Merge git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32 #include <drm/ttm/ttm_bo_api.h>
33 #include <drm/ttm/ttm_bo_driver.h>
34 #include <drm/ttm/ttm_placement.h>
35 #include <drm/ttm/ttm_module.h>
36 #include <drm/ttm/ttm_page_alloc.h>
37 #include <drm/drmP.h>
38 #include <drm/amdgpu_drm.h>
39 #include <linux/seq_file.h>
40 #include <linux/slab.h>
41 #include <linux/swiotlb.h>
42 #include <linux/swap.h>
43 #include <linux/pagemap.h>
44 #include <linux/debugfs.h>
45 #include <linux/iommu.h>
46 #include "amdgpu.h"
47 #include "amdgpu_object.h"
48 #include "amdgpu_trace.h"
49 #include "amdgpu_amdkfd.h"
50 #include "amdgpu_sdma.h"
51 #include "bif/bif_4_1_d.h"
52
53 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
54                              struct ttm_mem_reg *mem, unsigned num_pages,
55                              uint64_t offset, unsigned window,
56                              struct amdgpu_ring *ring,
57                              uint64_t *addr);
58
59 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev);
60 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev);
61
62 static int amdgpu_invalidate_caches(struct ttm_bo_device *bdev, uint32_t flags)
63 {
64         return 0;
65 }
66
67 /**
68  * amdgpu_init_mem_type - Initialize a memory manager for a specific type of
69  * memory request.
70  *
71  * @bdev: The TTM BO device object (contains a reference to amdgpu_device)
72  * @type: The type of memory requested
73  * @man: The memory type manager for each domain
74  *
75  * This is called by ttm_bo_init_mm() when a buffer object is being
76  * initialized.
77  */
78 static int amdgpu_init_mem_type(struct ttm_bo_device *bdev, uint32_t type,
79                                 struct ttm_mem_type_manager *man)
80 {
81         struct amdgpu_device *adev;
82
83         adev = amdgpu_ttm_adev(bdev);
84
85         switch (type) {
86         case TTM_PL_SYSTEM:
87                 /* System memory */
88                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE;
89                 man->available_caching = TTM_PL_MASK_CACHING;
90                 man->default_caching = TTM_PL_FLAG_CACHED;
91                 break;
92         case TTM_PL_TT:
93                 /* GTT memory  */
94                 man->func = &amdgpu_gtt_mgr_func;
95                 man->gpu_offset = adev->gmc.gart_start;
96                 man->available_caching = TTM_PL_MASK_CACHING;
97                 man->default_caching = TTM_PL_FLAG_CACHED;
98                 man->flags = TTM_MEMTYPE_FLAG_MAPPABLE | TTM_MEMTYPE_FLAG_CMA;
99                 break;
100         case TTM_PL_VRAM:
101                 /* "On-card" video ram */
102                 man->func = &amdgpu_vram_mgr_func;
103                 man->gpu_offset = adev->gmc.vram_start;
104                 man->flags = TTM_MEMTYPE_FLAG_FIXED |
105                              TTM_MEMTYPE_FLAG_MAPPABLE;
106                 man->available_caching = TTM_PL_FLAG_UNCACHED | TTM_PL_FLAG_WC;
107                 man->default_caching = TTM_PL_FLAG_WC;
108                 break;
109         case AMDGPU_PL_GDS:
110         case AMDGPU_PL_GWS:
111         case AMDGPU_PL_OA:
112                 /* On-chip GDS memory*/
113                 man->func = &ttm_bo_manager_func;
114                 man->gpu_offset = 0;
115                 man->flags = TTM_MEMTYPE_FLAG_FIXED | TTM_MEMTYPE_FLAG_CMA;
116                 man->available_caching = TTM_PL_FLAG_UNCACHED;
117                 man->default_caching = TTM_PL_FLAG_UNCACHED;
118                 break;
119         default:
120                 DRM_ERROR("Unsupported memory type %u\n", (unsigned)type);
121                 return -EINVAL;
122         }
123         return 0;
124 }
125
126 /**
127  * amdgpu_evict_flags - Compute placement flags
128  *
129  * @bo: The buffer object to evict
130  * @placement: Possible destination(s) for evicted BO
131  *
132  * Fill in placement data when ttm_bo_evict() is called
133  */
134 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
135                                 struct ttm_placement *placement)
136 {
137         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
138         struct amdgpu_bo *abo;
139         static const struct ttm_place placements = {
140                 .fpfn = 0,
141                 .lpfn = 0,
142                 .flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_SYSTEM
143         };
144
145         /* Don't handle scatter gather BOs */
146         if (bo->type == ttm_bo_type_sg) {
147                 placement->num_placement = 0;
148                 placement->num_busy_placement = 0;
149                 return;
150         }
151
152         /* Object isn't an AMDGPU object so ignore */
153         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
154                 placement->placement = &placements;
155                 placement->busy_placement = &placements;
156                 placement->num_placement = 1;
157                 placement->num_busy_placement = 1;
158                 return;
159         }
160
161         abo = ttm_to_amdgpu_bo(bo);
162         switch (bo->mem.mem_type) {
163         case AMDGPU_PL_GDS:
164         case AMDGPU_PL_GWS:
165         case AMDGPU_PL_OA:
166                 placement->num_placement = 0;
167                 placement->num_busy_placement = 0;
168                 return;
169
170         case TTM_PL_VRAM:
171                 if (!adev->mman.buffer_funcs_enabled) {
172                         /* Move to system memory */
173                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
174                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
175                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
176                            amdgpu_bo_in_cpu_visible_vram(abo)) {
177
178                         /* Try evicting to the CPU inaccessible part of VRAM
179                          * first, but only set GTT as busy placement, so this
180                          * BO will be evicted to GTT rather than causing other
181                          * BOs to be evicted from VRAM
182                          */
183                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
184                                                          AMDGPU_GEM_DOMAIN_GTT);
185                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
186                         abo->placements[0].lpfn = 0;
187                         abo->placement.busy_placement = &abo->placements[1];
188                         abo->placement.num_busy_placement = 1;
189                 } else {
190                         /* Move to GTT memory */
191                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT);
192                 }
193                 break;
194         case TTM_PL_TT:
195         default:
196                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
197                 break;
198         }
199         *placement = abo->placement;
200 }
201
202 /**
203  * amdgpu_verify_access - Verify access for a mmap call
204  *
205  * @bo: The buffer object to map
206  * @filp: The file pointer from the process performing the mmap
207  *
208  * This is called by ttm_bo_mmap() to verify whether a process
209  * has the right to mmap a BO to their process space.
210  */
211 static int amdgpu_verify_access(struct ttm_buffer_object *bo, struct file *filp)
212 {
213         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
214
215         /*
216          * Don't verify access for KFD BOs. They don't have a GEM
217          * object associated with them.
218          */
219         if (abo->kfd_bo)
220                 return 0;
221
222         if (amdgpu_ttm_tt_get_usermm(bo->ttm))
223                 return -EPERM;
224         return drm_vma_node_verify_access(&abo->gem_base.vma_node,
225                                           filp->private_data);
226 }
227
228 /**
229  * amdgpu_move_null - Register memory for a buffer object
230  *
231  * @bo: The bo to assign the memory to
232  * @new_mem: The memory to be assigned.
233  *
234  * Assign the memory from new_mem to the memory of the buffer object bo.
235  */
236 static void amdgpu_move_null(struct ttm_buffer_object *bo,
237                              struct ttm_mem_reg *new_mem)
238 {
239         struct ttm_mem_reg *old_mem = &bo->mem;
240
241         BUG_ON(old_mem->mm_node != NULL);
242         *old_mem = *new_mem;
243         new_mem->mm_node = NULL;
244 }
245
246 /**
247  * amdgpu_mm_node_addr - Compute the GPU relative offset of a GTT buffer.
248  *
249  * @bo: The bo to assign the memory to.
250  * @mm_node: Memory manager node for drm allocator.
251  * @mem: The region where the bo resides.
252  *
253  */
254 static uint64_t amdgpu_mm_node_addr(struct ttm_buffer_object *bo,
255                                     struct drm_mm_node *mm_node,
256                                     struct ttm_mem_reg *mem)
257 {
258         uint64_t addr = 0;
259
260         if (mm_node->start != AMDGPU_BO_INVALID_OFFSET) {
261                 addr = mm_node->start << PAGE_SHIFT;
262                 addr += bo->bdev->man[mem->mem_type].gpu_offset;
263         }
264         return addr;
265 }
266
267 /**
268  * amdgpu_find_mm_node - Helper function finds the drm_mm_node corresponding to
269  * @offset. It also modifies the offset to be within the drm_mm_node returned
270  *
271  * @mem: The region where the bo resides.
272  * @offset: The offset that drm_mm_node is used for finding.
273  *
274  */
275 static struct drm_mm_node *amdgpu_find_mm_node(struct ttm_mem_reg *mem,
276                                                unsigned long *offset)
277 {
278         struct drm_mm_node *mm_node = mem->mm_node;
279
280         while (*offset >= (mm_node->size << PAGE_SHIFT)) {
281                 *offset -= (mm_node->size << PAGE_SHIFT);
282                 ++mm_node;
283         }
284         return mm_node;
285 }
286
287 /**
288  * amdgpu_copy_ttm_mem_to_mem - Helper function for copy
289  *
290  * The function copies @size bytes from {src->mem + src->offset} to
291  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
292  * move and different for a BO to BO copy.
293  *
294  * @f: Returns the last fence if multiple jobs are submitted.
