treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
[sfrench/cifs-2.6.git] / drivers / firewire / ohci.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Driver for OHCI 1394 controllers
4  *
5  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6  */
7
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/io.h>
19 #include <linux/kernel.h>
20 #include <linux/list.h>
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/moduleparam.h>
24 #include <linux/mutex.h>
25 #include <linux/pci.h>
26 #include <linux/pci_ids.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/string.h>
30 #include <linux/time.h>
31 #include <linux/vmalloc.h>
32 #include <linux/workqueue.h>
33
34 #include <asm/byteorder.h>
35 #include <asm/page.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "core.h"
42 #include "ohci.h"
43
44 #define ohci_info(ohci, f, args...)     dev_info(ohci->card.device, f, ##args)
45 #define ohci_notice(ohci, f, args...)   dev_notice(ohci->card.device, f, ##args)
46 #define ohci_err(ohci, f, args...)      dev_err(ohci->card.device, f, ##args)
47
48 #define DESCRIPTOR_OUTPUT_MORE          0
49 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
50 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
51 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
52 #define DESCRIPTOR_STATUS               (1 << 11)
53 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
54 #define DESCRIPTOR_PING                 (1 << 7)
55 #define DESCRIPTOR_YY                   (1 << 6)
56 #define DESCRIPTOR_NO_IRQ               (0 << 4)
57 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
58 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
59 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
60 #define DESCRIPTOR_WAIT                 (3 << 0)
61
62 #define DESCRIPTOR_CMD                  (0xf << 12)
63
64 struct descriptor {
65         __le16 req_count;
66         __le16 control;
67         __le32 data_address;
68         __le32 branch_address;
69         __le16 res_count;
70         __le16 transfer_status;
71 } __attribute__((aligned(16)));
72
73 #define CONTROL_SET(regs)       (regs)
74 #define CONTROL_CLEAR(regs)     ((regs) + 4)
75 #define COMMAND_PTR(regs)       ((regs) + 12)
76 #define CONTEXT_MATCH(regs)     ((regs) + 16)
77
78 #define AR_BUFFER_SIZE  (32*1024)
79 #define AR_BUFFERS_MIN  DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
80 /* we need at least two pages for proper list management */
81 #define AR_BUFFERS      (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
82
83 #define MAX_ASYNC_PAYLOAD       4096
84 #define MAX_AR_PACKET_SIZE      (16 + MAX_ASYNC_PAYLOAD + 4)
85 #define AR_WRAPAROUND_PAGES     DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
86
87 struct ar_context {
88         struct fw_ohci *ohci;
89         struct page *pages[AR_BUFFERS];
90         void *buffer;
91         struct descriptor *descriptors;
92         dma_addr_t descriptors_bus;
93         void *pointer;
94         unsigned int last_buffer_index;
95         u32 regs;
96         struct tasklet_struct tasklet;
97 };
98
99 struct context;
100
101 typedef int (*descriptor_callback_t)(struct context *ctx,
102                                      struct descriptor *d,
103                                      struct descriptor *last);
104
105 /*
106  * A buffer that contains a block of DMA-able coherent memory used for
107  * storing a portion of a DMA descriptor program.
108  */
109 struct descriptor_buffer {
110         struct list_head list;
111         dma_addr_t buffer_bus;
112         size_t buffer_size;
113         size_t used;
114         struct descriptor buffer[0];
115 };
116
117 struct context {
118         struct fw_ohci *ohci;
119         u32 regs;
120         int total_allocation;
121         u32 current_bus;
122         bool running;
123         bool flushing;
124
125         /*
126          * List of page-sized buffers for storing DMA descriptors.
127          * Head of list contains buffers in use and tail of list contains
128          * free buffers.
129          */
130         struct list_head buffer_list;
131
132         /*
133          * Pointer to a buffer inside buffer_list that contains the tail
134          * end of the current DMA program.
135          */
136         struct descriptor_buffer *buffer_tail;
137
138         /*
139          * The descriptor containing the branch address of the first
140          * descriptor that has not yet been filled by the device.
141          */
142         struct descriptor *last;
143
144         /*
145          * The last descriptor block in the DMA program. It contains the branch
146          * address that must be updated upon appending a new descriptor.
147          */
148         struct descriptor *prev;
149         int prev_z;
150
151         descriptor_callback_t callback;
152
153         struct tasklet_struct tasklet;
154 };
155
156 #define IT_HEADER_SY(v)          ((v) <<  0)
157 #define IT_HEADER_TCODE(v)       ((v) <<  4)
158 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
159 #define IT_HEADER_TAG(v)         ((v) << 14)
160 #define IT_HEADER_SPEED(v)       ((v) << 16)
161 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
162
163 struct iso_context {
164         struct fw_iso_context base;
165         struct context context;
166         void *header;
167         size_t header_length;
168         unsigned long flushing_completions;
169         u32 mc_buffer_bus;
170         u16 mc_completed;
171         u16 last_timestamp;
172         u8 sync;
173         u8 tags;
174 };
175
176 #define CONFIG_ROM_SIZE 1024
177
178 struct fw_ohci {
179         struct fw_card card;
180
181         __iomem char *registers;
182         int node_id;
183         int generation;
184         int request_generation; /* for timestamping incoming requests */
185         unsigned quirks;
186         unsigned int pri_req_max;
187         u32 bus_time;
188         bool bus_time_running;
189         bool is_root;
190         bool csr_state_setclear_abdicate;
191         int n_ir;
192         int n_it;
193         /*
194          * Spinlock for accessing fw_ohci data.  Never call out of
195          * this driver with this lock held.
196          */
197         spinlock_t lock;
198
199         struct mutex phy_reg_mutex;
200
201         void *misc_buffer;
202         dma_addr_t misc_buffer_bus;
203
204         struct ar_context ar_request_ctx;
205         struct ar_context ar_response_ctx;
206         struct context at_request_ctx;
207         struct context at_response_ctx;
208
209         u32 it_context_support;
210         u32 it_context_mask;     /* unoccupied IT contexts */
211         struct iso_context *it_context_list;
212         u64 ir_context_channels; /* unoccupied channels */
213         u32 ir_context_support;
214         u32 ir_context_mask;     /* unoccupied IR contexts */
215         struct iso_context *ir_context_list;
216         u64 mc_channels; /* channels in use by the multichannel IR context */
217         bool mc_allocated;
218
219         __be32    *config_rom;
220         dma_addr_t config_rom_bus;
221         __be32    *next_config_rom;
222         dma_addr_t next_config_rom_bus;
223         __be32     next_header;
224
225         __le32    *self_id;
226         dma_addr_t self_id_bus;
227         struct work_struct bus_reset_work;
228
229         u32 self_id_buffer[512];
230 };
231
232 static struct workqueue_struct *selfid_workqueue;
233
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236         return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
240 #define IR_CONTEXT_BUFFER_FILL          0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
245
246 #define CONTEXT_RUN     0x8000
247 #define CONTEXT_WAKE    0x1000
248 #define CONTEXT_DEAD    0x0800
249 #define CONTEXT_ACTIVE  0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES     0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
254
255 #define OHCI1394_REGISTER_SIZE          0x800
256 #define OHCI1394_PCI_HCI_Control        0x40
257 #define SELF_ID_BUF_SIZE                0x800
258 #define OHCI_TCODE_PHY_PACKET           0x0e
259 #define OHCI_VERSION_1_1                0x010010
260
261 static char ohci_driver_name[] = KBUILD_MODNAME;
262
263 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS  0x11bd
264 #define PCI_DEVICE_ID_AGERE_FW643       0x5901
265 #define PCI_DEVICE_ID_CREATIVE_SB1394   0x4001
266 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
267 #define PCI_DEVICE_ID_TI_TSB12LV22      0x8009
268 #define PCI_DEVICE_ID_TI_TSB12LV26      0x8020
269 #define PCI_DEVICE_ID_TI_TSB82AA2       0x8025
270 #define PCI_DEVICE_ID_VIA_VT630X        0x3044
271 #define PCI_REV_ID_VIA_VT6306           0x46
272 #define PCI_DEVICE_ID_VIA_VT6315        0x3403
273
274 #define QUIRK_CYCLE_TIMER               0x1
275 #define QUIRK_RESET_PACKET              0x2
276 #define QUIRK_BE_HEADERS                0x4
277 #define QUIRK_NO_1394A                  0x8
278 #define QUIRK_NO_MSI                    0x10
279 #define QUIRK_TI_SLLZ059                0x20
280 #define QUIRK_IR_WAKE                   0x40
281
282 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
283 static const struct {
284         unsigned short vendor, device, revision, flags;
285 } ohci_quirks[] = {
286         {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
287                 QUIRK_CYCLE_TIMER},
288
289         {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
290                 QUIRK_BE_HEADERS},
291
292         {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
293                 QUIRK_NO_MSI},
294
295         {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
296                 QUIRK_RESET_PACKET},
297
298         {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
299                 QUIRK_NO_MSI},
300
301         {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
302                 QUIRK_CYCLE_TIMER},
303
304         {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
305                 QUIRK_NO_MSI},
306
307         {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
308                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
309
310         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
311                 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
312
313         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
314                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
315
316         {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
317                 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
318
319         {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
320                 QUIRK_RESET_PACKET},
321
322         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
323                 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
324
325         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, 0,
326                 QUIRK_CYCLE_TIMER /* FIXME: necessary? */ | QUIRK_NO_MSI},
327
328         {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT6315, PCI_ANY_ID,
329                 QUIRK_NO_MSI},
330
331         {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
332                 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
333 };
334
335 /* This overrides anything that was found in ohci_quirks[]. */
336 static int param_quirks;
337 module_param_named(quirks, param_quirks, int, 0644);
338 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
339         ", nonatomic cycle timer = "    __stringify(QUIRK_CYCLE_TIMER)
340         ", reset packet generation = "  __stringify(QUIRK_RESET_PACKET)
341         ", AR/selfID endianness = "     __stringify(QUIRK_BE_HEADERS)
342         ", no 1394a enhancements = "    __stringify(QUIRK_NO_1394A)
343         ", disable MSI = "              __stringify(QUIRK_NO_MSI)
344         ", TI SLLZ059 erratum = "       __stringify(QUIRK_TI_SLLZ059)
345         ", IR wake unreliable = "       __stringify(QUIRK_IR_WAKE)
346         ")");
347
348 #define OHCI_PARAM_DEBUG_AT_AR          1
349 #define OHCI_PARAM_DEBUG_SELFIDS        2
350 #define OHCI_PARAM_DEBUG_IRQS           4
351 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
352
353 static int param_debug;
354 module_param_named(debug, param_debug, int, 0644);
355 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
356         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
357         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
358         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
359         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
360         ", or a combination, or all = -1)");
361
362 static bool param_remote_dma;
363 module_param_named(remote_dma, param_remote_dma, bool, 0444);
364 MODULE_PARM_DESC(remote_dma, "Enable unfiltered remote DMA (default = N)");
365
366 static void log_irqs(struct fw_ohci *ohci, u32 evt)
367 {
368         if (likely(!(param_debug &
369                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
370                 return;
371
372         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
373             !(evt & OHCI1394_busReset))
374                 return;
375
376         ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
377             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
378             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
379             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
380             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
381             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
382             evt & OHCI1394_isochRx              ? " IR"                 : "",
383             evt & OHCI1394_isochTx              ? " IT"                 : "",
384             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
385             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
386             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
387             evt & OHCI1394_cycleInconsistent    ? " cycleInconsistent"  : "",
388             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
389             evt & OHCI1394_unrecoverableError   ? " unrecoverableError" : "",
390             evt & OHCI1394_busReset             ? " busReset"           : "",
391             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
392                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
393                     OHCI1394_respTxComplete | OHCI1394_isochRx |
394                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
395                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
396                     OHCI1394_cycleInconsistent |
397                     OHCI1394_regAccessFail | OHCI1394_busReset)
398                                                 ? " ?"                  : "");
399 }
400
401 static const char *speed[] = {
402         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
403 };
404 static const char *power[] = {
405         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
406         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
407 };
408 static const char port[] = { '.', '-', 'p', 'c', };
409
410 static char _p(u32 *s, int shift)
411 {
412         return port[*s >> shift & 3];
413 }
414
415 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
416 {
417         u32 *s;
418
419         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
420                 return;
421
422         ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
423                     self_id_count, generation, ohci->node_id);
424
425         for (s = ohci->self_id_buffer; self_id_count--; ++s)
426                 if ((*s & 1 << 23) == 0)
427                         ohci_notice(ohci,
428                             "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
429                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
430                             speed[*s >> 14 & 3], *s >> 16 & 63,
431                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
432                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
433                 else
434                         ohci_notice(ohci,
435                             "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
436                             *s, *s >> 24 & 63,
437                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
438                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
439 }
440
441 static const char *evts[] = {
442         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
443         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
444         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
445         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
446         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
447         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
448         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
449         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
450         [0x10] = "-reserved-",          [0x11] = "ack_complete",
451         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
452         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
453         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
454         [0x18] = "-reserved-",          [0x19] = "-reserved-",
455         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
456         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
457         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
458         [0x20] = "pending/cancelled",
459 };
460 static const char *tcodes[] = {
461         [0x0] = "QW req",               [0x1] = "BW req",
462         [0x2] = "W resp",               [0x3] = "-reserved-",
463         [0x4] = "QR req",               [0x5] = "BR req",
464         [0x6] = "QR resp",              [0x7] = "BR resp",
465         [0x8] = "cycle start",          [0x9] = "Lk req",
466         [0xa] = "async stream packet",  [0xb] = "Lk resp",
467         [0xc] = "-reserved-",           [0xd] = "-reserved-",
468         [0xe] = "link internal",        [0xf] = "-reserved-",
469 };
470
471 static void log_ar_at_event(struct fw_ohci *ohci,
472                             char dir, int speed, u32 *header, int evt)
473 {
474         int tcode = header[0] >> 4 & 0xf;
475         char specific[12];
476
477         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
478                 return;
479
480         if (unlikely(evt >= ARRAY_SIZE(evts)))
481                         evt = 0x1f;
482
483         if (evt == OHCI1394_evt_bus_reset) {
484                 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
485                             dir, (header[2] >> 16) & 0xff);
486                 return;
487         }
488
489         switch (tcode) {
490         case 0x0: case 0x6: case 0x8:
491                 snprintf(specific, sizeof(specific), " = %08x",
492                          be32_to_cpu((__force __be32)header[3]));
493                 break;
494         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
495                 snprintf(specific, sizeof(specific), " %x,%x",
496                          header[3] >> 16, header[3] & 0xffff);
497                 break;
498         default:
499                 specific[0] = '\0';
500         }
501
502         switch (tcode) {
503         case 0xa:
504                 ohci_notice(ohci, "A%c %s, %s\n",
505                             dir, evts[evt], tcodes[tcode]);
506                 break;
507         case 0xe:
508                 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
509                             dir, evts[evt], header[1], header[2]);
510                 break;
511         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
512                 ohci_notice(ohci,
513                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
514                             dir, speed, header[0] >> 10 & 0x3f,
515                             header[1] >> 16, header[0] >> 16, evts[evt],
516                             tcodes[tcode], header[1] & 0xffff, header[2], specific);
517                 break;
518         default:
519                 ohci_notice(ohci,
520                             "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
521                             dir, speed, header[0] >> 10 & 0x3f,
522                             header[1] >> 16, header[0] >> 16, evts[evt],
523                             tcodes[tcode], specific);
524         }
525 }
526
527 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
528 {
529         writel(data, ohci->registers + offset);
530 }
531
532 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
533 {
534         return readl(ohci->registers + offset);
535 }
536
537 static inline void flush_writes(const struct fw_ohci *ohci)
538 {
539         /* Do a dummy read to flush writes. */
540         reg_read(ohci, OHCI1394_Version);
541 }
542
543 /*
544  * Beware!  read_phy_reg(), write_phy_reg(), update_phy_reg(), and
545  * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
546  * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
547  * directly.  Exceptions are intrinsically serialized contexts like pci_probe.
