Merge tag 'drm-misc-fixes-2017-11-02' of git://anongit.freedesktop.org/drm/drm-misc...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <drm/drmP.h>
32 #include <drm/amdgpu_drm.h>
33 #include "amdgpu.h"
34 #include "amdgpu_trace.h"
35
36 /*
37  * PASID manager
38  *
39  * PASIDs are global address space identifiers that can be shared
40  * between the GPU, an IOMMU and the driver. VMs on different devices
41  * may use the same PASID if they share the same address
42  * space. Therefore PASIDs are allocated using a global IDA. VMs are
43  * looked up from the PASID per amdgpu_device.
44  */
45 static DEFINE_IDA(amdgpu_vm_pasid_ida);
46
47 /**
48  * amdgpu_vm_alloc_pasid - Allocate a PASID
49  * @bits: Maximum width of the PASID in bits, must be at least 1
50  *
51  * Allocates a PASID of the given width while keeping smaller PASIDs
52  * available if possible.
53  *
54  * Returns a positive integer on success. Returns %-EINVAL if bits==0.
55  * Returns %-ENOSPC if no PASID was available. Returns %-ENOMEM on
56  * memory allocation failure.
57  */
58 int amdgpu_vm_alloc_pasid(unsigned int bits)
59 {
60         int pasid = -EINVAL;
61
62         for (bits = min(bits, 31U); bits > 0; bits--) {
63                 pasid = ida_simple_get(&amdgpu_vm_pasid_ida,
64                                        1U << (bits - 1), 1U << bits,
65                                        GFP_KERNEL);
66                 if (pasid != -ENOSPC)
67                         break;
68         }
69
70         return pasid;
71 }
72
73 /**
74  * amdgpu_vm_free_pasid - Free a PASID
75  * @pasid: PASID to free
76  */
77 void amdgpu_vm_free_pasid(unsigned int pasid)
78 {
79         ida_simple_remove(&amdgpu_vm_pasid_ida, pasid);
80 }
81
82 /*
83  * GPUVM
84  * GPUVM is similar to the legacy gart on older asics, however
85  * rather than there being a single global gart table
86  * for the entire GPU, there are multiple VM page tables active
87  * at any given time.  The VM page tables can contain a mix
88  * vram pages and system memory pages and system memory pages
89  * can be mapped as snooped (cached system pages) or unsnooped
90  * (uncached system pages).
91  * Each VM has an ID associated with it and there is a page table
92  * associated with each VMID.  When execting a command buffer,
93  * the kernel tells the the ring what VMID to use for that command
94  * buffer.  VMIDs are allocated dynamically as commands are submitted.
95  * The userspace drivers maintain their own address space and the kernel
96  * sets up their pages tables accordingly when they submit their
97  * command buffers and a VMID is assigned.
98  * Cayman/Trinity support up to 8 active VMs at any given time;
99  * SI supports 16.
100  */
101
102 #define START(node) ((node)->start)
103 #define LAST(node) ((node)->last)
104
105 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
106                      START, LAST, static, amdgpu_vm_it)
107
108 #undef START
109 #undef LAST
110
111 /* Local structure. Encapsulate some VM table update parameters to reduce
112  * the number of function parameters
113  */
114 struct amdgpu_pte_update_params {
115         /* amdgpu device we do this update for */
116         struct amdgpu_device *adev;
117         /* optional amdgpu_vm we do this update for */
118         struct amdgpu_vm *vm;
119         /* address where to copy page table entries from */
120         uint64_t src;
121         /* indirect buffer to fill with commands */
122         struct amdgpu_ib *ib;
123         /* Function which actually does the update */
124         void (*func)(struct amdgpu_pte_update_params *params, uint64_t pe,
125                      uint64_t addr, unsigned count, uint32_t incr,
126                      uint64_t flags);
127         /* The next two are used during VM update by CPU
128          *  DMA addresses to use for mapping
129          *  Kernel pointer of PD/PT BO that needs to be updated
130          */
131         dma_addr_t *pages_addr;
132         void *kptr;
133 };
134
135 /* Helper to disable partial resident texture feature from a fence callback */
136 struct amdgpu_prt_cb {
137         struct amdgpu_device *adev;
138         struct dma_fence_cb cb;
139 };
140
141 /**
142  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
143  *
144  * @adev: amdgpu_device pointer
145  *
146  * Calculate the number of entries in a page directory or page table.
147  */
148 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
149                                       unsigned level)
150 {
151         if (level == 0)
152                 /* For the root directory */
153                 return adev->vm_manager.max_pfn >>
154                         (adev->vm_manager.block_size *
155                          adev->vm_manager.num_level);
156         else if (level == adev->vm_manager.num_level)
157                 /* For the page tables on the leaves */
158                 return AMDGPU_VM_PTE_COUNT(adev);
159         else
160                 /* Everything in between */
161                 return 1 << adev->vm_manager.block_size;
162 }
163
164 /**
165  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
166  *
167  * @adev: amdgpu_device pointer
168  *
169  * Calculate the size of the BO for a page directory or page table in bytes.
170  */
171 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
172 {
173         return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
174 }
175
176 /**
177  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
178  *
179  * @vm: vm providing the BOs
180  * @validated: head of validation list
181  * @entry: entry to add
182  *
183  * Add the page directory to the list of BOs to
184  * validate for command submission.
185  */
186 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
187                          struct list_head *validated,
188                          struct amdgpu_bo_list_entry *entry)
189 {
190         entry->robj = vm->root.base.bo;
191         entry->priority = 0;
192         entry->tv.bo = &entry->robj->tbo;
193         entry->tv.shared = true;
194         entry->user_pages = NULL;
195         list_add(&entry->tv.head, validated);
196 }
197
198 /**
199  * amdgpu_vm_validate_pt_bos - validate the page table BOs
200  *
201  * @adev: amdgpu device pointer
202  * @vm: vm providing the BOs
203  * @validate: callback to do the validation
204  * @param: parameter for the validation callback
205  *
206  * Validate the page table BOs on command submission if neccessary.
207  */
208 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
209                               int (*validate)(void *p, struct amdgpu_bo *bo),
210                               void *param)
211 {
212         struct ttm_bo_global *glob = adev->mman.bdev.glob;
213         int r;
214
215         spin_lock(&vm->status_lock);
216         while (!list_empty(&vm->evicted)) {
217                 struct amdgpu_vm_bo_base *bo_base;
218                 struct amdgpu_bo *bo;
219
220                 bo_base = list_first_entry(&vm->evicted,
221                                            struct amdgpu_vm_bo_base,
222                                            vm_status);
223                 spin_unlock(&vm->status_lock);
224
225                 bo = bo_base->bo;
226                 BUG_ON(!bo);
227                 if (bo->parent) {
228                         r = validate(param, bo);
229                         if (r)
230                                 return r;
231
232                         spin_lock(&glob->lru_lock);
233                         ttm_bo_move_to_lru_tail(&bo->tbo);
234                         if (bo->shadow)
235                                 ttm_bo_move_to_lru_tail(&bo->shadow->tbo);
236                         spin_unlock(&glob->lru_lock);
237                 }
238
239                 if (bo->tbo.type == ttm_bo_type_kernel &&
240                     vm->use_cpu_for_update) {
241                         r = amdgpu_bo_kmap(bo, NULL);
242                         if (r)
243                                 return r;
244                 }
245
246                 spin_lock(&vm->status_lock);
247                 if (bo->tbo.type != ttm_bo_type_kernel)
248                         list_move(&bo_base->vm_status, &vm->moved);
249                 else
250                         list_move(&bo_base->vm_status, &vm->relocated);
251         }
252         spin_unlock(&vm->status_lock);
253
254         return 0;
255 }
256
257 /**
258  * amdgpu_vm_ready - check VM is ready for updates
259  *
260  * @vm: VM to check
261  *
262  * Check if all VM PDs/PTs are ready for updates
263  */
264 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
265 {
266         bool ready;
267
268         spin_lock(&vm->status_lock);
269         ready = list_empty(&vm->evicted);
270         spin_unlock(&vm->status_lock);
271
272         return ready;
273 }
274
275 /**
276  * amdgpu_vm_alloc_levels - allocate the PD/PT levels
277  *
278  * @adev: amdgpu_device pointer
279  * @vm: requested vm
280  * @saddr: start of the address range
281  * @eaddr: end of the address range
282  *
283  * Make sure the page directories and page tables are allocated
284  */
285 static int amdgpu_vm_alloc_levels(struct amdgpu_device *adev,
286                                   struct amdgpu_vm *vm,
287                                   struct amdgpu_vm_pt *parent,
288                                   uint64_t saddr, uint64_t eaddr,
289                                   unsigned level)
290 {
291         unsigned shift = (adev->vm_manager.num_level - level) *
292                 adev->vm_manager.block_size;
293         unsigned pt_idx, from, to;
294         int r;
295         u64 flags;
296         uint64_t init_value = 0;
297
298         if (!parent->entries) {
299                 unsigned num_entries = amdgpu_vm_num_entries(adev, level);
300
301                 parent->entries = kvmalloc_array(num_entries,
302                                                    sizeof(struct amdgpu_vm_pt),
303                                                    GFP_KERNEL | __GFP_ZERO);
304                 if (!parent->entries)
305                         return -ENOMEM;
306                 memset(parent->entries, 0 , sizeof(struct amdgpu_vm_pt));
307         }
308
309         from = saddr >> shift;
310         to = eaddr >> shift;
311         if (from >= amdgpu_vm_num_entries(adev, level) ||
312             to >= amdgpu_vm_num_entries(adev, level))
313                 return -EINVAL;
314
315         if (to > parent->last_entry_used)
316                 parent->last_entry_used = to;
317
318         ++level;
319         saddr = saddr & ((1 << shift) - 1);
320         eaddr = eaddr & ((1 << shift) - 1);
321
322         flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
323                         AMDGPU_GEM_CREATE_VRAM_CLEARED;
324         if (vm->use_cpu_for_update)
325                 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
326         else
327                 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
328                                 AMDGPU_GEM_CREATE_SHADOW);
329
330         if (vm->pte_support_ats) {
331                 init_value = AMDGPU_PTE_DEFAULT_ATC;
332                 if (level != adev->vm_manager.num_level - 1)
333                         init_value |= AMDGPU_PDE_PTE;
334
335         }
336
337         /* walk over the address space and allocate the page tables */
338         for (pt_idx = from; pt_idx <= to; ++pt_idx) {
339                 struct reservation_object *resv = vm->root.base.bo->tbo.resv;
340                 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
341                 struct amdgpu_bo *pt;
342
343                 if (!entry->base.bo) {
344                         r = amdgpu_bo_create(adev,
345                                              amdgpu_vm_bo_size(adev, level),
346                                              AMDGPU_GPU_PAGE_SIZE, true,
347                                              AMDGPU_GEM_DOMAIN_VRAM,
348                                              flags,
349                                              NULL, resv, init_value, &pt);
350                         if (r)
351                                 return r;
352
353                         if (vm->use_cpu_for_update) {
354                                 r = amdgpu_bo_kmap(pt, NULL);
355                                 if (r) {
356                                         amdgpu_bo_unref(&pt);
357                                         return r;
358                                 }
359                         }
360
361                         /* Keep a reference to the root directory to avoid
362                         * freeing them up in the wrong order.
363                         */
364                         pt->parent = amdgpu_bo_ref(parent->base.bo);
365
366                         entry->base.vm = vm;
367                         entry->base.bo = pt;
368                         list_add_tail(&entry->base.bo_list, &pt->va);
369                         spin_lock(&vm->status_lock);
370                         list_add(&entry->base.vm_status, &vm->relocated);
371                         spin_unlock(&vm->status_lock);
372                         entry->addr = 0;
373                 }
374
375                 if (level < adev->vm_manager.num_level) {
376                         uint64_t sub_saddr = (pt_idx == from) ? saddr : 0;
377                         uint64_t sub_eaddr = (pt_idx == to) ? eaddr :
378                                 ((1 << shift) - 1);
379                         r = amdgpu_vm_alloc_levels(adev, vm, entry, sub_saddr,
380                                                    sub_eaddr, level);
381                         if (r)
382                                 return r;
383                 }
384         }
385
386         return 0;
387 }
388
389 /**
390  * amdgpu_vm_alloc_pts - Allocate page tables.
391  *
392  * @adev: amdgpu_device pointer
393  * @vm: VM to allocate page tables for
394  * @saddr: Start address which needs to be allocated
395  * @size: Size from start address we need.
396  *
397  * Make sure the page tables are allocated.
