (retval) {
431                 pr_debug("Could not copy CU mask from userspace");
432                 kfree(properties.cu_mask);
433                 return -EFAULT;
434         }
435
436         mutex_lock(&p->mutex);
437
438         retval = pqm_set_cu_mask(&p->pqm, args->queue_id, &properties);
439
440         mutex_unlock(&p->mutex);
441
442         if (retval)
443                 kfree(properties.cu_mask);
444
445         return retval;
446 }
447
448 static int kfd_ioctl_get_queue_wave_state(struct file *filep,
449                                           struct kfd_process *p, void *data)
450 {
451         struct kfd_ioctl_get_queue_wave_state_args *args = data;
452         int r;
453
454         mutex_lock(&p->mutex);
455
456         r = pqm_get_wave_state(&p->pqm, args->queue_id,
457                                (void __user *)args->ctl_stack_address,
458                                &args->ctl_stack_used_size,
459                                &args->save_area_used_size);
460
461         mutex_unlock(&p->mutex);
462
463         return r;
464 }
465
466 static int kfd_ioctl_set_memory_policy(struct file *filep,
467                                         struct kfd_process *p, void *data)
468 {
469         struct kfd_ioctl_set_memory_policy_args *args = data;
470         struct kfd_dev *dev;
471         int err = 0;
472         struct kfd_process_device *pdd;
473         enum cache_policy default_policy, alternate_policy;
474
475         if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
476             && args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
477                 return -EINVAL;
478         }
479
480         if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
481             && args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
482                 return -EINVAL;
483         }
484
485         dev = kfd_device_by_id(args->gpu_id);
486         if (!dev)
487                 return -EINVAL;
488
489         mutex_lock(&p->mutex);
490
491         pdd = kfd_bind_process_to_device(dev, p);
492         if (IS_ERR(pdd)) {
493                 err = -ESRCH;
494                 goto out;
495         }
496
497         default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
498                          ? cache_policy_coherent : cache_policy_noncoherent;
499
500         alternate_policy =
501                 (args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
502                    ? cache_policy_coherent : cache_policy_noncoherent;
503
504         if (!dev->dqm->ops.set_cache_memory_policy(dev->dqm,
505                                 &pdd->qpd,
506                                 default_policy,
507                                 alternate_policy,
508                                 (void __user *)args->alternate_aperture_base,
509                                 args->alternate_aperture_size))
510                 err = -EINVAL;
511
512 out:
513         mutex_unlock(&p->mutex);
514
515         return err;
516 }
517
518 static int kfd_ioctl_set_trap_handler(struct file *filep,
519                                         struct kfd_process *p, void *data)
520 {
521         struct kfd_ioctl_set_trap_handler_args *args = data;
522         struct kfd_dev *dev;
523         int err = 0;
524         struct kfd_process_device *pdd;
525
526         dev = kfd_device_by_id(args->gpu_id);
527         if (!dev)
528                 return -EINVAL;
529
530         mutex_lock(&p->mutex);
531
532         pdd = kfd_bind_process_to_device(dev, p);
533         if (IS_ERR(pdd)) {
534                 err = -ESRCH;
535                 goto out;
536         }
537
538         if (dev->dqm->ops.set_trap_handler(dev->dqm,
539                                         &pdd->qpd,
540                                         args->tba_addr,
541                                         args->tma_addr))
542                 err = -EINVAL;
543
544 out:
545         mutex_unlock(&p->mutex);
546
547         return err;
548 }
549
550 static int kfd_ioctl_dbg_register(struct file *filep,
551                                 struct kfd_process *p, void *data)
552 {
553         struct kfd_ioctl_dbg_register_args *args = data;
554         struct kfd_dev *dev;
555         struct kfd_dbgmgr *dbgmgr_ptr;
556         struct kfd_process_device *pdd;
557         bool create_ok;
558         long status = 0;
559
560         dev = kfd_device_by_id(args->gpu_id);
561         if (!dev)
562                 return -EINVAL;
563
564         if (dev->device_info->asic_family == CHIP_CARRIZO) {
565                 pr_debug("kfd_ioctl_dbg_register not supported on CZ\n");
566                 return -EINVAL;
567         }
568
569         mutex_lock(&p->mutex);
570         mutex_lock(kfd_get_dbgmgr_mutex());
571
572         /*
573          * make sure that we have pdd, if this the first queue created for
574          * this process
575          */
576         pdd = kfd_bind_process_to_device(dev, p);
577         if (IS_ERR(pdd)) {
578                 status = PTR_ERR(pdd);
579                 goto out;
580         }
581
582         if (!dev->dbgmgr) {
583                 /* In case of a legal call, we have no dbgmgr yet */
584                 create_ok = kfd_dbgmgr_create(&dbgmgr_ptr, dev);
585                 if (create_ok) {
586                         status = kfd_dbgmgr_register(dbgmgr_ptr, p);
587                         if (status != 0)
588                                 kfd_dbgmgr_destroy(dbgmgr_ptr);
589                         else
590                                 dev->dbgmgr = dbgmgr_ptr;
591                 }
592         } else {
593                 pr_debug("debugger already registered\n");
594                 status = -EINVAL;
595         }
596
597 out:
598         mutex_unlock(kfd_get_dbgmgr_mutex());
599         mutex_unlock(&p->mutex);
600
601         return status;
602 }
603
604 static int kfd_ioctl_dbg_unregister(struct file *filep,
605                                 struct kfd_process *p, void *data)
606 {
607         struct kfd_ioctl_dbg_unregister_args *args = data;
608         struct kfd_dev *dev;
609         long status;
610
611         dev = kfd_device_by_id(args->gpu_id);
612         if (!dev || !dev->dbgmgr)
613                 return -EINVAL;
614
615         if (dev->device_info->asic_family == CHIP_CARRIZO) {
616                 pr_debug("kfd_ioctl_dbg_unregister not supported on CZ\n");
617                 return -EINVAL;
618         }
619
620         mutex_lock(kfd_get_dbgmgr_mutex());
621
622         status = kfd_dbgmgr_unregister(dev->dbgmgr, p);
623         if (!status) {
624                 kfd_dbgmgr_destroy(dev->dbgmgr);
625                 dev->dbgmgr = NULL;
626         }
627
628         mutex_unlock(kfd_get_dbgmgr_mutex());
629
630         return status;
631 }
632
633 /*
634  * Parse and generate variable size data structure for address watch.
