Merge tag 'edac_for_4.20_2' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[sfrench/cifs-2.6.git] / drivers / edac / i7core_edac.c
1 /* Intel i7 core/Nehalem Memory Controller kernel module
2  *
3  * This driver supports the memory controllers found on the Intel
4  * processor families i7core, i7core 7xx/8xx, i5core, Xeon 35xx,
5  * Xeon 55xx and Xeon 56xx also known as Nehalem, Nehalem-EP, Lynnfield
6  * and Westmere-EP.
7  *
8  * This file may be distributed under the terms of the
9  * GNU General Public License version 2 only.
10  *
11  * Copyright (c) 2009-2010 by:
12  *       Mauro Carvalho Chehab
13  *
14  * Red Hat Inc. http://www.redhat.com
15  *
16  * Forked and adapted from the i5400_edac driver
17  *
18  * Based on the following public Intel datasheets:
19  * Intel Core i7 Processor Extreme Edition and Intel Core i7 Processor
20  * Datasheet, Volume 2:
21  *      http://download.intel.com/design/processor/datashts/320835.pdf
22  * Intel Xeon Processor 5500 Series Datasheet Volume 2
23  *      http://www.intel.com/Assets/PDF/datasheet/321322.pdf
24  * also available at:
25  *      http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
26  */
27
28 #include <linux/module.h>
29 #include <linux/init.h>
30 #include <linux/pci.h>
31 #include <linux/pci_ids.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/dmi.h>
35 #include <linux/edac.h>
36 #include <linux/mmzone.h>
37 #include <linux/smp.h>
38 #include <asm/mce.h>
39 #include <asm/processor.h>
40 #include <asm/div64.h>
41
42 #include "edac_module.h"
43
44 /* Static vars */
45 static LIST_HEAD(i7core_edac_list);
46 static DEFINE_MUTEX(i7core_edac_lock);
47 static int probed;
48
49 static int use_pci_fixup;
50 module_param(use_pci_fixup, int, 0444);
51 MODULE_PARM_DESC(use_pci_fixup, "Enable PCI fixup to seek for hidden devices");
52 /*
53  * This is used for Nehalem-EP and Nehalem-EX devices, where the non-core
54  * registers start at bus 255, and are not reported by BIOS.
55  * We currently find devices with only 2 sockets. In order to support more QPI
56  * Quick Path Interconnect, just increment this number.
57  */
58 #define MAX_SOCKET_BUSES        2
59
60
61 /*
62  * Alter this version for the module when modifications are made
63  */
64 #define I7CORE_REVISION    " Ver: 1.0.0"
65 #define EDAC_MOD_STR      "i7core_edac"
66
67 /*
68  * Debug macros
69  */
70 #define i7core_printk(level, fmt, arg...)                       \
71         edac_printk(level, "i7core", fmt, ##arg)
72
73 #define i7core_mc_printk(mci, level, fmt, arg...)               \
74         edac_mc_chipset_printk(mci, level, "i7core", fmt, ##arg)
75
76 /*
77  * i7core Memory Controller Registers
78  */
79
80         /* OFFSETS for Device 0 Function 0 */
81
82 #define MC_CFG_CONTROL  0x90
83   #define MC_CFG_UNLOCK         0x02
84   #define MC_CFG_LOCK           0x00
85
86         /* OFFSETS for Device 3 Function 0 */
87
88 #define MC_CONTROL      0x48
89 #define MC_STATUS       0x4c
90 #define MC_MAX_DOD      0x64
91
92 /*
93  * OFFSETS for Device 3 Function 4, as indicated on Xeon 5500 datasheet:
94  * http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
95  */
96
97 #define MC_TEST_ERR_RCV1        0x60
98   #define DIMM2_COR_ERR(r)                      ((r) & 0x7fff)
99
100 #define MC_TEST_ERR_RCV0        0x64
101   #define DIMM1_COR_ERR(r)                      (((r) >> 16) & 0x7fff)
102   #define DIMM0_COR_ERR(r)                      ((r) & 0x7fff)
103
104 /* OFFSETS for Device 3 Function 2, as indicated on Xeon 5500 datasheet */
105 #define MC_SSRCONTROL           0x48
106   #define SSR_MODE_DISABLE      0x00
107   #define SSR_MODE_ENABLE       0x01
108   #define SSR_MODE_MASK         0x03
109
110 #define MC_SCRUB_CONTROL        0x4c
111   #define STARTSCRUB            (1 << 24)
112   #define SCRUBINTERVAL_MASK    0xffffff
113
114 #define MC_COR_ECC_CNT_0        0x80
115 #define MC_COR_ECC_CNT_1        0x84
116 #define MC_COR_ECC_CNT_2        0x88
117 #define MC_COR_ECC_CNT_3        0x8c
118 #define MC_COR_ECC_CNT_4        0x90
119 #define MC_COR_ECC_CNT_5        0x94
120
121 #define DIMM_TOP_COR_ERR(r)                     (((r) >> 16) & 0x7fff)
122 #define DIMM_BOT_COR_ERR(r)                     ((r) & 0x7fff)
123
124
125         /* OFFSETS for Devices 4,5 and 6 Function 0 */
126
127 #define MC_CHANNEL_DIMM_INIT_PARAMS 0x58
128   #define THREE_DIMMS_PRESENT           (1 << 24)
129   #define SINGLE_QUAD_RANK_PRESENT      (1 << 23)
130   #define QUAD_RANK_PRESENT             (1 << 22)
131   #define REGISTERED_DIMM               (1 << 15)
132
133 #define MC_CHANNEL_MAPPER       0x60
134   #define RDLCH(r, ch)          ((((r) >> (3 + (ch * 6))) & 0x07) - 1)
135   #define WRLCH(r, ch)          ((((r) >> (ch * 6)) & 0x07) - 1)
136
137 #define MC_CHANNEL_RANK_PRESENT 0x7c
138   #define RANK_PRESENT_MASK             0xffff
139
140 #define MC_CHANNEL_ADDR_MATCH   0xf0
141 #define MC_CHANNEL_ERROR_MASK   0xf8
142 #define MC_CHANNEL_ERROR_INJECT 0xfc
143   #define INJECT_ADDR_PARITY    0x10
144   #define INJECT_ECC            0x08
145   #define MASK_CACHELINE        0x06
146   #define MASK_FULL_CACHELINE   0x06
147   #define MASK_MSB32_CACHELINE  0x04
148   #define MASK_LSB32_CACHELINE  0x02
149   #define NO_MASK_CACHELINE     0x00
150   #define REPEAT_EN             0x01
151
152         /* OFFSETS for Devices 4,5 and 6 Function 1 */
153
154 #define MC_DOD_CH_DIMM0         0x48
155 #define MC_DOD_CH_DIMM1         0x4c
156 #define MC_DOD_CH_DIMM2         0x50
157   #define RANKOFFSET_MASK       ((1 << 12) | (1 << 11) | (1 << 10))
158   #define RANKOFFSET(x)         ((x & RANKOFFSET_MASK) >> 10)
159   #define DIMM_PRESENT_MASK     (1 << 9)
160   #define DIMM_PRESENT(x)       (((x) & DIMM_PRESENT_MASK) >> 9)
161   #define MC_DOD_NUMBANK_MASK           ((1 << 8) | (1 << 7))
162   #define MC_DOD_NUMBANK(x)             (((x) & MC_DOD_NUMBANK_MASK) >> 7)
163   #define MC_DOD_NUMRANK_MASK           ((1 << 6) | (1 << 5))
164   #define MC_DOD_NUMRANK(x)             (((x) & MC_DOD_NUMRANK_MASK) >> 5)
165   #define MC_DOD_NUMROW_MASK            ((1 << 4) | (1 << 3) | (1 << 2))
166   #define MC_DOD_NUMROW(x)              (((x) & MC_DOD_NUMROW_MASK) >> 2)
167   #define MC_DOD_NUMCOL_MASK            3
168   #define MC_DOD_NUMCOL(x)              ((x) & MC_DOD_NUMCOL_MASK)
169
170 #define MC_RANK_PRESENT         0x7c
171
172 #define MC_SAG_CH_0     0x80
173 #define MC_SAG_CH_1     0x84
174 #define MC_SAG_CH_2     0x88
175 #define MC_SAG_CH_3     0x8c
176 #define MC_SAG_CH_4     0x90
177 #define MC_SAG_CH_5     0x94
178 #define MC_SAG_CH_6     0x98
179 #define MC_SAG_CH_7     0x9c
180
181 #define MC_RIR_LIMIT_CH_0       0x40
182 #define MC_RIR_LIMIT_CH_1       0x44
183 #define MC_RIR_LIMIT_CH_2       0x48
184 #define MC_RIR_LIMIT_CH_3       0x4C
185 #define MC_RIR_LIMIT_CH_4       0x50
186 #define MC_RIR_LIMIT_CH_5       0x54
187 #define MC_RIR_LIMIT_CH_6       0x58
188 #define MC_RIR_LIMIT_CH_7       0x5C
189 #define MC_RIR_LIMIT_MASK       ((1 << 10) - 1)
190
191 #define MC_RIR_WAY_CH           0x80
192   #define MC_RIR_WAY_OFFSET_MASK        (((1 << 14) - 1) & ~0x7)
193   #define MC_RIR_WAY_RANK_MASK          0x7
194
195 /*
196  * i7core structs
197  */
198
199 #define NUM_CHANS 3
200 #define MAX_DIMMS 3             /* Max DIMMS per channel */
201 #define MAX_MCR_FUNC  4
202 #define MAX_CHAN_FUNC 3
203
204 struct i7core_info {
205         u32     mc_control;
206         u32     mc_status;
207         u32     max_dod;
208         u32     ch_map;
209 };
210
211
212 struct i7core_inject {
213         int     enable;
214
215         u32     section;
216         u32     type;
217         u32     eccmask;
218
219         /* Error address mask */
220         int channel, dimm, rank, bank, page, col;
221 };
222
223 struct i7core_channel {
224         bool            is_3dimms_present;
225         bool            is_single_4rank;
226         bool            has_4rank;
227         u32             dimms;
228 };
229
230 struct pci_id_descr {
231         int                     dev;
232         int                     func;
233         int                     dev_id;
234         int                     optional;
235 };
236
237 struct pci_id_table {
238         const struct pci_id_descr       *descr;
239         int                             n_devs;
240 };
241
242 struct i7core_dev {
243         struct list_head        list;
244         u8                      socket;
245         struct pci_dev          **pdev;
246         int                     n_devs;
247         struct mem_ctl_info     *mci;
248 };
249
250 struct i7core_pvt {
251         struct device *addrmatch_dev, *chancounts_dev;
252
253         struct pci_dev  *pci_noncore;
254         struct pci_dev  *pci_mcr[MAX_MCR_FUNC + 1];
255         struct pci_dev  *pci_ch[NUM_CHANS][MAX_CHAN_FUNC + 1];
256
257         struct i7core_dev *i7core_dev;
258
259         struct i7core_info      info;
260         struct i7core_inject    inject;
261         struct i7core_channel   channel[NUM_CHANS];
262