398  */
399 int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
400                         struct amdgpu_vm *vm,
401                         uint64_t saddr, uint64_t size)
402 {
403         uint64_t last_pfn;
404         uint64_t eaddr;
405
406         /* validate the parameters */
407         if (saddr & AMDGPU_GPU_PAGE_MASK || size & AMDGPU_GPU_PAGE_MASK)
408                 return -EINVAL;
409
410         eaddr = saddr + size - 1;
411         last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE;
412         if (last_pfn >= adev->vm_manager.max_pfn) {
413                 dev_err(adev->dev, "va above limit (0x%08llX >= 0x%08llX)\n",
414                         last_pfn, adev->vm_manager.max_pfn);
415                 return -EINVAL;
416         }
417
418         saddr /= AMDGPU_GPU_PAGE_SIZE;
419         eaddr /= AMDGPU_GPU_PAGE_SIZE;
420
421         return amdgpu_vm_alloc_levels(adev, vm, &vm->root, saddr, eaddr, 0);
422 }
423
424 /**
425  * amdgpu_vm_had_gpu_reset - check if reset occured since last use
426  *
427  * @adev: amdgpu_device pointer
428  * @id: VMID structure
429  *
430  * Check if GPU reset occured since last use of the VMID.
431  */
432 static bool amdgpu_vm_had_gpu_reset(struct amdgpu_device *adev,
433                                     struct amdgpu_vm_id *id)
434 {
435         return id->current_gpu_reset_count !=
436                 atomic_read(&adev->gpu_reset_counter);
437 }
438
439 static bool amdgpu_vm_reserved_vmid_ready(struct amdgpu_vm *vm, unsigned vmhub)
440 {
441         return !!vm->reserved_vmid[vmhub];
442 }
443
444 /* idr_mgr->lock must be held */
445 static int amdgpu_vm_grab_reserved_vmid_locked(struct amdgpu_vm *vm,
446                                                struct amdgpu_ring *ring,
447                                                struct amdgpu_sync *sync,
448                                                struct dma_fence *fence,
449                                                struct amdgpu_job *job)
450 {
451         struct amdgpu_device *adev = ring->adev;
452         unsigned vmhub = ring->funcs->vmhub;
453         uint64_t fence_context = adev->fence_context + ring->idx;
454         struct amdgpu_vm_id *id = vm->reserved_vmid[vmhub];
455         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
456         struct dma_fence *updates = sync->last_vm_update;
457         int r = 0;
458         struct dma_fence *flushed, *tmp;
459         bool needs_flush = vm->use_cpu_for_update;
460
461         flushed  = id->flushed_updates;
462         if ((amdgpu_vm_had_gpu_reset(adev, id)) ||
463             (atomic64_read(&id->owner) != vm->client_id) ||
464             (job->vm_pd_addr != id->pd_gpu_addr) ||
465             (updates && (!flushed || updates->context != flushed->context ||
466                         dma_fence_is_later(updates, flushed))) ||
467             (!id->last_flush || (id->last_flush->context != fence_context &&
468                                  !dma_fence_is_signaled(id->last_flush)))) {
469                 needs_flush = true;
470                 /* to prevent one context starved by another context */
471                 id->pd_gpu_addr = 0;
472                 tmp = amdgpu_sync_peek_fence(&id->active, ring);
473                 if (tmp) {
474                         r = amdgpu_sync_fence(adev, sync, tmp);
475                         return r;
476                 }
477         }
478
479         /* Good we can use this VMID. Remember this submission as
480         * user of the VMID.
481         */
482         r = amdgpu_sync_fence(ring->adev, &id->active, fence);
483         if (r)
484                 goto out;
485
486         if (updates && (!flushed || updates->context != flushed->context ||
487                         dma_fence_is_later(updates, flushed))) {
488                 dma_fence_put(id->flushed_updates);
489                 id->flushed_updates = dma_fence_get(updates);
490         }
491         id->pd_gpu_addr = job->vm_pd_addr;
492         atomic64_set(&id->owner, vm->client_id);
493         job->vm_needs_flush = needs_flush;
494         if (needs_flush) {
495                 dma_fence_put(id->last_flush);
496                 id->last_flush = NULL;
497         }
498         job->vm_id = id - id_mgr->ids;
499         trace_amdgpu_vm_grab_id(vm, ring, job);
500 out:
501         return r;
502 }
503
504 /**
505  * amdgpu_vm_grab_id - allocate the next free VMID
506  *
507  * @vm: vm to allocate id for
508  * @ring: ring we want to submit job to
509  * @sync: sync object where we add dependencies
510  * @fence: fence protecting ID from reuse
511  *
512  * Allocate an id for the vm, adding fences to the sync obj as necessary.
513  */
514 int amdgpu_vm_grab_id(struct amdgpu_vm *vm, struct amdgpu_ring *ring,
515                       struct amdgpu_sync *sync, struct dma_fence *fence,
516                       struct amdgpu_job *job)
517 {
518         struct amdgpu_device *adev = ring->adev;
519         unsigned vmhub = ring->funcs->vmhub;
520         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
521         uint64_t fence_context = adev->fence_context + ring->idx;
522         struct dma_fence *updates = sync->last_vm_update;
523         struct amdgpu_vm_id *id, *idle;
524         struct dma_fence **fences;
525         unsigned i;
526         int r = 0;
527
528         mutex_lock(&id_mgr->lock);
529         if (amdgpu_vm_reserved_vmid_ready(vm, vmhub)) {
530                 r = amdgpu_vm_grab_reserved_vmid_locked(vm, ring, sync, fence, job);
531                 mutex_unlock(&id_mgr->lock);
532                 return r;
533         }
534         fences = kmalloc_array(sizeof(void *), id_mgr->num_ids, GFP_KERNEL);
535         if (!fences) {
536                 mutex_unlock(&id_mgr->lock);
537                 return -ENOMEM;
538         }
539         /* Check if we have an idle VMID */
540         i = 0;
541         list_for_each_entry(idle, &id_mgr->ids_lru, list) {
542                 fences[i] = amdgpu_sync_peek_fence(&idle->active, ring);
543                 if (!fences[i])
544                         break;
545                 ++i;
546         }
547
548         /* If we can't find a idle VMID to use, wait till one becomes available */
549         if (&idle->list == &id_mgr->ids_lru) {
550                 u64 fence_context = adev->vm_manager.fence_context + ring->idx;
551                 unsigned seqno = ++adev->vm_manager.seqno[ring->idx];
552                 struct dma_fence_array *array;
553                 unsigned j;
554
555                 for (j = 0; j < i; ++j)
556                         dma_fence_get(fences[j]);
557
558                 array = dma_fence_array_create(i, fences, fence_context,
559                                            seqno, true);
560                 if (!array) {
561                         for (j = 0; j < i; ++j)
562                                 dma_fence_put(fences[j]);
563                         kfree(fences);
564                         r = -ENOMEM;
565                         goto error;
566                 }
567
568
569                 r = amdgpu_sync_fence(ring->adev, sync, &array->base);
570                 dma_fence_put(&array->base);
571                 if (r)
572                         goto error;
573
574                 mutex_unlock(&id_mgr->lock);
575                 return 0;
576
577         }
578         kfree(fences);
579
580         job->vm_needs_flush = vm->use_cpu_for_update;
581         /* Check if we can use a VMID already assigned to this VM */
582         list_for_each_entry_reverse(id, &id_mgr->ids_lru, list) {
583                 struct dma_fence *flushed;
584                 bool needs_flush = vm->use_cpu_for_update;
585
586                 /* Check all the prerequisites to using this VMID */
587                 if (amdgpu_vm_had_gpu_reset(adev, id))
588                         continue;
589
590                 if (atomic64_read(&id->owner) != vm->client_id)
591                         continue;
592
593                 if (job->vm_pd_addr != id->pd_gpu_addr)
594                         continue;
595
596                 if (!id->last_flush ||
597                     (id->last_flush->context != fence_context &&
598                      !dma_fence_is_signaled(id->last_flush)))
599                         needs_flush = true;
600
601                 flushed  = id->flushed_updates;
602                 if (updates && (!flushed || dma_fence_is_later(updates, flushed)))
603                         needs_flush = true;
604
605                 /* Concurrent flushes are only possible starting with Vega10 */
606                 if (adev->asic_type < CHIP_VEGA10 && needs_flush)
607                         continue;
608
609                 /* Good we can use this VMID. Remember this submission as
610                  * user of the VMID.
611                  */
612                 r = amdgpu_sync_fence(ring->adev, &id->active, fence);
613                 if (r)
614                         goto error;
615
616                 if (updates && (!flushed || dma_fence_is_later(updates, flushed))) {
617                         dma_fence_put(id->flushed_updates);
618                         id->flushed_updates = dma_fence_get(updates);
619                 }
620
621                 if (needs_flush)
622                         goto needs_flush;
623                 else
624                         goto no_flush_needed;
625
626         };
627
628         /* Still no ID to use? Then use the idle one found earlier */
629         id = idle;
630
631         /* Remember this submission as user of the VMID */
632         r = amdgpu_sync_fence(ring->adev, &id->active, fence);
633         if (r)
634                 goto error;
635
636         id->pd_gpu_addr = job->vm_pd_addr;
637         dma_fence_put(id->flushed_updates);
638         id->flushed_updates = dma_fence_get(updates);
639         atomic64_set(&id->owner, vm->client_id);
640
641 needs_flush:
642         job->vm_needs_flush = true;
643         dma_fence_put(id->last_flush);
644         id->last_flush = NULL;
645
646 no_flush_needed:
647         list_move_tail(&id->list, &id_mgr->ids_lru);
648
649         job->vm_id = id - id_mgr->ids;
650         trace_amdgpu_vm_grab_id(vm, ring, job);
651
652 error:
653         mutex_unlock(&id_mgr->lock);
654         return r;
655 }
656
657 static void amdgpu_vm_free_reserved_vmid(struct amdgpu_device *adev,
658                                           struct amdgpu_vm *vm,
659                                           unsigned vmhub)
660 {
661         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
662
663         mutex_lock(&id_mgr->lock);
664         if (vm->reserved_vmid[vmhub]) {
665                 list_add(&vm->reserved_vmid[vmhub]->list,
666                         &id_mgr->ids_lru);
667                 vm->reserved_vmid[vmhub] = NULL;
668                 atomic_dec(&id_mgr->reserved_vmid_num);
669         }
670         mutex_unlock(&id_mgr->lock);
671 }
672
673 static int amdgpu_vm_alloc_reserved_vmid(struct amdgpu_device *adev,
674                                          struct amdgpu_vm *vm,
675                                          unsigned vmhub)
676 {
677         struct amdgpu_vm_id_manager *id_mgr;
678         struct amdgpu_vm_id *idle;
679         int r = 0;
680
681         id_mgr = &adev->vm_manager.id_mgr[vmhub];
682         mutex_lock(&id_mgr->lock);
683         if (vm->reserved_vmid[vmhub])
684                 goto unlock;
685         if (atomic_inc_return(&id_mgr->reserved_vmid_num) >
686             AMDGPU_VM_MAX_RESERVED_VMID) {
687                 DRM_ERROR("Over limitation of reserved vmid\n");
688                 atomic_dec(&id_mgr->reserved_vmid_num);
689                 r = -EINVAL;
690                 goto unlock;
691         }
692         /* Select the first entry VMID */
693         idle = list_first_entry(&id_mgr->ids_lru, struct amdgpu_vm_id, list);
694         list_del_init(&idle->list);
695         vm->reserved_vmid[vmhub] = idle;
696         mutex_unlock(&id_mgr->lock);
697
698         return 0;
699 unlock:
700         mutex_unlock(&id_mgr->lock);
701         return r;
702 }
703
704 /**
705  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
706  *
707  * @adev: amdgpu_device pointer
708  */
709 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
710 {
711         const struct amdgpu_ip_block *ip_block;
712         bool has_compute_vm_bug;
713         struct amdgpu_ring *ring;
714         int i;
715
716         has_compute_vm_bug = false;
717
718         ip_block = amdgpu_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
719         if (ip_block) {
720                 /* Compute has a VM bug for GFX version < 7.
721                    Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
722                 if (ip_block->version->major <= 7)
723                         has_compute_vm_bug = true;
724                 else if (ip_block->version->major == 8)
725                         if (adev->gfx.mec_fw_version < 673)
726                                 has_compute_vm_bug = true;
727         }
728
729         for (i = 0; i < adev->num_rings; i++) {
730                 ring = adev->rings[i];
731                 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
732                         /* only compute rings */
733                         ring->has_compute_vm_bug = has_compute_vm_bug;
734                 else
735                         ring->has_compute_vm_bug = false;
736         }
737 }
738
739 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
740                                   struct amdgpu_job *job)
741 {
742         struct amdgpu_device *adev = ring->adev;
743         unsigned vmhub = ring->funcs->vmhub;
744         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
745         struct amdgpu_vm_id *id;
746         bool gds_switch_needed;
747         bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
748
749         if (job->vm_id == 0)
750                 return false;
751         id = &id_mgr->ids[job->vm_id];
752         gds_switch_needed = ring->funcs->emit_gds_switch && (
753                 id->gds_base != job->gds_base ||
754                 id->gds_size != job->gds_size ||
755                 id->gws_base != job->gws_base ||
756                 id->gws_size != job->gws_size ||
757                 id->oa_base != job->oa_base ||
758                 id->oa_size != job->oa_size);
759
760         if (amdgpu_vm_had_gpu_reset(adev, id))
761                 return true;
762
763         return vm_flush_needed || gds_switch_needed;
764 }
765
766 static bool amdgpu_vm_is_large_bar(struct amdgpu_device *adev)
767 {
768         return (adev->mc.real_vram_size == adev->mc.visible_vram_size);
769 }
770
771 /**
772  * amdgpu_vm_flush - hardware flush the vm
773  *
774  * @ring: ring to use for flush
775  * @vm_id: vmid number to use
776  * @pd_addr: address of the page directory
777  *
778  * Emit a VM flush when it is necessary.
