Merge tag 'for-5.1/block-post-20190315' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdgpu / sdma_v4_0.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/firmware.h>
25 #include <drm/drmP.h>
26 #include "amdgpu.h"
27 #include "amdgpu_ucode.h"
28 #include "amdgpu_trace.h"
29
30 #include "sdma0/sdma0_4_2_offset.h"
31 #include "sdma0/sdma0_4_2_sh_mask.h"
32 #include "sdma1/sdma1_4_2_offset.h"
33 #include "sdma1/sdma1_4_2_sh_mask.h"
34 #include "hdp/hdp_4_0_offset.h"
35 #include "sdma0/sdma0_4_1_default.h"
36
37 #include "soc15_common.h"
38 #include "soc15.h"
39 #include "vega10_sdma_pkt_open.h"
40
41 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
42 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
43
44 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
45 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
46 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
47 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
48 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
49 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
50 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
51 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
52 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
53
54 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
55 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
56
57 #define WREG32_SDMA(instance, offset, value) \
58         WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
59 #define RREG32_SDMA(instance, offset) \
60         RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
61
62 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
63 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
64 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
65 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
66
67 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
68         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
69         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
70         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
71         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
72         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
73         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
74         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
75         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
76         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
77         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
78         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
79         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
80         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
81         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
82         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
83         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
84         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
85         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
86         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
87         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
88         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
89         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
90         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
91         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
92         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
93 };
94
95 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
96         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
97         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
98         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
99         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
100         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002)
101 };
102
103 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
104         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
105         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
106         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
107         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
108         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001)
109 };
110
111 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
112         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
113         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
114         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
115         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
116         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
117         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
118         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
119         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
120         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
121         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
122         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
123 };
124
125 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
126         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
127 };
128
129 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
130 {
131         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
132         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
133         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
134         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
135         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
136         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
137         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
138         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
139         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
140         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
141         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
142         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
143         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
144         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
145         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
146         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
147         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
148         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
149         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
150         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
151         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
152         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
153         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
154         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
155         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
156         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
157         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xFE000000, 0x00000000),
158 };
159
160 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
161         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
162         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
163         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
164         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
165         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
166         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
167         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
168         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
169         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
170         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
172         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
181         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
182         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
183         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
184         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
185         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
186         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
187         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xFE000000, 0x00000000),
188 };
189
190 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
191 {
192         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
193         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
194 };
195
196 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
197 {
198         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
199         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
200 };
201
202 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
203                 u32 instance, u32 offset)
204 {
205         return ( 0 == instance ? (adev->reg_offset[SDMA0_HWIP][0][0] + offset) :
206                         (adev->reg_offset[SDMA1_HWIP][0][0] + offset));
207 }
208
209 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
210 {
211         switch (adev->asic_type) {
212         case CHIP_VEGA10:
213                 soc15_program_register_sequence(adev,
214                                                  golden_settings_sdma_4,
215                                                  ARRAY_SIZE(golden_settings_sdma_4));
216                 soc15_program_register_sequence(adev,
217                                                  golden_settings_sdma_vg10,
218                                                  ARRAY_SIZE(golden_settings_sdma_vg10));
219                 break;
220         case CHIP_VEGA12:
221                 soc15_program_register_sequence(adev,
222                                                 golden_settings_sdma_4,
223                                                 ARRAY_SIZE(golden_settings_sdma_4));
224                 soc15_program_register_sequence(adev,
225                                                 golden_settings_sdma_vg12,
226                                                 ARRAY_SIZE(golden_settings_sdma_vg12));
227                 break;
228         case CHIP_VEGA20:
229                 soc15_program_register_sequence(adev,
230                                                 golden_settings_sdma0_4_2_init,
231                                                 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
232                 soc15_program_register_sequence(adev,
233                                                 golden_settings_sdma0_4_2,
234                                                 ARRAY_SIZE(golden_settings_sdma0_4_2));
235                 soc15_program_register_sequence(adev,
236                                                 golden_settings_sdma1_4_2,
237                                                 ARRAY_SIZE(golden_settings_sdma1_4_2));
238                 break;
239         case CHIP_RAVEN:
240                 soc15_program_register_sequence(adev,
241                                                 golden_settings_sdma_4_1,
242                                                 ARRAY_SIZE(golden_settings_sdma_4_1));
243                 if (adev->rev_id >= 8)
244                         soc15_program_register_sequence(adev,
245                                                         golden_settings_sdma_rv2,
246                                                         ARRAY_SIZE(golden_settings_sdma_rv2));
247                 else
248                         soc15_program_register_sequence(adev,
249                                                         golden_settings_sdma_rv1,
250                                                         ARRAY_SIZE(golden_settings_sdma_rv1));
251                 break;
252         default:
253                 break;
254         }
255 }
256
257 /**
258  * sdma_v4_0_init_microcode - load ucode images from disk
259  *
260  * @adev: amdgpu_device pointer
261  *
262  * Use the firmware interface to load the ucode images into
263  * the driver (not loaded into hw).
264  * Returns 0 on success, error on failure.
265  */
266
267 // emulation only, won't work on real chip
268 // vega10 real chip need to use PSP to load firmware
269 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
270 {
271         const char *chip_name;
272         char fw_name[30];
273         int err = 0, i;
274         struct amdgpu_firmware_info *info = NULL;
275         const struct common_firmware_header *header = NULL;
276         const struct sdma_firmware_header_v1_0 *hdr;
277
278         DRM_DEBUG("\n");
279
280         switch (adev->asic_type) {
281         case CHIP_VEGA10:
282                 chip_name = "vega10";
283                 break;
284         case CHIP_VEGA12:
285                 chip_name = "vega12";
286                 break;
287         case CHIP_VEGA20:
288                 chip_name = "vega20";
289                 break;
290         case CHIP_RAVEN:
291                 if (adev->rev_id >= 8)
292                         chip_name = "raven2";
293                 else if (adev->pdev->device == 0x15d8)
294                         chip_name = "picasso";
295                 else
296                         chip_name = "raven";
297                 break;
298         default:
299                 BUG();
300         }
301
302         for (i = 0; i < adev->sdma.num_instances; i++) {
303                 if (i == 0)
304                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
305                 else
306                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
307                 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
308                 if (err)
309                         goto out;
310                 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
311                 if (err)
312                         goto out;
313                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
314                 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
315                 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
316                 if (adev->sdma.instance[i].feature_version >= 20)
317                         adev->sdma.instance[i].burst_nop = true;
318                 DRM_DEBUG("psp_load == '%s'\n",
319                                 adev->firmware.load_type == AMDGPU_FW_LOAD_PSP ? "true" : "false");
320
321                 if (adev->firmware.load_type == AMDGPU_FW_LOAD_PSP) {
322                         info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
323                         info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
324                         info->fw = adev->sdma.instance[i].fw;
325                         header = (const struct common_firmware_header *)info->fw->data;
326                         adev->firmware.fw_size +=
327                                 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
328                 }
329         }
330 out:
331         if (err) {
332                 DRM_ERROR("sdma_v4_0: Failed to load firmware \"%s\"\n", fw_name);
333                 for (i = 0; i < adev->sdma.num_instances; i++) {
334                         release_firmware(adev->sdma.instance[i].fw);
335                         adev->sdma.instance[i].fw = NULL;
336                 }
337         }
338         return err;
339 }
340
341 /**
342  * sdma_v4_0_ring_get_rptr - get the current read pointer
343  *
344  * @ring: amdgpu ring pointer
345  *
346  * Get the current rptr from the hardware (VEGA10+).