548  */
549 static int read_phy_reg(struct fw_ohci *ohci, int addr)
550 {
551         u32 val;
552         int i;
553
554         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
555         for (i = 0; i < 3 + 100; i++) {
556                 val = reg_read(ohci, OHCI1394_PhyControl);
557                 if (!~val)
558                         return -ENODEV; /* Card was ejected. */
559
560                 if (val & OHCI1394_PhyControl_ReadDone)
561                         return OHCI1394_PhyControl_ReadData(val);
562
563                 /*
564                  * Try a few times without waiting.  Sleeping is necessary
565                  * only when the link/PHY interface is busy.
566                  */
567                 if (i >= 3)
568                         msleep(1);
569         }
570         ohci_err(ohci, "failed to read phy reg %d\n", addr);
571         dump_stack();
572
573         return -EBUSY;
574 }
575
576 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
577 {
578         int i;
579
580         reg_write(ohci, OHCI1394_PhyControl,
581                   OHCI1394_PhyControl_Write(addr, val));
582         for (i = 0; i < 3 + 100; i++) {
583                 val = reg_read(ohci, OHCI1394_PhyControl);
584                 if (!~val)
585                         return -ENODEV; /* Card was ejected. */
586
587                 if (!(val & OHCI1394_PhyControl_WritePending))
588                         return 0;
589
590                 if (i >= 3)
591                         msleep(1);
592         }
593         ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
594         dump_stack();
595
596         return -EBUSY;
597 }
598
599 static int update_phy_reg(struct fw_ohci *ohci, int addr,
600                           int clear_bits, int set_bits)
601 {
602         int ret = read_phy_reg(ohci, addr);
603         if (ret < 0)
604                 return ret;
605
606         /*
607          * The interrupt status bits are cleared by writing a one bit.
608          * Avoid clearing them unless explicitly requested in set_bits.
609          */
610         if (addr == 5)
611                 clear_bits |= PHY_INT_STATUS_BITS;
612
613         return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
614 }
615
616 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
617 {
618         int ret;
619
620         ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
621         if (ret < 0)
622                 return ret;
623
624         return read_phy_reg(ohci, addr);
625 }
626
627 static int ohci_read_phy_reg(struct fw_card *card, int addr)
628 {
629         struct fw_ohci *ohci = fw_ohci(card);
630         int ret;
631
632         mutex_lock(&ohci->phy_reg_mutex);
633         ret = read_phy_reg(ohci, addr);
634         mutex_unlock(&ohci->phy_reg_mutex);
635
636         return ret;
637 }
638
639 static int ohci_update_phy_reg(struct fw_card *card, int addr,
640                                int clear_bits, int set_bits)
641 {
642         struct fw_ohci *ohci = fw_ohci(card);
643         int ret;
644
645         mutex_lock(&ohci->phy_reg_mutex);
646         ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
647         mutex_unlock(&ohci->phy_reg_mutex);
648
649         return ret;
650 }
651
652 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
653 {
654         return page_private(ctx->pages[i]);
655 }
656
657 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
658 {
659         struct descriptor *d;
660
661         d = &ctx->descriptors[index];
662         d->branch_address  &= cpu_to_le32(~0xf);
663         d->res_count       =  cpu_to_le16(PAGE_SIZE);
664         d->transfer_status =  0;
665
666         wmb(); /* finish init of new descriptors before branch_address update */
667         d = &ctx->descriptors[ctx->last_buffer_index];
668         d->branch_address  |= cpu_to_le32(1);
669
670         ctx->last_buffer_index = index;
671
672         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
673 }
674
675 static void ar_context_release(struct ar_context *ctx)
676 {
677         unsigned int i;
678
679         vunmap(ctx->buffer);
680
681         for (i = 0; i < AR_BUFFERS; i++)
682                 if (ctx->pages[i]) {
683                         dma_unmap_page(ctx->ohci->card.device,
684                                        ar_buffer_bus(ctx, i),
685                                        PAGE_SIZE, DMA_FROM_DEVICE);
686                         __free_page(ctx->pages[i]);
687                 }
688 }
689
690 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
691 {
692         struct fw_ohci *ohci = ctx->ohci;
693
694         if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
695                 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
696                 flush_writes(ohci);
697
698                 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
699         }
700         /* FIXME: restart? */
701 }
702
703 static inline unsigned int ar_next_buffer_index(unsigned int index)
704 {
705         return (index + 1) % AR_BUFFERS;
706 }
707
708 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
709 {
710         return ar_next_buffer_index(ctx->last_buffer_index);
711 }
712
713 /*
714  * We search for the buffer that contains the last AR packet DMA data written
715  * by the controller.
716  */
717 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
718                                                  unsigned int *buffer_offset)
719 {
720         unsigned int i, next_i, last = ctx->last_buffer_index;
721         __le16 res_count, next_res_count;
722
723         i = ar_first_buffer_index(ctx);
724         res_count = READ_ONCE(ctx->descriptors[i].res_count);
725
726         /* A buffer that is not yet completely filled must be the last one. */
727         while (i != last && res_count == 0) {
728
729                 /* Peek at the next descriptor. */
730                 next_i = ar_next_buffer_index(i);
731                 rmb(); /* read descriptors in order */
732                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
733                 /*
734                  * If the next descriptor is still empty, we must stop at this
735                  * descriptor.
736                  */
737                 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
738                         /*
739                          * The exception is when the DMA data for one packet is
740                          * split over three buffers; in this case, the middle
741                          * buffer's descriptor might be never updated by the
742                          * controller and look still empty, and we have to peek
743                          * at the third one.
744                          */
745                         if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
746                                 next_i = ar_next_buffer_index(next_i);
747                                 rmb();
748                                 next_res_count = READ_ONCE(ctx->descriptors[next_i].res_count);
749                                 if (next_res_count != cpu_to_le16(PAGE_SIZE))
750                                         goto next_buffer_is_active;
751                         }
752
753                         break;
754                 }
755
756 next_buffer_is_active:
757                 i = next_i;
758                 res_count = next_res_count;
759         }
760
761         rmb(); /* read res_count before the DMA data */
762
763         *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
764         if (*buffer_offset > PAGE_SIZE) {
765                 *buffer_offset = 0;
766                 ar_context_abort(ctx, "corrupted descriptor");
767         }
768
769         return i;
770 }
771
772 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
773                                     unsigned int end_buffer_index,
774                                     unsigned int end_buffer_offset)
775 {
776         unsigned int i;
777
778         i = ar_first_buffer_index(ctx);
779         while (i != end_buffer_index) {
780                 dma_sync_single_for_cpu(ctx->ohci->card.device,
781                                         ar_buffer_bus(ctx, i),
782                                         PAGE_SIZE, DMA_FROM_DEVICE);
783                 i = ar_next_buffer_index(i);
784         }
785         if (end_buffer_offset > 0)
786                 dma_sync_single_for_cpu(ctx->ohci->card.device,
787                                         ar_buffer_bus(ctx, i),
788                                         end_buffer_offset, DMA_FROM_DEVICE);
789 }
790
791 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
792 #define cond_le32_to_cpu(v) \
793         (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
794 #else
795 #define cond_le32_to_cpu(v) le32_to_cpu(v)
796 #endif
797
798 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
799 {
800         struct fw_ohci *ohci = ctx->ohci;
801         struct fw_packet p;
802         u32 status, length, tcode;
803         int evt;
804
805         p.header[0] = cond_le32_to_cpu(buffer[0]);
806         p.header[1] = cond_le32_to_cpu(buffer[1]);
807         p.header[2] = cond_le32_to_cpu(buffer[2]);
808
809         tcode = (p.header[0] >> 4) & 0x0f;
810         switch (tcode) {
811         case TCODE_WRITE_QUADLET_REQUEST:
812         case TCODE_READ_QUADLET_RESPONSE:
813                 p.header[3] = (__force __u32) buffer[3];
814                 p.header_length = 16;
815                 p.payload_length = 0;
816                 break;
817
818         case TCODE_READ_BLOCK_REQUEST :
819                 p.header[3] = cond_le32_to_cpu(buffer[3]);
820                 p.header_length = 16;
821                 p.payload_length = 0;
822                 break;
823
824         case TCODE_WRITE_BLOCK_REQUEST:
825         case TCODE_READ_BLOCK_RESPONSE:
826         case TCODE_LOCK_REQUEST:
827         case TCODE_LOCK_RESPONSE:
828                 p.header[3] = cond_le32_to_cpu(buffer[3]);
829                 p.header_length = 16;
830                 p.payload_length = p.header[3] >> 16;
831                 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
832                         ar_context_abort(ctx, "invalid packet length");
833                         return NULL;
834                 }
835                 break;
836
837         case TCODE_WRITE_RESPONSE:
838         case TCODE_READ_QUADLET_REQUEST:
839         case OHCI_TCODE_PHY_PACKET:
840                 p.header_length = 12;
841                 p.payload_length = 0;
842                 break;
843
844         default:
845                 ar_context_abort(ctx, "invalid tcode");
846                 return NULL;
847         }
848
849         p.payload = (void *) buffer + p.header_length;
850
851         /* FIXME: What to do about evt_* errors? */
852         length = (p.header_length + p.payload_length + 3) / 4;
853         status = cond_le32_to_cpu(buffer[length]);
854         evt    = (status >> 16) & 0x1f;
855
856         p.ack        = evt - 16;
857         p.speed      = (status >> 21) & 0x7;
858         p.timestamp  = status & 0xffff;
859         p.generation = ohci->request_generation;
860
861         log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
862
863         /*
864          * Several controllers, notably from NEC and VIA, forget to
865          * write ack_complete status at PHY packet reception.
866          */
867         if (evt == OHCI1394_evt_no_status &&
868             (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
869                 p.ack = ACK_COMPLETE;
870
871         /*
872          * The OHCI bus reset handler synthesizes a PHY packet with
873          * the new generation number when a bus reset happens (see
874          * section 8.4.2.3).  This helps us determine when a request
875          * was received and make sure we send the response in the same
876          * generation.  We only need this for requests; for responses
877          * we use the unique tlabel for finding the matching
878          * request.
879          *
880          * Alas some chips sometimes emit bus reset packets with a
881          * wrong generation.  We set the correct generation for these
882          * at a slightly incorrect time (in bus_reset_work).
883          */
884         if (evt == OHCI1394_evt_bus_reset) {
885                 if (!(ohci->quirks & QUIRK_RESET_PACKET))
886                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
887         } else if (ctx == &ohci->ar_request_ctx) {
888                 fw_core_handle_request(&ohci->card, &p);
889         } else {
890                 fw_core_handle_response(&ohci->card, &p);
891         }
892
893         return buffer + length + 1;
894 }
895
896 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
897 {
898         void *next;
899
900         while (p < end) {
901                 next = handle_ar_packet(ctx, p);
902                 if (!next)
903                         return p;
904                 p = next;
905         }
906
907         return p;
908 }
909
910 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
911 {
912         unsigned int i;
913
914         i = ar_first_buffer_index(ctx);
915         while (i != end_buffer) {
916                 dma_sync_single_for_device(ctx->ohci->card.device,
917                                            ar_buffer_bus(ctx, i),
918                                            PAGE_SIZE, DMA_FROM_DEVICE);
919                 ar_context_link_page(ctx, i);
920                 i = ar_next_buffer_index(i);
921         }
922 }
923
924 static void ar_context_tasklet(unsigned long data)
925 {
926         struct ar_context *ctx = (struct ar_context *)data;
927         unsigned int end_buffer_index, end_buffer_offset;
928         void *p, *end;
929
930         p = ctx->pointer;
931         if (!p)
932                 return;
933
934         end_buffer_index = ar_search_last_active_buffer(ctx,
935                                                         &end_buffer_offset);
936         ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
937         end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
938
939         if (end_buffer_index < ar_first_buffer_index(ctx)) {
940                 /*
941                  * The filled part of the overall buffer wraps around; handle
942                  * all packets up to the buffer end here.  If the last packet
943                  * wraps around, its tail will be visible after the buffer end
944                  * because the buffer start pages are mapped there again.
945                  */
946                 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
947                 p = handle_ar_packets(ctx, p, buffer_end);
948                 if (p < buffer_end)
949                         goto error;
950                 /* adjust p to point back into the actual buffer */
951                 p -= AR_BUFFERS * PAGE_SIZE;
952         }
953
954         p = handle_ar_packets(ctx, p, end);
955         if (p != end) {
956                 if (p > end)
957                         ar_context_abort(ctx, "inconsistent descriptor");
958                 goto error;
959         }
960
961         ctx->pointer = p;
962         ar_recycle_buffers(ctx, end_buffer_index);
963
964         return;
965
966 error:
967         ctx->pointer = NULL;
968 }
969
970 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
971                            unsigned int descriptors_offset, u32 regs)
972 {
973         unsigned int i;
974         dma_addr_t dma_addr;
975         struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
976         struct descriptor *d;
977
978         ctx->regs        = regs;
979         ctx->ohci        = ohci;
980         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
981
982         for (i = 0; i < AR_BUFFERS; i++) {
983                 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
984                 if (!ctx->pages[i])
985                         goto out_of_memory;
986                 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
987                                         0, PAGE_SIZE, DMA_FROM_DEVICE);
988                 if (dma_mapping_error(ohci->card.device, dma_addr)) {
989                         __free_page(ctx->pages[i]);
990                         ctx->pages[i] = NULL;
991                         goto out_of_memory;
992                 }
993                 set_page_private(ctx->pages[i], dma_addr);
994         }
995
996         for (i = 0; i < AR_BUFFERS; i++)
997                 pages[i]              = ctx->pages[i];
998         for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
999                 pages[AR_BUFFERS + i] = ctx->pages[i];
1000         ctx->buffer = vmap(pages, ARRAY_SIZE(pages), VM_MAP, PAGE_KERNEL);
1001         if (!ctx->buffer)
1002                 goto out_of_memory;
1003
1004         ctx->descriptors     = ohci->misc_buffer     + descriptors_offset;
1005         ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1006
1007         for (i = 0; i < AR_BUFFERS; i++) {
1008                 d = &ctx->descriptors[i];
1009                 d->req_count      = cpu_to_le16(PAGE_SIZE);
1010                 d->control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1011                                                 DESCRIPTOR_STATUS |
1012                                                 DESCRIPTOR_BRANCH_ALWAYS);
1013                 d->data_address   = cpu_to_le32(ar_buffer_bus(ctx, i));
1014                 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1015                         ar_next_buffer_index(i) * sizeof(struct descriptor));
1016         }
1017
1018         return 0;
1019
1020 out_of_memory:
1021         ar_context_release(ctx);
1022
1023         return -ENOMEM;
1024 }
1025
1026 static void ar_context_run(struct ar_context *ctx)
1027 {
1028         unsigned int i;
1029
1030         for (i = 0; i < AR_BUFFERS; i++)
1031                 ar_context_link_page(ctx, i);
1032
1033         ctx->pointer = ctx->buffer;
1034
1035         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1036         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1037 }
1038
1039 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1040 {
1041         __le16 branch;
1042
1043         branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1044
1045         /* figure out which descriptor the branch address goes in */
1046         if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1047                 return d;
1048         else
1049                 return d + z - 1;
1050 }
1051
1052 static void context_tasklet(unsigned long data)
1053 {
1054         struct context *ctx = (struct context *) data;
1055         struct descriptor *d, *last;
1056         u32 address;
1057         int z;
1058         struct descriptor_buffer *desc;
1059
1060         desc = list_entry(ctx->buffer_list.next,
1061                         struct descriptor_buffer, list);
1062         last = ctx->last;
1063         while (last->branch_address != 0) {
1064                 struct descriptor_buffer *old_desc = desc;
1065                 address = le32_to_cpu(last->branch_address);
1066                 z = address & 0xf;
1067                 address &= ~0xf;
1068                 ctx->current_bus = address;
1069
1070                 /* If the branch address points to a buffer outside of the
1071                  * current buffer, advance to the next buffer. */
1072                 if (address < desc->buffer_bus ||
1073                                 address >= desc->buffer_bus + desc->used)
1074                         desc = list_entry(desc->list.next,
1075                                         struct descriptor_buffer, list);
1076                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1077                 last = find_branch_descriptor(d, z);
1078
1079                 if (!ctx->callback(ctx, d, last))
1080                         break;
1081
1082                 if (old_desc != desc) {
1083                         /* If we've advanced to the next buffer, move the
1084                          * previous buffer to the free list. */
1085                         unsigned long flags;
1086                         old_desc->used = 0;
1087                         spin_lock_irqsave(&ctx->ohci->lock, flags);
1088                         list_move_tail(&old_desc->list, &ctx->buffer_list);
1089                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1090                 }
1091                 ctx->last = last;
1092         }
1093 }
1094
1095 /*
1096  * Allocate a new buffer and add it to the list of free buffers for this
1097  * context.  Must be called with ohci->lock held.
