Linux 6.9-rc5
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52
53 #include "amdgpu.h"
54 #include "amdgpu_object.h"
55 #include "amdgpu_trace.h"
56 #include "amdgpu_amdkfd.h"
57 #include "amdgpu_sdma.h"
58 #include "amdgpu_ras.h"
59 #include "amdgpu_hmm.h"
60 #include "amdgpu_atomfirmware.h"
61 #include "amdgpu_res_cursor.h"
62 #include "bif/bif_4_1_d.h"
63
64 MODULE_IMPORT_NS(DMA_BUF);
65
66 #define AMDGPU_TTM_VRAM_MAX_DW_READ     ((size_t)128)
67
68 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
69                                    struct ttm_tt *ttm,
70                                    struct ttm_resource *bo_mem);
71 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
72                                       struct ttm_tt *ttm);
73
74 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
75                                     unsigned int type,
76                                     uint64_t size_in_page)
77 {
78         return ttm_range_man_init(&adev->mman.bdev, type,
79                                   false, size_in_page);
80 }
81
82 /**
83  * amdgpu_evict_flags - Compute placement flags
84  *
85  * @bo: The buffer object to evict
86  * @placement: Possible destination(s) for evicted BO
87  *
88  * Fill in placement data when ttm_bo_evict() is called
89  */
90 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
91                                 struct ttm_placement *placement)
92 {
93         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
94         struct amdgpu_bo *abo;
95         static const struct ttm_place placements = {
96                 .fpfn = 0,
97                 .lpfn = 0,
98                 .mem_type = TTM_PL_SYSTEM,
99                 .flags = 0
100         };
101
102         /* Don't handle scatter gather BOs */
103         if (bo->type == ttm_bo_type_sg) {
104                 placement->num_placement = 0;
105                 return;
106         }
107
108         /* Object isn't an AMDGPU object so ignore */
109         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
110                 placement->placement = &placements;
111                 placement->num_placement = 1;
112                 return;
113         }
114
115         abo = ttm_to_amdgpu_bo(bo);
116         if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
117                 placement->num_placement = 0;
118                 return;
119         }
120
121         switch (bo->resource->mem_type) {
122         case AMDGPU_PL_GDS:
123         case AMDGPU_PL_GWS:
124         case AMDGPU_PL_OA:
125         case AMDGPU_PL_DOORBELL:
126                 placement->num_placement = 0;
127                 return;
128
129         case TTM_PL_VRAM:
130                 if (!adev->mman.buffer_funcs_enabled) {
131                         /* Move to system memory */
132                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
133
134                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
135                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
136                            amdgpu_res_cpu_visible(adev, bo->resource)) {
137
138                         /* Try evicting to the CPU inaccessible part of VRAM
139                          * first, but only set GTT as busy placement, so this
140                          * BO will be evicted to GTT rather than causing other
141                          * BOs to be evicted from VRAM
142                          */
143                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
144                                                         AMDGPU_GEM_DOMAIN_GTT |
145                                                         AMDGPU_GEM_DOMAIN_CPU);
146                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
147                         abo->placements[0].lpfn = 0;
148                         abo->placements[0].flags |= TTM_PL_FLAG_DESIRED;
149                 } else {
150                         /* Move to GTT memory */
151                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
152                                                         AMDGPU_GEM_DOMAIN_CPU);
153                 }
154                 break;
155         case TTM_PL_TT:
156         case AMDGPU_PL_PREEMPT:
157         default:
158                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
159                 break;
160         }
161         *placement = abo->placement;
162 }
163
164 /**
165  * amdgpu_ttm_map_buffer - Map memory into the GART windows
166  * @bo: buffer object to map
167  * @mem: memory object to map
168  * @mm_cur: range to map
169  * @window: which GART window to use
170  * @ring: DMA ring to use for the copy
171  * @tmz: if we should setup a TMZ enabled mapping
172  * @size: in number of bytes to map, out number of bytes mapped
173  * @addr: resulting address inside the MC address space
174  *
175  * Setup one of the GART windows to access a specific piece of memory or return
176  * the physical address for local memory.
177  */
178 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
179                                  struct ttm_resource *mem,
180                                  struct amdgpu_res_cursor *mm_cur,
181                                  unsigned int window, struct amdgpu_ring *ring,
182                                  bool tmz, uint64_t *size, uint64_t *addr)
183 {
184         struct amdgpu_device *adev = ring->adev;
185         unsigned int offset, num_pages, num_dw, num_bytes;
186         uint64_t src_addr, dst_addr;
187         struct amdgpu_job *job;
188         void *cpu_addr;
189         uint64_t flags;
190         unsigned int i;
191         int r;
192
193         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
194                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
195
196         if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
197                 return -EINVAL;
198
199         /* Map only what can't be accessed directly */
200         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
201                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
202                         mm_cur->start;
203                 return 0;
204         }
205
206
207         /*
208          * If start begins at an offset inside the page, then adjust the size
209          * and addr accordingly
210          */
211         offset = mm_cur->start & ~PAGE_MASK;
212
213         num_pages = PFN_UP(*size + offset);
214         num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
215
216         *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
217
218         *addr = adev->gmc.gart_start;
219         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
220                 AMDGPU_GPU_PAGE_SIZE;
221         *addr += offset;
222
223         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
224         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
225
226         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
227                                      AMDGPU_FENCE_OWNER_UNDEFINED,
228                                      num_dw * 4 + num_bytes,
229                                      AMDGPU_IB_POOL_DELAYED, &job);
230         if (r)
231                 return r;
232
233         src_addr = num_dw * 4;
234         src_addr += job->ibs[0].gpu_addr;
235
236         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
237         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
238         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
239                                 dst_addr, num_bytes, false);
240
241         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
242         WARN_ON(job->ibs[0].length_dw > num_dw);
243
244         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
245         if (tmz)
246                 flags |= AMDGPU_PTE_TMZ;
247
248         cpu_addr = &job->ibs[0].ptr[num_dw];
249
250         if (mem->mem_type == TTM_PL_TT) {
251                 dma_addr_t *dma_addr;
252
253                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
254                 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
255         } else {
256                 dma_addr_t dma_address;
257
258                 dma_address = mm_cur->start;
259                 dma_address += adev->vm_manager.vram_base_offset;
260
261                 for (i = 0; i < num_pages; ++i) {
262                         amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
263                                         flags, cpu_addr);
264                         dma_address += PAGE_SIZE;
265                 }
266         }
267
268         dma_fence_put(amdgpu_job_submit(job));
269         return 0;
270 }
271
272 /**
273  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
274  * @adev: amdgpu device
275  * @src: buffer/address where to read from
276  * @dst: buffer/address where to write to
277  * @size: number of bytes to copy
278  * @tmz: if a secure copy should be used
279  * @resv: resv object to sync to
280  * @f: Returns the last fence if multiple jobs are submitted.
281  *
282  * The function copies @size bytes from {src->mem + src->offset} to
283  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
284  * move and different for a BO to BO copy.
285  *
286  */
287 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
288                                const struct amdgpu_copy_mem *src,
289                                const struct amdgpu_copy_mem *dst,
290                                uint64_t size, bool tmz,
291                                struct dma_resv *resv,
292                                struct dma_fence **f)
293 {
294         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
295         struct amdgpu_res_cursor src_mm, dst_mm;
296         struct dma_fence *fence = NULL;
297         int r = 0;
298
299         if (!adev->mman.buffer_funcs_enabled) {
300                 DRM_ERROR("Trying to move memory with ring turned off.\n");
301                 return -EINVAL;
302         }
303
304         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
305         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
306
307         mutex_lock(&adev->mman.gtt_window_lock);
308         while (src_mm.remaining) {
309                 uint64_t from, to, cur_size;
310                 struct dma_fence *next;
311
312                 /* Never copy more than 256MiB at once to avoid a timeout */
313                 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
314
315                 /* Map src to window 0 and dst to window 1. */
316                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
317                                           0, ring, tmz, &cur_size, &from);
318                 if (r)
319                         goto error;
320
321                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
322                                           1, ring, tmz, &cur_size, &to);
323                 if (r)
324                         goto error;
325
326                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
327                                        resv, &next, false, true, tmz);
328                 if (r)
329                         goto error;
330
331                 dma_fence_put(fence);
332                 fence = next;
333
334                 amdgpu_res_next(&src_mm, cur_size);
335                 amdgpu_res_next(&dst_mm, cur_size);
336         }
337 error:
338         mutex_unlock(&adev->mman.gtt_window_lock);
339         if (f)
340                 *f = dma_fence_get(fence);
341         dma_fence_put(fence);
342         return r;
343 }
344
345 /*
346  * amdgpu_move_blit - Copy an entire buffer to another buffer
347  *
348  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
349  * help move buffers to and from VRAM.