635  * Total size of the buffer and # watch points is limited in order
636  * to prevent kernel abuse. (no bearing to the much smaller HW limitation
637  * which is enforced by dbgdev module)
638  * please also note that the watch address itself are not "copied from user",
639  * since it be set into the HW in user mode values.
640  *
641  */
642 static int kfd_ioctl_dbg_address_watch(struct file *filep,
643                                         struct kfd_process *p, void *data)
644 {
645         struct kfd_ioctl_dbg_address_watch_args *args = data;
646         struct kfd_dev *dev;
647         struct dbg_address_watch_info aw_info;
648         unsigned char *args_buff;
649         long status;
650         void __user *cmd_from_user;
651         uint64_t watch_mask_value = 0;
652         unsigned int args_idx = 0;
653
654         memset((void *) &aw_info, 0, sizeof(struct dbg_address_watch_info));
655
656         dev = kfd_device_by_id(args->gpu_id);
657         if (!dev)
658                 return -EINVAL;
659
660         if (dev->device_info->asic_family == CHIP_CARRIZO) {
661                 pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
662                 return -EINVAL;
663         }
664
665         cmd_from_user = (void __user *) args->content_ptr;
666
667         /* Validate arguments */
668
669         if ((args->buf_size_in_bytes > MAX_ALLOWED_AW_BUFF_SIZE) ||
670                 (args->buf_size_in_bytes <= sizeof(*args) + sizeof(int) * 2) ||
671                 (cmd_from_user == NULL))
672                 return -EINVAL;
673
674         /* this is the actual buffer to work with */
675         args_buff = memdup_user(cmd_from_user,
676                                 args->buf_size_in_bytes - sizeof(*args));
677         if (IS_ERR(args_buff))
678                 return PTR_ERR(args_buff);
679
680         aw_info.process = p;
681
682         aw_info.num_watch_points = *((uint32_t *)(&args_buff[args_idx]));
683         args_idx += sizeof(aw_info.num_watch_points);
684
685         aw_info.watch_mode = (enum HSA_DBG_WATCH_MODE *) &args_buff[args_idx];
686         args_idx += sizeof(enum HSA_DBG_WATCH_MODE) * aw_info.num_watch_points;
687
688         /*
689          * set watch address base pointer to point on the array base
690          * within args_buff
691          */
692         aw_info.watch_address = (uint64_t *) &args_buff[args_idx];
693
694         /* skip over the addresses buffer */
695         args_idx += sizeof(aw_info.watch_address) * aw_info.num_watch_points;
696
697         if (args_idx >= args->buf_size_in_bytes - sizeof(*args)) {
698                 status = -EINVAL;
699                 goto out;
700         }
701
702         watch_mask_value = (uint64_t) args_buff[args_idx];
703
704         if (watch_mask_value > 0) {
705                 /*
706                  * There is an array of masks.
707                  * set watch mask base pointer to point on the array base
708                  * within args_buff
709                  */
710                 aw_info.watch_mask = (uint64_t *) &args_buff[args_idx];
711
712                 /* skip over the masks buffer */
713                 args_idx += sizeof(aw_info.watch_mask) *
714                                 aw_info.num_watch_points;
715         } else {
716                 /* just the NULL mask, set to NULL and skip over it */
717                 aw_info.watch_mask = NULL;
718                 args_idx += sizeof(aw_info.watch_mask);
719         }
720
721         if (args_idx >= args->buf_size_in_bytes - sizeof(args)) {
722                 status = -EINVAL;
723                 goto out;
724         }
725
726         /* Currently HSA Event is not supported for DBG */
727         aw_info.watch_event = NULL;
728
729         mutex_lock(kfd_get_dbgmgr_mutex());
730
731         status = kfd_dbgmgr_address_watch(dev->dbgmgr, &aw_info);
732
733         mutex_unlock(kfd_get_dbgmgr_mutex());
734
735 out:
736         kfree(args_buff);
737
738         return status;
739 }
740
741 /* Parse and generate fixed size data structure for wave control */
742 static int kfd_ioctl_dbg_wave_control(struct file *filep,
743                                         struct kfd_process *p, void *data)
744 {
745         struct kfd_ioctl_dbg_wave_control_args *args = data;
746         struct kfd_dev *dev;
747         struct dbg_wave_control_info wac_info;
748         unsigned char *args_buff;
749         uint32_t computed_buff_size;
750         long status;
751         void __user *cmd_from_user;
752         unsigned int args_idx = 0;
753
754         memset((void *) &wac_info, 0, sizeof(struct dbg_wave_control_info));
755
756         /* we use compact form, independent of the packing attribute value */
757         computed_buff_size = sizeof(*args) +
758                                 sizeof(wac_info.mode) +
759                                 sizeof(wac_info.operand) +
760                                 sizeof(wac_info.dbgWave_msg.DbgWaveMsg) +
761                                 sizeof(wac_info.dbgWave_msg.MemoryVA) +
762                                 sizeof(wac_info.trapId);
763
764         dev = kfd_device_by_id(args->gpu_id);
765         if (!dev)
766                 return -EINVAL;
767
768         if (dev->device_info->asic_family == CHIP_CARRIZO) {
769                 pr_debug("kfd_ioctl_dbg_wave_control not supported on CZ\n");
770                 return -EINVAL;
771         }
772
773         /* input size must match the computed "compact" size */
774         if (args->buf_size_in_bytes != computed_buff_size) {
775                 pr_debug("size mismatch, computed : actual %u : %u\n",
776                                 args->buf_size_in_bytes, computed_buff_size);
777                 return -EINVAL;
778         }
779
780         cmd_from_user = (void __user *) args->content_ptr;
781
782         if (cmd_from_user == NULL)
783                 return -EINVAL;
784
785         /* copy the entire buffer from user */
786
787         args_buff = memdup_user(cmd_from_user,
788                                 args->buf_size_in_bytes - sizeof(*args));
789         if (IS_ERR(args_buff))
790                 return PTR_ERR(args_buff);
791
792         /* move ptr to the start of the "pay-load" area */
793         wac_info.process = p;
794
795         wac_info.operand = *((enum HSA_DBG_WAVEOP *)(&args_buff[args_idx]));
796         args_idx += sizeof(wac_info.operand);
797
798         wac_info.mode = *((enum HSA_DBG_WAVEMODE *)(&args_buff[args_idx]));
799         args_idx += sizeof(wac_info.mode);
800
801         wac_info.trapId = *((uint32_t *)(&args_buff[args_idx]));
802         args_idx += sizeof(wac_info.trapId);
803
804         wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value =
805                                         *((uint32_t *)(&args_buff[args_idx]));
806         wac_info.dbgWave_msg.MemoryVA = NULL;
807
808         mutex_lock(kfd_get_dbgmgr_mutex());
809
810         pr_debug("Calling dbg manager process %p, operand %u, mode %u, trapId %u, message %u\n",
811                         wac_info.process, wac_info.operand,
812                         wac_info.mode, wac_info.trapId,
813                         wac_info.dbgWave_msg.DbgWaveMsg.WaveMsgInfoGen2.Value);
814
815         status = kfd_dbgmgr_wave_control(dev->dbgmgr, &wac_info);
816
817         pr_debug("Returned status of dbg manager is %ld\n", status);
818
819         mutex_unlock(kfd_get_dbgmgr_mutex());
820
821         kfree(args_buff);
822
823         return status;
824 }
825
826 static int kfd_ioctl_get_clock_counters(struct file *filep,