347  */
348 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
349 {
350         u64 *rptr;
351
352         /* XXX check if swapping is necessary on BE */
353         rptr = ((u64 *)&ring->adev->wb.wb[ring->rptr_offs]);
354
355         DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
356         return ((*rptr) >> 2);
357 }
358
359 /**
360  * sdma_v4_0_ring_get_wptr - get the current write pointer
361  *
362  * @ring: amdgpu ring pointer
363  *
364  * Get the current wptr from the hardware (VEGA10+).
365  */
366 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
367 {
368         struct amdgpu_device *adev = ring->adev;
369         u64 wptr;
370
371         if (ring->use_doorbell) {
372                 /* XXX check if swapping is necessary on BE */
373                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
374                 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
375         } else {
376                 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
377                 wptr = wptr << 32;
378                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
379                 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
380                                 ring->me, wptr);
381         }
382
383         return wptr >> 2;
384 }
385
386 /**
387  * sdma_v4_0_ring_set_wptr - commit the write pointer
388  *
389  * @ring: amdgpu ring pointer
390  *
391  * Write the wptr back to the hardware (VEGA10+).
392  */
393 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
394 {
395         struct amdgpu_device *adev = ring->adev;
396
397         DRM_DEBUG("Setting write pointer\n");
398         if (ring->use_doorbell) {
399                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
400
401                 DRM_DEBUG("Using doorbell -- "
402                                 "wptr_offs == 0x%08x "
403                                 "lower_32_bits(ring->wptr) << 2 == 0x%08x "
404                                 "upper_32_bits(ring->wptr) << 2 == 0x%08x\n",
405                                 ring->wptr_offs,
406                                 lower_32_bits(ring->wptr << 2),
407                                 upper_32_bits(ring->wptr << 2));
408                 /* XXX check if swapping is necessary on BE */
409                 WRITE_ONCE(*wb, (ring->wptr << 2));
410                 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
411                                 ring->doorbell_index, ring->wptr << 2);
412                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
413         } else {
414                 DRM_DEBUG("Not using doorbell -- "
415                                 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
416                                 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
417                                 ring->me,
418                                 lower_32_bits(ring->wptr << 2),
419                                 ring->me,
420                                 upper_32_bits(ring->wptr << 2));
421                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
422                             lower_32_bits(ring->wptr << 2));
423                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
424                             upper_32_bits(ring->wptr << 2));
425         }
426 }
427
428 /**
429  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
430  *
431  * @ring: amdgpu ring pointer
432  *
433  * Get the current wptr from the hardware (VEGA10+).
434  */
435 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
436 {
437         struct amdgpu_device *adev = ring->adev;
438         u64 wptr;
439
440         if (ring->use_doorbell) {
441                 /* XXX check if swapping is necessary on BE */
442                 wptr = READ_ONCE(*((u64 *)&adev->wb.wb[ring->wptr_offs]));
443         } else {
444                 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
445                 wptr = wptr << 32;
446                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
447         }
448
449         return wptr >> 2;
450 }
451
452 /**
453  * sdma_v4_0_ring_set_wptr - commit the write pointer
454  *
455  * @ring: amdgpu ring pointer
456  *
457  * Write the wptr back to the hardware (VEGA10+).
458  */
459 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
460 {
461         struct amdgpu_device *adev = ring->adev;
462
463         if (ring->use_doorbell) {
464                 u64 *wb = (u64 *)&adev->wb.wb[ring->wptr_offs];
465
466                 /* XXX check if swapping is necessary on BE */
467                 WRITE_ONCE(*wb, (ring->wptr << 2));
468                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
469         } else {
470                 uint64_t wptr = ring->wptr << 2;
471
472                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
473                             lower_32_bits(wptr));
474                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
475                             upper_32_bits(wptr));
476         }
477 }
478
479 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
480 {
481         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
482         int i;
483
484         for (i = 0; i < count; i++)
485                 if (sdma && sdma->burst_nop && (i == 0))
486                         amdgpu_ring_write(ring, ring->funcs->nop |
487                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
488                 else
489                         amdgpu_ring_write(ring, ring->funcs->nop);
490 }
491
492 /**
493  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
494  *
495  * @ring: amdgpu ring pointer
496  * @ib: IB object to schedule
497  *
498  * Schedule an IB in the DMA ring (VEGA10).
499  */
500 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
501                                    struct amdgpu_job *job,
502                                    struct amdgpu_ib *ib,
503                                    uint32_t flags)
504 {
505         unsigned vmid = AMDGPU_JOB_GET_VMID(job);
506
507         /* IB packet must end on a 8 DW boundary */
508         sdma_v4_0_ring_insert_nop(ring, (10 - (lower_32_bits(ring->wptr) & 7)) % 8);
509
510         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
511                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
512         /* base must be 32 byte aligned */
513         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
514         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
515         amdgpu_ring_write(ring, ib->length_dw);
516         amdgpu_ring_write(ring, 0);
517         amdgpu_ring_write(ring, 0);
518
519 }
520
521 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
522                                    int mem_space, int hdp,
523                                    uint32_t addr0, uint32_t addr1,
524                                    uint32_t ref, uint32_t mask,
525                                    uint32_t inv)
526 {
527         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
528                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
529                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
530                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
531         if (mem_space) {
532                 /* memory */
533                 amdgpu_ring_write(ring, addr0);
534                 amdgpu_ring_write(ring, addr1);
535         } else {
536                 /* registers */
537                 amdgpu_ring_write(ring, addr0 << 2);
538                 amdgpu_ring_write(ring, addr1 << 2);
539         }
540         amdgpu_ring_write(ring, ref); /* reference */
541         amdgpu_ring_write(ring, mask); /* mask */
542         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
543                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
544 }
545
546 /**
547  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
548  *
549  * @ring: amdgpu ring pointer
550  *
551  * Emit an hdp flush packet on the requested DMA ring.
552  */
553 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
554 {
555         struct amdgpu_device *adev = ring->adev;
556         u32 ref_and_mask = 0;
557         const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio_funcs->hdp_flush_reg;
558
559         if (ring->me == 0)
560                 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0;
561         else
562                 ref_and_mask = nbio_hf_reg->ref_and_mask_sdma1;
563
564         sdma_v4_0_wait_reg_mem(ring, 0, 1,
565                                adev->nbio_funcs->get_hdp_flush_done_offset(adev),
566                                adev->nbio_funcs->get_hdp_flush_req_offset(adev),
567                                ref_and_mask, ref_and_mask, 10);
568 }
569
570 /**
571  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
572  *
573  * @ring: amdgpu ring pointer
574  * @fence: amdgpu fence object
575  *
576  * Add a DMA fence packet to the ring to write
577  * the fence seq number and DMA trap packet to generate
578  * an interrupt if needed (VEGA10).