350  */
351 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
352                             bool evict,
353                             struct ttm_resource *new_mem,
354                             struct ttm_resource *old_mem)
355 {
356         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
357         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
358         struct amdgpu_copy_mem src, dst;
359         struct dma_fence *fence = NULL;
360         int r;
361
362         src.bo = bo;
363         dst.bo = bo;
364         src.mem = old_mem;
365         dst.mem = new_mem;
366         src.offset = 0;
367         dst.offset = 0;
368
369         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
370                                        new_mem->size,
371                                        amdgpu_bo_encrypted(abo),
372                                        bo->base.resv, &fence);
373         if (r)
374                 goto error;
375
376         /* clear the space being freed */
377         if (old_mem->mem_type == TTM_PL_VRAM &&
378             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
379                 struct dma_fence *wipe_fence = NULL;
380
381                 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
382                                         false);
383                 if (r) {
384                         goto error;
385                 } else if (wipe_fence) {
386                         dma_fence_put(fence);
387                         fence = wipe_fence;
388                 }
389         }
390
391         /* Always block for VM page tables before committing the new location */
392         if (bo->type == ttm_bo_type_kernel)
393                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
394         else
395                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
396         dma_fence_put(fence);
397         return r;
398
399 error:
400         if (fence)
401                 dma_fence_wait(fence, false);
402         dma_fence_put(fence);
403         return r;
404 }
405
406 /**
407  * amdgpu_res_cpu_visible - Check that resource can be accessed by CPU
408  * @adev: amdgpu device
409  * @res: the resource to check
410  *
411  * Returns: true if the full resource is CPU visible, false otherwise.
412  */
413 bool amdgpu_res_cpu_visible(struct amdgpu_device *adev,
414                             struct ttm_resource *res)
415 {
416         struct amdgpu_res_cursor cursor;
417
418         if (!res)
419                 return false;
420
421         if (res->mem_type == TTM_PL_SYSTEM || res->mem_type == TTM_PL_TT ||
422             res->mem_type == AMDGPU_PL_PREEMPT)
423                 return true;
424
425         if (res->mem_type != TTM_PL_VRAM)
426                 return false;
427
428         amdgpu_res_first(res, 0, res->size, &cursor);
429         while (cursor.remaining) {
430                 if ((cursor.start + cursor.size) >= adev->gmc.visible_vram_size)
431                         return false;
432                 amdgpu_res_next(&cursor, cursor.size);
433         }
434
435         return true;
436 }
437
438 /*
439  * amdgpu_res_copyable - Check that memory can be accessed by ttm_bo_move_memcpy
440  *
441  * Called by amdgpu_bo_move()
442  */
443 static bool amdgpu_res_copyable(struct amdgpu_device *adev,
444                                 struct ttm_resource *mem)
445 {
446         if (!amdgpu_res_cpu_visible(adev, mem))
447                 return false;
448
449         /* ttm_resource_ioremap only supports contiguous memory */
450         if (mem->mem_type == TTM_PL_VRAM &&
451             !(mem->placement & TTM_PL_FLAG_CONTIGUOUS))
452                 return false;
453
454         return true;
455 }
456
457 /*
458  * amdgpu_bo_move - Move a buffer object to a new memory location
459  *
460  * Called by ttm_bo_handle_move_mem()
461  */
462 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
463                           struct ttm_operation_ctx *ctx,
464                           struct ttm_resource *new_mem,
465                           struct ttm_place *hop)
466 {
467         struct amdgpu_device *adev;
468         struct amdgpu_bo *abo;
469         struct ttm_resource *old_mem = bo->resource;
470         int r;
471
472         if (new_mem->mem_type == TTM_PL_TT ||
473             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
474                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
475                 if (r)
476                         return r;
477         }
478
479         abo = ttm_to_amdgpu_bo(bo);
480         adev = amdgpu_ttm_adev(bo->bdev);
481
482         if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
483                          bo->ttm == NULL)) {
484                 ttm_bo_move_null(bo, new_mem);
485                 goto out;
486         }
487         if (old_mem->mem_type == TTM_PL_SYSTEM &&
488             (new_mem->mem_type == TTM_PL_TT ||
489              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
490                 ttm_bo_move_null(bo, new_mem);
491                 goto out;
492         }
493         if ((old_mem->mem_type == TTM_PL_TT ||
494              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
495             new_mem->mem_type == TTM_PL_SYSTEM) {
496                 r = ttm_bo_wait_ctx(bo, ctx);
497                 if (r)
498                         return r;
499
500                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
501                 ttm_resource_free(bo, &bo->resource);
502                 ttm_bo_assign_mem(bo, new_mem);
503                 goto out;
504         }
505
506         if (old_mem->mem_type == AMDGPU_PL_GDS ||
507             old_mem->mem_type == AMDGPU_PL_GWS ||
508             old_mem->mem_type == AMDGPU_PL_OA ||
509             old_mem->mem_type == AMDGPU_PL_DOORBELL ||
510             new_mem->mem_type == AMDGPU_PL_GDS ||
511             new_mem->mem_type == AMDGPU_PL_GWS ||
512             new_mem->mem_type == AMDGPU_PL_OA ||
513             new_mem->mem_type == AMDGPU_PL_DOORBELL) {
514                 /* Nothing to save here */
515                 ttm_bo_move_null(bo, new_mem);
516                 goto out;
517         }
518
519         if (bo->type == ttm_bo_type_device &&
520             new_mem->mem_type == TTM_PL_VRAM &&
521             old_mem->mem_type != TTM_PL_VRAM) {
522                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
523                  * accesses the BO after it's moved.
524                  */
525                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
526         }
527
528         if (adev->mman.buffer_funcs_enabled) {
529                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
530                       new_mem->mem_type == TTM_PL_VRAM) ||
531                      (old_mem->mem_type == TTM_PL_VRAM &&
532                       new_mem->mem_type == TTM_PL_SYSTEM))) {
533                         hop->fpfn = 0;
534                         hop->lpfn = 0;
535                         hop->mem_type = TTM_PL_TT;
536                         hop->flags = TTM_PL_FLAG_TEMPORARY;
537                         return -EMULTIHOP;
538                 }
539
540                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
541         } else {
542                 r = -ENODEV;
543         }
544
545         if (r) {
546                 /* Check that all memory is CPU accessible */
547                 if (!amdgpu_res_copyable(adev, old_mem) ||
548                     !amdgpu_res_copyable(adev, new_mem)) {
549                         pr_err("Move buffer fallback to memcpy unavailable\n");
550                         return r;
551                 }
552
553                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
554                 if (r)
555                         return r;
556         }
557
558         trace_amdgpu_bo_move(abo, new_mem->mem_type, old_mem->mem_type);
559 out:
560         /* update statistics */
561         atomic64_add(bo->base.size, &adev->num_bytes_moved);
562         amdgpu_bo_move_notify(bo, evict);
563         return 0;
564 }
565
566 /*
567  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
568  *
569  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
570  */
571 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
572                                      struct ttm_resource *mem)
573 {
574         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
575
576         switch (mem->mem_type) {
577         case TTM_PL_SYSTEM:
578                 /* system memory */
579                 return 0;
580         case TTM_PL_TT:
581         case AMDGPU_PL_PREEMPT:
582                 break;
583         case TTM_PL_VRAM:
584                 mem->bus.offset = mem->start << PAGE_SHIFT;
585
586                 if (adev->mman.aper_base_kaddr &&
587                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
588                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
589                                         mem->bus.offset;
590
591                 mem->bus.offset += adev->gmc.aper_base;
592                 mem->bus.is_iomem = true;
593                 break;
594         case AMDGPU_PL_DOORBELL:
595                 mem->bus.offset = mem->start << PAGE_SHIFT;
596                 mem->bus.offset += adev->doorbell.base;
597                 mem->bus.is_iomem = true;
598                 mem->bus.caching = ttm_uncached;
599                 break;
600         default:
601                 return -EINVAL;
602         }
603         return 0;
604 }
605
606 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
607                                            unsigned long page_offset)
608 {
609         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
610         struct amdgpu_res_cursor cursor;
611
612         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
613                          &cursor);
614
615         if (bo->resource->mem_type == AMDGPU_PL_DOORBELL)
616                 return ((uint64_t)(adev->doorbell.base + cursor.start)) >> PAGE_SHIFT;
617
618         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
619 }
620
621 /**
622  * amdgpu_ttm_domain_start - Returns GPU start address
623  * @adev: amdgpu device object
624  * @type: type of the memory
625  *
626  * Returns:
627  * GPU start address of a memory domain
628  */
629
630 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
631 {
632         switch (type) {
633         case TTM_PL_TT:
634                 return adev->gmc.gart_start;
635         case TTM_PL_VRAM:
636                 return adev->gmc.vram_start;
637         }
638
639         return 0;
640 }
641
642 /*
643  * TTM backend functions.