1098  */
1099 static int context_add_buffer(struct context *ctx)
1100 {
1101         struct descriptor_buffer *desc;
1102         dma_addr_t uninitialized_var(bus_addr);
1103         int offset;
1104
1105         /*
1106          * 16MB of descriptors should be far more than enough for any DMA
1107          * program.  This will catch run-away userspace or DoS attacks.
1108          */
1109         if (ctx->total_allocation >= 16*1024*1024)
1110                 return -ENOMEM;
1111
1112         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1113                         &bus_addr, GFP_ATOMIC);
1114         if (!desc)
1115                 return -ENOMEM;
1116
1117         offset = (void *)&desc->buffer - (void *)desc;
1118         /*
1119          * Some controllers, like JMicron ones, always issue 0x20-byte DMA reads
1120          * for descriptors, even 0x10-byte ones. This can cause page faults when
1121          * an IOMMU is in use and the oversized read crosses a page boundary.
1122          * Work around this by always leaving at least 0x10 bytes of padding.
1123          */
1124         desc->buffer_size = PAGE_SIZE - offset - 0x10;
1125         desc->buffer_bus = bus_addr + offset;
1126         desc->used = 0;
1127
1128         list_add_tail(&desc->list, &ctx->buffer_list);
1129         ctx->total_allocation += PAGE_SIZE;
1130
1131         return 0;
1132 }
1133
1134 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1135                         u32 regs, descriptor_callback_t callback)
1136 {
1137         ctx->ohci = ohci;
1138         ctx->regs = regs;
1139         ctx->total_allocation = 0;
1140
1141         INIT_LIST_HEAD(&ctx->buffer_list);
1142         if (context_add_buffer(ctx) < 0)
1143                 return -ENOMEM;
1144
1145         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1146                         struct descriptor_buffer, list);
1147
1148         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1149         ctx->callback = callback;
1150
1151         /*
1152          * We put a dummy descriptor in the buffer that has a NULL
1153          * branch address and looks like it's been sent.  That way we
1154          * have a descriptor to append DMA programs to.
1155          */
1156         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1157         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1158         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1159         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1160         ctx->last = ctx->buffer_tail->buffer;
1161         ctx->prev = ctx->buffer_tail->buffer;
1162         ctx->prev_z = 1;
1163
1164         return 0;
1165 }
1166
1167 static void context_release(struct context *ctx)
1168 {
1169         struct fw_card *card = &ctx->ohci->card;
1170         struct descriptor_buffer *desc, *tmp;
1171
1172         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1173                 dma_free_coherent(card->device, PAGE_SIZE, desc,
1174                         desc->buffer_bus -
1175                         ((void *)&desc->buffer - (void *)desc));
1176 }
1177
1178 /* Must be called with ohci->lock held */
1179 static struct descriptor *context_get_descriptors(struct context *ctx,
1180                                                   int z, dma_addr_t *d_bus)
1181 {
1182         struct descriptor *d = NULL;
1183         struct descriptor_buffer *desc = ctx->buffer_tail;
1184
1185         if (z * sizeof(*d) > desc->buffer_size)
1186                 return NULL;
1187
1188         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1189                 /* No room for the descriptor in this buffer, so advance to the
1190                  * next one. */
1191
1192                 if (desc->list.next == &ctx->buffer_list) {
1193                         /* If there is no free buffer next in the list,
1194                          * allocate one. */
1195                         if (context_add_buffer(ctx) < 0)
1196                                 return NULL;
1197                 }
1198                 desc = list_entry(desc->list.next,
1199                                 struct descriptor_buffer, list);
1200                 ctx->buffer_tail = desc;
1201         }
1202
1203         d = desc->buffer + desc->used / sizeof(*d);
1204         memset(d, 0, z * sizeof(*d));
1205         *d_bus = desc->buffer_bus + desc->used;
1206
1207         return d;
1208 }
1209
1210 static void context_run(struct context *ctx, u32 extra)
1211 {
1212         struct fw_ohci *ohci = ctx->ohci;
1213
1214         reg_write(ohci, COMMAND_PTR(ctx->regs),
1215                   le32_to_cpu(ctx->last->branch_address));
1216         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1217         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1218         ctx->running = true;
1219         flush_writes(ohci);
1220 }
1221
1222 static void context_append(struct context *ctx,
1223                            struct descriptor *d, int z, int extra)
1224 {
1225         dma_addr_t d_bus;
1226         struct descriptor_buffer *desc = ctx->buffer_tail;
1227         struct descriptor *d_branch;
1228
1229         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1230
1231         desc->used += (z + extra) * sizeof(*d);
1232
1233         wmb(); /* finish init of new descriptors before branch_address update */
1234
1235         d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1236         d_branch->branch_address = cpu_to_le32(d_bus | z);
1237
1238         /*
1239          * VT6306 incorrectly checks only the single descriptor at the
1240          * CommandPtr when the wake bit is written, so if it's a
1241          * multi-descriptor block starting with an INPUT_MORE, put a copy of
1242          * the branch address in the first descriptor.
1243          *
1244          * Not doing this for transmit contexts since not sure how it interacts
1245          * with skip addresses.
1246          */
1247         if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1248             d_branch != ctx->prev &&
1249             (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1250              cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1251                 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1252         }
1253
1254         ctx->prev = d;
1255         ctx->prev_z = z;
1256 }
1257
1258 static void context_stop(struct context *ctx)
1259 {
1260         struct fw_ohci *ohci = ctx->ohci;
1261         u32 reg;
1262         int i;
1263
1264         reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1265         ctx->running = false;
1266
1267         for (i = 0; i < 1000; i++) {
1268                 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1269                 if ((reg & CONTEXT_ACTIVE) == 0)
1270                         return;
1271
1272                 if (i)
1273                         udelay(10);
1274         }
1275         ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1276 }
1277
1278 struct driver_data {
1279         u8 inline_data[8];
1280         struct fw_packet *packet;
1281 };
1282
1283 /*
1284  * This function apppends a packet to the DMA queue for transmission.
1285  * Must always be called with the ochi->lock held to ensure proper
1286  * generation handling and locking around packet queue manipulation.
1287  */
1288 static int at_context_queue_packet(struct context *ctx,
1289                                    struct fw_packet *packet)
1290 {
1291         struct fw_ohci *ohci = ctx->ohci;
1292         dma_addr_t d_bus, uninitialized_var(payload_bus);
1293         struct driver_data *driver_data;
1294         struct descriptor *d, *last;
1295         __le32 *header;
1296         int z, tcode;
1297
1298         d = context_get_descriptors(ctx, 4, &d_bus);
1299         if (d == NULL) {
1300                 packet->ack = RCODE_SEND_ERROR;
1301                 return -1;
1302         }
1303
1304         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1305         d[0].res_count = cpu_to_le16(packet->timestamp);
1306
1307         /*
1308          * The DMA format for asynchronous link packets is different
1309          * from the IEEE1394 layout, so shift the fields around
1310          * accordingly.
1311          */
1312
1313         tcode = (packet->header[0] >> 4) & 0x0f;
1314         header = (__le32 *) &d[1];
1315         switch (tcode) {
1316         case TCODE_WRITE_QUADLET_REQUEST:
1317         case TCODE_WRITE_BLOCK_REQUEST:
1318         case TCODE_WRITE_RESPONSE:
1319         case TCODE_READ_QUADLET_REQUEST:
1320         case TCODE_READ_BLOCK_REQUEST:
1321         case TCODE_READ_QUADLET_RESPONSE:
1322         case TCODE_READ_BLOCK_RESPONSE:
1323         case TCODE_LOCK_REQUEST:
1324         case TCODE_LOCK_RESPONSE:
1325                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1326                                         (packet->speed << 16));
1327                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1328                                         (packet->header[0] & 0xffff0000));
1329                 header[2] = cpu_to_le32(packet->header[2]);
1330
1331                 if (TCODE_IS_BLOCK_PACKET(tcode))
1332                         header[3] = cpu_to_le32(packet->header[3]);
1333                 else
1334                         header[3] = (__force __le32) packet->header[3];
1335
1336                 d[0].req_count = cpu_to_le16(packet->header_length);
1337                 break;
1338
1339         case TCODE_LINK_INTERNAL:
1340                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1341                                         (packet->speed << 16));
1342                 header[1] = cpu_to_le32(packet->header[1]);
1343                 header[2] = cpu_to_le32(packet->header[2]);
1344                 d[0].req_count = cpu_to_le16(12);
1345
1346                 if (is_ping_packet(&packet->header[1]))
1347                         d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1348                 break;
1349
1350         case TCODE_STREAM_DATA:
1351                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1352                                         (packet->speed << 16));
1353                 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1354                 d[0].req_count = cpu_to_le16(8);
1355                 break;
1356
1357         default:
1358                 /* BUG(); */
1359                 packet->ack = RCODE_SEND_ERROR;
1360                 return -1;
1361         }
1362
1363         BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1364         driver_data = (struct driver_data *) &d[3];
1365         driver_data->packet = packet;
1366         packet->driver_data = driver_data;
1367
1368         if (packet->payload_length > 0) {
1369                 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1370                         payload_bus = dma_map_single(ohci->card.device,
1371                                                      packet->payload,
1372                                                      packet->payload_length,
1373                                                      DMA_TO_DEVICE);
1374                         if (dma_mapping_error(ohci->card.device, payload_bus)) {
1375                                 packet->ack = RCODE_SEND_ERROR;
1376                                 return -1;
1377                         }
1378                         packet->payload_bus     = payload_bus;
1379                         packet->payload_mapped  = true;
1380                 } else {
1381                         memcpy(driver_data->inline_data, packet->payload,
1382                                packet->payload_length);
1383                         payload_bus = d_bus + 3 * sizeof(*d);
1384                 }
1385
1386                 d[2].req_count    = cpu_to_le16(packet->payload_length);
1387                 d[2].data_address = cpu_to_le32(payload_bus);
1388                 last = &d[2];
1389                 z = 3;
1390         } else {
1391                 last = &d[0];
1392                 z = 2;
1393         }
1394
1395         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1396                                      DESCRIPTOR_IRQ_ALWAYS |
1397                                      DESCRIPTOR_BRANCH_ALWAYS);
1398
1399         /* FIXME: Document how the locking works. */
1400         if (ohci->generation != packet->generation) {
1401                 if (packet->payload_mapped)
1402                         dma_unmap_single(ohci->card.device, payload_bus,
1403                                          packet->payload_length, DMA_TO_DEVICE);
1404                 packet->ack = RCODE_GENERATION;
1405                 return -1;
1406         }
1407
1408         context_append(ctx, d, z, 4 - z);
1409
1410         if (ctx->running)
1411                 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1412         else
1413                 context_run(ctx, 0);
1414
1415         return 0;
1416 }
1417
1418 static void at_context_flush(struct context *ctx)
1419 {
1420         tasklet_disable(&ctx->tasklet);
1421
1422         ctx->flushing = true;
1423         context_tasklet((unsigned long)ctx);
1424         ctx->flushing = false;
1425
1426         tasklet_enable(&ctx->tasklet);
1427 }
1428
1429 static int handle_at_packet(struct context *context,
1430                             struct descriptor *d,
1431                             struct descriptor *last)
1432 {
1433         struct driver_data *driver_data;
1434         struct fw_packet *packet;
1435         struct fw_ohci *ohci = context->ohci;
1436         int evt;
1437
1438         if (last->transfer_status == 0 && !context->flushing)
1439                 /* This descriptor isn't done yet, stop iteration. */
1440                 return 0;
1441
1442         driver_data = (struct driver_data *) &d[3];
1443         packet = driver_data->packet;
1444         if (packet == NULL)
1445                 /* This packet was cancelled, just continue. */
1446                 return 1;
1447
1448         if (packet->payload_mapped)
1449                 dma_unmap_single(ohci->card.device, packet->payload_bus,
1450                                  packet->payload_length, DMA_TO_DEVICE);
1451
1452         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1453         packet->timestamp = le16_to_cpu(last->res_count);
1454
1455         log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1456
1457         switch (evt) {
1458         case OHCI1394_evt_timeout:
1459                 /* Async response transmit timed out. */
1460                 packet->ack = RCODE_CANCELLED;
1461                 break;
1462
1463         case OHCI1394_evt_flushed:
1464                 /*
1465                  * The packet was flushed should give same error as
1466                  * when we try to use a stale generation count.
1467                  */
1468                 packet->ack = RCODE_GENERATION;
1469                 break;
1470
1471         case OHCI1394_evt_missing_ack:
1472                 if (context->flushing)
1473                         packet->ack = RCODE_GENERATION;
1474                 else {
1475                         /*
1476                          * Using a valid (current) generation count, but the
1477                          * node is not on the bus or not sending acks.
