Merge tag 'v5.3-rc3' into drm-next-5.4
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_amdkfd_gfx_v10.c
1 /*
2  * Copyright 2019 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22 #undef pr_fmt
23 #define pr_fmt(fmt) "kfd2kgd: " fmt
24
25 #include <linux/module.h>
26 #include <linux/fdtable.h>
27 #include <linux/uaccess.h>
28 #include <linux/firmware.h>
29 #include <linux/mmu_context.h>
30 #include "amdgpu.h"
31 #include "amdgpu_amdkfd.h"
32 #include "amdgpu_ucode.h"
33 #include "soc15_hw_ip.h"
34 #include "gc/gc_10_1_0_offset.h"
35 #include "gc/gc_10_1_0_sh_mask.h"
36 #include "navi10_enum.h"
37 #include "athub/athub_2_0_0_offset.h"
38 #include "athub/athub_2_0_0_sh_mask.h"
39 #include "oss/osssys_5_0_0_offset.h"
40 #include "oss/osssys_5_0_0_sh_mask.h"
41 #include "soc15_common.h"
42 #include "v10_structs.h"
43 #include "nv.h"
44 #include "nvd.h"
45
46 enum hqd_dequeue_request_type {
47         NO_ACTION = 0,
48         DRAIN_PIPE,
49         RESET_WAVES,
50         SAVE_WAVES
51 };
52
53 /*
54  * Register access functions
55  */
56
57 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
58                 uint32_t sh_mem_config,
59                 uint32_t sh_mem_ape1_base, uint32_t sh_mem_ape1_limit,
60                 uint32_t sh_mem_bases);
61 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
62                 unsigned int vmid);
63 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
64 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
65                         uint32_t queue_id, uint32_t __user *wptr,
66                         uint32_t wptr_shift, uint32_t wptr_mask,
67                         struct mm_struct *mm);
68 static int kgd_hqd_dump(struct kgd_dev *kgd,
69                         uint32_t pipe_id, uint32_t queue_id,
70                         uint32_t (**dump)[2], uint32_t *n_regs);
71 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
72                              uint32_t __user *wptr, struct mm_struct *mm);
73 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
74                              uint32_t engine_id, uint32_t queue_id,
75                              uint32_t (**dump)[2], uint32_t *n_regs);
76 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
77                 uint32_t pipe_id, uint32_t queue_id);
78 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
79 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
80                                 enum kfd_preempt_type reset_type,
81                                 unsigned int utimeout, uint32_t pipe_id,
82                                 uint32_t queue_id);
83 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
84                                 unsigned int utimeout);
85 #if 0
86 static uint32_t get_watch_base_addr(struct amdgpu_device *adev);
87 #endif
88 static int kgd_address_watch_disable(struct kgd_dev *kgd);
89 static int kgd_address_watch_execute(struct kgd_dev *kgd,
90                                         unsigned int watch_point_id,
91                                         uint32_t cntl_val,
92                                         uint32_t addr_hi,
93                                         uint32_t addr_lo);
94 static int kgd_wave_control_execute(struct kgd_dev *kgd,
95                                         uint32_t gfx_index_val,
96                                         uint32_t sq_cmd);
97 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
98                                         unsigned int watch_point_id,
99                                         unsigned int reg_offset);
100
101 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
102                 uint8_t vmid);
103 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
104                 uint8_t vmid);
105 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
106                 uint64_t page_table_base);
107 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid);
108 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid);
109
110 /* Because of REG_GET_FIELD() being used, we put this function in the
111  * asic specific file.
