Merge tag 'v2.6.39-rc7'
[sfrench/cifs-2.6.git] / drivers / firewire / ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45
46 #include <asm/byteorder.h>
47 #include <asm/page.h>
48 #include <asm/system.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define DESCRIPTOR_OUTPUT_MORE          0
58 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
61 #define DESCRIPTOR_STATUS               (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
63 #define DESCRIPTOR_PING                 (1 << 7)
64 #define DESCRIPTOR_YY                   (1 << 6)
65 #define DESCRIPTOR_NO_IRQ               (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
69 #define DESCRIPTOR_WAIT                 (3 << 0)
70
71 struct descriptor {
72         __le16 req_count;
73         __le16 control;
74         __le32 data_address;
75         __le32 branch_address;
76         __le16 res_count;
77         __le16 transfer_status;
78 } __attribute__((aligned(16)));
79
80 #define CONTROL_SET(regs)       (regs)
81 #define CONTROL_CLEAR(regs)     ((regs) + 4)
82 #define COMMAND_PTR(regs)       ((regs) + 12)
83 #define CONTEXT_MATCH(regs)     ((regs) + 16)
84
85 #define AR_BUFFER_SIZE  (32*1024)
86 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89
90 #define MAX_ASYNC_PAYLOAD       4096
91 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93
94 struct ar_context {
95         struct fw_ohci *ohci;
96         struct page *pages[AR_BUFFERS];
97         void *buffer;
98         struct descriptor *descriptors;
99         dma_addr_t descriptors_bus;
100         void *pointer;
101         unsigned int last_buffer_index;
102         u32 regs;
103         struct tasklet_struct tasklet;
104 };
105
106 struct context;
107
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109                                      struct descriptor *d,
110                                      struct descriptor *last);
111
112 /*
113  * A buffer that contains a block of DMA-able coherent memory used for
114  * storing a portion of a DMA descriptor program.
115  */
116 struct descriptor_buffer {
117         struct list_head list;
118         dma_addr_t buffer_bus;
119         size_t buffer_size;
120         size_t used;
121         struct descriptor buffer[0];
122 };
123
124 struct context {
125         struct fw_ohci *ohci;
126         u32 regs;
127         int total_allocation;
128         bool running;
129         bool flushing;
130
131         /*
132          * List of page-sized buffers for storing DMA descriptors.
133          * Head of list contains buffers in use and tail of list contains
134          * free buffers.
135          */
136         struct list_head buffer_list;
137
138         /*
139          * Pointer to a buffer inside buffer_list that contains the tail
140          * end of the current DMA program.
141          */
142         struct descriptor_buffer *buffer_tail;
143
144         /*
145          * The descriptor containing the branch address of the first
146          * descriptor that has not yet been filled by the device.
147          */
148         struct descriptor *last;
149
150         /*
151          * The last descriptor in the DMA program.  It contains the branch
152          * address that must be updated upon appending a new descriptor.
153          */
154         struct descriptor *prev;
155
156         descriptor_callback_t callback;
157
158         struct tasklet_struct tasklet;
159 };
160
161 #define IT_HEADER_SY(v)          ((v) <<  0)
162 #define IT_HEADER_TCODE(v)       ((v) <<  4)
163 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
164 #define IT_HEADER_TAG(v)         ((v) << 14)
165 #define IT_HEADER_SPEED(v)       ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167
168 struct iso_context {
169         struct fw_iso_context base;
170         struct context context;
171         int excess_bytes;
172         void *header;
173         size_t header_length;
174
175         u8 sync;
176         u8 tags;
177 };
178
179 #define CONFIG_ROM_SIZE 1024
180
181 struct fw_ohci {
182         struct fw_card card;
183
184         __iomem char *registers;
185         int node_id;
186         int generation;
187         int request_generation; /* for timestamping incoming requests */
188         unsigned quirks;
189         unsigned int pri_req_max;
190         u32 bus_time;
191         bool is_root;
192         bool csr_state_setclear_abdicate;
193         int n_ir;
194         int n_it;
195         /*
196          * Spinlock for accessing fw_ohci data.  Never call out of
197          * this driver with this lock held.
198          */
199         spinlock_t lock;
200
201         struct mutex phy_reg_mutex;
202
203         void *misc_buffer;
204         dma_addr_t misc_buffer_bus;
205
206         struct ar_context ar_request_ctx;
207         struct ar_context ar_response_ctx;
208         struct context at_request_ctx;
209         struct context at_response_ctx;
210
211         u32 it_context_support;
212         u32 it_context_mask;     /* unoccupied IT contexts */
213         struct iso_context *it_context_list;
214         u64 ir_context_channels; /* unoccupied channels */
215         u32 ir_context_support;
216         u32 ir_context_mask;     /* unoccupied IR contexts */
217         struct iso_context *ir_context_list;
218         u64 mc_channels; /* channels in use by the multichannel IR context */
219         bool mc_allocated;
220
221         __be32    *config_rom;
222         dma_addr_t config_rom_bus;
223         __be32    *next_config_rom;
224         dma_addr_t next_config_rom_bus;
225         __be32     next_header;
226
227         __le32    *self_id_cpu;
228         dma_addr_t self_id_bus;
229         struct tasklet_struct bus_reset_tasklet;
230
231         u32 self_id_buffer[512];
232 };
233
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236         return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
240 #define IR_CONTEXT_BUFFER_FILL          0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
245
246 #define CONTEXT_RUN     0x8000
247 #define CONTEXT_WAKE    0x1000
248 #define CONTEXT_DEAD    0x0800
249 #define CONTEXT_ACTIVE  0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
254
255 #define OHCI1394_REGISTER_SIZE          0x800
256 #define OHCI_LOOP_COUNT                 500
257 #define OHCI1394_PCI_HCI_Control        0x40
258 #define SELF_ID_BUF_SIZE                0x800
259 #define OHCI_TCODE_PHY_PACKET           0x0e
260 #define OHCI_VERSION_1_1                0x010010
261
262 static char ohci_driver_name[] = KBUILD_MODNAME;
263
264 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
265 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
266 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
267
268 #define QUIRK_CYCLE_TIMER               1
269 #define QUIRK_RESET_PACKET              2
270 #define QUIRK_BE_HEADERS                4
271 #define QUIRK_NO_1394A                  8
272 #define QUIRK_NO_MSI                    16
273
274 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
275 static const struct {
276         unsigned short vendor, device, revision, flags;
277 } ohci_quirks[] = {
278         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
279                 QUIRK_CYCLE_TIMER},
280
281         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
282                 QUIRK_BE_HEADERS},
283
284         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
285                 QUIRK_NO_MSI},
286
287         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
288                 QUIRK_NO_MSI},
289
290         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
291                 QUIRK_CYCLE_TIMER},
292
293         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
294                 QUIRK_CYCLE_TIMER},
295
296         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
297                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
298
299         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
300                 QUIRK_RESET_PACKET},
301
302         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
303                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
304 };
305
306 /* This overrides anything that was found in ohci_quirks[]. */
307 static int param_quirks;
308 module_param_named(quirks, param_quirks, int, 0644);
309 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
310         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
311         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
312         ", AR/selfID endianess = "      __stringify(QUIRK_BE_HEADERS)
313         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
314         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
315         ")");
316
317 #define OHCI_PARAM_DEBUG_AT_AR          1
318 #define OHCI_PARAM_DEBUG_SELFIDS        2
319 #define OHCI_PARAM_DEBUG_IRQS           4
320 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
321
322 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
323
324 static int param_debug;
325 module_param_named(debug, param_debug, int, 0644);
326 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
327         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
328         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
329         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
330         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
331         ", or a combination, or all = -1)");
332
333 static void log_irqs(u32 evt)
334 {
335         if (likely(!(param_debug &
336                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
337                 return;
338
339         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
340             !(evt & OHCI1394_busReset))
341                 return;
342
343         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
344             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
345             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
346             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
347             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
348             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
349             evt & OHCI1394_isochRx              ? " IR"                 : "",
350             evt & OHCI1394_isochTx              ? " IT"                 : "",
351             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
352             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
353             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
354             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
355             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
356             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
357             evt & OHCI1394_busReset             ? " busReset"           : "",
358             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
359                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
360                     OHCI1394_respTxComplete | OHCI1394_isochRx |
361                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
362                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
363                     OHCI1394_cycleInconsistent |
364                     OHCI1394_regAccessFail | OHCI1394_busReset)
365                                                 ? " ?"                  : "");
366 }
367
368 static const char *speed[] = {
369         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
370 };
371 static const char *power[] = {
372         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
373         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
374 };
375 static const char port[] = { '.', '-', 'p', 'c', };
376
377 static char _p(u32 *s, int shift)
378 {
379         return port[*s >> shift & 3];
380 }
381
382 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
383 {
384         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
385                 return;
386
387         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
388                   self_id_count, generation, node_id);
389
390         for (; self_id_count--; ++s)
391                 if ((*s & 1 << 23) == 0)
392                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
393                             "%s gc=%d %s %s%s%s\n",
394                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
395                             speed[*s >> 14 & 3], *s >> 16 & 63,
396                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
397                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
398                 else
399                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
400                             *s, *s >> 24 & 63,
401                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
402                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
403 }
404
405 static const char *evts[] = {
406         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
407         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
408         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
409         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
410         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
411         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
412         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
413         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
414         [0x10] = "-reserved-",          [0x11] = "ack_complete",
415         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
416         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
417         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
418         [0x18] = "-reserved-",          [0x19] = "-reserved-",
419         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
420         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
421         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
422         [0x20] = "pending/cancelled",
423 };
424 static const char *tcodes[] = {
425         [0x0] = "QW req",               [0x1] = "BW req",
426         [0x2] = "W resp",               [0x3] = "-reserved-",
427         [0x4] = "QR req",               [0x5] = "BR req",
428         [0x6] = "QR resp",              [0x7] = "BR resp",
429         [0x8] = "cycle start",          [0x9] = "Lk req",
430         [0xa] = "async stream packet",  [0xb] = "Lk resp",
431         [0xc] = "-reserved-",           [0xd] = "-reserved-",
432         [0xe] = "link internal",        [0xf] = "-reserved-",
433 };
434
435 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
436 {
437         int tcode = header[0] >> 4 & 0xf;
438         char specific[12];
439
440         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
441                 return;
442
443         if (unlikely(evt >= ARRAY_SIZE(evts)))
444                         evt = 0x1f;
445
446         if (evt == OHCI1394_evt_bus_reset) {
447                 fw_notify("A%c evt_bus_reset, generation %d\n",
448                     dir, (header[2] >> 16) & 0xff);
449                 return;
450         }
451
452         switch (tcode) {
453         case 0x0: case 0x6: case 0x8:
454                 snprintf(specific, sizeof(specific), " = %08x",
455                          be32_to_cpu((__force __be32)header[3]));
456                 break;
457         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
458                 snprintf(specific, sizeof(specific), " %x,%x",
459                          header[3] >> 16, header[3] & 0xffff);
460                 break;
461         default:
462                 specific[0] = '\0';
463         }
464
465         switch (tcode) {
466         case 0xa:
467                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
468                 break;
469         case 0xe:
470                 fw_notify("A%c %s, PHY %08x %08x\n",
471                           dir, evts[evt], header[1], header[2]);
472                 break;
473         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474                 fw_notify("A%c spd %x tl %02x, "
475                     "%04x -> %04x, %s, "
476                     "%s, %04x%08x%s\n",
477                     dir, speed, header[0] >> 10 & 0x3f,
478                     header[1] >> 16, header[0] >> 16, evts[evt],
479                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
480                 break;
481         default:
482                 fw_notify("A%c spd %x tl %02x, "
483                     "%04x -> %04x, %s, "
484                     "%s%s\n",
485                     dir, speed, header[0] >> 10 & 0x3f,
486                     header[1] >> 16, header[0] >> 16, evts[evt],
487                     tcodes[tcode], specific);
488         }
489 }
490
491 #else
492
493 #define param_debug 0
494 static inline void log_irqs(u32 evt) {}
495 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
496 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
497
498 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
499
500 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
501 {
502         writel(data, ohci->registers + offset);
503 }
504
505 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
506 {
507         return readl(ohci->registers + offset);
508 }
509
510 static inline void flush_writes(const struct fw_ohci *ohci)
511 {
512         /* Do a dummy read to flush writes. */
513         reg_read(ohci, OHCI1394_Version);
514 }
515
516 static int read_phy_reg(struct fw_ohci *ohci, int addr)
517 {
518         u32 val;
519         int i;
520
521         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
522         for (i = 0; i < 3 + 100; i++) {
523                 val = reg_read(ohci, OHCI1394_PhyControl);
524                 if (val & OHCI1394_PhyControl_ReadDone)
525                         return OHCI1394_PhyControl_ReadData(val);
526
527                 /*
528                  * Try a few times without waiting.  Sleeping is necessary
529                  * only when the link/PHY interface is busy.