1478                          */
1479                         packet->ack = RCODE_NO_ACK;
1480                 }
1481                 break;
1482
1483         case ACK_COMPLETE + 0x10:
1484         case ACK_PENDING + 0x10:
1485         case ACK_BUSY_X + 0x10:
1486         case ACK_BUSY_A + 0x10:
1487         case ACK_BUSY_B + 0x10:
1488         case ACK_DATA_ERROR + 0x10:
1489         case ACK_TYPE_ERROR + 0x10:
1490                 packet->ack = evt - 0x10;
1491                 break;
1492
1493         case OHCI1394_evt_no_status:
1494                 if (context->flushing) {
1495                         packet->ack = RCODE_GENERATION;
1496                         break;
1497                 }
1498                 /* fall through */
1499
1500         default:
1501                 packet->ack = RCODE_SEND_ERROR;
1502                 break;
1503         }
1504
1505         packet->callback(packet, &ohci->card, packet->ack);
1506
1507         return 1;
1508 }
1509
1510 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1511 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1512 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1513 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1514 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1515
1516 static void handle_local_rom(struct fw_ohci *ohci,
1517                              struct fw_packet *packet, u32 csr)
1518 {
1519         struct fw_packet response;
1520         int tcode, length, i;
1521
1522         tcode = HEADER_GET_TCODE(packet->header[0]);
1523         if (TCODE_IS_BLOCK_PACKET(tcode))
1524                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1525         else
1526                 length = 4;
1527
1528         i = csr - CSR_CONFIG_ROM;
1529         if (i + length > CONFIG_ROM_SIZE) {
1530                 fw_fill_response(&response, packet->header,
1531                                  RCODE_ADDRESS_ERROR, NULL, 0);
1532         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1533                 fw_fill_response(&response, packet->header,
1534                                  RCODE_TYPE_ERROR, NULL, 0);
1535         } else {
1536                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1537                                  (void *) ohci->config_rom + i, length);
1538         }
1539
1540         fw_core_handle_response(&ohci->card, &response);
1541 }
1542
1543 static void handle_local_lock(struct fw_ohci *ohci,
1544                               struct fw_packet *packet, u32 csr)
1545 {
1546         struct fw_packet response;
1547         int tcode, length, ext_tcode, sel, try;
1548         __be32 *payload, lock_old;
1549         u32 lock_arg, lock_data;
1550
1551         tcode = HEADER_GET_TCODE(packet->header[0]);
1552         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1553         payload = packet->payload;
1554         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1555
1556         if (tcode == TCODE_LOCK_REQUEST &&
1557             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1558                 lock_arg = be32_to_cpu(payload[0]);
1559                 lock_data = be32_to_cpu(payload[1]);
1560         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1561                 lock_arg = 0;
1562                 lock_data = 0;
1563         } else {
1564                 fw_fill_response(&response, packet->header,
1565                                  RCODE_TYPE_ERROR, NULL, 0);
1566                 goto out;
1567         }
1568
1569         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1570         reg_write(ohci, OHCI1394_CSRData, lock_data);
1571         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1572         reg_write(ohci, OHCI1394_CSRControl, sel);
1573
1574         for (try = 0; try < 20; try++)
1575                 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1576                         lock_old = cpu_to_be32(reg_read(ohci,
1577                                                         OHCI1394_CSRData));
1578                         fw_fill_response(&response, packet->header,
1579                                          RCODE_COMPLETE,
1580                                          &lock_old, sizeof(lock_old));
1581                         goto out;
1582                 }
1583
1584         ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1585         fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1586
1587  out:
1588         fw_core_handle_response(&ohci->card, &response);
1589 }
1590
1591 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1592 {
1593         u64 offset, csr;
1594
1595         if (ctx == &ctx->ohci->at_request_ctx) {
1596                 packet->ack = ACK_PENDING;
1597                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1598         }
1599
1600         offset =
1601                 ((unsigned long long)
1602                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1603                 packet->header[2];
1604         csr = offset - CSR_REGISTER_BASE;
1605
1606         /* Handle config rom reads. */
1607         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1608                 handle_local_rom(ctx->ohci, packet, csr);
1609         else switch (csr) {
1610         case CSR_BUS_MANAGER_ID:
1611         case CSR_BANDWIDTH_AVAILABLE:
1612         case CSR_CHANNELS_AVAILABLE_HI:
1613         case CSR_CHANNELS_AVAILABLE_LO:
1614                 handle_local_lock(ctx->ohci, packet, csr);
1615                 break;
1616         default:
1617                 if (ctx == &ctx->ohci->at_request_ctx)
1618                         fw_core_handle_request(&ctx->ohci->card, packet);
1619                 else
1620                         fw_core_handle_response(&ctx->ohci->card, packet);
1621                 break;
1622         }
1623
1624         if (ctx == &ctx->ohci->at_response_ctx) {
1625                 packet->ack = ACK_COMPLETE;
1626                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1627         }
1628 }
1629
1630 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1631 {
1632         unsigned long flags;
1633         int ret;
1634
1635         spin_lock_irqsave(&ctx->ohci->lock, flags);
1636
1637         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1638             ctx->ohci->generation == packet->generation) {
1639                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1640                 handle_local_request(ctx, packet);
1641                 return;
1642         }
1643
1644         ret = at_context_queue_packet(ctx, packet);
1645         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1646
1647         if (ret < 0)
1648                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1649
1650 }
1651
1652 static void detect_dead_context(struct fw_ohci *ohci,
1653                                 const char *name, unsigned int regs)
1654 {
1655         u32 ctl;
1656
1657         ctl = reg_read(ohci, CONTROL_SET(regs));
1658         if (ctl & CONTEXT_DEAD)
1659                 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1660                         name, evts[ctl & 0x1f]);
1661 }
1662
1663 static void handle_dead_contexts(struct fw_ohci *ohci)
1664 {
1665         unsigned int i;
1666         char name[8];
1667
1668         detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1669         detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1670         detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1671         detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1672         for (i = 0; i < 32; ++i) {
1673                 if (!(ohci->it_context_support & (1 << i)))
1674                         continue;
1675                 sprintf(name, "IT%u", i);
1676                 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1677         }
1678         for (i = 0; i < 32; ++i) {
1679                 if (!(ohci->ir_context_support & (1 << i)))
1680                         continue;
1681                 sprintf(name, "IR%u", i);
1682                 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1683         }
1684         /* TODO: maybe try to flush and restart the dead contexts */
1685 }
1686
1687 static u32 cycle_timer_ticks(u32 cycle_timer)
1688 {
1689         u32 ticks;
1690
1691         ticks = cycle_timer & 0xfff;
1692         ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1693         ticks += (3072 * 8000) * (cycle_timer >> 25);
1694
1695         return ticks;
1696 }
1697
1698 /*
1699  * Some controllers exhibit one or more of the following bugs when updating the
1700  * iso cycle timer register:
1701  *  - When the lowest six bits are wrapping around to zero, a read that happens
1702  *    at the same time will return garbage in the lowest ten bits.
1703  *  - When the cycleOffset field wraps around to zero, the cycleCount field is
1704  *    not incremented for about 60 ns.
1705  *  - Occasionally, the entire register reads zero.
1706  *
1707  * To catch these, we read the register three times and ensure that the
1708  * difference between each two consecutive reads is approximately the same, i.e.
1709  * less than twice the other.  Furthermore, any negative difference indicates an
1710  * error.  (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1711  * execute, so we have enough precision to compute the ratio of the differences.)
1712  */
1713 static u32 get_cycle_time(struct fw_ohci *ohci)
1714 {
1715         u32 c0, c1, c2;
1716         u32 t0, t1, t2;
1717         s32 diff01, diff12;
1718         int i;
1719
1720         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1721
1722         if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1723                 i = 0;
1724                 c1 = c2;
1725                 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1726                 do {
1727                         c0 = c1;
1728                         c1 = c2;
1729                         c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1730                         t0 = cycle_timer_ticks(c0);
1731                         t1 = cycle_timer_ticks(c1);
1732                         t2 = cycle_timer_ticks(c2);
1733                         diff01 = t1 - t0;
1734                         diff12 = t2 - t1;
1735                 } while ((diff01 <= 0 || diff12 <= 0 ||
1736                           diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1737                          && i++ < 20);
1738         }
1739
1740         return c2;
1741 }
1742
1743 /*
1744  * This function has to be called at least every 64 seconds.  The bus_time
1745  * field stores not only the upper 25 bits of the BUS_TIME register but also
1746  * the most significant bit of the cycle timer in bit 6 so that we can detect
1747  * changes in this bit.
1748  */
1749 static u32 update_bus_time(struct fw_ohci *ohci)
1750 {
1751         u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1752
1753         if (unlikely(!ohci->bus_time_running)) {
1754                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1755                 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1756                                  (cycle_time_seconds & 0x40);
1757                 ohci->bus_time_running = true;
1758         }
1759
1760         if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1761                 ohci->bus_time += 0x40;
1762
1763         return ohci->bus_time | cycle_time_seconds;
1764 }
1765
1766 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1767 {
1768         int reg;
1769
1770         mutex_lock(&ohci->phy_reg_mutex);
1771         reg = write_phy_reg(ohci, 7, port_index);
1772         if (reg >= 0)
1773                 reg = read_phy_reg(ohci, 8);
1774         mutex_unlock(&ohci->phy_reg_mutex);
1775         if (reg < 0)
1776                 return reg;
1777
1778         switch (reg & 0x0f) {
1779         case 0x06:
1780                 return 2;       /* is child node (connected to parent node) */
1781         case 0x0e:
1782                 return 3;       /* is parent node (connected to child node) */
1783         }
1784         return 1;               /* not connected */
1785 }
1786
1787 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1788         int self_id_count)
1789 {
1790         int i;
1791         u32 entry;
1792
1793         for (i = 0; i < self_id_count; i++) {
1794                 entry = ohci->self_id_buffer[i];
1795                 if ((self_id & 0xff000000) == (entry & 0xff000000))
1796                         return -1;
1797                 if ((self_id & 0xff000000) < (entry & 0xff000000))
1798                         return i;
1799         }
1800         return i;
1801 }
1802
1803 static int initiated_reset(struct fw_ohci *ohci)
1804 {
1805         int reg;
1806         int ret = 0;
1807
1808         mutex_lock(&ohci->phy_reg_mutex);
1809         reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1810         if (reg >= 0) {
1811                 reg = read_phy_reg(ohci, 8);
1812                 reg |= 0x40;
1813                 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1814                 if (reg >= 0) {
1815                         reg = read_phy_reg(ohci, 12); /* read register 12 */
1816                         if (reg >= 0) {
1817                                 if ((reg & 0x08) == 0x08) {
1818                                         /* bit 3 indicates "initiated reset" */
1819                                         ret = 0x2;
1820                                 }
1821                         }
1822                 }
1823         }
1824         mutex_unlock(&ohci->phy_reg_mutex);
1825         return ret;
1826 }
1827
1828 /*
1829  * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1830  * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1831  * Construct the selfID from phy register contents.
1832  */
1833 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1834 {
1835         int reg, i, pos, status;
1836         /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1837         u32 self_id = 0x8040c800;
1838
1839         reg = reg_read(ohci, OHCI1394_NodeID);
1840         if (!(reg & OHCI1394_NodeID_idValid)) {
1841                 ohci_notice(ohci,
1842                             "node ID not valid, new bus reset in progress\n");
1843                 return -EBUSY;
1844         }
1845         self_id |= ((reg & 0x3f) << 24); /* phy ID */
1846
1847         reg = ohci_read_phy_reg(&ohci->card, 4);
1848         if (reg < 0)
1849                 return reg;
1850         self_id |= ((reg & 0x07) << 8); /* power class */
1851
1852         reg = ohci_read_phy_reg(&ohci->card, 1);
1853         if (reg < 0)
1854                 return reg;
1855         self_id |= ((reg & 0x3f) << 16); /* gap count */
1856
1857         for (i = 0; i < 3; i++) {
1858                 status = get_status_for_port(ohci, i);
1859                 if (status < 0)
1860                         return status;
1861                 self_id |= ((status & 0x3) << (6 - (i * 2)));
1862         }
1863
1864         self_id |= initiated_reset(ohci);
1865
1866         pos = get_self_id_pos(ohci, self_id, self_id_count);
1867         if (pos >= 0) {
1868                 memmove(&(ohci->self_id_buffer[pos+1]),
1869                         &(ohci->self_id_buffer[pos]),
1870                         (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1871                 ohci->self_id_buffer[pos] = self_id;
1872                 self_id_count++;
1873         }
1874         return self_id_count;
1875 }
1876
1877 static void bus_reset_work(struct work_struct *work)
1878 {
1879         struct fw_ohci *ohci =
1880                 container_of(work, struct fw_ohci, bus_reset_work);
1881         int self_id_count, generation, new_generation, i, j;
1882         u32 reg;
1883         void *free_rom = NULL;
1884         dma_addr_t free_rom_bus = 0;
1885         bool is_new_root;
1886
1887         reg = reg_read(ohci, OHCI1394_NodeID);
1888         if (!(reg & OHCI1394_NodeID_idValid)) {
1889                 ohci_notice(ohci,
1890                             "node ID not valid, new bus reset in progress\n");
1891                 return;
1892         }
1893         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1894                 ohci_notice(ohci, "malconfigured bus\n");
1895                 return;
1896         }
1897         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1898                                OHCI1394_NodeID_nodeNumber);
1899
1900         is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1901         if (!(ohci->is_root && is_new_root))
1902                 reg_write(ohci, OHCI1394_LinkControlSet,
1903                           OHCI1394_LinkControl_cycleMaster);
1904         ohci->is_root = is_new_root;
1905
1906         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1907         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1908                 ohci_notice(ohci, "self ID receive error\n");
1909                 return;
1910         }
1911         /*
1912          * The count in the SelfIDCount register is the number of
1913          * bytes in the self ID receive buffer.  Since we also receive
1914          * the inverted quadlets and a header quadlet, we shift one
1915          * bit extra to get the actual number of self IDs.
1916          */
1917         self_id_count = (reg >> 3) & 0xff;
1918
1919         if (self_id_count > 252) {
1920                 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1921                 return;
1922         }
1923
1924         generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1925         rmb();
1926
1927         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1928                 u32 id  = cond_le32_to_cpu(ohci->self_id[i]);
1929                 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1930
1931                 if (id != ~id2) {
1932                         /*
1933                          * If the invalid data looks like a cycle start packet,
1934                          * it's likely to be the result of the cycle master
1935                          * having a wrong gap count.  In this case, the self IDs
1936                          * so far are valid and should be processed so that the
1937                          * bus manager can then correct the gap count.
1938                          */
1939                         if (id == 0xffff008f) {
1940                                 ohci_notice(ohci, "ignoring spurious self IDs\n");
1941                                 self_id_count = j;
1942                                 break;
1943                         }
1944
1945                         ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1946                                     j, self_id_count, id, id2);
1947                         return;
1948                 }
1949                 ohci->self_id_buffer[j] = id;
1950         }
1951
1952         if (ohci->quirks & QUIRK_TI_SLLZ059) {
1953                 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1954                 if (self_id_count < 0) {
1955                         ohci_notice(ohci,
1956                                     "could not construct local self ID\n");
1957                         return;
1958                 }
1959         }
1960
1961         if (self_id_count == 0) {
1962                 ohci_notice(ohci, "no self IDs\n");
1963                 return;
1964         }
1965         rmb();
1966
1967         /*
1968          * Check the consistency of the self IDs we just read.  The
1969          * problem we face is that a new bus reset can start while we
1970          * read out the self IDs from the DMA buffer. If this happens,
1971          * the DMA buffer will be overwritten with new self IDs and we
1972          * will read out inconsistent data.  The OHCI specification
1973          * (section 11.2) recommends a technique similar to
1974          * linux/seqlock.h, where we remember the generation of the
1975          * self IDs in the buffer before reading them out and compare
1976          * it to the current generation after reading them out.  If
1977          * the two generations match we know we have a consistent set
1978          * of self IDs.