779  */
780 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job, bool need_pipe_sync)
781 {
782         struct amdgpu_device *adev = ring->adev;
783         unsigned vmhub = ring->funcs->vmhub;
784         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
785         struct amdgpu_vm_id *id = &id_mgr->ids[job->vm_id];
786         bool gds_switch_needed = ring->funcs->emit_gds_switch && (
787                 id->gds_base != job->gds_base ||
788                 id->gds_size != job->gds_size ||
789                 id->gws_base != job->gws_base ||
790                 id->gws_size != job->gws_size ||
791                 id->oa_base != job->oa_base ||
792                 id->oa_size != job->oa_size);
793         bool vm_flush_needed = job->vm_needs_flush;
794         unsigned patch_offset = 0;
795         int r;
796
797         if (amdgpu_vm_had_gpu_reset(adev, id)) {
798                 gds_switch_needed = true;
799                 vm_flush_needed = true;
800         }
801
802         if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
803                 return 0;
804
805         if (ring->funcs->init_cond_exec)
806                 patch_offset = amdgpu_ring_init_cond_exec(ring);
807
808         if (need_pipe_sync)
809                 amdgpu_ring_emit_pipeline_sync(ring);
810
811         if (ring->funcs->emit_vm_flush && vm_flush_needed) {
812                 struct dma_fence *fence;
813
814                 trace_amdgpu_vm_flush(ring, job->vm_id, job->vm_pd_addr);
815                 amdgpu_ring_emit_vm_flush(ring, job->vm_id, job->vm_pd_addr);
816
817                 r = amdgpu_fence_emit(ring, &fence);
818                 if (r)
819                         return r;
820
821                 mutex_lock(&id_mgr->lock);
822                 dma_fence_put(id->last_flush);
823                 id->last_flush = fence;
824                 id->current_gpu_reset_count = atomic_read(&adev->gpu_reset_counter);
825                 mutex_unlock(&id_mgr->lock);
826         }
827
828         if (ring->funcs->emit_gds_switch && gds_switch_needed) {
829                 id->gds_base = job->gds_base;
830                 id->gds_size = job->gds_size;
831                 id->gws_base = job->gws_base;
832                 id->gws_size = job->gws_size;
833                 id->oa_base = job->oa_base;
834                 id->oa_size = job->oa_size;
835                 amdgpu_ring_emit_gds_switch(ring, job->vm_id, job->gds_base,
836                                             job->gds_size, job->gws_base,
837                                             job->gws_size, job->oa_base,
838                                             job->oa_size);
839         }
840
841         if (ring->funcs->patch_cond_exec)
842                 amdgpu_ring_patch_cond_exec(ring, patch_offset);
843
844         /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
845         if (ring->funcs->emit_switch_buffer) {
846                 amdgpu_ring_emit_switch_buffer(ring);
847                 amdgpu_ring_emit_switch_buffer(ring);
848         }
849         return 0;
850 }
851
852 /**
853  * amdgpu_vm_reset_id - reset VMID to zero
854  *
855  * @adev: amdgpu device structure
856  * @vm_id: vmid number to use
857  *
858  * Reset saved GDW, GWS and OA to force switch on next flush.
859  */
860 void amdgpu_vm_reset_id(struct amdgpu_device *adev, unsigned vmhub,
861                         unsigned vmid)
862 {
863         struct amdgpu_vm_id_manager *id_mgr = &adev->vm_manager.id_mgr[vmhub];
864         struct amdgpu_vm_id *id = &id_mgr->ids[vmid];
865
866         atomic64_set(&id->owner, 0);
867         id->gds_base = 0;
868         id->gds_size = 0;
869         id->gws_base = 0;
870         id->gws_size = 0;
871         id->oa_base = 0;
872         id->oa_size = 0;
873 }
874
875 /**
876  * amdgpu_vm_reset_all_id - reset VMID to zero
877  *
878  * @adev: amdgpu device structure
879  *
880  * Reset VMID to force flush on next use
881  */
882 void amdgpu_vm_reset_all_ids(struct amdgpu_device *adev)
883 {
884         unsigned i, j;
885
886         for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
887                 struct amdgpu_vm_id_manager *id_mgr =
888                         &adev->vm_manager.id_mgr[i];
889
890                 for (j = 1; j < id_mgr->num_ids; ++j)
891                         amdgpu_vm_reset_id(adev, i, j);
892         }
893 }
894
895 /**
896  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
897  *
898  * @vm: requested vm
899  * @bo: requested buffer object
900  *
901  * Find @bo inside the requested vm.
902  * Search inside the @bos vm list for the requested vm
903  * Returns the found bo_va or NULL if none is found
904  *
905  * Object has to be reserved!
906  */
907 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
908                                        struct amdgpu_bo *bo)
909 {
910         struct amdgpu_bo_va *bo_va;
911
912         list_for_each_entry(bo_va, &bo->va, base.bo_list) {
913                 if (bo_va->base.vm == vm) {
914                         return bo_va;
915                 }
916         }
917         return NULL;
918 }
919
920 /**
921  * amdgpu_vm_do_set_ptes - helper to call the right asic function
922  *
923  * @params: see amdgpu_pte_update_params definition
924  * @pe: addr of the page entry
925  * @addr: dst addr to write into pe
926  * @count: number of page entries to update
927  * @incr: increase next addr by incr bytes
928  * @flags: hw access flags
929  *
930  * Traces the parameters and calls the right asic functions
931  * to setup the page table using the DMA.
932  */
933 static void amdgpu_vm_do_set_ptes(struct amdgpu_pte_update_params *params,
934                                   uint64_t pe, uint64_t addr,
935                                   unsigned count, uint32_t incr,
936                                   uint64_t flags)
937 {
938         trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
939
940         if (count < 3) {
941                 amdgpu_vm_write_pte(params->adev, params->ib, pe,
942                                     addr | flags, count, incr);
943
944         } else {
945                 amdgpu_vm_set_pte_pde(params->adev, params->ib, pe, addr,
946                                       count, incr, flags);
947         }
948 }
949
950 /**
951  * amdgpu_vm_do_copy_ptes - copy the PTEs from the GART
952  *
953  * @params: see amdgpu_pte_update_params definition
954  * @pe: addr of the page entry
955  * @addr: dst addr to write into pe
956  * @count: number of page entries to update
957  * @incr: increase next addr by incr bytes
958  * @flags: hw access flags
959  *
960  * Traces the parameters and calls the DMA function to copy the PTEs.
961  */
962 static void amdgpu_vm_do_copy_ptes(struct amdgpu_pte_update_params *params,
963                                    uint64_t pe, uint64_t addr,
964                                    unsigned count, uint32_t incr,
965                                    uint64_t flags)
966 {
967         uint64_t src = (params->src + (addr >> 12) * 8);
968
969
970         trace_amdgpu_vm_copy_ptes(pe, src, count);
971
972         amdgpu_vm_copy_pte(params->adev, params->ib, pe, src, count);
973 }
974
975 /**
976  * amdgpu_vm_map_gart - Resolve gart mapping of addr
977  *
978  * @pages_addr: optional DMA address to use for lookup
979  * @addr: the unmapped addr
980  *
981  * Look up the physical address of the page that the pte resolves
982  * to and return the pointer for the page table entry.
983  */
984 static uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
985 {
986         uint64_t result;
987
988         /* page table offset */
989         result = pages_addr[addr >> PAGE_SHIFT];
990
991         /* in case cpu page size != gpu page size*/
992         result |= addr & (~PAGE_MASK);
993
994         result &= 0xFFFFFFFFFFFFF000ULL;
995
996         return result;
997 }
998
999 /**
1000  * amdgpu_vm_cpu_set_ptes - helper to update page tables via CPU
1001  *
1002  * @params: see amdgpu_pte_update_params definition
1003  * @pe: kmap addr of the page entry
1004  * @addr: dst addr to write into pe
1005  * @count: number of page entries to update
1006  * @incr: increase next addr by incr bytes
1007  * @flags: hw access flags
1008  *
1009  * Write count number of PT/PD entries directly.
1010  */
1011 static void amdgpu_vm_cpu_set_ptes(struct amdgpu_pte_update_params *params,
1012                                    uint64_t pe, uint64_t addr,
1013                                    unsigned count, uint32_t incr,
1014                                    uint64_t flags)
1015 {
1016         unsigned int i;
1017         uint64_t value;
1018
1019         trace_amdgpu_vm_set_ptes(pe, addr, count, incr, flags);
1020
1021         for (i = 0; i < count; i++) {
1022                 value = params->pages_addr ?
1023                         amdgpu_vm_map_gart(params->pages_addr, addr) :
1024                         addr;
1025                 amdgpu_gart_set_pte_pde(params->adev, (void *)(uintptr_t)pe,
1026                                         i, value, flags);
1027                 addr += incr;
1028         }
1029 }
1030
1031 static int amdgpu_vm_wait_pd(struct amdgpu_device *adev, struct amdgpu_vm *vm,
1032                              void *owner)
1033 {
1034         struct amdgpu_sync sync;
1035         int r;
1036
1037         amdgpu_sync_create(&sync);
1038         amdgpu_sync_resv(adev, &sync, vm->root.base.bo->tbo.resv, owner, false);
1039         r = amdgpu_sync_wait(&sync, true);
1040         amdgpu_sync_free(&sync);
1041
1042         return r;
1043 }
1044
1045 /*
1046  * amdgpu_vm_update_level - update a single level in the hierarchy
1047  *
1048  * @adev: amdgpu_device pointer
1049  * @vm: requested vm
1050  * @parent: parent directory
1051  *
1052  * Makes sure all entries in @parent are up to date.
1053  * Returns 0 for success, error for failure.