530                  */
531                 if (i >= 3)
532                         msleep(1);
533         }
534         fw_error("failed to read phy reg\n");
535
536         return -EBUSY;
537 }
538
539 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
540 {
541         int i;
542
543         reg_write(ohci, OHCI1394_PhyControl,
544                   OHCI1394_PhyControl_Write(addr, val));
545         for (i = 0; i < 3 + 100; i++) {
546                 val = reg_read(ohci, OHCI1394_PhyControl);
547                 if (!(val & OHCI1394_PhyControl_WritePending))
548                         return 0;
549
550                 if (i >= 3)
551                         msleep(1);
552         }
553         fw_error("failed to write phy reg\n");
554
555         return -EBUSY;
556 }
557
558 static int update_phy_reg(struct fw_ohci *ohci, int addr,
559                           int clear_bits, int set_bits)
560 {
561         int ret = read_phy_reg(ohci, addr);
562         if (ret < 0)
563                 return ret;
564
565         /*
566          * The interrupt status bits are cleared by writing a one bit.
567          * Avoid clearing them unless explicitly requested in set_bits.
568          */
569         if (addr == 5)
570                 clear_bits |= PHY_INT_STATUS_BITS;
571
572         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
573 }
574
575 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
576 {
577         int ret;
578
579         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
580         if (ret < 0)
581                 return ret;
582
583         return read_phy_reg(ohci, addr);
584 }
585
586 static int ohci_read_phy_reg(struct fw_card *card, int addr)
587 {
588         struct fw_ohci *ohci = fw_ohci(card);
589         int ret;
590
591         mutex_lock(&ohci->phy_reg_mutex);
592         ret = read_phy_reg(ohci, addr);
593         mutex_unlock(&ohci->phy_reg_mutex);
594
595         return ret;
596 }
597
598 static int ohci_update_phy_reg(struct fw_card *card, int addr,
599                                int clear_bits, int set_bits)
600 {
601         struct fw_ohci *ohci = fw_ohci(card);
602         int ret;
603
604         mutex_lock(&ohci->phy_reg_mutex);
605         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
606         mutex_unlock(&ohci->phy_reg_mutex);
607
608         return ret;
609 }
610
611 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
612 {
613         return page_private(ctx->pages[i]);
614 }
615
616 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
617 {
618         struct descriptor *d;
619
620         d = &ctx->descriptors[index];
621         d->branch_address  &= cpu_to_le32(~0xf);
622         d->res_count       =  cpu_to_le16(PAGE_SIZE);
623         d->transfer_status =  0;
624
625         wmb(); /* finish init of new descriptors before branch_address update */
626         d = &ctx->descriptors[ctx->last_buffer_index];
627         d->branch_address  |= cpu_to_le32(1);
628
629         ctx->last_buffer_index = index;
630
631         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
632         flush_writes(ctx->ohci);
633 }
634
635 static void ar_context_release(struct ar_context *ctx)
636 {
637         unsigned int i;
638
639         if (ctx->buffer)
640                 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
641
642         for (i = 0; i < AR_BUFFERS; i++)
643                 if (ctx->pages[i]) {
644                         dma_unmap_page(ctx->ohci->card.device,
645                                        ar_buffer_bus(ctx, i),
646                                        PAGE_SIZE, DMA_FROM_DEVICE);
647                         __free_page(ctx->pages[i]);
648                 }
649 }
650
651 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
652 {
653         if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
654                 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
655                 flush_writes(ctx->ohci);
656
657                 fw_error("AR error: %s; DMA stopped\n", error_msg);
658         }
659         /* FIXME: restart? */
660 }
661
662 static inline unsigned int ar_next_buffer_index(unsigned int index)
663 {
664         return (index + 1) % AR_BUFFERS;
665 }
666
667 static inline unsigned int ar_prev_buffer_index(unsigned int index)
668 {
669         return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
670 }
671
672 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
673 {
674         return ar_next_buffer_index(ctx->last_buffer_index);
675 }
676
677 /*
678  * We search for the buffer that contains the last AR packet DMA data written
679  * by the controller.
680  */
681 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
682                                                  unsigned int *buffer_offset)
683 {
684         unsigned int i, next_i, last = ctx->last_buffer_index;
685         __le16 res_count, next_res_count;
686
687         i = ar_first_buffer_index(ctx);
688         res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
689
690         /* A buffer that is not yet completely filled must be the last one. */
691         while (i != last && res_count == 0) {
692
693                 /* Peek at the next descriptor. */
694                 next_i = ar_next_buffer_index(i);
695                 rmb(); /* read descriptors in order */
696                 next_res_count = ACCESS_ONCE(
697                                 ctx->descriptors[next_i].res_count);
698                 /*
699                  * If the next descriptor is still empty, we must stop at this
700                  * descriptor.
701                  */
702                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
703                         /*
704                          * The exception is when the DMA data for one packet is
705                          * split over three buffers; in this case, the middle
706                          * buffer's descriptor might be never updated by the
707                          * controller and look still empty, and we have to peek
708                          * at the third one.
709                          */
710                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
711                                 next_i = ar_next_buffer_index(next_i);
712                                 rmb();
713                                 next_res_count = ACCESS_ONCE(
714                                         ctx->descriptors[next_i].res_count);
715                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
716                                         goto next_buffer_is_active;
717                         }
718
719                         break;
720                 }
721
722 next_buffer_is_active:
723                 i = next_i;
724                 res_count = next_res_count;
725         }
726
727         rmb(); /* read res_count before the DMA data */
728
729         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
730         if (*buffer_offset > PAGE_SIZE) {
731                 *buffer_offset = 0;
732                 ar_context_abort(ctx, "corrupted descriptor");
733         }
734
735         return i;
736 }
737
738 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
739                                     unsigned int end_buffer_index,
740                                     unsigned int end_buffer_offset)
741 {
742         unsigned int i;
743
744         i = ar_first_buffer_index(ctx);
745         while (i != end_buffer_index) {
746                 dma_sync_single_for_cpu(ctx->ohci->card.device,
747                                         ar_buffer_bus(ctx, i),
748                                         PAGE_SIZE, DMA_FROM_DEVICE);
749                 i = ar_next_buffer_index(i);
750         }
751         if (end_buffer_offset > 0)
752                 dma_sync_single_for_cpu(ctx->ohci->card.device,
753                                         ar_buffer_bus(ctx, i),
754                                         end_buffer_offset, DMA_FROM_DEVICE);
755 }
756
757 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
758 #define cond_le32_to_cpu(v) \
759         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
760 #else
761 #define cond_le32_to_cpu(v) le32_to_cpu(v)
762 #endif
763
764 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
765 {
766         struct fw_ohci *ohci = ctx->ohci;
767         struct fw_packet p;
768         u32 status, length, tcode;
769         int evt;
770
771         p.header[0] = cond_le32_to_cpu(buffer[0]);
772         p.header[1] = cond_le32_to_cpu(buffer[1]);
773         p.header[2] = cond_le32_to_cpu(buffer[2]);
774
775         tcode = (p.header[0] >> 4) & 0x0f;
776         switch (tcode) {
777         case TCODE_WRITE_QUADLET_REQUEST:
778         case TCODE_READ_QUADLET_RESPONSE:
779                 p.header[3] = (__force __u32) buffer[3];
780                 p.header_length = 16;
781                 p.payload_length = 0;
782                 break;
783
784         case TCODE_READ_BLOCK_REQUEST :
785                 p.header[3] = cond_le32_to_cpu(buffer[3]);
786                 p.header_length = 16;
787                 p.payload_length = 0;
788                 break;
789
790         case TCODE_WRITE_BLOCK_REQUEST:
791         case TCODE_READ_BLOCK_RESPONSE:
792         case TCODE_LOCK_REQUEST:
793         case TCODE_LOCK_RESPONSE:
794                 p.header[3] = cond_le32_to_cpu(buffer[3]);
795                 p.header_length = 16;
796                 p.payload_length = p.header[3] >> 16;
797                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
798                         ar_context_abort(ctx, "invalid packet length");
799                         return NULL;
800                 }
801                 break;
802
803         case TCODE_WRITE_RESPONSE:
804         case TCODE_READ_QUADLET_REQUEST:
805         case OHCI_TCODE_PHY_PACKET:
806                 p.header_length = 12;
807                 p.payload_length = 0;
808                 break;
809
810         default:
811                 ar_context_abort(ctx, "invalid tcode");
812                 return NULL;
813         }
814
815         p.payload = (void *) buffer + p.header_length;
816
817         /* FIXME: What to do about evt_* errors? */
818         length = (p.header_length + p.payload_length + 3) / 4;
819         status = cond_le32_to_cpu(buffer[length]);
820         evt    = (status >> 16) & 0x1f;
821
822         p.ack        = evt - 16;
823         p.speed      = (status >> 21) & 0x7;
824         p.timestamp  = status & 0xffff;
825         p.generation = ohci->request_generation;
826
827         log_ar_at_event('R', p.speed, p.header, evt);
828
829         /*
830          * Several controllers, notably from NEC and VIA, forget to
831          * write ack_complete status at PHY packet reception.
832          */
833         if (evt == OHCI1394_evt_no_status &&
834             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
835                 p.ack = ACK_COMPLETE;
836
837         /*
838          * The OHCI bus reset handler synthesizes a PHY packet with
839          * the new generation number when a bus reset happens (see
840          * section 8.4.2.3).  This helps us determine when a request
841          * was received and make sure we send the response in the same
842          * generation.  We only need this for requests; for responses
843          * we use the unique tlabel for finding the matching
844          * request.
845          *
846          * Alas some chips sometimes emit bus reset packets with a
847          * wrong generation.  We set the correct generation for these
848          * at a slightly incorrect time (in bus_reset_tasklet).
849          */
850         if (evt == OHCI1394_evt_bus_reset) {
851                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
852                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
853         } else if (ctx == &ohci->ar_request_ctx) {
854                 fw_core_handle_request(&ohci->card, &p);
855         } else {
856                 fw_core_handle_response(&ohci->card, &p);
857         }
858
859         return buffer + length + 1;
860 }
861
862 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
863 {
864         void *next;
865
866         while (p < end) {
867                 next = handle_ar_packet(ctx, p);
868                 if (!next)
869                         return p;
870                 p = next;
871         }
872
873         return p;
874 }
875
876 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
877 {
878         unsigned int i;
879
880         i = ar_first_buffer_index(ctx);
881         while (i != end_buffer) {
882                 dma_sync_single_for_device(ctx->ohci->card.device,
883                                            ar_buffer_bus(ctx, i),
884                                            PAGE_SIZE, DMA_FROM_DEVICE);
885                 ar_context_link_page(ctx, i);
886                 i = ar_next_buffer_index(i);
887         }
888 }
889
890 static void ar_context_tasklet(unsigned long data)
891 {
892         struct ar_context *ctx = (struct ar_context *)data;
893         unsigned int end_buffer_index, end_buffer_offset;
894         void *p, *end;
895
896         p = ctx->pointer;
897         if (!p)
898                 return;
899
900         end_buffer_index = ar_search_last_active_buffer(ctx,
901                                                         &end_buffer_offset);
902         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
903         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
904
905         if (end_buffer_index < ar_first_buffer_index(ctx)) {
906                 /*
907                  * The filled part of the overall buffer wraps around; handle
908                  * all packets up to the buffer end here.  If the last packet
909                  * wraps around, its tail will be visible after the buffer end
910                  * because the buffer start pages are mapped there again.