295  */
296 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
297                                struct amdgpu_copy_mem *src,
298                                struct amdgpu_copy_mem *dst,
299                                uint64_t size,
300                                struct reservation_object *resv,
301                                struct dma_fence **f)
302 {
303         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
304         struct drm_mm_node *src_mm, *dst_mm;
305         uint64_t src_node_start, dst_node_start, src_node_size,
306                  dst_node_size, src_page_offset, dst_page_offset;
307         struct dma_fence *fence = NULL;
308         int r = 0;
309         const uint64_t GTT_MAX_BYTES = (AMDGPU_GTT_MAX_TRANSFER_SIZE *
310                                         AMDGPU_GPU_PAGE_SIZE);
311
312         if (!adev->mman.buffer_funcs_enabled) {
313                 DRM_ERROR("Trying to move memory with ring turned off.\n");
314                 return -EINVAL;
315         }
316
317         src_mm = amdgpu_find_mm_node(src->mem, &src->offset);
318         src_node_start = amdgpu_mm_node_addr(src->bo, src_mm, src->mem) +
319                                              src->offset;
320         src_node_size = (src_mm->size << PAGE_SHIFT) - src->offset;
321         src_page_offset = src_node_start & (PAGE_SIZE - 1);
322
323         dst_mm = amdgpu_find_mm_node(dst->mem, &dst->offset);
324         dst_node_start = amdgpu_mm_node_addr(dst->bo, dst_mm, dst->mem) +
325                                              dst->offset;
326         dst_node_size = (dst_mm->size << PAGE_SHIFT) - dst->offset;
327         dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
328
329         mutex_lock(&adev->mman.gtt_window_lock);
330
331         while (size) {
332                 unsigned long cur_size;
333                 uint64_t from = src_node_start, to = dst_node_start;
334                 struct dma_fence *next;
335
336                 /* Copy size cannot exceed GTT_MAX_BYTES. So if src or dst
337                  * begins at an offset, then adjust the size accordingly
338                  */
339                 cur_size = min3(min(src_node_size, dst_node_size), size,
340                                 GTT_MAX_BYTES);
341                 if (cur_size + src_page_offset > GTT_MAX_BYTES ||
342                     cur_size + dst_page_offset > GTT_MAX_BYTES)
343                         cur_size -= max(src_page_offset, dst_page_offset);
344
345                 /* Map only what needs to be accessed. Map src to window 0 and
346                  * dst to window 1
347                  */
348                 if (src->mem->start == AMDGPU_BO_INVALID_OFFSET) {
349                         r = amdgpu_map_buffer(src->bo, src->mem,
350                                         PFN_UP(cur_size + src_page_offset),
351                                         src_node_start, 0, ring,
352                                         &from);
353                         if (r)
354                                 goto error;
355                         /* Adjust the offset because amdgpu_map_buffer returns
356                          * start of mapped page
357                          */
358                         from += src_page_offset;
359                 }
360
361                 if (dst->mem->start == AMDGPU_BO_INVALID_OFFSET) {
362                         r = amdgpu_map_buffer(dst->bo, dst->mem,
363                                         PFN_UP(cur_size + dst_page_offset),
364                                         dst_node_start, 1, ring,
365                                         &to);
366                         if (r)
367                                 goto error;
368                         to += dst_page_offset;
369                 }
370
371                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
372                                        resv, &next, false, true);
373                 if (r)
374                         goto error;
375
376                 dma_fence_put(fence);
377                 fence = next;
378
379                 size -= cur_size;
380                 if (!size)
381                         break;
382
383                 src_node_size -= cur_size;
384                 if (!src_node_size) {
385                         src_node_start = amdgpu_mm_node_addr(src->bo, ++src_mm,
386                                                              src->mem);
387                         src_node_size = (src_mm->size << PAGE_SHIFT);
388                 } else {
389                         src_node_start += cur_size;
390                         src_page_offset = src_node_start & (PAGE_SIZE - 1);
391                 }
392                 dst_node_size -= cur_size;
393                 if (!dst_node_size) {
394                         dst_node_start = amdgpu_mm_node_addr(dst->bo, ++dst_mm,
395                                                              dst->mem);
396                         dst_node_size = (dst_mm->size << PAGE_SHIFT);
397                 } else {
398                         dst_node_start += cur_size;
399                         dst_page_offset = dst_node_start & (PAGE_SIZE - 1);
400                 }
401         }
402 error:
403         mutex_unlock(&adev->mman.gtt_window_lock);
404         if (f)
405                 *f = dma_fence_get(fence);
406         dma_fence_put(fence);
407         return r;
408 }
409
410 /**
411  * amdgpu_move_blit - Copy an entire buffer to another buffer
412  *
413  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
414  * help move buffers to and from VRAM.
415  */
416 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
417                             bool evict, bool no_wait_gpu,
418                             struct ttm_mem_reg *new_mem,
419                             struct ttm_mem_reg *old_mem)
420 {
421         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
422         struct amdgpu_copy_mem src, dst;
423         struct dma_fence *fence = NULL;
424         int r;
425
426         src.bo = bo;
427         dst.bo = bo;
428         src.mem = old_mem;
429         dst.mem = new_mem;
430         src.offset = 0;
431         dst.offset = 0;
432
433         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
434                                        new_mem->num_pages << PAGE_SHIFT,
435                                        bo->resv, &fence);
436         if (r)
437                 goto error;
438
439         /* Always block for VM page tables before committing the new location */
440         if (bo->type == ttm_bo_type_kernel)
441                 r = ttm_bo_move_accel_cleanup(bo, fence, true, new_mem);
442         else
443                 r = ttm_bo_pipeline_move(bo, fence, evict, new_mem);
444         dma_fence_put(fence);
445         return r;
446
447 error:
448         if (fence)
449                 dma_fence_wait(fence, false);
450         dma_fence_put(fence);
451         return r;
452 }
453
454 /**
455  * amdgpu_move_vram_ram - Copy VRAM buffer to RAM buffer
456  *
457  * Called by amdgpu_bo_move().
458  */
459 static int amdgpu_move_vram_ram(struct ttm_buffer_object *bo, bool evict,
460                                 struct ttm_operation_ctx *ctx,
461                                 struct ttm_mem_reg *new_mem)
462 {
463         struct amdgpu_device *adev;
464         struct ttm_mem_reg *old_mem = &bo->mem;
465         struct ttm_mem_reg tmp_mem;
466         struct ttm_place placements;
467         struct ttm_placement placement;
468         int r;
469
470         adev = amdgpu_ttm_adev(bo->bdev);
471
472         /* create space/pages for new_mem in GTT space */
473         tmp_mem = *new_mem;
474         tmp_mem.mm_node = NULL;
475         placement.num_placement = 1;
476         placement.placement = &placements;
477         placement.num_busy_placement = 1;
478         placement.busy_placement = &placements;
479         placements.fpfn = 0;
480         placements.lpfn = 0;
481         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
482         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
483         if (unlikely(r)) {
484                 return r;
485         }
486
487         /* set caching flags */
488         r = ttm_tt_set_placement_caching(bo->ttm, tmp_mem.placement);
489         if (unlikely(r)) {
490                 goto out_cleanup;
491         }
492
493         /* Bind the memory to the GTT space */
494         r = ttm_tt_bind(bo->ttm, &tmp_mem, ctx);
495         if (unlikely(r)) {
496                 goto out_cleanup;
497         }
498
499         /* blit VRAM to GTT */
500         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, &tmp_mem, old_mem);
501         if (unlikely(r)) {
502                 goto out_cleanup;
503         }
504
505         /* move BO (in tmp_mem) to new_mem */
506         r = ttm_bo_move_ttm(bo, ctx, new_mem);
507 out_cleanup:
508         ttm_bo_mem_put(bo, &tmp_mem);
509         return r;
510 }
511
512 /**
513  * amdgpu_move_ram_vram - Copy buffer from RAM to VRAM
514  *
515  * Called by amdgpu_bo_move().
516  */
517 static int amdgpu_move_ram_vram(struct ttm_buffer_object *bo, bool evict,
518                                 struct ttm_operation_ctx *ctx,
519                                 struct ttm_mem_reg *new_mem)
520 {
521         struct amdgpu_device *adev;
522         struct ttm_mem_reg *old_mem = &bo->mem;
523         struct ttm_mem_reg tmp_mem;
524         struct ttm_placement placement;
525         struct ttm_place placements;
526         int r;
527
528         adev = amdgpu_ttm_adev(bo->bdev);
529
530         /* make space in GTT for old_mem buffer */
531         tmp_mem = *new_mem;
532         tmp_mem.mm_node = NULL;
533         placement.num_placement = 1;
534         placement.placement = &placements;
535         placement.num_busy_placement = 1;
536         placement.busy_placement = &placements;
537         placements.fpfn = 0;
538         placements.lpfn = 0;
539         placements.flags = TTM_PL_MASK_CACHING | TTM_PL_FLAG_TT;
540         r = ttm_bo_mem_space(bo, &placement, &tmp_mem, ctx);
541         if (unlikely(r)) {
542                 return r;
543         }
544
545         /* move/bind old memory to GTT space */
546         r = ttm_bo_move_ttm(bo, ctx, &tmp_mem);
547         if (unlikely(r)) {
548                 goto out_cleanup;
549         }
550
551         /* copy to VRAM */
552         r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu, new_mem, old_mem);
553         if (unlikely(r)) {
554                 goto out_cleanup;
555         }
556 out_cleanup:
557         ttm_bo_mem_put(bo, &tmp_mem);
558         return r;
559 }
560
561 /**
562  * amdgpu_bo_move - Move a buffer object to a new memory location
563  *
564  * Called by ttm_bo_handle_move_mem()
565  */
566 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
567                           struct ttm_operation_ctx *ctx,
568                           struct ttm_mem_reg *new_mem)
569 {
570         struct amdgpu_device *adev;
571         struct amdgpu_bo *abo;
572         struct ttm_mem_reg *old_mem = &bo->mem;
573         int r;
574
575         /* Can't move a pinned BO */
576         abo = ttm_to_amdgpu_bo(bo);
577         if (WARN_ON_ONCE(abo->pin_count > 0))
578                 return -EINVAL;
579
580         adev = amdgpu_ttm_adev(bo->bdev);
581
582         if (old_mem->mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
583                 amdgpu_move_null(bo, new_mem);
584                 return 0;
585         }
586         if ((old_mem->mem_type == TTM_PL_TT &&
587              new_mem->mem_type == TTM_PL_SYSTEM) ||
588             (old_mem->mem_type == TTM_PL_SYSTEM &&
589              new_mem->mem_type == TTM_PL_TT)) {
590                 /* bind is enough */
591                 amdgpu_move_null(bo, new_mem);
592                 return 0;
593         }
594         if (old_mem->mem_type == AMDGPU_PL_GDS ||
595             old_mem->mem_type == AMDGPU_PL_GWS ||
596             old_mem->mem_type == AMDGPU_PL_OA ||
597             new_mem->mem_type == AMDGPU_PL_GDS ||
598             new_mem->mem_type == AMDGPU_PL_GWS ||
599             new_mem->mem_type == AMDGPU_PL_OA) {
600                 /* Nothing to save here */
601                 amdgpu_move_null(bo, new_mem);
602                 return 0;
603         }
604
605         if (!adev->mman.buffer_funcs_enabled)
606                 goto memcpy;
607
608         if (old_mem->mem_type == TTM_PL_VRAM &&
609             new_mem->mem_type == TTM_PL_SYSTEM) {
610                 r = amdgpu_move_vram_ram(bo, evict, ctx, new_mem);
611         } else if (old_mem->mem_type == TTM_PL_SYSTEM &&
612                    new_mem->mem_type == TTM_PL_VRAM) {
613                 r = amdgpu_move_ram_vram(bo, evict, ctx, new_mem);
614         } else {
615                 r = amdgpu_move_blit(bo, evict, ctx->no_wait_gpu,
616                                      new_mem, old_mem);
617         }
618
619         if (r) {
620 memcpy:
621                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
622                 if (r) {
623                         return r;
624                 }
625         }
626
627         if (bo->type == ttm_bo_type_device &&
628             new_mem->mem_type == TTM_PL_VRAM &&
629             old_mem->mem_type != TTM_PL_VRAM) {
630                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
631                  * accesses the BO after it's moved.