1054  */
1055 static int amdgpu_vm_update_level(struct amdgpu_device *adev,
1056                                   struct amdgpu_vm *vm,
1057                                   struct amdgpu_vm_pt *parent)
1058 {
1059         struct amdgpu_bo *shadow;
1060         struct amdgpu_ring *ring = NULL;
1061         uint64_t pd_addr, shadow_addr = 0;
1062         uint64_t last_pde = ~0, last_pt = ~0, last_shadow = ~0;
1063         unsigned count = 0, pt_idx, ndw = 0;
1064         struct amdgpu_job *job;
1065         struct amdgpu_pte_update_params params;
1066         struct dma_fence *fence = NULL;
1067         uint32_t incr;
1068
1069         int r;
1070
1071         if (!parent->entries)
1072                 return 0;
1073
1074         memset(&params, 0, sizeof(params));
1075         params.adev = adev;
1076         shadow = parent->base.bo->shadow;
1077
1078         if (vm->use_cpu_for_update) {
1079                 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo);
1080                 r = amdgpu_vm_wait_pd(adev, vm, AMDGPU_FENCE_OWNER_VM);
1081                 if (unlikely(r))
1082                         return r;
1083
1084                 params.func = amdgpu_vm_cpu_set_ptes;
1085         } else {
1086                 ring = container_of(vm->entity.sched, struct amdgpu_ring,
1087                                     sched);
1088
1089                 /* padding, etc. */
1090                 ndw = 64;
1091
1092                 /* assume the worst case */
1093                 ndw += parent->last_entry_used * 6;
1094
1095                 pd_addr = amdgpu_bo_gpu_offset(parent->base.bo);
1096
1097                 if (shadow) {
1098                         shadow_addr = amdgpu_bo_gpu_offset(shadow);
1099                         ndw *= 2;
1100                 } else {
1101                         shadow_addr = 0;
1102                 }
1103
1104                 r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1105                 if (r)
1106                         return r;
1107
1108                 params.ib = &job->ibs[0];
1109                 params.func = amdgpu_vm_do_set_ptes;
1110         }
1111
1112
1113         /* walk over the address space and update the directory */
1114         for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1115                 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1116                 struct amdgpu_bo *bo = entry->base.bo;
1117                 uint64_t pde, pt;
1118
1119                 if (bo == NULL)
1120                         continue;
1121
1122                 spin_lock(&vm->status_lock);
1123                 list_del_init(&entry->base.vm_status);
1124                 spin_unlock(&vm->status_lock);
1125
1126                 pt = amdgpu_bo_gpu_offset(bo);
1127                 pt = amdgpu_gart_get_vm_pde(adev, pt);
1128                 /* Don't update huge pages here */
1129                 if ((parent->entries[pt_idx].addr & AMDGPU_PDE_PTE) ||
1130                     parent->entries[pt_idx].addr == (pt | AMDGPU_PTE_VALID))
1131                         continue;
1132
1133                 parent->entries[pt_idx].addr = pt | AMDGPU_PTE_VALID;
1134
1135                 pde = pd_addr + pt_idx * 8;
1136                 incr = amdgpu_bo_size(bo);
1137                 if (((last_pde + 8 * count) != pde) ||
1138                     ((last_pt + incr * count) != pt) ||
1139                     (count == AMDGPU_VM_MAX_UPDATE_SIZE)) {
1140
1141                         if (count) {
1142                                 if (shadow)
1143                                         params.func(&params,
1144                                                     last_shadow,
1145                                                     last_pt, count,
1146                                                     incr,
1147                                                     AMDGPU_PTE_VALID);
1148
1149                                 params.func(&params, last_pde,
1150                                             last_pt, count, incr,
1151                                             AMDGPU_PTE_VALID);
1152                         }
1153
1154                         count = 1;
1155                         last_pde = pde;
1156                         last_shadow = shadow_addr + pt_idx * 8;
1157                         last_pt = pt;
1158                 } else {
1159                         ++count;
1160                 }
1161         }
1162
1163         if (count) {
1164                 if (vm->root.base.bo->shadow)
1165                         params.func(&params, last_shadow, last_pt,
1166                                     count, incr, AMDGPU_PTE_VALID);
1167
1168                 params.func(&params, last_pde, last_pt,
1169                             count, incr, AMDGPU_PTE_VALID);
1170         }
1171
1172         if (!vm->use_cpu_for_update) {
1173                 if (params.ib->length_dw == 0) {
1174                         amdgpu_job_free(job);
1175                 } else {
1176                         amdgpu_ring_pad_ib(ring, params.ib);
1177                         amdgpu_sync_resv(adev, &job->sync,
1178                                          parent->base.bo->tbo.resv,
1179                                          AMDGPU_FENCE_OWNER_VM, false);
1180                         if (shadow)
1181                                 amdgpu_sync_resv(adev, &job->sync,
1182                                                  shadow->tbo.resv,
1183                                                  AMDGPU_FENCE_OWNER_VM, false);
1184
1185                         WARN_ON(params.ib->length_dw > ndw);
1186                         r = amdgpu_job_submit(job, ring, &vm->entity,
1187                                         AMDGPU_FENCE_OWNER_VM, &fence);
1188                         if (r)
1189                                 goto error_free;
1190
1191                         amdgpu_bo_fence(parent->base.bo, fence, true);
1192                         dma_fence_put(vm->last_update);
1193                         vm->last_update = fence;
1194                 }
1195         }
1196
1197         return 0;
1198
1199 error_free:
1200         amdgpu_job_free(job);
1201         return r;
1202 }
1203
1204 /*
1205  * amdgpu_vm_invalidate_level - mark all PD levels as invalid
1206  *
1207  * @parent: parent PD
1208  *
1209  * Mark all PD level as invalid after an error.
1210  */
1211 static void amdgpu_vm_invalidate_level(struct amdgpu_vm *vm,
1212                                        struct amdgpu_vm_pt *parent)
1213 {
1214         unsigned pt_idx;
1215
1216         /*
1217          * Recurse into the subdirectories. This recursion is harmless because
1218          * we only have a maximum of 5 layers.
1219          */
1220         for (pt_idx = 0; pt_idx <= parent->last_entry_used; ++pt_idx) {
1221                 struct amdgpu_vm_pt *entry = &parent->entries[pt_idx];
1222
1223                 if (!entry->base.bo)
1224                         continue;
1225
1226                 entry->addr = ~0ULL;
1227                 spin_lock(&vm->status_lock);
1228                 if (list_empty(&entry->base.vm_status))
1229                         list_add(&entry->base.vm_status, &vm->relocated);
1230                 spin_unlock(&vm->status_lock);
1231                 amdgpu_vm_invalidate_level(vm, entry);
1232         }
1233 }
1234
1235 /*
1236  * amdgpu_vm_update_directories - make sure that all directories are valid
1237  *
1238  * @adev: amdgpu_device pointer
1239  * @vm: requested vm
1240  *
1241  * Makes sure all directories are up to date.
1242  * Returns 0 for success, error for failure.
1243  */
1244 int amdgpu_vm_update_directories(struct amdgpu_device *adev,
1245                                  struct amdgpu_vm *vm)
1246 {
1247         int r = 0;
1248
1249         spin_lock(&vm->status_lock);
1250         while (!list_empty(&vm->relocated)) {
1251                 struct amdgpu_vm_bo_base *bo_base;
1252                 struct amdgpu_bo *bo;
1253
1254                 bo_base = list_first_entry(&vm->relocated,
1255                                            struct amdgpu_vm_bo_base,
1256                                            vm_status);
1257                 spin_unlock(&vm->status_lock);
1258
1259                 bo = bo_base->bo->parent;
1260                 if (bo) {
1261                         struct amdgpu_vm_bo_base *parent;
1262                         struct amdgpu_vm_pt *pt;
1263
1264                         parent = list_first_entry(&bo->va,
1265                                                   struct amdgpu_vm_bo_base,
1266                                                   bo_list);
1267                         pt = container_of(parent, struct amdgpu_vm_pt, base);
1268
1269                         r = amdgpu_vm_update_level(adev, vm, pt);
1270                         if (r) {
1271                                 amdgpu_vm_invalidate_level(vm, &vm->root);
1272                                 return r;
1273                         }
1274                         spin_lock(&vm->status_lock);
1275                 } else {
1276                         spin_lock(&vm->status_lock);
1277                         list_del_init(&bo_base->vm_status);
1278                 }
1279         }
1280         spin_unlock(&vm->status_lock);
1281
1282         if (vm->use_cpu_for_update) {
1283                 /* Flush HDP */
1284                 mb();
1285                 amdgpu_gart_flush_gpu_tlb(adev, 0);
1286         }
1287
1288         return r;
1289 }
1290
1291 /**
1292  * amdgpu_vm_find_entry - find the entry for an address
1293  *
1294  * @p: see amdgpu_pte_update_params definition
1295  * @addr: virtual address in question
1296  * @entry: resulting entry or NULL
1297  * @parent: parent entry
1298  *
1299  * Find the vm_pt entry and it's parent for the given address.
1300  */
1301 void amdgpu_vm_get_entry(struct amdgpu_pte_update_params *p, uint64_t addr,
1302                          struct amdgpu_vm_pt **entry,
1303                          struct amdgpu_vm_pt **parent)
1304 {
1305         unsigned idx, level = p->adev->vm_manager.num_level;
1306
1307         *parent = NULL;
1308         *entry = &p->vm->root;
1309         while ((*entry)->entries) {
1310                 idx = addr >> (p->adev->vm_manager.block_size * level--);
1311                 idx %= amdgpu_bo_size((*entry)->base.bo) / 8;
1312                 *parent = *entry;
1313                 *entry = &(*entry)->entries[idx];
1314         }
1315
1316         if (level)
1317                 *entry = NULL;
1318 }
1319
1320 /**
1321  * amdgpu_vm_handle_huge_pages - handle updating the PD with huge pages
1322  *
1323  * @p: see amdgpu_pte_update_params definition
1324  * @entry: vm_pt entry to check
1325  * @parent: parent entry
1326  * @nptes: number of PTEs updated with this operation
1327  * @dst: destination address where the PTEs should point to
1328  * @flags: access flags fro the PTEs
1329  *
1330  * Check if we can update the PD with a huge page.
1331  */
1332 static void amdgpu_vm_handle_huge_pages(struct amdgpu_pte_update_params *p,
1333                                         struct amdgpu_vm_pt *entry,
1334                                         struct amdgpu_vm_pt *parent,
1335                                         unsigned nptes, uint64_t dst,
1336                                         uint64_t flags)
1337 {
1338         bool use_cpu_update = (p->func == amdgpu_vm_cpu_set_ptes);
1339         uint64_t pd_addr, pde;
1340
1341         /* In the case of a mixed PT the PDE must point to it*/
1342         if (p->adev->asic_type < CHIP_VEGA10 ||
1343             nptes != AMDGPU_VM_PTE_COUNT(p->adev) ||
1344             p->src ||
1345             !(flags & AMDGPU_PTE_VALID)) {
1346
1347                 dst = amdgpu_bo_gpu_offset(entry->base.bo);
1348                 dst = amdgpu_gart_get_vm_pde(p->adev, dst);
1349                 flags = AMDGPU_PTE_VALID;
1350         } else {
1351                 /* Set the huge page flag to stop scanning at this PDE */
1352                 flags |= AMDGPU_PDE_PTE;
1353         }
1354
1355         if (entry->addr == (dst | flags))
1356                 return;
1357
1358         entry->addr = (dst | flags);
1359
1360         if (use_cpu_update) {
1361                 /* In case a huge page is replaced with a system
1362                  * memory mapping, p->pages_addr != NULL and
1363                  * amdgpu_vm_cpu_set_ptes would try to translate dst
1364                  * through amdgpu_vm_map_gart. But dst is already a
1365                  * GPU address (of the page table). Disable
1366                  * amdgpu_vm_map_gart temporarily.
1367                  */
1368                 dma_addr_t *tmp;
1369
1370                 tmp = p->pages_addr;
1371                 p->pages_addr = NULL;
1372
1373                 pd_addr = (unsigned long)amdgpu_bo_kptr(parent->base.bo);
1374                 pde = pd_addr + (entry - parent->entries) * 8;
1375                 amdgpu_vm_cpu_set_ptes(p, pde, dst, 1, 0, flags);
1376
1377                 p->pages_addr = tmp;
1378         } else {
1379                 if (parent->base.bo->shadow) {
1380                         pd_addr = amdgpu_bo_gpu_offset(parent->base.bo->shadow);
1381                         pde = pd_addr + (entry - parent->entries) * 8;
1382                         amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1383                 }
1384                 pd_addr = amdgpu_bo_gpu_offset(parent->base.bo);
1385                 pde = pd_addr + (entry - parent->entries) * 8;
1386                 amdgpu_vm_do_set_ptes(p, pde, dst, 1, 0, flags);
1387         }
1388 }
1389
1390 /**
1391  * amdgpu_vm_update_ptes - make sure that page tables are valid
1392  *
1393  * @params: see amdgpu_pte_update_params definition
1394  * @vm: requested vm
1395  * @start: start of GPU address range
1396  * @end: end of GPU address range
1397  * @dst: destination address to map to, the next dst inside the function
1398  * @flags: mapping flags
1399  *
1400  * Update the page tables in the range @start - @end.
1401  * Returns 0 for success, -EINVAL for failure.
1402  */
1403 static int amdgpu_vm_update_ptes(struct amdgpu_pte_update_params *params,
1404                                   uint64_t start, uint64_t end,
1405                                   uint64_t dst, uint64_t flags)
1406 {
1407         struct amdgpu_device *adev = params->adev;
1408         const uint64_t mask = AMDGPU_VM_PTE_COUNT(adev) - 1;
1409
1410         uint64_t addr, pe_start;
1411         struct amdgpu_bo *pt;
1412         unsigned nptes;
1413         bool use_cpu_update = (params->func == amdgpu_vm_cpu_set_ptes);
1414
1415         /* walk over the address space and update the page tables */
1416         for (addr = start; addr < end; addr += nptes,
1417              dst += nptes * AMDGPU_GPU_PAGE_SIZE) {
1418                 struct amdgpu_vm_pt *entry, *parent;
1419
1420                 amdgpu_vm_get_entry(params, addr, &entry, &parent);
1421                 if (!entry)
1422                         return -ENOENT;
1423
1424                 if ((addr & ~mask) == (end & ~mask))
1425                         nptes = end - addr;
1426                 else
1427                         nptes = AMDGPU_VM_PTE_COUNT(adev) - (addr & mask);
1428
1429                 amdgpu_vm_handle_huge_pages(params, entry, parent,
1430                                             nptes, dst, flags);
1431                 /* We don't need to update PTEs for huge pages */
1432                 if (entry->addr & AMDGPU_PDE_PTE)
1433                         continue;
1434
1435                 pt = entry->base.bo;
1436                 if (use_cpu_update) {
1437                         pe_start = (unsigned long)amdgpu_bo_kptr(pt);
1438                 } else {
1439                         if (pt->shadow) {
1440                                 pe_start = amdgpu_bo_gpu_offset(pt->shadow);
1441                                 pe_start += (addr & mask) * 8;
1442                                 params->func(params, pe_start, dst, nptes,
1443                                              AMDGPU_GPU_PAGE_SIZE, flags);
1444                         }
1445                         pe_start = amdgpu_bo_gpu_offset(pt);
1446                 }
1447
1448                 pe_start += (addr & mask) * 8;
1449                 params->func(params, pe_start, dst, nptes,
1450                              AMDGPU_GPU_PAGE_SIZE, flags);
1451         }
1452
1453         return 0;
1454 }
1455
1456 /*
1457  * amdgpu_vm_frag_ptes - add fragment information to PTEs
1458  *
1459  * @params: see amdgpu_pte_update_params definition
1460  * @vm: requested vm
1461  * @start: first PTE to handle
1462  * @end: last PTE to handle
1463  * @dst: addr those PTEs should point to
1464  * @flags: hw mapping flags
1465  * Returns 0 for success, -EINVAL for failure.