112  */
113 static int amdgpu_amdkfd_get_tile_config(struct kgd_dev *kgd,
114                 struct tile_config *config)
115 {
116         struct amdgpu_device *adev = (struct amdgpu_device *)kgd;
117
118         config->gb_addr_config = adev->gfx.config.gb_addr_config;
119 #if 0
120 /* TODO - confirm REG_GET_FIELD x2, should be OK as is... but
121  * MC_ARB_RAMCFG register doesn't exist on Vega10 - initial amdgpu
122  * changes commented out related code, doing the same here for now but
123  * need to sync with Ken et al
124  */
125         config->num_banks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
126                                 MC_ARB_RAMCFG, NOOFBANK);
127         config->num_ranks = REG_GET_FIELD(adev->gfx.config.mc_arb_ramcfg,
128                                 MC_ARB_RAMCFG, NOOFRANKS);
129 #endif
130
131         config->tile_config_ptr = adev->gfx.config.tile_mode_array;
132         config->num_tile_configs =
133                         ARRAY_SIZE(adev->gfx.config.tile_mode_array);
134         config->macro_tile_config_ptr =
135                         adev->gfx.config.macrotile_mode_array;
136         config->num_macro_tile_configs =
137                         ARRAY_SIZE(adev->gfx.config.macrotile_mode_array);
138
139         return 0;
140 }
141
142 static const struct kfd2kgd_calls kfd2kgd = {
143         .program_sh_mem_settings = kgd_program_sh_mem_settings,
144         .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
145         .init_interrupts = kgd_init_interrupts,
146         .hqd_load = kgd_hqd_load,
147         .hqd_sdma_load = kgd_hqd_sdma_load,
148         .hqd_dump = kgd_hqd_dump,
149         .hqd_sdma_dump = kgd_hqd_sdma_dump,
150         .hqd_is_occupied = kgd_hqd_is_occupied,
151         .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
152         .hqd_destroy = kgd_hqd_destroy,
153         .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
154         .address_watch_disable = kgd_address_watch_disable,
155         .address_watch_execute = kgd_address_watch_execute,
156         .wave_control_execute = kgd_wave_control_execute,
157         .address_watch_get_offset = kgd_address_watch_get_offset,
158         .get_atc_vmid_pasid_mapping_pasid =
159                         get_atc_vmid_pasid_mapping_pasid,
160         .get_atc_vmid_pasid_mapping_valid =
161                         get_atc_vmid_pasid_mapping_valid,
162         .invalidate_tlbs = invalidate_tlbs,
163         .invalidate_tlbs_vmid = invalidate_tlbs_vmid,
164         .set_vm_context_page_table_base = set_vm_context_page_table_base,
165         .get_tile_config = amdgpu_amdkfd_get_tile_config,
166 };
167
168 struct kfd2kgd_calls *amdgpu_amdkfd_gfx_10_0_get_functions()
169 {
170         return (struct kfd2kgd_calls *)&kfd2kgd;
171 }
172
173 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
174 {
175         return (struct amdgpu_device *)kgd;
176 }
177
178 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
179                         uint32_t queue, uint32_t vmid)
180 {
181         struct amdgpu_device *adev = get_amdgpu_device(kgd);
182
183         mutex_lock(&adev->srbm_mutex);
184         nv_grbm_select(adev, mec, pipe, queue, vmid);
185 }
186
187 static void unlock_srbm(struct kgd_dev *kgd)
188 {
189         struct amdgpu_device *adev = get_amdgpu_device(kgd);
190
191         nv_grbm_select(adev, 0, 0, 0, 0);
192         mutex_unlock(&adev->srbm_mutex);
193 }
194
195 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
196                                 uint32_t queue_id)
197 {
198         struct amdgpu_device *adev = get_amdgpu_device(kgd);
199
200         uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
201         uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
202
203         lock_srbm(kgd, mec, pipe, queue_id, 0);
204 }
205
206 static uint32_t get_queue_mask(struct amdgpu_device *adev,
207                                uint32_t pipe_id, uint32_t queue_id)
208 {
209         unsigned int bit = (pipe_id * adev->gfx.mec.num_queue_per_pipe +
210                             queue_id) & 31;
211
212         return ((uint32_t)1) << bit;
213 }
214
215 static void release_queue(struct kgd_dev *kgd)
216 {
217         unlock_srbm(kgd);
218 }
219
220 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
221                                         uint32_t sh_mem_config,
222                                         uint32_t sh_mem_ape1_base,
223                                         uint32_t sh_mem_ape1_limit,
224                                         uint32_t sh_mem_bases)
225 {
226         struct amdgpu_device *adev = get_amdgpu_device(kgd);
227
228         lock_srbm(kgd, 0, 0, 0, vmid);
229
230         WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_CONFIG), sh_mem_config);
231         WREG32(SOC15_REG_OFFSET(GC, 0, mmSH_MEM_BASES), sh_mem_bases);
232         /* APE1 no longer exists on GFX9 */
233
234         unlock_srbm(kgd);
235 }
236
237 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
238                                         unsigned int vmid)
239 {
240         struct amdgpu_device *adev = get_amdgpu_device(kgd);
241
242         /*
243          * We have to assume that there is no outstanding mapping.