827                                 struct kfd_process *p, void *data)
828 {
829         struct kfd_ioctl_get_clock_counters_args *args = data;
830         struct kfd_dev *dev;
831
832         dev = kfd_device_by_id(args->gpu_id);
833         if (dev)
834                 /* Reading GPU clock counter from KGD */
835                 args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(dev->kgd);
836         else
837                 /* Node without GPU resource */
838                 args->gpu_clock_counter = 0;
839
840         /* No access to rdtsc. Using raw monotonic time */
841         args->cpu_clock_counter = ktime_get_raw_ns();
842         args->system_clock_counter = ktime_get_boottime_ns();
843
844         /* Since the counter is in nano-seconds we use 1GHz frequency */
845         args->system_clock_freq = 1000000000;
846
847         return 0;
848 }
849
850
851 static int kfd_ioctl_get_process_apertures(struct file *filp,
852                                 struct kfd_process *p, void *data)
853 {
854         struct kfd_ioctl_get_process_apertures_args *args = data;
855         struct kfd_process_device_apertures *pAperture;
856         struct kfd_process_device *pdd;
857
858         dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
859
860         args->num_of_nodes = 0;
861
862         mutex_lock(&p->mutex);
863
864         /*if the process-device list isn't empty*/
865         if (kfd_has_process_device_data(p)) {
866                 /* Run over all pdd of the process */
867                 pdd = kfd_get_first_process_device_data(p);
868                 do {
869                         pAperture =
870                                 &args->process_apertures[args->num_of_nodes];
871                         pAperture->gpu_id = pdd->dev->id;
872                         pAperture->lds_base = pdd->lds_base;
873                         pAperture->lds_limit = pdd->lds_limit;
874                         pAperture->gpuvm_base = pdd->gpuvm_base;
875                         pAperture->gpuvm_limit = pdd->gpuvm_limit;
876                         pAperture->scratch_base = pdd->scratch_base;
877                         pAperture->scratch_limit = pdd->scratch_limit;
878
879                         dev_dbg(kfd_device,
880                                 "node id %u\n", args->num_of_nodes);
881                         dev_dbg(kfd_device,
882                                 "gpu id %u\n", pdd->dev->id);
883                         dev_dbg(kfd_device,
884                                 "lds_base %llX\n", pdd->lds_base);
885                         dev_dbg(kfd_device,
886                                 "lds_limit %llX\n", pdd->lds_limit);
887                         dev_dbg(kfd_device,
888                                 "gpuvm_base %llX\n", pdd->gpuvm_base);
889                         dev_dbg(kfd_device,
890                                 "gpuvm_limit %llX\n", pdd->gpuvm_limit);
891                         dev_dbg(kfd_device,
892                                 "scratch_base %llX\n", pdd->scratch_base);
893                         dev_dbg(kfd_device,
894                                 "scratch_limit %llX\n", pdd->scratch_limit);
895
896                         args->num_of_nodes++;
897
898                         pdd = kfd_get_next_process_device_data(p, pdd);
899                 } while (pdd && (args->num_of_nodes < NUM_OF_SUPPORTED_GPUS));
900         }
901
902         mutex_unlock(&p->mutex);
903
904         return 0;
905 }
906
907 static int kfd_ioctl_get_process_apertures_new(struct file *filp,
908                                 struct kfd_process *p, void *data)
909 {
910         struct kfd_ioctl_get_process_apertures_new_args *args = data;
911         struct kfd_process_device_apertures *pa;
912         struct kfd_process_device *pdd;
913         uint32_t nodes = 0;
914         int ret;
915
916         dev_dbg(kfd_device, "get apertures for PASID %d", p->pasid);
917
918         if (args->num_of_nodes == 0) {
919                 /* Return number of nodes, so that user space can alloacate
920                  * sufficient memory
921                  */
922                 mutex_lock(&p->mutex);
923
924                 if (!kfd_has_process_device_data(p))
925                         goto out_unlock;
926
927                 /* Run over all pdd of the process */
928                 pdd = kfd_get_first_process_device_data(p);
929                 do {
930                         args->num_of_nodes++;
931                         pdd = kfd_get_next_process_device_data(p, pdd);
932                 } while (pdd);
933
934                 goto out_unlock;
935         }
936
937         /* Fill in process-aperture information for all available
938          * nodes, but not more than args->num_of_nodes as that is
939          * the amount of memory allocated by user
940          */
941         pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
942                                 args->num_of_nodes), GFP_KERNEL);
943         if (!pa)
944                 return -ENOMEM;
945
946         mutex_lock(&p->mutex);
947
948         if (!kfd_has_process_device_data(p)) {
949                 args->num_of_nodes = 0;
950                 kfree(pa);
951                 goto out_unlock;
952         }
953
954         /* Run over all pdd of the process */
955         pdd = kfd_get_first_process_device_data(p);
956         do {
957                 pa[nodes].gpu_id = pdd->dev->id;
958                 pa[nodes].lds_base = pdd->lds_base;
959                 pa[nodes].lds_limit = pdd->lds_limit;
960                 pa[nodes].gpuvm_base = pdd->gpuvm_base;
961                 pa[nodes].gpuvm_limit = pdd->gpuvm_limit;
962                 pa[nodes].scratch_base = pdd->scratch_base;
963                 pa[nodes].scratch_limit = pdd->scratch_limit;
964
965                 dev_dbg(kfd_device,
966                         "gpu id %u\n", pdd->dev->id);
967                 dev_dbg(kfd_device,
968                         "lds_base %llX\n", pdd->lds_base);
969                 dev_dbg(kfd_device,
970                         "lds_limit %llX\n", pdd->lds_limit);
971                 dev_dbg(kfd_device,
972                         "gpuvm_base %llX\n", pdd->gpuvm_base);
973                 dev_dbg(kfd_device,
974                         "gpuvm_limit %llX\n", pdd->gpuvm_limit);
975                 dev_dbg(kfd_device,
976                         "scratch_base %llX\n", pdd->scratch_base);
977                 dev_dbg(kfd_device,
978                         "scratch_limit %llX\n", pdd->scratch_limit);
979                 nodes++;
980
981                 pdd = kfd_get_next_process_device_data(p, pdd);
982         } while (pdd && (nodes < args->num_of_nodes));
983         mutex_unlock(&p->mutex);
984
985         args->num_of_nodes = nodes;
986         ret = copy_to_user(
987                         (void __user *)args->kfd_process_device_apertures_ptr,
988                         pa,
989                         (nodes * sizeof(struct kfd_process_device_apertures)));
990         kfree(pa);
991         return ret ? -EFAULT : 0;
992
993 out_unlock:
994         mutex_unlock(&p->mutex);
995         return 0;
996 }
997
998 static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
999                                         void *data)
1000 {
1001         struct kfd_ioctl_create_event_args *args = data;
1002         int err;
1003
1004         /* For dGPUs the event page is allocated in user mode. The
1005          * handle is passed to KFD with the first call to this IOCTL
1006          * through the event_page_offset field.