911                  */
912                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
913                 p = handle_ar_packets(ctx, p, buffer_end);
914                 if (p < buffer_end)
915                         goto error;
916                 /* adjust p to point back into the actual buffer */
917                 p -= AR_BUFFERS * PAGE_SIZE;
918         }
919
920         p = handle_ar_packets(ctx, p, end);
921         if (p != end) {
922                 if (p > end)
923                         ar_context_abort(ctx, "inconsistent descriptor");
924                 goto error;
925         }
926
927         ctx->pointer = p;
928         ar_recycle_buffers(ctx, end_buffer_index);
929
930         return;
931
932 error:
933         ctx->pointer = NULL;
934 }
935
936 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
937                            unsigned int descriptors_offset, u32 regs)
938 {
939         unsigned int i;
940         dma_addr_t dma_addr;
941         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
942         struct descriptor *d;
943
944         ctx->regs        = regs;
945         ctx->ohci        = ohci;
946         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
947
948         for (i = 0; i < AR_BUFFERS; i++) {
949                 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
950                 if (!ctx->pages[i])
951                         goto out_of_memory;
952                 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
953                                         0, PAGE_SIZE, DMA_FROM_DEVICE);
954                 if (dma_mapping_error(ohci->card.device, dma_addr)) {
955                         __free_page(ctx->pages[i]);
956                         ctx->pages[i] = NULL;
957                         goto out_of_memory;
958                 }
959                 set_page_private(ctx->pages[i], dma_addr);
960         }
961
962         for (i = 0; i < AR_BUFFERS; i++)
963                 pages[i]              = ctx->pages[i];
964         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
965                 pages[AR_BUFFERS + i] = ctx->pages[i];
966         ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
967                                  -1, PAGE_KERNEL);
968         if (!ctx->buffer)
969                 goto out_of_memory;
970
971         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
972         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
973
974         for (i = 0; i < AR_BUFFERS; i++) {
975                 d = &ctx->descriptors[i];
976                 d->req_count      = cpu_to_le16(PAGE_SIZE);
977                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
978                                                 DESCRIPTOR_STATUS |
979                                                 DESCRIPTOR_BRANCH_ALWAYS);
980                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
981                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
982                         ar_next_buffer_index(i) * sizeof(struct descriptor));
983         }
984
985         return 0;
986
987 out_of_memory:
988         ar_context_release(ctx);
989
990         return -ENOMEM;
991 }
992
993 static void ar_context_run(struct ar_context *ctx)
994 {
995         unsigned int i;
996
997         for (i = 0; i < AR_BUFFERS; i++)
998                 ar_context_link_page(ctx, i);
999
1000         ctx->pointer = ctx->buffer;
1001
1002         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1003         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1004         flush_writes(ctx->ohci);
1005 }
1006
1007 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1008 {
1009         __le16 branch;
1010
1011         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1012
1013         /* figure out which descriptor the branch address goes in */
1014         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1015                 return d;
1016         else
1017                 return d + z - 1;
1018 }
1019
1020 static void context_tasklet(unsigned long data)
1021 {
1022         struct context *ctx = (struct context *) data;
1023         struct descriptor *d, *last;
1024         u32 address;
1025         int z;
1026         struct descriptor_buffer *desc;
1027
1028         desc = list_entry(ctx->buffer_list.next,
1029                         struct descriptor_buffer, list);
1030         last = ctx->last;
1031         while (last->branch_address != 0) {
1032                 struct descriptor_buffer *old_desc = desc;
1033                 address = le32_to_cpu(last->branch_address);
1034                 z = address & 0xf;
1035                 address &= ~0xf;
1036
1037                 /* If the branch address points to a buffer outside of the
1038                  * current buffer, advance to the next buffer. */
1039                 if (address < desc->buffer_bus ||
1040                                 address >= desc->buffer_bus + desc->used)
1041                         desc = list_entry(desc->list.next,
1042                                         struct descriptor_buffer, list);
1043                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1044                 last = find_branch_descriptor(d, z);
1045
1046                 if (!ctx->callback(ctx, d, last))
1047                         break;
1048
1049                 if (old_desc != desc) {
1050                         /* If we've advanced to the next buffer, move the
1051                          * previous buffer to the free list. */
1052                         unsigned long flags;
1053                         old_desc->used = 0;
1054                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1055                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1056                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1057                 }
1058                 ctx->last = last;
1059         }
1060 }
1061
1062 /*
1063  * Allocate a new buffer and add it to the list of free buffers for this
1064  * context.  Must be called with ohci->lock held.
1065  */
1066 static int context_add_buffer(struct context *ctx)
1067 {
1068         struct descriptor_buffer *desc;
1069         dma_addr_t uninitialized_var(bus_addr);
1070         int offset;
1071
1072         /*
1073          * 16MB of descriptors should be far more than enough for any DMA
1074          * program.  This will catch run-away userspace or DoS attacks.
1075          */
1076         if (ctx->total_allocation >= 16*1024*1024)
1077                 return -ENOMEM;
1078
1079         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1080                         &bus_addr, GFP_ATOMIC);
1081         if (!desc)
1082                 return -ENOMEM;
1083
1084         offset = (void *)&desc->buffer - (void *)desc;
1085         desc->buffer_size = PAGE_SIZE - offset;
1086         desc->buffer_bus = bus_addr + offset;
1087         desc->used = 0;
1088
1089         list_add_tail(&desc->list, &ctx->buffer_list);
1090         ctx->total_allocation += PAGE_SIZE;
1091
1092         return 0;
1093 }
1094
1095 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1096                         u32 regs, descriptor_callback_t callback)
1097 {
1098         ctx->ohci = ohci;
1099         ctx->regs = regs;
1100         ctx->total_allocation = 0;
1101
1102         INIT_LIST_HEAD(&ctx->buffer_list);
1103         if (context_add_buffer(ctx) < 0)
1104                 return -ENOMEM;
1105
1106         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1107                         struct descriptor_buffer, list);
1108
1109         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1110         ctx->callback = callback;
1111
1112         /*
1113          * We put a dummy descriptor in the buffer that has a NULL
1114          * branch address and looks like it's been sent.  That way we
1115          * have a descriptor to append DMA programs to.
1116          */
1117         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1118         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1119         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1120         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1121         ctx->last = ctx->buffer_tail->buffer;
1122         ctx->prev = ctx->buffer_tail->buffer;
1123
1124         return 0;
1125 }
1126
1127 static void context_release(struct context *ctx)
1128 {
1129         struct fw_card *card = &ctx->ohci->card;
1130         struct descriptor_buffer *desc, *tmp;
1131
1132         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1133                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1134                         desc->buffer_bus -
1135                         ((void *)&desc->buffer - (void *)desc));
1136 }
1137
1138 /* Must be called with ohci->lock held */
1139 static struct descriptor *context_get_descriptors(struct context *ctx,
1140                                                   int z, dma_addr_t *d_bus)
1141 {
1142         struct descriptor *d = NULL;
1143         struct descriptor_buffer *desc = ctx->buffer_tail;
1144
1145         if (z * sizeof(*d) > desc->buffer_size)
1146                 return NULL;
1147
1148         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1149                 /* No room for the descriptor in this buffer, so advance to the
1150                  * next one. */
1151
1152                 if (desc->list.next == &ctx->buffer_list) {
1153                         /* If there is no free buffer next in the list,
1154                          * allocate one. */
1155                         if (context_add_buffer(ctx) < 0)
1156                                 return NULL;
1157                 }
1158                 desc = list_entry(desc->list.next,
1159                                 struct descriptor_buffer, list);
1160                 ctx->buffer_tail = desc;
1161         }
1162
1163         d = desc->buffer + desc->used / sizeof(*d);
1164         memset(d, 0, z * sizeof(*d));
1165         *d_bus = desc->buffer_bus + desc->used;
1166
1167         return d;
1168 }
1169
1170 static void context_run(struct context *ctx, u32 extra)
1171 {
1172         struct fw_ohci *ohci = ctx->ohci;
1173
1174         reg_write(ohci, COMMAND_PTR(ctx->regs),
1175                   le32_to_cpu(ctx->last->branch_address));
1176         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1177         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1178         ctx->running = true;
1179         flush_writes(ohci);
1180 }
1181
1182 static void context_append(struct context *ctx,
1183                            struct descriptor *d, int z, int extra)
1184 {
1185         dma_addr_t d_bus;
1186         struct descriptor_buffer *desc = ctx->buffer_tail;
1187
1188         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1189
1190         desc->used += (z + extra) * sizeof(*d);
1191
1192         wmb(); /* finish init of new descriptors before branch_address update */
1193         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1194         ctx->prev = find_branch_descriptor(d, z);
1195
1196         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1197         flush_writes(ctx->ohci);
1198 }
1199
1200 static void context_stop(struct context *ctx)
1201 {
1202         u32 reg;
1203         int i;
1204
1205         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1206         ctx->running = false;
1207         flush_writes(ctx->ohci);
1208
1209         for (i = 0; i < 10; i++) {
1210                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1211                 if ((reg & CONTEXT_ACTIVE) == 0)
1212                         return;
1213
1214                 mdelay(1);
1215         }
1216         fw_error("Error: DMA context still active (0x%08x)\n", reg);
1217 }
1218
1219 struct driver_data {
1220         u8 inline_data[8];
1221         struct fw_packet *packet;
1222 };
1223
1224 /*
1225  * This function apppends a packet to the DMA queue for transmission.
1226  * Must always be called with the ochi->lock held to ensure proper
1227  * generation handling and locking around packet queue manipulation.
1228  */
1229 static int at_context_queue_packet(struct context *ctx,
1230                                    struct fw_packet *packet)
1231 {
1232         struct fw_ohci *ohci = ctx->ohci;
1233         dma_addr_t d_bus, uninitialized_var(payload_bus);
1234         struct driver_data *driver_data;
1235         struct descriptor *d, *last;
1236         __le32 *header;
1237         int z, tcode;
1238
1239         d = context_get_descriptors(ctx, 4, &d_bus);
1240         if (d == NULL) {
1241                 packet->ack = RCODE_SEND_ERROR;
1242                 return -1;
1243         }
1244
1245         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1246         d[0].res_count = cpu_to_le16(packet->timestamp);
1247
1248         /*
1249          * The DMA format for asyncronous link packets is different
1250          * from the IEEE1394 layout, so shift the fields around
1251          * accordingly.