579  */
580 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
581                                       unsigned flags)
582 {
583         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
584         /* write the fence */
585         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
586         /* zero in first two bits */
587         BUG_ON(addr & 0x3);
588         amdgpu_ring_write(ring, lower_32_bits(addr));
589         amdgpu_ring_write(ring, upper_32_bits(addr));
590         amdgpu_ring_write(ring, lower_32_bits(seq));
591
592         /* optionally write high bits as well */
593         if (write64bit) {
594                 addr += 4;
595                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
596                 /* zero in first two bits */
597                 BUG_ON(addr & 0x3);
598                 amdgpu_ring_write(ring, lower_32_bits(addr));
599                 amdgpu_ring_write(ring, upper_32_bits(addr));
600                 amdgpu_ring_write(ring, upper_32_bits(seq));
601         }
602
603         /* generate an interrupt */
604         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
605         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
606 }
607
608
609 /**
610  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
611  *
612  * @adev: amdgpu_device pointer
613  *
614  * Stop the gfx async dma ring buffers (VEGA10).
615  */
616 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
617 {
618         struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
619         struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
620         u32 rb_cntl, ib_cntl;
621         int i;
622
623         if ((adev->mman.buffer_funcs_ring == sdma0) ||
624             (adev->mman.buffer_funcs_ring == sdma1))
625                         amdgpu_ttm_set_buffer_funcs_status(adev, false);
626
627         for (i = 0; i < adev->sdma.num_instances; i++) {
628                 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
629                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
630                 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
631                 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
632                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
633                 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
634         }
635
636         sdma0->sched.ready = false;
637         sdma1->sched.ready = false;
638 }
639
640 /**
641  * sdma_v4_0_rlc_stop - stop the compute async dma engines
642  *
643  * @adev: amdgpu_device pointer
644  *
645  * Stop the compute async dma queues (VEGA10).
646  */
647 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
648 {
649         /* XXX todo */
650 }
651
652 /**
653  * sdma_v4_0_page_stop - stop the page async dma engines
654  *
655  * @adev: amdgpu_device pointer
656  *
657  * Stop the page async dma ring buffers (VEGA10).
658  */
659 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
660 {
661         struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].page;
662         struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].page;
663         u32 rb_cntl, ib_cntl;
664         int i;
665
666         if ((adev->mman.buffer_funcs_ring == sdma0) ||
667             (adev->mman.buffer_funcs_ring == sdma1))
668                 amdgpu_ttm_set_buffer_funcs_status(adev, false);
669
670         for (i = 0; i < adev->sdma.num_instances; i++) {
671                 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
672                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
673                                         RB_ENABLE, 0);
674                 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
675                 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
676                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
677                                         IB_ENABLE, 0);
678                 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
679         }
680
681         sdma0->sched.ready = false;
682         sdma1->sched.ready = false;
683 }
684
685 /**
686  * sdma_v_0_ctx_switch_enable - stop the async dma engines context switch
687  *
688  * @adev: amdgpu_device pointer
689  * @enable: enable/disable the DMA MEs context switch.
690  *
691  * Halt or unhalt the async dma engines context switch (VEGA10).
692  */
693 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
694 {
695         u32 f32_cntl, phase_quantum = 0;
696         int i;
697
698         if (amdgpu_sdma_phase_quantum) {
699                 unsigned value = amdgpu_sdma_phase_quantum;
700                 unsigned unit = 0;
701
702                 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
703                                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
704                         value = (value + 1) >> 1;
705                         unit++;
706                 }
707                 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
708                             SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
709                         value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
710                                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
711                         unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
712                                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
713                         WARN_ONCE(1,
714                         "clamping sdma_phase_quantum to %uK clock cycles\n",
715                                   value << unit);
716                 }
717                 phase_quantum =
718                         value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
719                         unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
720         }
721
722         for (i = 0; i < adev->sdma.num_instances; i++) {
723                 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
724                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
725                                 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
726                 if (enable && amdgpu_sdma_phase_quantum) {
727                         WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
728                         WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
729                         WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
730                 }
731                 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
732         }
733
734 }
735
736 /**
737  * sdma_v4_0_enable - stop the async dma engines
738  *
739  * @adev: amdgpu_device pointer
740  * @enable: enable/disable the DMA MEs.
741  *
742  * Halt or unhalt the async dma engines (VEGA10).
743  */
744 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
745 {
746         u32 f32_cntl;
747         int i;
748
749         if (enable == false) {
750                 sdma_v4_0_gfx_stop(adev);
751                 sdma_v4_0_rlc_stop(adev);
752                 if (adev->sdma.has_page_queue)
753                         sdma_v4_0_page_stop(adev);
754         }
755
756         for (i = 0; i < adev->sdma.num_instances; i++) {
757                 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
758                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
759                 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
760         }
761 }
762
763 /**
764  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
765  */
766 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
767 {
768         /* Set ring buffer size in dwords */
769         uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
770
771         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
772 #ifdef __BIG_ENDIAN
773         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
774         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
775                                 RPTR_WRITEBACK_SWAP_ENABLE, 1);
776 #endif
777         return rb_cntl;
778 }
779
780 /**
781  * sdma_v4_0_gfx_resume - setup and start the async dma engines
782  *
783  * @adev: amdgpu_device pointer
784  * @i: instance to resume
785  *
786  * Set up the gfx DMA ring buffers and enable them (VEGA10).
787  * Returns 0 for success, error for failure.
788  */
789 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
790 {
791         struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
792         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
793         u32 wb_offset;
794         u32 doorbell;
795         u32 doorbell_offset;
796         u64 wptr_gpu_addr;
797
798         wb_offset = (ring->rptr_offs * 4);
799
800         rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
801         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
802         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
803
804         /* Initialize the ring buffer's read and write pointers */
805         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
806         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
807         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
808         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
809
810         /* set the wb address whether it's enabled or not */
811         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
812                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
813         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
814                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
815
816         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
817                                 RPTR_WRITEBACK_ENABLE, 1);
818
819         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
820         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
821
822         ring->wptr = 0;
823
824         /* before programing wptr to a less value, need set minor_ptr_update first */
825         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
826
827         doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
828         doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
829
830         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
831                                  ring->use_doorbell);
832         doorbell_offset = REG_SET_FIELD(doorbell_offset,
833                                         SDMA0_GFX_DOORBELL_OFFSET,
834                                         OFFSET, ring->doorbell_index);
835         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
836         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
837
838         sdma_v4_0_ring_set_wptr(ring);
839
840         /* set minor_ptr_update to 0 after wptr programed */
841         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
842
843         /* setup the wptr shadow polling */
844         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
845         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
846                     lower_32_bits(wptr_gpu_addr));
847         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
848                     upper_32_bits(wptr_gpu_addr));
849         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
850         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
851                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
852                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
853         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
854
855         /* enable DMA RB */
856         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
857         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
858
859         ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
860         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
861 #ifdef __BIG_ENDIAN
862         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
863 #endif
864         /* enable DMA IBs */
865         WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
866
867         ring->sched.ready = true;
868 }
869
870 /**
871  * sdma_v4_0_page_resume - setup and start the async dma engines
872  *
873  * @adev: amdgpu_device pointer
874  * @i: instance to resume
875  *
876  * Set up the page DMA ring buffers and enable them (VEGA10).