632                  */
633                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
634         }
635
636         /* update statistics */
637         atomic64_add((u64)bo->num_pages << PAGE_SHIFT, &adev->num_bytes_moved);
638         return 0;
639 }
640
641 /**
642  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
643  *
644  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
645  */
646 static int amdgpu_ttm_io_mem_reserve(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
647 {
648         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
649         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
650         struct drm_mm_node *mm_node = mem->mm_node;
651
652         mem->bus.addr = NULL;
653         mem->bus.offset = 0;
654         mem->bus.size = mem->num_pages << PAGE_SHIFT;
655         mem->bus.base = 0;
656         mem->bus.is_iomem = false;
657         if (!(man->flags & TTM_MEMTYPE_FLAG_MAPPABLE))
658                 return -EINVAL;
659         switch (mem->mem_type) {
660         case TTM_PL_SYSTEM:
661                 /* system memory */
662                 return 0;
663         case TTM_PL_TT:
664                 break;
665         case TTM_PL_VRAM:
666                 mem->bus.offset = mem->start << PAGE_SHIFT;
667                 /* check if it's visible */
668                 if ((mem->bus.offset + mem->bus.size) > adev->gmc.visible_vram_size)
669                         return -EINVAL;
670                 /* Only physically contiguous buffers apply. In a contiguous
671                  * buffer, size of the first mm_node would match the number of
672                  * pages in ttm_mem_reg.
673                  */
674                 if (adev->mman.aper_base_kaddr &&
675                     (mm_node->size == mem->num_pages))
676                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
677                                         mem->bus.offset;
678
679                 mem->bus.base = adev->gmc.aper_base;
680                 mem->bus.is_iomem = true;
681                 break;
682         default:
683                 return -EINVAL;
684         }
685         return 0;
686 }
687
688 static void amdgpu_ttm_io_mem_free(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
689 {
690 }
691
692 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
693                                            unsigned long page_offset)
694 {
695         struct drm_mm_node *mm;
696         unsigned long offset = (page_offset << PAGE_SHIFT);
697
698         mm = amdgpu_find_mm_node(&bo->mem, &offset);
699         return (bo->mem.bus.base >> PAGE_SHIFT) + mm->start +
700                 (offset >> PAGE_SHIFT);
701 }
702
703 /*
704  * TTM backend functions.
705  */
706 struct amdgpu_ttm_gup_task_list {
707         struct list_head        list;
708         struct task_struct      *task;
709 };
710
711 struct amdgpu_ttm_tt {
712         struct ttm_dma_tt       ttm;
713         u64                     offset;
714         uint64_t                userptr;
715         struct task_struct      *usertask;
716         uint32_t                userflags;
717         spinlock_t              guptasklock;
718         struct list_head        guptasks;
719         atomic_t                mmu_invalidations;
720         uint32_t                last_set_pages;
721 };
722
723 /**
724  * amdgpu_ttm_tt_get_user_pages - Pin pages of memory pointed to by a USERPTR
725  * pointer to memory
726  *
727  * Called by amdgpu_gem_userptr_ioctl() and amdgpu_cs_parser_bos().
728  * This provides a wrapper around the get_user_pages() call to provide
729  * device accessible pages that back user memory.
730  */
731 int amdgpu_ttm_tt_get_user_pages(struct ttm_tt *ttm, struct page **pages)
732 {
733         struct amdgpu_ttm_tt *gtt = (void *)ttm;
734         struct mm_struct *mm = gtt->usertask->mm;
735         unsigned int flags = 0;
736         unsigned pinned = 0;
737         int r;
738
739         if (!mm) /* Happens during process shutdown */
740                 return -ESRCH;
741
742         if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
743                 flags |= FOLL_WRITE;
744
745         down_read(&mm->mmap_sem);
746
747         if (gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) {
748                 /*
749                  * check that we only use anonymous memory to prevent problems
750                  * with writeback
751                  */
752                 unsigned long end = gtt->userptr + ttm->num_pages * PAGE_SIZE;
753                 struct vm_area_struct *vma;
754
755                 vma = find_vma(mm, gtt->userptr);
756                 if (!vma || vma->vm_file || vma->vm_end < end) {
757                         up_read(&mm->mmap_sem);
758                         return -EPERM;
759                 }
760         }
761
762         /* loop enough times using contiguous pages of memory */
763         do {
764                 unsigned num_pages = ttm->num_pages - pinned;
765                 uint64_t userptr = gtt->userptr + pinned * PAGE_SIZE;
766                 struct page **p = pages + pinned;
767                 struct amdgpu_ttm_gup_task_list guptask;
768
769                 guptask.task = current;
770                 spin_lock(&gtt->guptasklock);
771                 list_add(&guptask.list, &gtt->guptasks);
772                 spin_unlock(&gtt->guptasklock);
773
774                 if (mm == current->mm)
775                         r = get_user_pages(userptr, num_pages, flags, p, NULL);
776                 else
777                         r = get_user_pages_remote(gtt->usertask,
778                                         mm, userptr, num_pages,
779                                         flags, p, NULL, NULL);
780
781                 spin_lock(&gtt->guptasklock);
782                 list_del(&guptask.list);
783                 spin_unlock(&gtt->guptasklock);
784
785                 if (r < 0)
786                         goto release_pages;
787
788                 pinned += r;
789
790         } while (pinned < ttm->num_pages);
791
792         up_read(&mm->mmap_sem);
793         return 0;
794
795 release_pages:
796         release_pages(pages, pinned);
797         up_read(&mm->mmap_sem);
798         return r;
799 }
800
801 /**
802  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
803  *
804  * Called by amdgpu_cs_list_validate(). This creates the page list
805  * that backs user memory and will ultimately be mapped into the device
806  * address space.
807  */
808 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
809 {
810         struct amdgpu_ttm_tt *gtt = (void *)ttm;
811         unsigned i;
812
813         gtt->last_set_pages = atomic_read(&gtt->mmu_invalidations);
814         for (i = 0; i < ttm->num_pages; ++i) {
815                 if (ttm->pages[i])
816                         put_page(ttm->pages[i]);
817
818                 ttm->pages[i] = pages ? pages[i] : NULL;
819         }
820 }
821
822 /**
823  * amdgpu_ttm_tt_mark_user_page - Mark pages as dirty
824  *
825  * Called while unpinning userptr pages
826  */
827 void amdgpu_ttm_tt_mark_user_pages(struct ttm_tt *ttm)
828 {
829         struct amdgpu_ttm_tt *gtt = (void *)ttm;
830         unsigned i;
831
832         for (i = 0; i < ttm->num_pages; ++i) {
833                 struct page *page = ttm->pages[i];
834
835                 if (!page)
836                         continue;
837
838                 if (!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY))
839                         set_page_dirty(page);
840
841                 mark_page_accessed(page);
842         }
843 }
844
845 /**
846  * amdgpu_ttm_tt_pin_userptr -  prepare the sg table with the user pages
847  *
848  * Called by amdgpu_ttm_backend_bind()
849  **/
850 static int amdgpu_ttm_tt_pin_userptr(struct ttm_tt *ttm)
851 {
852         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
853         struct amdgpu_ttm_tt *gtt = (void *)ttm;
854         unsigned nents;
855         int r;
856
857         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
858         enum dma_data_direction direction = write ?
859                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
860
861         /* Allocate an SG array and squash pages into it */
862         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
863                                       ttm->num_pages << PAGE_SHIFT,
864                                       GFP_KERNEL);
865         if (r)
866                 goto release_sg;
867
868         /* Map SG to device */
869         r = -ENOMEM;
870         nents = dma_map_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
871         if (nents != ttm->sg->nents)
872                 goto release_sg;
873
874         /* convert SG to linear array of pages and dma addresses */
875         drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
876                                          gtt->ttm.dma_address, ttm->num_pages);
877
878         return 0;
879
880 release_sg:
881         kfree(ttm->sg);
882         return r;
883 }
884
885 /**
886  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
887  */
888 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_tt *ttm)
889 {
890         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
891         struct amdgpu_ttm_tt *gtt = (void *)ttm;
892
893         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
894         enum dma_data_direction direction = write ?
895                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
896
897         /* double check that we don't free the table twice */
898         if (!ttm->sg->sgl)
899                 return;
900
901         /* unmap the pages mapped to the device */
902         dma_unmap_sg(adev->dev, ttm->sg->sgl, ttm->sg->nents, direction);
903
904         /* mark the pages as dirty */
905         amdgpu_ttm_tt_mark_user_pages(ttm);
906
907         sg_free_table(ttm->sg);
908 }
909
910 int amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
911                                 struct ttm_buffer_object *tbo,
912                                 uint64_t flags)
913 {
914         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
915         struct ttm_tt *ttm = tbo->ttm;
916         struct amdgpu_ttm_tt *gtt = (void *)ttm;
917         int r;
918
919         if (abo->flags & AMDGPU_GEM_CREATE_MQD_GFX9) {
920                 uint64_t page_idx = 1;
921
922                 r = amdgpu_gart_bind(adev, gtt->offset, page_idx,
923                                 ttm->pages, gtt->ttm.dma_address, flags);
924                 if (r)
925                         goto gart_bind_fail;
926
927                 /* Patch mtype of the second part BO */
928                 flags &=  ~AMDGPU_PTE_MTYPE_MASK;
929                 flags |= AMDGPU_PTE_MTYPE(AMDGPU_MTYPE_NC);
930
931                 r = amdgpu_gart_bind(adev,
932                                 gtt->offset + (page_idx << PAGE_SHIFT),
933                                 ttm->num_pages - page_idx,
934                                 &ttm->pages[page_idx],
935                                 &(gtt->ttm.dma_address[page_idx]), flags);
936         } else {
937                 r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
938                                      ttm->pages, gtt->ttm.dma_address, flags);
939         }
940
941 gart_bind_fail:
942         if (r)
943                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
944                           ttm->num_pages, gtt->offset);
945
946         return r;
947 }
948
949 /**
950  * amdgpu_ttm_backend_bind - Bind GTT memory
951  *
952  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
953  * This handles binding GTT memory to the device address space.