244          * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
245          * a mapping is in progress or because a mapping finished
246          * and the SW cleared it.
247          * So the protocol is to always wait & clear.
248          */
249         uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
250                         ATC_VMID0_PASID_MAPPING__VALID_MASK;
251
252         pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping);
253         /*
254          * need to do this twice, once for gfx and once for mmhub
255          * for ATC add 16 to VMID for mmhub, for IH different registers.
256          * ATC_VMID0..15 registers are separate from ATC_VMID16..31.
257          */
258
259         pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid);
260         WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
261                pasid_mapping);
262
263 #if 0
264         /* TODO: uncomment this code when the hardware support is ready. */
265         while (!(RREG32(SOC15_REG_OFFSET(
266                                 ATHUB, 0,
267                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
268                  (1U << vmid)))
269                 cpu_relax();
270
271         pr_debug("ATHUB mapping update finished\n");
272         WREG32(SOC15_REG_OFFSET(ATHUB, 0,
273                                 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
274                1U << vmid);
275 #endif
276
277         /* Mapping vmid to pasid also for IH block */
278         pr_debug("update mapping for IH block and mmhub");
279         WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
280                pasid_mapping);
281
282         return 0;
283 }
284
285 /* TODO - RING0 form of field is obsolete, seems to date back to SI
286  * but still works
287  */
288
289 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
290 {
291         struct amdgpu_device *adev = get_amdgpu_device(kgd);
292         uint32_t mec;
293         uint32_t pipe;
294
295         mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
296         pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
297
298         lock_srbm(kgd, mec, pipe, 0, 0);
299
300         WREG32(SOC15_REG_OFFSET(GC, 0, mmCPC_INT_CNTL),
301                 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
302                 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
303
304         unlock_srbm(kgd);
305
306         return 0;
307 }
308
309 static uint32_t get_sdma_base_addr(struct amdgpu_device *adev,
310                                 unsigned int engine_id,
311                                 unsigned int queue_id)
312 {
313         uint32_t base[2] = {
314                 SOC15_REG_OFFSET(SDMA0, 0,
315                                  mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL,
316                 /* On gfx10, mmSDMA1_xxx registers are defined NOT based
317                  * on SDMA1 base address (dw 0x1860) but based on SDMA0
318                  * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL
319                  * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc
320                  * below
321                  */
322                 SOC15_REG_OFFSET(SDMA1, 0,
323                                  mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL
324         };
325         uint32_t retval;
326
327         retval = base[engine_id] + queue_id * (mmSDMA0_RLC1_RB_CNTL -
328                                                mmSDMA0_RLC0_RB_CNTL);
329
330         pr_debug("sdma base address: 0x%x\n", retval);
331
332         return retval;
333 }
334
335 #if 0
336 static uint32_t get_watch_base_addr(struct amdgpu_device *adev)
337 {
338         uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) -
339                         mmTCP_WATCH0_ADDR_H;
340
341         pr_debug("kfd: reg watch base address: 0x%x\n", retval);
342
343         return retval;
344 }
345 #endif
346
347 static inline struct v10_compute_mqd *get_mqd(void *mqd)
348 {
349         return (struct v10_compute_mqd *)mqd;
350 }
351
352 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
353 {
354         return (struct v10_sdma_mqd *)mqd;
355 }
356
357 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
358                         uint32_t queue_id, uint32_t __user *wptr,
359                         uint32_t wptr_shift, uint32_t wptr_mask,
360                         struct mm_struct *mm)
361 {
362         struct amdgpu_device *adev = get_amdgpu_device(kgd);
363         struct v10_compute_mqd *m;
364         uint32_t *mqd_hqd;
365         uint32_t reg, hqd_base, data;
366
367         m = get_mqd(mqd);
368
369         pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
370         acquire_queue(kgd, pipe_id, queue_id);
371
372         /* HIQ is set during driver init period with vmid set to 0*/
373         if (m->cp_hqd_vmid == 0) {
374                 uint32_t value, mec, pipe;
375
376                 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
377                 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
378
379                 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
380                         mec, pipe, queue_id);
381                 value = RREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS));
382                 value = REG_SET_FIELD(value, RLC_CP_SCHEDULERS, scheduler1,
383                         ((mec << 5) | (pipe << 3) | queue_id | 0x80));
384                 WREG32(SOC15_REG_OFFSET(GC, 0, mmRLC_CP_SCHEDULERS), value);