263         int             ce_count_available;
264
265                         /* ECC corrected errors counts per udimm */
266         unsigned long   udimm_ce_count[MAX_DIMMS];
267         int             udimm_last_ce_count[MAX_DIMMS];
268                         /* ECC corrected errors counts per rdimm */
269         unsigned long   rdimm_ce_count[NUM_CHANS][MAX_DIMMS];
270         int             rdimm_last_ce_count[NUM_CHANS][MAX_DIMMS];
271
272         bool            is_registered, enable_scrub;
273
274         /* DCLK Frequency used for computing scrub rate */
275         int                     dclk_freq;
276
277         /* Struct to control EDAC polling */
278         struct edac_pci_ctl_info *i7core_pci;
279 };
280
281 #define PCI_DESCR(device, function, device_id)  \
282         .dev = (device),                        \
283         .func = (function),                     \
284         .dev_id = (device_id)
285
286 static const struct pci_id_descr pci_dev_descr_i7core_nehalem[] = {
287                 /* Memory controller */
288         { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_I7_MCR)     },
289         { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_I7_MC_TAD)  },
290                         /* Exists only for RDIMM */
291         { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_I7_MC_RAS), .optional = 1  },
292         { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_I7_MC_TEST) },
293
294                 /* Channel 0 */
295         { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH0_CTRL) },
296         { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH0_ADDR) },
297         { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH0_RANK) },
298         { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH0_TC)   },
299
300                 /* Channel 1 */
301         { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH1_CTRL) },
302         { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH1_ADDR) },
303         { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH1_RANK) },
304         { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH1_TC)   },
305
306                 /* Channel 2 */
307         { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_I7_MC_CH2_CTRL) },
308         { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_I7_MC_CH2_ADDR) },
309         { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_I7_MC_CH2_RANK) },
310         { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_I7_MC_CH2_TC)   },
311
312                 /* Generic Non-core registers */
313         /*
314          * This is the PCI device on i7core and on Xeon 35xx (8086:2c41)
315          * On Xeon 55xx, however, it has a different id (8086:2c40). So,
316          * the probing code needs to test for the other address in case of
317          * failure of this one
318          */
319         { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_I7_NONCORE)  },
320
321 };
322
323 static const struct pci_id_descr pci_dev_descr_lynnfield[] = {
324         { PCI_DESCR( 3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR)         },
325         { PCI_DESCR( 3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD)      },
326         { PCI_DESCR( 3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST)     },
327
328         { PCI_DESCR( 4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL) },
329         { PCI_DESCR( 4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR) },
330         { PCI_DESCR( 4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK) },
331         { PCI_DESCR( 4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC)   },
332
333         { PCI_DESCR( 5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL) },
334         { PCI_DESCR( 5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR) },
335         { PCI_DESCR( 5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK) },
336         { PCI_DESCR( 5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC)   },
337
338         /*
339          * This is the PCI device has an alternate address on some
340          * processors like Core i7 860
341          */
342         { PCI_DESCR( 0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE)     },
343 };
344
345 static const struct pci_id_descr pci_dev_descr_i7core_westmere[] = {
346                 /* Memory controller */
347         { PCI_DESCR(3, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MCR_REV2)     },
348         { PCI_DESCR(3, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TAD_REV2)  },
349                         /* Exists only for RDIMM */
350         { PCI_DESCR(3, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_RAS_REV2), .optional = 1  },
351         { PCI_DESCR(3, 4, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_TEST_REV2) },
352
353                 /* Channel 0 */
354         { PCI_DESCR(4, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_CTRL_REV2) },
355         { PCI_DESCR(4, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_ADDR_REV2) },
356         { PCI_DESCR(4, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_RANK_REV2) },
357         { PCI_DESCR(4, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH0_TC_REV2)   },
358
359                 /* Channel 1 */
360         { PCI_DESCR(5, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_CTRL_REV2) },
361         { PCI_DESCR(5, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_ADDR_REV2) },
362         { PCI_DESCR(5, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_RANK_REV2) },
363         { PCI_DESCR(5, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH1_TC_REV2)   },
364
365                 /* Channel 2 */
366         { PCI_DESCR(6, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_CTRL_REV2) },
367         { PCI_DESCR(6, 1, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_ADDR_REV2) },
368         { PCI_DESCR(6, 2, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_RANK_REV2) },
369         { PCI_DESCR(6, 3, PCI_DEVICE_ID_INTEL_LYNNFIELD_MC_CH2_TC_REV2)   },
370
371                 /* Generic Non-core registers */
372         { PCI_DESCR(0, 0, PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2)  },
373
374 };
375
376 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
377 static const struct pci_id_table pci_dev_table[] = {
378         PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_nehalem),
379         PCI_ID_TABLE_ENTRY(pci_dev_descr_lynnfield),
380         PCI_ID_TABLE_ENTRY(pci_dev_descr_i7core_westmere),
381         {0,}                    /* 0 terminated list. */
382 };
383
384 /*
385  *      pci_device_id   table for which devices we are looking for
386  */
387 static const struct pci_device_id i7core_pci_tbl[] = {
388         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_X58_HUB_MGMT)},
389         {PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_LYNNFIELD_QPI_LINK0)},
390         {0,}                    /* 0 terminated list. */
391 };
392
393 /****************************************************************************
394                         Ancillary status routines
395  ****************************************************************************/
396
397         /* MC_CONTROL bits */
398 #define CH_ACTIVE(pvt, ch)      ((pvt)->info.mc_control & (1 << (8 + ch)))
399 #define ECCx8(pvt)              ((pvt)->info.mc_control & (1 << 1))
400
401         /* MC_STATUS bits */
402 #define ECC_ENABLED(pvt)        ((pvt)->info.mc_status & (1 << 4))
403 #define CH_DISABLED(pvt, ch)    ((pvt)->info.mc_status & (1 << ch))
404
405         /* MC_MAX_DOD read functions */
406 static inline int numdimms(u32 dimms)
407 {
408         return (dimms & 0x3) + 1;
409 }
410
411 static inline int numrank(u32 rank)
412 {
413         static const int ranks[] = { 1, 2, 4, -EINVAL };
414
415         return ranks[rank & 0x3];
416 }
417
418 static inline int numbank(u32 bank)
419 {
420         static const int banks[] = { 4, 8, 16, -EINVAL };
421
422         return banks[bank & 0x3];
423 }
424
425 static inline int numrow(u32 row)
426 {
427         static const int rows[] = {
428                 1 << 12, 1 << 13, 1 << 14, 1 << 15,
429                 1 << 16, -EINVAL, -EINVAL, -EINVAL,
430         };
431
432         return rows[row & 0x7];
433 }
434
435 static inline int numcol(u32 col)
436 {
437         static const int cols[] = {
438                 1 << 10, 1 << 11, 1 << 12, -EINVAL,
439         };
440         return cols[col & 0x3];
441 }
442
443 static struct i7core_dev *get_i7core_dev(u8 socket)
444 {
445         struct i7core_dev *i7core_dev;
446
447         list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
448                 if (i7core_dev->socket == socket)
449                         return i7core_dev;
450         }
451
452         return NULL;
453 }
454
455 static struct i7core_dev *alloc_i7core_dev(u8 socket,
456                                            const struct pci_id_table *table)
457 {
