firewire: Scheduled removal of SA_xxx interrupt flags fixups 3
[sfrench/cifs-2.6.git] / drivers / firewire / fw-ohci.c
1 /*                                              -*- c-basic-offset: 8 -*-
2  *
3  * fw-ohci.c - Driver for OHCI 1394 boards
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/delay.h>
27 #include <linux/poll.h>
28 #include <linux/dma-mapping.h>
29
30 #include <asm/uaccess.h>
31 #include <asm/semaphore.h>
32
33 #include "fw-transaction.h"
34 #include "fw-ohci.h"
35
36 #define descriptor_output_more          0
37 #define descriptor_output_last          (1 << 12)
38 #define descriptor_input_more           (2 << 12)
39 #define descriptor_input_last           (3 << 12)
40 #define descriptor_status               (1 << 11)
41 #define descriptor_key_immediate        (2 << 8)
42 #define descriptor_ping                 (1 << 7)
43 #define descriptor_yy                   (1 << 6)
44 #define descriptor_no_irq               (0 << 4)
45 #define descriptor_irq_error            (1 << 4)
46 #define descriptor_irq_always           (3 << 4)
47 #define descriptor_branch_always        (3 << 2)
48 #define descriptor_wait                 (3 << 0)
49
50 struct descriptor {
51         __le16 req_count;
52         __le16 control;
53         __le32 data_address;
54         __le32 branch_address;
55         __le16 res_count;
56         __le16 transfer_status;
57 } __attribute__((aligned(16)));
58
59 struct db_descriptor {
60         __le16 first_size;
61         __le16 control;
62         __le16 second_req_count;
63         __le16 first_req_count;
64         __le32 branch_address;
65         __le16 second_res_count;
66         __le16 first_res_count;
67         __le32 reserved0;
68         __le32 first_buffer;
69         __le32 second_buffer;
70         __le32 reserved1;
71 } __attribute__((aligned(16)));
72
73 #define control_set(regs)       (regs)
74 #define control_clear(regs)     ((regs) + 4)
75 #define command_ptr(regs)       ((regs) + 12)
76 #define context_match(regs)     ((regs) + 16)
77
78 struct ar_buffer {
79         struct descriptor descriptor;
80         struct ar_buffer *next;
81         __le32 data[0];
82 };
83
84 struct ar_context {
85         struct fw_ohci *ohci;
86         struct ar_buffer *current_buffer;
87         struct ar_buffer *last_buffer;
88         void *pointer;
89         u32 regs;
90         struct tasklet_struct tasklet;
91 };
92
93 struct context;
94
95 typedef int (*descriptor_callback_t)(struct context *ctx,
96                                      struct descriptor *d,
97                                      struct descriptor *last);
98 struct context {
99         struct fw_ohci *ohci;
100         u32 regs;
101
102         struct descriptor *buffer;
103         dma_addr_t buffer_bus;
104         size_t buffer_size;
105         struct descriptor *head_descriptor;
106         struct descriptor *tail_descriptor;
107         struct descriptor *tail_descriptor_last;
108         struct descriptor *prev_descriptor;
109
110         descriptor_callback_t callback;
111
112         struct tasklet_struct tasklet;
113 };
114
115 struct at_context {
116         struct fw_ohci *ohci;
117         dma_addr_t descriptor_bus;
118         dma_addr_t buffer_bus;
119         struct fw_packet *current_packet;
120
121         struct list_head list;
122
123         struct {
124                 struct descriptor more;
125                 __le32 header[4];
126                 struct descriptor last;
127         } d;
128
129         u32 regs;
130
131         struct tasklet_struct tasklet;
132 };
133
134 #define it_header_sy(v)          ((v) <<  0)
135 #define it_header_tcode(v)       ((v) <<  4)
136 #define it_header_channel(v)     ((v) <<  8)
137 #define it_header_tag(v)         ((v) << 14)
138 #define it_header_speed(v)       ((v) << 16)
139 #define it_header_data_length(v) ((v) << 16)
140
141 struct iso_context {
142         struct fw_iso_context base;
143         struct context context;
144         void *header;
145         size_t header_length;
146 };
147
148 #define CONFIG_ROM_SIZE 1024
149
150 struct fw_ohci {
151         struct fw_card card;
152
153         u32 version;
154         __iomem char *registers;
155         dma_addr_t self_id_bus;
156         __le32 *self_id_cpu;
157         struct tasklet_struct bus_reset_tasklet;
158         int node_id;
159         int generation;
160         int request_generation;
161
162         /* Spinlock for accessing fw_ohci data.  Never call out of
163          * this driver with this lock held. */
164         spinlock_t lock;
165         u32 self_id_buffer[512];
166
167         /* Config rom buffers */
168         __be32 *config_rom;
169         dma_addr_t config_rom_bus;
170         __be32 *next_config_rom;
171         dma_addr_t next_config_rom_bus;
172         u32 next_header;
173
174         struct ar_context ar_request_ctx;
175         struct ar_context ar_response_ctx;
176         struct at_context at_request_ctx;
177         struct at_context at_response_ctx;
178
179         u32 it_context_mask;
180         struct iso_context *it_context_list;
181         u32 ir_context_mask;
182         struct iso_context *ir_context_list;
183 };
184
185 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
186 {
187         return container_of(card, struct fw_ohci, card);
188 }
189
190 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
191 #define IR_CONTEXT_BUFFER_FILL          0x80000000
192 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
193 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
194 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
195 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
196
197 #define CONTEXT_RUN     0x8000
198 #define CONTEXT_WAKE    0x1000
199 #define CONTEXT_DEAD    0x0800
200 #define CONTEXT_ACTIVE  0x0400
201
202 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
203 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
204 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
205
206 #define FW_OHCI_MAJOR                   240
207 #define OHCI1394_REGISTER_SIZE          0x800
208 #define OHCI_LOOP_COUNT                 500
209 #define OHCI1394_PCI_HCI_Control        0x40
210 #define SELF_ID_BUF_SIZE                0x800
211 #define OHCI_TCODE_PHY_PACKET           0x0e
212 #define OHCI_VERSION_1_1                0x010010
213
214 static char ohci_driver_name[] = KBUILD_MODNAME;
215
216 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
217 {
218         writel(data, ohci->registers + offset);
219 }
220
221 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
222 {
223         return readl(ohci->registers + offset);
224 }
225
226 static inline void flush_writes(const struct fw_ohci *ohci)
227 {
228         /* Do a dummy read to flush writes. */
229         reg_read(ohci, OHCI1394_Version);
230 }
231
232 static int
233 ohci_update_phy_reg(struct fw_card *card, int addr,
234                     int clear_bits, int set_bits)
235 {
236         struct fw_ohci *ohci = fw_ohci(card);
237         u32 val, old;
238
239         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
240         msleep(2);
241         val = reg_read(ohci, OHCI1394_PhyControl);
242         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
243                 fw_error("failed to set phy reg bits.\n");
244                 return -EBUSY;
245         }
246
247         old = OHCI1394_PhyControl_ReadData(val);
248         old = (old & ~clear_bits) | set_bits;
249         reg_write(ohci, OHCI1394_PhyControl,
250                   OHCI1394_PhyControl_Write(addr, old));
251
252         return 0;
253 }
254
255 static int ar_context_add_page(struct ar_context *ctx)
256 {
257         struct device *dev = ctx->ohci->card.device;
258         struct ar_buffer *ab;
259         dma_addr_t ab_bus;
260         size_t offset;
261
262         ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
263         if (ab == NULL)
264                 return -ENOMEM;
265
266         ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
267         if (dma_mapping_error(ab_bus)) {
268                 free_page((unsigned long) ab);
269                 return -ENOMEM;
270         }
271
272         memset(&ab->descriptor, 0, sizeof ab->descriptor);
273         ab->descriptor.control        = cpu_to_le16(descriptor_input_more |
274                                                     descriptor_status |
275                                                     descriptor_branch_always);
276         offset = offsetof(struct ar_buffer, data);
277         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
278         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
279         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
280         ab->descriptor.branch_address = 0;
281
282         dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
283
284         ctx->last_buffer->descriptor.branch_address = ab_bus | 1;
285         ctx->last_buffer->next = ab;
286         ctx->last_buffer = ab;
287
288         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
289         flush_writes(ctx->ohci);
290
291         return 0;
292 }
293
294 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
295 {
296         struct fw_ohci *ohci = ctx->ohci;
297         struct fw_packet p;
298         u32 status, length, tcode;
299
300         p.header[0] = le32_to_cpu(buffer[0]);
301         p.header[1] = le32_to_cpu(buffer[1]);
302         p.header[2] = le32_to_cpu(buffer[2]);
303
304         tcode = (p.header[0] >> 4) & 0x0f;
305         switch (tcode) {
306         case TCODE_WRITE_QUADLET_REQUEST:
307         case TCODE_READ_QUADLET_RESPONSE:
308                 p.header[3] = (__force __u32) buffer[3];
309                 p.header_length = 16;
310                 p.payload_length = 0;
311                 break;
312
313         case TCODE_READ_BLOCK_REQUEST :
314                 p.header[3] = le32_to_cpu(buffer[3]);
315                 p.header_length = 16;
316                 p.payload_length = 0;
317                 break;
318
319         case TCODE_WRITE_BLOCK_REQUEST:
320         case TCODE_READ_BLOCK_RESPONSE:
321         case TCODE_LOCK_REQUEST:
322         case TCODE_LOCK_RESPONSE:
323                 p.header[3] = le32_to_cpu(buffer[3]);
324                 p.header_length = 16;
325                 p.payload_length = p.header[3] >> 16;
326                 break;
327
328         case TCODE_WRITE_RESPONSE:
329         case TCODE_READ_QUADLET_REQUEST:
330         case OHCI_TCODE_PHY_PACKET:
331                 p.header_length = 12;
332                 p.payload_length = 0;
333                 break;
334         }
335
336         p.payload = (void *) buffer + p.header_length;
337
338         /* FIXME: What to do about evt_* errors? */
339         length = (p.header_length + p.payload_length + 3) / 4;
340         status = le32_to_cpu(buffer[length]);
341
342         p.ack        = ((status >> 16) & 0x1f) - 16;
343         p.speed      = (status >> 21) & 0x7;
344         p.timestamp  = status & 0xffff;
345         p.generation = ohci->request_generation;
346
347         /* The OHCI bus reset handler synthesizes a phy packet with
348          * the new generation number when a bus reset happens (see
349          * section 8.4.2.3).  This helps us determine when a request
350          * was received and make sure we send the response in the same
351          * generation.  We only need this for requests; for responses
352          * we use the unique tlabel for finding the matching
353          * request. */
354
355         if (p.ack + 16 == 0x09)
356                 ohci->request_generation = (buffer[2] >> 16) & 0xff;
357         else if (ctx == &ohci->ar_request_ctx)
358                 fw_core_handle_request(&ohci->card, &p);
359         else
360                 fw_core_handle_response(&ohci->card, &p);
361
362         return buffer + length + 1;
363 }
364
365 static void ar_context_tasklet(unsigned long data)
366 {
367         struct ar_context *ctx = (struct ar_context *)data;
368         struct fw_ohci *ohci = ctx->ohci;
369         struct ar_buffer *ab;
370         struct descriptor *d;
371         void *buffer, *end;
372
373         ab = ctx->current_buffer;
374         d = &ab->descriptor;
375
376         if (d->res_count == 0) {
377                 size_t size, rest, offset;
378
379                 /* This descriptor is finished and we may have a
380                  * packet split across this and the next buffer. We
381                  * reuse the page for reassembling the split packet. */
382
383                 offset = offsetof(struct ar_buffer, data);
384                 dma_unmap_single(ohci->card.device,
385                                  ab->descriptor.data_address - offset,
386                                  PAGE_SIZE, DMA_BIDIRECTIONAL);
387
388                 buffer = ab;
389                 ab = ab->next;
390                 d = &ab->descriptor;
391                 size = buffer + PAGE_SIZE - ctx->pointer;
392                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
393                 memmove(buffer, ctx->pointer, size);
394                 memcpy(buffer + size, ab->data, rest);
395                 ctx->current_buffer = ab;
396                 ctx->pointer = (void *) ab->data + rest;
397                 end = buffer + size + rest;
398
399                 while (buffer < end)
400                         buffer = handle_ar_packet(ctx, buffer);
401
402                 free_page((unsigned long)buffer);
403                 ar_context_add_page(ctx);
404         } else {
405                 buffer = ctx->pointer;
406                 ctx->pointer = end =
407                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
408
409                 while (buffer < end)
410                         buffer = handle_ar_packet(ctx, buffer);
411         }
412 }
413
414 static int
415 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
416 {
417         struct ar_buffer ab;
418
419         ctx->regs        = regs;
420         ctx->ohci        = ohci;
421         ctx->last_buffer = &ab;
422         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
423
424         ar_context_add_page(ctx);
425         ar_context_add_page(ctx);
426         ctx->current_buffer = ab.next;
427         ctx->pointer = ctx->current_buffer->data;
428
429         reg_write(ctx->ohci, command_ptr(ctx->regs), ab.descriptor.branch_address);
430         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_RUN);
431         flush_writes(ctx->ohci);
432
433         return 0;
434 }
435
436 static void context_tasklet(unsigned long data)
437 {
438         struct context *ctx = (struct context *) data;
439         struct fw_ohci *ohci = ctx->ohci;
440         struct descriptor *d, *last;
441         u32 address;
442         int z;
443
444         dma_sync_single_for_cpu(ohci->card.device, ctx->buffer_bus,
445                                 ctx->buffer_size, DMA_TO_DEVICE);
446
447         d    = ctx->tail_descriptor;
448         last = ctx->tail_descriptor_last;
449
450         while (last->branch_address != 0) {
451                 address = le32_to_cpu(last->branch_address);
452                 z = address & 0xf;
453                 d = ctx->buffer + (address - ctx->buffer_bus) / sizeof *d;
454                 last = (z == 2) ? d : d + z - 1;
455
456                 if (!ctx->callback(ctx, d, last))
457                         break;
458
459                 ctx->tail_descriptor      = d;
460                 ctx->tail_descriptor_last = last;
461         }
462 }
463
464 static int
465 context_init(struct context *ctx, struct fw_ohci *ohci,
466              size_t buffer_size, u32 regs,
467              descriptor_callback_t callback)
468 {
469         ctx->ohci = ohci;
470         ctx->regs = regs;
471         ctx->buffer_size = buffer_size;
472         ctx->buffer = kmalloc(buffer_size, GFP_KERNEL);
473         if (ctx->buffer == NULL)
474                 return -ENOMEM;
475
476         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
477         ctx->callback = callback;
478
479         ctx->buffer_bus =
480                 dma_map_single(ohci->card.device, ctx->buffer,
481                                buffer_size, DMA_TO_DEVICE);
482         if (dma_mapping_error(ctx->buffer_bus)) {
483                 kfree(ctx->buffer);
484                 return -ENOMEM;
485         }
486
487         ctx->head_descriptor      = ctx->buffer;
488         ctx->prev_descriptor      = ctx->buffer;
489         ctx->tail_descriptor      = ctx->buffer;
490         ctx->tail_descriptor_last = ctx->buffer;
491
492         /* We put a dummy descriptor in the buffer that has a NULL
493          * branch address and looks like it's been sent.  That way we
494          * have a descriptor to append DMA programs to.  Also, the
495          * ring buffer invariant is that it always has at least one
496          * element so that head == tail means buffer full. */
497
498         memset(ctx->head_descriptor, 0, sizeof *ctx->head_descriptor);
499         ctx->head_descriptor->control = cpu_to_le16(descriptor_output_last);
500         ctx->head_descriptor->transfer_status = cpu_to_le16(0x8011);
501         ctx->head_descriptor++;
502
503         return 0;
504 }
505
506 static void
507 context_release(struct context *ctx)
508 {
509         struct fw_card *card = &ctx->ohci->card;
510
511         dma_unmap_single(card->device, ctx->buffer_bus,
512                          ctx->buffer_size, DMA_TO_DEVICE);
513         kfree(ctx->buffer);
514 }
515
516 static struct descriptor *
517 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
518 {
519         struct descriptor *d, *tail, *end;
520
521         d = ctx->head_descriptor;
522         tail = ctx->tail_descriptor;
523         end = ctx->buffer + ctx->buffer_size / sizeof(struct descriptor);
524
525         if (d + z <= tail) {
526                 goto has_space;
527         } else if (d > tail && d + z <= end) {
528                 goto has_space;
529         } else if (d > tail && ctx->buffer + z <= tail) {
530                 d = ctx->buffer;
531                 goto has_space;
532         }
533
534         return NULL;
535
536  has_space:
537         memset(d, 0, z * sizeof *d);
538         *d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
539
540         return d;
541 }
542
543 static void context_run(struct context *ctx, u32 extra)
544 {
545         struct fw_ohci *ohci = ctx->ohci;
546
547         reg_write(ohci, command_ptr(ctx->regs),
548                   le32_to_cpu(ctx->tail_descriptor_last->branch_address));
549         reg_write(ohci, control_clear(ctx->regs), ~0);
550         reg_write(ohci, control_set(ctx->regs), CONTEXT_RUN | extra);
551         flush_writes(ohci);
552 }
553
554 static void context_append(struct context *ctx,
555                            struct descriptor *d, int z, int extra)
556 {
557         dma_addr_t d_bus;
558
559         d_bus = ctx->buffer_bus + (d - ctx->buffer) * sizeof *d;
560
561         ctx->head_descriptor = d + z + extra;
562         ctx->prev_descriptor->branch_address = cpu_to_le32(d_bus | z);
563         ctx->prev_descriptor = z == 2 ? d : d + z - 1;
564
565         dma_sync_single_for_device(ctx->ohci->card.device, ctx->buffer_bus,
566                                    ctx->buffer_size, DMA_TO_DEVICE);
567
568         reg_write(ctx->ohci, control_set(ctx->regs), CONTEXT_WAKE);
569         flush_writes(ctx->ohci);
570 }
571
572 static void context_stop(struct context *ctx)
573 {
574         u32 reg;
575         int i;
576
577         reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
578         flush_writes(ctx->ohci);
579
580         for (i = 0; i < 10; i++) {
581                 reg = reg_read(ctx->ohci, control_set(ctx->regs));
582                 if ((reg & CONTEXT_ACTIVE) == 0)
583                         break;
584
585                 fw_notify("context_stop: still active (0x%08x)\n", reg);
586                 msleep(1);
587         }
588 }
589
590 static void
591 do_packet_callbacks(struct fw_ohci *ohci, struct list_head *list)
592 {
593         struct fw_packet *p, *next;
594
595         list_for_each_entry_safe(p, next, list, link)
596                 p->callback(p, &ohci->card, p->ack);
597 }
598
599 static void
600 complete_transmission(struct fw_packet *packet,
601                       int ack, struct list_head *list)