1007          */
1008         if (args->event_page_offset) {
1009                 struct kfd_dev *kfd;
1010                 struct kfd_process_device *pdd;
1011                 void *mem, *kern_addr;
1012                 uint64_t size;
1013
1014                 if (p->signal_page) {
1015                         pr_err("Event page is already set\n");
1016                         return -EINVAL;
1017                 }
1018
1019                 kfd = kfd_device_by_id(GET_GPU_ID(args->event_page_offset));
1020                 if (!kfd) {
1021                         pr_err("Getting device by id failed in %s\n", __func__);
1022                         return -EINVAL;
1023                 }
1024
1025                 mutex_lock(&p->mutex);
1026                 pdd = kfd_bind_process_to_device(kfd, p);
1027                 if (IS_ERR(pdd)) {
1028                         err = PTR_ERR(pdd);
1029                         goto out_unlock;
1030                 }
1031
1032                 mem = kfd_process_device_translate_handle(pdd,
1033                                 GET_IDR_HANDLE(args->event_page_offset));
1034                 if (!mem) {
1035                         pr_err("Can't find BO, offset is 0x%llx\n",
1036                                args->event_page_offset);
1037                         err = -EINVAL;
1038                         goto out_unlock;
1039                 }
1040                 mutex_unlock(&p->mutex);
1041
1042                 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kfd->kgd,
1043                                                 mem, &kern_addr, &size);
1044                 if (err) {
1045                         pr_err("Failed to map event page to kernel\n");
1046                         return err;
1047                 }
1048
1049                 err = kfd_event_page_set(p, kern_addr, size);
1050                 if (err) {
1051                         pr_err("Failed to set event page\n");
1052                         return err;
1053                 }
1054         }
1055
1056         err = kfd_event_create(filp, p, args->event_type,
1057                                 args->auto_reset != 0, args->node_id,
1058                                 &args->event_id, &args->event_trigger_data,
1059                                 &args->event_page_offset,
1060                                 &args->event_slot_index);
1061
1062         return err;
1063
1064 out_unlock:
1065         mutex_unlock(&p->mutex);
1066         return err;
1067 }
1068
1069 static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
1070                                         void *data)
1071 {
1072         struct kfd_ioctl_destroy_event_args *args = data;
1073
1074         return kfd_event_destroy(p, args->event_id);
1075 }
1076
1077 static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
1078                                 void *data)
1079 {
1080         struct kfd_ioctl_set_event_args *args = data;
1081
1082         return kfd_set_event(p, args->event_id);
1083 }
1084
1085 static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
1086                                 void *data)
1087 {
1088         struct kfd_ioctl_reset_event_args *args = data;
1089
1090         return kfd_reset_event(p, args->event_id);
1091 }
1092
1093 static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
1094                                 void *data)
1095 {
1096         struct kfd_ioctl_wait_events_args *args = data;
1097         int err;
1098
1099         err = kfd_wait_on_events(p, args->num_events,
1100                         (void __user *)args->events_ptr,
1101                         (args->wait_for_all != 0),
1102                         args->timeout, &args->wait_result);
1103
1104         return err;
1105 }
1106 static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
1107                                         struct kfd_process *p, void *data)
1108 {
1109         struct kfd_ioctl_set_scratch_backing_va_args *args = data;
1110         struct kfd_process_device *pdd;
1111         struct kfd_dev *dev;
1112         long err;
1113
1114         dev = kfd_device_by_id(args->gpu_id);
1115         if (!dev)
1116                 return -EINVAL;
1117
1118         mutex_lock(&p->mutex);
1119
1120         pdd = kfd_bind_process_to_device(dev, p);
1121         if (IS_ERR(pdd)) {
1122                 err = PTR_ERR(pdd);
1123                 goto bind_process_to_device_fail;
1124         }
1125
1126         pdd->qpd.sh_hidden_private_base = args->va_addr;
1127
1128         mutex_unlock(&p->mutex);
1129
1130         if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
1131             pdd->qpd.vmid != 0)
1132                 dev->kfd2kgd->set_scratch_backing_va(
1133                         dev->kgd, args->va_addr, pdd->qpd.vmid);
1134
1135         return 0;
1136
1137 bind_process_to_device_fail:
1138         mutex_unlock(&p->mutex);
1139         return err;
1140 }
1141
1142 static int kfd_ioctl_get_tile_config(struct file *filep,
1143                 struct kfd_process *p, void *data)
1144 {
1145         struct kfd_ioctl_get_tile_config_args *args = data;
1146         struct kfd_dev *dev;
1147         struct tile_config config;
1148         int err = 0;
1149
1150         dev = kfd_device_by_id(args->gpu_id);
1151         if (!dev)
1152                 return -EINVAL;
1153
1154         dev->kfd2kgd->get_tile_config(dev->kgd, &config);
1155
1156         args->gb_addr_config = config.gb_addr_config;
1157         args->num_banks = config.num_banks;
1158         args->num_ranks = config.num_ranks;
1159
1160         if (args->num_tile_configs > config.num_tile_configs)
1161                 args->num_tile_configs = config.num_tile_configs;
1162         err = copy_to_user((void __user *)args->tile_config_ptr,
1163                         config.tile_config_ptr,
1164                         args->num_tile_configs * sizeof(uint32_t));
1165         if (err) {
1166                 args->num_tile_configs = 0;
1167                 return -EFAULT;
1168         }
1169
1170         if (args->num_macro_tile_configs > config.num_macro_tile_configs)
1171                 args->num_macro_tile_configs =
1172                                 config.num_macro_tile_configs;
1173         err = copy_to_user((void __user *)args->macro_tile_config_ptr,
1174                         config.macro_tile_config_ptr,
1175                         args->num_macro_tile_configs * sizeof(uint32_t));