877  * Returns 0 for success, error for failure.
878  */
879 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
880 {
881         struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
882         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
883         u32 wb_offset;
884         u32 doorbell;
885         u32 doorbell_offset;
886         u64 wptr_gpu_addr;
887
888         wb_offset = (ring->rptr_offs * 4);
889
890         rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
891         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
892         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
893
894         /* Initialize the ring buffer's read and write pointers */
895         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
896         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
897         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
898         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
899
900         /* set the wb address whether it's enabled or not */
901         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
902                upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
903         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
904                lower_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC);
905
906         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
907                                 RPTR_WRITEBACK_ENABLE, 1);
908
909         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
910         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
911
912         ring->wptr = 0;
913
914         /* before programing wptr to a less value, need set minor_ptr_update first */
915         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
916
917         doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
918         doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
919
920         doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
921                                  ring->use_doorbell);
922         doorbell_offset = REG_SET_FIELD(doorbell_offset,
923                                         SDMA0_PAGE_DOORBELL_OFFSET,
924                                         OFFSET, ring->doorbell_index);
925         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
926         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
927
928         /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
929         sdma_v4_0_page_ring_set_wptr(ring);
930
931         /* set minor_ptr_update to 0 after wptr programed */
932         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
933
934         /* setup the wptr shadow polling */
935         wptr_gpu_addr = adev->wb.gpu_addr + (ring->wptr_offs * 4);
936         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
937                     lower_32_bits(wptr_gpu_addr));
938         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
939                     upper_32_bits(wptr_gpu_addr));
940         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
941         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
942                                        SDMA0_PAGE_RB_WPTR_POLL_CNTL,
943                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev));
944         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
945
946         /* enable DMA RB */
947         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
948         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
949
950         ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
951         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
952 #ifdef __BIG_ENDIAN
953         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
954 #endif
955         /* enable DMA IBs */
956         WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
957
958         ring->sched.ready = true;
959 }
960
961 static void
962 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
963 {
964         uint32_t def, data;
965
966         if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
967                 /* enable idle interrupt */
968                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
969                 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
970
971                 if (data != def)
972                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
973         } else {
974                 /* disable idle interrupt */
975                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
976                 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
977                 if (data != def)
978                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
979         }
980 }
981
982 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
983 {
984         uint32_t def, data;
985
986         /* Enable HW based PG. */
987         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
988         data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
989         if (data != def)
990                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
991
992         /* enable interrupt */
993         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
994         data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
995         if (data != def)
996                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
997
998         /* Configure hold time to filter in-valid power on/off request. Use default right now */
999         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1000         data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1001         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1002         /* Configure switch time for hysteresis purpose. Use default right now */
1003         data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1004         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1005         if(data != def)
1006                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1007 }
1008
1009 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1010 {
1011         if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1012                 return;
1013
1014         switch (adev->asic_type) {
1015         case CHIP_RAVEN:
1016                 sdma_v4_1_init_power_gating(adev);
1017                 sdma_v4_1_update_power_gating(adev, true);
1018                 break;
1019         default:
1020                 break;
1021         }
1022 }
1023
1024 /**
1025  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1026  *
1027  * @adev: amdgpu_device pointer
1028  *
1029  * Set up the compute DMA queues and enable them (VEGA10).
1030  * Returns 0 for success, error for failure.
1031  */
1032 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1033 {
1034         sdma_v4_0_init_pg(adev);
1035
1036         return 0;
1037 }
1038
1039 /**
1040  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1041  *
1042  * @adev: amdgpu_device pointer
1043  *
1044  * Loads the sDMA0/1 ucode.
1045  * Returns 0 for success, -EINVAL if the ucode is not available.
1046  */
1047 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1048 {
1049         const struct sdma_firmware_header_v1_0 *hdr;
1050         const __le32 *fw_data;
1051         u32 fw_size;
1052         int i, j;
1053
1054         /* halt the MEs */
1055         sdma_v4_0_enable(adev, false);
1056
1057         for (i = 0; i < adev->sdma.num_instances; i++) {
1058                 if (!adev->sdma.instance[i].fw)
1059                         return -EINVAL;
1060
1061                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1062                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1063                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1064
1065                 fw_data = (const __le32 *)
1066                         (adev->sdma.instance[i].fw->data +
1067                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1068
1069                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1070
1071                 for (j = 0; j < fw_size; j++)
1072                         WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1073                                     le32_to_cpup(fw_data++));
1074
1075                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1076                             adev->sdma.instance[i].fw_version);
1077         }
1078
1079         return 0;
1080 }
1081
1082 /**
1083  * sdma_v4_0_start - setup and start the async dma engines
1084  *
1085  * @adev: amdgpu_device pointer
1086  *
1087  * Set up the DMA engines and enable them (VEGA10).
1088  * Returns 0 for success, error for failure.
1089  */
1090 static int sdma_v4_0_start(struct amdgpu_device *adev)
1091 {
1092         struct amdgpu_ring *ring;
1093         int i, r;
1094
1095         if (amdgpu_sriov_vf(adev)) {
1096                 sdma_v4_0_ctx_switch_enable(adev, false);
1097                 sdma_v4_0_enable(adev, false);
1098         } else {
1099
1100                 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1101                         r = sdma_v4_0_load_microcode(adev);
1102                         if (r)
1103                                 return r;
1104                 }
1105
1106                 /* unhalt the MEs */
1107                 sdma_v4_0_enable(adev, true);
1108                 /* enable sdma ring preemption */
1109                 sdma_v4_0_ctx_switch_enable(adev, true);
1110         }
1111
1112         /* start the gfx rings and rlc compute queues */
1113         for (i = 0; i < adev->sdma.num_instances; i++) {
1114                 uint32_t temp;
1115
1116                 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1117                 sdma_v4_0_gfx_resume(adev, i);
1118                 if (adev->sdma.has_page_queue)
1119                         sdma_v4_0_page_resume(adev, i);
1120
1121                 /* set utc l1 enable flag always to 1 */
1122                 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1123                 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1124                 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1125
1126                 if (!amdgpu_sriov_vf(adev)) {
1127                         /* unhalt engine */
1128                         temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1129                         temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1130                         WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1131                 }
1132         }
1133
1134         if (amdgpu_sriov_vf(adev)) {
1135                 sdma_v4_0_ctx_switch_enable(adev, true);
1136                 sdma_v4_0_enable(adev, true);
1137         } else {
1138                 r = sdma_v4_0_rlc_resume(adev);
1139                 if (r)
1140                         return r;
1141         }
1142
1143         for (i = 0; i < adev->sdma.num_instances; i++) {
1144                 ring = &adev->sdma.instance[i].ring;
1145
1146                 r = amdgpu_ring_test_helper(ring);
1147                 if (r)
1148                         return r;
1149
1150                 if (adev->sdma.has_page_queue) {
1151                         struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1152
1153                         r = amdgpu_ring_test_helper(page);
1154                         if (r)
1155                                 return r;
1156
1157                         if (adev->mman.buffer_funcs_ring == page)
1158                                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1159                 }
1160
1161                 if (adev->mman.buffer_funcs_ring == ring)
1162                         amdgpu_ttm_set_buffer_funcs_status(adev, true);
1163         }
1164
1165         return r;
1166 }
1167
1168 /**
1169  * sdma_v4_0_ring_test_ring - simple async dma engine test
1170  *
1171  * @ring: amdgpu_ring structure holding ring information
1172  *
1173  * Test the DMA engine by writing using it to write an
1174  * value to memory. (VEGA10).