602 {
603         list_move_tail(&packet->link, list);
604         packet->ack = ack;
605 }
606
607 /* This function prepares the first packet in the context queue for
608  * transmission.  Must always be called with the ochi->lock held to
609  * ensure proper generation handling and locking around packet queue
610  * manipulation. */
611 static void
612 at_context_setup_packet(struct at_context *ctx, struct list_head *list)
613 {
614         struct fw_packet *packet;
615         struct fw_ohci *ohci = ctx->ohci;
616         int z, tcode;
617
618         packet = fw_packet(ctx->list.next);
619
620         memset(&ctx->d, 0, sizeof ctx->d);
621         if (packet->payload_length > 0) {
622                 packet->payload_bus = dma_map_single(ohci->card.device,
623                                                      packet->payload,
624                                                      packet->payload_length,
625                                                      DMA_TO_DEVICE);
626                 if (dma_mapping_error(packet->payload_bus)) {
627                         complete_transmission(packet, RCODE_SEND_ERROR, list);
628                         return;
629                 }
630
631                 ctx->d.more.control      =
632                         cpu_to_le16(descriptor_output_more |
633                                     descriptor_key_immediate);
634                 ctx->d.more.req_count    = cpu_to_le16(packet->header_length);
635                 ctx->d.more.res_count    = cpu_to_le16(packet->timestamp);
636                 ctx->d.last.control      =
637                         cpu_to_le16(descriptor_output_last |
638                                     descriptor_irq_always |
639                                     descriptor_branch_always);
640                 ctx->d.last.req_count    = cpu_to_le16(packet->payload_length);
641                 ctx->d.last.data_address = cpu_to_le32(packet->payload_bus);
642                 z = 3;
643         } else {
644                 ctx->d.more.control   =
645                         cpu_to_le16(descriptor_output_last |
646                                     descriptor_key_immediate |
647                                     descriptor_irq_always |
648                                     descriptor_branch_always);
649                 ctx->d.more.req_count = cpu_to_le16(packet->header_length);
650                 ctx->d.more.res_count = cpu_to_le16(packet->timestamp);
651                 z = 2;
652         }
653
654         /* The DMA format for asyncronous link packets is different
655          * from the IEEE1394 layout, so shift the fields around
656          * accordingly.  If header_length is 8, it's a PHY packet, to
657          * which we need to prepend an extra quadlet. */
658         if (packet->header_length > 8) {
659                 ctx->d.header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
660                                                (packet->speed << 16));
661                 ctx->d.header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
662                                                (packet->header[0] & 0xffff0000));
663                 ctx->d.header[2] = cpu_to_le32(packet->header[2]);
664
665                 tcode = (packet->header[0] >> 4) & 0x0f;
666                 if (TCODE_IS_BLOCK_PACKET(tcode))
667                         ctx->d.header[3] = cpu_to_le32(packet->header[3]);
668                 else
669                         ctx->d.header[3] = packet->header[3];
670         } else {
671                 ctx->d.header[0] =
672                         cpu_to_le32((OHCI1394_phy_tcode << 4) |
673                                     (packet->speed << 16));
674                 ctx->d.header[1] = cpu_to_le32(packet->header[0]);
675                 ctx->d.header[2] = cpu_to_le32(packet->header[1]);
676                 ctx->d.more.req_count = cpu_to_le16(12);
677         }
678
679         /* FIXME: Document how the locking works. */
680         if (ohci->generation == packet->generation) {
681                 reg_write(ctx->ohci, command_ptr(ctx->regs),
682                           ctx->descriptor_bus | z);
683                 reg_write(ctx->ohci, control_set(ctx->regs),
684                           CONTEXT_RUN | CONTEXT_WAKE);
685                 ctx->current_packet = packet;
686         } else {
687                 /* We dont return error codes from this function; all
688                  * transmission errors are reported through the
689                  * callback. */
690                 complete_transmission(packet, RCODE_GENERATION, list);
691         }
692 }
693
694 static void at_context_stop(struct at_context *ctx)
695 {
696         u32 reg;
697
698         reg_write(ctx->ohci, control_clear(ctx->regs), CONTEXT_RUN);
699
700         reg = reg_read(ctx->ohci, control_set(ctx->regs));
701         if (reg & CONTEXT_ACTIVE)
702                 fw_notify("Tried to stop context, but it is still active "
703                           "(0x%08x).\n", reg);
704 }
705
706 static void at_context_tasklet(unsigned long data)
707 {
708         struct at_context *ctx = (struct at_context *)data;
709         struct fw_ohci *ohci = ctx->ohci;
710         struct fw_packet *packet;
711         LIST_HEAD(list);
712         unsigned long flags;
713         int evt;
714
715         spin_lock_irqsave(&ohci->lock, flags);
716
717         packet = fw_packet(ctx->list.next);
718
719         at_context_stop(ctx);
720
721         /* If the head of the list isn't the packet that just got
722          * transmitted, the packet got cancelled before we finished
723          * transmitting it. */
724         if (ctx->current_packet != packet)
725                 goto skip_to_next;
726
727         if (packet->payload_length > 0) {
728                 dma_unmap_single(ohci->card.device, packet->payload_bus,
729                                  packet->payload_length, DMA_TO_DEVICE);
730                 evt = le16_to_cpu(ctx->d.last.transfer_status) & 0x1f;
731                 packet->timestamp = le16_to_cpu(ctx->d.last.res_count);
732         }
733         else {
734                 evt = le16_to_cpu(ctx->d.more.transfer_status) & 0x1f;
735                 packet->timestamp = le16_to_cpu(ctx->d.more.res_count);
736         }
737
738         if (evt < 16) {
739                 switch (evt) {
740                 case OHCI1394_evt_timeout:
741                         /* Async response transmit timed out. */
742                         complete_transmission(packet, RCODE_CANCELLED, &list);
743                         break;
744
745                 case OHCI1394_evt_flushed:
746                         /* The packet was flushed should give same
747                          * error as when we try to use a stale
748                          * generation count. */
749                         complete_transmission(packet,
750                                               RCODE_GENERATION, &list);
751                         break;
752
753                 case OHCI1394_evt_missing_ack:
754                         /* Using a valid (current) generation count,
755                          * but the node is not on the bus or not
756                          * sending acks. */
757                         complete_transmission(packet, RCODE_NO_ACK, &list);
758                         break;
759
760                 default:
761                         complete_transmission(packet, RCODE_SEND_ERROR, &list);
762                         break;
763                 }
764         } else
765                 complete_transmission(packet, evt - 16, &list);
766
767  skip_to_next:
768         /* If more packets are queued, set up the next one. */
769         if (!list_empty(&ctx->list))
770                 at_context_setup_packet(ctx, &list);
771
772         spin_unlock_irqrestore(&ohci->lock, flags);
773
774         do_packet_callbacks(ohci, &list);
775 }
776
777 static int
778 at_context_init(struct at_context *ctx, struct fw_ohci *ohci, u32 regs)
779 {
780         INIT_LIST_HEAD(&ctx->list);
781
782         ctx->descriptor_bus =
783                 dma_map_single(ohci->card.device, &ctx->d,
784                                sizeof ctx->d, DMA_TO_DEVICE);
785         if (dma_mapping_error(ctx->descriptor_bus))
786                 return -ENOMEM;
787
788         ctx->regs = regs;
789         ctx->ohci = ohci;
790
791         tasklet_init(&ctx->tasklet, at_context_tasklet, (unsigned long)ctx);
792
793         return 0;
794 }
795
796 #define header_get_destination(q)       (((q) >> 16) & 0xffff)
797 #define header_get_tcode(q)             (((q) >> 4) & 0x0f)
798 #define header_get_offset_high(q)       (((q) >> 0) & 0xffff)
799 #define header_get_data_length(q)       (((q) >> 16) & 0xffff)
800 #define header_get_extended_tcode(q)    (((q) >> 0) & 0xffff)
801
802 static void
803 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
804 {
805         struct fw_packet response;
806         int tcode, length, i;
807
808         tcode = header_get_tcode(packet->header[0]);
809         if (TCODE_IS_BLOCK_PACKET(tcode))
810                 length = header_get_data_length(packet->header[3]);
811         else
812                 length = 4;
813
814         i = csr - CSR_CONFIG_ROM;
815         if (i + length > CONFIG_ROM_SIZE) {
816                 fw_fill_response(&response, packet->header,
817                                  RCODE_ADDRESS_ERROR, NULL, 0);
818         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
819                 fw_fill_response(&response, packet->header,
820                                  RCODE_TYPE_ERROR, NULL, 0);
821         } else {
822                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
823                                  (void *) ohci->config_rom + i, length);
824         }
825
826         fw_core_handle_response(&ohci->card, &response);
827 }
828
829 static void
830 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
831 {
832         struct fw_packet response;
833         int tcode, length, ext_tcode, sel;
834         __be32 *payload, lock_old;
835         u32 lock_arg, lock_data;
836