1252          */
1253
1254         tcode = (packet->header[0] >> 4) & 0x0f;
1255         header = (__le32 *) &d[1];
1256         switch (tcode) {
1257         case TCODE_WRITE_QUADLET_REQUEST:
1258         case TCODE_WRITE_BLOCK_REQUEST:
1259         case TCODE_WRITE_RESPONSE:
1260         case TCODE_READ_QUADLET_REQUEST:
1261         case TCODE_READ_BLOCK_REQUEST:
1262         case TCODE_READ_QUADLET_RESPONSE:
1263         case TCODE_READ_BLOCK_RESPONSE:
1264         case TCODE_LOCK_REQUEST:
1265         case TCODE_LOCK_RESPONSE:
1266                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1267                                         (packet->speed << 16));
1268                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1269                                         (packet->header[0] & 0xffff0000));
1270                 header[2] = cpu_to_le32(packet->header[2]);
1271
1272                 if (TCODE_IS_BLOCK_PACKET(tcode))
1273                         header[3] = cpu_to_le32(packet->header[3]);
1274                 else
1275                         header[3] = (__force __le32) packet->header[3];
1276
1277                 d[0].req_count = cpu_to_le16(packet->header_length);
1278                 break;
1279
1280         case TCODE_LINK_INTERNAL:
1281                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1282                                         (packet->speed << 16));
1283                 header[1] = cpu_to_le32(packet->header[1]);
1284                 header[2] = cpu_to_le32(packet->header[2]);
1285                 d[0].req_count = cpu_to_le16(12);
1286
1287                 if (is_ping_packet(&packet->header[1]))
1288                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1289                 break;
1290
1291         case TCODE_STREAM_DATA:
1292                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1293                                         (packet->speed << 16));
1294                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1295                 d[0].req_count = cpu_to_le16(8);
1296                 break;
1297
1298         default:
1299                 /* BUG(); */
1300                 packet->ack = RCODE_SEND_ERROR;
1301                 return -1;
1302         }
1303
1304         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1305         driver_data = (struct driver_data *) &d[3];
1306         driver_data->packet = packet;
1307         packet->driver_data = driver_data;
1308
1309         if (packet->payload_length > 0) {
1310                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1311                         payload_bus = dma_map_single(ohci->card.device,
1312                                                      packet->payload,
1313                                                      packet->payload_length,
1314                                                      DMA_TO_DEVICE);
1315                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1316                                 packet->ack = RCODE_SEND_ERROR;
1317                                 return -1;
1318                         }
1319                         packet->payload_bus     = payload_bus;
1320                         packet->payload_mapped  = true;
1321                 } else {
1322                         memcpy(driver_data->inline_data, packet->payload,
1323                                packet->payload_length);
1324                         payload_bus = d_bus + 3 * sizeof(*d);
1325                 }
1326
1327                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1328                 d[2].data_address = cpu_to_le32(payload_bus);
1329                 last = &d[2];
1330                 z = 3;
1331         } else {
1332                 last = &d[0];
1333                 z = 2;
1334         }
1335
1336         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1337                                      DESCRIPTOR_IRQ_ALWAYS |
1338                                      DESCRIPTOR_BRANCH_ALWAYS);
1339
1340         /* FIXME: Document how the locking works. */
1341         if (ohci->generation != packet->generation) {
1342                 if (packet->payload_mapped)
1343                         dma_unmap_single(ohci->card.device, payload_bus,
1344                                          packet->payload_length, DMA_TO_DEVICE);
1345                 packet->ack = RCODE_GENERATION;
1346                 return -1;
1347         }
1348
1349         context_append(ctx, d, z, 4 - z);
1350
1351         if (!ctx->running)
1352                 context_run(ctx, 0);
1353
1354         return 0;
1355 }
1356
1357 static void at_context_flush(struct context *ctx)
1358 {
1359         tasklet_disable(&ctx->tasklet);
1360
1361         ctx->flushing = true;
1362         context_tasklet((unsigned long)ctx);
1363         ctx->flushing = false;
1364
1365         tasklet_enable(&ctx->tasklet);
1366 }
1367
1368 static int handle_at_packet(struct context *context,
1369                             struct descriptor *d,
1370                             struct descriptor *last)
1371 {
1372         struct driver_data *driver_data;
1373         struct fw_packet *packet;
1374         struct fw_ohci *ohci = context->ohci;
1375         int evt;
1376
1377         if (last->transfer_status == 0 && !context->flushing)
1378                 /* This descriptor isn't done yet, stop iteration. */
1379                 return 0;
1380
1381         driver_data = (struct driver_data *) &d[3];
1382         packet = driver_data->packet;
1383         if (packet == NULL)
1384                 /* This packet was cancelled, just continue. */
1385                 return 1;
1386
1387         if (packet->payload_mapped)
1388                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1389                                  packet->payload_length, DMA_TO_DEVICE);
1390
1391         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1392         packet->timestamp = le16_to_cpu(last->res_count);
1393
1394         log_ar_at_event('T', packet->speed, packet->header, evt);
1395
1396         switch (evt) {
1397         case OHCI1394_evt_timeout:
1398                 /* Async response transmit timed out. */
1399                 packet->ack = RCODE_CANCELLED;
1400                 break;
1401
1402         case OHCI1394_evt_flushed:
1403                 /*
1404                  * The packet was flushed should give same error as
1405                  * when we try to use a stale generation count.
1406                  */
1407                 packet->ack = RCODE_GENERATION;
1408                 break;
1409
1410         case OHCI1394_evt_missing_ack:
1411                 if (context->flushing)
1412                         packet->ack = RCODE_GENERATION;
1413                 else {
1414                         /*
1415                          * Using a valid (current) generation count, but the
1416                          * node is not on the bus or not sending acks.
1417                          */
1418                         packet->ack = RCODE_NO_ACK;
1419                 }
1420                 break;
1421
1422         case ACK_COMPLETE + 0x10:
1423         case ACK_PENDING + 0x10:
1424         case ACK_BUSY_X + 0x10:
1425         case ACK_BUSY_A + 0x10:
1426         case ACK_BUSY_B + 0x10:
1427         case ACK_DATA_ERROR + 0x10:
1428         case ACK_TYPE_ERROR + 0x10:
1429                 packet->ack = evt - 0x10;
1430                 break;
1431
1432         case OHCI1394_evt_no_status:
1433                 if (context->flushing) {
1434                         packet->ack = RCODE_GENERATION;
1435                         break;
1436                 }
1437                 /* fall through */
1438
1439         default:
1440                 packet->ack = RCODE_SEND_ERROR;
1441                 break;
1442         }
1443
1444         packet->callback(packet, &ohci->card, packet->ack);
1445
1446         return 1;
1447 }
1448
1449 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1450 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1451 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1452 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1453 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1454
1455 static void handle_local_rom(struct fw_ohci *ohci,
1456                              struct fw_packet *packet, u32 csr)
1457 {
1458         struct fw_packet response;
1459         int tcode, length, i;
1460
1461         tcode = HEADER_GET_TCODE(packet->header[0]);
1462         if (TCODE_IS_BLOCK_PACKET(tcode))
1463                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1464         else
1465                 length = 4;
1466
1467         i = csr - CSR_CONFIG_ROM;
1468         if (i + length > CONFIG_ROM_SIZE) {
1469                 fw_fill_response(&response, packet->header,
1470                                  RCODE_ADDRESS_ERROR, NULL, 0);
1471         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1472                 fw_fill_response(&response, packet->header,
1473                                  RCODE_TYPE_ERROR, NULL, 0);
1474         } else {
1475                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1476                                  (void *) ohci->config_rom + i, length);
1477         }
1478
1479         fw_core_handle_response(&ohci->card, &response);
1480 }
1481
1482 static void handle_local_lock(struct fw_ohci *ohci,
1483                               struct fw_packet *packet, u32 csr)
1484 {
1485         struct fw_packet response;
1486         int tcode, length, ext_tcode, sel, try;
1487         __be32 *payload, lock_old;
1488         u32 lock_arg, lock_data;
1489
1490         tcode = HEADER_GET_TCODE(packet->header[0]);
1491         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1492         payload = packet->payload;
1493         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1494
1495         if (tcode == TCODE_LOCK_REQUEST &&
1496             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1497                 lock_arg = be32_to_cpu(payload[0]);
1498                 lock_data = be32_to_cpu(payload[1]);
1499         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1500                 lock_arg = 0;
1501                 lock_data = 0;
1502         } else {
1503                 fw_fill_response(&response, packet->header,
1504                                  RCODE_TYPE_ERROR, NULL, 0);
1505                 goto out;
1506         }
1507
1508         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1509         reg_write(ohci, OHCI1394_CSRData, lock_data);
1510         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1511         reg_write(ohci, OHCI1394_CSRControl, sel);
1512
1513         for (try = 0; try < 20; try++)
1514                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1515                         lock_old = cpu_to_be32(reg_read(ohci,
1516                                                         OHCI1394_CSRData));
1517                         fw_fill_response(&response, packet->header,
1518                                          RCODE_COMPLETE,
1519                                          &lock_old, sizeof(lock_old));
1520                         goto out;
1521                 }
1522
1523         fw_error("swap not done (CSR lock timeout)\n");
1524         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1525
1526  out:
1527         fw_core_handle_response(&ohci->card, &response);
1528 }
1529
1530 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1531 {
1532         u64 offset, csr;
1533
1534         if (ctx == &ctx->ohci->at_request_ctx) {
1535                 packet->ack = ACK_PENDING;
1536                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1537         }
1538
1539         offset =
1540                 ((unsigned long long)
1541                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1542                 packet->header[2];
1543         csr = offset - CSR_REGISTER_BASE;
1544
1545         /* Handle config rom reads. */
1546         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1547                 handle_local_rom(ctx->ohci, packet, csr);
1548         else switch (csr) {
1549         case CSR_BUS_MANAGER_ID:
1550         case CSR_BANDWIDTH_AVAILABLE:
1551         case CSR_CHANNELS_AVAILABLE_HI:
1552         case CSR_CHANNELS_AVAILABLE_LO:
1553                 handle_local_lock(ctx->ohci, packet, csr);
1554                 break;
1555         default:
1556                 if (ctx == &ctx->ohci->at_request_ctx)
1557                         fw_core_handle_request(&ctx->ohci->card, packet);
1558                 else
1559                         fw_core_handle_response(&ctx->ohci->card, packet);
1560                 break;
1561         }
1562
1563         if (ctx == &ctx->ohci->at_response_ctx) {
1564                 packet->ack = ACK_COMPLETE;
1565                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1566         }
1567 }
1568
1569 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1570 {
1571         unsigned long flags;
1572         int ret;
1573
1574         spin_lock_irqsave(&ctx->ohci->lock, flags);
1575
1576         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1577             ctx->ohci->generation == packet->generation) {
1578                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1579                 handle_local_request(ctx, packet);
1580                 return;
1581         }
1582
1583         ret = at_context_queue_packet(ctx, packet);
1584         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1585
1586         if (ret < 0)
1587                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1588
1589 }
1590
1591 static void detect_dead_context(struct fw_ohci *ohci,
1592                                 const char *name, unsigned int regs)
1593 {
1594         u32 ctl;
1595
1596         ctl = reg_read(ohci, CONTROL_SET(regs));
1597         if (ctl & CONTEXT_DEAD) {
1598 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1599                 fw_error("DMA context %s has stopped, error code: %s\n",
1600                          name, evts[ctl & 0x1f]);
1601 #else
1602                 fw_error("DMA context %s has stopped, error code: %#x\n",
1603                          name, ctl & 0x1f);
1604 #endif
1605         }
1606 }
1607
1608 static void handle_dead_contexts(struct fw_ohci *ohci)
1609 {
1610         unsigned int i;
1611         char name[8];
1612
1613         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1614         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1615         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1616         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1617         for (i = 0; i < 32; ++i) {
1618                 if (!(ohci->it_context_support & (1 << i)))
1619                         continue;
1620                 sprintf(name, "IT%u", i);
1621                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1622         }
1623         for (i = 0; i < 32; ++i) {
1624                 if (!(ohci->ir_context_support & (1 << i)))
1625                         continue;
1626                 sprintf(name, "IR%u", i);
1627                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1628         }
1629         /* TODO: maybe try to flush and restart the dead contexts */
1630 }
1631
1632 static u32 cycle_timer_ticks(u32 cycle_timer)
1633 {
1634         u32 ticks;
1635
1636         ticks = cycle_timer & 0xfff;
1637         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1638         ticks += (3072 * 8000) * (cycle_timer >> 25);
1639
1640         return ticks;
1641 }
1642
1643 /*
1644  * Some controllers exhibit one or more of the following bugs when updating the
1645  * iso cycle timer register:
1646  *  - When the lowest six bits are wrapping around to zero, a read that happens
1647  *    at the same time will return garbage in the lowest ten bits.
1648  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1649  *    not incremented for about 60 ns.
1650  *  - Occasionally, the entire register reads zero.
1651  *
1652  * To catch these, we read the register three times and ensure that the
1653  * difference between each two consecutive reads is approximately the same, i.e.
1654  * less than twice the other.  Furthermore, any negative difference indicates an
1655  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1656  * execute, so we have enough precision to compute the ratio of the differences.)
1657  */
1658 static u32 get_cycle_time(struct fw_ohci *ohci)
1659 {
1660         u32 c0, c1, c2;
1661         u32 t0, t1, t2;
1662         s32 diff01, diff12;
1663         int i;
1664
1665         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1666
1667         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1668                 i = 0;
1669                 c1 = c2;
1670                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1671                 do {
1672                         c0 = c1;
1673                         c1 = c2;
1674                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1675                         t0 = cycle_timer_ticks(c0);
1676                         t1 = cycle_timer_ticks(c1);
1677                         t2 = cycle_timer_ticks(c2);
1678                         diff01 = t1 - t0;
1679                         diff12 = t2 - t1;
1680                 } while ((diff01 <= 0 || diff12 <= 0 ||
1681                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1682                          && i++ < 20);
1683         }
1684
1685         return c2;
1686 }
1687
1688 /*
1689  * This function has to be called at least every 64 seconds.  The bus_time
1690  * field stores not only the upper 25 bits of the BUS_TIME register but also
1691  * the most significant bit of the cycle timer in bit 6 so that we can detect
1692  * changes in this bit.