954  */
955 static int amdgpu_ttm_backend_bind(struct ttm_tt *ttm,
956                                    struct ttm_mem_reg *bo_mem)
957 {
958         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
959         struct amdgpu_ttm_tt *gtt = (void*)ttm;
960         uint64_t flags;
961         int r = 0;
962
963         if (gtt->userptr) {
964                 r = amdgpu_ttm_tt_pin_userptr(ttm);
965                 if (r) {
966                         DRM_ERROR("failed to pin userptr\n");
967                         return r;
968                 }
969         }
970         if (!ttm->num_pages) {
971                 WARN(1, "nothing to bind %lu pages for mreg %p back %p!\n",
972                      ttm->num_pages, bo_mem, ttm);
973         }
974
975         if (bo_mem->mem_type == AMDGPU_PL_GDS ||
976             bo_mem->mem_type == AMDGPU_PL_GWS ||
977             bo_mem->mem_type == AMDGPU_PL_OA)
978                 return -EINVAL;
979
980         if (!amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
981                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
982                 return 0;
983         }
984
985         /* compute PTE flags relevant to this BO memory */
986         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
987
988         /* bind pages into GART page tables */
989         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
990         r = amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
991                 ttm->pages, gtt->ttm.dma_address, flags);
992
993         if (r)
994                 DRM_ERROR("failed to bind %lu pages at 0x%08llX\n",
995                           ttm->num_pages, gtt->offset);
996         return r;
997 }
998
999 /**
1000  * amdgpu_ttm_alloc_gart - Allocate GART memory for buffer object
1001  */
1002 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
1003 {
1004         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1005         struct ttm_operation_ctx ctx = { false, false };
1006         struct amdgpu_ttm_tt *gtt = (void*)bo->ttm;
1007         struct ttm_mem_reg tmp;
1008         struct ttm_placement placement;
1009         struct ttm_place placements;
1010         uint64_t addr, flags;
1011         int r;
1012
1013         if (bo->mem.start != AMDGPU_BO_INVALID_OFFSET)
1014                 return 0;
1015
1016         addr = amdgpu_gmc_agp_addr(bo);
1017         if (addr != AMDGPU_BO_INVALID_OFFSET) {
1018                 bo->mem.start = addr >> PAGE_SHIFT;
1019         } else {
1020
1021                 /* allocate GART space */
1022                 tmp = bo->mem;
1023                 tmp.mm_node = NULL;
1024                 placement.num_placement = 1;
1025                 placement.placement = &placements;
1026                 placement.num_busy_placement = 1;
1027                 placement.busy_placement = &placements;
1028                 placements.fpfn = 0;
1029                 placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
1030                 placements.flags = (bo->mem.placement & ~TTM_PL_MASK_MEM) |
1031                         TTM_PL_FLAG_TT;
1032
1033                 r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
1034                 if (unlikely(r))
1035                         return r;
1036
1037                 /* compute PTE flags for this buffer object */
1038                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, &tmp);
1039
1040                 /* Bind pages */
1041                 gtt->offset = (u64)tmp.start << PAGE_SHIFT;
1042                 r = amdgpu_ttm_gart_bind(adev, bo, flags);
1043                 if (unlikely(r)) {
1044                         ttm_bo_mem_put(bo, &tmp);
1045                         return r;
1046                 }
1047
1048                 ttm_bo_mem_put(bo, &bo->mem);
1049                 bo->mem = tmp;
1050         }
1051
1052         bo->offset = (bo->mem.start << PAGE_SHIFT) +
1053                 bo->bdev->man[bo->mem.mem_type].gpu_offset;
1054
1055         return 0;
1056 }
1057
1058 /**
1059  * amdgpu_ttm_recover_gart - Rebind GTT pages
1060  *
1061  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1062  * rebind GTT pages during a GPU reset.
1063  */
1064 int amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1065 {
1066         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1067         uint64_t flags;
1068         int r;
1069
1070         if (!tbo->ttm)
1071                 return 0;
1072
1073         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, &tbo->mem);
1074         r = amdgpu_ttm_gart_bind(adev, tbo, flags);
1075
1076         return r;
1077 }
1078
1079 /**
1080  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1081  *
1082  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1083  * ttm_tt_destroy().
1084  */
1085 static int amdgpu_ttm_backend_unbind(struct ttm_tt *ttm)
1086 {
1087         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1088         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1089         int r;
1090
1091         /* if the pages have userptr pinning then clear that first */
1092         if (gtt->userptr)
1093                 amdgpu_ttm_tt_unpin_userptr(ttm);
1094
1095         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1096                 return 0;
1097
1098         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1099         r = amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1100         if (r)
1101                 DRM_ERROR("failed to unbind %lu pages at 0x%08llX\n",
1102                           gtt->ttm.ttm.num_pages, gtt->offset);
1103         return r;
1104 }
1105
1106 static void amdgpu_ttm_backend_destroy(struct ttm_tt *ttm)
1107 {
1108         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1109
1110         if (gtt->usertask)
1111                 put_task_struct(gtt->usertask);
1112
1113         ttm_dma_tt_fini(&gtt->ttm);
1114         kfree(gtt);
1115 }
1116
1117 static struct ttm_backend_func amdgpu_backend_func = {
1118         .bind = &amdgpu_ttm_backend_bind,
1119         .unbind = &amdgpu_ttm_backend_unbind,
1120         .destroy = &amdgpu_ttm_backend_destroy,
1121 };
1122
1123 /**
1124  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1125  *
1126  * @bo: The buffer object to create a GTT ttm_tt object around
1127  *
1128  * Called by ttm_tt_create().
1129  */
1130 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1131                                            uint32_t page_flags)
1132 {
1133         struct amdgpu_device *adev;
1134         struct amdgpu_ttm_tt *gtt;
1135
1136         adev = amdgpu_ttm_adev(bo->bdev);
1137
1138         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1139         if (gtt == NULL) {
1140                 return NULL;
1141         }
1142         gtt->ttm.ttm.func = &amdgpu_backend_func;
1143
1144         /* allocate space for the uninitialized page entries */
1145         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags)) {
1146                 kfree(gtt);
1147                 return NULL;
1148         }
1149         return &gtt->ttm.ttm;
1150 }
1151
1152 /**
1153  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1154  *
1155  * Map the pages of a ttm_tt object to an address space visible
1156  * to the underlying device.
1157  */
1158 static int amdgpu_ttm_tt_populate(struct ttm_tt *ttm,
1159                         struct ttm_operation_ctx *ctx)
1160 {
1161         struct amdgpu_device *adev = amdgpu_ttm_adev(ttm->bdev);
1162         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1163         bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1164
1165         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1166         if (gtt && gtt->userptr) {
1167                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1168                 if (!ttm->sg)
1169                         return -ENOMEM;
1170
1171                 ttm->page_flags |= TTM_PAGE_FLAG_SG;
1172                 ttm->state = tt_unbound;
1173                 return 0;
1174         }
1175
1176         if (slave && ttm->sg) {
1177                 drm_prime_sg_to_page_addr_arrays(ttm->sg, ttm->pages,
1178                                                  gtt->ttm.dma_address,
1179                                                  ttm->num_pages);
1180                 ttm->state = tt_unbound;
1181                 return 0;
1182         }
1183
1184 #ifdef CONFIG_SWIOTLB
1185         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1186                 return ttm_dma_populate(&gtt->ttm, adev->dev, ctx);
1187         }
1188 #endif
1189
1190         /* fall back to generic helper to populate the page array
1191          * and map them to the device */
1192         return ttm_populate_and_map_pages(adev->dev, &gtt->ttm, ctx);
1193 }
1194
1195 /**
1196  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1197  *
1198  * Unmaps pages of a ttm_tt object from the device address space and
1199  * unpopulates the page array backing it.
1200  */
1201 static void amdgpu_ttm_tt_unpopulate(struct ttm_tt *ttm)
1202 {
1203         struct amdgpu_device *adev;
1204         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1205         bool slave = !!(ttm->page_flags & TTM_PAGE_FLAG_SG);
1206
1207         if (gtt && gtt->userptr) {
1208                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1209                 kfree(ttm->sg);
1210                 ttm->page_flags &= ~TTM_PAGE_FLAG_SG;
1211                 return;
1212         }
1213
1214         if (slave)
1215                 return;
1216
1217         adev = amdgpu_ttm_adev(ttm->bdev);
1218
1219 #ifdef CONFIG_SWIOTLB
1220         if (adev->need_swiotlb && swiotlb_nr_tbl()) {
1221                 ttm_dma_unpopulate(&gtt->ttm, adev->dev);
1222                 return;
1223         }
1224 #endif
1225
1226         /* fall back to generic helper to unmap and unpopulate array */
1227         ttm_unmap_and_unpopulate_pages(adev->dev, &gtt->ttm);
1228 }
1229
1230 /**
1231  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1232  * task
1233  *
1234  * @ttm: The ttm_tt object to bind this userptr object to
1235  * @addr:  The address in the current tasks VM space to use
1236  * @flags: Requirements of userptr object.
1237  *
1238  * Called by amdgpu_gem_userptr_ioctl() to bind userptr pages
1239  * to current task
1240  */
1241 int amdgpu_ttm_tt_set_userptr(struct ttm_tt *ttm, uint64_t addr,
1242                               uint32_t flags)
1243 {
1244         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1245
1246         if (gtt == NULL)
1247                 return -EINVAL;
1248
1249         gtt->userptr = addr;
1250         gtt->userflags = flags;
1251
1252         if (gtt->usertask)
1253                 put_task_struct(gtt->usertask);
1254         gtt->usertask = current->group_leader;
1255         get_task_struct(gtt->usertask);
1256
1257         spin_lock_init(&gtt->guptasklock);
1258         INIT_LIST_HEAD(&gtt->guptasks);
1259         atomic_set(&gtt->mmu_invalidations, 0);
1260         gtt->last_set_pages = 0;
1261
1262         return 0;
1263 }
1264
1265 /**
1266  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1267  */
1268 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1269 {
1270         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1271
1272         if (gtt == NULL)
1273                 return NULL;
1274
1275         if (gtt->usertask == NULL)
1276                 return NULL;
1277
1278         return gtt->usertask->mm;
1279 }
1280
1281 /**
1282  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1283  * address range for the current task.