837         tcode = header_get_tcode(packet->header[0]);
838         length = header_get_data_length(packet->header[3]);
839         payload = packet->payload;
840         ext_tcode = header_get_extended_tcode(packet->header[3]);
841
842         if (tcode == TCODE_LOCK_REQUEST &&
843             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
844                 lock_arg = be32_to_cpu(payload[0]);
845                 lock_data = be32_to_cpu(payload[1]);
846         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
847                 lock_arg = 0;
848                 lock_data = 0;
849         } else {
850                 fw_fill_response(&response, packet->header,
851                                  RCODE_TYPE_ERROR, NULL, 0);
852                 goto out;
853         }
854
855         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
856         reg_write(ohci, OHCI1394_CSRData, lock_data);
857         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
858         reg_write(ohci, OHCI1394_CSRControl, sel);
859
860         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
861                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
862         else
863                 fw_notify("swap not done yet\n");
864
865         fw_fill_response(&response, packet->header,
866                          RCODE_COMPLETE, &lock_old, sizeof lock_old);
867  out:
868         fw_core_handle_response(&ohci->card, &response);
869 }
870
871 static void
872 handle_local_request(struct at_context *ctx, struct fw_packet *packet)
873 {
874         u64 offset;
875         u32 csr;
876
877         packet->ack = ACK_PENDING;
878         packet->callback(packet, &ctx->ohci->card, packet->ack);
879
880         offset =
881                 ((unsigned long long)
882                  header_get_offset_high(packet->header[1]) << 32) |
883                 packet->header[2];
884         csr = offset - CSR_REGISTER_BASE;
885
886         /* Handle config rom reads. */
887         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
888                 handle_local_rom(ctx->ohci, packet, csr);
889         else switch (csr) {
890         case CSR_BUS_MANAGER_ID:
891         case CSR_BANDWIDTH_AVAILABLE:
892         case CSR_CHANNELS_AVAILABLE_HI:
893         case CSR_CHANNELS_AVAILABLE_LO:
894                 handle_local_lock(ctx->ohci, packet, csr);
895                 break;
896         default:
897                 if (ctx == &ctx->ohci->at_request_ctx)
898                         fw_core_handle_request(&ctx->ohci->card, packet);
899                 else
900                         fw_core_handle_response(&ctx->ohci->card, packet);
901                 break;
902         }
903 }
904
905 static void
906 at_context_transmit(struct at_context *ctx, struct fw_packet *packet)
907 {
908         LIST_HEAD(list);
909         unsigned long flags;
910
911         spin_lock_irqsave(&ctx->ohci->lock, flags);
912
913         if (header_get_destination(packet->header[0]) == ctx->ohci->node_id &&
914             ctx->ohci->generation == packet->generation) {
915                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
916                 handle_local_request(ctx, packet);
917                 return;
918         }
919
920         list_add_tail(&packet->link, &ctx->list);
921         if (ctx->list.next == &packet->link)
922                 at_context_setup_packet(ctx, &list);
923
924         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
925
926         do_packet_callbacks(ctx->ohci, &list);
927 }
928
929 static void bus_reset_tasklet(unsigned long data)
930 {
931         struct fw_ohci *ohci = (struct fw_ohci *)data;
932         int self_id_count, i, j, reg;
933         int generation, new_generation;
934         unsigned long flags;
935
936         reg = reg_read(ohci, OHCI1394_NodeID);
937         if (!(reg & OHCI1394_NodeID_idValid)) {
938                 fw_error("node ID not valid, new bus reset in progress\n");
939                 return;
940         }
941         ohci->node_id = reg & 0xffff;
942
943         /* The count in the SelfIDCount register is the number of
944          * bytes in the self ID receive buffer.  Since we also receive
945          * the inverted quadlets and a header quadlet, we shift one
946          * bit extra to get the actual number of self IDs. */
947
948         self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
949         generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
950
951         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
952                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
953                         fw_error("inconsistent self IDs\n");
954                 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
955         }
956
957         /* Check the consistency of the self IDs we just read.  The
958          * problem we face is that a new bus reset can start while we
959          * read out the self IDs from the DMA buffer. If this happens,
960          * the DMA buffer will be overwritten with new self IDs and we
961          * will read out inconsistent data.  The OHCI specification
962          * (section 11.2) recommends a technique similar to
963          * linux/seqlock.h, where we remember the generation of the
964          * self IDs in the buffer before reading them out and compare
965          * it to the current generation after reading them out.  If
966          * the two generations match we know we have a consistent set
967          * of self IDs. */
968
969         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
970         if (new_generation != generation) {
971                 fw_notify("recursive bus reset detected, "
972                           "discarding self ids\n");
973                 return;
974         }
975
976         /* FIXME: Document how the locking works. */
977         spin_lock_irqsave(&ohci->lock, flags);
978
979         ohci->generation = generation;
980         at_context_stop(&ohci->at_request_ctx);
981         at_context_stop(&ohci->at_response_ctx);
982         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
983
984         /* This next bit is unrelated to the AT context stuff but we
985          * have to do it under the spinlock also.  If a new config rom
986          * was set up before this reset, the old one is now no longer
987          * in use and we can free it. Update the config rom pointers
988          * to point to the current config rom and clear the
989          * next_config_rom pointer so a new udpate can take place. */
990
991         if (ohci->next_config_rom != NULL) {
992                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
993                                   ohci->config_rom, ohci->config_rom_bus);
994                 ohci->config_rom      = ohci->next_config_rom;
995                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
996                 ohci->next_config_rom = NULL;
997
998                 /* Restore config_rom image and manually update
999                  * config_rom registers.  Writing the header quadlet
1000                  * will indicate that the config rom is ready, so we
1001                  * do that last. */
1002                 reg_write(ohci, OHCI1394_BusOptions,
1003                           be32_to_cpu(ohci->config_rom[2]));
1004                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1005                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1006         }
1007
1008         spin_unlock_irqrestore(&ohci->lock, flags);
1009
1010         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1011                                  self_id_count, ohci->self_id_buffer);
1012 }
1013
1014 static irqreturn_t irq_handler(int irq, void *data)
1015 {
1016         struct fw_ohci *ohci = data;
1017         u32 event, iso_event;
1018         int i;
1019
1020         event = reg_read(ohci, OHCI1394_IntEventClear);
1021
1022         if (!event)
1023                 return IRQ_NONE;
1024
1025         reg_write(ohci, OHCI1394_IntEventClear, event);
1026
1027         if (event & OHCI1394_selfIDComplete)
1028                 tasklet_schedule(&ohci->bus_reset_tasklet);
1029
1030         if (event & OHCI1394_RQPkt)
1031                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1032
1033         if (event & OHCI1394_RSPkt)
1034                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1035
1036         if (event & OHCI1394_reqTxComplete)
1037                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1038
1039         if (event & OHCI1394_respTxComplete)
1040                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1041
1042         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1043         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1044
1045         while (iso_event) {
1046                 i = ffs(iso_event) - 1;
1047                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1048                 iso_event &= ~(1 << i);
1049         }
1050
1051         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1052         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1053
1054         while (iso_event) {
1055                 i = ffs(iso_event) - 1;
1056                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1057                 iso_event &= ~(1 << i);
1058         }
1059
1060         return IRQ_HANDLED;
1061 }
1062
1063 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1064 {
1065         struct fw_ohci *ohci = fw_ohci(card);
1066         struct pci_dev *dev = to_pci_dev(card->device);
1067
1068         /* When the link is not yet enabled, the atomic config rom
1069          * update mechanism described below in ohci_set_config_rom()
1070          * is not active.  We have to update ConfigRomHeader and
1071          * BusOptions manually, and the write to ConfigROMmap takes
1072          * effect immediately.  We tie this to the enabling of the
1073          * link, so we have a valid config rom before enabling - the
1074          * OHCI requires that ConfigROMhdr and BusOptions have valid
1075          * values before enabling.