458         struct i7core_dev *i7core_dev;
459
460         i7core_dev = kzalloc(sizeof(*i7core_dev), GFP_KERNEL);
461         if (!i7core_dev)
462                 return NULL;
463
464         i7core_dev->pdev = kcalloc(table->n_devs, sizeof(*i7core_dev->pdev),
465                                    GFP_KERNEL);
466         if (!i7core_dev->pdev) {
467                 kfree(i7core_dev);
468                 return NULL;
469         }
470
471         i7core_dev->socket = socket;
472         i7core_dev->n_devs = table->n_devs;
473         list_add_tail(&i7core_dev->list, &i7core_edac_list);
474
475         return i7core_dev;
476 }
477
478 static void free_i7core_dev(struct i7core_dev *i7core_dev)
479 {
480         list_del(&i7core_dev->list);
481         kfree(i7core_dev->pdev);
482         kfree(i7core_dev);
483 }
484
485 /****************************************************************************
486                         Memory check routines
487  ****************************************************************************/
488
489 static int get_dimm_config(struct mem_ctl_info *mci)
490 {
491         struct i7core_pvt *pvt = mci->pvt_info;
492         struct pci_dev *pdev;
493         int i, j;
494         enum edac_type mode;
495         enum mem_type mtype;
496         struct dimm_info *dimm;
497
498         /* Get data from the MC register, function 0 */
499         pdev = pvt->pci_mcr[0];
500         if (!pdev)
501                 return -ENODEV;
502
503         /* Device 3 function 0 reads */
504         pci_read_config_dword(pdev, MC_CONTROL, &pvt->info.mc_control);
505         pci_read_config_dword(pdev, MC_STATUS, &pvt->info.mc_status);
506         pci_read_config_dword(pdev, MC_MAX_DOD, &pvt->info.max_dod);
507         pci_read_config_dword(pdev, MC_CHANNEL_MAPPER, &pvt->info.ch_map);
508
509         edac_dbg(0, "QPI %d control=0x%08x status=0x%08x dod=0x%08x map=0x%08x\n",
510                  pvt->i7core_dev->socket, pvt->info.mc_control,
511                  pvt->info.mc_status, pvt->info.max_dod, pvt->info.ch_map);
512
513         if (ECC_ENABLED(pvt)) {
514                 edac_dbg(0, "ECC enabled with x%d SDCC\n", ECCx8(pvt) ? 8 : 4);
515                 if (ECCx8(pvt))
516                         mode = EDAC_S8ECD8ED;
517                 else
518                         mode = EDAC_S4ECD4ED;
519         } else {
520                 edac_dbg(0, "ECC disabled\n");
521                 mode = EDAC_NONE;
522         }
523
524         /* FIXME: need to handle the error codes */
525         edac_dbg(0, "DOD Max limits: DIMMS: %d, %d-ranked, %d-banked x%x x 0x%x\n",
526                  numdimms(pvt->info.max_dod),
527                  numrank(pvt->info.max_dod >> 2),
528                  numbank(pvt->info.max_dod >> 4),
529                  numrow(pvt->info.max_dod >> 6),
530                  numcol(pvt->info.max_dod >> 9));
531
532         for (i = 0; i < NUM_CHANS; i++) {
533                 u32 data, dimm_dod[3], value[8];
534
535                 if (!pvt->pci_ch[i][0])
536                         continue;
537
538                 if (!CH_ACTIVE(pvt, i)) {
539                         edac_dbg(0, "Channel %i is not active\n", i);
540                         continue;
541                 }
542                 if (CH_DISABLED(pvt, i)) {
543                         edac_dbg(0, "Channel %i is disabled\n", i);
544                         continue;
545                 }
546
547                 /* Devices 4-6 function 0 */
548                 pci_read_config_dword(pvt->pci_ch[i][0],
549                                 MC_CHANNEL_DIMM_INIT_PARAMS, &data);
550
551
552                 if (data & THREE_DIMMS_PRESENT)
553                         pvt->channel[i].is_3dimms_present = true;
554
555                 if (data & SINGLE_QUAD_RANK_PRESENT)
556                         pvt->channel[i].is_single_4rank = true;
557
558                 if (data & QUAD_RANK_PRESENT)
559                         pvt->channel[i].has_4rank = true;
560
561                 if (data & REGISTERED_DIMM)
562                         mtype = MEM_RDDR3;
563                 else
564                         mtype = MEM_DDR3;
565
566                 /* Devices 4-6 function 1 */
567                 pci_read_config_dword(pvt->pci_ch[i][1],
568                                 MC_DOD_CH_DIMM0, &dimm_dod[0]);
569                 pci_read_config_dword(pvt->pci_ch[i][1],
570                                 MC_DOD_CH_DIMM1, &dimm_dod[1]);
571                 pci_read_config_dword(pvt->pci_ch[i][1],
572                                 MC_DOD_CH_DIMM2, &dimm_dod[2]);
573
574                 edac_dbg(0, "Ch%d phy rd%d, wr%d (0x%08x): %s%s%s%cDIMMs\n",
575                          i,
576                          RDLCH(pvt->info.ch_map, i), WRLCH(pvt->info.ch_map, i),
577                          data,
578                          pvt->channel[i].is_3dimms_present ? "3DIMMS " : "",
579                          pvt->channel[i].is_3dimms_present ? "SINGLE_4R " : "",
580                          pvt->channel[i].has_4rank ? "HAS_4R " : "",
581                          (data & REGISTERED_DIMM) ? 'R' : 'U');
582
583                 for (j = 0; j < 3; j++) {
584                         u32 banks, ranks, rows, cols;
585                         u32 size, npages;
586
587                         if (!DIMM_PRESENT(dimm_dod[j]))
588                                 continue;
589
590                         dimm = EDAC_DIMM_PTR(mci->layers, mci->dimms, mci->n_layers,
591                                        i, j, 0);
592                         banks = numbank(MC_DOD_NUMBANK(dimm_dod[j]));
593                         ranks = numrank(MC_DOD_NUMRANK(dimm_dod[j]));
594                         rows = numrow(MC_DOD_NUMROW(dimm_dod[j]));
595                         cols = numcol(MC_DOD_NUMCOL(dimm_dod[j]));
596
597                         /* DDR3 has 8 I/O banks */
598                         size = (rows * cols * banks * ranks) >> (20 - 3);
599
600                         edac_dbg(0, "\tdimm %d %d MiB offset: %x, bank: %d, rank: %d, row: %#x, col: %#x\n",
601                                  j, size,
602                                  RANKOFFSET(dimm_dod[j]),
603                                  banks, ranks, rows, cols);
604
605                         npages = MiB_TO_PAGES(size);
606
607                         dimm->nr_pages = npages;
608
609                         switch (banks) {
610                         case 4:
611                                 dimm->dtype = DEV_X4;
612                                 break;
613                         case 8:
614                                 dimm->dtype = DEV_X8;
615                                 break;
616                         case 16:
617                                 dimm->dtype = DEV_X16;
618                                 break;
619                         default:
620                                 dimm->dtype = DEV_UNKNOWN;
621                         }
622
623                         snprintf(dimm->label, sizeof(dimm->label),
624                                  "CPU#%uChannel#%u_DIMM#%u",
625                                  pvt->i7core_dev->socket, i, j);
626                         dimm->grain = 8;
627                         dimm->edac_mode = mode;
628                         dimm->mtype = mtype;
629                 }
630
631                 pci_read_config_dword(pdev, MC_SAG_CH_0, &value[0]);
632                 pci_read_config_dword(pdev, MC_SAG_CH_1, &value[1]);
633                 pci_read_config_dword(pdev, MC_SAG_CH_2, &value[2]);
634                 pci_read_config_dword(pdev, MC_SAG_CH_3, &value[3]);
635                 pci_read_config_dword(pdev, MC_SAG_CH_4, &value[4]);
636                 pci_read_config_dword(pdev, MC_SAG_CH_5, &value[5]);
637                 pci_read_config_dword(pdev, MC_SAG_CH_6, &value[6]);
638                 pci_read_config_dword(pdev, MC_SAG_CH_7, &value[7]);
639                 edac_dbg(1, "\t[%i] DIVBY3\tREMOVED\tOFFSET\n", i);
640                 for (j = 0; j < 8; j++)
641                         edac_dbg(1, "\t\t%#x\t%#x\t%#x\n",
642                                  (value[j] >> 27) & 0x1,
643                                  (value[j] >> 24) & 0x7,
644                                  (value[j] & ((1 << 24) - 1)));
645         }
646
647         return 0;
648 }
649
650 /****************************************************************************
651                         Error insertion routines
652  ****************************************************************************/
653
654 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
655
656 /* The i7core has independent error injection features per channel.
657    However, to have a simpler code, we don't allow enabling error injection
658    on more than one channel.
659    Also, since a change at an inject parameter will be applied only at enable,
660    we're disabling error injection on all write calls to the sysfs nodes that
661    controls the error code injection.