1176         if (err) {
1177                 args->num_macro_tile_configs = 0;
1178                 return -EFAULT;
1179         }
1180
1181         return 0;
1182 }
1183
1184 static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
1185                                 void *data)
1186 {
1187         struct kfd_ioctl_acquire_vm_args *args = data;
1188         struct kfd_process_device *pdd;
1189         struct kfd_dev *dev;
1190         struct file *drm_file;
1191         int ret;
1192
1193         dev = kfd_device_by_id(args->gpu_id);
1194         if (!dev)
1195                 return -EINVAL;
1196
1197         drm_file = fget(args->drm_fd);
1198         if (!drm_file)
1199                 return -EINVAL;
1200
1201         mutex_lock(&p->mutex);
1202
1203         pdd = kfd_get_process_device_data(dev, p);
1204         if (!pdd) {
1205                 ret = -EINVAL;
1206                 goto err_unlock;
1207         }
1208
1209         if (pdd->drm_file) {
1210                 ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
1211                 goto err_unlock;
1212         }
1213
1214         ret = kfd_process_device_init_vm(pdd, drm_file);
1215         if (ret)
1216                 goto err_unlock;
1217         /* On success, the PDD keeps the drm_file reference */
1218         mutex_unlock(&p->mutex);
1219
1220         return 0;
1221
1222 err_unlock:
1223         mutex_unlock(&p->mutex);
1224         fput(drm_file);
1225         return ret;
1226 }
1227
1228 bool kfd_dev_is_large_bar(struct kfd_dev *dev)
1229 {
1230         struct kfd_local_mem_info mem_info;
1231
1232         if (debug_largebar) {
1233                 pr_debug("Simulate large-bar allocation on non large-bar machine\n");
1234                 return true;
1235         }
1236
1237         if (dev->device_info->needs_iommu_device)
1238                 return false;
1239
1240         amdgpu_amdkfd_get_local_mem_info(dev->kgd, &mem_info);
1241         if (mem_info.local_mem_size_private == 0 &&
1242                         mem_info.local_mem_size_public > 0)
1243                 return true;
1244         return false;
1245 }
1246
1247 static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
1248                                         struct kfd_process *p, void *data)
1249 {
1250         struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
1251         struct kfd_process_device *pdd;
1252         void *mem;
1253         struct kfd_dev *dev;
1254         int idr_handle;
1255         long err;
1256         uint64_t offset = args->mmap_offset;
1257         uint32_t flags = args->flags;
1258
1259         if (args->size == 0)
1260                 return -EINVAL;
1261
1262         dev = kfd_device_by_id(args->gpu_id);
1263         if (!dev)
1264                 return -EINVAL;
1265
1266         if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
1267                 (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
1268                 !kfd_dev_is_large_bar(dev)) {
1269                 pr_err("Alloc host visible vram on small bar is not allowed\n");
1270                 return -EINVAL;
1271         }
1272
1273         if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
1274                 if (args->size != kfd_doorbell_process_slice(dev))
1275                         return -EINVAL;
1276                 offset = kfd_get_process_doorbells(dev, p);
1277         } else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1278                 if (args->size != PAGE_SIZE)
1279                         return -EINVAL;
1280                 offset = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1281                 if (!offset)
1282                         return -ENOMEM;
1283         }
1284
1285         mutex_lock(&p->mutex);
1286
1287         pdd = kfd_bind_process_to_device(dev, p);
1288         if (IS_ERR(pdd)) {
1289                 err = PTR_ERR(pdd);
1290                 goto err_unlock;
1291         }
1292
1293         err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
1294                 dev->kgd, args->va_addr, args->size,
1295                 pdd->vm, (struct kgd_mem **) &mem, &offset,
1296                 flags);
1297
1298         if (err)
1299                 goto err_unlock;
1300
1301         idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1302         if (idr_handle < 0) {
1303                 err = -EFAULT;
1304                 goto err_free;
1305         }
1306
1307         mutex_unlock(&p->mutex);
1308
1309         args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1310         args->mmap_offset = offset;
1311
1312         /* MMIO is mapped through kfd device
1313          * Generate a kfd mmap offset
1314          */
1315         if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
1316                 args->mmap_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(args->gpu_id);
1317                 args->mmap_offset <<= PAGE_SHIFT;
1318         }
1319
1320         return 0;
1321
1322 err_free:
1323         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1324 err_unlock:
1325         mutex_unlock(&p->mutex);
1326         return err;
1327 }
1328
1329 static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
1330                                         struct kfd_process *p, void *data)
1331 {
1332         struct kfd_ioctl_free_memory_of_gpu_args *args = data;
1333         struct kfd_process_device *pdd;
1334         void *mem;
1335         struct kfd_dev *dev;
1336         int ret;
1337
1338         dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1339         if (!dev)
1340                 return -EINVAL;
1341
1342         mutex_lock(&p->mutex);
1343
1344         pdd = kfd_get_process_device_data(dev, p);
1345         if (!pdd) {
1346                 pr_err("Process device data doesn't exist\n");
1347                 ret = -EINVAL;
1348                 goto err_unlock;
1349         }
1350
1351         mem = kfd_process_device_translate_handle(
1352                 pdd, GET_IDR_HANDLE(args->handle));
1353         if (!mem) {
1354                 ret = -EINVAL;
1355                 goto err_unlock;
1356         }
1357
1358         ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd,
1359                                                 (struct kgd_mem *)mem);
1360
1361         /* If freeing the buffer failed, leave the handle in place for
1362          * clean-up during process tear-down.