385         }
386
387         /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
388         mqd_hqd = &m->cp_mqd_base_addr_lo;
389         hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
390
391         for (reg = hqd_base;
392              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
393                 WREG32(reg, mqd_hqd[reg - hqd_base]);
394
395
396         /* Activate doorbell logic before triggering WPTR poll. */
397         data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
398                              CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
399         WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL), data);
400
401         if (wptr) {
402                 /* Don't read wptr with get_user because the user
403                  * context may not be accessible (if this function
404                  * runs in a work queue). Instead trigger a one-shot
405                  * polling read from memory in the CP. This assumes
406                  * that wptr is GPU-accessible in the queue's VMID via
407                  * ATC or SVM. WPTR==RPTR before starting the poll so
408                  * the CP starts fetching new commands from the right
409                  * place.
410                  *
411                  * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
412                  * tricky. Assume that the queue didn't overflow. The
413                  * number of valid bits in the 32-bit RPTR depends on
414                  * the queue size. The remaining bits are taken from
415                  * the saved 64-bit WPTR. If the WPTR wrapped, add the
416                  * queue size.
417                  */
418                 uint32_t queue_size =
419                         2 << REG_GET_FIELD(m->cp_hqd_pq_control,
420                                            CP_HQD_PQ_CONTROL, QUEUE_SIZE);
421                 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
422
423                 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
424                         guessed_wptr += queue_size;
425                 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
426                 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
427
428                 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_LO),
429                        lower_32_bits(guessed_wptr));
430                 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI),
431                        upper_32_bits(guessed_wptr));
432                 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR),
433                        lower_32_bits((uint64_t)wptr));
434                 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI),
435                        upper_32_bits((uint64_t)wptr));
436                 pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__, get_queue_mask(adev, pipe_id, queue_id));
437                 WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1),
438                        get_queue_mask(adev, pipe_id, queue_id));
439         }
440
441         /* Start the EOP fetcher */
442         WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_EOP_RPTR),
443                REG_SET_FIELD(m->cp_hqd_eop_rptr,
444                              CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
445
446         data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
447         WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE), data);
448
449         release_queue(kgd);
450
451         return 0;
452 }
453
454 static int kgd_hqd_dump(struct kgd_dev *kgd,
455                         uint32_t pipe_id, uint32_t queue_id,
456                         uint32_t (**dump)[2], uint32_t *n_regs)
457 {
458         struct amdgpu_device *adev = get_amdgpu_device(kgd);
459         uint32_t i = 0, reg;
460 #define HQD_N_REGS 56
461 #define DUMP_REG(addr) do {                             \
462                 if (WARN_ON_ONCE(i >= HQD_N_REGS))      \
463                         break;                          \
464                 (*dump)[i][0] = (addr) << 2;            \
465                 (*dump)[i++][1] = RREG32(addr);         \
466         } while (0)
467
468         *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
469         if (*dump == NULL)
470                 return -ENOMEM;
471
472         acquire_queue(kgd, pipe_id, queue_id);
473
474         for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
475              reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
476                 DUMP_REG(reg);
477
478         release_queue(kgd);
479
480         WARN_ON_ONCE(i != HQD_N_REGS);
481         *n_regs = i;
482
483         return 0;
484 }
485
486 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
487                              uint32_t __user *wptr, struct mm_struct *mm)
488 {
489         struct amdgpu_device *adev = get_amdgpu_device(kgd);
490         struct v10_sdma_mqd *m;
491         uint32_t sdma_base_addr, sdmax_gfx_context_cntl;
492         unsigned long end_jiffies;
493         uint32_t data;
494         uint64_t data64;
495         uint64_t __user *wptr64 = (uint64_t __user *)wptr;
496
497         m = get_sdma_mqd(mqd);
498         sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
499                                             m->sdma_queue_id);
500         pr_debug("sdma load base addr %x for engine %d, queue %d\n", sdma_base_addr, m->sdma_engine_id, m->sdma_queue_id);
501         sdmax_gfx_context_cntl = m->sdma_engine_id ?