1979          */
1980
1981         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1982         if (new_generation != generation) {
1983                 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1984                 return;
1985         }
1986
1987         /* FIXME: Document how the locking works. */
1988         spin_lock_irq(&ohci->lock);
1989
1990         ohci->generation = -1; /* prevent AT packet queueing */
1991         context_stop(&ohci->at_request_ctx);
1992         context_stop(&ohci->at_response_ctx);
1993
1994         spin_unlock_irq(&ohci->lock);
1995
1996         /*
1997          * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1998          * packets in the AT queues and software needs to drain them.
1999          * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2000          */
2001         at_context_flush(&ohci->at_request_ctx);
2002         at_context_flush(&ohci->at_response_ctx);
2003
2004         spin_lock_irq(&ohci->lock);
2005
2006         ohci->generation = generation;
2007         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2008
2009         if (ohci->quirks & QUIRK_RESET_PACKET)
2010                 ohci->request_generation = generation;
2011
2012         /*
2013          * This next bit is unrelated to the AT context stuff but we
2014          * have to do it under the spinlock also.  If a new config rom
2015          * was set up before this reset, the old one is now no longer
2016          * in use and we can free it. Update the config rom pointers
2017          * to point to the current config rom and clear the
2018          * next_config_rom pointer so a new update can take place.
2019          */
2020
2021         if (ohci->next_config_rom != NULL) {
2022                 if (ohci->next_config_rom != ohci->config_rom) {
2023                         free_rom      = ohci->config_rom;
2024                         free_rom_bus  = ohci->config_rom_bus;
2025                 }
2026                 ohci->config_rom      = ohci->next_config_rom;
2027                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
2028                 ohci->next_config_rom = NULL;
2029
2030                 /*
2031                  * Restore config_rom image and manually update
2032                  * config_rom registers.  Writing the header quadlet
2033                  * will indicate that the config rom is ready, so we
2034                  * do that last.
2035                  */
2036                 reg_write(ohci, OHCI1394_BusOptions,
2037                           be32_to_cpu(ohci->config_rom[2]));
2038                 ohci->config_rom[0] = ohci->next_header;
2039                 reg_write(ohci, OHCI1394_ConfigROMhdr,
2040                           be32_to_cpu(ohci->next_header));
2041         }
2042
2043         if (param_remote_dma) {
2044                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2045                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2046         }
2047
2048         spin_unlock_irq(&ohci->lock);
2049
2050         if (free_rom)
2051                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2052                                   free_rom, free_rom_bus);
2053
2054         log_selfids(ohci, generation, self_id_count);
2055
2056         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2057                                  self_id_count, ohci->self_id_buffer,
2058                                  ohci->csr_state_setclear_abdicate);
2059         ohci->csr_state_setclear_abdicate = false;
2060 }
2061
2062 static irqreturn_t irq_handler(int irq, void *data)
2063 {
2064         struct fw_ohci *ohci = data;
2065         u32 event, iso_event;
2066         int i;
2067
2068         event = reg_read(ohci, OHCI1394_IntEventClear);
2069
2070         if (!event || !~event)
2071                 return IRQ_NONE;
2072
2073         /*
2074          * busReset and postedWriteErr must not be cleared yet
2075          * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2076          */
2077         reg_write(ohci, OHCI1394_IntEventClear,
2078                   event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2079         log_irqs(ohci, event);
2080
2081         if (event & OHCI1394_selfIDComplete)
2082                 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2083
2084         if (event & OHCI1394_RQPkt)
2085                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2086
2087         if (event & OHCI1394_RSPkt)
2088                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2089
2090         if (event & OHCI1394_reqTxComplete)
2091                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2092
2093         if (event & OHCI1394_respTxComplete)
2094                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2095
2096         if (event & OHCI1394_isochRx) {
2097                 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2098                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2099
2100                 while (iso_event) {
2101                         i = ffs(iso_event) - 1;
2102                         tasklet_schedule(
2103                                 &ohci->ir_context_list[i].context.tasklet);
2104                         iso_event &= ~(1 << i);
2105                 }
2106         }
2107
2108         if (event & OHCI1394_isochTx) {
2109                 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2110                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2111
2112                 while (iso_event) {
2113                         i = ffs(iso_event) - 1;
2114                         tasklet_schedule(
2115                                 &ohci->it_context_list[i].context.tasklet);
2116                         iso_event &= ~(1 << i);
2117                 }
2118         }
2119
2120         if (unlikely(event & OHCI1394_regAccessFail))
2121                 ohci_err(ohci, "register access failure\n");
2122
2123         if (unlikely(event & OHCI1394_postedWriteErr)) {
2124                 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2125                 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2126                 reg_write(ohci, OHCI1394_IntEventClear,
2127                           OHCI1394_postedWriteErr);
2128                 if (printk_ratelimit())
2129                         ohci_err(ohci, "PCI posted write error\n");
2130         }
2131
2132         if (unlikely(event & OHCI1394_cycleTooLong)) {
2133                 if (printk_ratelimit())
2134                         ohci_notice(ohci, "isochronous cycle too long\n");
2135                 reg_write(ohci, OHCI1394_LinkControlSet,
2136                           OHCI1394_LinkControl_cycleMaster);
2137         }
2138
2139         if (unlikely(event & OHCI1394_cycleInconsistent)) {
2140                 /*
2141                  * We need to clear this event bit in order to make
2142                  * cycleMatch isochronous I/O work.  In theory we should
2143                  * stop active cycleMatch iso contexts now and restart
2144                  * them at least two cycles later.  (FIXME?)
2145                  */
2146                 if (printk_ratelimit())
2147                         ohci_notice(ohci, "isochronous cycle inconsistent\n");
2148         }
2149
2150         if (unlikely(event & OHCI1394_unrecoverableError))
2151                 handle_dead_contexts(ohci);
2152
2153         if (event & OHCI1394_cycle64Seconds) {
2154                 spin_lock(&ohci->lock);
2155                 update_bus_time(ohci);
2156                 spin_unlock(&ohci->lock);
2157         } else
2158                 flush_writes(ohci);
2159
2160         return IRQ_HANDLED;
2161 }
2162
2163 static int software_reset(struct fw_ohci *ohci)
2164 {
2165         u32 val;
2166         int i;
2167
2168         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2169         for (i = 0; i < 500; i++) {
2170                 val = reg_read(ohci, OHCI1394_HCControlSet);
2171                 if (!~val)
2172                         return -ENODEV; /* Card was ejected. */
2173
2174                 if (!(val & OHCI1394_HCControl_softReset))
2175                         return 0;
2176
2177                 msleep(1);
2178         }
2179
2180         return -EBUSY;
2181 }
2182
2183 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2184 {
2185         size_t size = length * 4;
2186
2187         memcpy(dest, src, size);
2188         if (size < CONFIG_ROM_SIZE)
2189                 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2190 }
2191
2192 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2193 {
2194         bool enable_1394a;
2195         int ret, clear, set, offset;
2196
2197         /* Check if the driver should configure link and PHY. */
2198         if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2199               OHCI1394_HCControl_programPhyEnable))
2200                 return 0;
2201
2202         /* Paranoia: check whether the PHY supports 1394a, too. */
2203         enable_1394a = false;
2204         ret = read_phy_reg(ohci, 2);
2205         if (ret < 0)
2206                 return ret;
2207         if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2208                 ret = read_paged_phy_reg(ohci, 1, 8);
2209                 if (ret < 0)
2210                         return ret;
2211                 if (ret >= 1)
2212                         enable_1394a = true;
2213         }
2214
2215         if (ohci->quirks & QUIRK_NO_1394A)
2216                 enable_1394a = false;
2217
2218         /* Configure PHY and link consistently. */
2219         if (enable_1394a) {
2220                 clear = 0;
2221                 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2222         } else {
2223                 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2224                 set = 0;
2225         }
2226         ret = update_phy_reg(ohci, 5, clear, set);
2227         if (ret < 0)
2228                 return ret;
2229
2230         if (enable_1394a)
2231                 offset = OHCI1394_HCControlSet;
2232         else
2233                 offset = OHCI1394_HCControlClear;
2234         reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2235
2236         /* Clean up: configuration has been taken care of. */
2237         reg_write(ohci, OHCI1394_HCControlClear,
2238                   OHCI1394_HCControl_programPhyEnable);
2239
2240         return 0;
2241 }
2242
2243 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2244 {
2245         /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2246         static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2247         int reg, i;
2248
2249         reg = read_phy_reg(ohci, 2);
2250         if (reg < 0)
2251                 return reg;
2252         if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2253                 return 0;
2254
2255         for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2256                 reg = read_paged_phy_reg(ohci, 1, i + 10);
2257                 if (reg < 0)
2258                         return reg;
2259                 if (reg != id[i])
2260                         return 0;
2261         }
2262         return 1;
2263 }
2264
2265 static int ohci_enable(struct fw_card *card,
2266                        const __be32 *config_rom, size_t length)
2267 {
2268         struct fw_ohci *ohci = fw_ohci(card);
2269         u32 lps, version, irqs;
2270         int i, ret;
2271
2272         ret = software_reset(ohci);
2273         if (ret < 0) {
2274                 ohci_err(ohci, "failed to reset ohci card\n");
2275                 return ret;
2276         }
2277
2278         /*
2279          * Now enable LPS, which we need in order to start accessing
2280          * most of the registers.  In fact, on some cards (ALI M5251),
2281          * accessing registers in the SClk domain without LPS enabled
2282          * will lock up the machine.  Wait 50msec to make sure we have
2283          * full link enabled.  However, with some cards (well, at least
2284          * a JMicron PCIe card), we have to try again sometimes.
2285          *
2286          * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2287          * cannot actually use the phy at that time.  These need tens of
2288          * millisecods pause between LPS write and first phy access too.
2289          */
2290
2291         reg_write(ohci, OHCI1394_HCControlSet,
2292                   OHCI1394_HCControl_LPS |
2293                   OHCI1394_HCControl_postedWriteEnable);
2294         flush_writes(ohci);
2295
2296         for (lps = 0, i = 0; !lps && i < 3; i++) {
2297                 msleep(50);
2298                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2299                       OHCI1394_HCControl_LPS;
2300         }
2301
2302         if (!lps) {
2303                 ohci_err(ohci, "failed to set Link Power Status\n");
2304                 return -EIO;
2305         }
2306
2307         if (ohci->quirks & QUIRK_TI_SLLZ059) {
2308                 ret = probe_tsb41ba3d(ohci);
2309                 if (ret < 0)
2310                         return ret;
2311                 if (ret)
2312                         ohci_notice(ohci, "local TSB41BA3D phy\n");
2313                 else
2314                         ohci->quirks &= ~QUIRK_TI_SLLZ059;
2315         }
2316
2317         reg_write(ohci, OHCI1394_HCControlClear,
2318                   OHCI1394_HCControl_noByteSwapData);
2319
2320         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2321         reg_write(ohci, OHCI1394_LinkControlSet,
2322                   OHCI1394_LinkControl_cycleTimerEnable |
2323                   OHCI1394_LinkControl_cycleMaster);
2324
2325         reg_write(ohci, OHCI1394_ATRetries,
2326                   OHCI1394_MAX_AT_REQ_RETRIES |
2327                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2328                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2329                   (200 << 16));
2330
2331         ohci->bus_time_running = false;
2332
2333         for (i = 0; i < 32; i++)
2334                 if (ohci->ir_context_support & (1 << i))
2335                         reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2336                                   IR_CONTEXT_MULTI_CHANNEL_MODE);
2337
2338         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2339         if (version >= OHCI_VERSION_1_1) {
2340                 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2341                           0xfffffffe);
2342                 card->broadcast_channel_auto_allocated = true;
2343         }
2344
2345         /* Get implemented bits of the priority arbitration request counter. */
2346         reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2347         ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2348         reg_write(ohci, OHCI1394_FairnessControl, 0);
2349         card->priority_budget_implemented = ohci->pri_req_max != 0;
2350
2351         reg_write(ohci, OHCI1394_PhyUpperBound, FW_MAX_PHYSICAL_RANGE >> 16);
2352         reg_write(ohci, OHCI1394_IntEventClear, ~0);
2353         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2354
2355         ret = configure_1394a_enhancements(ohci);
2356         if (ret < 0)
2357                 return ret;
2358
2359         /* Activate link_on bit and contender bit in our self ID packets.*/
2360         ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2361         if (ret < 0)
2362                 return ret;
2363
2364         /*
2365          * When the link is not yet enabled, the atomic config rom
2366          * update mechanism described below in ohci_set_config_rom()
2367          * is not active.  We have to update ConfigRomHeader and
2368          * BusOptions manually, and the write to ConfigROMmap takes
2369          * effect immediately.  We tie this to the enabling of the
2370          * link, so we have a valid config rom before enabling - the
2371          * OHCI requires that ConfigROMhdr and BusOptions have valid
2372          * values before enabling.
2373          *
2374          * However, when the ConfigROMmap is written, some controllers
2375          * always read back quadlets 0 and 2 from the config rom to
2376          * the ConfigRomHeader and BusOptions registers on bus reset.
2377          * They shouldn't do that in this initial case where the link
2378          * isn't enabled.  This means we have to use the same
2379          * workaround here, setting the bus header to 0 and then write
2380          * the right values in the bus reset tasklet.
2381          */
2382
2383         if (config_rom) {
2384                 ohci->next_config_rom =
2385                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2386                                            &ohci->next_config_rom_bus,
2387                                            GFP_KERNEL);
2388                 if (ohci->next_config_rom == NULL)
2389                         return -ENOMEM;
2390
2391                 copy_config_rom(ohci->next_config_rom, config_rom, length);
2392         } else {
2393                 /*
2394                  * In the suspend case, config_rom is NULL, which
2395                  * means that we just reuse the old config rom.
2396                  */
2397                 ohci->next_config_rom = ohci->config_rom;
2398                 ohci->next_config_rom_bus = ohci->config_rom_bus;
2399         }
2400
2401         ohci->next_header = ohci->next_config_rom[0];
2402         ohci->next_config_rom[0] = 0;
2403         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2404         reg_write(ohci, OHCI1394_BusOptions,
2405                   be32_to_cpu(ohci->next_config_rom[2]));
2406         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2407
2408         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2409
2410         irqs =  OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2411                 OHCI1394_RQPkt | OHCI1394_RSPkt |
2412                 OHCI1394_isochTx | OHCI1394_isochRx |
2413                 OHCI1394_postedWriteErr |
2414                 OHCI1394_selfIDComplete |
2415                 OHCI1394_regAccessFail |
2416                 OHCI1394_cycleInconsistent |
2417                 OHCI1394_unrecoverableError |
2418                 OHCI1394_cycleTooLong |
2419                 OHCI1394_masterIntEnable;
2420         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2421                 irqs |= OHCI1394_busReset;
2422         reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2423
2424         reg_write(ohci, OHCI1394_HCControlSet,
2425                   OHCI1394_HCControl_linkEnable |
2426                   OHCI1394_HCControl_BIBimageValid);
2427
2428         reg_write(ohci, OHCI1394_LinkControlSet,
2429                   OHCI1394_LinkControl_rcvSelfID |
2430                   OHCI1394_LinkControl_rcvPhyPkt);
2431
2432         ar_context_run(&ohci->ar_request_ctx);
2433         ar_context_run(&ohci->ar_response_ctx);
2434
2435         flush_writes(ohci);
2436
2437         /* We are ready to go, reset bus to finish initialization. */
2438         fw_schedule_bus_reset(&ohci->card, false, true);
2439
2440         return 0;
2441 }
2442
2443 static int ohci_set_config_rom(struct fw_card *card,
2444                                const __be32 *config_rom, size_t length)
2445 {
2446         struct fw_ohci *ohci;
2447         __be32 *next_config_rom;
2448         dma_addr_t uninitialized_var(next_config_rom_bus);
2449
2450         ohci = fw_ohci(card);
2451
2452         /*
2453          * When the OHCI controller is enabled, the config rom update
2454          * mechanism is a bit tricky, but easy enough to use.  See
2455          * section 5.5.6 in the OHCI specification.