1466  */
1467 static int amdgpu_vm_frag_ptes(struct amdgpu_pte_update_params  *params,
1468                                 uint64_t start, uint64_t end,
1469                                 uint64_t dst, uint64_t flags)
1470 {
1471         /**
1472          * The MC L1 TLB supports variable sized pages, based on a fragment
1473          * field in the PTE. When this field is set to a non-zero value, page
1474          * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1475          * flags are considered valid for all PTEs within the fragment range
1476          * and corresponding mappings are assumed to be physically contiguous.
1477          *
1478          * The L1 TLB can store a single PTE for the whole fragment,
1479          * significantly increasing the space available for translation
1480          * caching. This leads to large improvements in throughput when the
1481          * TLB is under pressure.
1482          *
1483          * The L2 TLB distributes small and large fragments into two
1484          * asymmetric partitions. The large fragment cache is significantly
1485          * larger. Thus, we try to use large fragments wherever possible.
1486          * Userspace can support this by aligning virtual base address and
1487          * allocation size to the fragment size.
1488          */
1489         unsigned max_frag = params->adev->vm_manager.fragment_size;
1490         int r;
1491
1492         /* system pages are non continuously */
1493         if (params->src || !(flags & AMDGPU_PTE_VALID))
1494                 return amdgpu_vm_update_ptes(params, start, end, dst, flags);
1495
1496         while (start != end) {
1497                 uint64_t frag_flags, frag_end;
1498                 unsigned frag;
1499
1500                 /* This intentionally wraps around if no bit is set */
1501                 frag = min((unsigned)ffs(start) - 1,
1502                            (unsigned)fls64(end - start) - 1);
1503                 if (frag >= max_frag) {
1504                         frag_flags = AMDGPU_PTE_FRAG(max_frag);
1505                         frag_end = end & ~((1ULL << max_frag) - 1);
1506                 } else {
1507                         frag_flags = AMDGPU_PTE_FRAG(frag);
1508                         frag_end = start + (1 << frag);
1509                 }
1510
1511                 r = amdgpu_vm_update_ptes(params, start, frag_end, dst,
1512                                           flags | frag_flags);
1513                 if (r)
1514                         return r;
1515
1516                 dst += (frag_end - start) * AMDGPU_GPU_PAGE_SIZE;
1517                 start = frag_end;
1518         }
1519
1520         return 0;
1521 }
1522
1523 /**
1524  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1525  *
1526  * @adev: amdgpu_device pointer
1527  * @exclusive: fence we need to sync to
1528  * @pages_addr: DMA addresses to use for mapping
1529  * @vm: requested vm
1530  * @start: start of mapped range
1531  * @last: last mapped entry
1532  * @flags: flags for the entries
1533  * @addr: addr to set the area to
1534  * @fence: optional resulting fence
1535  *
1536  * Fill in the page table entries between @start and @last.
1537  * Returns 0 for success, -EINVAL for failure.
1538  */
1539 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1540                                        struct dma_fence *exclusive,
1541                                        dma_addr_t *pages_addr,
1542                                        struct amdgpu_vm *vm,
1543                                        uint64_t start, uint64_t last,
1544                                        uint64_t flags, uint64_t addr,
1545                                        struct dma_fence **fence)
1546 {
1547         struct amdgpu_ring *ring;
1548         void *owner = AMDGPU_FENCE_OWNER_VM;
1549         unsigned nptes, ncmds, ndw;
1550         struct amdgpu_job *job;
1551         struct amdgpu_pte_update_params params;
1552         struct dma_fence *f = NULL;
1553         int r;
1554
1555         memset(&params, 0, sizeof(params));
1556         params.adev = adev;
1557         params.vm = vm;
1558
1559         /* sync to everything on unmapping */
1560         if (!(flags & AMDGPU_PTE_VALID))
1561                 owner = AMDGPU_FENCE_OWNER_UNDEFINED;
1562
1563         if (vm->use_cpu_for_update) {
1564                 /* params.src is used as flag to indicate system Memory */
1565                 if (pages_addr)
1566                         params.src = ~0;
1567
1568                 /* Wait for PT BOs to be free. PTs share the same resv. object
1569                  * as the root PD BO
1570                  */
1571                 r = amdgpu_vm_wait_pd(adev, vm, owner);
1572                 if (unlikely(r))
1573                         return r;
1574
1575                 params.func = amdgpu_vm_cpu_set_ptes;
1576                 params.pages_addr = pages_addr;
1577                 return amdgpu_vm_frag_ptes(&params, start, last + 1,
1578                                            addr, flags);
1579         }
1580
1581         ring = container_of(vm->entity.sched, struct amdgpu_ring, sched);
1582
1583         nptes = last - start + 1;
1584
1585         /*
1586          * reserve space for two commands every (1 << BLOCK_SIZE)
1587          *  entries or 2k dwords (whatever is smaller)
1588          *
1589          * The second command is for the shadow pagetables.
1590          */
1591         ncmds = ((nptes >> min(adev->vm_manager.block_size, 11u)) + 1) * 2;
1592
1593         /* padding, etc. */
1594         ndw = 64;
1595
1596         /* one PDE write for each huge page */
1597         ndw += ((nptes >> adev->vm_manager.block_size) + 1) * 6;
1598
1599         if (pages_addr) {
1600                 /* copy commands needed */
1601                 ndw += ncmds * adev->vm_manager.vm_pte_funcs->copy_pte_num_dw;
1602
1603                 /* and also PTEs */
1604                 ndw += nptes * 2;
1605
1606                 params.func = amdgpu_vm_do_copy_ptes;
1607
1608         } else {
1609                 /* set page commands needed */
1610                 ndw += ncmds * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw;
1611
1612                 /* extra commands for begin/end fragments */
1613                 ndw += 2 * adev->vm_manager.vm_pte_funcs->set_pte_pde_num_dw
1614                                 * adev->vm_manager.fragment_size;
1615
1616                 params.func = amdgpu_vm_do_set_ptes;
1617         }
1618
1619         r = amdgpu_job_alloc_with_ib(adev, ndw * 4, &job);
1620         if (r)
1621                 return r;
1622
1623         params.ib = &job->ibs[0];
1624
1625         if (pages_addr) {
1626                 uint64_t *pte;
1627                 unsigned i;
1628
1629                 /* Put the PTEs at the end of the IB. */
1630                 i = ndw - nptes * 2;
1631                 pte= (uint64_t *)&(job->ibs->ptr[i]);
1632                 params.src = job->ibs->gpu_addr + i * 4;
1633
1634                 for (i = 0; i < nptes; ++i) {
1635                         pte[i] = amdgpu_vm_map_gart(pages_addr, addr + i *
1636                                                     AMDGPU_GPU_PAGE_SIZE);
1637                         pte[i] |= flags;
1638                 }
1639                 addr = 0;
1640         }
1641
1642         r = amdgpu_sync_fence(adev, &job->sync, exclusive);
1643         if (r)
1644                 goto error_free;
1645
1646         r = amdgpu_sync_resv(adev, &job->sync, vm->root.base.bo->tbo.resv,
1647                              owner, false);
1648         if (r)
1649                 goto error_free;
1650
1651         r = reservation_object_reserve_shared(vm->root.base.bo->tbo.resv);
1652         if (r)
1653                 goto error_free;
1654
1655         r = amdgpu_vm_frag_ptes(&params, start, last + 1, addr, flags);
1656         if (r)
1657                 goto error_free;
1658
1659         amdgpu_ring_pad_ib(ring, params.ib);
1660         WARN_ON(params.ib->length_dw > ndw);
1661         r = amdgpu_job_submit(job, ring, &vm->entity,
1662                               AMDGPU_FENCE_OWNER_VM, &f);
1663         if (r)
1664                 goto error_free;
1665
1666         amdgpu_bo_fence(vm->root.base.bo, f, true);
1667         dma_fence_put(*fence);
1668         *fence = f;
1669         return 0;
1670
1671 error_free:
1672         amdgpu_job_free(job);
1673         amdgpu_vm_invalidate_level(vm, &vm->root);
1674         return r;
1675 }
1676
1677 /**
1678  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1679  *
1680  * @adev: amdgpu_device pointer
1681  * @exclusive: fence we need to sync to
1682  * @pages_addr: DMA addresses to use for mapping
1683  * @vm: requested vm
1684  * @mapping: mapped range and flags to use for the update
1685  * @flags: HW flags for the mapping
1686  * @nodes: array of drm_mm_nodes with the MC addresses
1687  * @fence: optional resulting fence
1688  *
1689  * Split the mapping into smaller chunks so that each update fits
1690  * into a SDMA IB.
1691  * Returns 0 for success, -EINVAL for failure.
1692  */
1693 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1694                                       struct dma_fence *exclusive,
1695                                       dma_addr_t *pages_addr,
1696                                       struct amdgpu_vm *vm,
1697                                       struct amdgpu_bo_va_mapping *mapping,
1698                                       uint64_t flags,
1699                                       struct drm_mm_node *nodes,
1700                                       struct dma_fence **fence)
1701 {
1702         unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1703         uint64_t pfn, start = mapping->start;
1704         int r;
1705
1706         /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1707          * but in case of something, we filter the flags in first place
1708          */
1709         if (!(mapping->flags & AMDGPU_PTE_READABLE))
1710                 flags &= ~AMDGPU_PTE_READABLE;
1711         if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1712                 flags &= ~AMDGPU_PTE_WRITEABLE;
1713
1714         flags &= ~AMDGPU_PTE_EXECUTABLE;
1715         flags |= mapping->flags & AMDGPU_PTE_EXECUTABLE;
1716
1717         flags &= ~AMDGPU_PTE_MTYPE_MASK;
1718         flags |= (mapping->flags & AMDGPU_PTE_MTYPE_MASK);
1719
1720         if ((mapping->flags & AMDGPU_PTE_PRT) &&
1721             (adev->asic_type >= CHIP_VEGA10)) {
1722                 flags |= AMDGPU_PTE_PRT;
1723                 flags &= ~AMDGPU_PTE_VALID;
1724         }
1725
1726         trace_amdgpu_vm_bo_update(mapping);
1727
1728         pfn = mapping->offset >> PAGE_SHIFT;
1729         if (nodes) {
1730                 while (pfn >= nodes->size) {
1731                         pfn -= nodes->size;
1732                         ++nodes;
1733                 }
1734         }
1735
1736         do {
1737                 dma_addr_t *dma_addr = NULL;
1738                 uint64_t max_entries;
1739                 uint64_t addr, last;
1740
1741                 if (nodes) {
1742                         addr = nodes->start << PAGE_SHIFT;
1743                         max_entries = (nodes->size - pfn) *
1744                                 (PAGE_SIZE / AMDGPU_GPU_PAGE_SIZE);
1745                 } else {
1746                         addr = 0;
1747                         max_entries = S64_MAX;
1748                 }
1749
1750                 if (pages_addr) {
1751                         uint64_t count;
1752
1753                         max_entries = min(max_entries, 16ull * 1024ull);
1754                         for (count = 1; count < max_entries; ++count) {
1755                                 uint64_t idx = pfn + count;
1756
1757                                 if (pages_addr[idx] !=
1758                                     (pages_addr[idx - 1] + PAGE_SIZE))
1759                                         break;
1760                         }
1761
1762                         if (count < min_linear_pages) {
1763                                 addr = pfn << PAGE_SHIFT;
1764                                 dma_addr = pages_addr;
1765                         } else {
1766                                 addr = pages_addr[pfn];
1767                                 max_entries = count;
1768                         }
1769
1770                 } else if (flags & AMDGPU_PTE_VALID) {
1771                         addr += adev->vm_manager.vram_base_offset;
1772                         addr += pfn << PAGE_SHIFT;
1773                 }
1774
1775                 last = min((uint64_t)mapping->last, start + max_entries - 1);
1776                 r = amdgpu_vm_bo_update_mapping(adev, exclusive, dma_addr, vm,
1777                                                 start, last, flags, addr,
1778                                                 fence);
1779                 if (r)
1780                         return r;
1781
1782                 pfn += last - start + 1;
1783                 if (nodes && nodes->size == pfn) {
1784                         pfn = 0;
1785                         ++nodes;
1786                 }
1787                 start = last + 1;
1788
1789         } while (unlikely(start != mapping->last + 1));
1790
1791         return 0;
1792 }
1793
1794 /**
1795  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1796  *
1797  * @adev: amdgpu_device pointer
1798  * @bo_va: requested BO and VM object
1799  * @clear: if true clear the entries
1800  *
1801  * Fill in the page table entries for @bo_va.