1693  */
1694 static u32 update_bus_time(struct fw_ohci *ohci)
1695 {
1696         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1697
1698         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1699                 ohci->bus_time += 0x40;
1700
1701         return ohci->bus_time | cycle_time_seconds;
1702 }
1703
1704 static void bus_reset_tasklet(unsigned long data)
1705 {
1706         struct fw_ohci *ohci = (struct fw_ohci *)data;
1707         int self_id_count, i, j, reg;
1708         int generation, new_generation;
1709         unsigned long flags;
1710         void *free_rom = NULL;
1711         dma_addr_t free_rom_bus = 0;
1712         bool is_new_root;
1713
1714         reg = reg_read(ohci, OHCI1394_NodeID);
1715         if (!(reg & OHCI1394_NodeID_idValid)) {
1716                 fw_notify("node ID not valid, new bus reset in progress\n");
1717                 return;
1718         }
1719         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1720                 fw_notify("malconfigured bus\n");
1721                 return;
1722         }
1723         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1724                                OHCI1394_NodeID_nodeNumber);
1725
1726         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1727         if (!(ohci->is_root && is_new_root))
1728                 reg_write(ohci, OHCI1394_LinkControlSet,
1729                           OHCI1394_LinkControl_cycleMaster);
1730         ohci->is_root = is_new_root;
1731
1732         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1733         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1734                 fw_notify("inconsistent self IDs\n");
1735                 return;
1736         }
1737         /*
1738          * The count in the SelfIDCount register is the number of
1739          * bytes in the self ID receive buffer.  Since we also receive
1740          * the inverted quadlets and a header quadlet, we shift one
1741          * bit extra to get the actual number of self IDs.
1742          */
1743         self_id_count = (reg >> 3) & 0xff;
1744         if (self_id_count == 0 || self_id_count > 252) {
1745                 fw_notify("inconsistent self IDs\n");
1746                 return;
1747         }
1748         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1749         rmb();
1750
1751         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1752                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1753                         fw_notify("inconsistent self IDs\n");
1754                         return;
1755                 }
1756                 ohci->self_id_buffer[j] =
1757                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1758         }
1759         rmb();
1760
1761         /*
1762          * Check the consistency of the self IDs we just read.  The
1763          * problem we face is that a new bus reset can start while we
1764          * read out the self IDs from the DMA buffer. If this happens,
1765          * the DMA buffer will be overwritten with new self IDs and we
1766          * will read out inconsistent data.  The OHCI specification
1767          * (section 11.2) recommends a technique similar to
1768          * linux/seqlock.h, where we remember the generation of the
1769          * self IDs in the buffer before reading them out and compare
1770          * it to the current generation after reading them out.  If
1771          * the two generations match we know we have a consistent set
1772          * of self IDs.
1773          */
1774
1775         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1776         if (new_generation != generation) {
1777                 fw_notify("recursive bus reset detected, "
1778                           "discarding self ids\n");
1779                 return;
1780         }
1781
1782         /* FIXME: Document how the locking works. */
1783         spin_lock_irqsave(&ohci->lock, flags);
1784
1785         ohci->generation = -1; /* prevent AT packet queueing */
1786         context_stop(&ohci->at_request_ctx);
1787         context_stop(&ohci->at_response_ctx);
1788
1789         spin_unlock_irqrestore(&ohci->lock, flags);
1790
1791         /*
1792          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1793          * packets in the AT queues and software needs to drain them.
1794          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1795          */
1796         at_context_flush(&ohci->at_request_ctx);
1797         at_context_flush(&ohci->at_response_ctx);
1798
1799         spin_lock_irqsave(&ohci->lock, flags);
1800
1801         ohci->generation = generation;
1802         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1803
1804         if (ohci->quirks & QUIRK_RESET_PACKET)
1805                 ohci->request_generation = generation;
1806
1807         /*
1808          * This next bit is unrelated to the AT context stuff but we
1809          * have to do it under the spinlock also.  If a new config rom
1810          * was set up before this reset, the old one is now no longer
1811          * in use and we can free it. Update the config rom pointers
1812          * to point to the current config rom and clear the
1813          * next_config_rom pointer so a new update can take place.
1814          */
1815
1816         if (ohci->next_config_rom != NULL) {
1817                 if (ohci->next_config_rom != ohci->config_rom) {
1818                         free_rom      = ohci->config_rom;
1819                         free_rom_bus  = ohci->config_rom_bus;
1820                 }
1821                 ohci->config_rom      = ohci->next_config_rom;
1822                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1823                 ohci->next_config_rom = NULL;
1824
1825                 /*
1826                  * Restore config_rom image and manually update
1827                  * config_rom registers.  Writing the header quadlet
1828                  * will indicate that the config rom is ready, so we
1829                  * do that last.
1830                  */
1831                 reg_write(ohci, OHCI1394_BusOptions,
1832                           be32_to_cpu(ohci->config_rom[2]));
1833                 ohci->config_rom[0] = ohci->next_header;
1834                 reg_write(ohci, OHCI1394_ConfigROMhdr,
1835                           be32_to_cpu(ohci->next_header));
1836         }
1837
1838 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1839         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1840         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1841 #endif
1842
1843         spin_unlock_irqrestore(&ohci->lock, flags);
1844
1845         if (free_rom)
1846                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1847                                   free_rom, free_rom_bus);
1848
1849         log_selfids(ohci->node_id, generation,
1850                     self_id_count, ohci->self_id_buffer);
1851
1852         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1853                                  self_id_count, ohci->self_id_buffer,
1854                                  ohci->csr_state_setclear_abdicate);
1855         ohci->csr_state_setclear_abdicate = false;
1856 }
1857
1858 static irqreturn_t irq_handler(int irq, void *data)
1859 {
1860         struct fw_ohci *ohci = data;
1861         u32 event, iso_event;
1862         int i;
1863
1864         event = reg_read(ohci, OHCI1394_IntEventClear);
1865
1866         if (!event || !~event)
1867                 return IRQ_NONE;
1868
1869         /*
1870          * busReset and postedWriteErr must not be cleared yet
1871          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1872          */
1873         reg_write(ohci, OHCI1394_IntEventClear,
1874                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1875         log_irqs(event);
1876
1877         if (event & OHCI1394_selfIDComplete)
1878                 tasklet_schedule(&ohci->bus_reset_tasklet);
1879
1880         if (event & OHCI1394_RQPkt)
1881                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1882
1883         if (event & OHCI1394_RSPkt)
1884                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1885
1886         if (event & OHCI1394_reqTxComplete)
1887                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1888
1889         if (event & OHCI1394_respTxComplete)
1890                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1891
1892         if (event & OHCI1394_isochRx) {
1893                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1894                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1895
1896                 while (iso_event) {
1897                         i = ffs(iso_event) - 1;
1898                         tasklet_schedule(
1899                                 &ohci->ir_context_list[i].context.tasklet);
1900                         iso_event &= ~(1 << i);
1901                 }
1902         }
1903
1904         if (event & OHCI1394_isochTx) {
1905                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1906                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1907
1908                 while (iso_event) {
1909                         i = ffs(iso_event) - 1;
1910                         tasklet_schedule(
1911                                 &ohci->it_context_list[i].context.tasklet);
1912                         iso_event &= ~(1 << i);
1913                 }
1914         }
1915
1916         if (unlikely(event & OHCI1394_regAccessFail))
1917                 fw_error("Register access failure - "
1918                          "please notify linux1394-devel@lists.sf.net\n");
1919
1920         if (unlikely(event & OHCI1394_postedWriteErr)) {
1921                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1922                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1923                 reg_write(ohci, OHCI1394_IntEventClear,
1924                           OHCI1394_postedWriteErr);
1925                 fw_error("PCI posted write error\n");
1926         }
1927
1928         if (unlikely(event & OHCI1394_cycleTooLong)) {
1929                 if (printk_ratelimit())
1930                         fw_notify("isochronous cycle too long\n");
1931                 reg_write(ohci, OHCI1394_LinkControlSet,
1932                           OHCI1394_LinkControl_cycleMaster);
1933         }
1934
1935         if (unlikely(event & OHCI1394_cycleInconsistent)) {
1936                 /*
1937                  * We need to clear this event bit in order to make
1938                  * cycleMatch isochronous I/O work.  In theory we should
1939                  * stop active cycleMatch iso contexts now and restart
1940                  * them at least two cycles later.  (FIXME?)
1941                  */
1942                 if (printk_ratelimit())
1943                         fw_notify("isochronous cycle inconsistent\n");
1944         }
1945
1946         if (unlikely(event & OHCI1394_unrecoverableError))
1947                 handle_dead_contexts(ohci);
1948
1949         if (event & OHCI1394_cycle64Seconds) {
1950                 spin_lock(&ohci->lock);
1951                 update_bus_time(ohci);
1952                 spin_unlock(&ohci->lock);
1953         } else
1954                 flush_writes(ohci);
1955
1956         return IRQ_HANDLED;
1957 }
1958
1959 static int software_reset(struct fw_ohci *ohci)
1960 {
1961         int i;
1962
1963         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1964
1965         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1966                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1967                      OHCI1394_HCControl_softReset) == 0)
1968                         return 0;
1969                 msleep(1);
1970         }
1971
1972         return -EBUSY;
1973 }
1974
1975 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1976 {
1977         size_t size = length * 4;
1978
1979         memcpy(dest, src, size);
1980         if (size < CONFIG_ROM_SIZE)
1981                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1982 }
1983
1984 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1985 {
1986         bool enable_1394a;
1987         int ret, clear, set, offset;
1988
1989         /* Check if the driver should configure link and PHY. */
1990         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1991               OHCI1394_HCControl_programPhyEnable))
1992                 return 0;
1993
1994         /* Paranoia: check whether the PHY supports 1394a, too. */
1995         enable_1394a = false;
1996         ret = read_phy_reg(ohci, 2);
1997         if (ret < 0)
1998                 return ret;
1999         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2000                 ret = read_paged_phy_reg(ohci, 1, 8);
2001                 if (ret < 0)
2002                         return ret;
2003                 if (ret >= 1)
2004                         enable_1394a = true;
2005         }
2006
2007         if (ohci->quirks & QUIRK_NO_1394A)
2008                 enable_1394a = false;
2009
2010         /* Configure PHY and link consistently. */
2011         if (enable_1394a) {
2012                 clear = 0;
2013                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2014         } else {
2015                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2016                 set = 0;
2017         }
2018         ret = update_phy_reg(ohci, 5, clear, set);
2019         if (ret < 0)
2020                 return ret;
2021
2022         if (enable_1394a)
2023                 offset = OHCI1394_HCControlSet;
2024         else
2025                 offset = OHCI1394_HCControlClear;
2026         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2027
2028         /* Clean up: configuration has been taken care of. */
2029         reg_write(ohci, OHCI1394_HCControlClear,
2030                   OHCI1394_HCControl_programPhyEnable);
2031
2032         return 0;
2033 }
2034
2035 static int ohci_enable(struct fw_card *card,
2036                        const __be32 *config_rom, size_t length)
2037 {
2038         struct fw_ohci *ohci = fw_ohci(card);
2039         struct pci_dev *dev = to_pci_dev(card->device);
2040         u32 lps, seconds, version, irqs;
2041         int i, ret;
2042
2043         if (software_reset(ohci)) {
2044                 fw_error("Failed to reset ohci card.\n");
2045                 return -EBUSY;
2046         }
2047
2048         /*
2049          * Now enable LPS, which we need in order to start accessing
2050          * most of the registers.  In fact, on some cards (ALI M5251),
2051          * accessing registers in the SClk domain without LPS enabled
2052          * will lock up the machine.  Wait 50msec to make sure we have
2053          * full link enabled.  However, with some cards (well, at least
2054          * a JMicron PCIe card), we have to try again sometimes.