502                 SOC15_REG_OFFSET(SDMA1, 0, mmSDMA1_GFX_CONTEXT_CNTL) :
503                 SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_GFX_CONTEXT_CNTL);
504
505         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
506                 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
507
508         end_jiffies = msecs_to_jiffies(2000) + jiffies;
509         while (true) {
510                 data = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
511                 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
512                         break;
513                 if (time_after(jiffies, end_jiffies))
514                         return -ETIME;
515                 usleep_range(500, 1000);
516         }
517         data = RREG32(sdmax_gfx_context_cntl);
518         data = REG_SET_FIELD(data, SDMA0_GFX_CONTEXT_CNTL,
519                              RESUME_CTX, 0);
520         WREG32(sdmax_gfx_context_cntl, data);
521
522         WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL_OFFSET,
523                m->sdmax_rlcx_doorbell_offset);
524
525         data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
526                              ENABLE, 1);
527         WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, data);
528         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR, m->sdmax_rlcx_rb_rptr);
529         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_HI,
530                                 m->sdmax_rlcx_rb_rptr_hi);
531
532         WREG32(sdma_base_addr + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
533         if (read_user_wptr(mm, wptr64, data64)) {
534                 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
535                        lower_32_bits(data64));
536                 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR_HI,
537                        upper_32_bits(data64));
538         } else {
539                 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR,
540                        m->sdmax_rlcx_rb_rptr);
541                 WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_WPTR_HI,
542                        m->sdmax_rlcx_rb_rptr_hi);
543         }
544         WREG32(sdma_base_addr + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
545
546         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
547         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_BASE_HI,
548                         m->sdmax_rlcx_rb_base_hi);
549         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
550                         m->sdmax_rlcx_rb_rptr_addr_lo);
551         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
552                         m->sdmax_rlcx_rb_rptr_addr_hi);
553
554         data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
555                              RB_ENABLE, 1);
556         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, data);
557
558         return 0;
559 }
560
561 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
562                              uint32_t engine_id, uint32_t queue_id,
563                              uint32_t (**dump)[2], uint32_t *n_regs)
564 {
565         struct amdgpu_device *adev = get_amdgpu_device(kgd);
566         uint32_t sdma_base_addr = get_sdma_base_addr(adev, engine_id, queue_id);
567         uint32_t i = 0, reg;
568 #undef HQD_N_REGS
569 #define HQD_N_REGS (19+6+7+10)
570
571         pr_debug("sdma dump engine id %d queue_id %d\n", engine_id, queue_id);
572         pr_debug("sdma base addr %x\n", sdma_base_addr);
573
574         *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
575         if (*dump == NULL)
576                 return -ENOMEM;
577
578         for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
579                 DUMP_REG(sdma_base_addr + reg);
580         for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
581                 DUMP_REG(sdma_base_addr + reg);
582         for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
583              reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
584                 DUMP_REG(sdma_base_addr + reg);
585         for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
586              reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
587                 DUMP_REG(sdma_base_addr + reg);
588
589         WARN_ON_ONCE(i != HQD_N_REGS);
590         *n_regs = i;
591
592         return 0;
593 }
594
595 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
596                                 uint32_t pipe_id, uint32_t queue_id)
597 {
598         struct amdgpu_device *adev = get_amdgpu_device(kgd);
599         uint32_t act;
600         bool retval = false;
601         uint32_t low, high;
602
603         acquire_queue(kgd, pipe_id, queue_id);
604         act = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
605         if (act) {
606                 low = lower_32_bits(queue_address >> 8);
607                 high = upper_32_bits(queue_address >> 8);