662  */
663 static int disable_inject(const struct mem_ctl_info *mci)
664 {
665         struct i7core_pvt *pvt = mci->pvt_info;
666
667         pvt->inject.enable = 0;
668
669         if (!pvt->pci_ch[pvt->inject.channel][0])
670                 return -ENODEV;
671
672         pci_write_config_dword(pvt->pci_ch[pvt->inject.channel][0],
673                                 MC_CHANNEL_ERROR_INJECT, 0);
674
675         return 0;
676 }
677
678 /*
679  * i7core inject inject.section
680  *
681  *      accept and store error injection inject.section value
682  *      bit 0 - refers to the lower 32-byte half cacheline
683  *      bit 1 - refers to the upper 32-byte half cacheline
684  */
685 static ssize_t i7core_inject_section_store(struct device *dev,
686                                            struct device_attribute *mattr,
687                                            const char *data, size_t count)
688 {
689         struct mem_ctl_info *mci = to_mci(dev);
690         struct i7core_pvt *pvt = mci->pvt_info;
691         unsigned long value;
692         int rc;
693
694         if (pvt->inject.enable)
695                 disable_inject(mci);
696
697         rc = kstrtoul(data, 10, &value);
698         if ((rc < 0) || (value > 3))
699                 return -EIO;
700
701         pvt->inject.section = (u32) value;
702         return count;
703 }
704
705 static ssize_t i7core_inject_section_show(struct device *dev,
706                                           struct device_attribute *mattr,
707                                           char *data)
708 {
709         struct mem_ctl_info *mci = to_mci(dev);
710         struct i7core_pvt *pvt = mci->pvt_info;
711         return sprintf(data, "0x%08x\n", pvt->inject.section);
712 }
713
714 /*
715  * i7core inject.type
716  *
717  *      accept and store error injection inject.section value
718  *      bit 0 - repeat enable - Enable error repetition
719  *      bit 1 - inject ECC error
720  *      bit 2 - inject parity error
721  */
722 static ssize_t i7core_inject_type_store(struct device *dev,
723                                         struct device_attribute *mattr,
724                                         const char *data, size_t count)
725 {
726         struct mem_ctl_info *mci = to_mci(dev);
727 struct i7core_pvt *pvt = mci->pvt_info;
728         unsigned long value;
729         int rc;
730
731         if (pvt->inject.enable)
732                 disable_inject(mci);
733
734         rc = kstrtoul(data, 10, &value);
735         if ((rc < 0) || (value > 7))
736                 return -EIO;
737
738         pvt->inject.type = (u32) value;
739         return count;
740 }
741
742 static ssize_t i7core_inject_type_show(struct device *dev,
743                                        struct device_attribute *mattr,
744                                        char *data)
745 {
746         struct mem_ctl_info *mci = to_mci(dev);
747         struct i7core_pvt *pvt = mci->pvt_info;
748
749         return sprintf(data, "0x%08x\n", pvt->inject.type);
750 }
751
752 /*
753  * i7core_inject_inject.eccmask_store
754  *
755  * The type of error (UE/CE) will depend on the inject.eccmask value:
756  *   Any bits set to a 1 will flip the corresponding ECC bit
757  *   Correctable errors can be injected by flipping 1 bit or the bits within
758  *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
759  *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
760  *   uncorrectable error to be injected.
761  */
762 static ssize_t i7core_inject_eccmask_store(struct device *dev,
763                                            struct device_attribute *mattr,
764                                            const char *data, size_t count)
765 {
766         struct mem_ctl_info *mci = to_mci(dev);
767         struct i7core_pvt *pvt = mci->pvt_info;
768         unsigned long value;
769         int rc;
770
771         if (pvt->inject.enable)
772                 disable_inject(mci);
773
774         rc = kstrtoul(data, 10, &value);
775         if (rc < 0)
776                 return -EIO;
777
778         pvt->inject.eccmask = (u32) value;
779         return count;
780 }
781
782 static ssize_t i7core_inject_eccmask_show(struct device *dev,
783                                           struct device_attribute *mattr,
784                                           char *data)
785 {
786         struct mem_ctl_info *mci = to_mci(dev);
787         struct i7core_pvt *pvt = mci->pvt_info;
788
789         return sprintf(data, "0x%08x\n", pvt->inject.eccmask);
790 }
791
792 /*
793  * i7core_addrmatch
794  *
795  * The type of error (UE/CE) will depend on the inject.eccmask value:
796  *   Any bits set to a 1 will flip the corresponding ECC bit
797  *   Correctable errors can be injected by flipping 1 bit or the bits within
798  *   a symbol pair (2 consecutive aligned 8-bit pairs - i.e. 7:0 and 15:8 or
799  *   23:16 and 31:24). Flipping bits in two symbol pairs will cause an
800  *   uncorrectable error to be injected.
801  */
802
803 #define DECLARE_ADDR_MATCH(param, limit)                        \
804 static ssize_t i7core_inject_store_##param(                     \
805         struct device *dev,                                     \
806         struct device_attribute *mattr,                         \
807         const char *data, size_t count)                         \
808 {                                                               \
809         struct mem_ctl_info *mci = dev_get_drvdata(dev);        \
810         struct i7core_pvt *pvt;                                 \
811         long value;                                             \
812         int rc;                                                 \
813                                                                 \
814         edac_dbg(1, "\n");                                      \
815         pvt = mci->pvt_info;                                    \
816                                                                 \
817         if (pvt->inject.enable)                                 \
818                 disable_inject(mci);                            \
819                                                                 \
820         if (!strcasecmp(data, "any") || !strcasecmp(data, "any\n"))\
821                 value = -1;                                     \
822         else {                                                  \
823                 rc = kstrtoul(data, 10, &value);                \
824                 if ((rc < 0) || (value >= limit))               \
825                         return -EIO;                            \
826         }                                                       \
827                                                                 \
828         pvt->inject.param = value;                              \
829                                                                 \
830         return count;                                           \
831 }                                                               \
832                                                                 \
833 static ssize_t i7core_inject_show_##param(                      \
834         struct device *dev,                                     \
835         struct device_attribute *mattr,                         \
836         char *data)                                             \
837 {                                                               \
838         struct mem_ctl_info *mci = dev_get_drvdata(dev);        \
839         struct i7core_pvt *pvt;                                 \
840                                                                 \
841         pvt = mci->pvt_info;                                    \
842         edac_dbg(1, "pvt=%p\n", pvt);                           \
843         if (pvt->inject.param < 0)                              \
844                 return sprintf(data, "any\n");                  \
845         else                                                    \
846                 return sprintf(data, "%d\n", pvt->inject.param);\
847 }
848
849 #define ATTR_ADDR_MATCH(param)                                  \
850         static DEVICE_ATTR(param, S_IRUGO | S_IWUSR,            \
851                     i7core_inject_show_##param,                 \
852                     i7core_inject_store_##param)
853
854 DECLARE_ADDR_MATCH(channel, 3);
855 DECLARE_ADDR_MATCH(dimm, 3);
856 DECLARE_ADDR_MATCH(rank, 4);
857 DECLARE_ADDR_MATCH(bank, 32);
858 DECLARE_ADDR_MATCH(page, 0x10000);
859 DECLARE_ADDR_MATCH(col, 0x4000);
860
861 ATTR_ADDR_MATCH(channel);
862 ATTR_ADDR_MATCH(dimm);
863 ATTR_ADDR_MATCH(rank);
864 ATTR_ADDR_MATCH(bank);
865 ATTR_ADDR_MATCH(page);
866 ATTR_ADDR_MATCH(col);
867
868 static int write_and_test(struct pci_dev *dev, const int where, const u32 val)
869 {
870         u32 read;
871         int count;
872
873         edac_dbg(0, "setting pci %02x:%02x.%x reg=%02x value=%08x\n",
874                  dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
875                  where, val);
876
877         for (count = 0; count < 10; count++) {
878                 if (count)
879                         msleep(100);
880                 pci_write_config_dword(dev, where, val);
881                 pci_read_config_dword(dev, where, &read);
882
883                 if (read == val)
884                         return 0;
885         }
886
887         i7core_printk(KERN_ERR, "Error during set pci %02x:%02x.%x reg=%02x "
888                 "write=%08x. Read=%08x\n",
889                 dev->bus->number, PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
890                 where, val, read);
891
892         return -EINVAL;
893 }
894
895 /*
896  * This routine prepares the Memory Controller for error injection.
897  * The error will be injected when some process tries to write to the
898  * memory that matches the given criteria.
899  * The criteria can be set in terms of a mask where dimm, rank, bank, page
900  * and col can be specified.
901  * A -1 value for any of the mask items will make the MCU to ignore
902  * that matching criteria for error injection.
903  *
904  * It should be noticed that the error will only happen after a write operation
905  * on a memory that matches the condition. if REPEAT_EN is not enabled at
906  * inject mask, then it will produce just one error. Otherwise, it will repeat
907  * until the injectmask would be cleaned.
908  *
909  * FIXME: This routine assumes that MAXNUMDIMMS value of MC_MAX_DOD
910  *    is reliable enough to check if the MC is using the
911  *    three channels. However, this is not clear at the datasheet.
912  */
913 static ssize_t i7core_inject_enable_store(struct device *dev,
914                                           struct device_attribute *mattr,
915                                           const char *data, size_t count)
916 {
917         struct mem_ctl_info *mci = to_mci(dev);
918         struct i7core_pvt *pvt = mci->pvt_info;
919         u32 injectmask;
920         u64 mask = 0;
921         int  rc;
922         long enable;
923
924         if (!pvt->pci_ch[pvt->inject.channel][0])
925                 return 0;
926
927         rc = kstrtoul(data, 10, &enable);
928         if ((rc < 0))
929                 return 0;
930
931         if (enable) {
932                 pvt->inject.enable = 1;
933         } else {
934                 disable_inject(mci);
935                 return count;
936         }
937
938         /* Sets pvt->inject.dimm mask */
939         if (pvt->inject.dimm < 0)
940                 mask |= 1LL << 41;
941         else {
942                 if (pvt->channel[pvt->inject.channel].dimms > 2)
943                         mask |= (pvt->inject.dimm & 0x3LL) << 35;
944                 else
945                         mask |= (pvt->inject.dimm & 0x1LL) << 36;
946         }
947
948         /* Sets pvt->inject.rank mask */
949         if (pvt->inject.rank < 0)
950                 mask |= 1LL << 40;
951         else {
952                 if (pvt->channel[pvt->inject.channel].dimms > 2)
953                         mask |= (pvt->inject.rank & 0x1LL) << 34;
954                 else
955                         mask |= (pvt->inject.rank & 0x3LL) << 34;
956         }
957
958         /* Sets pvt->inject.bank mask */
959         if (pvt->inject.bank < 0)
960                 mask |= 1LL << 39;
961         else
962                 mask |= (pvt->inject.bank & 0x15LL) << 30;
963
964         /* Sets pvt->inject.page mask */
965         if (pvt->inject.page < 0)
966                 mask |= 1LL << 38;
967         else
968                 mask |= (pvt->inject.page & 0xffff) << 14;
969
970         /* Sets pvt->inject.column mask */
971         if (pvt->inject.col < 0)
972                 mask |= 1LL << 37;
973         else
974                 mask |= (pvt->inject.col & 0x3fff);
975
976         /*
977          * bit    0: REPEAT_EN
978          * bits 1-2: MASK_HALF_CACHELINE
979          * bit    3: INJECT_ECC
980          * bit    4: INJECT_ADDR_PARITY
981          */
982
983         injectmask = (pvt->inject.type & 1) |
984                      (pvt->inject.section & 0x3) << 1 |
985                      (pvt->inject.type & 0x6) << (3 - 1);
986
987         /* Unlock writes to registers - this register is write only */
988         pci_write_config_dword(pvt->pci_noncore,
989                                MC_CFG_CONTROL, 0x2);
990
991         write_and_test(pvt->pci_ch[pvt->inject.channel][0],
992                                MC_CHANNEL_ADDR_MATCH, mask);
993         write_and_test(pvt->pci_ch[pvt->inject.channel][0],
994                                MC_CHANNEL_ADDR_MATCH + 4, mask >> 32L);
995
996         write_and_test(pvt->pci_ch[pvt->inject.channel][0],
997                                MC_CHANNEL_ERROR_MASK, pvt->inject.eccmask);
998
999         write_and_test(pvt->pci_ch[pvt->inject.channel][0],
1000                                MC_CHANNEL_ERROR_INJECT, injectmask);
1001
1002         /*
1003          * This is something undocumented, based on my tests
1004          * Without writing 8 to this register, errors aren't injected. Not sure
1005          * why.