644  */
645 struct amdgpu_ttm_tt {
646         struct ttm_tt   ttm;
647         struct drm_gem_object   *gobj;
648         u64                     offset;
649         uint64_t                userptr;
650         struct task_struct      *usertask;
651         uint32_t                userflags;
652         bool                    bound;
653         int32_t                 pool_id;
654 };
655
656 #define ttm_to_amdgpu_ttm_tt(ptr)       container_of(ptr, struct amdgpu_ttm_tt, ttm)
657
658 #ifdef CONFIG_DRM_AMDGPU_USERPTR
659 /*
660  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
661  * memory and start HMM tracking CPU page table update
662  *
663  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
664  * once afterwards to stop HMM tracking
665  */
666 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
667                                  struct hmm_range **range)
668 {
669         struct ttm_tt *ttm = bo->tbo.ttm;
670         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
671         unsigned long start = gtt->userptr;
672         struct vm_area_struct *vma;
673         struct mm_struct *mm;
674         bool readonly;
675         int r = 0;
676
677         /* Make sure get_user_pages_done() can cleanup gracefully */
678         *range = NULL;
679
680         mm = bo->notifier.mm;
681         if (unlikely(!mm)) {
682                 DRM_DEBUG_DRIVER("BO is not registered?\n");
683                 return -EFAULT;
684         }
685
686         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
687                 return -ESRCH;
688
689         mmap_read_lock(mm);
690         vma = vma_lookup(mm, start);
691         if (unlikely(!vma)) {
692                 r = -EFAULT;
693                 goto out_unlock;
694         }
695         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
696                 vma->vm_file)) {
697                 r = -EPERM;
698                 goto out_unlock;
699         }
700
701         readonly = amdgpu_ttm_tt_is_readonly(ttm);
702         r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
703                                        readonly, NULL, pages, range);
704 out_unlock:
705         mmap_read_unlock(mm);
706         if (r)
707                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
708
709         mmput(mm);
710
711         return r;
712 }
713
714 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
715  */
716 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
717                                       struct hmm_range *range)
718 {
719         struct amdgpu_ttm_tt *gtt = (void *)ttm;
720
721         if (gtt && gtt->userptr && range)
722                 amdgpu_hmm_range_get_pages_done(range);
723 }
724
725 /*
726  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
727  * Check if the pages backing this ttm range have been invalidated
728  *
729  * Returns: true if pages are still valid
730  */
731 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
732                                        struct hmm_range *range)
733 {
734         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
735
736         if (!gtt || !gtt->userptr || !range)
737                 return false;
738
739         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
740                 gtt->userptr, ttm->num_pages);
741
742         WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
743
744         return !amdgpu_hmm_range_get_pages_done(range);
745 }
746 #endif
747
748 /*
749  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
750  *
751  * Called by amdgpu_cs_list_validate(). This creates the page list
752  * that backs user memory and will ultimately be mapped into the device
753  * address space.
754  */
755 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
756 {
757         unsigned long i;
758
759         for (i = 0; i < ttm->num_pages; ++i)
760                 ttm->pages[i] = pages ? pages[i] : NULL;
761 }
762
763 /*
764  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
765  *
766  * Called by amdgpu_ttm_backend_bind()
767  **/
768 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
769                                      struct ttm_tt *ttm)
770 {
771         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
772         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
773         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
774         enum dma_data_direction direction = write ?
775                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
776         int r;
777
778         /* Allocate an SG array and squash pages into it */
779         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
780                                       (u64)ttm->num_pages << PAGE_SHIFT,
781                                       GFP_KERNEL);
782         if (r)
783                 goto release_sg;
784
785         /* Map SG to device */
786         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
787         if (r)
788                 goto release_sg;
789
790         /* convert SG to linear array of pages and dma addresses */
791         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
792                                        ttm->num_pages);
793
794         return 0;
795
796 release_sg:
797         kfree(ttm->sg);
798         ttm->sg = NULL;
799         return r;
800 }
801
802 /*
803  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
804  */
805 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
806                                         struct ttm_tt *ttm)
807 {
808         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
809         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
810         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
811         enum dma_data_direction direction = write ?
812                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
813
814         /* double check that we don't free the table twice */
815         if (!ttm->sg || !ttm->sg->sgl)
816                 return;
817
818         /* unmap the pages mapped to the device */
819         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
820         sg_free_table(ttm->sg);
821 }
822
823 /*
824  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
825  * MQDn+CtrlStackn where n is the number of XCCs per partition.
826  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
827  * and uses memory type default, UC. The rest of pages_per_xcc are
828  * Ctrl stack and modify their memory type to NC.
829  */
830 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
831                                 struct ttm_tt *ttm, uint64_t flags)
832 {
833         struct amdgpu_ttm_tt *gtt = (void *)ttm;
834         uint64_t total_pages = ttm->num_pages;
835         int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
836         uint64_t page_idx, pages_per_xcc;
837         int i;
838         uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
839                         AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
840
841         pages_per_xcc = total_pages;
842         do_div(pages_per_xcc, num_xcc);
843
844         for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
845                 /* MQD page: use default flags */
846                 amdgpu_gart_bind(adev,
847                                 gtt->offset + (page_idx << PAGE_SHIFT),
848                                 1, &gtt->ttm.dma_address[page_idx], flags);
849                 /*
850                  * Ctrl pages - modify the memory type to NC (ctrl_flags) from
851                  * the second page of the BO onward.
852                  */
853                 amdgpu_gart_bind(adev,
854                                 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
855                                 pages_per_xcc - 1,
856                                 &gtt->ttm.dma_address[page_idx + 1],
857                                 ctrl_flags);
858         }
859 }
860
861 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
862                                  struct ttm_buffer_object *tbo,
863                                  uint64_t flags)
864 {
865         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
866         struct ttm_tt *ttm = tbo->ttm;
867         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
868
869         if (amdgpu_bo_encrypted(abo))
870                 flags |= AMDGPU_PTE_TMZ;
871
872         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
873                 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
874         } else {
875                 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
876                                  gtt->ttm.dma_address, flags);
877         }
878         gtt->bound = true;
879 }
880
881 /*
882  * amdgpu_ttm_backend_bind - Bind GTT memory
883  *
884  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
885  * This handles binding GTT memory to the device address space.
886  */
887 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
888                                    struct ttm_tt *ttm,
889                                    struct ttm_resource *bo_mem)
890 {
891         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
892         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
893         uint64_t flags;
894         int r;
895
896         if (!bo_mem)
897                 return -EINVAL;
898
899         if (gtt->bound)
900                 return 0;
901
902         if (gtt->userptr) {
903                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
904                 if (r) {
905                         DRM_ERROR("failed to pin userptr\n");
906                         return r;
907                 }
908         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
909                 if (!ttm->sg) {
910                         struct dma_buf_attachment *attach;
911                         struct sg_table *sgt;
912
913                         attach = gtt->gobj->import_attach;
914                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
915                         if (IS_ERR(sgt))
916                                 return PTR_ERR(sgt);
917
918                         ttm->sg = sgt;
919                 }
920
921                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
922                                                ttm->num_pages);
923         }
924
925         if (!ttm->num_pages) {
926                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
927                      ttm->num_pages, bo_mem, ttm);
928         }
929
930         if (bo_mem->mem_type != TTM_PL_TT ||
931             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
932                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
933                 return 0;
934         }
935
936         /* compute PTE flags relevant to this BO memory */
937         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
938
939         /* bind pages into GART page tables */
940         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
941         amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
942                          gtt->ttm.dma_address, flags);
943         gtt->bound = true;
944         return 0;
945 }
946
947 /*
948  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
949  * through AGP or GART aperture.
950  *
951  * If bo is accessible through AGP aperture, then use AGP aperture
952  * to access bo; otherwise allocate logical space in GART aperture
953  * and map bo to GART aperture.
954  */
955 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
956 {
957         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
958         struct ttm_operation_ctx ctx = { false, false };
959         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
960         struct ttm_placement placement;
961         struct ttm_place placements;
962         struct ttm_resource *tmp;
963         uint64_t addr, flags;
964         int r;
965
966         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
967                 return 0;
968
969         addr = amdgpu_gmc_agp_addr(bo);
970         if (addr != AMDGPU_BO_INVALID_OFFSET)
971                 return 0;
972
973         /* allocate GART space */
974         placement.num_placement = 1;
975         placement.placement = &placements;
976         placements.fpfn = 0;
977         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
978         placements.mem_type = TTM_PL_TT;
979         placements.flags = bo->resource->placement;
980
981         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
982         if (unlikely(r))
983                 return r;
984
985         /* compute PTE flags for this buffer object */
986         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
987
988         /* Bind pages */
989         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
990         amdgpu_ttm_gart_bind(adev, bo, flags);
991         amdgpu_gart_invalidate_tlb(adev);
992         ttm_resource_free(bo, &bo->resource);
993         ttm_bo_assign_mem(bo, tmp);
994
995         return 0;
996 }
997
998 /*
999  * amdgpu_ttm_recover_gart - Rebind GTT pages
1000  *
1001  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
1002  * rebind GTT pages during a GPU reset.