1175  * Returns 0 for success, error for failure.
1176  */
1177 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1178 {
1179         struct amdgpu_device *adev = ring->adev;
1180         unsigned i;
1181         unsigned index;
1182         int r;
1183         u32 tmp;
1184         u64 gpu_addr;
1185
1186         r = amdgpu_device_wb_get(adev, &index);
1187         if (r)
1188                 return r;
1189
1190         gpu_addr = adev->wb.gpu_addr + (index * 4);
1191         tmp = 0xCAFEDEAD;
1192         adev->wb.wb[index] = cpu_to_le32(tmp);
1193
1194         r = amdgpu_ring_alloc(ring, 5);
1195         if (r)
1196                 goto error_free_wb;
1197
1198         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1199                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1200         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1201         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1202         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1203         amdgpu_ring_write(ring, 0xDEADBEEF);
1204         amdgpu_ring_commit(ring);
1205
1206         for (i = 0; i < adev->usec_timeout; i++) {
1207                 tmp = le32_to_cpu(adev->wb.wb[index]);
1208                 if (tmp == 0xDEADBEEF)
1209                         break;
1210                 DRM_UDELAY(1);
1211         }
1212
1213         if (i >= adev->usec_timeout)
1214                 r = -ETIMEDOUT;
1215
1216 error_free_wb:
1217         amdgpu_device_wb_free(adev, index);
1218         return r;
1219 }
1220
1221 /**
1222  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1223  *
1224  * @ring: amdgpu_ring structure holding ring information
1225  *
1226  * Test a simple IB in the DMA ring (VEGA10).
1227  * Returns 0 on success, error on failure.
1228  */
1229 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1230 {
1231         struct amdgpu_device *adev = ring->adev;
1232         struct amdgpu_ib ib;
1233         struct dma_fence *f = NULL;
1234         unsigned index;
1235         long r;
1236         u32 tmp = 0;
1237         u64 gpu_addr;
1238
1239         r = amdgpu_device_wb_get(adev, &index);
1240         if (r)
1241                 return r;
1242
1243         gpu_addr = adev->wb.gpu_addr + (index * 4);
1244         tmp = 0xCAFEDEAD;
1245         adev->wb.wb[index] = cpu_to_le32(tmp);
1246         memset(&ib, 0, sizeof(ib));
1247         r = amdgpu_ib_get(adev, NULL, 256, &ib);
1248         if (r)
1249                 goto err0;
1250
1251         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1252                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1253         ib.ptr[1] = lower_32_bits(gpu_addr);
1254         ib.ptr[2] = upper_32_bits(gpu_addr);
1255         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1256         ib.ptr[4] = 0xDEADBEEF;
1257         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1258         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1259         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1260         ib.length_dw = 8;
1261
1262         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1263         if (r)
1264                 goto err1;
1265
1266         r = dma_fence_wait_timeout(f, false, timeout);
1267         if (r == 0) {
1268                 r = -ETIMEDOUT;
1269                 goto err1;
1270         } else if (r < 0) {
1271                 goto err1;
1272         }
1273         tmp = le32_to_cpu(adev->wb.wb[index]);
1274         if (tmp == 0xDEADBEEF)
1275                 r = 0;
1276         else
1277                 r = -EINVAL;
1278
1279 err1:
1280         amdgpu_ib_free(adev, &ib, NULL);
1281         dma_fence_put(f);
1282 err0:
1283         amdgpu_device_wb_free(adev, index);
1284         return r;
1285 }
1286
1287
1288 /**
1289  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1290  *
1291  * @ib: indirect buffer to fill with commands
1292  * @pe: addr of the page entry
1293  * @src: src addr to copy from
1294  * @count: number of page entries to update
1295  *
1296  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1297  */
1298 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1299                                   uint64_t pe, uint64_t src,
1300                                   unsigned count)
1301 {
1302         unsigned bytes = count * 8;
1303
1304         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1305                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1306         ib->ptr[ib->length_dw++] = bytes - 1;
1307         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1308         ib->ptr[ib->length_dw++] = lower_32_bits(src);
1309         ib->ptr[ib->length_dw++] = upper_32_bits(src);
1310         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1311         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1312
1313 }
1314
1315 /**
1316  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1317  *
1318  * @ib: indirect buffer to fill with commands
1319  * @pe: addr of the page entry
1320  * @addr: dst addr to write into pe
1321  * @count: number of page entries to update
1322  * @incr: increase next addr by incr bytes
1323  * @flags: access flags
1324  *
1325  * Update PTEs by writing them manually using sDMA (VEGA10).
1326  */
1327 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1328                                    uint64_t value, unsigned count,
1329                                    uint32_t incr)
1330 {
1331         unsigned ndw = count * 2;
1332
1333         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1334                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1335         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1336         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1337         ib->ptr[ib->length_dw++] = ndw - 1;
1338         for (; ndw > 0; ndw -= 2) {
1339                 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1340                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1341                 value += incr;
1342         }
1343 }
1344
1345 /**
1346  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1347  *
1348  * @ib: indirect buffer to fill with commands
1349  * @pe: addr of the page entry
1350  * @addr: dst addr to write into pe
1351  * @count: number of page entries to update
1352  * @incr: increase next addr by incr bytes
1353  * @flags: access flags
1354  *
1355  * Update the page tables using sDMA (VEGA10).
1356  */
1357 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1358                                      uint64_t pe,
1359                                      uint64_t addr, unsigned count,
1360                                      uint32_t incr, uint64_t flags)
1361 {
1362         /* for physically contiguous pages (vram) */
1363         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1364         ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1365         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1366         ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1367         ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1368         ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1369         ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1370         ib->ptr[ib->length_dw++] = incr; /* increment size */
1371         ib->ptr[ib->length_dw++] = 0;
1372         ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1373 }
1374
1375 /**
1376  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1377  *
1378  * @ib: indirect buffer to fill with padding
1379  *
1380  */
1381 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1382 {
1383         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1384         u32 pad_count;
1385         int i;
1386
1387         pad_count = (8 - (ib->length_dw & 0x7)) % 8;
1388         for (i = 0; i < pad_count; i++)
1389                 if (sdma && sdma->burst_nop && (i == 0))
1390                         ib->ptr[ib->length_dw++] =
1391                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1392                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1393                 else
1394                         ib->ptr[ib->length_dw++] =
1395                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1396 }
1397
1398
1399 /**
1400  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1401  *
1402  * @ring: amdgpu_ring pointer
1403  *
1404  * Make sure all previous operations are completed (CIK).