1006          */
1007         pci_write_config_dword(pvt->pci_noncore,
1008                                MC_CFG_CONTROL, 8);
1009
1010         edac_dbg(0, "Error inject addr match 0x%016llx, ecc 0x%08x, inject 0x%08x\n",
1011                  mask, pvt->inject.eccmask, injectmask);
1012
1013
1014         return count;
1015 }
1016
1017 static ssize_t i7core_inject_enable_show(struct device *dev,
1018                                          struct device_attribute *mattr,
1019                                          char *data)
1020 {
1021         struct mem_ctl_info *mci = to_mci(dev);
1022         struct i7core_pvt *pvt = mci->pvt_info;
1023         u32 injectmask;
1024
1025         if (!pvt->pci_ch[pvt->inject.channel][0])
1026                 return 0;
1027
1028         pci_read_config_dword(pvt->pci_ch[pvt->inject.channel][0],
1029                                MC_CHANNEL_ERROR_INJECT, &injectmask);
1030
1031         edac_dbg(0, "Inject error read: 0x%018x\n", injectmask);
1032
1033         if (injectmask & 0x0c)
1034                 pvt->inject.enable = 1;
1035
1036         return sprintf(data, "%d\n", pvt->inject.enable);
1037 }
1038
1039 #define DECLARE_COUNTER(param)                                  \
1040 static ssize_t i7core_show_counter_##param(                     \
1041         struct device *dev,                                     \
1042         struct device_attribute *mattr,                         \
1043         char *data)                                             \
1044 {                                                               \
1045         struct mem_ctl_info *mci = dev_get_drvdata(dev);        \
1046         struct i7core_pvt *pvt = mci->pvt_info;                 \
1047                                                                 \
1048         edac_dbg(1, "\n");                                      \
1049         if (!pvt->ce_count_available || (pvt->is_registered))   \
1050                 return sprintf(data, "data unavailable\n");     \
1051         return sprintf(data, "%lu\n",                           \
1052                         pvt->udimm_ce_count[param]);            \
1053 }
1054
1055 #define ATTR_COUNTER(param)                                     \
1056         static DEVICE_ATTR(udimm##param, S_IRUGO | S_IWUSR,     \
1057                     i7core_show_counter_##param,                \
1058                     NULL)
1059
1060 DECLARE_COUNTER(0);
1061 DECLARE_COUNTER(1);
1062 DECLARE_COUNTER(2);
1063
1064 ATTR_COUNTER(0);
1065 ATTR_COUNTER(1);
1066 ATTR_COUNTER(2);
1067
1068 /*
1069  * inject_addrmatch device sysfs struct
1070  */
1071
1072 static struct attribute *i7core_addrmatch_attrs[] = {
1073         &dev_attr_channel.attr,
1074         &dev_attr_dimm.attr,
1075         &dev_attr_rank.attr,
1076         &dev_attr_bank.attr,
1077         &dev_attr_page.attr,
1078         &dev_attr_col.attr,
1079         NULL
1080 };
1081
1082 static const struct attribute_group addrmatch_grp = {
1083         .attrs  = i7core_addrmatch_attrs,
1084 };
1085
1086 static const struct attribute_group *addrmatch_groups[] = {
1087         &addrmatch_grp,
1088         NULL
1089 };
1090
1091 static void addrmatch_release(struct device *device)
1092 {
1093         edac_dbg(1, "Releasing device %s\n", dev_name(device));
1094         kfree(device);
1095 }
1096
1097 static const struct device_type addrmatch_type = {
1098         .groups         = addrmatch_groups,
1099         .release        = addrmatch_release,
1100 };
1101
1102 /*
1103  * all_channel_counts sysfs struct
1104  */
1105
1106 static struct attribute *i7core_udimm_counters_attrs[] = {
1107         &dev_attr_udimm0.attr,
1108         &dev_attr_udimm1.attr,
1109         &dev_attr_udimm2.attr,
1110         NULL
1111 };
1112
1113 static const struct attribute_group all_channel_counts_grp = {
1114         .attrs  = i7core_udimm_counters_attrs,
1115 };
1116
1117 static const struct attribute_group *all_channel_counts_groups[] = {
1118         &all_channel_counts_grp,
1119         NULL
1120 };
1121
1122 static void all_channel_counts_release(struct device *device)
1123 {
1124         edac_dbg(1, "Releasing device %s\n", dev_name(device));
1125         kfree(device);
1126 }
1127
1128 static const struct device_type all_channel_counts_type = {
1129         .groups         = all_channel_counts_groups,
1130         .release        = all_channel_counts_release,
1131 };
1132
1133 /*
1134  * inject sysfs attributes
1135  */
1136
1137 static DEVICE_ATTR(inject_section, S_IRUGO | S_IWUSR,
1138                    i7core_inject_section_show, i7core_inject_section_store);
1139
1140 static DEVICE_ATTR(inject_type, S_IRUGO | S_IWUSR,
1141                    i7core_inject_type_show, i7core_inject_type_store);
1142
1143
1144 static DEVICE_ATTR(inject_eccmask, S_IRUGO | S_IWUSR,
1145                    i7core_inject_eccmask_show, i7core_inject_eccmask_store);
1146
1147 static DEVICE_ATTR(inject_enable, S_IRUGO | S_IWUSR,
1148                    i7core_inject_enable_show, i7core_inject_enable_store);
1149
1150 static struct attribute *i7core_dev_attrs[] = {
1151         &dev_attr_inject_section.attr,
1152         &dev_attr_inject_type.attr,
1153         &dev_attr_inject_eccmask.attr,
1154         &dev_attr_inject_enable.attr,
1155         NULL
1156 };
1157
1158 ATTRIBUTE_GROUPS(i7core_dev);
1159
1160 static int i7core_create_sysfs_devices(struct mem_ctl_info *mci)
1161 {
1162         struct i7core_pvt *pvt = mci->pvt_info;
1163         int rc;
1164
1165         pvt->addrmatch_dev = kzalloc(sizeof(*pvt->addrmatch_dev), GFP_KERNEL);
1166         if (!pvt->addrmatch_dev)
1167                 return -ENOMEM;
1168
1169         pvt->addrmatch_dev->type = &addrmatch_type;
1170         pvt->addrmatch_dev->bus = mci->dev.bus;
1171         device_initialize(pvt->addrmatch_dev);
1172         pvt->addrmatch_dev->parent = &mci->dev;
1173         dev_set_name(pvt->addrmatch_dev, "inject_addrmatch");
1174         dev_set_drvdata(pvt->addrmatch_dev, mci);
1175
1176         edac_dbg(1, "creating %s\n", dev_name(pvt->addrmatch_dev));
1177
1178         rc = device_add(pvt->addrmatch_dev);
1179         if (rc < 0)
1180                 goto err_put_addrmatch;
1181
1182         if (!pvt->is_registered) {
1183                 pvt->chancounts_dev = kzalloc(sizeof(*pvt->chancounts_dev),
1184                                               GFP_KERNEL);
1185                 if (!pvt->chancounts_dev) {
1186                         rc = -ENOMEM;
1187                         goto err_del_addrmatch;
1188                 }
1189
1190                 pvt->chancounts_dev->type = &all_channel_counts_type;
1191                 pvt->chancounts_dev->bus = mci->dev.bus;
1192                 device_initialize(pvt->chancounts_dev);
1193                 pvt->chancounts_dev->parent = &mci->dev;
1194                 dev_set_name(pvt->chancounts_dev, "all_channel_counts");
1195                 dev_set_drvdata(pvt->chancounts_dev, mci);
1196
1197                 edac_dbg(1, "creating %s\n", dev_name(pvt->chancounts_dev));
1198
1199                 rc = device_add(pvt->chancounts_dev);
1200                 if (rc < 0)
1201                         goto err_put_chancounts;
1202         }
1203         return 0;
1204
1205 err_put_chancounts:
1206         put_device(pvt->chancounts_dev);
1207 err_del_addrmatch:
1208         device_del(pvt->addrmatch_dev);
1209 err_put_addrmatch:
1210         put_device(pvt->addrmatch_dev);
1211
1212         return rc;
1213 }
1214
1215 static void i7core_delete_sysfs_devices(struct mem_ctl_info *mci)
1216 {
1217         struct i7core_pvt *pvt = mci->pvt_info;
1218
1219         edac_dbg(1, "\n");
1220
1221         if (!pvt->is_registered) {
1222                 device_del(pvt->chancounts_dev);
1223                 put_device(pvt->chancounts_dev);
1224         }
1225         device_del(pvt->addrmatch_dev);
1226         put_device(pvt->addrmatch_dev);
1227 }
1228
1229 /****************************************************************************
1230         Device initialization routines: put/get, init/exit
1231  ****************************************************************************/
1232
1233 /*
1234  *      i7core_put_all_devices  'put' all the devices that we have
1235  *                              reserved via 'get'
1236  */
1237 static void i7core_put_devices(struct i7core_dev *i7core_dev)
1238 {
1239         int i;
1240
1241         edac_dbg(0, "\n");
1242         for (i = 0; i < i7core_dev->n_devs; i++) {
1243                 struct pci_dev *pdev = i7core_dev->pdev[i];
1244                 if (!pdev)
1245                         continue;
1246                 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
1247                          pdev->bus->number,
1248                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
1249                 pci_dev_put(pdev);
1250         }
1251 }
1252
1253 static void i7core_put_all_devices(void)
1254 {
1255         struct i7core_dev *i7core_dev, *tmp;
1256
1257         list_for_each_entry_safe(i7core_dev, tmp, &i7core_edac_list, list) {
1258                 i7core_put_devices(i7core_dev);
1259                 free_i7core_dev(i7core_dev);
1260         }
1261 }
1262
1263 static void __init i7core_xeon_pci_fixup(const struct pci_id_table *table)