1802  * Returns 0 for success, -EINVAL for failure.
1803  */
1804 int amdgpu_vm_bo_update(struct amdgpu_device *adev,
1805                         struct amdgpu_bo_va *bo_va,
1806                         bool clear)
1807 {
1808         struct amdgpu_bo *bo = bo_va->base.bo;
1809         struct amdgpu_vm *vm = bo_va->base.vm;
1810         struct amdgpu_bo_va_mapping *mapping;
1811         dma_addr_t *pages_addr = NULL;
1812         struct ttm_mem_reg *mem;
1813         struct drm_mm_node *nodes;
1814         struct dma_fence *exclusive, **last_update;
1815         uint64_t flags;
1816         int r;
1817
1818         if (clear || !bo_va->base.bo) {
1819                 mem = NULL;
1820                 nodes = NULL;
1821                 exclusive = NULL;
1822         } else {
1823                 struct ttm_dma_tt *ttm;
1824
1825                 mem = &bo_va->base.bo->tbo.mem;
1826                 nodes = mem->mm_node;
1827                 if (mem->mem_type == TTM_PL_TT) {
1828                         ttm = container_of(bo_va->base.bo->tbo.ttm,
1829                                            struct ttm_dma_tt, ttm);
1830                         pages_addr = ttm->dma_address;
1831                 }
1832                 exclusive = reservation_object_get_excl(bo->tbo.resv);
1833         }
1834
1835         if (bo)
1836                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1837         else
1838                 flags = 0x0;
1839
1840         if (clear || (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv))
1841                 last_update = &vm->last_update;
1842         else
1843                 last_update = &bo_va->last_pt_update;
1844
1845         if (!clear && bo_va->base.moved) {
1846                 bo_va->base.moved = false;
1847                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1848
1849         } else if (bo_va->cleared != clear) {
1850                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1851         }
1852
1853         list_for_each_entry(mapping, &bo_va->invalids, list) {
1854                 r = amdgpu_vm_bo_split_mapping(adev, exclusive, pages_addr, vm,
1855                                                mapping, flags, nodes,
1856                                                last_update);
1857                 if (r)
1858                         return r;
1859         }
1860
1861         if (vm->use_cpu_for_update) {
1862                 /* Flush HDP */
1863                 mb();
1864                 amdgpu_gart_flush_gpu_tlb(adev, 0);
1865         }
1866
1867         spin_lock(&vm->status_lock);
1868         list_del_init(&bo_va->base.vm_status);
1869         spin_unlock(&vm->status_lock);
1870
1871         list_splice_init(&bo_va->invalids, &bo_va->valids);
1872         bo_va->cleared = clear;
1873
1874         if (trace_amdgpu_vm_bo_mapping_enabled()) {
1875                 list_for_each_entry(mapping, &bo_va->valids, list)
1876                         trace_amdgpu_vm_bo_mapping(mapping);
1877         }
1878
1879         return 0;
1880 }
1881
1882 /**
1883  * amdgpu_vm_update_prt_state - update the global PRT state
1884  */
1885 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1886 {
1887         unsigned long flags;
1888         bool enable;
1889
1890         spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1891         enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1892         adev->gart.gart_funcs->set_prt(adev, enable);
1893         spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1894 }
1895
1896 /**
1897  * amdgpu_vm_prt_get - add a PRT user
1898  */
1899 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1900 {
1901         if (!adev->gart.gart_funcs->set_prt)
1902                 return;
1903
1904         if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1905                 amdgpu_vm_update_prt_state(adev);
1906 }
1907
1908 /**
1909  * amdgpu_vm_prt_put - drop a PRT user
1910  */
1911 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1912 {
1913         if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1914                 amdgpu_vm_update_prt_state(adev);
1915 }
1916
1917 /**
1918  * amdgpu_vm_prt_cb - callback for updating the PRT status
1919  */
1920 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1921 {
1922         struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1923
1924         amdgpu_vm_prt_put(cb->adev);
1925         kfree(cb);
1926 }
1927
1928 /**
1929  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1930  */
1931 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1932                                  struct dma_fence *fence)
1933 {
1934         struct amdgpu_prt_cb *cb;
1935
1936         if (!adev->gart.gart_funcs->set_prt)
1937                 return;
1938
1939         cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1940         if (!cb) {
1941                 /* Last resort when we are OOM */
1942                 if (fence)
1943                         dma_fence_wait(fence, false);
1944
1945                 amdgpu_vm_prt_put(adev);
1946         } else {
1947                 cb->adev = adev;
1948                 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1949                                                      amdgpu_vm_prt_cb))
1950                         amdgpu_vm_prt_cb(fence, &cb->cb);
1951         }
1952 }
1953
1954 /**
1955  * amdgpu_vm_free_mapping - free a mapping
1956  *
1957  * @adev: amdgpu_device pointer
1958  * @vm: requested vm
1959  * @mapping: mapping to be freed
1960  * @fence: fence of the unmap operation
1961  *
1962  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1963  */
1964 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1965                                    struct amdgpu_vm *vm,
1966                                    struct amdgpu_bo_va_mapping *mapping,
1967                                    struct dma_fence *fence)
1968 {
1969         if (mapping->flags & AMDGPU_PTE_PRT)
1970                 amdgpu_vm_add_prt_cb(adev, fence);
1971         kfree(mapping);
1972 }
1973
1974 /**
1975  * amdgpu_vm_prt_fini - finish all prt mappings
1976  *
1977  * @adev: amdgpu_device pointer
1978  * @vm: requested vm
1979  *
1980  * Register a cleanup callback to disable PRT support after VM dies.
1981  */
1982 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1983 {
1984         struct reservation_object *resv = vm->root.base.bo->tbo.resv;
1985         struct dma_fence *excl, **shared;
1986         unsigned i, shared_count;
1987         int r;
1988
1989         r = reservation_object_get_fences_rcu(resv, &excl,
1990                                               &shared_count, &shared);
1991         if (r) {
1992                 /* Not enough memory to grab the fence list, as last resort
1993                  * block for all the fences to complete.
1994                  */
1995                 reservation_object_wait_timeout_rcu(resv, true, false,
1996                                                     MAX_SCHEDULE_TIMEOUT);
1997                 return;
1998         }
1999
2000         /* Add a callback for each fence in the reservation object */
2001         amdgpu_vm_prt_get(adev);
2002         amdgpu_vm_add_prt_cb(adev, excl);
2003
2004         for (i = 0; i < shared_count; ++i) {
2005                 amdgpu_vm_prt_get(adev);
2006                 amdgpu_vm_add_prt_cb(adev, shared[i]);
2007         }
2008
2009         kfree(shared);
2010 }
2011
2012 /**
2013  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2014  *
2015  * @adev: amdgpu_device pointer
2016  * @vm: requested vm
2017  * @fence: optional resulting fence (unchanged if no work needed to be done
2018  * or if an error occurred)
2019  *
2020  * Make sure all freed BOs are cleared in the PT.
2021  * Returns 0 for success.
2022  *
2023  * PTs have to be reserved and mutex must be locked!
2024  */
2025 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2026                           struct amdgpu_vm *vm,
2027                           struct dma_fence **fence)
2028 {
2029         struct amdgpu_bo_va_mapping *mapping;
2030         struct dma_fence *f = NULL;
2031         int r;
2032         uint64_t init_pte_value = 0;
2033
2034         while (!list_empty(&vm->freed)) {
2035                 mapping = list_first_entry(&vm->freed,
2036                         struct amdgpu_bo_va_mapping, list);
2037                 list_del(&mapping->list);
2038
2039                 if (vm->pte_support_ats)
2040                         init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2041
2042                 r = amdgpu_vm_bo_update_mapping(adev, NULL, NULL, vm,
2043                                                 mapping->start, mapping->last,
2044                                                 init_pte_value, 0, &f);
2045                 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2046                 if (r) {
2047                         dma_fence_put(f);
2048                         return r;
2049                 }
2050         }
2051
2052         if (fence && f) {
2053                 dma_fence_put(*fence);
2054                 *fence = f;
2055         } else {
2056                 dma_fence_put(f);
2057         }
2058
2059         return 0;
2060
2061 }
2062
2063 /**
2064  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2065  *
2066  * @adev: amdgpu_device pointer
2067  * @vm: requested vm
2068  * @sync: sync object to add fences to
2069  *
2070  * Make sure all BOs which are moved are updated in the PTs.
2071  * Returns 0 for success.
2072  *
2073  * PTs have to be reserved!
2074  */
2075 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2076                            struct amdgpu_vm *vm)
2077 {
2078         bool clear;
2079         int r = 0;
2080
2081         spin_lock(&vm->status_lock);
2082         while (!list_empty(&vm->moved)) {
2083                 struct amdgpu_bo_va *bo_va;
2084
2085                 bo_va = list_first_entry(&vm->moved,
2086                         struct amdgpu_bo_va, base.vm_status);
2087                 spin_unlock(&vm->status_lock);
2088
2089                 /* Per VM BOs never need to bo cleared in the page tables */
2090                 clear = bo_va->base.bo->tbo.resv != vm->root.base.bo->tbo.resv;
2091
2092                 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2093                 if (r)
2094                         return r;
2095
2096                 spin_lock(&vm->status_lock);
2097         }
2098         spin_unlock(&vm->status_lock);
2099
2100         return r;
2101 }
2102
2103 /**
2104  * amdgpu_vm_bo_add - add a bo to a specific vm
2105  *
2106  * @adev: amdgpu_device pointer
2107  * @vm: requested vm
2108  * @bo: amdgpu buffer object
2109  *
2110  * Add @bo into the requested vm.
2111  * Add @bo to the list of bos associated with the vm
2112  * Returns newly added bo_va or NULL for failure
2113  *
2114  * Object has to be reserved!
2115  */
2116 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2117                                       struct amdgpu_vm *vm,
2118                                       struct amdgpu_bo *bo)
2119 {
2120         struct amdgpu_bo_va *bo_va;
2121
2122         bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2123         if (bo_va == NULL) {
2124                 return NULL;
2125         }
2126         bo_va->base.vm = vm;
2127         bo_va->base.bo = bo;
2128         INIT_LIST_HEAD(&bo_va->base.bo_list);
2129         INIT_LIST_HEAD(&bo_va->base.vm_status);
2130
2131         bo_va->ref_count = 1;
2132         INIT_LIST_HEAD(&bo_va->valids);
2133         INIT_LIST_HEAD(&bo_va->invalids);
2134
2135         if (bo)
2136                 list_add_tail(&bo_va->base.bo_list, &bo->va);
2137
2138         return bo_va;
2139 }
2140
2141
2142 /**
2143  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2144  *
2145  * @adev: amdgpu_device pointer
2146  * @bo_va: bo_va to store the address
2147  * @mapping: the mapping to insert
2148  *
2149  * Insert a new mapping into all structures.
2150  */
2151 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2152                                     struct amdgpu_bo_va *bo_va,
2153                                     struct amdgpu_bo_va_mapping *mapping)
2154 {
2155         struct amdgpu_vm *vm = bo_va->base.vm;
2156         struct amdgpu_bo *bo = bo_va->base.bo;
2157
2158         mapping->bo_va = bo_va;
2159         list_add(&mapping->list, &bo_va->invalids);
2160         amdgpu_vm_it_insert(mapping, &vm->va);
2161
2162         if (mapping->flags & AMDGPU_PTE_PRT)
2163                 amdgpu_vm_prt_get(adev);
2164
2165         if (bo && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2166                 spin_lock(&vm->status_lock);
2167                 if (list_empty(&bo_va->base.vm_status))
2168                         list_add(&bo_va->base.vm_status, &vm->moved);
2169                 spin_unlock(&vm->status_lock);
2170         }
2171         trace_amdgpu_vm_bo_map(bo_va, mapping);
2172 }
2173
2174 /**
2175  * amdgpu_vm_bo_map - map bo inside a vm
2176  *
2177  * @adev: amdgpu_device pointer
2178  * @bo_va: bo_va to store the address
2179  * @saddr: where to map the BO
2180  * @offset: requested offset in the BO
2181  * @flags: attributes of pages (read/write/valid/etc.)
2182  *
2183  * Add a mapping of the BO at the specefied addr into the VM.
2184  * Returns 0 for success, error for failure.
2185  *
2186  * Object has to be reserved and unreserved outside!