608
609                 if (low == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE)) &&
610                    high == RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_BASE_HI)))
611                         retval = true;
612         }
613         release_queue(kgd);
614         return retval;
615 }
616
617 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
618 {
619         struct amdgpu_device *adev = get_amdgpu_device(kgd);
620         struct v10_sdma_mqd *m;
621         uint32_t sdma_base_addr;
622         uint32_t sdma_rlc_rb_cntl;
623
624         m = get_sdma_mqd(mqd);
625         sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
626                                             m->sdma_queue_id);
627
628         sdma_rlc_rb_cntl = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
629
630         if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
631                 return true;
632
633         return false;
634 }
635
636 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
637                                 enum kfd_preempt_type reset_type,
638                                 unsigned int utimeout, uint32_t pipe_id,
639                                 uint32_t queue_id)
640 {
641         struct amdgpu_device *adev = get_amdgpu_device(kgd);
642         enum hqd_dequeue_request_type type;
643         unsigned long end_jiffies;
644         uint32_t temp;
645         struct v10_compute_mqd *m = get_mqd(mqd);
646
647 #if 0
648         unsigned long flags;
649         int retry;
650 #endif
651
652         acquire_queue(kgd, pipe_id, queue_id);
653
654         if (m->cp_hqd_vmid == 0)
655                 WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
656
657         switch (reset_type) {
658         case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
659                 type = DRAIN_PIPE;
660                 break;
661         case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
662                 type = RESET_WAVES;
663                 break;
664         default:
665                 type = DRAIN_PIPE;
666                 break;
667         }
668
669 #if 0 /* Is this still needed? */
670         /* Workaround: If IQ timer is active and the wait time is close to or
671          * equal to 0, dequeueing is not safe. Wait until either the wait time
672          * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
673          * cleared before continuing. Also, ensure wait times are set to at
674          * least 0x3.
675          */
676         local_irq_save(flags);
677         preempt_disable();
678         retry = 5000; /* wait for 500 usecs at maximum */
679         while (true) {
680                 temp = RREG32(mmCP_HQD_IQ_TIMER);
681                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
682                         pr_debug("HW is processing IQ\n");
683                         goto loop;
684                 }
685                 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
686                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
687                                         == 3) /* SEM-rearm is safe */
688                                 break;
689                         /* Wait time 3 is safe for CP, but our MMIO read/write
690                          * time is close to 1 microsecond, so check for 10 to
691                          * leave more buffer room
692                          */
693                         if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
694                                         >= 10)
695                                 break;
696                         pr_debug("IQ timer is active\n");
697                 } else
698                         break;
699 loop:
700                 if (!retry) {
701                         pr_err("CP HQD IQ timer status time out\n");
702                         break;
703                 }
704                 ndelay(100);
705                 --retry;
706         }
707         retry = 1000;
708         while (true) {
709                 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
710                 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
711                         break;
712                 pr_debug("Dequeue request is pending\n");
713
714                 if (!retry) {
715                         pr_err("CP HQD dequeue request time out\n");
716                         break;
717                 }
718                 ndelay(100);
719                 --retry;
720         }
721         local_irq_restore(flags);
722         preempt_enable();
723 #endif
724
725         WREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_DEQUEUE_REQUEST), type);
726
727         end_jiffies = (utimeout * HZ / 1000) + jiffies;
728         while (true) {
729                 temp = RREG32(SOC15_REG_OFFSET(GC, 0, mmCP_HQD_ACTIVE));
730                 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
731                         break;
732                 if (time_after(jiffies, end_jiffies)) {