1264 {
1265         struct pci_dev *pdev = NULL;
1266         int i;
1267
1268         /*
1269          * On Xeon 55xx, the Intel Quick Path Arch Generic Non-core pci buses
1270          * aren't announced by acpi. So, we need to use a legacy scan probing
1271          * to detect them
1272          */
1273         while (table && table->descr) {
1274                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL, table->descr[0].dev_id, NULL);
1275                 if (unlikely(!pdev)) {
1276                         for (i = 0; i < MAX_SOCKET_BUSES; i++)
1277                                 pcibios_scan_specific_bus(255-i);
1278                 }
1279                 pci_dev_put(pdev);
1280                 table++;
1281         }
1282 }
1283
1284 static unsigned i7core_pci_lastbus(void)
1285 {
1286         int last_bus = 0, bus;
1287         struct pci_bus *b = NULL;
1288
1289         while ((b = pci_find_next_bus(b)) != NULL) {
1290                 bus = b->number;
1291                 edac_dbg(0, "Found bus %d\n", bus);
1292                 if (bus > last_bus)
1293                         last_bus = bus;
1294         }
1295
1296         edac_dbg(0, "Last bus %d\n", last_bus);
1297
1298         return last_bus;
1299 }
1300
1301 /*
1302  *      i7core_get_all_devices  Find and perform 'get' operation on the MCH's
1303  *                      device/functions we want to reference for this driver
1304  *
1305  *                      Need to 'get' device 16 func 1 and func 2
1306  */
1307 static int i7core_get_onedevice(struct pci_dev **prev,
1308                                 const struct pci_id_table *table,
1309                                 const unsigned devno,
1310                                 const unsigned last_bus)
1311 {
1312         struct i7core_dev *i7core_dev;
1313         const struct pci_id_descr *dev_descr = &table->descr[devno];
1314
1315         struct pci_dev *pdev = NULL;
1316         u8 bus = 0;
1317         u8 socket = 0;
1318
1319         pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1320                               dev_descr->dev_id, *prev);
1321
1322         /*
1323          * On Xeon 55xx, the Intel QuickPath Arch Generic Non-core regs
1324          * is at addr 8086:2c40, instead of 8086:2c41. So, we need
1325          * to probe for the alternate address in case of failure
1326          */
1327         if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_I7_NONCORE && !pdev) {
1328                 pci_dev_get(*prev);     /* pci_get_device will put it */
1329                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1330                                       PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT, *prev);
1331         }
1332
1333         if (dev_descr->dev_id == PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE &&
1334             !pdev) {
1335                 pci_dev_get(*prev);     /* pci_get_device will put it */
1336                 pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
1337                                       PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT,
1338                                       *prev);
1339         }
1340
1341         if (!pdev) {
1342                 if (*prev) {
1343                         *prev = pdev;
1344                         return 0;
1345                 }
1346
1347                 if (dev_descr->optional)
1348                         return 0;
1349
1350                 if (devno == 0)
1351                         return -ENODEV;
1352
1353                 i7core_printk(KERN_INFO,
1354                         "Device not found: dev %02x.%d PCI ID %04x:%04x\n",
1355                         dev_descr->dev, dev_descr->func,
1356                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1357
1358                 /* End of list, leave */
1359                 return -ENODEV;
1360         }
1361         bus = pdev->bus->number;
1362
1363         socket = last_bus - bus;
1364
1365         i7core_dev = get_i7core_dev(socket);
1366         if (!i7core_dev) {
1367                 i7core_dev = alloc_i7core_dev(socket, table);
1368                 if (!i7core_dev) {
1369                         pci_dev_put(pdev);
1370                         return -ENOMEM;
1371                 }
1372         }
1373
1374         if (i7core_dev->pdev[devno]) {
1375                 i7core_printk(KERN_ERR,
1376                         "Duplicated device for "
1377                         "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1378                         bus, dev_descr->dev, dev_descr->func,
1379                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1380                 pci_dev_put(pdev);
1381                 return -ENODEV;
1382         }
1383
1384         i7core_dev->pdev[devno] = pdev;
1385
1386         /* Sanity check */
1387         if (unlikely(PCI_SLOT(pdev->devfn) != dev_descr->dev ||
1388                         PCI_FUNC(pdev->devfn) != dev_descr->func)) {
1389                 i7core_printk(KERN_ERR,
1390                         "Device PCI ID %04x:%04x "
1391                         "has dev %02x:%02x.%d instead of dev %02x:%02x.%d\n",
1392                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id,
1393                         bus, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1394                         bus, dev_descr->dev, dev_descr->func);
1395                 return -ENODEV;
1396         }
1397
1398         /* Be sure that the device is enabled */
1399         if (unlikely(pci_enable_device(pdev) < 0)) {
1400                 i7core_printk(KERN_ERR,
1401                         "Couldn't enable "
1402                         "dev %02x:%02x.%d PCI ID %04x:%04x\n",
1403                         bus, dev_descr->dev, dev_descr->func,
1404                         PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1405                 return -ENODEV;
1406         }
1407
1408         edac_dbg(0, "Detected socket %d dev %02x:%02x.%d PCI ID %04x:%04x\n",
1409                  socket, bus, dev_descr->dev,
1410                  dev_descr->func,
1411                  PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
1412
1413         /*
1414          * As stated on drivers/pci/search.c, the reference count for
1415          * @from is always decremented if it is not %NULL. So, as we need
1416          * to get all devices up to null, we need to do a get for the device
1417          */
1418         pci_dev_get(pdev);
1419
1420         *prev = pdev;
1421
1422         return 0;
1423 }
1424
1425 static int i7core_get_all_devices(void)
1426 {
1427         int i, rc, last_bus;
1428         struct pci_dev *pdev = NULL;
1429         const struct pci_id_table *table = pci_dev_table;
1430
1431         last_bus = i7core_pci_lastbus();
1432
1433         while (table && table->descr) {
1434                 for (i = 0; i < table->n_devs; i++) {
1435                         pdev = NULL;
1436                         do {
1437                                 rc = i7core_get_onedevice(&pdev, table, i,
1438                                                           last_bus);
1439                                 if (rc < 0) {
1440                                         if (i == 0) {
1441                                                 i = table->n_devs;
1442                                                 break;
1443                                         }
1444                                         i7core_put_all_devices();
1445                                         return -ENODEV;
1446                                 }
1447                         } while (pdev);
1448                 }
1449                 table++;
1450         }
1451
1452         return 0;
1453 }
1454
1455 static int mci_bind_devs(struct mem_ctl_info *mci,
1456                          struct i7core_dev *i7core_dev)
1457 {
1458         struct i7core_pvt *pvt = mci->pvt_info;
1459         struct pci_dev *pdev;
1460         int i, func, slot;
1461         char *family;
1462
1463         pvt->is_registered = false;
1464         pvt->enable_scrub  = false;
1465         for (i = 0; i < i7core_dev->n_devs; i++) {
1466                 pdev = i7core_dev->pdev[i];
1467                 if (!pdev)
1468                         continue;
1469
1470                 func = PCI_FUNC(pdev->devfn);
1471                 slot = PCI_SLOT(pdev->devfn);
1472                 if (slot == 3) {
1473                         if (unlikely(func > MAX_MCR_FUNC))
1474                                 goto error;
1475                         pvt->pci_mcr[func] = pdev;
1476                 } else if (likely(slot >= 4 && slot < 4 + NUM_CHANS)) {
1477                         if (unlikely(func > MAX_CHAN_FUNC))
1478                                 goto error;
1479                         pvt->pci_ch[slot - 4][func] = pdev;
1480                 } else if (!slot && !func) {
1481                         pvt->pci_noncore = pdev;
1482
1483                         /* Detect the processor family */
1484                         switch (pdev->device) {
1485                         case PCI_DEVICE_ID_INTEL_I7_NONCORE:
1486                                 family = "Xeon 35xx/ i7core";
1487                                 pvt->enable_scrub = false;