2456          *
2457          * The OHCI controller caches the new config rom address in a
2458          * shadow register (ConfigROMmapNext) and needs a bus reset
2459          * for the changes to take place.  When the bus reset is
2460          * detected, the controller loads the new values for the
2461          * ConfigRomHeader and BusOptions registers from the specified
2462          * config rom and loads ConfigROMmap from the ConfigROMmapNext
2463          * shadow register. All automatically and atomically.
2464          *
2465          * Now, there's a twist to this story.  The automatic load of
2466          * ConfigRomHeader and BusOptions doesn't honor the
2467          * noByteSwapData bit, so with a be32 config rom, the
2468          * controller will load be32 values in to these registers
2469          * during the atomic update, even on litte endian
2470          * architectures.  The workaround we use is to put a 0 in the
2471          * header quadlet; 0 is endian agnostic and means that the
2472          * config rom isn't ready yet.  In the bus reset tasklet we
2473          * then set up the real values for the two registers.
2474          *
2475          * We use ohci->lock to avoid racing with the code that sets
2476          * ohci->next_config_rom to NULL (see bus_reset_work).
2477          */
2478
2479         next_config_rom =
2480                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2481                                    &next_config_rom_bus, GFP_KERNEL);
2482         if (next_config_rom == NULL)
2483                 return -ENOMEM;
2484
2485         spin_lock_irq(&ohci->lock);
2486
2487         /*
2488          * If there is not an already pending config_rom update,
2489          * push our new allocation into the ohci->next_config_rom
2490          * and then mark the local variable as null so that we
2491          * won't deallocate the new buffer.
2492          *
2493          * OTOH, if there is a pending config_rom update, just
2494          * use that buffer with the new config_rom data, and
2495          * let this routine free the unused DMA allocation.
2496          */
2497
2498         if (ohci->next_config_rom == NULL) {
2499                 ohci->next_config_rom = next_config_rom;
2500                 ohci->next_config_rom_bus = next_config_rom_bus;
2501                 next_config_rom = NULL;
2502         }
2503
2504         copy_config_rom(ohci->next_config_rom, config_rom, length);
2505
2506         ohci->next_header = config_rom[0];
2507         ohci->next_config_rom[0] = 0;
2508
2509         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2510
2511         spin_unlock_irq(&ohci->lock);
2512
2513         /* If we didn't use the DMA allocation, delete it. */
2514         if (next_config_rom != NULL)
2515                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2516                                   next_config_rom, next_config_rom_bus);
2517
2518         /*
2519          * Now initiate a bus reset to have the changes take
2520          * effect. We clean up the old config rom memory and DMA
2521          * mappings in the bus reset tasklet, since the OHCI
2522          * controller could need to access it before the bus reset
2523          * takes effect.
2524          */
2525
2526         fw_schedule_bus_reset(&ohci->card, true, true);
2527
2528         return 0;
2529 }
2530
2531 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2532 {
2533         struct fw_ohci *ohci = fw_ohci(card);
2534
2535         at_context_transmit(&ohci->at_request_ctx, packet);
2536 }
2537
2538 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2539 {
2540         struct fw_ohci *ohci = fw_ohci(card);
2541
2542         at_context_transmit(&ohci->at_response_ctx, packet);
2543 }
2544
2545 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2546 {
2547         struct fw_ohci *ohci = fw_ohci(card);
2548         struct context *ctx = &ohci->at_request_ctx;
2549         struct driver_data *driver_data = packet->driver_data;
2550         int ret = -ENOENT;
2551
2552         tasklet_disable(&ctx->tasklet);
2553
2554         if (packet->ack != 0)
2555                 goto out;
2556
2557         if (packet->payload_mapped)
2558                 dma_unmap_single(ohci->card.device, packet->payload_bus,
2559                                  packet->payload_length, DMA_TO_DEVICE);
2560
2561         log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2562         driver_data->packet = NULL;
2563         packet->ack = RCODE_CANCELLED;
2564         packet->callback(packet, &ohci->card, packet->ack);
2565         ret = 0;
2566  out:
2567         tasklet_enable(&ctx->tasklet);
2568
2569         return ret;
2570 }
2571
2572 static int ohci_enable_phys_dma(struct fw_card *card,
2573                                 int node_id, int generation)
2574 {
2575         struct fw_ohci *ohci = fw_ohci(card);
2576         unsigned long flags;
2577         int n, ret = 0;
2578
2579         if (param_remote_dma)
2580                 return 0;
2581
2582         /*
2583          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
2584          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
2585          */
2586
2587         spin_lock_irqsave(&ohci->lock, flags);
2588
2589         if (ohci->generation != generation) {
2590                 ret = -ESTALE;
2591                 goto out;
2592         }
2593
2594         /*
2595          * Note, if the node ID contains a non-local bus ID, physical DMA is
2596          * enabled for _all_ nodes on remote buses.
2597          */
2598
2599         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2600         if (n < 32)
2601                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2602         else
2603                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2604
2605         flush_writes(ohci);
2606  out:
2607         spin_unlock_irqrestore(&ohci->lock, flags);
2608
2609         return ret;
2610 }
2611
2612 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2613 {
2614         struct fw_ohci *ohci = fw_ohci(card);
2615         unsigned long flags;
2616         u32 value;
2617
2618         switch (csr_offset) {
2619         case CSR_STATE_CLEAR:
2620         case CSR_STATE_SET:
2621                 if (ohci->is_root &&
2622                     (reg_read(ohci, OHCI1394_LinkControlSet) &
2623                      OHCI1394_LinkControl_cycleMaster))
2624                         value = CSR_STATE_BIT_CMSTR;
2625                 else
2626                         value = 0;
2627                 if (ohci->csr_state_setclear_abdicate)
2628                         value |= CSR_STATE_BIT_ABDICATE;
2629
2630                 return value;
2631
2632         case CSR_NODE_IDS:
2633                 return reg_read(ohci, OHCI1394_NodeID) << 16;
2634
2635         case CSR_CYCLE_TIME:
2636                 return get_cycle_time(ohci);
2637
2638         case CSR_BUS_TIME:
2639                 /*
2640                  * We might be called just after the cycle timer has wrapped
2641                  * around but just before the cycle64Seconds handler, so we
2642                  * better check here, too, if the bus time needs to be updated.
2643                  */
2644                 spin_lock_irqsave(&ohci->lock, flags);
2645                 value = update_bus_time(ohci);
2646                 spin_unlock_irqrestore(&ohci->lock, flags);
2647                 return value;
2648
2649         case CSR_BUSY_TIMEOUT:
2650                 value = reg_read(ohci, OHCI1394_ATRetries);
2651                 return (value >> 4) & 0x0ffff00f;
2652
2653         case CSR_PRIORITY_BUDGET:
2654                 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2655                         (ohci->pri_req_max << 8);
2656
2657         default:
2658                 WARN_ON(1);
2659                 return 0;
2660         }
2661 }
2662
2663 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2664 {
2665         struct fw_ohci *ohci = fw_ohci(card);
2666         unsigned long flags;
2667
2668         switch (csr_offset) {
2669         case CSR_STATE_CLEAR:
2670                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2671                         reg_write(ohci, OHCI1394_LinkControlClear,
2672                                   OHCI1394_LinkControl_cycleMaster);
2673                         flush_writes(ohci);
2674                 }
2675                 if (value & CSR_STATE_BIT_ABDICATE)
2676                         ohci->csr_state_setclear_abdicate = false;
2677                 break;
2678
2679         case CSR_STATE_SET:
2680                 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2681                         reg_write(ohci, OHCI1394_LinkControlSet,
2682                                   OHCI1394_LinkControl_cycleMaster);
2683                         flush_writes(ohci);
2684                 }
2685                 if (value & CSR_STATE_BIT_ABDICATE)
2686                         ohci->csr_state_setclear_abdicate = true;
2687                 break;
2688
2689         case CSR_NODE_IDS:
2690                 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2691                 flush_writes(ohci);
2692                 break;
2693
2694         case CSR_CYCLE_TIME:
2695                 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2696                 reg_write(ohci, OHCI1394_IntEventSet,
2697                           OHCI1394_cycleInconsistent);
2698                 flush_writes(ohci);
2699                 break;
2700
2701         case CSR_BUS_TIME:
2702                 spin_lock_irqsave(&ohci->lock, flags);
2703                 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2704                                  (value & ~0x7f);
2705                 spin_unlock_irqrestore(&ohci->lock, flags);
2706                 break;
2707
2708         case CSR_BUSY_TIMEOUT:
2709                 value = (value & 0xf) | ((value & 0xf) << 4) |
2710                         ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2711                 reg_write(ohci, OHCI1394_ATRetries, value);
2712                 flush_writes(ohci);
2713                 break;
2714
2715         case CSR_PRIORITY_BUDGET:
2716                 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2717                 flush_writes(ohci);
2718                 break;
2719
2720         default:
2721                 WARN_ON(1);
2722                 break;
2723         }
2724 }
2725
2726 static void flush_iso_completions(struct iso_context *ctx)
2727 {
2728         ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2729                               ctx->header_length, ctx->header,
2730                               ctx->base.callback_data);
2731         ctx->header_length = 0;
2732 }
2733
2734 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2735 {
2736         u32 *ctx_hdr;
2737
2738         if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2739                 if (ctx->base.drop_overflow_headers)
2740                         return;
2741                 flush_iso_completions(ctx);
2742         }
2743
2744         ctx_hdr = ctx->header + ctx->header_length;
2745         ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2746
2747         /*
2748          * The two iso header quadlets are byteswapped to little
2749          * endian by the controller, but we want to present them
2750          * as big endian for consistency with the bus endianness.
2751          */
2752         if (ctx->base.header_size > 0)
2753                 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2754         if (ctx->base.header_size > 4)
2755                 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2756         if (ctx->base.header_size > 8)
2757                 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2758         ctx->header_length += ctx->base.header_size;
2759 }
2760
2761 static int handle_ir_packet_per_buffer(struct context *context,
2762                                        struct descriptor *d,
2763                                        struct descriptor *last)
2764 {
2765         struct iso_context *ctx =
2766                 container_of(context, struct iso_context, context);
2767         struct descriptor *pd;
2768         u32 buffer_dma;
2769
2770         for (pd = d; pd <= last; pd++)
2771                 if (pd->transfer_status)
2772                         break;
2773         if (pd > last)
2774                 /* Descriptor(s) not done yet, stop iteration */
2775                 return 0;
2776
2777         while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2778                 d++;
2779                 buffer_dma = le32_to_cpu(d->data_address);
2780                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2781                                               buffer_dma & PAGE_MASK,
2782                                               buffer_dma & ~PAGE_MASK,
2783                                               le16_to_cpu(d->req_count),
2784                                               DMA_FROM_DEVICE);
2785         }
2786
2787         copy_iso_headers(ctx, (u32 *) (last + 1));
2788
2789         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2790                 flush_iso_completions(ctx);
2791
2792         return 1;
2793 }
2794
2795 /* d == last because each descriptor block is only a single descriptor. */
2796 static int handle_ir_buffer_fill(struct context *context,
2797                                  struct descriptor *d,
2798                                  struct descriptor *last)
2799 {
2800         struct iso_context *ctx =
2801                 container_of(context, struct iso_context, context);
2802         unsigned int req_count, res_count, completed;
2803         u32 buffer_dma;
2804
2805         req_count = le16_to_cpu(last->req_count);
2806         res_count = le16_to_cpu(READ_ONCE(last->res_count));
2807         completed = req_count - res_count;
2808         buffer_dma = le32_to_cpu(last->data_address);
2809
2810         if (completed > 0) {
2811                 ctx->mc_buffer_bus = buffer_dma;
2812                 ctx->mc_completed = completed;
2813         }
2814
2815         if (res_count != 0)
2816                 /* Descriptor(s) not done yet, stop iteration */
2817                 return 0;
2818
2819         dma_sync_single_range_for_cpu(context->ohci->card.device,
2820                                       buffer_dma & PAGE_MASK,
2821                                       buffer_dma & ~PAGE_MASK,
2822                                       completed, DMA_FROM_DEVICE);
2823
2824         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2825                 ctx->base.callback.mc(&ctx->base,
2826                                       buffer_dma + completed,
2827                                       ctx->base.callback_data);
2828                 ctx->mc_completed = 0;
2829         }
2830
2831         return 1;
2832 }
2833
2834 static void flush_ir_buffer_fill(struct iso_context *ctx)
2835 {
2836         dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2837                                       ctx->mc_buffer_bus & PAGE_MASK,
2838                                       ctx->mc_buffer_bus & ~PAGE_MASK,
2839                                       ctx->mc_completed, DMA_FROM_DEVICE);
2840
2841         ctx->base.callback.mc(&ctx->base,
2842                               ctx->mc_buffer_bus + ctx->mc_completed,
2843                               ctx->base.callback_data);
2844         ctx->mc_completed = 0;
2845 }
2846
2847 static inline void sync_it_packet_for_cpu(struct context *context,
2848                                           struct descriptor *pd)
2849 {
2850         __le16 control;
2851         u32 buffer_dma;
2852
2853         /* only packets beginning with OUTPUT_MORE* have data buffers */
2854         if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2855                 return;
2856
2857         /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2858         pd += 2;
2859
2860         /*
2861          * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2862          * data buffer is in the context program's coherent page and must not
2863          * be synced.