1363          */
1364         if (!ret)
1365                 kfd_process_device_remove_obj_handle(
1366                         pdd, GET_IDR_HANDLE(args->handle));
1367
1368 err_unlock:
1369         mutex_unlock(&p->mutex);
1370         return ret;
1371 }
1372
1373 static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
1374                                         struct kfd_process *p, void *data)
1375 {
1376         struct kfd_ioctl_map_memory_to_gpu_args *args = data;
1377         struct kfd_process_device *pdd, *peer_pdd;
1378         void *mem;
1379         struct kfd_dev *dev, *peer;
1380         long err = 0;
1381         int i;
1382         uint32_t *devices_arr = NULL;
1383
1384         dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1385         if (!dev)
1386                 return -EINVAL;
1387
1388         if (!args->n_devices) {
1389                 pr_debug("Device IDs array empty\n");
1390                 return -EINVAL;
1391         }
1392         if (args->n_success > args->n_devices) {
1393                 pr_debug("n_success exceeds n_devices\n");
1394                 return -EINVAL;
1395         }
1396
1397         devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1398                                     GFP_KERNEL);
1399         if (!devices_arr)
1400                 return -ENOMEM;
1401
1402         err = copy_from_user(devices_arr,
1403                              (void __user *)args->device_ids_array_ptr,
1404                              args->n_devices * sizeof(*devices_arr));
1405         if (err != 0) {
1406                 err = -EFAULT;
1407                 goto copy_from_user_failed;
1408         }
1409
1410         mutex_lock(&p->mutex);
1411
1412         pdd = kfd_bind_process_to_device(dev, p);
1413         if (IS_ERR(pdd)) {
1414                 err = PTR_ERR(pdd);
1415                 goto bind_process_to_device_failed;
1416         }
1417
1418         mem = kfd_process_device_translate_handle(pdd,
1419                                                 GET_IDR_HANDLE(args->handle));
1420         if (!mem) {
1421                 err = -ENOMEM;
1422                 goto get_mem_obj_from_handle_failed;
1423         }
1424
1425         for (i = args->n_success; i < args->n_devices; i++) {
1426                 peer = kfd_device_by_id(devices_arr[i]);
1427                 if (!peer) {
1428                         pr_debug("Getting device by id failed for 0x%x\n",
1429                                  devices_arr[i]);
1430                         err = -EINVAL;
1431                         goto get_mem_obj_from_handle_failed;
1432                 }
1433
1434                 peer_pdd = kfd_bind_process_to_device(peer, p);
1435                 if (IS_ERR(peer_pdd)) {
1436                         err = PTR_ERR(peer_pdd);
1437                         goto get_mem_obj_from_handle_failed;
1438                 }
1439                 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
1440                         peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1441                 if (err) {
1442                         pr_err("Failed to map to gpu %d/%d\n",
1443                                i, args->n_devices);
1444                         goto map_memory_to_gpu_failed;
1445                 }
1446                 args->n_success = i+1;
1447         }
1448
1449         mutex_unlock(&p->mutex);
1450
1451         err = amdgpu_amdkfd_gpuvm_sync_memory(dev->kgd, (struct kgd_mem *) mem, true);
1452         if (err) {
1453                 pr_debug("Sync memory failed, wait interrupted by user signal\n");
1454                 goto sync_memory_failed;
1455         }
1456
1457         /* Flush TLBs after waiting for the page table updates to complete */
1458         for (i = 0; i < args->n_devices; i++) {
1459                 peer = kfd_device_by_id(devices_arr[i]);
1460                 if (WARN_ON_ONCE(!peer))
1461                         continue;
1462                 peer_pdd = kfd_get_process_device_data(peer, p);
1463                 if (WARN_ON_ONCE(!peer_pdd))
1464                         continue;
1465                 kfd_flush_tlb(peer_pdd);
1466         }
1467
1468         kfree(devices_arr);
1469
1470         return err;
1471
1472 bind_process_to_device_failed:
1473 get_mem_obj_from_handle_failed:
1474 map_memory_to_gpu_failed:
1475         mutex_unlock(&p->mutex);
1476 copy_from_user_failed:
1477 sync_memory_failed:
1478         kfree(devices_arr);
1479
1480         return err;
1481 }
1482
1483 static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
1484                                         struct kfd_process *p, void *data)
1485 {
1486         struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
1487         struct kfd_process_device *pdd, *peer_pdd;
1488         void *mem;
1489         struct kfd_dev *dev, *peer;
1490         long err = 0;
1491         uint32_t *devices_arr = NULL, i;
1492
1493         dev = kfd_device_by_id(GET_GPU_ID(args->handle));
1494         if (!dev)
1495                 return -EINVAL;
1496
1497         if (!args->n_devices) {
1498                 pr_debug("Device IDs array empty\n");
1499                 return -EINVAL;
1500         }
1501         if (args->n_success > args->n_devices) {
1502                 pr_debug("n_success exceeds n_devices\n");
1503                 return -EINVAL;
1504         }
1505
1506         devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
1507                                     GFP_KERNEL);
1508         if (!devices_arr)
1509                 return -ENOMEM;
1510
1511         err = copy_from_user(devices_arr,
1512                              (void __user *)args->device_ids_array_ptr,
1513                              args->n_devices * sizeof(*devices_arr));
1514         if (err != 0) {
1515                 err = -EFAULT;
1516                 goto copy_from_user_failed;
1517         }
1518
1519         mutex_lock(&p->mutex);
1520
1521         pdd = kfd_get_process_device_data(dev, p);
1522         if (!pdd) {
1523                 err = -EINVAL;
1524                 goto bind_process_to_device_failed;
1525         }
1526
1527         mem = kfd_process_device_translate_handle(pdd,
1528                                                 GET_IDR_HANDLE(args->handle));
1529         if (!mem) {
1530                 err = -ENOMEM;
1531                 goto get_mem_obj_from_handle_failed;
1532         }
1533
1534         for (i = args->n_success; i < args->n_devices; i++) {
1535                 peer = kfd_device_by_id(devices_arr[i]);
1536                 if (!peer) {
1537                         err = -EINVAL;
1538                         goto get_mem_obj_from_handle_failed;
1539                 }
1540
1541                 peer_pdd = kfd_get_process_device_data(peer, p);
1542                 if (!peer_pdd) {
1543                         err = -ENODEV;
1544                         goto get_mem_obj_from_handle_failed;
1545                 }
1546                 err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1547                         peer->kgd, (struct kgd_mem *)mem, peer_pdd->vm);
1548                 if (err) {
1549                         pr_err("Failed to unmap from gpu %d/%d\n",