1076          *
1077          * However, when the ConfigROMmap is written, some controllers
1078          * always read back quadlets 0 and 2 from the config rom to
1079          * the ConfigRomHeader and BusOptions registers on bus reset.
1080          * They shouldn't do that in this initial case where the link
1081          * isn't enabled.  This means we have to use the same
1082          * workaround here, setting the bus header to 0 and then write
1083          * the right values in the bus reset tasklet.
1084          */
1085
1086         ohci->next_config_rom =
1087                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1088                                    &ohci->next_config_rom_bus, GFP_KERNEL);
1089         if (ohci->next_config_rom == NULL)
1090                 return -ENOMEM;
1091
1092         memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1093         fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1094
1095         ohci->next_header = config_rom[0];
1096         ohci->next_config_rom[0] = 0;
1097         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1098         reg_write(ohci, OHCI1394_BusOptions, config_rom[2]);
1099         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1100
1101         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1102
1103         if (request_irq(dev->irq, irq_handler,
1104                         IRQF_SHARED, ohci_driver_name, ohci)) {
1105                 fw_error("Failed to allocate shared interrupt %d.\n",
1106                          dev->irq);
1107                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1108                                   ohci->config_rom, ohci->config_rom_bus);
1109                 return -EIO;
1110         }
1111
1112         reg_write(ohci, OHCI1394_HCControlSet,
1113                   OHCI1394_HCControl_linkEnable |
1114                   OHCI1394_HCControl_BIBimageValid);
1115         flush_writes(ohci);
1116
1117         /* We are ready to go, initiate bus reset to finish the
1118          * initialization. */
1119
1120         fw_core_initiate_bus_reset(&ohci->card, 1);
1121
1122         return 0;
1123 }
1124
1125 static int
1126 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1127 {
1128         struct fw_ohci *ohci;
1129         unsigned long flags;
1130         int retval = 0;
1131         __be32 *next_config_rom;
1132         dma_addr_t next_config_rom_bus;
1133
1134         ohci = fw_ohci(card);
1135
1136         /* When the OHCI controller is enabled, the config rom update
1137          * mechanism is a bit tricky, but easy enough to use.  See
1138          * section 5.5.6 in the OHCI specification.
1139          *
1140          * The OHCI controller caches the new config rom address in a
1141          * shadow register (ConfigROMmapNext) and needs a bus reset
1142          * for the changes to take place.  When the bus reset is
1143          * detected, the controller loads the new values for the
1144          * ConfigRomHeader and BusOptions registers from the specified
1145          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1146          * shadow register. All automatically and atomically.
1147          *
1148          * Now, there's a twist to this story.  The automatic load of
1149          * ConfigRomHeader and BusOptions doesn't honor the
1150          * noByteSwapData bit, so with a be32 config rom, the
1151          * controller will load be32 values in to these registers
1152          * during the atomic update, even on litte endian
1153          * architectures.  The workaround we use is to put a 0 in the
1154          * header quadlet; 0 is endian agnostic and means that the
1155          * config rom isn't ready yet.  In the bus reset tasklet we
1156          * then set up the real values for the two registers.
1157          *
1158          * We use ohci->lock to avoid racing with the code that sets
1159          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1160          */
1161
1162         next_config_rom =
1163                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1164                                    &next_config_rom_bus, GFP_KERNEL);
1165         if (next_config_rom == NULL)
1166                 return -ENOMEM;
1167
1168         spin_lock_irqsave(&ohci->lock, flags);
1169
1170         if (ohci->next_config_rom == NULL) {
1171                 ohci->next_config_rom = next_config_rom;
1172                 ohci->next_config_rom_bus = next_config_rom_bus;
1173
1174                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1175                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1176                                   length * 4);
1177
1178                 ohci->next_header = config_rom[0];
1179                 ohci->next_config_rom[0] = 0;
1180
1181                 reg_write(ohci, OHCI1394_ConfigROMmap,
1182                           ohci->next_config_rom_bus);
1183         } else {
1184                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1185                                   next_config_rom, next_config_rom_bus);
1186                 retval = -EBUSY;
1187         }
1188
1189         spin_unlock_irqrestore(&ohci->lock, flags);
1190
1191         /* Now initiate a bus reset to have the changes take
1192          * effect. We clean up the old config rom memory and DMA
1193          * mappings in the bus reset tasklet, since the OHCI
1194          * controller could need to access it before the bus reset
1195          * takes effect. */
1196         if (retval == 0)
1197                 fw_core_initiate_bus_reset(&ohci->card, 1);
1198
1199         return retval;
1200 }
1201
1202 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1203 {
1204         struct fw_ohci *ohci = fw_ohci(card);
1205
1206         at_context_transmit(&ohci->at_request_ctx, packet);
1207 }
1208
1209 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1210 {
1211         struct fw_ohci *ohci = fw_ohci(card);
1212
1213         at_context_transmit(&ohci->at_response_ctx, packet);
1214 }
1215
1216 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1217 {
1218         struct fw_ohci *ohci = fw_ohci(card);
1219         LIST_HEAD(list);
1220         unsigned long flags;
1221
1222         spin_lock_irqsave(&ohci->lock, flags);
1223
1224         if (packet->ack == 0) {
1225                 fw_notify("cancelling packet %p (header[0]=%08x)\n",
1226                           packet, packet->header[0]);
1227
1228                 complete_transmission(packet, RCODE_CANCELLED, &list);
1229         }
1230
1231         spin_unlock_irqrestore(&ohci->lock, flags);
1232
1233         do_packet_callbacks(ohci, &list);
1234
1235         /* Return success if we actually cancelled something. */
1236         return list_empty(&list) ? -ENOENT : 0;
1237 }
1238
1239 static int
1240 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1241 {
1242         struct fw_ohci *ohci = fw_ohci(card);
1243         unsigned long flags;
1244         int n, retval = 0;
1245
1246         /* FIXME:  Make sure this bitmask is cleared when we clear the busReset
1247          * interrupt bit.  Clear physReqResourceAllBuses on bus reset. */
1248
1249         spin_lock_irqsave(&ohci->lock, flags);
1250
1251         if (ohci->generation != generation) {
1252                 retval = -ESTALE;
1253                 goto out;
1254         }
1255
1256         /* NOTE, if the node ID contains a non-local bus ID, physical DMA is
1257          * enabled for _all_ nodes on remote buses. */
1258
1259         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1260         if (n < 32)
1261                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1262         else
1263                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1264
1265         flush_writes(ohci);
1266  out:
1267         spin_unlock_irqrestore(&ohci->lock, flags);
1268         return retval;
1269 }
1270
1271 static int handle_ir_bufferfill_packet(struct context *context,
1272                                        struct descriptor *d,
1273                                        struct descriptor *last)
1274 {
1275         struct iso_context *ctx =
1276                 container_of(context, struct iso_context, context);
1277
1278         if (d->res_count > 0)
1279                 return 0;
1280
1281         if (le16_to_cpu(last->control) & descriptor_irq_always)
1282                 ctx->base.callback(&ctx->base,
1283                                    le16_to_cpu(last->res_count),
1284                                    0, NULL, ctx->base.callback_data);
1285
1286         return 1;
1287 }
1288
1289 static int handle_ir_dualbuffer_packet(struct context *context,
1290                                        struct descriptor *d,
1291                                        struct descriptor *last)
1292 {
1293         struct iso_context *ctx =
1294                 container_of(context, struct iso_context, context);
1295         struct db_descriptor *db = (struct db_descriptor *) d;
1296         size_t header_length;
1297
1298         if (db->first_res_count > 0 && db->second_res_count > 0)
1299                 /* This descriptor isn't done yet, stop iteration. */