733                         pr_err("cp queue preemption time out.\n");
734                         release_queue(kgd);
735                         return -ETIME;
736                 }
737                 usleep_range(500, 1000);
738         }
739
740         release_queue(kgd);
741         return 0;
742 }
743
744 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
745                                 unsigned int utimeout)
746 {
747         struct amdgpu_device *adev = get_amdgpu_device(kgd);
748         struct v10_sdma_mqd *m;
749         uint32_t sdma_base_addr;
750         uint32_t temp;
751         unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
752
753         m = get_sdma_mqd(mqd);
754         sdma_base_addr = get_sdma_base_addr(adev, m->sdma_engine_id,
755                                             m->sdma_queue_id);
756
757         temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL);
758         temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
759         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL, temp);
760
761         while (true) {
762                 temp = RREG32(sdma_base_addr + mmSDMA0_RLC0_CONTEXT_STATUS);
763                 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
764                         break;
765                 if (time_after(jiffies, end_jiffies))
766                         return -ETIME;
767                 usleep_range(500, 1000);
768         }
769
770         WREG32(sdma_base_addr + mmSDMA0_RLC0_DOORBELL, 0);
771         WREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL,
772                 RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_CNTL) |
773                 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
774
775         m->sdmax_rlcx_rb_rptr = RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR);
776         m->sdmax_rlcx_rb_rptr_hi =
777                 RREG32(sdma_base_addr + mmSDMA0_RLC0_RB_RPTR_HI);
778
779         return 0;
780 }
781
782 static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd,
783                                                         uint8_t vmid)
784 {
785         uint32_t reg;
786         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
787
788         reg = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
789                      + vmid);
790         return reg & ATC_VMID0_PASID_MAPPING__VALID_MASK;
791 }
792
793 static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
794                                                                 uint8_t vmid)
795 {
796         uint32_t reg;
797         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
798
799         reg = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
800                      + vmid);
801         return reg & ATC_VMID0_PASID_MAPPING__PASID_MASK;
802 }
803
804 static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
805 {
806         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
807         uint32_t req = (1 << vmid) |
808                 (0 << GCVM_INVALIDATE_ENG0_REQ__FLUSH_TYPE__SHIFT) |/* legacy */
809                 GCVM_INVALIDATE_ENG0_REQ__INVALIDATE_L2_PTES_MASK |
810                 GCVM_INVALIDATE_ENG0_REQ__INVALIDATE_L2_PDE0_MASK |
811                 GCVM_INVALIDATE_ENG0_REQ__INVALIDATE_L2_PDE1_MASK |
812                 GCVM_INVALIDATE_ENG0_REQ__INVALIDATE_L2_PDE2_MASK |
813                 GCVM_INVALIDATE_ENG0_REQ__INVALIDATE_L1_PTES_MASK;
814
815         mutex_lock(&adev->srbm_mutex);
816
817         /* Use light weight invalidation.
818          *
819          * TODO 1: agree on the right set of invalidation registers for
820          * KFD use. Use the last one for now. Invalidate only GCHUB as
821          * SDMA is now moved to GCHUB
822          *
823          * TODO 2: support range-based invalidation, requires kfg2kgd
824          * interface change
825          */
826         WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_INVALIDATE_ENG0_ADDR_RANGE_LO32),
827                                 0xffffffff);
828         WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_INVALIDATE_ENG0_ADDR_RANGE_HI32),
829                                 0x0000001f);
830
831         WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_INVALIDATE_ENG0_REQ), req);
832
833         while (!(RREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_INVALIDATE_ENG0_ACK)) &
834                                         (1 << vmid)))
835                 cpu_relax();
836
837         mutex_unlock(&adev->srbm_mutex);
838 }
839
840 static int invalidate_tlbs_with_kiq(struct amdgpu_device *adev, uint16_t pasid)
841 {
842         signed long r;
843         uint32_t seq;
844         struct amdgpu_ring *ring = &adev->gfx.kiq.ring;
845
846         spin_lock(&adev->gfx.kiq.ring_lock);
847         amdgpu_ring_alloc(ring, 12); /* fence + invalidate_tlbs package*/
848         amdgpu_ring_write(ring, PACKET3(PACKET3_INVALIDATE_TLBS, 0));
849         amdgpu_ring_write(ring,