1405  */
1406 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1407 {
1408         uint32_t seq = ring->fence_drv.sync_seq;
1409         uint64_t addr = ring->fence_drv.gpu_addr;
1410
1411         /* wait for idle */
1412         sdma_v4_0_wait_reg_mem(ring, 1, 0,
1413                                addr & 0xfffffffc,
1414                                upper_32_bits(addr) & 0xffffffff,
1415                                seq, 0xffffffff, 4);
1416 }
1417
1418
1419 /**
1420  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1421  *
1422  * @ring: amdgpu_ring pointer
1423  * @vm: amdgpu_vm pointer
1424  *
1425  * Update the page table base and flush the VM TLB
1426  * using sDMA (VEGA10).
1427  */
1428 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1429                                          unsigned vmid, uint64_t pd_addr)
1430 {
1431         amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1432 }
1433
1434 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1435                                      uint32_t reg, uint32_t val)
1436 {
1437         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1438                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1439         amdgpu_ring_write(ring, reg);
1440         amdgpu_ring_write(ring, val);
1441 }
1442
1443 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1444                                          uint32_t val, uint32_t mask)
1445 {
1446         sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1447 }
1448
1449 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1450 {
1451         uint fw_version = adev->sdma.instance[0].fw_version;
1452
1453         switch (adev->asic_type) {
1454         case CHIP_VEGA10:
1455                 return fw_version >= 430;
1456         case CHIP_VEGA12:
1457                 /*return fw_version >= 31;*/
1458                 return false;
1459         case CHIP_VEGA20:
1460                 return fw_version >= 123;
1461         default:
1462                 return false;
1463         }
1464 }
1465
1466 static int sdma_v4_0_early_init(void *handle)
1467 {
1468         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1469         int r;
1470
1471         if (adev->asic_type == CHIP_RAVEN)
1472                 adev->sdma.num_instances = 1;
1473         else
1474                 adev->sdma.num_instances = 2;
1475
1476         r = sdma_v4_0_init_microcode(adev);
1477         if (r) {
1478                 DRM_ERROR("Failed to load sdma firmware!\n");
1479                 return r;
1480         }
1481
1482         /* TODO: Page queue breaks driver reload under SRIOV */
1483         if ((adev->asic_type == CHIP_VEGA10) && amdgpu_sriov_vf((adev)))
1484                 adev->sdma.has_page_queue = false;
1485         else if (sdma_v4_0_fw_support_paging_queue(adev))
1486                 adev->sdma.has_page_queue = true;
1487
1488         sdma_v4_0_set_ring_funcs(adev);
1489         sdma_v4_0_set_buffer_funcs(adev);
1490         sdma_v4_0_set_vm_pte_funcs(adev);
1491         sdma_v4_0_set_irq_funcs(adev);
1492
1493         return 0;
1494 }
1495
1496 static int sdma_v4_0_sw_init(void *handle)
1497 {
1498         struct amdgpu_ring *ring;
1499         int r, i;
1500         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1501
1502         /* SDMA trap event */
1503         r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA0, SDMA0_4_0__SRCID__SDMA_TRAP,
1504                               &adev->sdma.trap_irq);
1505         if (r)
1506                 return r;
1507
1508         /* SDMA trap event */
1509         r = amdgpu_irq_add_id(adev, SOC15_IH_CLIENTID_SDMA1, SDMA1_4_0__SRCID__SDMA_TRAP,
1510                               &adev->sdma.trap_irq);
1511         if (r)
1512                 return r;
1513
1514         for (i = 0; i < adev->sdma.num_instances; i++) {
1515                 ring = &adev->sdma.instance[i].ring;
1516                 ring->ring_obj = NULL;
1517                 ring->use_doorbell = true;
1518
1519                 DRM_INFO("use_doorbell being set to: [%s]\n",
1520                                 ring->use_doorbell?"true":"false");
1521
1522                 /* doorbell size is 2 dwords, get DWORD offset */
1523                 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1524
1525                 sprintf(ring->name, "sdma%d", i);
1526                 r = amdgpu_ring_init(adev, ring, 1024,
1527                                      &adev->sdma.trap_irq,
1528                                      (i == 0) ?
1529                                      AMDGPU_SDMA_IRQ_TRAP0 :
1530                                      AMDGPU_SDMA_IRQ_TRAP1);
1531                 if (r)
1532                         return r;
1533
1534                 if (adev->sdma.has_page_queue) {
1535                         ring = &adev->sdma.instance[i].page;
1536                         ring->ring_obj = NULL;
1537                         ring->use_doorbell = true;
1538
1539                         /* paging queue use same doorbell index/routing as gfx queue
1540                          * with 0x400 (4096 dwords) offset on second doorbell page
1541                          */
1542                         ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1543                         ring->doorbell_index += 0x400;
1544
1545                         sprintf(ring->name, "page%d", i);
1546                         r = amdgpu_ring_init(adev, ring, 1024,
1547                                              &adev->sdma.trap_irq,
1548                                              (i == 0) ?
1549                                              AMDGPU_SDMA_IRQ_TRAP0 :
1550                                              AMDGPU_SDMA_IRQ_TRAP1);
1551                         if (r)
1552                                 return r;
1553                 }
1554         }
1555
1556         return r;
1557 }
1558
1559 static int sdma_v4_0_sw_fini(void *handle)
1560 {
1561         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1562         int i;
1563
1564         for (i = 0; i < adev->sdma.num_instances; i++) {
1565                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1566                 if (adev->sdma.has_page_queue)
1567                         amdgpu_ring_fini(&adev->sdma.instance[i].page);
1568         }
1569
1570         for (i = 0; i < adev->sdma.num_instances; i++) {
1571                 release_firmware(adev->sdma.instance[i].fw);
1572                 adev->sdma.instance[i].fw = NULL;
1573         }
1574
1575         return 0;
1576 }
1577
1578 static int sdma_v4_0_hw_init(void *handle)
1579 {
1580         int r;
1581         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1582
1583         if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs &&
1584                         adev->powerplay.pp_funcs->set_powergating_by_smu)
1585                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1586
1587         sdma_v4_0_init_golden_registers(adev);
1588
1589         r = sdma_v4_0_start(adev);
1590
1591         return r;
1592 }
1593
1594 static int sdma_v4_0_hw_fini(void *handle)
1595 {
1596         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1597
1598         if (amdgpu_sriov_vf(adev))
1599                 return 0;
1600
1601         sdma_v4_0_ctx_switch_enable(adev, false);
1602         sdma_v4_0_enable(adev, false);
1603
1604         if (adev->asic_type == CHIP_RAVEN && adev->powerplay.pp_funcs
1605                         && adev->powerplay.pp_funcs->set_powergating_by_smu)
1606                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1607
1608         return 0;
1609 }
1610
1611 static int sdma_v4_0_suspend(void *handle)
1612 {
1613         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1614
1615         return sdma_v4_0_hw_fini(adev);
1616 }
1617
1618 static int sdma_v4_0_resume(void *handle)
1619 {
1620         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1621
1622         return sdma_v4_0_hw_init(adev);
1623 }
1624
1625 static bool sdma_v4_0_is_idle(void *handle)
1626 {
1627         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1628         u32 i;
1629
1630         for (i = 0; i < adev->sdma.num_instances; i++) {
1631                 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1632
1633                 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1634                         return false;
1635         }
1636
1637         return true;
1638 }
1639
1640 static int sdma_v4_0_wait_for_idle(void *handle)
1641 {
1642         unsigned i;
1643         u32 sdma0, sdma1;
1644         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1645
1646         for (i = 0; i < adev->usec_timeout; i++) {
1647                 sdma0 = RREG32_SDMA(0, mmSDMA0_STATUS_REG);
1648                 sdma1 = RREG32_SDMA(1, mmSDMA0_STATUS_REG);
1649
1650                 if (sdma0 & sdma1 & SDMA0_STATUS_REG__IDLE_MASK)
1651                         return 0;
1652                 udelay(1);
1653         }
1654         return -ETIMEDOUT;
1655 }
1656
1657 static int sdma_v4_0_soft_reset(void *handle)
1658 {
1659         /* todo */
1660
1661         return 0;
1662 }
1663
1664 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
1665                                         struct amdgpu_irq_src *source,
1666                                         unsigned type,
1667                                         enum amdgpu_interrupt_state state)
1668 {
1669         unsigned int instance = (type == AMDGPU_SDMA_IRQ_TRAP0) ? 0 : 1;
1670         u32 sdma_cntl;
1671
1672         sdma_cntl = RREG32_SDMA(instance, mmSDMA0_CNTL);
1673         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
1674                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
1675         WREG32_SDMA(instance, mmSDMA0_CNTL, sdma_cntl);
1676