1300                 return 0;
1301
1302         header_length = db->first_req_count - db->first_res_count;
1303         if (ctx->header_length + header_length <= PAGE_SIZE)
1304                 memcpy(ctx->header + ctx->header_length, db + 1, header_length);
1305         ctx->header_length += header_length;
1306
1307         if (le16_to_cpu(db->control) & descriptor_irq_always) {
1308                 ctx->base.callback(&ctx->base, 0,
1309                                    ctx->header_length, ctx->header,
1310                                    ctx->base.callback_data);
1311                 ctx->header_length = 0;
1312         }
1313
1314         return 1;
1315 }
1316
1317 #define ISO_BUFFER_SIZE (64 * 1024)
1318
1319 static int handle_it_packet(struct context *context,
1320                             struct descriptor *d,
1321                             struct descriptor *last)
1322 {
1323         struct iso_context *ctx =
1324                 container_of(context, struct iso_context, context);
1325
1326         if (last->transfer_status == 0)
1327                 /* This descriptor isn't done yet, stop iteration. */
1328                 return 0;
1329
1330         if (le16_to_cpu(last->control) & descriptor_irq_always)
1331                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1332                                    0, NULL, ctx->base.callback_data);
1333
1334         return 1;
1335 }
1336
1337 static struct fw_iso_context *
1338 ohci_allocate_iso_context(struct fw_card *card, int type,
1339                           int sync, int tags, size_t header_size)
1340 {
1341         struct fw_ohci *ohci = fw_ohci(card);
1342         struct iso_context *ctx, *list;
1343         descriptor_callback_t callback;
1344         u32 *mask, regs;
1345         unsigned long flags;
1346         int index, retval = -ENOMEM;
1347
1348         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1349                 mask = &ohci->it_context_mask;
1350                 list = ohci->it_context_list;
1351                 callback = handle_it_packet;
1352         } else {
1353                 mask = &ohci->ir_context_mask;
1354                 list = ohci->ir_context_list;
1355                 if (header_size > 0)
1356                         callback = handle_ir_dualbuffer_packet;
1357                 else
1358                         callback = handle_ir_bufferfill_packet;
1359         }
1360
1361         if (callback == handle_ir_dualbuffer_packet &&
1362             ohci->version < OHCI_VERSION_1_1)
1363                 return ERR_PTR(-EINVAL);
1364
1365         spin_lock_irqsave(&ohci->lock, flags);
1366         index = ffs(*mask) - 1;
1367         if (index >= 0)
1368                 *mask &= ~(1 << index);
1369         spin_unlock_irqrestore(&ohci->lock, flags);
1370
1371         if (index < 0)
1372                 return ERR_PTR(-EBUSY);
1373
1374         if (type == FW_ISO_CONTEXT_TRANSMIT)
1375                 regs = OHCI1394_IsoXmitContextBase(index);
1376         else
1377                 regs = OHCI1394_IsoRcvContextBase(index);
1378
1379         ctx = &list[index];
1380         memset(ctx, 0, sizeof *ctx);
1381         ctx->header_length = 0;
1382         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1383         if (ctx->header == NULL)
1384                 goto out;
1385
1386         retval = context_init(&ctx->context, ohci, ISO_BUFFER_SIZE,
1387                               regs, callback);
1388         if (retval < 0)
1389                 goto out_with_header;
1390
1391         return &ctx->base;
1392
1393  out_with_header:
1394         free_page((unsigned long)ctx->header);
1395  out:
1396         spin_lock_irqsave(&ohci->lock, flags);
1397         *mask |= 1 << index;
1398         spin_unlock_irqrestore(&ohci->lock, flags);
1399
1400         return ERR_PTR(retval);
1401 }
1402
1403 static int ohci_start_iso(struct fw_iso_context *base, s32 cycle)
1404 {
1405         struct iso_context *ctx = container_of(base, struct iso_context, base);
1406         struct fw_ohci *ohci = ctx->context.ohci;
1407         u32 cycle_match = 0, mode;
1408         int index;
1409
1410         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1411                 index = ctx - ohci->it_context_list;
1412                 if (cycle > 0)
1413                         cycle_match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1414                                 (cycle & 0x7fff) << 16;
1415
1416                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1417                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1418                 context_run(&ctx->context, cycle_match);
1419         } else {
1420                 index = ctx - ohci->ir_context_list;
1421
1422                 if (ctx->base.header_size > 0)
1423                         mode = IR_CONTEXT_DUAL_BUFFER_MODE;
1424                 else
1425                         mode = IR_CONTEXT_BUFFER_FILL;
1426                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1427                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1428                 reg_write(ohci, context_match(ctx->context.regs),
1429                           (ctx->base.tags << 28) |
1430                           (ctx->base.sync << 8) | ctx->base.channel);
1431                 context_run(&ctx->context, mode);
1432         }
1433
1434         return 0;
1435 }
1436
1437 static int ohci_stop_iso(struct fw_iso_context *base)
1438 {
1439         struct fw_ohci *ohci = fw_ohci(base->card);
1440         struct iso_context *ctx = container_of(base, struct iso_context, base);
1441         int index;
1442
1443         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1444                 index = ctx - ohci->it_context_list;
1445                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1446         } else {
1447                 index = ctx - ohci->ir_context_list;
1448                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1449         }
1450         flush_writes(ohci);
1451         context_stop(&ctx->context);
1452
1453         return 0;
1454 }
1455
1456 static void ohci_free_iso_context(struct fw_iso_context *base)
1457 {
1458         struct fw_ohci *ohci = fw_ohci(base->card);
1459         struct iso_context *ctx = container_of(base, struct iso_context, base);
1460         unsigned long flags;
1461         int index;
1462
1463         ohci_stop_iso(base);
1464         context_release(&ctx->context);
1465         free_page((unsigned long)ctx->header);
1466
1467         spin_lock_irqsave(&ohci->lock, flags);
1468
1469         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1470                 index = ctx - ohci->it_context_list;
1471                 ohci->it_context_mask |= 1 << index;
1472         } else {
1473                 index = ctx - ohci->ir_context_list;
1474                 ohci->ir_context_mask |= 1 << index;
1475         }
1476
1477         spin_unlock_irqrestore(&ohci->lock, flags);
1478 }
1479
1480 static int
1481 ohci_queue_iso_transmit(struct fw_iso_context *base,
1482                         struct fw_iso_packet *packet,
1483                         struct fw_iso_buffer *buffer,
1484                         unsigned long payload)
1485 {
1486         struct iso_context *ctx = container_of(base, struct iso_context, base);
1487         struct descriptor *d, *last, *pd;
1488         struct fw_iso_packet *p;
1489         __le32 *header;
1490         dma_addr_t d_bus, page_bus;
1491         u32 z, header_z, payload_z, irq;
1492         u32 payload_index, payload_end_index, next_page_index;
1493         int page, end_page, i, length, offset;
1494
1495         /* FIXME: Cycle lost behavior should be configurable: lose
1496          * packet, retransmit or terminate.. */
1497
1498         p = packet;
1499         payload_index = payload;
1500
1501         if (p->skip)
1502                 z = 1;
1503         else
1504                 z = 2;
1505         if (p->header_length > 0)
1506                 z++;
1507
1508         /* Determine the first page the payload isn't contained in. */
1509         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1510         if (p->payload_length > 0)
1511                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1512         else
1513                 payload_z = 0;
1514
1515         z += payload_z;
1516
1517         /* Get header size in number of descriptors. */
1518         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1519
1520         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1521         if (d == NULL)
1522                 return -ENOMEM;
1523
1524         if (!p->skip) {
1525                 d[0].control   = cpu_to_le16(descriptor_key_immediate);
1526                 d[0].req_count = cpu_to_le16(8);
1527
1528                 header = (__le32 *) &d[1];
1529                 header[0] = cpu_to_le32(it_header_sy(p->sy) |
1530                                         it_header_tag(p->tag) |
1531                                         it_header_tcode(TCODE_STREAM_DATA) |
1532                                         it_header_channel(ctx->base.channel) |
1533                                         it_header_speed(ctx->base.speed));