1003  */
1004 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
1005 {
1006         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
1007         uint64_t flags;
1008
1009         if (!tbo->ttm)
1010                 return;
1011
1012         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
1013         amdgpu_ttm_gart_bind(adev, tbo, flags);
1014 }
1015
1016 /*
1017  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1018  *
1019  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1020  * ttm_tt_destroy().
1021  */
1022 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1023                                       struct ttm_tt *ttm)
1024 {
1025         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1026         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1027
1028         /* if the pages have userptr pinning then clear that first */
1029         if (gtt->userptr) {
1030                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1031         } else if (ttm->sg && gtt->gobj->import_attach) {
1032                 struct dma_buf_attachment *attach;
1033
1034                 attach = gtt->gobj->import_attach;
1035                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1036                 ttm->sg = NULL;
1037         }
1038
1039         if (!gtt->bound)
1040                 return;
1041
1042         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1043                 return;
1044
1045         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1046         amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1047         gtt->bound = false;
1048 }
1049
1050 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1051                                        struct ttm_tt *ttm)
1052 {
1053         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1054
1055         if (gtt->usertask)
1056                 put_task_struct(gtt->usertask);
1057
1058         ttm_tt_fini(&gtt->ttm);
1059         kfree(gtt);
1060 }
1061
1062 /**
1063  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1064  *
1065  * @bo: The buffer object to create a GTT ttm_tt object around
1066  * @page_flags: Page flags to be added to the ttm_tt object
1067  *
1068  * Called by ttm_tt_create().
1069  */
1070 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1071                                            uint32_t page_flags)
1072 {
1073         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1074         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1075         struct amdgpu_ttm_tt *gtt;
1076         enum ttm_caching caching;
1077
1078         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1079         if (!gtt)
1080                 return NULL;
1081
1082         gtt->gobj = &bo->base;
1083         if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1084                 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1085         else
1086                 gtt->pool_id = abo->xcp_id;
1087
1088         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1089                 caching = ttm_write_combined;
1090         else
1091                 caching = ttm_cached;
1092
1093         /* allocate space for the uninitialized page entries */
1094         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1095                 kfree(gtt);
1096                 return NULL;
1097         }
1098         return &gtt->ttm;
1099 }
1100
1101 /*
1102  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1103  *
1104  * Map the pages of a ttm_tt object to an address space visible
1105  * to the underlying device.
1106  */
1107 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1108                                   struct ttm_tt *ttm,
1109                                   struct ttm_operation_ctx *ctx)
1110 {
1111         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1112         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1113         struct ttm_pool *pool;
1114         pgoff_t i;
1115         int ret;
1116
1117         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1118         if (gtt->userptr) {
1119                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1120                 if (!ttm->sg)
1121                         return -ENOMEM;
1122                 return 0;
1123         }
1124
1125         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1126                 return 0;
1127
1128         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1129                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1130         else
1131                 pool = &adev->mman.bdev.pool;
1132         ret = ttm_pool_alloc(pool, ttm, ctx);
1133         if (ret)
1134                 return ret;
1135
1136         for (i = 0; i < ttm->num_pages; ++i)
1137                 ttm->pages[i]->mapping = bdev->dev_mapping;
1138
1139         return 0;
1140 }
1141
1142 /*
1143  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1144  *
1145  * Unmaps pages of a ttm_tt object from the device address space and
1146  * unpopulates the page array backing it.
1147  */
1148 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1149                                      struct ttm_tt *ttm)
1150 {
1151         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1152         struct amdgpu_device *adev;
1153         struct ttm_pool *pool;
1154         pgoff_t i;
1155
1156         amdgpu_ttm_backend_unbind(bdev, ttm);
1157
1158         if (gtt->userptr) {
1159                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1160                 kfree(ttm->sg);
1161                 ttm->sg = NULL;
1162                 return;
1163         }
1164
1165         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1166                 return;
1167
1168         for (i = 0; i < ttm->num_pages; ++i)
1169                 ttm->pages[i]->mapping = NULL;
1170
1171         adev = amdgpu_ttm_adev(bdev);
1172
1173         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1174                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1175         else
1176                 pool = &adev->mman.bdev.pool;
1177
1178         return ttm_pool_free(pool, ttm);
1179 }
1180
1181 /**
1182  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1183  * task
1184  *
1185  * @tbo: The ttm_buffer_object that contains the userptr
1186  * @user_addr:  The returned value
1187  */
1188 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1189                               uint64_t *user_addr)
1190 {
1191         struct amdgpu_ttm_tt *gtt;
1192
1193         if (!tbo->ttm)
1194                 return -EINVAL;
1195
1196         gtt = (void *)tbo->ttm;
1197         *user_addr = gtt->userptr;
1198         return 0;
1199 }
1200
1201 /**
1202  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1203  * task
1204  *
1205  * @bo: The ttm_buffer_object to bind this userptr to
1206  * @addr:  The address in the current tasks VM space to use
1207  * @flags: Requirements of userptr object.
1208  *
1209  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1210  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1211  * initialize GPU VM for a KFD process.
1212  */
1213 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1214                               uint64_t addr, uint32_t flags)
1215 {
1216         struct amdgpu_ttm_tt *gtt;
1217
1218         if (!bo->ttm) {
1219                 /* TODO: We want a separate TTM object type for userptrs */
1220                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1221                 if (bo->ttm == NULL)
1222                         return -ENOMEM;
1223         }
1224
1225         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1226         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1227
1228         gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1229         gtt->userptr = addr;
1230         gtt->userflags = flags;
1231
1232         if (gtt->usertask)
1233                 put_task_struct(gtt->usertask);
1234         gtt->usertask = current->group_leader;
1235         get_task_struct(gtt->usertask);
1236
1237         return 0;
1238 }
1239
1240 /*
1241  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1242  */
1243 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1244 {
1245         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1246
1247         if (gtt == NULL)
1248                 return NULL;
1249
1250         if (gtt->usertask == NULL)
1251                 return NULL;
1252
1253         return gtt->usertask->mm;
1254 }
1255
1256 /*
1257  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1258  * address range for the current task.
1259  *
1260  */
1261 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1262                                   unsigned long end, unsigned long *userptr)
1263 {
1264         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1265         unsigned long size;
1266
1267         if (gtt == NULL || !gtt->userptr)
1268                 return false;
1269
1270         /* Return false if no part of the ttm_tt object lies within
1271          * the range
1272          */
1273         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1274         if (gtt->userptr > end || gtt->userptr + size <= start)
1275                 return false;
1276
1277         if (userptr)
1278                 *userptr = gtt->userptr;
1279         return true;
1280 }
1281
1282 /*
1283  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1284  */
1285 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1286 {
1287         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1288
1289         if (gtt == NULL || !gtt->userptr)
1290                 return false;
1291
1292         return true;
1293 }
1294
1295 /*
1296  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1297  */
1298 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1299 {
1300         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1301
1302         if (gtt == NULL)
1303                 return false;
1304
1305         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1306 }
1307
1308 /**
1309  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1310  *
1311  * @ttm: The ttm_tt object to compute the flags for
1312  * @mem: The memory registry backing this ttm_tt object
1313  *
1314  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1315  */
1316 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1317 {
1318         uint64_t flags = 0;
1319
1320         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1321                 flags |= AMDGPU_PTE_VALID;
1322
1323         if (mem && (mem->mem_type == TTM_PL_TT ||
1324                     mem->mem_type == AMDGPU_PL_DOORBELL ||
1325                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1326                 flags |= AMDGPU_PTE_SYSTEM;
1327
1328                 if (ttm->caching == ttm_cached)
1329                         flags |= AMDGPU_PTE_SNOOPED;
1330         }
1331
1332         if (mem && mem->mem_type == TTM_PL_VRAM &&
1333                         mem->bus.caching == ttm_cached)
1334                 flags |= AMDGPU_PTE_SNOOPED;
1335
1336         return flags;
1337 }
1338
1339 /**
1340  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1341  *
1342  * @adev: amdgpu_device pointer
1343  * @ttm: The ttm_tt object to compute the flags for
1344  * @mem: The memory registry backing this ttm_tt object
1345  *
1346  * Figure out the flags to use for a VM PTE (Page Table Entry).