1284  *
1285  */
1286 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1287                                   unsigned long end)
1288 {
1289         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1290         struct amdgpu_ttm_gup_task_list *entry;
1291         unsigned long size;
1292
1293         if (gtt == NULL || !gtt->userptr)
1294                 return false;
1295
1296         /* Return false if no part of the ttm_tt object lies within
1297          * the range
1298          */
1299         size = (unsigned long)gtt->ttm.ttm.num_pages * PAGE_SIZE;
1300         if (gtt->userptr > end || gtt->userptr + size <= start)
1301                 return false;
1302
1303         /* Search the lists of tasks that hold this mapping and see
1304          * if current is one of them.  If it is return false.
1305          */
1306         spin_lock(&gtt->guptasklock);
1307         list_for_each_entry(entry, &gtt->guptasks, list) {
1308                 if (entry->task == current) {
1309                         spin_unlock(&gtt->guptasklock);
1310                         return false;
1311                 }
1312         }
1313         spin_unlock(&gtt->guptasklock);
1314
1315         atomic_inc(&gtt->mmu_invalidations);
1316
1317         return true;
1318 }
1319
1320 /**
1321  * amdgpu_ttm_tt_userptr_invalidated - Has the ttm_tt object been invalidated?
1322  */
1323 bool amdgpu_ttm_tt_userptr_invalidated(struct ttm_tt *ttm,
1324                                        int *last_invalidated)
1325 {
1326         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1327         int prev_invalidated = *last_invalidated;
1328
1329         *last_invalidated = atomic_read(&gtt->mmu_invalidations);
1330         return prev_invalidated != *last_invalidated;
1331 }
1332
1333 /**
1334  * amdgpu_ttm_tt_userptr_needs_pages - Have the pages backing this ttm_tt object
1335  * been invalidated since the last time they've been set?
1336  */
1337 bool amdgpu_ttm_tt_userptr_needs_pages(struct ttm_tt *ttm)
1338 {
1339         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1340
1341         if (gtt == NULL || !gtt->userptr)
1342                 return false;
1343
1344         return atomic_read(&gtt->mmu_invalidations) != gtt->last_set_pages;
1345 }
1346
1347 /**
1348  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1349  */
1350 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1351 {
1352         struct amdgpu_ttm_tt *gtt = (void *)ttm;
1353
1354         if (gtt == NULL)
1355                 return false;
1356
1357         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1358 }
1359
1360 /**
1361  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1362  *
1363  * @ttm: The ttm_tt object to compute the flags for
1364  * @mem: The memory registry backing this ttm_tt object
1365  *
1366  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1367  */
1368 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_mem_reg *mem)
1369 {
1370         uint64_t flags = 0;
1371
1372         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1373                 flags |= AMDGPU_PTE_VALID;
1374
1375         if (mem && mem->mem_type == TTM_PL_TT) {
1376                 flags |= AMDGPU_PTE_SYSTEM;
1377
1378                 if (ttm->caching_state == tt_cached)
1379                         flags |= AMDGPU_PTE_SNOOPED;
1380         }
1381
1382         return flags;
1383 }
1384
1385 /**
1386  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1387  *
1388  * @ttm: The ttm_tt object to compute the flags for
1389  * @mem: The memory registry backing this ttm_tt object
1390
1391  * Figure out the flags to use for a VM PTE (Page Table Entry).
1392  */
1393 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1394                                  struct ttm_mem_reg *mem)
1395 {
1396         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1397
1398         flags |= adev->gart.gart_pte_flags;
1399         flags |= AMDGPU_PTE_READABLE;
1400
1401         if (!amdgpu_ttm_tt_is_readonly(ttm))
1402                 flags |= AMDGPU_PTE_WRITEABLE;
1403
1404         return flags;
1405 }
1406
1407 /**
1408  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1409  * object.
1410  *
1411  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1412  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1413  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1414  * used to clean out a memory space.
1415  */
1416 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1417                                             const struct ttm_place *place)
1418 {
1419         unsigned long num_pages = bo->mem.num_pages;
1420         struct drm_mm_node *node = bo->mem.mm_node;
1421         struct reservation_object_list *flist;
1422         struct dma_fence *f;
1423         int i;
1424
1425         /* Don't evict VM page tables while they are busy, otherwise we can't
1426          * cleanly handle page faults.
1427          */
1428         if (bo->type == ttm_bo_type_kernel &&
1429             !reservation_object_test_signaled_rcu(bo->resv, true))
1430                 return false;
1431
1432         /* If bo is a KFD BO, check if the bo belongs to the current process.
1433          * If true, then return false as any KFD process needs all its BOs to
1434          * be resident to run successfully
1435          */
1436         flist = reservation_object_get_list(bo->resv);
1437         if (flist) {
1438                 for (i = 0; i < flist->shared_count; ++i) {
1439                         f = rcu_dereference_protected(flist->shared[i],
1440                                 reservation_object_held(bo->resv));
1441                         if (amdkfd_fence_check_mm(f, current->mm))
1442                                 return false;
1443                 }
1444         }
1445
1446         switch (bo->mem.mem_type) {
1447         case TTM_PL_TT:
1448                 return true;
1449
1450         case TTM_PL_VRAM:
1451                 /* Check each drm MM node individually */
1452                 while (num_pages) {
1453                         if (place->fpfn < (node->start + node->size) &&
1454                             !(place->lpfn && place->lpfn <= node->start))
1455                                 return true;
1456
1457                         num_pages -= node->size;
1458                         ++node;
1459                 }
1460                 return false;
1461
1462         default:
1463                 break;
1464         }
1465
1466         return ttm_bo_eviction_valuable(bo, place);
1467 }
1468
1469 /**
1470  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1471  *
1472  * @bo:  The buffer object to read/write
1473  * @offset:  Offset into buffer object
1474  * @buf:  Secondary buffer to write/read from
1475  * @len: Length in bytes of access
1476  * @write:  true if writing
1477  *
1478  * This is used to access VRAM that backs a buffer object via MMIO
1479  * access for debugging purposes.
1480  */
1481 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1482                                     unsigned long offset,
1483                                     void *buf, int len, int write)
1484 {
1485         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1486         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1487         struct drm_mm_node *nodes;
1488         uint32_t value = 0;
1489         int ret = 0;
1490         uint64_t pos;
1491         unsigned long flags;
1492
1493         if (bo->mem.mem_type != TTM_PL_VRAM)
1494                 return -EIO;
1495
1496         nodes = amdgpu_find_mm_node(&abo->tbo.mem, &offset);
1497         pos = (nodes->start << PAGE_SHIFT) + offset;
1498
1499         while (len && pos < adev->gmc.mc_vram_size) {
1500                 uint64_t aligned_pos = pos & ~(uint64_t)3;
1501                 uint32_t bytes = 4 - (pos & 3);
1502                 uint32_t shift = (pos & 3) * 8;
1503                 uint32_t mask = 0xffffffff << shift;
1504
1505                 if (len < bytes) {
1506                         mask &= 0xffffffff >> (bytes - len) * 8;
1507                         bytes = len;
1508                 }
1509
1510                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
1511                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)aligned_pos) | 0x80000000);
1512                 WREG32_NO_KIQ(mmMM_INDEX_HI, aligned_pos >> 31);
1513                 if (!write || mask != 0xffffffff)
1514                         value = RREG32_NO_KIQ(mmMM_DATA);
1515                 if (write) {
1516                         value &= ~mask;
1517                         value |= (*(uint32_t *)buf << shift) & mask;
1518                         WREG32_NO_KIQ(mmMM_DATA, value);
1519                 }
1520                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
1521                 if (!write) {
1522                         value = (value & mask) >> shift;
1523                         memcpy(buf, &value, bytes);
1524                 }
1525
1526                 ret += bytes;
1527                 buf = (uint8_t *)buf + bytes;
1528                 pos += bytes;
1529                 len -= bytes;
1530                 if (pos >= (nodes->start + nodes->size) << PAGE_SHIFT) {
1531                         ++nodes;
1532                         pos = (nodes->start << PAGE_SHIFT);
1533                 }
1534         }
1535
1536         return ret;
1537 }
1538
1539 static struct ttm_bo_driver amdgpu_bo_driver = {
1540         .ttm_tt_create = &amdgpu_ttm_tt_create,
1541         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1542         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1543         .invalidate_caches = &amdgpu_invalidate_caches,
1544         .init_mem_type = &amdgpu_init_mem_type,
1545         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1546         .evict_flags = &amdgpu_evict_flags,
1547         .move = &amdgpu_bo_move,
1548         .verify_access = &amdgpu_verify_access,
1549         .move_notify = &amdgpu_bo_move_notify,
1550         .fault_reserve_notify = &amdgpu_bo_fault_reserve_notify,
1551         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1552         .io_mem_free = &amdgpu_ttm_io_mem_free,
1553         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1554         .access_memory = &amdgpu_ttm_access_memory,
1555         .del_from_lru_notify = &amdgpu_vm_del_from_lru_notify
1556 };
1557
1558 /*
1559  * Firmware Reservation functions
1560  */
1561 /**
1562  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1563  *
1564  * @adev: amdgpu_device pointer
1565  *
1566  * free fw reserved vram if it has been reserved.
1567  */
1568 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1569 {
1570         amdgpu_bo_free_kernel(&adev->fw_vram_usage.reserved_bo,
1571                 NULL, &adev->fw_vram_usage.va);
1572 }
1573
1574 /**
1575  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1576  *
1577  * @adev: amdgpu_device pointer
1578  *
1579  * create bo vram reservation from fw.