1534                 header[1] =
1535                         cpu_to_le32(it_header_data_length(p->header_length +
1536                                                           p->payload_length));
1537         }
1538
1539         if (p->header_length > 0) {
1540                 d[2].req_count    = cpu_to_le16(p->header_length);
1541                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof *d);
1542                 memcpy(&d[z], p->header, p->header_length);
1543         }
1544
1545         pd = d + z - payload_z;
1546         payload_end_index = payload_index + p->payload_length;
1547         for (i = 0; i < payload_z; i++) {
1548                 page               = payload_index >> PAGE_SHIFT;
1549                 offset             = payload_index & ~PAGE_MASK;
1550                 next_page_index    = (page + 1) << PAGE_SHIFT;
1551                 length             =
1552                         min(next_page_index, payload_end_index) - payload_index;
1553                 pd[i].req_count    = cpu_to_le16(length);
1554
1555                 page_bus = page_private(buffer->pages[page]);
1556                 pd[i].data_address = cpu_to_le32(page_bus + offset);
1557
1558                 payload_index += length;
1559         }
1560
1561         if (p->interrupt)
1562                 irq = descriptor_irq_always;
1563         else
1564                 irq = descriptor_no_irq;
1565
1566         last = z == 2 ? d : d + z - 1;
1567         last->control |= cpu_to_le16(descriptor_output_last |
1568                                      descriptor_status |
1569                                      descriptor_branch_always |
1570                                      irq);
1571
1572         context_append(&ctx->context, d, z, header_z);
1573
1574         return 0;
1575 }
1576
1577 static int
1578 setup_wait_descriptor(struct context *ctx)
1579 {
1580         struct descriptor *d;
1581         dma_addr_t d_bus;
1582
1583         d = context_get_descriptors(ctx, 1, &d_bus);
1584         if (d == NULL)
1585                 return -ENOMEM;
1586
1587         d->control = cpu_to_le16(descriptor_input_more |
1588                                  descriptor_status |
1589                                  descriptor_branch_always |
1590                                  descriptor_wait);
1591
1592         context_append(ctx, d, 1, 0);
1593
1594         return 0;
1595 }
1596
1597 static int
1598 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1599                                   struct fw_iso_packet *packet,
1600                                   struct fw_iso_buffer *buffer,
1601                                   unsigned long payload)
1602 {
1603         struct iso_context *ctx = container_of(base, struct iso_context, base);
1604         struct db_descriptor *db = NULL;
1605         struct descriptor *d;
1606         struct fw_iso_packet *p;
1607         dma_addr_t d_bus, page_bus;
1608         u32 z, header_z, length, rest;
1609         int page, offset;
1610
1611         /* FIXME: Cycle lost behavior should be configurable: lose
1612          * packet, retransmit or terminate.. */
1613
1614         if (packet->skip && setup_wait_descriptor(&ctx->context) < 0)
1615                 return -ENOMEM;
1616
1617         p = packet;
1618         z = 2;
1619
1620         /* Get header size in number of descriptors. */
1621         header_z = DIV_ROUND_UP(p->header_length, sizeof *d);
1622         page     = payload >> PAGE_SHIFT;
1623         offset   = payload & ~PAGE_MASK;
1624         rest     = p->payload_length;
1625
1626         /* FIXME: OHCI 1.0 doesn't support dual buffer receive */
1627         /* FIXME: handle descriptor_wait */
1628         /* FIXME: make packet-per-buffer/dual-buffer a context option */
1629         while (rest > 0) {
1630                 d = context_get_descriptors(&ctx->context,
1631                                             z + header_z, &d_bus);
1632                 if (d == NULL)
1633                         return -ENOMEM;
1634
1635                 db = (struct db_descriptor *) d;
1636                 db->control = cpu_to_le16(descriptor_status |
1637                                           descriptor_branch_always);
1638                 db->first_size = cpu_to_le16(ctx->base.header_size);
1639                 db->first_req_count = cpu_to_le16(p->header_length);
1640                 db->first_res_count = db->first_req_count;
1641                 db->first_buffer = cpu_to_le32(d_bus + sizeof *db);
1642
1643                 if (offset + rest < PAGE_SIZE)
1644                         length = rest;
1645                 else
1646                         length = PAGE_SIZE - offset;
1647
1648                 db->second_req_count = cpu_to_le16(length);
1649                 db->second_res_count = db->second_req_count;
1650                 page_bus = page_private(buffer->pages[page]);
1651                 db->second_buffer = cpu_to_le32(page_bus + offset);
1652
1653                 if (p->interrupt && length == rest)
1654                         db->control |= cpu_to_le16(descriptor_irq_always);
1655
1656                 context_append(&ctx->context, d, z, header_z);
1657                 offset = (offset + length) & ~PAGE_MASK;
1658                 rest -= length;
1659                 page++;
1660         }
1661
1662         return 0;
1663 }
1664
1665 static int
1666 ohci_queue_iso_receive_bufferfill(struct fw_iso_context *base,
1667                                   struct fw_iso_packet *packet,
1668                                   struct fw_iso_buffer *buffer,
1669                                   unsigned long payload)
1670 {
1671         struct iso_context *ctx = container_of(base, struct iso_context, base);
1672         struct descriptor *d = NULL;
1673         dma_addr_t d_bus, page_bus;
1674         u32 length, rest;
1675         int page, offset;
1676
1677         page   = payload >> PAGE_SHIFT;
1678         offset = payload & ~PAGE_MASK;
1679         rest   = packet->payload_length;
1680
1681         if (packet->skip && setup_wait_descriptor(&ctx->context) < 0)
1682                 return -ENOMEM;
1683
1684         while (rest > 0) {
1685                 d = context_get_descriptors(&ctx->context, 1, &d_bus);
1686                 if (d == NULL)
1687                         return -ENOMEM;
1688
1689                 d->control = cpu_to_le16(descriptor_input_more |
1690                                          descriptor_status |
1691                                          descriptor_branch_always);
1692
1693                 if (offset + rest < PAGE_SIZE)
1694                         length = rest;
1695                 else
1696                         length = PAGE_SIZE - offset;
1697
1698                 page_bus = page_private(buffer->pages[page]);
1699                 d->data_address = cpu_to_le32(page_bus + offset);
1700                 d->req_count = cpu_to_le16(length);
1701                 d->res_count = cpu_to_le16(length);
1702
1703                 if (packet->interrupt && length == rest)
1704                         d->control |= cpu_to_le16(descriptor_irq_always);
1705
1706                 context_append(&ctx->context, d, 1, 0);
1707
1708                 offset = (offset + length) & ~PAGE_MASK;
1709                 rest -= length;
1710                 page++;
1711         }
1712
1713         return 0;
1714 }
1715
1716 static int
1717 ohci_queue_iso(struct fw_iso_context *base,
1718                struct fw_iso_packet *packet,
1719                struct fw_iso_buffer *buffer,
1720                unsigned long payload)
1721 {
1722         struct iso_context *ctx = container_of(base, struct iso_context, base);
1723
1724         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
1725                 return ohci_queue_iso_transmit(base, packet, buffer, payload);
1726         else if (base->header_size == 0)
1727                 return ohci_queue_iso_receive_bufferfill(base, packet,
1728                                                          buffer, payload);
1729         else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
1730                 return ohci_queue_iso_receive_dualbuffer(base, packet,
1731                                                          buffer, payload);
1732         else
1733                 /* FIXME: Implement fallback for OHCI 1.0 controllers. */
1734                 return -EINVAL;
1735 }
1736
1737 static const struct fw_card_driver ohci_driver = {
1738         .name                   = ohci_driver_name,
1739         .enable                 = ohci_enable,
1740         .update_phy_reg         = ohci_update_phy_reg,
1741         .set_config_rom         = ohci_set_config_rom,
1742         .send_request           = ohci_send_request,
1743         .send_response          = ohci_send_response,
1744         .cancel_packet          = ohci_cancel_packet,
1745         .enable_phys_dma        = ohci_enable_phys_dma,
1746
1747         .allocate_iso_context   = ohci_allocate_iso_context,
1748         .free_iso_context       = ohci_free_iso_context,
1749         .queue_iso              = ohci_queue_iso,
1750         .start_iso              = ohci_start_iso,
1751         .stop_iso               = ohci_stop_iso,
1752 };
1753