1347  */
1348 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1349                                  struct ttm_resource *mem)
1350 {
1351         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1352
1353         flags |= adev->gart.gart_pte_flags;
1354         flags |= AMDGPU_PTE_READABLE;
1355
1356         if (!amdgpu_ttm_tt_is_readonly(ttm))
1357                 flags |= AMDGPU_PTE_WRITEABLE;
1358
1359         return flags;
1360 }
1361
1362 /*
1363  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1364  * object.
1365  *
1366  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1367  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1368  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1369  * used to clean out a memory space.
1370  */
1371 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1372                                             const struct ttm_place *place)
1373 {
1374         struct dma_resv_iter resv_cursor;
1375         struct dma_fence *f;
1376
1377         if (!amdgpu_bo_is_amdgpu_bo(bo))
1378                 return ttm_bo_eviction_valuable(bo, place);
1379
1380         /* Swapout? */
1381         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1382                 return true;
1383
1384         if (bo->type == ttm_bo_type_kernel &&
1385             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1386                 return false;
1387
1388         /* If bo is a KFD BO, check if the bo belongs to the current process.
1389          * If true, then return false as any KFD process needs all its BOs to
1390          * be resident to run successfully
1391          */
1392         dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1393                                 DMA_RESV_USAGE_BOOKKEEP, f) {
1394                 if (amdkfd_fence_check_mm(f, current->mm))
1395                         return false;
1396         }
1397
1398         /* Preemptible BOs don't own system resources managed by the
1399          * driver (pages, VRAM, GART space). They point to resources
1400          * owned by someone else (e.g. pageable memory in user mode
1401          * or a DMABuf). They are used in a preemptible context so we
1402          * can guarantee no deadlocks and good QoS in case of MMU
1403          * notifiers or DMABuf move notifiers from the resource owner.
1404          */
1405         if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1406                 return false;
1407
1408         if (bo->resource->mem_type == TTM_PL_TT &&
1409             amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1410                 return false;
1411
1412         return ttm_bo_eviction_valuable(bo, place);
1413 }
1414
1415 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1416                                       void *buf, size_t size, bool write)
1417 {
1418         while (size) {
1419                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1420                 uint64_t bytes = 4 - (pos & 0x3);
1421                 uint32_t shift = (pos & 0x3) * 8;
1422                 uint32_t mask = 0xffffffff << shift;
1423                 uint32_t value = 0;
1424
1425                 if (size < bytes) {
1426                         mask &= 0xffffffff >> (bytes - size) * 8;
1427                         bytes = size;
1428                 }
1429
1430                 if (mask != 0xffffffff) {
1431                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1432                         if (write) {
1433                                 value &= ~mask;
1434                                 value |= (*(uint32_t *)buf << shift) & mask;
1435                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1436                         } else {
1437                                 value = (value & mask) >> shift;
1438                                 memcpy(buf, &value, bytes);
1439                         }
1440                 } else {
1441                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1442                 }
1443
1444                 pos += bytes;
1445                 buf += bytes;
1446                 size -= bytes;
1447         }
1448 }
1449
1450 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1451                                         unsigned long offset, void *buf,
1452                                         int len, int write)
1453 {
1454         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1455         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1456         struct amdgpu_res_cursor src_mm;
1457         struct amdgpu_job *job;
1458         struct dma_fence *fence;
1459         uint64_t src_addr, dst_addr;
1460         unsigned int num_dw;
1461         int r, idx;
1462
1463         if (len != PAGE_SIZE)
1464                 return -EINVAL;
1465
1466         if (!adev->mman.sdma_access_ptr)
1467                 return -EACCES;
1468
1469         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1470                 return -ENODEV;
1471
1472         if (write)
1473                 memcpy(adev->mman.sdma_access_ptr, buf, len);
1474
1475         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1476         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.high_pr,
1477                                      AMDGPU_FENCE_OWNER_UNDEFINED,
1478                                      num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1479                                      &job);
1480         if (r)
1481                 goto out;
1482
1483         amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1484         src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1485                 src_mm.start;
1486         dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1487         if (write)
1488                 swap(src_addr, dst_addr);
1489
1490         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1491                                 PAGE_SIZE, false);
1492
1493         amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1494         WARN_ON(job->ibs[0].length_dw > num_dw);
1495
1496         fence = amdgpu_job_submit(job);
1497
1498         if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1499                 r = -ETIMEDOUT;
1500         dma_fence_put(fence);
1501
1502         if (!(r || write))
1503                 memcpy(buf, adev->mman.sdma_access_ptr, len);
1504 out:
1505         drm_dev_exit(idx);
1506         return r;
1507 }
1508
1509 /**
1510  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1511  *
1512  * @bo:  The buffer object to read/write
1513  * @offset:  Offset into buffer object
1514  * @buf:  Secondary buffer to write/read from
1515  * @len: Length in bytes of access
1516  * @write:  true if writing
1517  *
1518  * This is used to access VRAM that backs a buffer object via MMIO
1519  * access for debugging purposes.
1520  */
1521 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1522                                     unsigned long offset, void *buf, int len,
1523                                     int write)
1524 {
1525         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1526         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1527         struct amdgpu_res_cursor cursor;
1528         int ret = 0;
1529
1530         if (bo->resource->mem_type != TTM_PL_VRAM)
1531                 return -EIO;
1532
1533         if (amdgpu_device_has_timeouts_enabled(adev) &&
1534                         !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1535                 return len;
1536
1537         amdgpu_res_first(bo->resource, offset, len, &cursor);
1538         while (cursor.remaining) {
1539                 size_t count, size = cursor.size;
1540                 loff_t pos = cursor.start;
1541
1542                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1543                 size -= count;
1544                 if (size) {
1545                         /* using MM to access rest vram and handle un-aligned address */
1546                         pos += count;
1547                         buf += count;
1548                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1549                 }
1550
1551                 ret += cursor.size;
1552                 buf += cursor.size;
1553                 amdgpu_res_next(&cursor, cursor.size);
1554         }
1555
1556         return ret;
1557 }
1558
1559 static void
1560 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1561 {
1562         amdgpu_bo_move_notify(bo, false);
1563 }
1564
1565 static struct ttm_device_funcs amdgpu_bo_driver = {
1566         .ttm_tt_create = &amdgpu_ttm_tt_create,
1567         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1568         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1569         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1570         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1571         .evict_flags = &amdgpu_evict_flags,
1572         .move = &amdgpu_bo_move,
1573         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1574         .release_notify = &amdgpu_bo_release_notify,
1575         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1576         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1577         .access_memory = &amdgpu_ttm_access_memory,
1578 };
1579
1580 /*
1581  * Firmware Reservation functions
1582  */
1583 /**
1584  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1585  *
1586  * @adev: amdgpu_device pointer
1587  *
1588  * free fw reserved vram if it has been reserved.
1589  */
1590 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1591 {
1592         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1593                 NULL, &adev->mman.fw_vram_usage_va);
1594 }
1595
1596 /*
1597  * Driver Reservation functions
1598  */
1599 /**
1600  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1601  *
1602  * @adev: amdgpu_device pointer
1603  *
1604  * free drv reserved vram if it has been reserved.
1605  */
1606 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1607 {
1608         amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1609                                                   NULL,
1610                                                   &adev->mman.drv_vram_usage_va);
1611 }
1612
1613 /**
1614  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1615  *
1616  * @adev: amdgpu_device pointer
1617  *
1618  * create bo vram reservation from fw.
1619  */
1620 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1621 {
1622         uint64_t vram_size = adev->gmc.visible_vram_size;
1623
1624         adev->mman.fw_vram_usage_va = NULL;
1625         adev->mman.fw_vram_usage_reserved_bo = NULL;
1626
1627         if (adev->mman.fw_vram_usage_size == 0 ||
1628             adev->mman.fw_vram_usage_size > vram_size)
1629                 return 0;
1630
1631         return amdgpu_bo_create_kernel_at(adev,
1632                                           adev->mman.fw_vram_usage_start_offset,
1633                                           adev->mman.fw_vram_usage_size,
1634                                           &adev->mman.fw_vram_usage_reserved_bo,
1635                                           &adev->mman.fw_vram_usage_va);
1636 }
1637
1638 /**
1639  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1640  *
1641  * @adev: amdgpu_device pointer
1642  *
1643  * create bo vram reservation from drv.