2864          */
2865         if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2866             (context->current_bus          & PAGE_MASK)) {
2867                 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2868                         return;
2869                 pd++;
2870         }
2871
2872         do {
2873                 buffer_dma = le32_to_cpu(pd->data_address);
2874                 dma_sync_single_range_for_cpu(context->ohci->card.device,
2875                                               buffer_dma & PAGE_MASK,
2876                                               buffer_dma & ~PAGE_MASK,
2877                                               le16_to_cpu(pd->req_count),
2878                                               DMA_TO_DEVICE);
2879                 control = pd->control;
2880                 pd++;
2881         } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2882 }
2883
2884 static int handle_it_packet(struct context *context,
2885                             struct descriptor *d,
2886                             struct descriptor *last)
2887 {
2888         struct iso_context *ctx =
2889                 container_of(context, struct iso_context, context);
2890         struct descriptor *pd;
2891         __be32 *ctx_hdr;
2892
2893         for (pd = d; pd <= last; pd++)
2894                 if (pd->transfer_status)
2895                         break;
2896         if (pd > last)
2897                 /* Descriptor(s) not done yet, stop iteration */
2898                 return 0;
2899
2900         sync_it_packet_for_cpu(context, d);
2901
2902         if (ctx->header_length + 4 > PAGE_SIZE) {
2903                 if (ctx->base.drop_overflow_headers)
2904                         return 1;
2905                 flush_iso_completions(ctx);
2906         }
2907
2908         ctx_hdr = ctx->header + ctx->header_length;
2909         ctx->last_timestamp = le16_to_cpu(last->res_count);
2910         /* Present this value as big-endian to match the receive code */
2911         *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2912                                le16_to_cpu(pd->res_count));
2913         ctx->header_length += 4;
2914
2915         if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2916                 flush_iso_completions(ctx);
2917
2918         return 1;
2919 }
2920
2921 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2922 {
2923         u32 hi = channels >> 32, lo = channels;
2924
2925         reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2926         reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2927         reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2928         reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2929         ohci->mc_channels = channels;
2930 }
2931
2932 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2933                                 int type, int channel, size_t header_size)
2934 {
2935         struct fw_ohci *ohci = fw_ohci(card);
2936         struct iso_context *uninitialized_var(ctx);
2937         descriptor_callback_t uninitialized_var(callback);
2938         u64 *uninitialized_var(channels);
2939         u32 *uninitialized_var(mask), uninitialized_var(regs);
2940         int index, ret = -EBUSY;
2941
2942         spin_lock_irq(&ohci->lock);
2943
2944         switch (type) {
2945         case FW_ISO_CONTEXT_TRANSMIT:
2946                 mask     = &ohci->it_context_mask;
2947                 callback = handle_it_packet;
2948                 index    = ffs(*mask) - 1;
2949                 if (index >= 0) {
2950                         *mask &= ~(1 << index);
2951                         regs = OHCI1394_IsoXmitContextBase(index);
2952                         ctx  = &ohci->it_context_list[index];
2953                 }
2954                 break;
2955
2956         case FW_ISO_CONTEXT_RECEIVE:
2957                 channels = &ohci->ir_context_channels;
2958                 mask     = &ohci->ir_context_mask;
2959                 callback = handle_ir_packet_per_buffer;
2960                 index    = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2961                 if (index >= 0) {
2962                         *channels &= ~(1ULL << channel);
2963                         *mask     &= ~(1 << index);
2964                         regs = OHCI1394_IsoRcvContextBase(index);
2965                         ctx  = &ohci->ir_context_list[index];
2966                 }
2967                 break;
2968
2969         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2970                 mask     = &ohci->ir_context_mask;
2971                 callback = handle_ir_buffer_fill;
2972                 index    = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2973                 if (index >= 0) {
2974                         ohci->mc_allocated = true;
2975                         *mask &= ~(1 << index);
2976                         regs = OHCI1394_IsoRcvContextBase(index);
2977                         ctx  = &ohci->ir_context_list[index];
2978                 }
2979                 break;
2980
2981         default:
2982                 index = -1;
2983                 ret = -ENOSYS;
2984         }
2985
2986         spin_unlock_irq(&ohci->lock);
2987
2988         if (index < 0)
2989                 return ERR_PTR(ret);
2990
2991         memset(ctx, 0, sizeof(*ctx));
2992         ctx->header_length = 0;
2993         ctx->header = (void *) __get_free_page(GFP_KERNEL);
2994         if (ctx->header == NULL) {
2995                 ret = -ENOMEM;
2996                 goto out;
2997         }
2998         ret = context_init(&ctx->context, ohci, regs, callback);
2999         if (ret < 0)
3000                 goto out_with_header;
3001
3002         if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3003                 set_multichannel_mask(ohci, 0);
3004                 ctx->mc_completed = 0;
3005         }
3006
3007         return &ctx->base;
3008
3009  out_with_header:
3010         free_page((unsigned long)ctx->header);
3011  out:
3012         spin_lock_irq(&ohci->lock);
3013
3014         switch (type) {
3015         case FW_ISO_CONTEXT_RECEIVE:
3016                 *channels |= 1ULL << channel;
3017                 break;
3018
3019         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3020                 ohci->mc_allocated = false;
3021                 break;
3022         }
3023         *mask |= 1 << index;
3024
3025         spin_unlock_irq(&ohci->lock);
3026
3027         return ERR_PTR(ret);
3028 }
3029
3030 static int ohci_start_iso(struct fw_iso_context *base,
3031                           s32 cycle, u32 sync, u32 tags)
3032 {
3033         struct iso_context *ctx = container_of(base, struct iso_context, base);
3034         struct fw_ohci *ohci = ctx->context.ohci;
3035         u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3036         int index;
3037
3038         /* the controller cannot start without any queued packets */
3039         if (ctx->context.last->branch_address == 0)
3040                 return -ENODATA;
3041
3042         switch (ctx->base.type) {
3043         case FW_ISO_CONTEXT_TRANSMIT:
3044                 index = ctx - ohci->it_context_list;
3045                 match = 0;
3046                 if (cycle >= 0)
3047                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3048                                 (cycle & 0x7fff) << 16;
3049
3050                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3051                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3052                 context_run(&ctx->context, match);
3053                 break;
3054
3055         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3056                 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3057                 /* fall through */
3058         case FW_ISO_CONTEXT_RECEIVE:
3059                 index = ctx - ohci->ir_context_list;
3060                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3061                 if (cycle >= 0) {
3062                         match |= (cycle & 0x07fff) << 12;
3063                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3064                 }
3065
3066                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3067                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3068                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3069                 context_run(&ctx->context, control);
3070
3071                 ctx->sync = sync;
3072                 ctx->tags = tags;
3073
3074                 break;
3075         }
3076
3077         return 0;
3078 }
3079
3080 static int ohci_stop_iso(struct fw_iso_context *base)
3081 {
3082         struct fw_ohci *ohci = fw_ohci(base->card);
3083         struct iso_context *ctx = container_of(base, struct iso_context, base);
3084         int index;
3085
3086         switch (ctx->base.type) {
3087         case FW_ISO_CONTEXT_TRANSMIT:
3088                 index = ctx - ohci->it_context_list;
3089                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3090                 break;
3091
3092         case FW_ISO_CONTEXT_RECEIVE:
3093         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3094                 index = ctx - ohci->ir_context_list;
3095                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3096                 break;
3097         }
3098         flush_writes(ohci);
3099         context_stop(&ctx->context);
3100         tasklet_kill(&ctx->context.tasklet);
3101
3102         return 0;
3103 }
3104
3105 static void ohci_free_iso_context(struct fw_iso_context *base)
3106 {
3107         struct fw_ohci *ohci = fw_ohci(base->card);
3108         struct iso_context *ctx = container_of(base, struct iso_context, base);
3109         unsigned long flags;
3110         int index;
3111
3112         ohci_stop_iso(base);
3113         context_release(&ctx->context);
3114         free_page((unsigned long)ctx->header);
3115
3116         spin_lock_irqsave(&ohci->lock, flags);
3117
3118         switch (base->type) {
3119         case FW_ISO_CONTEXT_TRANSMIT:
3120                 index = ctx - ohci->it_context_list;
3121                 ohci->it_context_mask |= 1 << index;
3122                 break;
3123
3124         case FW_ISO_CONTEXT_RECEIVE:
3125                 index = ctx - ohci->ir_context_list;
3126                 ohci->ir_context_mask |= 1 << index;
3127                 ohci->ir_context_channels |= 1ULL << base->channel;
3128                 break;
3129
3130         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3131                 index = ctx - ohci->ir_context_list;
3132                 ohci->ir_context_mask |= 1 << index;
3133                 ohci->ir_context_channels |= ohci->mc_channels;
3134                 ohci->mc_channels = 0;
3135                 ohci->mc_allocated = false;
3136                 break;
3137         }
3138
3139         spin_unlock_irqrestore(&ohci->lock, flags);
3140 }
3141
3142 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3143 {
3144         struct fw_ohci *ohci = fw_ohci(base->card);
3145         unsigned long flags;
3146         int ret;
3147
3148         switch (base->type) {
3149         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3150
3151                 spin_lock_irqsave(&ohci->lock, flags);
3152
3153                 /* Don't allow multichannel to grab other contexts' channels. */
3154                 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3155                         *channels = ohci->ir_context_channels;
3156                         ret = -EBUSY;
3157                 } else {
3158                         set_multichannel_mask(ohci, *channels);
3159                         ret = 0;
3160                 }
3161
3162                 spin_unlock_irqrestore(&ohci->lock, flags);
3163
3164                 break;
3165         default:
3166                 ret = -EINVAL;
3167         }
3168
3169         return ret;
3170 }
3171
3172 #ifdef CONFIG_PM
3173 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3174 {
3175         int i;
3176         struct iso_context *ctx;
3177
3178         for (i = 0 ; i < ohci->n_ir ; i++) {
3179                 ctx = &ohci->ir_context_list[i];
3180                 if (ctx->context.running)
3181                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3182         }
3183
3184         for (i = 0 ; i < ohci->n_it ; i++) {
3185                 ctx = &ohci->it_context_list[i];
3186                 if (ctx->context.running)
3187                         ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3188         }
3189 }
3190 #endif
3191
3192 static int queue_iso_transmit(struct iso_context *ctx,
3193                               struct fw_iso_packet *packet,
3194                               struct fw_iso_buffer *buffer,
3195                               unsigned long payload)
3196 {
3197         struct descriptor *d, *last, *pd;
3198         struct fw_iso_packet *p;
3199         __le32 *header;
3200         dma_addr_t d_bus, page_bus;
3201         u32 z, header_z, payload_z, irq;
3202         u32 payload_index, payload_end_index, next_page_index;
3203         int page, end_page, i, length, offset;
3204
3205         p = packet;
3206         payload_index = payload;
3207
3208         if (p->skip)
3209                 z = 1;
3210         else
3211                 z = 2;
3212         if (p->header_length > 0)
3213                 z++;
3214
3215         /* Determine the first page the payload isn't contained in. */
3216         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3217         if (p->payload_length > 0)
3218                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3219         else
3220                 payload_z = 0;
3221
3222         z += payload_z;
3223
3224         /* Get header size in number of descriptors. */
3225         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3226
3227         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3228         if (d == NULL)
3229                 return -ENOMEM;
3230
3231         if (!p->skip) {
3232                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3233                 d[0].req_count = cpu_to_le16(8);
3234                 /*
3235                  * Link the skip address to this descriptor itself.  This causes
3236                  * a context to skip a cycle whenever lost cycles or FIFO
3237                  * overruns occur, without dropping the data.  The application
3238                  * should then decide whether this is an error condition or not.
3239                  * FIXME:  Make the context's cycle-lost behaviour configurable?
3240                  */
3241                 d[0].branch_address = cpu_to_le32(d_bus | z);
3242
3243                 header = (__le32 *) &d[1];
3244                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3245                                         IT_HEADER_TAG(p->tag) |
3246                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3247                                         IT_HEADER_CHANNEL(ctx->base.channel) |
3248                                         IT_HEADER_SPEED(ctx->base.speed));
3249                 header[1] =
3250                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3251                                                           p->payload_length));
3252         }
3253
3254         if (p->header_length > 0) {
3255                 d[2].req_count    = cpu_to_le16(p->header_length);
3256                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3257                 memcpy(&d[z], p->header, p->header_length);
3258         }
3259
3260         pd = d + z - payload_z;
3261         payload_end_index = payload_index + p->payload_length;
3262         for (i = 0; i < payload_z; i++) {
3263                 page               = payload_index >> PAGE_SHIFT;
3264                 offset             = payload_index & ~PAGE_MASK;
3265                 next_page_index    = (page + 1) << PAGE_SHIFT;
3266                 length             =
3267                         min(next_page_index, payload_end_index) - payload_index;
3268                 pd[i].req_count    = cpu_to_le16(length);
3269
3270                 page_bus = page_private(buffer->pages[page]);
3271                 pd[i].data_address = cpu_to_le32(page_bus + offset);
3272
3273                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3274                                                  page_bus, offset, length,
3275                                                  DMA_TO_DEVICE);
3276
3277                 payload_index += length;
3278         }
3279
3280         if (p->interrupt)
3281                 irq = DESCRIPTOR_IRQ_ALWAYS;
3282         else
3283                 irq = DESCRIPTOR_NO_IRQ;
3284
3285         last = z == 2 ? d : d + z - 1;
3286         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3287                                      DESCRIPTOR_STATUS |
3288                                      DESCRIPTOR_BRANCH_ALWAYS |
3289                                      irq);
3290
3291         context_append(&ctx->context, d, z, header_z);
3292
3293         return 0;
3294 }
3295
3296 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3297                                        struct fw_iso_packet *packet,
3298                                        struct fw_iso_buffer *buffer,
3299                                        unsigned long payload)
3300 {
3301         struct device *device = ctx->context.ohci->card.device;
3302         struct descriptor *d, *pd;
3303         dma_addr_t d_bus, page_bus;
3304         u32 z, header_z, rest;
3305         int i, j, length;
3306         int page, offset, packet_count, header_size, payload_per_buffer;
3307
3308         /*
3309          * The OHCI controller puts the isochronous header and trailer in the
3310          * buffer, so we need at least 8 bytes.