1754 static int software_reset(struct fw_ohci *ohci)
1755 {
1756         int i;
1757
1758         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1759
1760         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1761                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1762                      OHCI1394_HCControl_softReset) == 0)
1763                         return 0;
1764                 msleep(1);
1765         }
1766
1767         return -EBUSY;
1768 }
1769
1770 /* ---------- pci subsystem interface ---------- */
1771
1772 enum {
1773         CLEANUP_SELF_ID,
1774         CLEANUP_REGISTERS,
1775         CLEANUP_IOMEM,
1776         CLEANUP_DISABLE,
1777         CLEANUP_PUT_CARD,
1778 };
1779
1780 static int cleanup(struct fw_ohci *ohci, int stage, int code)
1781 {
1782         struct pci_dev *dev = to_pci_dev(ohci->card.device);
1783
1784         switch (stage) {
1785         case CLEANUP_SELF_ID:
1786                 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
1787                                   ohci->self_id_cpu, ohci->self_id_bus);
1788         case CLEANUP_REGISTERS:
1789                 kfree(ohci->it_context_list);
1790                 kfree(ohci->ir_context_list);
1791                 pci_iounmap(dev, ohci->registers);
1792         case CLEANUP_IOMEM:
1793                 pci_release_region(dev, 0);
1794         case CLEANUP_DISABLE:
1795                 pci_disable_device(dev);
1796         case CLEANUP_PUT_CARD:
1797                 fw_card_put(&ohci->card);
1798         }
1799
1800         return code;
1801 }
1802
1803 static int __devinit
1804 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
1805 {
1806         struct fw_ohci *ohci;
1807         u32 bus_options, max_receive, link_speed;
1808         u64 guid;
1809         int error_code;
1810         size_t size;
1811
1812         ohci = kzalloc(sizeof *ohci, GFP_KERNEL);
1813         if (ohci == NULL) {
1814                 fw_error("Could not malloc fw_ohci data.\n");
1815                 return -ENOMEM;
1816         }
1817
1818         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
1819
1820         if (pci_enable_device(dev)) {
1821                 fw_error("Failed to enable OHCI hardware.\n");
1822                 return cleanup(ohci, CLEANUP_PUT_CARD, -ENODEV);
1823         }
1824
1825         pci_set_master(dev);
1826         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
1827         pci_set_drvdata(dev, ohci);
1828
1829         spin_lock_init(&ohci->lock);
1830
1831         tasklet_init(&ohci->bus_reset_tasklet,
1832                      bus_reset_tasklet, (unsigned long)ohci);
1833
1834         if (pci_request_region(dev, 0, ohci_driver_name)) {
1835                 fw_error("MMIO resource unavailable\n");
1836                 return cleanup(ohci, CLEANUP_DISABLE, -EBUSY);
1837         }
1838
1839         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
1840         if (ohci->registers == NULL) {
1841                 fw_error("Failed to remap registers\n");
1842                 return cleanup(ohci, CLEANUP_IOMEM, -ENXIO);
1843         }
1844
1845         if (software_reset(ohci)) {
1846                 fw_error("Failed to reset ohci card.\n");
1847                 return cleanup(ohci, CLEANUP_REGISTERS, -EBUSY);
1848         }
1849
1850         /* Now enable LPS, which we need in order to start accessing
1851          * most of the registers.  In fact, on some cards (ALI M5251),
1852          * accessing registers in the SClk domain without LPS enabled
1853          * will lock up the machine.  Wait 50msec to make sure we have
1854          * full link enabled.  */
1855         reg_write(ohci, OHCI1394_HCControlSet,
1856                   OHCI1394_HCControl_LPS |
1857                   OHCI1394_HCControl_postedWriteEnable);
1858         flush_writes(ohci);
1859         msleep(50);
1860
1861         reg_write(ohci, OHCI1394_HCControlClear,
1862                   OHCI1394_HCControl_noByteSwapData);
1863
1864         reg_write(ohci, OHCI1394_LinkControlSet,
1865                   OHCI1394_LinkControl_rcvSelfID |
1866                   OHCI1394_LinkControl_cycleTimerEnable |
1867                   OHCI1394_LinkControl_cycleMaster);
1868
1869         ar_context_init(&ohci->ar_request_ctx, ohci,
1870                         OHCI1394_AsReqRcvContextControlSet);
1871
1872         ar_context_init(&ohci->ar_response_ctx, ohci,
1873                         OHCI1394_AsRspRcvContextControlSet);
1874
1875         at_context_init(&ohci->at_request_ctx, ohci,
1876                         OHCI1394_AsReqTrContextControlSet);
1877
1878         at_context_init(&ohci->at_response_ctx, ohci,
1879                         OHCI1394_AsRspTrContextControlSet);
1880
1881         reg_write(ohci, OHCI1394_ATRetries,
1882                   OHCI1394_MAX_AT_REQ_RETRIES |
1883                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1884                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1885
1886         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
1887         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
1888         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
1889         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
1890         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
1891
1892         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
1893         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
1894         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
1895         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
1896         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
1897
1898         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
1899                 fw_error("Out of memory for it/ir contexts.\n");
1900                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1901         }
1902
1903         /* self-id dma buffer allocation */
1904         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
1905                                                SELF_ID_BUF_SIZE,
1906                                                &ohci->self_id_bus,
1907                                                GFP_KERNEL);
1908         if (ohci->self_id_cpu == NULL) {
1909                 fw_error("Out of memory for self ID buffer.\n");
1910                 return cleanup(ohci, CLEANUP_REGISTERS, -ENOMEM);
1911         }
1912
1913         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1914         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1915         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1916         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1917         reg_write(ohci, OHCI1394_IntMaskSet,
1918                   OHCI1394_selfIDComplete |
1919                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1920                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1921                   OHCI1394_isochRx | OHCI1394_isochTx |
1922                   OHCI1394_masterIntEnable);
1923
1924         bus_options = reg_read(ohci, OHCI1394_BusOptions);
1925         max_receive = (bus_options >> 12) & 0xf;
1926         link_speed = bus_options & 0x7;
1927         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
1928                 reg_read(ohci, OHCI1394_GUIDLo);
1929
1930         error_code = fw_card_add(&ohci->card, max_receive, link_speed, guid);
1931         if (error_code < 0)
1932                 return cleanup(ohci, CLEANUP_SELF_ID, error_code);
1933
1934         ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
1935         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
1936                   dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
1937
1938         return 0;
1939 }
1940
1941 static void pci_remove(struct pci_dev *dev)
1942 {
1943         struct fw_ohci *ohci;
1944
1945         ohci = pci_get_drvdata(dev);
1946         reg_write(ohci, OHCI1394_IntMaskClear, OHCI1394_masterIntEnable);
1947         fw_core_remove_card(&ohci->card);
1948
1949         /* FIXME: Fail all pending packets here, now that the upper
1950          * layers can't queue any more. */
1951
1952         software_reset(ohci);
1953         free_irq(dev->irq, ohci);
1954         cleanup(ohci, CLEANUP_SELF_ID, 0);
1955
1956         fw_notify("Removed fw-ohci device.\n");
1957 }
1958
1959 static struct pci_device_id pci_table[] = {
1960         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
1961         { }
1962 };
1963
1964 MODULE_DEVICE_TABLE(pci, pci_table);
1965
1966 static struct pci_driver fw_ohci_pci_driver = {
1967         .name           = ohci_driver_name,
1968         .id_table       = pci_table,
1969         .probe          = pci_probe,
1970         .remove         = pci_remove,
1971 };
1972
1973 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1974 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
1975 MODULE_LICENSE("GPL");
1976
1977 static int __init fw_ohci_init(void)
1978 {
1979         return pci_register_driver(&fw_ohci_pci_driver);
1980 }
1981
1982 static void __exit fw_ohci_cleanup(void)
1983 {
1984         pci_unregister_driver(&fw_ohci_pci_driver);
1985 }
1986
1987 module_init(fw_ohci_init);
1988 module_exit(fw_ohci_cleanup);