1677         return 0;
1678 }
1679
1680 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
1681                                       struct amdgpu_irq_src *source,
1682                                       struct amdgpu_iv_entry *entry)
1683 {
1684         uint32_t instance;
1685
1686         DRM_DEBUG("IH: SDMA trap\n");
1687         switch (entry->client_id) {
1688         case SOC15_IH_CLIENTID_SDMA0:
1689                 instance = 0;
1690                 break;
1691         case SOC15_IH_CLIENTID_SDMA1:
1692                 instance = 1;
1693                 break;
1694         default:
1695                 return 0;
1696         }
1697
1698         switch (entry->ring_id) {
1699         case 0:
1700                 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
1701                 break;
1702         case 1:
1703                 if (adev->asic_type == CHIP_VEGA20)
1704                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
1705                 break;
1706         case 2:
1707                 /* XXX compute */
1708                 break;
1709         case 3:
1710                 if (adev->asic_type != CHIP_VEGA20)
1711                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
1712                 break;
1713         }
1714         return 0;
1715 }
1716
1717 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1718                                               struct amdgpu_irq_src *source,
1719                                               struct amdgpu_iv_entry *entry)
1720 {
1721         int instance;
1722
1723         DRM_ERROR("Illegal instruction in SDMA command stream\n");
1724
1725         switch (entry->client_id) {
1726         case SOC15_IH_CLIENTID_SDMA0:
1727                 instance = 0;
1728                 break;
1729         case SOC15_IH_CLIENTID_SDMA1:
1730                 instance = 1;
1731                 break;
1732         default:
1733                 return 0;
1734         }
1735
1736         switch (entry->ring_id) {
1737         case 0:
1738                 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
1739                 break;
1740         }
1741         return 0;
1742 }
1743
1744 static void sdma_v4_0_update_medium_grain_clock_gating(
1745                 struct amdgpu_device *adev,
1746                 bool enable)
1747 {
1748         uint32_t data, def;
1749
1750         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1751                 /* enable sdma0 clock gating */
1752                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1753                 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1754                           SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1755                           SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1756                           SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1757                           SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1758                           SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1759                           SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1760                           SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1761                 if (def != data)
1762                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1763
1764                 if (adev->sdma.num_instances > 1) {
1765                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1766                         data &= ~(SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1767                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1768                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1769                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1770                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1771                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1772                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1773                                   SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1774                         if (def != data)
1775                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1776                 }
1777         } else {
1778                 /* disable sdma0 clock gating */
1779                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1780                 data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1781                          SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1782                          SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1783                          SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1784                          SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1785                          SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1786                          SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1787                          SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1788
1789                 if (def != data)
1790                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL), data);
1791
1792                 if (adev->sdma.num_instances > 1) {
1793                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL));
1794                         data |= (SDMA1_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1795                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1796                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1797                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1798                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1799                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1800                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1801                                  SDMA1_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1802                         if (def != data)
1803                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_CLK_CTRL), data);
1804                 }
1805         }
1806 }
1807
1808
1809 static void sdma_v4_0_update_medium_grain_light_sleep(
1810                 struct amdgpu_device *adev,
1811                 bool enable)
1812 {
1813         uint32_t data, def;
1814
1815         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1816                 /* 1-not override: enable sdma0 mem light sleep */
1817                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1818                 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1819                 if (def != data)
1820                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1821
1822                 /* 1-not override: enable sdma1 mem light sleep */
1823                 if (adev->sdma.num_instances > 1) {
1824                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1825                         data |= SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1826                         if (def != data)
1827                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1828                 }
1829         } else {
1830                 /* 0-override:disable sdma0 mem light sleep */
1831                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1832                 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1833                 if (def != data)
1834                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1835
1836                 /* 0-override:disable sdma1 mem light sleep */
1837                 if (adev->sdma.num_instances > 1) {
1838                         def = data = RREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL));
1839                         data &= ~SDMA1_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1840                         if (def != data)
1841                                 WREG32(SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_POWER_CNTL), data);
1842                 }
1843         }
1844 }
1845
1846 static int sdma_v4_0_set_clockgating_state(void *handle,
1847                                           enum amd_clockgating_state state)
1848 {
1849         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1850
1851         if (amdgpu_sriov_vf(adev))
1852                 return 0;
1853
1854         switch (adev->asic_type) {
1855         case CHIP_VEGA10:
1856         case CHIP_VEGA12:
1857         case CHIP_VEGA20:
1858         case CHIP_RAVEN:
1859                 sdma_v4_0_update_medium_grain_clock_gating(adev,
1860                                 state == AMD_CG_STATE_GATE ? true : false);
1861                 sdma_v4_0_update_medium_grain_light_sleep(adev,
1862                                 state == AMD_CG_STATE_GATE ? true : false);
1863                 break;
1864         default:
1865                 break;
1866         }
1867         return 0;
1868 }
1869
1870 static int sdma_v4_0_set_powergating_state(void *handle,
1871                                           enum amd_powergating_state state)
1872 {
1873         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1874
1875         switch (adev->asic_type) {
1876         case CHIP_RAVEN:
1877                 sdma_v4_1_update_power_gating(adev,
1878                                 state == AMD_PG_STATE_GATE ? true : false);
1879                 break;
1880         default:
1881                 break;
1882         }
1883
1884         return 0;
1885 }
1886
1887 static void sdma_v4_0_get_clockgating_state(void *handle, u32 *flags)
1888 {
1889         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1890         int data;
1891
1892         if (amdgpu_sriov_vf(adev))
1893                 *flags = 0;
1894
1895         /* AMD_CG_SUPPORT_SDMA_MGCG */
1896         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