2055          */
2056         reg_write(ohci, OHCI1394_HCControlSet,
2057                   OHCI1394_HCControl_LPS |
2058                   OHCI1394_HCControl_postedWriteEnable);
2059         flush_writes(ohci);
2060
2061         for (lps = 0, i = 0; !lps && i < 3; i++) {
2062                 msleep(50);
2063                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2064                       OHCI1394_HCControl_LPS;
2065         }
2066
2067         if (!lps) {
2068                 fw_error("Failed to set Link Power Status\n");
2069                 return -EIO;
2070         }
2071
2072         reg_write(ohci, OHCI1394_HCControlClear,
2073                   OHCI1394_HCControl_noByteSwapData);
2074
2075         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2076         reg_write(ohci, OHCI1394_LinkControlSet,
2077                   OHCI1394_LinkControl_cycleTimerEnable |
2078                   OHCI1394_LinkControl_cycleMaster);
2079
2080         reg_write(ohci, OHCI1394_ATRetries,
2081                   OHCI1394_MAX_AT_REQ_RETRIES |
2082                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2083                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2084                   (200 << 16));
2085
2086         seconds = lower_32_bits(get_seconds());
2087         reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2088         ohci->bus_time = seconds & ~0x3f;
2089
2090         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2091         if (version >= OHCI_VERSION_1_1) {
2092                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2093                           0xfffffffe);
2094                 card->broadcast_channel_auto_allocated = true;
2095         }
2096
2097         /* Get implemented bits of the priority arbitration request counter. */
2098         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2099         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2100         reg_write(ohci, OHCI1394_FairnessControl, 0);
2101         card->priority_budget_implemented = ohci->pri_req_max != 0;
2102
2103         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2104         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2105         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2106
2107         ret = configure_1394a_enhancements(ohci);
2108         if (ret < 0)
2109                 return ret;
2110
2111         /* Activate link_on bit and contender bit in our self ID packets.*/
2112         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2113         if (ret < 0)
2114                 return ret;
2115
2116         /*
2117          * When the link is not yet enabled, the atomic config rom
2118          * update mechanism described below in ohci_set_config_rom()
2119          * is not active.  We have to update ConfigRomHeader and
2120          * BusOptions manually, and the write to ConfigROMmap takes
2121          * effect immediately.  We tie this to the enabling of the
2122          * link, so we have a valid config rom before enabling - the
2123          * OHCI requires that ConfigROMhdr and BusOptions have valid
2124          * values before enabling.
2125          *
2126          * However, when the ConfigROMmap is written, some controllers
2127          * always read back quadlets 0 and 2 from the config rom to
2128          * the ConfigRomHeader and BusOptions registers on bus reset.
2129          * They shouldn't do that in this initial case where the link
2130          * isn't enabled.  This means we have to use the same
2131          * workaround here, setting the bus header to 0 and then write
2132          * the right values in the bus reset tasklet.
2133          */
2134
2135         if (config_rom) {
2136                 ohci->next_config_rom =
2137                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2138                                            &ohci->next_config_rom_bus,
2139                                            GFP_KERNEL);
2140                 if (ohci->next_config_rom == NULL)
2141                         return -ENOMEM;
2142
2143                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2144         } else {
2145                 /*
2146                  * In the suspend case, config_rom is NULL, which
2147                  * means that we just reuse the old config rom.
2148                  */
2149                 ohci->next_config_rom = ohci->config_rom;
2150                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2151         }
2152
2153         ohci->next_header = ohci->next_config_rom[0];
2154         ohci->next_config_rom[0] = 0;
2155         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2156         reg_write(ohci, OHCI1394_BusOptions,
2157                   be32_to_cpu(ohci->next_config_rom[2]));
2158         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2159
2160         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2161
2162         if (!(ohci->quirks & QUIRK_NO_MSI))
2163                 pci_enable_msi(dev);
2164         if (request_irq(dev->irq, irq_handler,
2165                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2166                         ohci_driver_name, ohci)) {
2167                 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2168                 pci_disable_msi(dev);
2169                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2170                                   ohci->config_rom, ohci->config_rom_bus);
2171                 return -EIO;
2172         }
2173
2174         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2175                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2176                 OHCI1394_isochTx | OHCI1394_isochRx |
2177                 OHCI1394_postedWriteErr |
2178                 OHCI1394_selfIDComplete |
2179                 OHCI1394_regAccessFail |
2180                 OHCI1394_cycle64Seconds |
2181                 OHCI1394_cycleInconsistent |
2182                 OHCI1394_unrecoverableError |
2183                 OHCI1394_cycleTooLong |
2184                 OHCI1394_masterIntEnable;
2185         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2186                 irqs |= OHCI1394_busReset;
2187         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2188
2189         reg_write(ohci, OHCI1394_HCControlSet,
2190                   OHCI1394_HCControl_linkEnable |
2191                   OHCI1394_HCControl_BIBimageValid);
2192
2193         reg_write(ohci, OHCI1394_LinkControlSet,
2194                   OHCI1394_LinkControl_rcvSelfID |
2195                   OHCI1394_LinkControl_rcvPhyPkt);
2196
2197         ar_context_run(&ohci->ar_request_ctx);
2198         ar_context_run(&ohci->ar_response_ctx); /* also flushes writes */
2199
2200         /* We are ready to go, reset bus to finish initialization. */
2201         fw_schedule_bus_reset(&ohci->card, false, true);
2202
2203         return 0;
2204 }
2205
2206 static int ohci_set_config_rom(struct fw_card *card,
2207                                const __be32 *config_rom, size_t length)
2208 {
2209         struct fw_ohci *ohci;
2210         unsigned long flags;
2211         __be32 *next_config_rom;
2212         dma_addr_t uninitialized_var(next_config_rom_bus);
2213
2214         ohci = fw_ohci(card);
2215
2216         /*
2217          * When the OHCI controller is enabled, the config rom update
2218          * mechanism is a bit tricky, but easy enough to use.  See
2219          * section 5.5.6 in the OHCI specification.
2220          *
2221          * The OHCI controller caches the new config rom address in a
2222          * shadow register (ConfigROMmapNext) and needs a bus reset
2223          * for the changes to take place.  When the bus reset is
2224          * detected, the controller loads the new values for the
2225          * ConfigRomHeader and BusOptions registers from the specified
2226          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2227          * shadow register. All automatically and atomically.
2228          *
2229          * Now, there's a twist to this story.  The automatic load of
2230          * ConfigRomHeader and BusOptions doesn't honor the
2231          * noByteSwapData bit, so with a be32 config rom, the
2232          * controller will load be32 values in to these registers
2233          * during the atomic update, even on litte endian
2234          * architectures.  The workaround we use is to put a 0 in the
2235          * header quadlet; 0 is endian agnostic and means that the
2236          * config rom isn't ready yet.  In the bus reset tasklet we
2237          * then set up the real values for the two registers.
2238          *
2239          * We use ohci->lock to avoid racing with the code that sets
2240          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2241          */
2242
2243         next_config_rom =
2244                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2245                                    &next_config_rom_bus, GFP_KERNEL);
2246         if (next_config_rom == NULL)
2247                 return -ENOMEM;
2248
2249         spin_lock_irqsave(&ohci->lock, flags);
2250
2251         /*
2252          * If there is not an already pending config_rom update,
2253          * push our new allocation into the ohci->next_config_rom
2254          * and then mark the local variable as null so that we
2255          * won't deallocate the new buffer.
2256          *
2257          * OTOH, if there is a pending config_rom update, just
2258          * use that buffer with the new config_rom data, and
2259          * let this routine free the unused DMA allocation.
2260          */
2261
2262         if (ohci->next_config_rom == NULL) {
2263                 ohci->next_config_rom = next_config_rom;
2264                 ohci->next_config_rom_bus = next_config_rom_bus;
2265                 next_config_rom = NULL;
2266         }
2267
2268         copy_config_rom(ohci->next_config_rom, config_rom, length);
2269
2270         ohci->next_header = config_rom[0];
2271         ohci->next_config_rom[0] = 0;
2272
2273         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2274
2275         spin_unlock_irqrestore(&ohci->lock, flags);
2276
2277         /* If we didn't use the DMA allocation, delete it. */
2278         if (next_config_rom != NULL)
2279                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2280                                   next_config_rom, next_config_rom_bus);
2281
2282         /*
2283          * Now initiate a bus reset to have the changes take
2284          * effect. We clean up the old config rom memory and DMA
2285          * mappings in the bus reset tasklet, since the OHCI
2286          * controller could need to access it before the bus reset
2287          * takes effect.
2288          */
2289
2290         fw_schedule_bus_reset(&ohci->card, true, true);
2291
2292         return 0;
2293 }
2294
2295 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2296 {
2297         struct fw_ohci *ohci = fw_ohci(card);
2298
2299         at_context_transmit(&ohci->at_request_ctx, packet);
2300 }
2301
2302 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2303 {
2304         struct fw_ohci *ohci = fw_ohci(card);
2305
2306         at_context_transmit(&ohci->at_response_ctx, packet);
2307 }
2308
2309 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2310 {
2311         struct fw_ohci *ohci = fw_ohci(card);
2312         struct context *ctx = &ohci->at_request_ctx;
2313         struct driver_data *driver_data = packet->driver_data;
2314         int ret = -ENOENT;
2315
2316         tasklet_disable(&ctx->tasklet);
2317
2318         if (packet->ack != 0)
2319                 goto out;
2320
2321         if (packet->payload_mapped)
2322                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2323                                  packet->payload_length, DMA_TO_DEVICE);
2324
2325         log_ar_at_event('T', packet->speed, packet->header, 0x20);
2326         driver_data->packet = NULL;
2327         packet->ack = RCODE_CANCELLED;
2328         packet->callback(packet, &ohci->card, packet->ack);
2329         ret = 0;
2330  out:
2331         tasklet_enable(&ctx->tasklet);
2332
2333         return ret;
2334 }
2335
2336 static int ohci_enable_phys_dma(struct fw_card *card,
2337                                 int node_id, int generation)
2338 {
2339 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2340         return 0;
2341 #else
2342         struct fw_ohci *ohci = fw_ohci(card);
2343         unsigned long flags;
2344         int n, ret = 0;
2345
2346         /*
2347          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2348          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2349          */
2350
2351         spin_lock_irqsave(&ohci->lock, flags);
2352
2353         if (ohci->generation != generation) {
2354                 ret = -ESTALE;
2355                 goto out;
2356         }
2357
2358         /*
2359          * Note, if the node ID contains a non-local bus ID, physical DMA is
2360          * enabled for _all_ nodes on remote buses.
2361          */
2362
2363         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2364         if (n < 32)
2365                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2366         else
2367                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2368
2369         flush_writes(ohci);
2370  out:
2371         spin_unlock_irqrestore(&ohci->lock, flags);
2372
2373         return ret;
2374 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2375 }
2376
2377 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2378 {
2379         struct fw_ohci *ohci = fw_ohci(card);
2380         unsigned long flags;
2381         u32 value;
2382
2383         switch (csr_offset) {
2384         case CSR_STATE_CLEAR:
2385         case CSR_STATE_SET:
2386                 if (ohci->is_root &&
2387                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2388                      OHCI1394_LinkControl_cycleMaster))
2389                         value = CSR_STATE_BIT_CMSTR;
2390                 else
2391                         value = 0;
2392                 if (ohci->csr_state_setclear_abdicate)
2393                         value |= CSR_STATE_BIT_ABDICATE;
2394
2395                 return value;
2396
2397         case CSR_NODE_IDS:
2398                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2399
2400         case CSR_CYCLE_TIME:
2401                 return get_cycle_time(ohci);
2402
2403         case CSR_BUS_TIME:
2404                 /*
2405                  * We might be called just after the cycle timer has wrapped
2406                  * around but just before the cycle64Seconds handler, so we
2407                  * better check here, too, if the bus time needs to be updated.