2187  */
2188 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2189                      struct amdgpu_bo_va *bo_va,
2190                      uint64_t saddr, uint64_t offset,
2191                      uint64_t size, uint64_t flags)
2192 {
2193         struct amdgpu_bo_va_mapping *mapping, *tmp;
2194         struct amdgpu_bo *bo = bo_va->base.bo;
2195         struct amdgpu_vm *vm = bo_va->base.vm;
2196         uint64_t eaddr;
2197
2198         /* validate the parameters */
2199         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2200             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2201                 return -EINVAL;
2202
2203         /* make sure object fit at this offset */
2204         eaddr = saddr + size - 1;
2205         if (saddr >= eaddr ||
2206             (bo && offset + size > amdgpu_bo_size(bo)))
2207                 return -EINVAL;
2208
2209         saddr /= AMDGPU_GPU_PAGE_SIZE;
2210         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2211
2212         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2213         if (tmp) {
2214                 /* bo and tmp overlap, invalid addr */
2215                 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2216                         "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2217                         tmp->start, tmp->last + 1);
2218                 return -EINVAL;
2219         }
2220
2221         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2222         if (!mapping)
2223                 return -ENOMEM;
2224
2225         mapping->start = saddr;
2226         mapping->last = eaddr;
2227         mapping->offset = offset;
2228         mapping->flags = flags;
2229
2230         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2231
2232         return 0;
2233 }
2234
2235 /**
2236  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2237  *
2238  * @adev: amdgpu_device pointer
2239  * @bo_va: bo_va to store the address
2240  * @saddr: where to map the BO
2241  * @offset: requested offset in the BO
2242  * @flags: attributes of pages (read/write/valid/etc.)
2243  *
2244  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2245  * mappings as we do so.
2246  * Returns 0 for success, error for failure.
2247  *
2248  * Object has to be reserved and unreserved outside!
2249  */
2250 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2251                              struct amdgpu_bo_va *bo_va,
2252                              uint64_t saddr, uint64_t offset,
2253                              uint64_t size, uint64_t flags)
2254 {
2255         struct amdgpu_bo_va_mapping *mapping;
2256         struct amdgpu_bo *bo = bo_va->base.bo;
2257         uint64_t eaddr;
2258         int r;
2259
2260         /* validate the parameters */
2261         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2262             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2263                 return -EINVAL;
2264
2265         /* make sure object fit at this offset */
2266         eaddr = saddr + size - 1;
2267         if (saddr >= eaddr ||
2268             (bo && offset + size > amdgpu_bo_size(bo)))
2269                 return -EINVAL;
2270
2271         /* Allocate all the needed memory */
2272         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2273         if (!mapping)
2274                 return -ENOMEM;
2275
2276         r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2277         if (r) {
2278                 kfree(mapping);
2279                 return r;
2280         }
2281
2282         saddr /= AMDGPU_GPU_PAGE_SIZE;
2283         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2284
2285         mapping->start = saddr;
2286         mapping->last = eaddr;
2287         mapping->offset = offset;
2288         mapping->flags = flags;
2289
2290         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2291
2292         return 0;
2293 }
2294
2295 /**
2296  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2297  *
2298  * @adev: amdgpu_device pointer
2299  * @bo_va: bo_va to remove the address from
2300  * @saddr: where to the BO is mapped
2301  *
2302  * Remove a mapping of the BO at the specefied addr from the VM.
2303  * Returns 0 for success, error for failure.
2304  *
2305  * Object has to be reserved and unreserved outside!
2306  */
2307 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2308                        struct amdgpu_bo_va *bo_va,
2309                        uint64_t saddr)
2310 {
2311         struct amdgpu_bo_va_mapping *mapping;
2312         struct amdgpu_vm *vm = bo_va->base.vm;
2313         bool valid = true;
2314
2315         saddr /= AMDGPU_GPU_PAGE_SIZE;
2316
2317         list_for_each_entry(mapping, &bo_va->valids, list) {
2318                 if (mapping->start == saddr)
2319                         break;
2320         }
2321
2322         if (&mapping->list == &bo_va->valids) {
2323                 valid = false;
2324
2325                 list_for_each_entry(mapping, &bo_va->invalids, list) {
2326                         if (mapping->start == saddr)
2327                                 break;
2328                 }
2329
2330                 if (&mapping->list == &bo_va->invalids)
2331                         return -ENOENT;
2332         }
2333
2334         list_del(&mapping->list);
2335         amdgpu_vm_it_remove(mapping, &vm->va);
2336         mapping->bo_va = NULL;
2337         trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2338
2339         if (valid)
2340                 list_add(&mapping->list, &vm->freed);
2341         else
2342                 amdgpu_vm_free_mapping(adev, vm, mapping,
2343                                        bo_va->last_pt_update);
2344
2345         return 0;
2346 }
2347
2348 /**
2349  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2350  *
2351  * @adev: amdgpu_device pointer
2352  * @vm: VM structure to use
2353  * @saddr: start of the range
2354  * @size: size of the range
2355  *
2356  * Remove all mappings in a range, split them as appropriate.
2357  * Returns 0 for success, error for failure.
2358  */
2359 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2360                                 struct amdgpu_vm *vm,
2361                                 uint64_t saddr, uint64_t size)
2362 {
2363         struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2364         LIST_HEAD(removed);
2365         uint64_t eaddr;
2366
2367         eaddr = saddr + size - 1;
2368         saddr /= AMDGPU_GPU_PAGE_SIZE;
2369         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2370
2371         /* Allocate all the needed memory */
2372         before = kzalloc(sizeof(*before), GFP_KERNEL);
2373         if (!before)
2374                 return -ENOMEM;
2375         INIT_LIST_HEAD(&before->list);
2376
2377         after = kzalloc(sizeof(*after), GFP_KERNEL);
2378         if (!after) {
2379                 kfree(before);
2380                 return -ENOMEM;
2381         }
2382         INIT_LIST_HEAD(&after->list);
2383
2384         /* Now gather all removed mappings */
2385         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2386         while (tmp) {
2387                 /* Remember mapping split at the start */
2388                 if (tmp->start < saddr) {
2389                         before->start = tmp->start;
2390                         before->last = saddr - 1;
2391                         before->offset = tmp->offset;
2392                         before->flags = tmp->flags;
2393                         list_add(&before->list, &tmp->list);
2394                 }
2395
2396                 /* Remember mapping split at the end */
2397                 if (tmp->last > eaddr) {
2398                         after->start = eaddr + 1;
2399                         after->last = tmp->last;
2400                         after->offset = tmp->offset;
2401                         after->offset += after->start - tmp->start;
2402                         after->flags = tmp->flags;
2403                         list_add(&after->list, &tmp->list);
2404                 }
2405
2406                 list_del(&tmp->list);
2407                 list_add(&tmp->list, &removed);
2408
2409                 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2410         }
2411
2412         /* And free them up */
2413         list_for_each_entry_safe(tmp, next, &removed, list) {
2414                 amdgpu_vm_it_remove(tmp, &vm->va);
2415                 list_del(&tmp->list);
2416
2417                 if (tmp->start < saddr)
2418                     tmp->start = saddr;
2419                 if (tmp->last > eaddr)
2420                     tmp->last = eaddr;
2421
2422                 tmp->bo_va = NULL;
2423                 list_add(&tmp->list, &vm->freed);
2424                 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2425         }
2426
2427         /* Insert partial mapping before the range */
2428         if (!list_empty(&before->list)) {
2429                 amdgpu_vm_it_insert(before, &vm->va);
2430                 if (before->flags & AMDGPU_PTE_PRT)
2431                         amdgpu_vm_prt_get(adev);
2432         } else {
2433                 kfree(before);
2434         }
2435
2436         /* Insert partial mapping after the range */
2437         if (!list_empty(&after->list)) {
2438                 amdgpu_vm_it_insert(after, &vm->va);
2439                 if (after->flags & AMDGPU_PTE_PRT)
2440                         amdgpu_vm_prt_get(adev);
2441         } else {
2442                 kfree(after);
2443         }
2444
2445         return 0;
2446 }
2447
2448 /**
2449  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2450  *
2451  * @vm: the requested VM
2452  *
2453  * Find a mapping by it's address.
2454  */
2455 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2456                                                          uint64_t addr)
2457 {
2458         return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2459 }
2460
2461 /**
2462  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2463  *
2464  * @adev: amdgpu_device pointer
2465  * @bo_va: requested bo_va
2466  *
2467  * Remove @bo_va->bo from the requested vm.
2468  *
2469  * Object have to be reserved!
2470  */
2471 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2472                       struct amdgpu_bo_va *bo_va)
2473 {
2474         struct amdgpu_bo_va_mapping *mapping, *next;
2475         struct amdgpu_vm *vm = bo_va->base.vm;
2476
2477         list_del(&bo_va->base.bo_list);
2478
2479         spin_lock(&vm->status_lock);
2480         list_del(&bo_va->base.vm_status);
2481         spin_unlock(&vm->status_lock);
2482
2483         list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2484                 list_del(&mapping->list);
2485                 amdgpu_vm_it_remove(mapping, &vm->va);
2486                 mapping->bo_va = NULL;
2487                 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2488                 list_add(&mapping->list, &vm->freed);
2489         }
2490         list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2491                 list_del(&mapping->list);
2492                 amdgpu_vm_it_remove(mapping, &vm->va);
2493                 amdgpu_vm_free_mapping(adev, vm, mapping,
2494                                        bo_va->last_pt_update);
2495         }
2496
2497         dma_fence_put(bo_va->last_pt_update);
2498         kfree(bo_va);
2499 }
2500
2501 /**
2502  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2503  *
2504  * @adev: amdgpu_device pointer
2505  * @vm: requested vm
2506  * @bo: amdgpu buffer object
2507  *
2508  * Mark @bo as invalid.
2509  */
2510 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2511                              struct amdgpu_bo *bo, bool evicted)
2512 {
2513         struct amdgpu_vm_bo_base *bo_base;
2514
2515         list_for_each_entry(bo_base, &bo->va, bo_list) {
2516                 struct amdgpu_vm *vm = bo_base->vm;
2517
2518                 bo_base->moved = true;
2519                 if (evicted && bo->tbo.resv == vm->root.base.bo->tbo.resv) {
2520                         spin_lock(&bo_base->vm->status_lock);
2521                         if (bo->tbo.type == ttm_bo_type_kernel)
2522                                 list_move(&bo_base->vm_status, &vm->evicted);
2523                         else
2524                                 list_move_tail(&bo_base->vm_status,
2525                                                &vm->evicted);
2526                         spin_unlock(&bo_base->vm->status_lock);
2527                         continue;
2528                 }
2529
2530                 if (bo->tbo.type == ttm_bo_type_kernel) {
2531                         spin_lock(&bo_base->vm->status_lock);
2532                         if (list_empty(&bo_base->vm_status))
2533                                 list_add(&bo_base->vm_status, &vm->relocated);
2534                         spin_unlock(&bo_base->vm->status_lock);
2535                         continue;
2536                 }
2537
2538                 spin_lock(&bo_base->vm->status_lock);
2539                 if (list_empty(&bo_base->vm_status))
2540                         list_add(&bo_base->vm_status, &vm->moved);
2541                 spin_unlock(&bo_base->vm->status_lock);
2542         }
2543 }
2544
2545 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2546 {
2547         /* Total bits covered by PD + PTs */
2548         unsigned bits = ilog2(vm_size) + 18;
2549
2550         /* Make sure the PD is 4K in size up to 8GB address space.
2551            Above that split equal between PD and PTs */
2552         if (vm_size <= 8)
2553                 return (bits - 9);
2554         else
2555                 return ((bits + 3) / 2);
2556 }
2557
2558 /**
2559  * amdgpu_vm_set_fragment_size - adjust fragment size in PTE
2560  *
2561  * @adev: amdgpu_device pointer
2562  * @fragment_size_default: the default fragment size if it's set auto
2563  */
2564 void amdgpu_vm_set_fragment_size(struct amdgpu_device *adev,
2565                                  uint32_t fragment_size_default)
2566 {
2567         if (amdgpu_vm_fragment_size == -1)
2568                 adev->vm_manager.fragment_size = fragment_size_default;
2569         else
2570                 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2571 }
2572
2573 /**
2574  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2575  *
2576  * @adev: amdgpu_device pointer
2577  * @vm_size: the default vm size if it's set auto
2578  */
2579 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint64_t vm_size,
2580                            uint32_t fragment_size_default)
2581 {
2582         /* adjust vm size firstly */
2583         if (amdgpu_vm_size == -1)
2584                 adev->vm_manager.vm_size = vm_size;
2585         else
2586                 adev->vm_manager.vm_size = amdgpu_vm_size;
2587
2588         /* block size depends on vm size */
2589         if (amdgpu_vm_block_size == -1)
2590                 adev->vm_manager.block_size =
2591                         amdgpu_vm_get_block_size(adev->vm_manager.vm_size);
2592         else
2593                 adev->vm_manager.block_size = amdgpu_vm_block_size;
2594
2595         amdgpu_vm_set_fragment_size(adev, fragment_size_default);
2596
2597         DRM_INFO("vm size is %llu GB, block size is %u-bit, fragment size is %u-bit\n",
2598                 adev->vm_manager.vm_size, adev->vm_manager.block_size,
2599                 adev->vm_manager.fragment_size);
2600 }
2601
2602 /**
2603  * amdgpu_vm_init - initialize a vm instance
2604  *
2605  * @adev: amdgpu_device pointer
2606  * @vm: requested vm
2607  * @vm_context: Indicates if it GFX or Compute context
2608  *
2609  * Init @vm fields.