1644  */
1645 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1646 {
1647         u64 vram_size = adev->gmc.visible_vram_size;
1648
1649         adev->mman.drv_vram_usage_va = NULL;
1650         adev->mman.drv_vram_usage_reserved_bo = NULL;
1651
1652         if (adev->mman.drv_vram_usage_size == 0 ||
1653             adev->mman.drv_vram_usage_size > vram_size)
1654                 return 0;
1655
1656         return amdgpu_bo_create_kernel_at(adev,
1657                                           adev->mman.drv_vram_usage_start_offset,
1658                                           adev->mman.drv_vram_usage_size,
1659                                           &adev->mman.drv_vram_usage_reserved_bo,
1660                                           &adev->mman.drv_vram_usage_va);
1661 }
1662
1663 /*
1664  * Memoy training reservation functions
1665  */
1666
1667 /**
1668  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1669  *
1670  * @adev: amdgpu_device pointer
1671  *
1672  * free memory training reserved vram if it has been reserved.
1673  */
1674 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1675 {
1676         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1677
1678         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1679         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1680         ctx->c2p_bo = NULL;
1681
1682         return 0;
1683 }
1684
1685 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1686                                                 uint32_t reserve_size)
1687 {
1688         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1689
1690         memset(ctx, 0, sizeof(*ctx));
1691
1692         ctx->c2p_train_data_offset =
1693                 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1694         ctx->p2c_train_data_offset =
1695                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1696         ctx->train_data_size =
1697                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1698
1699         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1700                         ctx->train_data_size,
1701                         ctx->p2c_train_data_offset,
1702                         ctx->c2p_train_data_offset);
1703 }
1704
1705 /*
1706  * reserve TMR memory at the top of VRAM which holds
1707  * IP Discovery data and is protected by PSP.
1708  */
1709 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1710 {
1711         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1712         bool mem_train_support = false;
1713         uint32_t reserve_size = 0;
1714         int ret;
1715
1716         if (adev->bios && !amdgpu_sriov_vf(adev)) {
1717                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1718                         mem_train_support = true;
1719                 else
1720                         DRM_DEBUG("memory training does not support!\n");
1721         }
1722
1723         /*
1724          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1725          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1726          *
1727          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1728          * discovery data and G6 memory training data respectively
1729          */
1730         if (adev->bios)
1731                 reserve_size =
1732                         amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1733
1734         if (!adev->bios &&
1735             amdgpu_ip_version(adev, GC_HWIP, 0) == IP_VERSION(9, 4, 3))
1736                 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1737         else if (!reserve_size)
1738                 reserve_size = DISCOVERY_TMR_OFFSET;
1739
1740         if (mem_train_support) {
1741                 /* reserve vram for mem train according to TMR location */
1742                 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1743                 ret = amdgpu_bo_create_kernel_at(adev,
1744                                                  ctx->c2p_train_data_offset,
1745                                                  ctx->train_data_size,
1746                                                  &ctx->c2p_bo,
1747                                                  NULL);
1748                 if (ret) {
1749                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1750                         amdgpu_ttm_training_reserve_vram_fini(adev);
1751                         return ret;
1752                 }
1753                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1754         }
1755
1756         if (!adev->gmc.is_app_apu) {
1757                 ret = amdgpu_bo_create_kernel_at(
1758                         adev, adev->gmc.real_vram_size - reserve_size,
1759                         reserve_size, &adev->mman.fw_reserved_memory, NULL);
1760                 if (ret) {
1761                         DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1762                         amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1763                                               NULL, NULL);
1764                         return ret;
1765                 }
1766         } else {
1767                 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1768         }
1769
1770         return 0;
1771 }
1772
1773 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1774 {
1775         int i;
1776
1777         if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1778                 return 0;
1779
1780         adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1781                                        sizeof(*adev->mman.ttm_pools),
1782                                        GFP_KERNEL);
1783         if (!adev->mman.ttm_pools)
1784                 return -ENOMEM;
1785
1786         for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1787                 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1788                               adev->gmc.mem_partitions[i].numa.node,
1789                               false, false);
1790         }
1791         return 0;
1792 }
1793
1794 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1795 {
1796         int i;
1797
1798         if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1799                 return;
1800
1801         for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1802                 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1803
1804         kfree(adev->mman.ttm_pools);
1805         adev->mman.ttm_pools = NULL;
1806 }
1807
1808 /*
1809  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1810  * gtt/vram related fields.
1811  *
1812  * This initializes all of the memory space pools that the TTM layer
1813  * will need such as the GTT space (system memory mapped to the device),
1814  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1815  * can be mapped per VMID.
1816  */
1817 int amdgpu_ttm_init(struct amdgpu_device *adev)
1818 {
1819         uint64_t gtt_size;
1820         int r;
1821
1822         mutex_init(&adev->mman.gtt_window_lock);
1823
1824         /* No others user of address space so set it to 0 */
1825         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1826                                adev_to_drm(adev)->anon_inode->i_mapping,
1827                                adev_to_drm(adev)->vma_offset_manager,
1828                                adev->need_swiotlb,
1829                                dma_addressing_limited(adev->dev));
1830         if (r) {
1831                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1832                 return r;
1833         }
1834
1835         r = amdgpu_ttm_pools_init(adev);
1836         if (r) {
1837                 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1838                 return r;
1839         }
1840         adev->mman.initialized = true;
1841
1842         /* Initialize VRAM pool with all of VRAM divided into pages */
1843         r = amdgpu_vram_mgr_init(adev);
1844         if (r) {
1845                 DRM_ERROR("Failed initializing VRAM heap.\n");
1846                 return r;
1847         }
1848
1849         /* Change the size here instead of the init above so only lpfn is affected */
1850         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1851 #ifdef CONFIG_64BIT
1852 #ifdef CONFIG_X86
1853         if (adev->gmc.xgmi.connected_to_cpu)
1854                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1855                                 adev->gmc.visible_vram_size);
1856
1857         else if (adev->gmc.is_app_apu)
1858                 DRM_DEBUG_DRIVER(
1859                         "No need to ioremap when real vram size is 0\n");
1860         else
1861 #endif
1862                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1863                                 adev->gmc.visible_vram_size);
1864 #endif
1865
1866         /*
1867          *The reserved vram for firmware must be pinned to the specified
1868          *place on the VRAM, so reserve it early.
1869          */
1870         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1871         if (r)
1872                 return r;
1873
1874         /*
1875          *The reserved vram for driver must be pinned to the specified
1876          *place on the VRAM, so reserve it early.
1877          */
1878         r = amdgpu_ttm_drv_reserve_vram_init(adev);
1879         if (r)
1880                 return r;
1881
1882         /*
1883          * only NAVI10 and onwards ASIC support for IP discovery.
1884          * If IP discovery enabled, a block of memory should be
1885          * reserved for IP discovey.
1886          */
1887         if (adev->mman.discovery_bin) {
1888                 r = amdgpu_ttm_reserve_tmr(adev);
1889                 if (r)
1890                         return r;
1891         }
1892
1893         /* allocate memory as required for VGA
1894          * This is used for VGA emulation and pre-OS scanout buffers to
1895          * avoid display artifacts while transitioning between pre-OS
1896          * and driver.
1897          */
1898         if (!adev->gmc.is_app_apu) {
1899                 r = amdgpu_bo_create_kernel_at(adev, 0,
1900                                                adev->mman.stolen_vga_size,
1901                                                &adev->mman.stolen_vga_memory,
1902                                                NULL);
1903                 if (r)
1904                         return r;
1905
1906                 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1907                                                adev->mman.stolen_extended_size,
1908                                                &adev->mman.stolen_extended_memory,
1909                                                NULL);
1910
1911                 if (r)
1912                         return r;
1913
1914                 r = amdgpu_bo_create_kernel_at(adev,
1915                                                adev->mman.stolen_reserved_offset,
1916                                                adev->mman.stolen_reserved_size,
1917                                                &adev->mman.stolen_reserved_memory,
1918                                                NULL);
1919                 if (r)
1920                         return r;
1921         } else {
1922                 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1923         }
1924
1925         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1926                  (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1927
1928         /* Compute GTT size, either based on TTM limit
1929          * or whatever the user passed on module init.