1580  */
1581 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1582 {
1583         struct ttm_operation_ctx ctx = { false, false };
1584         struct amdgpu_bo_param bp;
1585         int r = 0;
1586         int i;
1587         u64 vram_size = adev->gmc.visible_vram_size;
1588         u64 offset = adev->fw_vram_usage.start_offset;
1589         u64 size = adev->fw_vram_usage.size;
1590         struct amdgpu_bo *bo;
1591
1592         memset(&bp, 0, sizeof(bp));
1593         bp.size = adev->fw_vram_usage.size;
1594         bp.byte_align = PAGE_SIZE;
1595         bp.domain = AMDGPU_GEM_DOMAIN_VRAM;
1596         bp.flags = AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED |
1597                 AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS;
1598         bp.type = ttm_bo_type_kernel;
1599         bp.resv = NULL;
1600         adev->fw_vram_usage.va = NULL;
1601         adev->fw_vram_usage.reserved_bo = NULL;
1602
1603         if (adev->fw_vram_usage.size > 0 &&
1604                 adev->fw_vram_usage.size <= vram_size) {
1605
1606                 r = amdgpu_bo_create(adev, &bp,
1607                                      &adev->fw_vram_usage.reserved_bo);
1608                 if (r)
1609                         goto error_create;
1610
1611                 r = amdgpu_bo_reserve(adev->fw_vram_usage.reserved_bo, false);
1612                 if (r)
1613                         goto error_reserve;
1614
1615                 /* remove the original mem node and create a new one at the
1616                  * request position
1617                  */
1618                 bo = adev->fw_vram_usage.reserved_bo;
1619                 offset = ALIGN(offset, PAGE_SIZE);
1620                 for (i = 0; i < bo->placement.num_placement; ++i) {
1621                         bo->placements[i].fpfn = offset >> PAGE_SHIFT;
1622                         bo->placements[i].lpfn = (offset + size) >> PAGE_SHIFT;
1623                 }
1624
1625                 ttm_bo_mem_put(&bo->tbo, &bo->tbo.mem);
1626                 r = ttm_bo_mem_space(&bo->tbo, &bo->placement,
1627                                      &bo->tbo.mem, &ctx);
1628                 if (r)
1629                         goto error_pin;
1630
1631                 r = amdgpu_bo_pin_restricted(adev->fw_vram_usage.reserved_bo,
1632                         AMDGPU_GEM_DOMAIN_VRAM,
1633                         adev->fw_vram_usage.start_offset,
1634                         (adev->fw_vram_usage.start_offset +
1635                         adev->fw_vram_usage.size));
1636                 if (r)
1637                         goto error_pin;
1638                 r = amdgpu_bo_kmap(adev->fw_vram_usage.reserved_bo,
1639                         &adev->fw_vram_usage.va);
1640                 if (r)
1641                         goto error_kmap;
1642
1643                 amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1644         }
1645         return r;
1646
1647 error_kmap:
1648         amdgpu_bo_unpin(adev->fw_vram_usage.reserved_bo);
1649 error_pin:
1650         amdgpu_bo_unreserve(adev->fw_vram_usage.reserved_bo);
1651 error_reserve:
1652         amdgpu_bo_unref(&adev->fw_vram_usage.reserved_bo);
1653 error_create:
1654         adev->fw_vram_usage.va = NULL;
1655         adev->fw_vram_usage.reserved_bo = NULL;
1656         return r;
1657 }
1658 /**
1659  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1660  * gtt/vram related fields.
1661  *
1662  * This initializes all of the memory space pools that the TTM layer
1663  * will need such as the GTT space (system memory mapped to the device),
1664  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1665  * can be mapped per VMID.
1666  */
1667 int amdgpu_ttm_init(struct amdgpu_device *adev)
1668 {
1669         uint64_t gtt_size;
1670         int r;
1671         u64 vis_vram_limit;
1672
1673         mutex_init(&adev->mman.gtt_window_lock);
1674
1675         /* No others user of address space so set it to 0 */
1676         r = ttm_bo_device_init(&adev->mman.bdev,
1677                                &amdgpu_bo_driver,
1678                                adev->ddev->anon_inode->i_mapping,
1679                                adev->need_dma32);
1680         if (r) {
1681                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1682                 return r;
1683         }
1684         adev->mman.initialized = true;
1685
1686         /* We opt to avoid OOM on system pages allocations */
1687         adev->mman.bdev.no_retry = true;
1688
1689         /* Initialize VRAM pool with all of VRAM divided into pages */
1690         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_VRAM,
1691                                 adev->gmc.real_vram_size >> PAGE_SHIFT);
1692         if (r) {
1693                 DRM_ERROR("Failed initializing VRAM heap.\n");
1694                 return r;
1695         }
1696
1697         /* Reduce size of CPU-visible VRAM if requested */
1698         vis_vram_limit = (u64)amdgpu_vis_vram_limit * 1024 * 1024;
1699         if (amdgpu_vis_vram_limit > 0 &&
1700             vis_vram_limit <= adev->gmc.visible_vram_size)
1701                 adev->gmc.visible_vram_size = vis_vram_limit;
1702
1703         /* Change the size here instead of the init above so only lpfn is affected */
1704         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1705 #ifdef CONFIG_64BIT
1706         adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1707                                                 adev->gmc.visible_vram_size);
1708 #endif
1709
1710         /*
1711          *The reserved vram for firmware must be pinned to the specified
1712          *place on the VRAM, so reserve it early.
1713          */
1714         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1715         if (r) {
1716                 return r;
1717         }
1718
1719         /* allocate memory as required for VGA
1720          * This is used for VGA emulation and pre-OS scanout buffers to
1721          * avoid display artifacts while transitioning between pre-OS
1722          * and driver.  */
1723         r = amdgpu_bo_create_kernel(adev, adev->gmc.stolen_size, PAGE_SIZE,
1724                                     AMDGPU_GEM_DOMAIN_VRAM,
1725                                     &adev->stolen_vga_memory,
1726                                     NULL, NULL);
1727         if (r)
1728                 return r;
1729         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1730                  (unsigned) (adev->gmc.real_vram_size / (1024 * 1024)));
1731
1732         /* Compute GTT size, either bsaed on 3/4th the size of RAM size
1733          * or whatever the user passed on module init */
1734         if (amdgpu_gtt_size == -1) {
1735                 struct sysinfo si;
1736
1737                 si_meminfo(&si);
1738                 gtt_size = min(max((AMDGPU_DEFAULT_GTT_SIZE_MB << 20),
1739                                adev->gmc.mc_vram_size),
1740                                ((uint64_t)si.totalram * si.mem_unit * 3/4));
1741         }
1742         else
1743                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1744
1745         /* Initialize GTT memory pool */
1746         r = ttm_bo_init_mm(&adev->mman.bdev, TTM_PL_TT, gtt_size >> PAGE_SHIFT);
1747         if (r) {
1748                 DRM_ERROR("Failed initializing GTT heap.\n");
1749                 return r;
1750         }
1751         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1752                  (unsigned)(gtt_size / (1024 * 1024)));
1753
1754         /* Initialize various on-chip memory pools */
1755         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GDS,
1756                            adev->gds.mem.total_size);
1757         if (r) {
1758                 DRM_ERROR("Failed initializing GDS heap.\n");
1759                 return r;
1760         }
1761
1762         r = amdgpu_bo_create_kernel(adev, adev->gds.mem.gfx_partition_size,
1763                                     4, AMDGPU_GEM_DOMAIN_GDS,
1764                                     &adev->gds.gds_gfx_bo, NULL, NULL);
1765         if (r)
1766                 return r;
1767
1768         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_GWS,
1769                            adev->gds.gws.total_size);
1770         if (r) {
1771                 DRM_ERROR("Failed initializing gws heap.\n");
1772                 return r;
1773         }
1774
1775         r = amdgpu_bo_create_kernel(adev, adev->gds.gws.gfx_partition_size,
1776                                     1, AMDGPU_GEM_DOMAIN_GWS,
1777                                     &adev->gds.gws_gfx_bo, NULL, NULL);
1778         if (r)
1779                 return r;
1780
1781         r = ttm_bo_init_mm(&adev->mman.bdev, AMDGPU_PL_OA,
1782                            adev->gds.oa.total_size);
1783         if (r) {
1784                 DRM_ERROR("Failed initializing oa heap.\n");
1785                 return r;
1786         }
1787
1788         r = amdgpu_bo_create_kernel(adev, adev->gds.oa.gfx_partition_size,
1789                                     1, AMDGPU_GEM_DOMAIN_OA,
1790                                     &adev->gds.oa_gfx_bo, NULL, NULL);
1791         if (r)
1792                 return r;
1793
1794         /* Register debugfs entries for amdgpu_ttm */
1795         r = amdgpu_ttm_debugfs_init(adev);
1796         if (r) {
1797                 DRM_ERROR("Failed to init debugfs\n");
1798                 return r;
1799         }
1800         return 0;
1801 }
1802
1803 /**
1804  * amdgpu_ttm_late_init - Handle any late initialization for amdgpu_ttm
1805  */
1806 void amdgpu_ttm_late_init(struct amdgpu_device *adev)
1807 {
1808         /* return the VGA stolen memory (if any) back to VRAM */
1809         amdgpu_bo_free_kernel(&adev->stolen_vga_memory, NULL, NULL);
1810 }
1811
1812 /**
1813  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1814  */
1815 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1816 {
1817         if (!adev->mman.initialized)
1818                 return;
1819
1820         amdgpu_ttm_debugfs_fini(adev);
1821         amdgpu_ttm_fw_reserve_vram_fini(adev);
1822         if (adev->mman.aper_base_kaddr)
1823                 iounmap(adev->mman.aper_base_kaddr);
1824         adev->mman.aper_base_kaddr = NULL;
1825
1826         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_VRAM);
1827         ttm_bo_clean_mm(&adev->mman.bdev, TTM_PL_TT);
1828         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GDS);
1829         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_GWS);
1830         ttm_bo_clean_mm(&adev->mman.bdev, AMDGPU_PL_OA);
1831         ttm_bo_device_release(&adev->mman.bdev);
1832         adev->mman.initialized = false;
1833         DRM_INFO("amdgpu: ttm finalized\n");
1834 }
1835
1836 /**
1837  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
1838  *
1839  * @adev: amdgpu_device pointer
1840  * @enable: true when we can use buffer functions.
1841  *
1842  * Enable/disable use of buffer functions during suspend/resume. This should
1843  * only be called at bootup or when userspace isn't running.