2610  */
2611 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2612                    int vm_context, unsigned int pasid)
2613 {
2614         const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE,
2615                 AMDGPU_VM_PTE_COUNT(adev) * 8);
2616         unsigned ring_instance;
2617         struct amdgpu_ring *ring;
2618         struct amd_sched_rq *rq;
2619         int r, i;
2620         u64 flags;
2621         uint64_t init_pde_value = 0;
2622
2623         vm->va = RB_ROOT_CACHED;
2624         vm->client_id = atomic64_inc_return(&adev->vm_manager.client_counter);
2625         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2626                 vm->reserved_vmid[i] = NULL;
2627         spin_lock_init(&vm->status_lock);
2628         INIT_LIST_HEAD(&vm->evicted);
2629         INIT_LIST_HEAD(&vm->relocated);
2630         INIT_LIST_HEAD(&vm->moved);
2631         INIT_LIST_HEAD(&vm->freed);
2632
2633         /* create scheduler entity for page table updates */
2634
2635         ring_instance = atomic_inc_return(&adev->vm_manager.vm_pte_next_ring);
2636         ring_instance %= adev->vm_manager.vm_pte_num_rings;
2637         ring = adev->vm_manager.vm_pte_rings[ring_instance];
2638         rq = &ring->sched.sched_rq[AMD_SCHED_PRIORITY_KERNEL];
2639         r = amd_sched_entity_init(&ring->sched, &vm->entity,
2640                                   rq, amdgpu_sched_jobs);
2641         if (r)
2642                 return r;
2643
2644         vm->pte_support_ats = false;
2645
2646         if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2647                 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2648                                                 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2649
2650                 if (adev->asic_type == CHIP_RAVEN) {
2651                         vm->pte_support_ats = true;
2652                         init_pde_value = AMDGPU_PTE_DEFAULT_ATC
2653                                         | AMDGPU_PDE_PTE;
2654
2655                 }
2656         } else
2657                 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2658                                                 AMDGPU_VM_USE_CPU_FOR_GFX);
2659         DRM_DEBUG_DRIVER("VM update mode is %s\n",
2660                          vm->use_cpu_for_update ? "CPU" : "SDMA");
2661         WARN_ONCE((vm->use_cpu_for_update & !amdgpu_vm_is_large_bar(adev)),
2662                   "CPU update of VM recommended only for large BAR system\n");
2663         vm->last_update = NULL;
2664
2665         flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
2666                         AMDGPU_GEM_CREATE_VRAM_CLEARED;
2667         if (vm->use_cpu_for_update)
2668                 flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
2669         else
2670                 flags |= (AMDGPU_GEM_CREATE_NO_CPU_ACCESS |
2671                                 AMDGPU_GEM_CREATE_SHADOW);
2672
2673         r = amdgpu_bo_create(adev, amdgpu_vm_bo_size(adev, 0), align, true,
2674                              AMDGPU_GEM_DOMAIN_VRAM,
2675                              flags,
2676                              NULL, NULL, init_pde_value, &vm->root.base.bo);
2677         if (r)
2678                 goto error_free_sched_entity;
2679
2680         vm->root.base.vm = vm;
2681         list_add_tail(&vm->root.base.bo_list, &vm->root.base.bo->va);
2682         INIT_LIST_HEAD(&vm->root.base.vm_status);
2683
2684         if (vm->use_cpu_for_update) {
2685                 r = amdgpu_bo_reserve(vm->root.base.bo, false);
2686                 if (r)
2687                         goto error_free_root;
2688
2689                 r = amdgpu_bo_kmap(vm->root.base.bo, NULL);
2690                 amdgpu_bo_unreserve(vm->root.base.bo);
2691                 if (r)
2692                         goto error_free_root;
2693         }
2694
2695         if (pasid) {
2696                 unsigned long flags;
2697
2698                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2699                 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2700                               GFP_ATOMIC);
2701                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2702                 if (r < 0)
2703                         goto error_free_root;
2704
2705                 vm->pasid = pasid;
2706         }
2707
2708         INIT_KFIFO(vm->faults);
2709         vm->fault_credit = 16;
2710
2711         return 0;
2712
2713 error_free_root:
2714         amdgpu_bo_unref(&vm->root.base.bo->shadow);
2715         amdgpu_bo_unref(&vm->root.base.bo);
2716         vm->root.base.bo = NULL;
2717
2718 error_free_sched_entity:
2719         amd_sched_entity_fini(&ring->sched, &vm->entity);
2720
2721         return r;
2722 }
2723
2724 /**
2725  * amdgpu_vm_free_levels - free PD/PT levels
2726  *
2727  * @level: PD/PT starting level to free
2728  *
2729  * Free the page directory or page table level and all sub levels.
2730  */
2731 static void amdgpu_vm_free_levels(struct amdgpu_vm_pt *level)
2732 {
2733         unsigned i;
2734
2735         if (level->base.bo) {
2736                 list_del(&level->base.bo_list);
2737                 list_del(&level->base.vm_status);
2738                 amdgpu_bo_unref(&level->base.bo->shadow);
2739                 amdgpu_bo_unref(&level->base.bo);
2740         }
2741
2742         if (level->entries)
2743                 for (i = 0; i <= level->last_entry_used; i++)
2744                         amdgpu_vm_free_levels(&level->entries[i]);
2745
2746         kvfree(level->entries);
2747 }
2748
2749 /**
2750  * amdgpu_vm_fini - tear down a vm instance
2751  *
2752  * @adev: amdgpu_device pointer
2753  * @vm: requested vm
2754  *
2755  * Tear down @vm.
2756  * Unbind the VM and remove all bos from the vm bo list
2757  */
2758 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
2759 {
2760         struct amdgpu_bo_va_mapping *mapping, *tmp;
2761         bool prt_fini_needed = !!adev->gart.gart_funcs->set_prt;
2762         struct amdgpu_bo *root;
2763         u64 fault;
2764         int i, r;
2765
2766         /* Clear pending page faults from IH when the VM is destroyed */
2767         while (kfifo_get(&vm->faults, &fault))
2768                 amdgpu_ih_clear_fault(adev, fault);
2769
2770         if (vm->pasid) {
2771                 unsigned long flags;
2772
2773                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2774                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
2775                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2776         }
2777
2778         amd_sched_entity_fini(vm->entity.sched, &vm->entity);
2779
2780         if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
2781                 dev_err(adev->dev, "still active bo inside vm\n");
2782         }
2783         rbtree_postorder_for_each_entry_safe(mapping, tmp,
2784                                              &vm->va.rb_root, rb) {
2785                 list_del(&mapping->list);
2786                 amdgpu_vm_it_remove(mapping, &vm->va);
2787                 kfree(mapping);
2788         }
2789         list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
2790                 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
2791                         amdgpu_vm_prt_fini(adev, vm);
2792                         prt_fini_needed = false;
2793                 }
2794
2795                 list_del(&mapping->list);
2796                 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
2797         }
2798
2799         root = amdgpu_bo_ref(vm->root.base.bo);
2800         r = amdgpu_bo_reserve(root, true);
2801         if (r) {
2802                 dev_err(adev->dev, "Leaking page tables because BO reservation failed\n");
2803         } else {
2804                 amdgpu_vm_free_levels(&vm->root);
2805                 amdgpu_bo_unreserve(root);
2806         }
2807         amdgpu_bo_unref(&root);
2808         dma_fence_put(vm->last_update);
2809         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2810                 amdgpu_vm_free_reserved_vmid(adev, vm, i);
2811 }
2812
2813 /**
2814  * amdgpu_vm_pasid_fault_credit - Check fault credit for given PASID
2815  *
2816  * @adev: amdgpu_device pointer
2817  * @pasid: PASID do identify the VM
2818  *
2819  * This function is expected to be called in interrupt context. Returns
2820  * true if there was fault credit, false otherwise
2821  */
2822 bool amdgpu_vm_pasid_fault_credit(struct amdgpu_device *adev,
2823                                   unsigned int pasid)
2824 {
2825         struct amdgpu_vm *vm;
2826
2827         spin_lock(&adev->vm_manager.pasid_lock);
2828         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
2829         spin_unlock(&adev->vm_manager.pasid_lock);
2830         if (!vm)
2831                 /* VM not found, can't track fault credit */
2832                 return true;
2833
2834         /* No lock needed. only accessed by IRQ handler */
2835         if (!vm->fault_credit)
2836                 /* Too many faults in this VM */
2837                 return false;
2838
2839         vm->fault_credit--;
2840         return true;
2841 }
2842
2843 /**
2844  * amdgpu_vm_manager_init - init the VM manager
2845  *
2846  * @adev: amdgpu_device pointer
2847  *
2848  * Initialize the VM manager structures
2849  */
2850 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
2851 {
2852         unsigned i, j;
2853
2854         for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2855                 struct amdgpu_vm_id_manager *id_mgr =
2856                         &adev->vm_manager.id_mgr[i];
2857
2858                 mutex_init(&id_mgr->lock);
2859                 INIT_LIST_HEAD(&id_mgr->ids_lru);
2860                 atomic_set(&id_mgr->reserved_vmid_num, 0);
2861
2862                 /* skip over VMID 0, since it is the system VM */
2863                 for (j = 1; j < id_mgr->num_ids; ++j) {
2864                         amdgpu_vm_reset_id(adev, i, j);
2865                         amdgpu_sync_create(&id_mgr->ids[i].active);
2866                         list_add_tail(&id_mgr->ids[j].list, &id_mgr->ids_lru);
2867                 }
2868         }
2869
2870         adev->vm_manager.fence_context =
2871                 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
2872         for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
2873                 adev->vm_manager.seqno[i] = 0;
2874
2875         atomic_set(&adev->vm_manager.vm_pte_next_ring, 0);
2876         atomic64_set(&adev->vm_manager.client_counter, 0);
2877         spin_lock_init(&adev->vm_manager.prt_lock);
2878         atomic_set(&adev->vm_manager.num_prt_users, 0);
2879
2880         /* If not overridden by the user, by default, only in large BAR systems
2881          * Compute VM tables will be updated by CPU
2882          */
2883 #ifdef CONFIG_X86_64
2884         if (amdgpu_vm_update_mode == -1) {
2885                 if (amdgpu_vm_is_large_bar(adev))
2886                         adev->vm_manager.vm_update_mode =
2887                                 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
2888                 else
2889                         adev->vm_manager.vm_update_mode = 0;
2890         } else
2891                 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
2892 #else
2893         adev->vm_manager.vm_update_mode = 0;
2894 #endif
2895
2896         idr_init(&adev->vm_manager.pasid_idr);
2897         spin_lock_init(&adev->vm_manager.pasid_lock);
2898 }
2899
2900 /**
2901  * amdgpu_vm_manager_fini - cleanup VM manager
2902  *
2903  * @adev: amdgpu_device pointer
2904  *
2905  * Cleanup the VM manager and free resources.
2906  */
2907 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
2908 {
2909         unsigned i, j;
2910
2911         WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
2912         idr_destroy(&adev->vm_manager.pasid_idr);
2913
2914         for (i = 0; i < AMDGPU_MAX_VMHUBS; ++i) {
2915                 struct amdgpu_vm_id_manager *id_mgr =
2916                         &adev->vm_manager.id_mgr[i];
2917
2918                 mutex_destroy(&id_mgr->lock);
2919                 for (j = 0; j < AMDGPU_NUM_VM; ++j) {
2920                         struct amdgpu_vm_id *id = &id_mgr->ids[j];
2921
2922                         amdgpu_sync_free(&id->active);
2923                         dma_fence_put(id->flushed_updates);
2924                         dma_fence_put(id->last_flush);
2925                 }
2926         }
2927 }
2928
2929 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
2930 {
2931         union drm_amdgpu_vm *args = data;
2932         struct amdgpu_device *adev = dev->dev_private;
2933         struct amdgpu_fpriv *fpriv = filp->driver_priv;
2934         int r;
2935
2936         switch (args->in.op) {
2937         case AMDGPU_VM_OP_RESERVE_VMID:
2938                 /* current, we only have requirement to reserve vmid from gfxhub */
2939                 r = amdgpu_vm_alloc_reserved_vmid(adev, &fpriv->vm,
2940                                                   AMDGPU_GFXHUB);
2941                 if (r)
2942                         return r;
2943                 break;
2944         case AMDGPU_VM_OP_UNRESERVE_VMID:
2945                 amdgpu_vm_free_reserved_vmid(adev, &fpriv->vm, AMDGPU_GFXHUB);
2946                 break;
2947         default:
2948                 return -EINVAL;
2949         }
2950
2951         return 0;
2952 }