1897         if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
1898                 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1899
1900         /* AMD_CG_SUPPORT_SDMA_LS */
1901         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1902         if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1903                 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1904 }
1905
1906 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
1907         .name = "sdma_v4_0",
1908         .early_init = sdma_v4_0_early_init,
1909         .late_init = NULL,
1910         .sw_init = sdma_v4_0_sw_init,
1911         .sw_fini = sdma_v4_0_sw_fini,
1912         .hw_init = sdma_v4_0_hw_init,
1913         .hw_fini = sdma_v4_0_hw_fini,
1914         .suspend = sdma_v4_0_suspend,
1915         .resume = sdma_v4_0_resume,
1916         .is_idle = sdma_v4_0_is_idle,
1917         .wait_for_idle = sdma_v4_0_wait_for_idle,
1918         .soft_reset = sdma_v4_0_soft_reset,
1919         .set_clockgating_state = sdma_v4_0_set_clockgating_state,
1920         .set_powergating_state = sdma_v4_0_set_powergating_state,
1921         .get_clockgating_state = sdma_v4_0_get_clockgating_state,
1922 };
1923
1924 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
1925         .type = AMDGPU_RING_TYPE_SDMA,
1926         .align_mask = 0xf,
1927         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1928         .support_64bit_ptrs = true,
1929         .vmhub = AMDGPU_MMHUB,
1930         .get_rptr = sdma_v4_0_ring_get_rptr,
1931         .get_wptr = sdma_v4_0_ring_get_wptr,
1932         .set_wptr = sdma_v4_0_ring_set_wptr,
1933         .emit_frame_size =
1934                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
1935                 3 + /* hdp invalidate */
1936                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1937                 /* sdma_v4_0_ring_emit_vm_flush */
1938                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1939                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1940                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1941         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1942         .emit_ib = sdma_v4_0_ring_emit_ib,
1943         .emit_fence = sdma_v4_0_ring_emit_fence,
1944         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1945         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1946         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1947         .test_ring = sdma_v4_0_ring_test_ring,
1948         .test_ib = sdma_v4_0_ring_test_ib,
1949         .insert_nop = sdma_v4_0_ring_insert_nop,
1950         .pad_ib = sdma_v4_0_ring_pad_ib,
1951         .emit_wreg = sdma_v4_0_ring_emit_wreg,
1952         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1953         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1954 };
1955
1956 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
1957         .type = AMDGPU_RING_TYPE_SDMA,
1958         .align_mask = 0xf,
1959         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1960         .support_64bit_ptrs = true,
1961         .vmhub = AMDGPU_MMHUB,
1962         .get_rptr = sdma_v4_0_ring_get_rptr,
1963         .get_wptr = sdma_v4_0_page_ring_get_wptr,
1964         .set_wptr = sdma_v4_0_page_ring_set_wptr,
1965         .emit_frame_size =
1966                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
1967                 3 + /* hdp invalidate */
1968                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
1969                 /* sdma_v4_0_ring_emit_vm_flush */
1970                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
1971                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
1972                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
1973         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
1974         .emit_ib = sdma_v4_0_ring_emit_ib,
1975         .emit_fence = sdma_v4_0_ring_emit_fence,
1976         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
1977         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
1978         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
1979         .test_ring = sdma_v4_0_ring_test_ring,
1980         .test_ib = sdma_v4_0_ring_test_ib,
1981         .insert_nop = sdma_v4_0_ring_insert_nop,
1982         .pad_ib = sdma_v4_0_ring_pad_ib,
1983         .emit_wreg = sdma_v4_0_ring_emit_wreg,
1984         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
1985         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
1986 };
1987
1988 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
1989 {
1990         int i;
1991
1992         for (i = 0; i < adev->sdma.num_instances; i++) {
1993                 adev->sdma.instance[i].ring.funcs = &sdma_v4_0_ring_funcs;
1994                 adev->sdma.instance[i].ring.me = i;
1995                 if (adev->sdma.has_page_queue) {
1996                         adev->sdma.instance[i].page.funcs = &sdma_v4_0_page_ring_funcs;
1997                         adev->sdma.instance[i].page.me = i;
1998                 }
1999         }
2000 }
2001
2002 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2003         .set = sdma_v4_0_set_trap_irq_state,
2004         .process = sdma_v4_0_process_trap_irq,
2005 };
2006
2007 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2008         .process = sdma_v4_0_process_illegal_inst_irq,
2009 };
2010
2011 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2012 {
2013         adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
2014         adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2015         adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2016 }
2017
2018 /**
2019  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2020  *
2021  * @ring: amdgpu_ring structure holding ring information
2022  * @src_offset: src GPU address
2023  * @dst_offset: dst GPU address
2024  * @byte_count: number of bytes to xfer
2025  *
2026  * Copy GPU buffers using the DMA engine (VEGA10/12).
2027  * Used by the amdgpu ttm implementation to move pages if
2028  * registered as the asic copy callback.
2029  */
2030 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2031                                        uint64_t src_offset,
2032                                        uint64_t dst_offset,
2033                                        uint32_t byte_count)
2034 {
2035         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2036                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
2037         ib->ptr[ib->length_dw++] = byte_count - 1;
2038         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2039         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2040         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2041         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2042         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2043 }
2044
2045 /**
2046  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2047  *
2048  * @ring: amdgpu_ring structure holding ring information
2049  * @src_data: value to write to buffer
2050  * @dst_offset: dst GPU address
2051  * @byte_count: number of bytes to xfer
2052  *
2053  * Fill GPU buffers using the DMA engine (VEGA10/12).
2054  */
2055 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2056                                        uint32_t src_data,
2057                                        uint64_t dst_offset,
2058                                        uint32_t byte_count)
2059 {
2060         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2061         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2062         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2063         ib->ptr[ib->length_dw++] = src_data;
2064         ib->ptr[ib->length_dw++] = byte_count - 1;
2065 }
2066
2067 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2068         .copy_max_bytes = 0x400000,
2069         .copy_num_dw = 7,
2070         .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2071
2072         .fill_max_bytes = 0x400000,
2073         .fill_num_dw = 5,
2074         .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2075 };
2076
2077 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2078 {
2079         adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2080         if (adev->sdma.has_page_queue)
2081                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2082         else
2083                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2084 }
2085
2086 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2087         .copy_pte_num_dw = 7,
2088         .copy_pte = sdma_v4_0_vm_copy_pte,
2089
2090         .write_pte = sdma_v4_0_vm_write_pte,
2091         .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2092 };
2093
2094 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2095 {
2096         struct drm_gpu_scheduler *sched;
2097         unsigned i;
2098
2099         adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2100         for (i = 0; i < adev->sdma.num_instances; i++) {
2101                 if (adev->sdma.has_page_queue)
2102                         sched = &adev->sdma.instance[i].page.sched;
2103                 else
2104                         sched = &adev->sdma.instance[i].ring.sched;
2105                 adev->vm_manager.vm_pte_rqs[i] =
2106                         &sched->sched_rq[DRM_SCHED_PRIORITY_KERNEL];
2107         }
2108         adev->vm_manager.vm_pte_num_rqs = adev->sdma.num_instances;
2109 }
2110
2111 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2112         .type = AMD_IP_BLOCK_TYPE_SDMA,
2113         .major = 4,
2114         .minor = 0,
2115         .rev = 0,
2116         .funcs = &sdma_v4_0_ip_funcs,
2117 };