1844  */
1845 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
1846 {
1847         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[TTM_PL_VRAM];
1848         uint64_t size;
1849         int r;
1850
1851         if (!adev->mman.initialized || adev->in_gpu_reset ||
1852             adev->mman.buffer_funcs_enabled == enable)
1853                 return;
1854
1855         if (enable) {
1856                 struct amdgpu_ring *ring;
1857                 struct drm_sched_rq *rq;
1858
1859                 ring = adev->mman.buffer_funcs_ring;
1860                 rq = &ring->sched.sched_rq[DRM_SCHED_PRIORITY_KERNEL];
1861                 r = drm_sched_entity_init(&adev->mman.entity, &rq, 1, NULL);
1862                 if (r) {
1863                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
1864                                   r);
1865                         return;
1866                 }
1867         } else {
1868                 drm_sched_entity_destroy(&adev->mman.entity);
1869                 dma_fence_put(man->move);
1870                 man->move = NULL;
1871         }
1872
1873         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
1874         if (enable)
1875                 size = adev->gmc.real_vram_size;
1876         else
1877                 size = adev->gmc.visible_vram_size;
1878         man->size = size >> PAGE_SHIFT;
1879         adev->mman.buffer_funcs_enabled = enable;
1880 }
1881
1882 int amdgpu_mmap(struct file *filp, struct vm_area_struct *vma)
1883 {
1884         struct drm_file *file_priv = filp->private_data;
1885         struct amdgpu_device *adev = file_priv->minor->dev->dev_private;
1886
1887         if (adev == NULL)
1888                 return -EINVAL;
1889
1890         return ttm_bo_mmap(filp, vma, &adev->mman.bdev);
1891 }
1892
1893 static int amdgpu_map_buffer(struct ttm_buffer_object *bo,
1894                              struct ttm_mem_reg *mem, unsigned num_pages,
1895                              uint64_t offset, unsigned window,
1896                              struct amdgpu_ring *ring,
1897                              uint64_t *addr)
1898 {
1899         struct amdgpu_ttm_tt *gtt = (void *)bo->ttm;
1900         struct amdgpu_device *adev = ring->adev;
1901         struct ttm_tt *ttm = bo->ttm;
1902         struct amdgpu_job *job;
1903         unsigned num_dw, num_bytes;
1904         dma_addr_t *dma_address;
1905         struct dma_fence *fence;
1906         uint64_t src_addr, dst_addr;
1907         uint64_t flags;
1908         int r;
1909
1910         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
1911                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
1912
1913         *addr = adev->gmc.gart_start;
1914         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
1915                 AMDGPU_GPU_PAGE_SIZE;
1916
1917         num_dw = adev->mman.buffer_funcs->copy_num_dw;
1918         while (num_dw & 0x7)
1919                 num_dw++;
1920
1921         num_bytes = num_pages * 8;
1922
1923         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4 + num_bytes, &job);
1924         if (r)
1925                 return r;
1926
1927         src_addr = num_dw * 4;
1928         src_addr += job->ibs[0].gpu_addr;
1929
1930         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
1931         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
1932         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
1933                                 dst_addr, num_bytes);
1934
1935         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
1936         WARN_ON(job->ibs[0].length_dw > num_dw);
1937
1938         dma_address = &gtt->ttm.dma_address[offset >> PAGE_SHIFT];
1939         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, mem);
1940         r = amdgpu_gart_map(adev, 0, num_pages, dma_address, flags,
1941                             &job->ibs[0].ptr[num_dw]);
1942         if (r)
1943                 goto error_free;
1944
1945         r = amdgpu_job_submit(job, &adev->mman.entity,
1946                               AMDGPU_FENCE_OWNER_UNDEFINED, &fence);
1947         if (r)
1948                 goto error_free;
1949
1950         dma_fence_put(fence);
1951
1952         return r;
1953
1954 error_free:
1955         amdgpu_job_free(job);
1956         return r;
1957 }
1958
1959 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
1960                        uint64_t dst_offset, uint32_t byte_count,
1961                        struct reservation_object *resv,
1962                        struct dma_fence **fence, bool direct_submit,
1963                        bool vm_needs_flush)
1964 {
1965         struct amdgpu_device *adev = ring->adev;
1966         struct amdgpu_job *job;
1967
1968         uint32_t max_bytes;
1969         unsigned num_loops, num_dw;
1970         unsigned i;
1971         int r;
1972
1973         if (direct_submit && !ring->sched.ready) {
1974                 DRM_ERROR("Trying to move memory with ring turned off.\n");
1975                 return -EINVAL;
1976         }
1977
1978         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
1979         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
1980         num_dw = num_loops * adev->mman.buffer_funcs->copy_num_dw;
1981
1982         /* for IB padding */
1983         while (num_dw & 0x7)
1984                 num_dw++;
1985
1986         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
1987         if (r)
1988                 return r;
1989
1990         if (vm_needs_flush) {
1991                 job->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gart.bo);
1992                 job->vm_needs_flush = true;
1993         }
1994         if (resv) {
1995                 r = amdgpu_sync_resv(adev, &job->sync, resv,
1996                                      AMDGPU_FENCE_OWNER_UNDEFINED,
1997                                      false);
1998                 if (r) {
1999                         DRM_ERROR("sync failed (%d).\n", r);
2000                         goto error_free;
2001                 }
2002         }
2003
2004         for (i = 0; i < num_loops; i++) {
2005                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2006
2007                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2008                                         dst_offset, cur_size_in_bytes);
2009
2010                 src_offset += cur_size_in_bytes;
2011                 dst_offset += cur_size_in_bytes;
2012                 byte_count -= cur_size_in_bytes;
2013         }
2014
2015         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2016         WARN_ON(job->ibs[0].length_dw > num_dw);
2017         if (direct_submit)
2018                 r = amdgpu_job_submit_direct(job, ring, fence);
2019         else
2020                 r = amdgpu_job_submit(job, &adev->mman.entity,
2021                                       AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2022         if (r)
2023                 goto error_free;
2024
2025         return r;
2026
2027 error_free:
2028         amdgpu_job_free(job);
2029         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2030         return r;
2031 }
2032
2033 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2034                        uint32_t src_data,
2035                        struct reservation_object *resv,
2036                        struct dma_fence **fence)
2037 {
2038         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2039         uint32_t max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2040         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2041
2042         struct drm_mm_node *mm_node;
2043         unsigned long num_pages;
2044         unsigned int num_loops, num_dw;
2045
2046         struct amdgpu_job *job;
2047         int r;
2048
2049         if (!adev->mman.buffer_funcs_enabled) {
2050                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2051                 return -EINVAL;
2052         }
2053
2054         if (bo->tbo.mem.mem_type == TTM_PL_TT) {
2055                 r = amdgpu_ttm_alloc_gart(&bo->tbo);
2056                 if (r)
2057                         return r;
2058         }
2059
2060         num_pages = bo->tbo.num_pages;
2061         mm_node = bo->tbo.mem.mm_node;
2062         num_loops = 0;
2063         while (num_pages) {
2064                 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2065
2066                 num_loops += DIV_ROUND_UP(byte_count, max_bytes);
2067                 num_pages -= mm_node->size;
2068                 ++mm_node;
2069         }
2070         num_dw = num_loops * adev->mman.buffer_funcs->fill_num_dw;
2071
2072         /* for IB padding */
2073         num_dw += 64;
2074
2075         r = amdgpu_job_alloc_with_ib(adev, num_dw * 4, &job);
2076         if (r)
2077                 return r;
2078
2079         if (resv) {
2080                 r = amdgpu_sync_resv(adev, &job->sync, resv,
2081                                      AMDGPU_FENCE_OWNER_UNDEFINED, false);
2082                 if (r) {
2083                         DRM_ERROR("sync failed (%d).\n", r);
2084                         goto error_free;
2085                 }
2086         }
2087
2088         num_pages = bo->tbo.num_pages;
2089         mm_node = bo->tbo.mem.mm_node;
2090
2091         while (num_pages) {
2092                 uint32_t byte_count = mm_node->size << PAGE_SHIFT;
2093                 uint64_t dst_addr;
2094
2095                 dst_addr = amdgpu_mm_node_addr(&bo->tbo, mm_node, &bo->tbo.mem);
2096                 while (byte_count) {
2097                         uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2098
2099                         amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data,
2100                                                 dst_addr, cur_size_in_bytes);
2101
2102                         dst_addr += cur_size_in_bytes;
2103                         byte_count -= cur_size_in_bytes;
2104                 }
2105
2106                 num_pages -= mm_node->size;
2107                 ++mm_node;
2108         }
2109
2110         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2111         WARN_ON(job->ibs[0].length_dw > num_dw);
2112         r = amdgpu_job_submit(job, &adev->mman.entity,
2113                               AMDGPU_FENCE_OWNER_UNDEFINED, fence);
2114         if (r)
2115                 goto error_free;
2116
2117         return 0;
2118
2119 error_free:
2120         amdgpu_job_free(job);
2121         return r;
2122 }
2123
2124 #if defined(CONFIG_DEBUG_FS)
2125
2126 static int amdgpu_mm_dump_table(struct seq_file *m, void *data)
2127 {
2128         struct drm_info_node *node = (struct drm_info_node *)m->private;
2129         unsigned ttm_pl = (uintptr_t)node->info_ent->data;
2130         struct drm_device *dev = node->minor->dev;
2131         struct amdgpu_device *adev = dev->dev_private;
2132         struct ttm_mem_type_manager *man = &adev->mman.bdev.man[ttm_pl];
2133         struct drm_printer p = drm_seq_file_printer(m);
2134
2135         man->func->debug(man, &p);
2136         return 0;
2137 }
2138
2139 static const struct drm_info_list amdgpu_ttm_debugfs_list[] = {
2140         {"amdgpu_vram_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_VRAM},
2141         {"amdgpu_gtt_mm", amdgpu_mm_dump_table, 0, (void *)TTM_PL_TT},
2142         {"amdgpu_gds_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GDS},
2143         {"amdgpu_gws_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_GWS},
2144         {"amdgpu_oa_mm", amdgpu_mm_dump_table, 0, (void *)AMDGPU_PL_OA},
2145         {"ttm_page_pool", ttm_page_alloc_debugfs, 0, NULL},
2146 #ifdef CONFIG_SWIOTLB
2147         {"ttm_dma_page_pool", ttm_dma_page_alloc_debugfs, 0, NULL}
2148 #endif
2149 };
2150
2151 /**
2152  * amdgpu_ttm_vram_read - Linear read access to VRAM
2153  *
2154  * Accesses VRAM via MMIO for debugging purposes.