2408                  */
2409                 spin_lock_irqsave(&ohci->lock, flags);
2410                 value = update_bus_time(ohci);
2411                 spin_unlock_irqrestore(&ohci->lock, flags);
2412                 return value;
2413
2414         case CSR_BUSY_TIMEOUT:
2415                 value = reg_read(ohci, OHCI1394_ATRetries);
2416                 return (value >> 4) & 0x0ffff00f;
2417
2418         case CSR_PRIORITY_BUDGET:
2419                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2420                         (ohci->pri_req_max << 8);
2421
2422         default:
2423                 WARN_ON(1);
2424                 return 0;
2425         }
2426 }
2427
2428 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2429 {
2430         struct fw_ohci *ohci = fw_ohci(card);
2431         unsigned long flags;
2432
2433         switch (csr_offset) {
2434         case CSR_STATE_CLEAR:
2435                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2436                         reg_write(ohci, OHCI1394_LinkControlClear,
2437                                   OHCI1394_LinkControl_cycleMaster);
2438                         flush_writes(ohci);
2439                 }
2440                 if (value & CSR_STATE_BIT_ABDICATE)
2441                         ohci->csr_state_setclear_abdicate = false;
2442                 break;
2443
2444         case CSR_STATE_SET:
2445                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2446                         reg_write(ohci, OHCI1394_LinkControlSet,
2447                                   OHCI1394_LinkControl_cycleMaster);
2448                         flush_writes(ohci);
2449                 }
2450                 if (value & CSR_STATE_BIT_ABDICATE)
2451                         ohci->csr_state_setclear_abdicate = true;
2452                 break;
2453
2454         case CSR_NODE_IDS:
2455                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2456                 flush_writes(ohci);
2457                 break;
2458
2459         case CSR_CYCLE_TIME:
2460                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2461                 reg_write(ohci, OHCI1394_IntEventSet,
2462                           OHCI1394_cycleInconsistent);
2463                 flush_writes(ohci);
2464                 break;
2465
2466         case CSR_BUS_TIME:
2467                 spin_lock_irqsave(&ohci->lock, flags);
2468                 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2469                 spin_unlock_irqrestore(&ohci->lock, flags);
2470                 break;
2471
2472         case CSR_BUSY_TIMEOUT:
2473                 value = (value & 0xf) | ((value & 0xf) << 4) |
2474                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2475                 reg_write(ohci, OHCI1394_ATRetries, value);
2476                 flush_writes(ohci);
2477                 break;
2478
2479         case CSR_PRIORITY_BUDGET:
2480                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2481                 flush_writes(ohci);
2482                 break;
2483
2484         default:
2485                 WARN_ON(1);
2486                 break;
2487         }
2488 }
2489
2490 static void copy_iso_headers(struct iso_context *ctx, void *p)
2491 {
2492         int i = ctx->header_length;
2493
2494         if (i + ctx->base.header_size > PAGE_SIZE)
2495                 return;
2496
2497         /*
2498          * The iso header is byteswapped to little endian by
2499          * the controller, but the remaining header quadlets
2500          * are big endian.  We want to present all the headers
2501          * as big endian, so we have to swap the first quadlet.
2502          */
2503         if (ctx->base.header_size > 0)
2504                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2505         if (ctx->base.header_size > 4)
2506                 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2507         if (ctx->base.header_size > 8)
2508                 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2509         ctx->header_length += ctx->base.header_size;
2510 }
2511
2512 static int handle_ir_packet_per_buffer(struct context *context,
2513                                        struct descriptor *d,
2514                                        struct descriptor *last)
2515 {
2516         struct iso_context *ctx =
2517                 container_of(context, struct iso_context, context);
2518         struct descriptor *pd;
2519         __le32 *ir_header;
2520         void *p;
2521
2522         for (pd = d; pd <= last; pd++)
2523                 if (pd->transfer_status)
2524                         break;
2525         if (pd > last)
2526                 /* Descriptor(s) not done yet, stop iteration */
2527                 return 0;
2528
2529         p = last + 1;
2530         copy_iso_headers(ctx, p);
2531
2532         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2533                 ir_header = (__le32 *) p;
2534                 ctx->base.callback.sc(&ctx->base,
2535                                       le32_to_cpu(ir_header[0]) & 0xffff,
2536                                       ctx->header_length, ctx->header,
2537                                       ctx->base.callback_data);
2538                 ctx->header_length = 0;
2539         }
2540
2541         return 1;
2542 }
2543
2544 /* d == last because each descriptor block is only a single descriptor. */
2545 static int handle_ir_buffer_fill(struct context *context,
2546                                  struct descriptor *d,
2547                                  struct descriptor *last)
2548 {
2549         struct iso_context *ctx =
2550                 container_of(context, struct iso_context, context);
2551
2552         if (!last->transfer_status)
2553                 /* Descriptor(s) not done yet, stop iteration */
2554                 return 0;
2555
2556         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2557                 ctx->base.callback.mc(&ctx->base,
2558                                       le32_to_cpu(last->data_address) +
2559                                       le16_to_cpu(last->req_count) -
2560                                       le16_to_cpu(last->res_count),
2561                                       ctx->base.callback_data);
2562
2563         return 1;
2564 }
2565
2566 static int handle_it_packet(struct context *context,
2567                             struct descriptor *d,
2568                             struct descriptor *last)
2569 {
2570         struct iso_context *ctx =
2571                 container_of(context, struct iso_context, context);
2572         int i;
2573         struct descriptor *pd;
2574
2575         for (pd = d; pd <= last; pd++)
2576                 if (pd->transfer_status)
2577                         break;
2578         if (pd > last)
2579                 /* Descriptor(s) not done yet, stop iteration */
2580                 return 0;
2581
2582         i = ctx->header_length;
2583         if (i + 4 < PAGE_SIZE) {
2584                 /* Present this value as big-endian to match the receive code */
2585                 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2586                                 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2587                                 le16_to_cpu(pd->res_count));
2588                 ctx->header_length += 4;
2589         }
2590         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2591                 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2592                                       ctx->header_length, ctx->header,
2593                                       ctx->base.callback_data);
2594                 ctx->header_length = 0;
2595         }
2596         return 1;
2597 }
2598
2599 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2600 {
2601         u32 hi = channels >> 32, lo = channels;
2602
2603         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2604         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2605         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2606         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2607         mmiowb();
2608         ohci->mc_channels = channels;
2609 }
2610
2611 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2612                                 int type, int channel, size_t header_size)
2613 {
2614         struct fw_ohci *ohci = fw_ohci(card);
2615         struct iso_context *uninitialized_var(ctx);
2616         descriptor_callback_t uninitialized_var(callback);
2617         u64 *uninitialized_var(channels);
2618         u32 *uninitialized_var(mask), uninitialized_var(regs);
2619         unsigned long flags;
2620         int index, ret = -EBUSY;
2621
2622         spin_lock_irqsave(&ohci->lock, flags);
2623
2624         switch (type) {
2625         case FW_ISO_CONTEXT_TRANSMIT:
2626                 mask     = &ohci->it_context_mask;
2627                 callback = handle_it_packet;
2628                 index    = ffs(*mask) - 1;
2629                 if (index >= 0) {
2630                         *mask &= ~(1 << index);
2631                         regs = OHCI1394_IsoXmitContextBase(index);
2632                         ctx  = &ohci->it_context_list[index];
2633                 }
2634                 break;
2635
2636         case FW_ISO_CONTEXT_RECEIVE:
2637                 channels = &ohci->ir_context_channels;
2638                 mask     = &ohci->ir_context_mask;
2639                 callback = handle_ir_packet_per_buffer;
2640                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2641                 if (index >= 0) {
2642                         *channels &= ~(1ULL << channel);
2643                         *mask     &= ~(1 << index);
2644                         regs = OHCI1394_IsoRcvContextBase(index);
2645                         ctx  = &ohci->ir_context_list[index];
2646                 }
2647                 break;
2648
2649         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2650                 mask     = &ohci->ir_context_mask;
2651                 callback = handle_ir_buffer_fill;
2652                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2653                 if (index >= 0) {
2654                         ohci->mc_allocated = true;
2655                         *mask &= ~(1 << index);
2656                         regs = OHCI1394_IsoRcvContextBase(index);
2657                         ctx  = &ohci->ir_context_list[index];
2658                 }
2659                 break;
2660
2661         default:
2662                 index = -1;
2663                 ret = -ENOSYS;
2664         }
2665
2666         spin_unlock_irqrestore(&ohci->lock, flags);
2667
2668         if (index < 0)
2669                 return ERR_PTR(ret);
2670
2671         memset(ctx, 0, sizeof(*ctx));
2672         ctx->header_length = 0;
2673         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2674         if (ctx->header == NULL) {
2675                 ret = -ENOMEM;
2676                 goto out;
2677         }
2678         ret = context_init(&ctx->context, ohci, regs, callback);
2679         if (ret < 0)
2680                 goto out_with_header;
2681
2682         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2683                 set_multichannel_mask(ohci, 0);
2684
2685         return &ctx->base;
2686
2687  out_with_header:
2688         free_page((unsigned long)ctx->header);
2689  out:
2690         spin_lock_irqsave(&ohci->lock, flags);
2691
2692         switch (type) {
2693         case FW_ISO_CONTEXT_RECEIVE:
2694                 *channels |= 1ULL << channel;
2695                 break;
2696
2697         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2698                 ohci->mc_allocated = false;
2699                 break;
2700         }
2701         *mask |= 1 << index;
2702
2703         spin_unlock_irqrestore(&ohci->lock, flags);
2704
2705         return ERR_PTR(ret);
2706 }
2707
2708 static int ohci_start_iso(struct fw_iso_context *base,
2709                           s32 cycle, u32 sync, u32 tags)
2710 {
2711         struct iso_context *ctx = container_of(base, struct iso_context, base);
2712         struct fw_ohci *ohci = ctx->context.ohci;
2713         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2714         int index;
2715
2716         /* the controller cannot start without any queued packets */
2717         if (ctx->context.last->branch_address == 0)
2718                 return -ENODATA;
2719
2720         switch (ctx->base.type) {
2721         case FW_ISO_CONTEXT_TRANSMIT:
2722                 index = ctx - ohci->it_context_list;
2723                 match = 0;
2724                 if (cycle >= 0)
2725                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2726                                 (cycle & 0x7fff) << 16;
2727
2728                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2729                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2730                 context_run(&ctx->context, match);
2731                 break;
2732
2733         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2734                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2735                 /* fall through */
2736         case FW_ISO_CONTEXT_RECEIVE:
2737                 index = ctx - ohci->ir_context_list;
2738                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2739                 if (cycle >= 0) {
2740                         match |= (cycle & 0x07fff) << 12;
2741                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2742                 }
2743
2744                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2745                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2746                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2747                 context_run(&ctx->context, control);
2748
2749                 ctx->sync = sync;
2750                 ctx->tags = tags;
2751
2752                 break;
2753         }
2754
2755         return 0;
2756 }
2757
2758 static int ohci_stop_iso(struct fw_iso_context *base)
2759 {
2760         struct fw_ohci *ohci = fw_ohci(base->card);
2761         struct iso_context *ctx = container_of(base, struct iso_context, base);
2762         int index;
2763
2764         switch (ctx->base.type) {
2765         case FW_ISO_CONTEXT_TRANSMIT:
2766                 index = ctx - ohci->it_context_list;
2767                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2768                 break;
2769
2770         case FW_ISO_CONTEXT_RECEIVE:
2771         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2772                 index = ctx - ohci->ir_context_list;
2773                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2774                 break;
2775         }
2776         flush_writes(ohci);
2777         context_stop(&ctx->context);
2778         tasklet_kill(&ctx->context.tasklet);
2779
2780         return 0;
2781 }
2782
2783 static void ohci_free_iso_context(struct fw_iso_context *base)
2784 {
2785         struct fw_ohci *ohci = fw_ohci(base->card);
2786         struct iso_context *ctx = container_of(base, struct iso_context, base);
2787         unsigned long flags;
2788         int index;
2789
2790         ohci_stop_iso(base);
2791         context_release(&ctx->context);
2792         free_page((unsigned long)ctx->header);
2793
2794         spin_lock_irqsave(&ohci->lock, flags);
2795
2796         switch (base->type) {
2797         case FW_ISO_CONTEXT_TRANSMIT:
2798                 index = ctx - ohci->it_context_list;
2799                 ohci->it_context_mask |= 1 << index;
2800                 break;
2801
2802         case FW_ISO_CONTEXT_RECEIVE:
2803                 index = ctx - ohci->ir_context_list;
2804                 ohci->ir_context_mask |= 1 << index;
2805                 ohci->ir_context_channels |= 1ULL << base->channel;
2806                 break;
2807
2808         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2809                 index = ctx - ohci->ir_context_list;
2810                 ohci->ir_context_mask |= 1 << index;
2811                 ohci->ir_context_channels |= ohci->mc_channels;
2812                 ohci->mc_channels = 0;
2813                 ohci->mc_allocated = false;
2814                 break;
2815         }
2816
2817         spin_unlock_irqrestore(&ohci->lock, flags);
2818 }
2819
2820 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2821 {
2822         struct fw_ohci *ohci = fw_ohci(base->card);
2823         unsigned long flags;
2824         int ret;
2825
2826         switch (base->type) {
2827         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2828
2829                 spin_lock_irqsave(&ohci->lock, flags);
2830
2831                 /* Don't allow multichannel to grab other contexts' channels. */
2832                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2833                         *channels = ohci->ir_context_channels;
2834                         ret = -EBUSY;
2835                 } else {
2836                         set_multichannel_mask(ohci, *channels);
2837                         ret = 0;
2838                 }
2839
2840                 spin_unlock_irqrestore(&ohci->lock, flags);
2841
2842                 break;
2843         default:
2844                 ret = -EINVAL;
2845         }
2846
2847         return ret;
2848 }
2849
2850 #ifdef CONFIG_PM
2851 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2852 {
2853         int i;
2854         struct iso_context *ctx;
2855
2856         for (i = 0 ; i < ohci->n_ir ; i++) {
2857                 ctx = &ohci->ir_context_list[i];
2858                 if (ctx->context.running)
2859                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2860         }
2861
2862         for (i = 0 ; i < ohci->n_it ; i++) {
2863                 ctx = &ohci->it_context_list[i];
2864                 if (ctx->context.running)
2865                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2866         }
2867 }
2868 #endif
2869
2870 static int queue_iso_transmit(struct iso_context *ctx,
2871                               struct fw_iso_packet *packet,
2872                               struct fw_iso_buffer *buffer,
2873                               unsigned long payload)
2874 {
2875         struct descriptor *d, *last, *pd;
2876         struct fw_iso_packet *p;
2877         __le32 *header;
2878         dma_addr_t d_bus, page_bus;
2879         u32 z, header_z, payload_z, irq;
2880         u32 payload_index, payload_end_index, next_page_index;
2881         int page, end_page, i, length, offset;
2882
2883         p = packet;
2884         payload_index = payload;
2885
2886         if (p->skip)
2887                 z = 1;
2888         else
2889                 z = 2;
2890         if (p->header_length > 0)
2891                 z++;
2892
2893         /* Determine the first page the payload isn't contained in. */
2894         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2895         if (p->payload_length > 0)
2896                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2897         else
2898                 payload_z = 0;
2899
2900         z += payload_z;
2901
2902         /* Get header size in number of descriptors. */
2903         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2904
2905         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2906         if (d == NULL)
2907                 return -ENOMEM;
2908
2909         if (!p->skip) {
2910                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2911                 d[0].req_count = cpu_to_le16(8);
2912                 /*
2913                  * Link the skip address to this descriptor itself.  This causes
2914                  * a context to skip a cycle whenever lost cycles or FIFO
2915                  * overruns occur, without dropping the data.  The application
2916                  * should then decide whether this is an error condition or not.