1488                                 break;
1489                         case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_ALT:
1490                                 family = "i7-800/i5-700";
1491                                 pvt->enable_scrub = false;
1492                                 break;
1493                         case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE:
1494                                 family = "Xeon 34xx";
1495                                 pvt->enable_scrub = false;
1496                                 break;
1497                         case PCI_DEVICE_ID_INTEL_I7_NONCORE_ALT:
1498                                 family = "Xeon 55xx";
1499                                 pvt->enable_scrub = true;
1500                                 break;
1501                         case PCI_DEVICE_ID_INTEL_LYNNFIELD_NONCORE_REV2:
1502                                 family = "Xeon 56xx / i7-900";
1503                                 pvt->enable_scrub = true;
1504                                 break;
1505                         default:
1506                                 family = "unknown";
1507                                 pvt->enable_scrub = false;
1508                         }
1509                         edac_dbg(0, "Detected a processor type %s\n", family);
1510                 } else
1511                         goto error;
1512
1513                 edac_dbg(0, "Associated fn %d.%d, dev = %p, socket %d\n",
1514                          PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
1515                          pdev, i7core_dev->socket);
1516
1517                 if (PCI_SLOT(pdev->devfn) == 3 &&
1518                         PCI_FUNC(pdev->devfn) == 2)
1519                         pvt->is_registered = true;
1520         }
1521
1522         return 0;
1523
1524 error:
1525         i7core_printk(KERN_ERR, "Device %d, function %d "
1526                       "is out of the expected range\n",
1527                       slot, func);
1528         return -EINVAL;
1529 }
1530
1531 /****************************************************************************
1532                         Error check routines
1533  ****************************************************************************/
1534
1535 static void i7core_rdimm_update_ce_count(struct mem_ctl_info *mci,
1536                                          const int chan,
1537                                          const int new0,
1538                                          const int new1,
1539                                          const int new2)
1540 {
1541         struct i7core_pvt *pvt = mci->pvt_info;
1542         int add0 = 0, add1 = 0, add2 = 0;
1543         /* Updates CE counters if it is not the first time here */
1544         if (pvt->ce_count_available) {
1545                 /* Updates CE counters */
1546
1547                 add2 = new2 - pvt->rdimm_last_ce_count[chan][2];
1548                 add1 = new1 - pvt->rdimm_last_ce_count[chan][1];
1549                 add0 = new0 - pvt->rdimm_last_ce_count[chan][0];
1550
1551                 if (add2 < 0)
1552                         add2 += 0x7fff;
1553                 pvt->rdimm_ce_count[chan][2] += add2;
1554
1555                 if (add1 < 0)
1556                         add1 += 0x7fff;
1557                 pvt->rdimm_ce_count[chan][1] += add1;
1558
1559                 if (add0 < 0)
1560                         add0 += 0x7fff;
1561                 pvt->rdimm_ce_count[chan][0] += add0;
1562         } else
1563                 pvt->ce_count_available = 1;
1564
1565         /* Store the new values */
1566         pvt->rdimm_last_ce_count[chan][2] = new2;
1567         pvt->rdimm_last_ce_count[chan][1] = new1;
1568         pvt->rdimm_last_ce_count[chan][0] = new0;
1569
1570         /*updated the edac core */
1571         if (add0 != 0)
1572                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add0,
1573                                      0, 0, 0,
1574                                      chan, 0, -1, "error", "");
1575         if (add1 != 0)
1576                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add1,
1577                                      0, 0, 0,
1578                                      chan, 1, -1, "error", "");
1579         if (add2 != 0)
1580                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, add2,
1581                                      0, 0, 0,
1582                                      chan, 2, -1, "error", "");
1583 }
1584
1585 static void i7core_rdimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1586 {
1587         struct i7core_pvt *pvt = mci->pvt_info;
1588         u32 rcv[3][2];
1589         int i, new0, new1, new2;
1590
1591         /*Read DEV 3: FUN 2:  MC_COR_ECC_CNT regs directly*/
1592         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_0,
1593                                                                 &rcv[0][0]);
1594         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_1,
1595                                                                 &rcv[0][1]);
1596         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_2,
1597                                                                 &rcv[1][0]);
1598         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_3,
1599                                                                 &rcv[1][1]);
1600         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_4,
1601                                                                 &rcv[2][0]);
1602         pci_read_config_dword(pvt->pci_mcr[2], MC_COR_ECC_CNT_5,
1603                                                                 &rcv[2][1]);
1604         for (i = 0 ; i < 3; i++) {
1605                 edac_dbg(3, "MC_COR_ECC_CNT%d = 0x%x; MC_COR_ECC_CNT%d = 0x%x\n",
1606                          (i * 2), rcv[i][0], (i * 2) + 1, rcv[i][1]);
1607                 /*if the channel has 3 dimms*/
1608                 if (pvt->channel[i].dimms > 2) {
1609                         new0 = DIMM_BOT_COR_ERR(rcv[i][0]);
1610                         new1 = DIMM_TOP_COR_ERR(rcv[i][0]);
1611                         new2 = DIMM_BOT_COR_ERR(rcv[i][1]);
1612                 } else {
1613                         new0 = DIMM_TOP_COR_ERR(rcv[i][0]) +
1614                                         DIMM_BOT_COR_ERR(rcv[i][0]);
1615                         new1 = DIMM_TOP_COR_ERR(rcv[i][1]) +
1616                                         DIMM_BOT_COR_ERR(rcv[i][1]);
1617                         new2 = 0;
1618                 }
1619
1620                 i7core_rdimm_update_ce_count(mci, i, new0, new1, new2);
1621         }
1622 }
1623
1624 /* This function is based on the device 3 function 4 registers as described on:
1625  * Intel Xeon Processor 5500 Series Datasheet Volume 2
1626  *      http://www.intel.com/Assets/PDF/datasheet/321322.pdf
1627  * also available at:
1628  *      http://www.arrownac.com/manufacturers/intel/s/nehalem/5500-datasheet-v2.pdf
1629  */
1630 static void i7core_udimm_check_mc_ecc_err(struct mem_ctl_info *mci)
1631 {
1632         struct i7core_pvt *pvt = mci->pvt_info;
1633         u32 rcv1, rcv0;
1634         int new0, new1, new2;
1635
1636         if (!pvt->pci_mcr[4]) {
1637                 edac_dbg(0, "MCR registers not found\n");
1638                 return;
1639         }
1640
1641         /* Corrected test errors */
1642         pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV1, &rcv1);
1643         pci_read_config_dword(pvt->pci_mcr[4], MC_TEST_ERR_RCV0, &rcv0);
1644
1645         /* Store the new values */
1646         new2 = DIMM2_COR_ERR(rcv1);
1647         new1 = DIMM1_COR_ERR(rcv0);
1648         new0 = DIMM0_COR_ERR(rcv0);
1649
1650         /* Updates CE counters if it is not the first time here */
1651         if (pvt->ce_count_available) {
1652                 /* Updates CE counters */
1653                 int add0, add1, add2;
1654
1655                 add2 = new2 - pvt->udimm_last_ce_count[2];
1656                 add1 = new1 - pvt->udimm_last_ce_count[1];
1657                 add0 = new0 - pvt->udimm_last_ce_count[0];
1658
1659                 if (add2 < 0)
1660                         add2 += 0x7fff;
1661                 pvt->udimm_ce_count[2] += add2;
1662
1663                 if (add1 < 0)
1664                         add1 += 0x7fff;
1665                 pvt->udimm_ce_count[1] += add1;
1666
1667                 if (add0 < 0)
1668                         add0 += 0x7fff;
1669                 pvt->udimm_ce_count[0] += add0;
1670
1671                 if (add0 | add1 | add2)
1672                         i7core_printk(KERN_ERR, "New Corrected error(s): "
1673                                       "dimm0: +%d, dimm1: +%d, dimm2 +%d\n",
1674                                       add0, add1, add2);
1675         } else
1676                 pvt->ce_count_available = 1;
1677
1678         /* Store the new values */
1679         pvt->udimm_last_ce_count[2] = new2;
1680         pvt->udimm_last_ce_count[1] = new1;
1681         pvt->udimm_last_ce_count[0] = new0;
1682 }
1683
1684 /*
1685  * According with tables E-11 and E-12 of chapter E.3.3 of Intel 64 and IA-32
1686  * Architectures Software Developer’s Manual Volume 3B.