850                         PACKET3_INVALIDATE_TLBS_DST_SEL(1) |
851                         PACKET3_INVALIDATE_TLBS_PASID(pasid));
852         amdgpu_fence_emit_polling(ring, &seq);
853         amdgpu_ring_commit(ring);
854         spin_unlock(&adev->gfx.kiq.ring_lock);
855
856         r = amdgpu_fence_wait_polling(ring, seq, adev->usec_timeout);
857         if (r < 1) {
858                 DRM_ERROR("wait for kiq fence error: %ld.\n", r);
859                 return -ETIME;
860         }
861
862         return 0;
863 }
864
865 static int invalidate_tlbs(struct kgd_dev *kgd, uint16_t pasid)
866 {
867         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
868         int vmid;
869         struct amdgpu_ring *ring = &adev->gfx.kiq.ring;
870
871         if (amdgpu_emu_mode == 0 && ring->sched.ready)
872                 return invalidate_tlbs_with_kiq(adev, pasid);
873
874         for (vmid = 0; vmid < 16; vmid++) {
875                 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid))
876                         continue;
877                 if (get_atc_vmid_pasid_mapping_valid(kgd, vmid)) {
878                         if (get_atc_vmid_pasid_mapping_pasid(kgd, vmid)
879                                 == pasid) {
880                                 write_vmid_invalidate_request(kgd, vmid);
881                                 break;
882                         }
883                 }
884         }
885
886         return 0;
887 }
888
889 static int invalidate_tlbs_vmid(struct kgd_dev *kgd, uint16_t vmid)
890 {
891         struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
892
893         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
894                 pr_err("non kfd vmid %d\n", vmid);
895                 return 0;
896         }
897
898         write_vmid_invalidate_request(kgd, vmid);
899         return 0;
900 }
901
902 static int kgd_address_watch_disable(struct kgd_dev *kgd)
903 {
904         return 0;
905 }
906
907 static int kgd_address_watch_execute(struct kgd_dev *kgd,
908                                         unsigned int watch_point_id,
909                                         uint32_t cntl_val,
910                                         uint32_t addr_hi,
911                                         uint32_t addr_lo)
912 {
913         return 0;
914 }
915
916 static int kgd_wave_control_execute(struct kgd_dev *kgd,
917                                         uint32_t gfx_index_val,
918                                         uint32_t sq_cmd)
919 {
920         struct amdgpu_device *adev = get_amdgpu_device(kgd);
921         uint32_t data = 0;
922
923         mutex_lock(&adev->grbm_idx_mutex);
924
925         WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), gfx_index_val);
926         WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_CMD), sq_cmd);
927
928         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
929                 INSTANCE_BROADCAST_WRITES, 1);
930         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
931                 SA_BROADCAST_WRITES, 1);
932         data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
933                 SE_BROADCAST_WRITES, 1);
934
935         WREG32(SOC15_REG_OFFSET(GC, 0, mmGRBM_GFX_INDEX), data);
936         mutex_unlock(&adev->grbm_idx_mutex);
937
938         return 0;
939 }
940
941 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
942                                         unsigned int watch_point_id,
943                                         unsigned int reg_offset)
944 {
945         return 0;
946 }
947
948 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
949                 uint64_t page_table_base)
950 {
951         struct amdgpu_device *adev = get_amdgpu_device(kgd);
952         uint64_t base = page_table_base | AMDGPU_PTE_VALID;
953
954         if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
955                 pr_err("trying to set page table base for wrong VMID %u\n",
956                        vmid);
957                 return;
958         }
959
960         /* TODO: take advantage of per-process address space size. For
961          * now, all processes share the same address space size, like
962          * on GFX8 and older.
963          */
964         WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_START_ADDR_LO32) + (vmid*2), 0);
965         WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_START_ADDR_HI32) + (vmid*2), 0);
966
967         WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_END_ADDR_LO32) + (vmid*2),
968                         lower_32_bits(adev->vm_manager.max_pfn - 1));
969         WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_END_ADDR_HI32) + (vmid*2),
970                         upper_32_bits(adev->vm_manager.max_pfn - 1));
971
972         WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_BASE_ADDR_LO32) + (vmid*2), lower_32_bits(base));
973         WREG32(SOC15_REG_OFFSET(GC, 0, mmGCVM_CONTEXT0_PAGE_TABLE_BASE_ADDR_HI32) + (vmid*2), upper_32_bits(base));
974 }