3311          */
3312         packet_count = packet->header_length / ctx->base.header_size;
3313         header_size  = max(ctx->base.header_size, (size_t)8);
3314
3315         /* Get header size in number of descriptors. */
3316         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3317         page     = payload >> PAGE_SHIFT;
3318         offset   = payload & ~PAGE_MASK;
3319         payload_per_buffer = packet->payload_length / packet_count;
3320
3321         for (i = 0; i < packet_count; i++) {
3322                 /* d points to the header descriptor */
3323                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3324                 d = context_get_descriptors(&ctx->context,
3325                                 z + header_z, &d_bus);
3326                 if (d == NULL)
3327                         return -ENOMEM;
3328
3329                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
3330                                               DESCRIPTOR_INPUT_MORE);
3331                 if (packet->skip && i == 0)
3332                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3333                 d->req_count    = cpu_to_le16(header_size);
3334                 d->res_count    = d->req_count;
3335                 d->transfer_status = 0;
3336                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3337
3338                 rest = payload_per_buffer;
3339                 pd = d;
3340                 for (j = 1; j < z; j++) {
3341                         pd++;
3342                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3343                                                   DESCRIPTOR_INPUT_MORE);
3344
3345                         if (offset + rest < PAGE_SIZE)
3346                                 length = rest;
3347                         else
3348                                 length = PAGE_SIZE - offset;
3349                         pd->req_count = cpu_to_le16(length);
3350                         pd->res_count = pd->req_count;
3351                         pd->transfer_status = 0;
3352
3353                         page_bus = page_private(buffer->pages[page]);
3354                         pd->data_address = cpu_to_le32(page_bus + offset);
3355
3356                         dma_sync_single_range_for_device(device, page_bus,
3357                                                          offset, length,
3358                                                          DMA_FROM_DEVICE);
3359
3360                         offset = (offset + length) & ~PAGE_MASK;
3361                         rest -= length;
3362                         if (offset == 0)
3363                                 page++;
3364                 }
3365                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3366                                           DESCRIPTOR_INPUT_LAST |
3367                                           DESCRIPTOR_BRANCH_ALWAYS);
3368                 if (packet->interrupt && i == packet_count - 1)
3369                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3370
3371                 context_append(&ctx->context, d, z, header_z);
3372         }
3373
3374         return 0;
3375 }
3376
3377 static int queue_iso_buffer_fill(struct iso_context *ctx,
3378                                  struct fw_iso_packet *packet,
3379                                  struct fw_iso_buffer *buffer,
3380                                  unsigned long payload)
3381 {
3382         struct descriptor *d;
3383         dma_addr_t d_bus, page_bus;
3384         int page, offset, rest, z, i, length;
3385
3386         page   = payload >> PAGE_SHIFT;
3387         offset = payload & ~PAGE_MASK;
3388         rest   = packet->payload_length;
3389
3390         /* We need one descriptor for each page in the buffer. */
3391         z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3392
3393         if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3394                 return -EFAULT;
3395
3396         for (i = 0; i < z; i++) {
3397                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3398                 if (d == NULL)
3399                         return -ENOMEM;
3400
3401                 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3402                                          DESCRIPTOR_BRANCH_ALWAYS);
3403                 if (packet->skip && i == 0)
3404                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3405                 if (packet->interrupt && i == z - 1)
3406                         d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3407
3408                 if (offset + rest < PAGE_SIZE)
3409                         length = rest;
3410                 else
3411                         length = PAGE_SIZE - offset;
3412                 d->req_count = cpu_to_le16(length);
3413                 d->res_count = d->req_count;
3414                 d->transfer_status = 0;
3415
3416                 page_bus = page_private(buffer->pages[page]);
3417                 d->data_address = cpu_to_le32(page_bus + offset);
3418
3419                 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3420                                                  page_bus, offset, length,
3421                                                  DMA_FROM_DEVICE);
3422
3423                 rest -= length;
3424                 offset = 0;
3425                 page++;
3426
3427                 context_append(&ctx->context, d, 1, 0);
3428         }
3429
3430         return 0;
3431 }
3432
3433 static int ohci_queue_iso(struct fw_iso_context *base,
3434                           struct fw_iso_packet *packet,
3435                           struct fw_iso_buffer *buffer,
3436                           unsigned long payload)
3437 {
3438         struct iso_context *ctx = container_of(base, struct iso_context, base);
3439         unsigned long flags;
3440         int ret = -ENOSYS;
3441
3442         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3443         switch (base->type) {
3444         case FW_ISO_CONTEXT_TRANSMIT:
3445                 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3446                 break;
3447         case FW_ISO_CONTEXT_RECEIVE:
3448                 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3449                 break;
3450         case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3451                 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3452                 break;
3453         }
3454         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3455
3456         return ret;
3457 }
3458
3459 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3460 {
3461         struct context *ctx =
3462                         &container_of(base, struct iso_context, base)->context;
3463
3464         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3465 }
3466
3467 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3468 {
3469         struct iso_context *ctx = container_of(base, struct iso_context, base);
3470         int ret = 0;
3471
3472         tasklet_disable(&ctx->context.tasklet);
3473
3474         if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3475                 context_tasklet((unsigned long)&ctx->context);
3476
3477                 switch (base->type) {
3478                 case FW_ISO_CONTEXT_TRANSMIT:
3479                 case FW_ISO_CONTEXT_RECEIVE:
3480                         if (ctx->header_length != 0)
3481                                 flush_iso_completions(ctx);
3482                         break;
3483                 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3484                         if (ctx->mc_completed != 0)
3485                                 flush_ir_buffer_fill(ctx);
3486                         break;
3487                 default:
3488                         ret = -ENOSYS;
3489                 }
3490
3491                 clear_bit_unlock(0, &ctx->flushing_completions);
3492                 smp_mb__after_atomic();
3493         }
3494
3495         tasklet_enable(&ctx->context.tasklet);
3496
3497         return ret;
3498 }
3499
3500 static const struct fw_card_driver ohci_driver = {
3501         .enable                 = ohci_enable,
3502         .read_phy_reg           = ohci_read_phy_reg,
3503         .update_phy_reg         = ohci_update_phy_reg,
3504         .set_config_rom         = ohci_set_config_rom,
3505         .send_request           = ohci_send_request,
3506         .send_response          = ohci_send_response,
3507         .cancel_packet          = ohci_cancel_packet,
3508         .enable_phys_dma        = ohci_enable_phys_dma,
3509         .read_csr               = ohci_read_csr,
3510         .write_csr              = ohci_write_csr,
3511
3512         .allocate_iso_context   = ohci_allocate_iso_context,
3513         .free_iso_context       = ohci_free_iso_context,
3514         .set_iso_channels       = ohci_set_iso_channels,
3515         .queue_iso              = ohci_queue_iso,
3516         .flush_queue_iso        = ohci_flush_queue_iso,
3517         .flush_iso_completions  = ohci_flush_iso_completions,
3518         .start_iso              = ohci_start_iso,
3519         .stop_iso               = ohci_stop_iso,
3520 };
3521
3522 #ifdef CONFIG_PPC_PMAC
3523 static void pmac_ohci_on(struct pci_dev *dev)
3524 {
3525         if (machine_is(powermac)) {
3526                 struct device_node *ofn = pci_device_to_OF_node(dev);
3527
3528                 if (ofn) {
3529                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3530                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3531                 }
3532         }
3533 }
3534
3535 static void pmac_ohci_off(struct pci_dev *dev)
3536 {
3537         if (machine_is(powermac)) {
3538                 struct device_node *ofn = pci_device_to_OF_node(dev);
3539
3540                 if (ofn) {
3541                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3542                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3543                 }
3544         }
3545 }
3546 #else
3547 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3548 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3549 #endif /* CONFIG_PPC_PMAC */
3550
3551 static int pci_probe(struct pci_dev *dev,
3552                                const struct pci_device_id *ent)
3553 {
3554         struct fw_ohci *ohci;
3555         u32 bus_options, max_receive, link_speed, version;
3556         u64 guid;
3557         int i, err;
3558         size_t size;
3559
3560         if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3561                 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3562                 return -ENOSYS;
3563         }
3564
3565         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3566         if (ohci == NULL) {
3567                 err = -ENOMEM;
3568                 goto fail;
3569         }
3570
3571         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3572
3573         pmac_ohci_on(dev);
3574
3575         err = pci_enable_device(dev);
3576         if (err) {
3577                 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3578                 goto fail_free;
3579         }
3580
3581         pci_set_master(dev);
3582         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3583         pci_set_drvdata(dev, ohci);
3584
3585         spin_lock_init(&ohci->lock);
3586         mutex_init(&ohci->phy_reg_mutex);
3587
3588         INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3589
3590         if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3591             pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3592                 ohci_err(ohci, "invalid MMIO resource\n");
3593                 err = -ENXIO;
3594                 goto fail_disable;
3595         }
3596
3597         err = pci_request_region(dev, 0, ohci_driver_name);
3598         if (err) {
3599                 ohci_err(ohci, "MMIO resource unavailable\n");
3600                 goto fail_disable;
3601         }
3602
3603         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3604         if (ohci->registers == NULL) {
3605                 ohci_err(ohci, "failed to remap registers\n");
3606                 err = -ENXIO;
3607                 goto fail_iomem;
3608         }
3609
3610         for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3611                 if ((ohci_quirks[i].vendor == dev->vendor) &&
3612                     (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3613                      ohci_quirks[i].device == dev->device) &&
3614                     (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3615                      ohci_quirks[i].revision >= dev->revision)) {
3616                         ohci->quirks = ohci_quirks[i].flags;
3617                         break;
3618                 }
3619         if (param_quirks)
3620                 ohci->quirks = param_quirks;
3621
3622         /*
3623          * Because dma_alloc_coherent() allocates at least one page,
3624          * we save space by using a common buffer for the AR request/
3625          * response descriptors and the self IDs buffer.
3626          */
3627         BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3628         BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3629         ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3630                                                PAGE_SIZE,
3631                                                &ohci->misc_buffer_bus,
3632                                                GFP_KERNEL);
3633         if (!ohci->misc_buffer) {
3634                 err = -ENOMEM;
3635                 goto fail_iounmap;
3636         }
3637
3638         err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3639                               OHCI1394_AsReqRcvContextControlSet);
3640         if (err < 0)
3641                 goto fail_misc_buf;
3642
3643         err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3644                               OHCI1394_AsRspRcvContextControlSet);
3645         if (err < 0)
3646                 goto fail_arreq_ctx;
3647
3648         err = context_init(&ohci->at_request_ctx, ohci,
3649                            OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3650         if (err < 0)
3651                 goto fail_arrsp_ctx;
3652
3653         err = context_init(&ohci->at_response_ctx, ohci,
3654                            OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3655         if (err < 0)
3656                 goto fail_atreq_ctx;
3657
3658         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3659         ohci->ir_context_channels = ~0ULL;
3660         ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3661         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3662         ohci->ir_context_mask = ohci->ir_context_support;
3663         ohci->n_ir = hweight32(ohci->ir_context_mask);
3664         size = sizeof(struct iso_context) * ohci->n_ir;
3665         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3666
3667         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3668         ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3669         /* JMicron JMB38x often shows 0 at first read, just ignore it */
3670         if (!ohci->it_context_support) {
3671                 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3672                 ohci->it_context_support = 0xf;
3673         }
3674         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3675         ohci->it_context_mask = ohci->it_context_support;
3676         ohci->n_it = hweight32(ohci->it_context_mask);
3677         size = sizeof(struct iso_context) * ohci->n_it;
3678         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3679
3680         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3681                 err = -ENOMEM;
3682                 goto fail_contexts;
3683         }
3684
3685         ohci->self_id     = ohci->misc_buffer     + PAGE_SIZE/2;
3686         ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3687
3688         bus_options = reg_read(ohci, OHCI1394_BusOptions);
3689         max_receive = (bus_options >> 12) & 0xf;
3690         link_speed = bus_options & 0x7;
3691         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3692                 reg_read(ohci, OHCI1394_GUIDLo);
3693
3694         if (!(ohci->quirks & QUIRK_NO_MSI))
3695                 pci_enable_msi(dev);
3696         if (request_irq(dev->irq, irq_handler,
3697                         pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3698                         ohci_driver_name, ohci)) {
3699                 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3700                 err = -EIO;
3701                 goto fail_msi;
3702         }
3703
3704         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3705         if (err)
3706                 goto fail_irq;
3707
3708         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3709         ohci_notice(ohci,
3710                     "added OHCI v%x.%x device as card %d, "
3711                     "%d IR + %d IT contexts, quirks 0x%x%s\n",
3712                     version >> 16, version & 0xff, ohci->card.index,
3713                     ohci->n_ir, ohci->n_it, ohci->quirks,
3714                     reg_read(ohci, OHCI1394_PhyUpperBound) ?
3715                         ", physUB" : "");
3716
3717         return 0;
3718
3719  fail_irq:
3720         free_irq(dev->irq, ohci);
3721  fail_msi:
3722         pci_disable_msi(dev);
3723  fail_contexts:
3724         kfree(ohci->ir_context_list);
3725         kfree(ohci->it_context_list);
3726         context_release(&ohci->at_response_ctx);
3727  fail_atreq_ctx:
3728         context_release(&ohci->at_request_ctx);
3729  fail_arrsp_ctx:
3730         ar_context_release(&ohci->ar_response_ctx);
3731  fail_arreq_ctx:
3732         ar_context_release(&ohci->ar_request_ctx);
3733  fail_misc_buf:
3734         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3735                           ohci->misc_buffer, ohci->misc_buffer_bus);
3736  fail_iounmap:
3737         pci_iounmap(dev, ohci->registers);
3738  fail_iomem:
3739         pci_release_region(dev, 0);
3740  fail_disable:
3741         pci_disable_device(dev);
3742  fail_free:
3743         kfree(ohci);
3744         pmac_ohci_off(dev);
3745  fail:
3746         return err;
3747 }
3748
3749 static void pci_remove(struct pci_dev *dev)
3750 {
3751         struct fw_ohci *ohci = pci_get_drvdata(dev);
3752
3753         /*
3754          * If the removal is happening from the suspend state, LPS won't be
3755          * enabled and host registers (eg., IntMaskClear) won't be accessible.
3756          */
3757         if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3758                 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3759                 flush_writes(ohci);
3760         }
3761         cancel_work_sync(&ohci->bus_reset_work);
3762         fw_core_remove_card(&ohci->card);
3763
3764         /*
3765          * FIXME: Fail all pending packets here, now that the upper
3766          * layers can't queue any more.
3767          */
3768
3769         software_reset(ohci);
3770         free_irq(dev->irq, ohci);
3771
3772         if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3773                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3774                                   ohci->next_config_rom, ohci->next_config_rom_bus);
3775         if (ohci->config_rom)
3776                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3777                                   ohci->config_rom, ohci->config_rom_bus);
3778         ar_context_release(&ohci->ar_request_ctx);
3779         ar_context_release(&ohci->ar_response_ctx);
3780         dma_free_coherent(ohci->card.device, PAGE_SIZE,
3781                           ohci->misc_buffer, ohci->misc_buffer_bus);
3782         context_release(&ohci->at_request_ctx);
3783         context_release(&ohci->at_response_ctx);
3784         kfree(ohci->it_context_list);
3785         kfree(ohci->ir_context_list);
3786         pci_disable_msi(dev);
3787         pci_iounmap(dev, ohci->registers);
3788         pci_release_region(dev, 0);
3789         pci_disable_device(dev);
3790         kfree(ohci);
3791         pmac_ohci_off(dev);
3792
3793         dev_notice(&dev->dev, "removed fw-ohci device\n");
3794 }
3795
3796 #ifdef CONFIG_PM
3797 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3798 {
3799         struct fw_ohci *ohci = pci_get_drvdata(dev);
3800         int err;
3801
3802         software_reset(ohci);
3803         err = pci_save_state(dev);
3804         if (err) {
3805                 ohci_err(ohci, "pci_save_state failed\n");
3806                 return err;
3807         }
3808         err = pci_set_power_state(dev, pci_choose_state(dev, state));
3809         if (err)
3810                 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3811         pmac_ohci_off(dev);
3812
3813         return 0;
3814 }
3815
3816 static int pci_resume(struct pci_dev *dev)
3817 {
3818         struct fw_ohci *ohci = pci_get_drvdata(dev);
3819         int err;
3820
3821         pmac_ohci_on(dev);
3822         pci_set_power_state(dev, PCI_D0);
3823         pci_restore_state(dev);
3824         err = pci_enable_device(dev);
3825         if (err) {
3826                 ohci_err(ohci, "pci_enable_device failed\n");
3827                 return err;
3828         }
3829
3830         /* Some systems don't setup GUID register on resume from ram  */
3831         if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3832                                         !reg_read(ohci, OHCI1394_GUIDHi)) {
3833                 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3834                 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3835         }
3836
3837         err = ohci_enable(&ohci->card, NULL, 0);
3838         if (err)
3839                 return err;
3840
3841         ohci_resume_iso_dma(ohci);
3842
3843         return 0;
3844 }
3845 #endif
3846
3847 static const struct pci_device_id pci_table[] = {
3848         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3849         { }
3850 };
3851
3852 MODULE_DEVICE_TABLE(pci, pci_table);
3853
3854 static struct pci_driver fw_ohci_pci_driver = {
3855         .name           = ohci_driver_name,
3856         .id_table       = pci_table,
3857         .probe          = pci_probe,
3858         .remove         = pci_remove,
3859 #ifdef CONFIG_PM
3860         .resume         = pci_resume,
3861         .suspend        = pci_suspend,
3862 #endif
3863 };
3864
3865 static int __init fw_ohci_init(void)
3866 {
3867         selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3868         if (!selfid_workqueue)
3869                 return -ENOMEM;
3870
3871         return pci_register_driver(&fw_ohci_pci_driver);
3872 }
3873
3874 static void __exit fw_ohci_cleanup(void)
3875 {
3876         pci_unregister_driver(&fw_ohci_pci_driver);
3877         destroy_workqueue(selfid_workqueue);
3878 }
3879
3880 module_init(fw_ohci_init);
3881 module_exit(fw_ohci_cleanup);
3882
3883 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3884 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3885 MODULE_LICENSE("GPL");
3886
3887 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3888 MODULE_ALIAS("ohci1394");