1550                                i, args->n_devices);
1551                         goto unmap_memory_from_gpu_failed;
1552                 }
1553                 args->n_success = i+1;
1554         }
1555         kfree(devices_arr);
1556
1557         mutex_unlock(&p->mutex);
1558
1559         return 0;
1560
1561 bind_process_to_device_failed:
1562 get_mem_obj_from_handle_failed:
1563 unmap_memory_from_gpu_failed:
1564         mutex_unlock(&p->mutex);
1565 copy_from_user_failed:
1566         kfree(devices_arr);
1567         return err;
1568 }
1569
1570 static int kfd_ioctl_get_dmabuf_info(struct file *filep,
1571                 struct kfd_process *p, void *data)
1572 {
1573         struct kfd_ioctl_get_dmabuf_info_args *args = data;
1574         struct kfd_dev *dev = NULL;
1575         struct kgd_dev *dma_buf_kgd;
1576         void *metadata_buffer = NULL;
1577         uint32_t flags;
1578         unsigned int i;
1579         int r;
1580
1581         /* Find a KFD GPU device that supports the get_dmabuf_info query */
1582         for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
1583                 if (dev)
1584                         break;
1585         if (!dev)
1586                 return -EINVAL;
1587
1588         if (args->metadata_ptr) {
1589                 metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
1590                 if (!metadata_buffer)
1591                         return -ENOMEM;
1592         }
1593
1594         /* Get dmabuf info from KGD */
1595         r = amdgpu_amdkfd_get_dmabuf_info(dev->kgd, args->dmabuf_fd,
1596                                           &dma_buf_kgd, &args->size,
1597                                           metadata_buffer, args->metadata_size,
1598                                           &args->metadata_size, &flags);
1599         if (r)
1600                 goto exit;
1601
1602         /* Reverse-lookup gpu_id from kgd pointer */
1603         dev = kfd_device_by_kgd(dma_buf_kgd);
1604         if (!dev) {
1605                 r = -EINVAL;
1606                 goto exit;
1607         }
1608         args->gpu_id = dev->id;
1609         args->flags = flags;
1610
1611         /* Copy metadata buffer to user mode */
1612         if (metadata_buffer) {
1613                 r = copy_to_user((void __user *)args->metadata_ptr,
1614                                  metadata_buffer, args->metadata_size);
1615                 if (r != 0)
1616                         r = -EFAULT;
1617         }
1618
1619 exit:
1620         kfree(metadata_buffer);
1621
1622         return r;
1623 }
1624
1625 static int kfd_ioctl_import_dmabuf(struct file *filep,
1626                                    struct kfd_process *p, void *data)
1627 {
1628         struct kfd_ioctl_import_dmabuf_args *args = data;
1629         struct kfd_process_device *pdd;
1630         struct dma_buf *dmabuf;
1631         struct kfd_dev *dev;
1632         int idr_handle;
1633         uint64_t size;
1634         void *mem;
1635         int r;
1636
1637         dev = kfd_device_by_id(args->gpu_id);
1638         if (!dev)
1639                 return -EINVAL;
1640
1641         dmabuf = dma_buf_get(args->dmabuf_fd);
1642         if (IS_ERR(dmabuf))
1643                 return PTR_ERR(dmabuf);
1644
1645         mutex_lock(&p->mutex);
1646
1647         pdd = kfd_bind_process_to_device(dev, p);
1648         if (IS_ERR(pdd)) {
1649                 r = PTR_ERR(pdd);
1650                 goto err_unlock;
1651         }
1652
1653         r = amdgpu_amdkfd_gpuvm_import_dmabuf(dev->kgd, dmabuf,
1654                                               args->va_addr, pdd->vm,
1655                                               (struct kgd_mem **)&mem, &size,
1656                                               NULL);
1657         if (r)
1658                 goto err_unlock;
1659
1660         idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
1661         if (idr_handle < 0) {
1662                 r = -EFAULT;
1663                 goto err_free;
1664         }
1665
1666         mutex_unlock(&p->mutex);
1667
1668         args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
1669
1670         return 0;
1671
1672 err_free:
1673         amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, (struct kgd_mem *)mem);
1674 err_unlock:
1675         mutex_unlock(&p->mutex);
1676         return r;
1677 }
1678
1679 #define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
1680         [_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
1681                             .cmd_drv = 0, .name = #ioctl}
1682
1683 /** Ioctl table */
1684 static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
1685         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
1686                         kfd_ioctl_get_version, 0),
1687
1688         AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
1689                         kfd_ioctl_create_queue, 0),
1690
1691         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
1692                         kfd_ioctl_destroy_queue, 0),
1693
1694         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
1695                         kfd_ioctl_set_memory_policy, 0),
1696
1697         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
1698                         kfd_ioctl_get_clock_counters, 0),
1699
1700         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
1701                         kfd_ioctl_get_process_apertures, 0),
1702
1703         AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
1704                         kfd_ioctl_update_queue, 0),
1705
1706         AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
1707                         kfd_ioctl_create_event, 0),
1708
1709         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
1710                         kfd_ioctl_destroy_event, 0),
1711
1712         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
1713                         kfd_ioctl_set_event, 0),
1714
1715         AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
1716                         kfd_ioctl_reset_event, 0),
1717
1718         AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
1719                         kfd_ioctl_wait_events, 0),
1720
1721         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER,
1722                         kfd_ioctl_dbg_register, 0),
1723
1724         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER,
1725                         kfd_ioctl_dbg_unregister, 0),
1726
1727         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH,
1728                         kfd_ioctl_dbg_address_watch, 0),
1729
1730         AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL,
1731                         kfd_ioctl_dbg_wave_control, 0),
1732
1733         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
1734                         kfd_ioctl_set_scratch_backing_va, 0),
1735
1736         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
1737                         kfd_ioctl_get_tile_config, 0),
1738
1739         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
1740                         kfd_ioctl_set_trap_handler, 0),
1741