1930          */
1931         if (amdgpu_gtt_size == -1)
1932                 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1933         else
1934                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1935
1936         /* Initialize GTT memory pool */
1937         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1938         if (r) {
1939                 DRM_ERROR("Failed initializing GTT heap.\n");
1940                 return r;
1941         }
1942         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1943                  (unsigned int)(gtt_size / (1024 * 1024)));
1944
1945         /* Initiailize doorbell pool on PCI BAR */
1946         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_DOORBELL, adev->doorbell.size / PAGE_SIZE);
1947         if (r) {
1948                 DRM_ERROR("Failed initializing doorbell heap.\n");
1949                 return r;
1950         }
1951
1952         /* Create a boorbell page for kernel usages */
1953         r = amdgpu_doorbell_create_kernel_doorbells(adev);
1954         if (r) {
1955                 DRM_ERROR("Failed to initialize kernel doorbells.\n");
1956                 return r;
1957         }
1958
1959         /* Initialize preemptible memory pool */
1960         r = amdgpu_preempt_mgr_init(adev);
1961         if (r) {
1962                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1963                 return r;
1964         }
1965
1966         /* Initialize various on-chip memory pools */
1967         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1968         if (r) {
1969                 DRM_ERROR("Failed initializing GDS heap.\n");
1970                 return r;
1971         }
1972
1973         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1974         if (r) {
1975                 DRM_ERROR("Failed initializing gws heap.\n");
1976                 return r;
1977         }
1978
1979         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1980         if (r) {
1981                 DRM_ERROR("Failed initializing oa heap.\n");
1982                 return r;
1983         }
1984         if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1985                                 AMDGPU_GEM_DOMAIN_GTT,
1986                                 &adev->mman.sdma_access_bo, NULL,
1987                                 &adev->mman.sdma_access_ptr))
1988                 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1989
1990         return 0;
1991 }
1992
1993 /*
1994  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1995  */
1996 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1997 {
1998         int idx;
1999
2000         if (!adev->mman.initialized)
2001                 return;
2002
2003         amdgpu_ttm_pools_fini(adev);
2004
2005         amdgpu_ttm_training_reserve_vram_fini(adev);
2006         /* return the stolen vga memory back to VRAM */
2007         if (!adev->gmc.is_app_apu) {
2008                 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
2009                 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
2010                 /* return the FW reserved memory back to VRAM */
2011                 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
2012                                       NULL);
2013                 if (adev->mman.stolen_reserved_size)
2014                         amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
2015                                               NULL, NULL);
2016         }
2017         amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
2018                                         &adev->mman.sdma_access_ptr);
2019         amdgpu_ttm_fw_reserve_vram_fini(adev);
2020         amdgpu_ttm_drv_reserve_vram_fini(adev);
2021
2022         if (drm_dev_enter(adev_to_drm(adev), &idx)) {
2023
2024                 if (adev->mman.aper_base_kaddr)
2025                         iounmap(adev->mman.aper_base_kaddr);
2026                 adev->mman.aper_base_kaddr = NULL;
2027
2028                 drm_dev_exit(idx);
2029         }
2030
2031         amdgpu_vram_mgr_fini(adev);
2032         amdgpu_gtt_mgr_fini(adev);
2033         amdgpu_preempt_mgr_fini(adev);
2034         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2035         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2036         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2037         ttm_device_fini(&adev->mman.bdev);
2038         adev->mman.initialized = false;
2039         DRM_INFO("amdgpu: ttm finalized\n");
2040 }
2041
2042 /**
2043  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2044  *
2045  * @adev: amdgpu_device pointer
2046  * @enable: true when we can use buffer functions.
2047  *
2048  * Enable/disable use of buffer functions during suspend/resume. This should
2049  * only be called at bootup or when userspace isn't running.
2050  */
2051 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2052 {
2053         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2054         uint64_t size;
2055         int r;
2056
2057         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2058             adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2059                 return;
2060
2061         if (enable) {
2062                 struct amdgpu_ring *ring;
2063                 struct drm_gpu_scheduler *sched;
2064
2065                 ring = adev->mman.buffer_funcs_ring;
2066                 sched = &ring->sched;
2067                 r = drm_sched_entity_init(&adev->mman.high_pr,
2068                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
2069                                           1, NULL);
2070                 if (r) {
2071                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2072                                   r);
2073                         return;
2074                 }
2075
2076                 r = drm_sched_entity_init(&adev->mman.low_pr,
2077                                           DRM_SCHED_PRIORITY_NORMAL, &sched,
2078                                           1, NULL);
2079                 if (r) {
2080                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2081                                   r);
2082                         goto error_free_entity;
2083                 }
2084         } else {
2085                 drm_sched_entity_destroy(&adev->mman.high_pr);
2086                 drm_sched_entity_destroy(&adev->mman.low_pr);
2087                 dma_fence_put(man->move);
2088                 man->move = NULL;
2089         }
2090
2091         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2092         if (enable)
2093                 size = adev->gmc.real_vram_size;
2094         else
2095                 size = adev->gmc.visible_vram_size;
2096         man->size = size;
2097         adev->mman.buffer_funcs_enabled = enable;
2098
2099         return;
2100
2101 error_free_entity:
2102         drm_sched_entity_destroy(&adev->mman.high_pr);
2103 }
2104
2105 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2106                                   bool direct_submit,
2107                                   unsigned int num_dw,
2108                                   struct dma_resv *resv,
2109                                   bool vm_needs_flush,
2110                                   struct amdgpu_job **job,
2111                                   bool delayed)
2112 {
2113         enum amdgpu_ib_pool_type pool = direct_submit ?
2114                 AMDGPU_IB_POOL_DIRECT :
2115                 AMDGPU_IB_POOL_DELAYED;
2116         int r;
2117         struct drm_sched_entity *entity = delayed ? &adev->mman.low_pr :
2118                                                     &adev->mman.high_pr;
2119         r = amdgpu_job_alloc_with_ib(adev, entity,
2120                                      AMDGPU_FENCE_OWNER_UNDEFINED,
2121                                      num_dw * 4, pool, job);
2122         if (r)
2123                 return r;
2124
2125         if (vm_needs_flush) {
2126                 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2127                                                         adev->gmc.pdb0_bo :
2128                                                         adev->gart.bo);
2129                 (*job)->vm_needs_flush = true;
2130         }
2131         if (!resv)
2132                 return 0;
2133
2134         return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2135                                                    DMA_RESV_USAGE_BOOKKEEP);
2136 }
2137
2138 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2139                        uint64_t dst_offset, uint32_t byte_count,
2140                        struct dma_resv *resv,
2141                        struct dma_fence **fence, bool direct_submit,
2142                        bool vm_needs_flush, bool tmz)
2143 {
2144         struct amdgpu_device *adev = ring->adev;
2145         unsigned int num_loops, num_dw;
2146         struct amdgpu_job *job;
2147         uint32_t max_bytes;
2148         unsigned int i;
2149         int r;
2150
2151         if (!direct_submit && !ring->sched.ready) {
2152                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2153                 return -EINVAL;
2154         }
2155
2156         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2157         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2158         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2159         r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2160                                    resv, vm_needs_flush, &job, false);
2161         if (r)
2162                 return r;
2163
2164         for (i = 0; i < num_loops; i++) {
2165                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2166
2167                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2168                                         dst_offset, cur_size_in_bytes, tmz);
2169
2170                 src_offset += cur_size_in_bytes;
2171                 dst_offset += cur_size_in_bytes;
2172                 byte_count -= cur_size_in_bytes;
2173         }
2174
2175         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2176         WARN_ON(job->ibs[0].length_dw > num_dw);
2177         if (direct_submit)
2178                 r = amdgpu_job_submit_direct(job, ring, fence);
2179         else
2180                 *fence = amdgpu_job_submit(job);
2181         if (r)
2182                 goto error_free;
2183
2184         return r;
2185
2186 error_free:
2187         amdgpu_job_free(job);
2188         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2189         return r;
2190 }
2191
2192 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2193                                uint64_t dst_addr, uint32_t byte_count,
2194                                struct dma_resv *resv,
2195                                struct dma_fence **fence,
2196                                bool vm_needs_flush, bool delayed)
2197 {
2198         struct amdgpu_device *adev = ring->adev;
2199         unsigned int num_loops, num_dw;
2200         struct amdgpu_job *job;
2201         uint32_t max_bytes;
2202         unsigned int i;
2203         int r;
2204
2205         max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2206         num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2207         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2208         r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2209                                    &job, delayed);
2210         if (r)
2211                 return r;
2212
2213         for (i = 0; i < num_loops; i++) {
2214                 uint32_t cur_size = min(byte_count, max_bytes);
2215
2216                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2217                                         cur_size);
2218
2219                 dst_addr += cur_size;
2220                 byte_count -= cur_size;
2221         }
2222
2223         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2224         WARN_ON(job->ibs[0].length_dw > num_dw);
2225         *fence = amdgpu_job_submit(job);
2226         return 0;
2227 }
2228
2229 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2230                         uint32_t src_data,
2231                         struct dma_resv *resv,
2232                         struct dma_fence **f,
2233                         bool delayed)
2234 {
2235         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2236         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2237         struct dma_fence *fence = NULL;
2238         struct amdgpu_res_cursor dst;
2239         int r;
2240
2241         if (!adev->mman.buffer_funcs_enabled) {
2242                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2243                 return -EINVAL;
2244         }
2245
2246         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2247
2248         mutex_lock(&adev->mman.gtt_window_lock);
2249         while (dst.remaining) {
2250                 struct dma_fence *next;
2251                 uint64_t cur_size, to;
2252
2253                 /* Never fill more than 256MiB at once to avoid timeouts */
2254                 cur_size = min(dst.size, 256ULL << 20);
2255
2256                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2257                                           1, ring, false, &cur_size, &to);
2258                 if (r)
2259                         goto error;
2260
2261                 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2262                                         &next, true, delayed);
2263                 if (r)
2264                         goto error;
2265
2266                 dma_fence_put(fence);
2267                 fence = next;
2268
2269                 amdgpu_res_next(&dst, cur_size);
2270         }
2271 error:
2272         mutex_unlock(&adev->mman.gtt_window_lock);
2273         if (f)
2274                 *f = dma_fence_get(fence);
2275         dma_fence_put(fence);
2276         return r;
2277 }
2278
2279 /**
2280  * amdgpu_ttm_evict_resources - evict memory buffers
2281  * @adev: amdgpu device object
2282  * @mem_type: evicted BO's memory type
2283  *
2284  * Evicts all @mem_type buffers on the lru list of the memory type.