2917                  * FIXME:  Make the context's cycle-lost behaviour configurable?
2918                  */
2919                 d[0].branch_address = cpu_to_le32(d_bus | z);
2920
2921                 header = (__le32 *) &d[1];
2922                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2923                                         IT_HEADER_TAG(p->tag) |
2924                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2925                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2926                                         IT_HEADER_SPEED(ctx->base.speed));
2927                 header[1] =
2928                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2929                                                           p->payload_length));
2930         }
2931
2932         if (p->header_length > 0) {
2933                 d[2].req_count    = cpu_to_le16(p->header_length);
2934                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2935                 memcpy(&d[z], p->header, p->header_length);
2936         }
2937
2938         pd = d + z - payload_z;
2939         payload_end_index = payload_index + p->payload_length;
2940         for (i = 0; i < payload_z; i++) {
2941                 page               = payload_index >> PAGE_SHIFT;
2942                 offset             = payload_index & ~PAGE_MASK;
2943                 next_page_index    = (page + 1) << PAGE_SHIFT;
2944                 length             =
2945                         min(next_page_index, payload_end_index) - payload_index;
2946                 pd[i].req_count    = cpu_to_le16(length);
2947
2948                 page_bus = page_private(buffer->pages[page]);
2949                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2950
2951                 payload_index += length;
2952         }
2953
2954         if (p->interrupt)
2955                 irq = DESCRIPTOR_IRQ_ALWAYS;
2956         else
2957                 irq = DESCRIPTOR_NO_IRQ;
2958
2959         last = z == 2 ? d : d + z - 1;
2960         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2961                                      DESCRIPTOR_STATUS |
2962                                      DESCRIPTOR_BRANCH_ALWAYS |
2963                                      irq);
2964
2965         context_append(&ctx->context, d, z, header_z);
2966
2967         return 0;
2968 }
2969
2970 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2971                                        struct fw_iso_packet *packet,
2972                                        struct fw_iso_buffer *buffer,
2973                                        unsigned long payload)
2974 {
2975         struct descriptor *d, *pd;
2976         dma_addr_t d_bus, page_bus;
2977         u32 z, header_z, rest;
2978         int i, j, length;
2979         int page, offset, packet_count, header_size, payload_per_buffer;
2980
2981         /*
2982          * The OHCI controller puts the isochronous header and trailer in the
2983          * buffer, so we need at least 8 bytes.
2984          */
2985         packet_count = packet->header_length / ctx->base.header_size;
2986         header_size  = max(ctx->base.header_size, (size_t)8);
2987
2988         /* Get header size in number of descriptors. */
2989         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2990         page     = payload >> PAGE_SHIFT;
2991         offset   = payload & ~PAGE_MASK;
2992         payload_per_buffer = packet->payload_length / packet_count;
2993
2994         for (i = 0; i < packet_count; i++) {
2995                 /* d points to the header descriptor */
2996                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2997                 d = context_get_descriptors(&ctx->context,
2998                                 z + header_z, &d_bus);
2999                 if (d == NULL)
3000                         return -ENOMEM;
3001
3002                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3003                                               DESCRIPTOR_INPUT_MORE);
3004                 if (packet->skip && i == 0)
3005                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3006                 d->req_count    = cpu_to_le16(header_size);
3007                 d->res_count    = d->req_count;
3008                 d->transfer_status = 0;
3009                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3010
3011                 rest = payload_per_buffer;
3012                 pd = d;
3013                 for (j = 1; j < z; j++) {
3014                         pd++;
3015                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3016                                                   DESCRIPTOR_INPUT_MORE);
3017
3018                         if (offset + rest < PAGE_SIZE)
3019                                 length = rest;
3020                         else
3021                                 length = PAGE_SIZE - offset;
3022                         pd->req_count = cpu_to_le16(length);
3023                         pd->res_count = pd->req_count;
3024                         pd->transfer_status = 0;
3025
3026                         page_bus = page_private(buffer->pages[page]);
3027                         pd->data_address = cpu_to_le32(page_bus + offset);
3028
3029                         offset = (offset + length) & ~PAGE_MASK;
3030                         rest -= length;
3031                         if (offset == 0)
3032                                 page++;
3033                 }
3034                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3035                                           DESCRIPTOR_INPUT_LAST |
3036                                           DESCRIPTOR_BRANCH_ALWAYS);
3037                 if (packet->interrupt && i == packet_count - 1)
3038                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3039
3040                 context_append(&ctx->context, d, z, header_z);
3041         }
3042
3043         return 0;
3044 }
3045
3046 static int queue_iso_buffer_fill(struct iso_context *ctx,
3047                                  struct fw_iso_packet *packet,
3048                                  struct fw_iso_buffer *buffer,
3049                                  unsigned long payload)
3050 {
3051         struct descriptor *d;
3052         dma_addr_t d_bus, page_bus;
3053         int page, offset, rest, z, i, length;
3054
3055         page   = payload >> PAGE_SHIFT;
3056         offset = payload & ~PAGE_MASK;
3057         rest   = packet->payload_length;
3058
3059         /* We need one descriptor for each page in the buffer. */
3060         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3061
3062         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3063                 return -EFAULT;
3064
3065         for (i = 0; i < z; i++) {
3066                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3067                 if (d == NULL)
3068                         return -ENOMEM;
3069
3070                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3071                                          DESCRIPTOR_BRANCH_ALWAYS);
3072                 if (packet->skip && i == 0)
3073                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3074                 if (packet->interrupt && i == z - 1)
3075                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3076
3077                 if (offset + rest < PAGE_SIZE)
3078                         length = rest;
3079                 else
3080                         length = PAGE_SIZE - offset;
3081                 d->req_count = cpu_to_le16(length);
3082                 d->res_count = d->req_count;
3083                 d->transfer_status = 0;
3084
3085                 page_bus = page_private(buffer->pages[page]);
3086                 d->data_address = cpu_to_le32(page_bus + offset);
3087
3088                 rest -= length;
3089                 offset = 0;
3090                 page++;
3091
3092                 context_append(&ctx->context, d, 1, 0);
3093         }
3094
3095         return 0;
3096 }
3097
3098 static int ohci_queue_iso(struct fw_iso_context *base,
3099                           struct fw_iso_packet *packet,
3100                           struct fw_iso_buffer *buffer,
3101                           unsigned long payload)
3102 {
3103         struct iso_context *ctx = container_of(base, struct iso_context, base);
3104         unsigned long flags;
3105         int ret = -ENOSYS;
3106
3107         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3108         switch (base->type) {
3109         case FW_ISO_CONTEXT_TRANSMIT:
3110                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3111                 break;
3112         case FW_ISO_CONTEXT_RECEIVE:
3113                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3114                 break;
3115         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3116                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3117                 break;
3118         }
3119         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3120
3121         return ret;
3122 }
3123
3124 static const struct fw_card_driver ohci_driver = {
3125         .enable                 = ohci_enable,
3126         .read_phy_reg           = ohci_read_phy_reg,
3127         .update_phy_reg         = ohci_update_phy_reg,
3128         .set_config_rom         = ohci_set_config_rom,
3129         .send_request           = ohci_send_request,
3130         .send_response          = ohci_send_response,
3131         .cancel_packet          = ohci_cancel_packet,
3132         .enable_phys_dma        = ohci_enable_phys_dma,
3133         .read_csr               = ohci_read_csr,
3134         .write_csr              = ohci_write_csr,
3135
3136         .allocate_iso_context   = ohci_allocate_iso_context,
3137         .free_iso_context       = ohci_free_iso_context,
3138         .set_iso_channels       = ohci_set_iso_channels,
3139         .queue_iso              = ohci_queue_iso,
3140         .start_iso              = ohci_start_iso,
3141         .stop_iso               = ohci_stop_iso,
3142 };
3143
3144 #ifdef CONFIG_PPC_PMAC
3145 static void pmac_ohci_on(struct pci_dev *dev)
3146 {
3147         if (machine_is(powermac)) {
3148                 struct device_node *ofn = pci_device_to_OF_node(dev);
3149
3150                 if (ofn) {
3151                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3152                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3153                 }
3154         }
3155 }
3156
3157 static void pmac_ohci_off(struct pci_dev *dev)
3158 {
3159         if (machine_is(powermac)) {
3160                 struct device_node *ofn = pci_device_to_OF_node(dev);
3161
3162                 if (ofn) {
3163                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3164                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3165                 }
3166         }
3167 }
3168 #else
3169 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3170 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3171 #endif /* CONFIG_PPC_PMAC */
3172
3173 static int __devinit pci_probe(struct pci_dev *dev,
3174                                const struct pci_device_id *ent)
3175 {
3176         struct fw_ohci *ohci;
3177         u32 bus_options, max_receive, link_speed, version;
3178         u64 guid;
3179         int i, err;
3180         size_t size;
3181
3182         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3183         if (ohci == NULL) {
3184                 err = -ENOMEM;
3185                 goto fail;
3186         }
3187