1742         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
1743                         kfd_ioctl_get_process_apertures_new, 0),
1744
1745         AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
1746                         kfd_ioctl_acquire_vm, 0),
1747
1748         AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
1749                         kfd_ioctl_alloc_memory_of_gpu, 0),
1750
1751         AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
1752                         kfd_ioctl_free_memory_of_gpu, 0),
1753
1754         AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
1755                         kfd_ioctl_map_memory_to_gpu, 0),
1756
1757         AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
1758                         kfd_ioctl_unmap_memory_from_gpu, 0),
1759
1760         AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
1761                         kfd_ioctl_set_cu_mask, 0),
1762
1763         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
1764                         kfd_ioctl_get_queue_wave_state, 0),
1765
1766         AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
1767                                 kfd_ioctl_get_dmabuf_info, 0),
1768
1769         AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
1770                                 kfd_ioctl_import_dmabuf, 0),
1771
1772 };
1773
1774 #define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
1775
1776 static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
1777 {
1778         struct kfd_process *process;
1779         amdkfd_ioctl_t *func;
1780         const struct amdkfd_ioctl_desc *ioctl = NULL;
1781         unsigned int nr = _IOC_NR(cmd);
1782         char stack_kdata[128];
1783         char *kdata = NULL;
1784         unsigned int usize, asize;
1785         int retcode = -EINVAL;
1786
1787         if (nr >= AMDKFD_CORE_IOCTL_COUNT)
1788                 goto err_i1;
1789
1790         if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
1791                 u32 amdkfd_size;
1792
1793                 ioctl = &amdkfd_ioctls[nr];
1794
1795                 amdkfd_size = _IOC_SIZE(ioctl->cmd);
1796                 usize = asize = _IOC_SIZE(cmd);
1797                 if (amdkfd_size > asize)
1798                         asize = amdkfd_size;
1799
1800                 cmd = ioctl->cmd;
1801         } else
1802                 goto err_i1;
1803
1804         dev_dbg(kfd_device, "ioctl cmd 0x%x (#%d), arg 0x%lx\n", cmd, nr, arg);
1805
1806         process = kfd_get_process(current);
1807         if (IS_ERR(process)) {
1808                 dev_dbg(kfd_device, "no process\n");
1809                 goto err_i1;
1810         }
1811
1812         /* Do not trust userspace, use our own definition */
1813         func = ioctl->func;
1814
1815         if (unlikely(!func)) {
1816                 dev_dbg(kfd_device, "no function\n");
1817                 retcode = -EINVAL;
1818                 goto err_i1;
1819         }
1820
1821         if (cmd & (IOC_IN | IOC_OUT)) {
1822                 if (asize <= sizeof(stack_kdata)) {
1823                         kdata = stack_kdata;
1824                 } else {
1825                         kdata = kmalloc(asize, GFP_KERNEL);
1826                         if (!kdata) {
1827                                 retcode = -ENOMEM;
1828                                 goto err_i1;
1829                         }
1830                 }
1831                 if (asize > usize)
1832                         memset(kdata + usize, 0, asize - usize);
1833         }
1834
1835         if (cmd & IOC_IN) {
1836                 if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
1837                         retcode = -EFAULT;
1838                         goto err_i1;
1839                 }
1840         } else if (cmd & IOC_OUT) {
1841                 memset(kdata, 0, usize);
1842         }
1843
1844         retcode = func(filep, process, kdata);
1845
1846         if (cmd & IOC_OUT)
1847                 if (copy_to_user((void __user *)arg, kdata, usize) != 0)
1848                         retcode = -EFAULT;
1849
1850 err_i1:
1851         if (!ioctl)
1852                 dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
1853                           task_pid_nr(current), cmd, nr);
1854
1855         if (kdata != stack_kdata)
1856                 kfree(kdata);
1857
1858         if (retcode)
1859                 dev_dbg(kfd_device, "ret = %d\n", retcode);
1860
1861         return retcode;
1862 }
1863
1864 static int kfd_mmio_mmap(struct kfd_dev *dev, struct kfd_process *process,
1865                       struct vm_area_struct *vma)
1866 {
1867         phys_addr_t address;
1868         int ret;
1869
1870         if (vma->vm_end - vma->vm_start != PAGE_SIZE)
1871                 return -EINVAL;
1872
1873         address = amdgpu_amdkfd_get_mmio_remap_phys_addr(dev->kgd);
1874
1875         vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
1876                                 VM_DONTDUMP | VM_PFNMAP;
1877
1878         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1879
1880         pr_debug("Process %d mapping mmio page\n"
1881                  "     target user address == 0x%08llX\n"
1882                  "     physical address    == 0x%08llX\n"
1883                  "     vm_flags            == 0x%04lX\n"
1884                  "     size                == 0x%04lX\n",
1885                  process->pasid, (unsigned long long) vma->vm_start,
1886                  address, vma->vm_flags, PAGE_SIZE);
1887
1888         ret = io_remap_pfn_range(vma,
1889                                 vma->vm_start,
1890                                 address >> PAGE_SHIFT,
1891                                 PAGE_SIZE,
1892                                 vma->vm_page_prot);
1893         return ret;
1894 }
1895
1896
1897 static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
1898 {
1899         struct kfd_process *process;
1900         struct kfd_dev *dev = NULL;
1901         unsigned long vm_pgoff;
1902         unsigned int gpu_id;
1903
1904         process = kfd_get_process(current);
1905         if (IS_ERR(process))
1906                 return PTR_ERR(process);
1907
1908         vm_pgoff = vma->vm_pgoff;
1909         vma->vm_pgoff = KFD_MMAP_OFFSET_VALUE_GET(vm_pgoff);
1910         gpu_id = KFD_MMAP_GPU_ID_GET(vm_pgoff);
1911         if (gpu_id)
1912                 dev = kfd_device_by_id(gpu_id);
1913
1914         switch (vm_pgoff & KFD_MMAP_TYPE_MASK) {
1915         case KFD_MMAP_TYPE_DOORBELL:
1916                 if (!dev)
1917                         return -ENODEV;
1918                 return kfd_doorbell_mmap(dev, process, vma);
1919
1920         case KFD_MMAP_TYPE_EVENTS:
1921                 return kfd_event_mmap(process, vma);
1922
1923         case KFD_MMAP_TYPE_RESERVED_MEM:
1924                 if (!dev)
1925                         return -ENODEV;
1926                 return kfd_reserved_mem_mmap(dev, process, vma);
1927         case KFD_MMAP_TYPE_MMIO:
1928                 if (!dev)
1929                         return -ENODEV;
1930                 return kfd_mmio_mmap(dev, process, vma);
1931         }
1932
1933         return -EFAULT;
1934 }