2285  *
2286  * Returns:
2287  * 0 for success or a negative error code on failure.
2288  */
2289 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2290 {
2291         struct ttm_resource_manager *man;
2292
2293         switch (mem_type) {
2294         case TTM_PL_VRAM:
2295         case TTM_PL_TT:
2296         case AMDGPU_PL_GWS:
2297         case AMDGPU_PL_GDS:
2298         case AMDGPU_PL_OA:
2299                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2300                 break;
2301         default:
2302                 DRM_ERROR("Trying to evict invalid memory type\n");
2303                 return -EINVAL;
2304         }
2305
2306         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2307 }
2308
2309 #if defined(CONFIG_DEBUG_FS)
2310
2311 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2312 {
2313         struct amdgpu_device *adev = m->private;
2314
2315         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2316 }
2317
2318 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2319
2320 /*
2321  * amdgpu_ttm_vram_read - Linear read access to VRAM
2322  *
2323  * Accesses VRAM via MMIO for debugging purposes.
2324  */
2325 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2326                                     size_t size, loff_t *pos)
2327 {
2328         struct amdgpu_device *adev = file_inode(f)->i_private;
2329         ssize_t result = 0;
2330
2331         if (size & 0x3 || *pos & 0x3)
2332                 return -EINVAL;
2333
2334         if (*pos >= adev->gmc.mc_vram_size)
2335                 return -ENXIO;
2336
2337         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2338         while (size) {
2339                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2340                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2341
2342                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2343                 if (copy_to_user(buf, value, bytes))
2344                         return -EFAULT;
2345
2346                 result += bytes;
2347                 buf += bytes;
2348                 *pos += bytes;
2349                 size -= bytes;
2350         }
2351
2352         return result;
2353 }
2354
2355 /*
2356  * amdgpu_ttm_vram_write - Linear write access to VRAM
2357  *
2358  * Accesses VRAM via MMIO for debugging purposes.
2359  */
2360 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2361                                     size_t size, loff_t *pos)
2362 {
2363         struct amdgpu_device *adev = file_inode(f)->i_private;
2364         ssize_t result = 0;
2365         int r;
2366
2367         if (size & 0x3 || *pos & 0x3)
2368                 return -EINVAL;
2369
2370         if (*pos >= adev->gmc.mc_vram_size)
2371                 return -ENXIO;
2372
2373         while (size) {
2374                 uint32_t value;
2375
2376                 if (*pos >= adev->gmc.mc_vram_size)
2377                         return result;
2378
2379                 r = get_user(value, (uint32_t *)buf);
2380                 if (r)
2381                         return r;
2382
2383                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2384
2385                 result += 4;
2386                 buf += 4;
2387                 *pos += 4;
2388                 size -= 4;
2389         }
2390
2391         return result;
2392 }
2393
2394 static const struct file_operations amdgpu_ttm_vram_fops = {
2395         .owner = THIS_MODULE,
2396         .read = amdgpu_ttm_vram_read,
2397         .write = amdgpu_ttm_vram_write,
2398         .llseek = default_llseek,
2399 };
2400
2401 /*
2402  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2403  *
2404  * This function is used to read memory that has been mapped to the
2405  * GPU and the known addresses are not physical addresses but instead
2406  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2407  */
2408 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2409                                  size_t size, loff_t *pos)
2410 {
2411         struct amdgpu_device *adev = file_inode(f)->i_private;
2412         struct iommu_domain *dom;
2413         ssize_t result = 0;
2414         int r;
2415
2416         /* retrieve the IOMMU domain if any for this device */
2417         dom = iommu_get_domain_for_dev(adev->dev);
2418
2419         while (size) {
2420                 phys_addr_t addr = *pos & PAGE_MASK;
2421                 loff_t off = *pos & ~PAGE_MASK;
2422                 size_t bytes = PAGE_SIZE - off;
2423                 unsigned long pfn;
2424                 struct page *p;
2425                 void *ptr;
2426
2427                 bytes = min(bytes, size);
2428
2429                 /* Translate the bus address to a physical address.  If
2430                  * the domain is NULL it means there is no IOMMU active
2431                  * and the address translation is the identity
2432                  */
2433                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2434
2435                 pfn = addr >> PAGE_SHIFT;
2436                 if (!pfn_valid(pfn))
2437                         return -EPERM;
2438
2439                 p = pfn_to_page(pfn);
2440                 if (p->mapping != adev->mman.bdev.dev_mapping)
2441                         return -EPERM;
2442
2443                 ptr = kmap_local_page(p);
2444                 r = copy_to_user(buf, ptr + off, bytes);
2445                 kunmap_local(ptr);
2446                 if (r)
2447                         return -EFAULT;
2448
2449                 size -= bytes;
2450                 *pos += bytes;
2451                 result += bytes;
2452         }
2453
2454         return result;
2455 }
2456
2457 /*
2458  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2459  *
2460  * This function is used to write memory that has been mapped to the
2461  * GPU and the known addresses are not physical addresses but instead
2462  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2463  */
2464 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2465                                  size_t size, loff_t *pos)
2466 {
2467         struct amdgpu_device *adev = file_inode(f)->i_private;
2468         struct iommu_domain *dom;
2469         ssize_t result = 0;
2470         int r;
2471
2472         dom = iommu_get_domain_for_dev(adev->dev);
2473
2474         while (size) {
2475                 phys_addr_t addr = *pos & PAGE_MASK;
2476                 loff_t off = *pos & ~PAGE_MASK;
2477                 size_t bytes = PAGE_SIZE - off;
2478                 unsigned long pfn;
2479                 struct page *p;
2480                 void *ptr;
2481
2482                 bytes = min(bytes, size);
2483
2484                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2485
2486                 pfn = addr >> PAGE_SHIFT;
2487                 if (!pfn_valid(pfn))
2488                         return -EPERM;
2489
2490                 p = pfn_to_page(pfn);
2491                 if (p->mapping != adev->mman.bdev.dev_mapping)
2492                         return -EPERM;
2493
2494                 ptr = kmap_local_page(p);
2495                 r = copy_from_user(ptr + off, buf, bytes);
2496                 kunmap_local(ptr);
2497                 if (r)
2498                         return -EFAULT;
2499
2500                 size -= bytes;
2501                 *pos += bytes;
2502                 result += bytes;
2503         }
2504
2505         return result;
2506 }
2507
2508 static const struct file_operations amdgpu_ttm_iomem_fops = {
2509         .owner = THIS_MODULE,
2510         .read = amdgpu_iomem_read,
2511         .write = amdgpu_iomem_write,
2512         .llseek = default_llseek
2513 };
2514
2515 #endif
2516
2517 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2518 {
2519 #if defined(CONFIG_DEBUG_FS)
2520         struct drm_minor *minor = adev_to_drm(adev)->primary;
2521         struct dentry *root = minor->debugfs_root;
2522
2523         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2524                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2525         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2526                             &amdgpu_ttm_iomem_fops);
2527         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2528                             &amdgpu_ttm_page_pool_fops);
2529         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2530                                                              TTM_PL_VRAM),
2531                                             root, "amdgpu_vram_mm");
2532         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2533                                                              TTM_PL_TT),
2534                                             root, "amdgpu_gtt_mm");
2535         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2536                                                              AMDGPU_PL_GDS),
2537                                             root, "amdgpu_gds_mm");
2538         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2539                                                              AMDGPU_PL_GWS),
2540                                             root, "amdgpu_gws_mm");
2541         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2542                                                              AMDGPU_PL_OA),
2543                                             root, "amdgpu_oa_mm");
2544
2545 #endif
2546 }