2155  */
2156 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2157                                     size_t size, loff_t *pos)
2158 {
2159         struct amdgpu_device *adev = file_inode(f)->i_private;
2160         ssize_t result = 0;
2161         int r;
2162
2163         if (size & 0x3 || *pos & 0x3)
2164                 return -EINVAL;
2165
2166         if (*pos >= adev->gmc.mc_vram_size)
2167                 return -ENXIO;
2168
2169         while (size) {
2170                 unsigned long flags;
2171                 uint32_t value;
2172
2173                 if (*pos >= adev->gmc.mc_vram_size)
2174                         return result;
2175
2176                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2177                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2178                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2179                 value = RREG32_NO_KIQ(mmMM_DATA);
2180                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2181
2182                 r = put_user(value, (uint32_t *)buf);
2183                 if (r)
2184                         return r;
2185
2186                 result += 4;
2187                 buf += 4;
2188                 *pos += 4;
2189                 size -= 4;
2190         }
2191
2192         return result;
2193 }
2194
2195 /**
2196  * amdgpu_ttm_vram_write - Linear write access to VRAM
2197  *
2198  * Accesses VRAM via MMIO for debugging purposes.
2199  */
2200 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2201                                     size_t size, loff_t *pos)
2202 {
2203         struct amdgpu_device *adev = file_inode(f)->i_private;
2204         ssize_t result = 0;
2205         int r;
2206
2207         if (size & 0x3 || *pos & 0x3)
2208                 return -EINVAL;
2209
2210         if (*pos >= adev->gmc.mc_vram_size)
2211                 return -ENXIO;
2212
2213         while (size) {
2214                 unsigned long flags;
2215                 uint32_t value;
2216
2217                 if (*pos >= adev->gmc.mc_vram_size)
2218                         return result;
2219
2220                 r = get_user(value, (uint32_t *)buf);
2221                 if (r)
2222                         return r;
2223
2224                 spin_lock_irqsave(&adev->mmio_idx_lock, flags);
2225                 WREG32_NO_KIQ(mmMM_INDEX, ((uint32_t)*pos) | 0x80000000);
2226                 WREG32_NO_KIQ(mmMM_INDEX_HI, *pos >> 31);
2227                 WREG32_NO_KIQ(mmMM_DATA, value);
2228                 spin_unlock_irqrestore(&adev->mmio_idx_lock, flags);
2229
2230                 result += 4;
2231                 buf += 4;
2232                 *pos += 4;
2233                 size -= 4;
2234         }
2235
2236         return result;
2237 }
2238
2239 static const struct file_operations amdgpu_ttm_vram_fops = {
2240         .owner = THIS_MODULE,
2241         .read = amdgpu_ttm_vram_read,
2242         .write = amdgpu_ttm_vram_write,
2243         .llseek = default_llseek,
2244 };
2245
2246 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2247
2248 /**
2249  * amdgpu_ttm_gtt_read - Linear read access to GTT memory
2250  */
2251 static ssize_t amdgpu_ttm_gtt_read(struct file *f, char __user *buf,
2252                                    size_t size, loff_t *pos)
2253 {
2254         struct amdgpu_device *adev = file_inode(f)->i_private;
2255         ssize_t result = 0;
2256         int r;
2257
2258         while (size) {
2259                 loff_t p = *pos / PAGE_SIZE;
2260                 unsigned off = *pos & ~PAGE_MASK;
2261                 size_t cur_size = min_t(size_t, size, PAGE_SIZE - off);
2262                 struct page *page;
2263                 void *ptr;
2264
2265                 if (p >= adev->gart.num_cpu_pages)
2266                         return result;
2267
2268                 page = adev->gart.pages[p];
2269                 if (page) {
2270                         ptr = kmap(page);
2271                         ptr += off;
2272
2273                         r = copy_to_user(buf, ptr, cur_size);
2274                         kunmap(adev->gart.pages[p]);
2275                 } else
2276                         r = clear_user(buf, cur_size);
2277
2278                 if (r)
2279                         return -EFAULT;
2280
2281                 result += cur_size;
2282                 buf += cur_size;
2283                 *pos += cur_size;
2284                 size -= cur_size;
2285         }
2286
2287         return result;
2288 }
2289
2290 static const struct file_operations amdgpu_ttm_gtt_fops = {
2291         .owner = THIS_MODULE,
2292         .read = amdgpu_ttm_gtt_read,
2293         .llseek = default_llseek
2294 };
2295
2296 #endif
2297
2298 /**
2299  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2300  *
2301  * This function is used to read memory that has been mapped to the
2302  * GPU and the known addresses are not physical addresses but instead
2303  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2304  */
2305 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2306                                  size_t size, loff_t *pos)
2307 {
2308         struct amdgpu_device *adev = file_inode(f)->i_private;
2309         struct iommu_domain *dom;
2310         ssize_t result = 0;
2311         int r;
2312
2313         /* retrieve the IOMMU domain if any for this device */
2314         dom = iommu_get_domain_for_dev(adev->dev);
2315
2316         while (size) {
2317                 phys_addr_t addr = *pos & PAGE_MASK;
2318                 loff_t off = *pos & ~PAGE_MASK;
2319                 size_t bytes = PAGE_SIZE - off;
2320                 unsigned long pfn;
2321                 struct page *p;
2322                 void *ptr;
2323
2324                 bytes = bytes < size ? bytes : size;
2325
2326                 /* Translate the bus address to a physical address.  If
2327                  * the domain is NULL it means there is no IOMMU active
2328                  * and the address translation is the identity
2329                  */
2330                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2331
2332                 pfn = addr >> PAGE_SHIFT;
2333                 if (!pfn_valid(pfn))
2334                         return -EPERM;
2335
2336                 p = pfn_to_page(pfn);
2337                 if (p->mapping != adev->mman.bdev.dev_mapping)
2338                         return -EPERM;
2339
2340                 ptr = kmap(p);
2341                 r = copy_to_user(buf, ptr + off, bytes);
2342                 kunmap(p);
2343                 if (r)
2344                         return -EFAULT;
2345
2346                 size -= bytes;
2347                 *pos += bytes;
2348                 result += bytes;
2349         }
2350
2351         return result;
2352 }
2353
2354 /**
2355  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2356  *
2357  * This function is used to write memory that has been mapped to the
2358  * GPU and the known addresses are not physical addresses but instead
2359  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2360  */
2361 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2362                                  size_t size, loff_t *pos)
2363 {
2364         struct amdgpu_device *adev = file_inode(f)->i_private;
2365         struct iommu_domain *dom;
2366         ssize_t result = 0;
2367         int r;
2368
2369         dom = iommu_get_domain_for_dev(adev->dev);
2370
2371         while (size) {
2372                 phys_addr_t addr = *pos & PAGE_MASK;
2373                 loff_t off = *pos & ~PAGE_MASK;
2374                 size_t bytes = PAGE_SIZE - off;
2375                 unsigned long pfn;
2376                 struct page *p;
2377                 void *ptr;
2378
2379                 bytes = bytes < size ? bytes : size;
2380
2381                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2382
2383                 pfn = addr >> PAGE_SHIFT;
2384                 if (!pfn_valid(pfn))
2385                         return -EPERM;
2386
2387                 p = pfn_to_page(pfn);
2388                 if (p->mapping != adev->mman.bdev.dev_mapping)
2389                         return -EPERM;
2390
2391                 ptr = kmap(p);
2392                 r = copy_from_user(ptr + off, buf, bytes);
2393                 kunmap(p);
2394                 if (r)
2395                         return -EFAULT;
2396
2397                 size -= bytes;
2398                 *pos += bytes;
2399                 result += bytes;
2400         }
2401
2402         return result;
2403 }
2404
2405 static const struct file_operations amdgpu_ttm_iomem_fops = {
2406         .owner = THIS_MODULE,
2407         .read = amdgpu_iomem_read,
2408         .write = amdgpu_iomem_write,
2409         .llseek = default_llseek
2410 };
2411
2412 static const struct {
2413         char *name;
2414         const struct file_operations *fops;
2415         int domain;
2416 } ttm_debugfs_entries[] = {
2417         { "amdgpu_vram", &amdgpu_ttm_vram_fops, TTM_PL_VRAM },
2418 #ifdef CONFIG_DRM_AMDGPU_GART_DEBUGFS
2419         { "amdgpu_gtt", &amdgpu_ttm_gtt_fops, TTM_PL_TT },
2420 #endif
2421         { "amdgpu_iomem", &amdgpu_ttm_iomem_fops, TTM_PL_SYSTEM },
2422 };
2423
2424 #endif
2425
2426 static int amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2427 {
2428 #if defined(CONFIG_DEBUG_FS)
2429         unsigned count;
2430
2431         struct drm_minor *minor = adev->ddev->primary;
2432         struct dentry *ent, *root = minor->debugfs_root;
2433
2434         for (count = 0; count < ARRAY_SIZE(ttm_debugfs_entries); count++) {
2435                 ent = debugfs_create_file(
2436                                 ttm_debugfs_entries[count].name,
2437                                 S_IFREG | S_IRUGO, root,
2438                                 adev,
2439                                 ttm_debugfs_entries[count].fops);
2440                 if (IS_ERR(ent))
2441                         return PTR_ERR(ent);
2442                 if (ttm_debugfs_entries[count].domain == TTM_PL_VRAM)
2443                         i_size_write(ent->d_inode, adev->gmc.mc_vram_size);
2444                 else if (ttm_debugfs_entries[count].domain == TTM_PL_TT)
2445                         i_size_write(ent->d_inode, adev->gmc.gart_size);
2446                 adev->mman.debugfs_entries[count] = ent;
2447         }
2448
2449         count = ARRAY_SIZE(amdgpu_ttm_debugfs_list);
2450
2451 #ifdef CONFIG_SWIOTLB
2452         if (!(adev->need_swiotlb && swiotlb_nr_tbl()))
2453                 --count;
2454 #endif
2455
2456         return amdgpu_debugfs_add_files(adev, amdgpu_ttm_debugfs_list, count);
2457 #else
2458         return 0;
2459 #endif
2460 }
2461
2462 static void amdgpu_ttm_debugfs_fini(struct amdgpu_device *adev)
2463 {
2464 #if defined(CONFIG_DEBUG_FS)
2465         unsigned i;
2466
2467         for (i = 0; i < ARRAY_SIZE(ttm_debugfs_entries); i++)
2468                 debugfs_remove(adev->mman.debugfs_entries[i]);
2469 #endif
2470 }