1687  * Nehalem are defined as family 0x06, model 0x1a
1688  *
1689  * The MCA registers used here are the following ones:
1690  *     struct mce field MCA Register
1691  *     m->status        MSR_IA32_MC8_STATUS
1692  *     m->addr          MSR_IA32_MC8_ADDR
1693  *     m->misc          MSR_IA32_MC8_MISC
1694  * In the case of Nehalem, the error information is masked at .status and .misc
1695  * fields
1696  */
1697 static void i7core_mce_output_error(struct mem_ctl_info *mci,
1698                                     const struct mce *m)
1699 {
1700         struct i7core_pvt *pvt = mci->pvt_info;
1701         char *optype, *err;
1702         enum hw_event_mc_err_type tp_event;
1703         unsigned long error = m->status & 0x1ff0000l;
1704         bool uncorrected_error = m->mcgstatus & 1ll << 61;
1705         bool ripv = m->mcgstatus & 1;
1706         u32 optypenum = (m->status >> 4) & 0x07;
1707         u32 core_err_cnt = (m->status >> 38) & 0x7fff;
1708         u32 dimm = (m->misc >> 16) & 0x3;
1709         u32 channel = (m->misc >> 18) & 0x3;
1710         u32 syndrome = m->misc >> 32;
1711         u32 errnum = find_first_bit(&error, 32);
1712
1713         if (uncorrected_error) {
1714                 core_err_cnt = 1;
1715                 if (ripv)
1716                         tp_event = HW_EVENT_ERR_FATAL;
1717                 else
1718                         tp_event = HW_EVENT_ERR_UNCORRECTED;
1719         } else {
1720                 tp_event = HW_EVENT_ERR_CORRECTED;
1721         }
1722
1723         switch (optypenum) {
1724         case 0:
1725                 optype = "generic undef request";
1726                 break;
1727         case 1:
1728                 optype = "read error";
1729                 break;
1730         case 2:
1731                 optype = "write error";
1732                 break;
1733         case 3:
1734                 optype = "addr/cmd error";
1735                 break;
1736         case 4:
1737                 optype = "scrubbing error";
1738                 break;
1739         default:
1740                 optype = "reserved";
1741                 break;
1742         }
1743
1744         switch (errnum) {
1745         case 16:
1746                 err = "read ECC error";
1747                 break;
1748         case 17:
1749                 err = "RAS ECC error";
1750                 break;
1751         case 18:
1752                 err = "write parity error";
1753                 break;
1754         case 19:
1755                 err = "redundancy loss";
1756                 break;
1757         case 20:
1758                 err = "reserved";
1759                 break;
1760         case 21:
1761                 err = "memory range error";
1762                 break;
1763         case 22:
1764                 err = "RTID out of range";
1765                 break;
1766         case 23:
1767                 err = "address parity error";
1768                 break;
1769         case 24:
1770                 err = "byte enable parity error";
1771                 break;
1772         default:
1773                 err = "unknown";
1774         }
1775
1776         /*
1777          * Call the helper to output message
1778          * FIXME: what to do if core_err_cnt > 1? Currently, it generates
1779          * only one event
1780          */
1781         if (uncorrected_error || !pvt->is_registered)
1782                 edac_mc_handle_error(tp_event, mci, core_err_cnt,
1783                                      m->addr >> PAGE_SHIFT,
1784                                      m->addr & ~PAGE_MASK,
1785                                      syndrome,
1786                                      channel, dimm, -1,
1787                                      err, optype);
1788 }
1789
1790 /*
1791  *      i7core_check_error      Retrieve and process errors reported by the
1792  *                              hardware. Called by the Core module.
1793  */
1794 static void i7core_check_error(struct mem_ctl_info *mci, struct mce *m)
1795 {
1796         struct i7core_pvt *pvt = mci->pvt_info;
1797
1798         i7core_mce_output_error(mci, m);
1799
1800         /*
1801          * Now, let's increment CE error counts
1802          */
1803         if (!pvt->is_registered)
1804                 i7core_udimm_check_mc_ecc_err(mci);
1805         else
1806                 i7core_rdimm_check_mc_ecc_err(mci);
1807 }
1808
1809 /*
1810  * Check that logging is enabled and that this is the right type
1811  * of error for us to handle.
1812  */
1813 static int i7core_mce_check_error(struct notifier_block *nb, unsigned long val,
1814                                   void *data)
1815 {
1816         struct mce *mce = (struct mce *)data;
1817         struct i7core_dev *i7_dev;
1818         struct mem_ctl_info *mci;
1819
1820         i7_dev = get_i7core_dev(mce->socketid);
1821         if (!i7_dev)
1822                 return NOTIFY_DONE;
1823
1824         mci = i7_dev->mci;
1825
1826         /*
1827          * Just let mcelog handle it if the error is
1828          * outside the memory controller
1829          */
1830         if (((mce->status & 0xffff) >> 7) != 1)
1831                 return NOTIFY_DONE;
1832
1833         /* Bank 8 registers are the only ones that we know how to handle */
1834         if (mce->bank != 8)
1835                 return NOTIFY_DONE;
1836
1837         i7core_check_error(mci, mce);
1838
1839         /* Advise mcelog that the errors were handled */
1840         return NOTIFY_STOP;
1841 }
1842
1843 static struct notifier_block i7_mce_dec = {
1844         .notifier_call  = i7core_mce_check_error,
1845         .priority       = MCE_PRIO_EDAC,
1846 };
1847
1848 struct memdev_dmi_entry {
1849         u8 type;
1850         u8 length;
1851         u16 handle;
1852         u16 phys_mem_array_handle;
1853         u16 mem_err_info_handle;
1854         u16 total_width;
1855         u16 data_width;
1856         u16 size;
1857         u8 form;
1858         u8 device_set;
1859         u8 device_locator;
1860         u8 bank_locator;
1861         u8 memory_type;
1862         u16 type_detail;
1863         u16 speed;
1864         u8 manufacturer;
1865         u8 serial_number;
1866         u8 asset_tag;
1867         u8 part_number;
1868         u8 attributes;
1869         u32 extended_size;
1870         u16 conf_mem_clk_speed;
1871 } __attribute__((__packed__));
1872
1873
1874 /*
1875  * Decode the DRAM Clock Frequency, be paranoid, make sure that all
1876  * memory devices show the same speed, and if they don't then consider
1877  * all speeds to be invalid.
1878  */
1879 static void decode_dclk(const struct dmi_header *dh, void *_dclk_freq)
1880 {
1881         int *dclk_freq = _dclk_freq;
1882         u16 dmi_mem_clk_speed;
1883
1884         if (*dclk_freq == -1)
1885                 return;
1886
1887         if (dh->type == DMI_ENTRY_MEM_DEVICE) {
1888                 struct memdev_dmi_entry *memdev_dmi_entry =
1889                         (struct memdev_dmi_entry *)dh;
1890                 unsigned long conf_mem_clk_speed_offset =
1891                         (unsigned long)&memdev_dmi_entry->conf_mem_clk_speed -
1892                         (unsigned long)&memdev_dmi_entry->type;
1893                 unsigned long speed_offset =
1894                         (unsigned long)&memdev_dmi_entry->speed -
1895                         (unsigned long)&memdev_dmi_entry->type;
1896
1897                 /* Check that a DIMM is present */
1898                 if (memdev_dmi_entry->size == 0)
1899                         return;
1900
1901                 /*
1902                  * Pick the configured speed if it's available, otherwise
1903                  * pick the DIMM speed, or we don't have a speed.
1904                  */
1905                 if (memdev_dmi_entry->length > conf_mem_clk_speed_offset) {
1906                         dmi_mem_clk_speed =
1907                                 memdev_dmi_entry->conf_mem_clk_speed;
1908                 } else if (memdev_dmi_entry->length > speed_offset) {
1909                         dmi_mem_clk_speed = memdev_dmi_entry->speed;
1910                 } else {
1911                         *dclk_freq = -1;
1912                         return;
1913                 }
1914
1915                 if (*dclk_freq == 0) {
1916                         /* First pass, speed was 0 */
1917                         if (dmi_mem_clk_speed > 0) {
1918                                 /* Set speed if a valid speed is read */
1919                                 *dclk_freq = dmi_mem_clk_speed;
1920                         } else {
1921                                 /* Otherwise we don't have a valid speed */
1922                                 *dclk_freq = -1;
1923                         }
1924                 } else if (*dclk_freq > 0 &&
1925                            *dclk_freq != dmi_mem_clk_speed) {
1926                         /*
1927                          * If we have a speed, check that all DIMMS are the same
1928                          * speed, otherwise set the speed as invalid.
1929                          */
1930                         *dclk_freq = -1;
1931                 }
1932         }
1933 }
1934
1935 /*
1936  * The default DCLK frequency is used as a fallback if we
1937  * fail to find anything reliable in the DMI. The value
1938  * is taken straight from the datasheet.
1939  */
1940 #define DEFAULT_DCLK_FREQ 800
1941
1942 static int get_dclk_freq(void)
1943 {
1944         int dclk_freq = 0;
1945
1946         dmi_walk(decode_dclk, (void *)&dclk_freq);
1947
1948         if (dclk_freq < 1)
1949                 return DEFAULT_DCLK_FREQ;
1950
1951         return dclk_freq;
1952 }
1953
1954 /*
1955  * set_sdram_scrub_rate         This routine sets byte/sec bandwidth scrub rate
1956  *                              to hardware according to SCRUBINTERVAL formula
1957  *                              found in datasheet.
1958  */
1959 static int set_sdram_scrub_rate(struct mem_ctl_info *mci, u32 new_bw)
1960 {
1961         struct i7core_pvt *pvt = mci->pvt_info;
1962         struct pci_dev *pdev;
1963         u32 dw_scrub;
1964         u32 dw_ssr;
1965
1966         /* Get data from the MC register, function 2 */
1967         pdev = pvt->pci_mcr[2];
1968         if (!pdev)
1969                 return -ENODEV;
1970
1971         pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &dw_scrub);
1972
1973         if (new_bw == 0) {
1974                 /* Prepare to disable petrol scrub */
1975                 dw_scrub &= ~STARTSCRUB;
1976                 /* Stop the patrol scrub engine */
1977                 write_and_test(pdev, MC_SCRUB_CONTROL,
1978                                dw_scrub & ~SCRUBINTERVAL_MASK);
1979
1980                 /* Get current status of scrub rate and set bit to disable */
1981                 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
1982                 dw_ssr &= ~SSR_MODE_MASK;
1983                 dw_ssr |= SSR_MODE_DISABLE;
1984         } else {
1985                 const int cache_line_size = 64;
1986                 const u32 freq_dclk_mhz = pvt->dclk_freq;
1987                 unsigned long long scrub_interval;
1988                 /*
1989                  * Translate the desired scrub rate to a register value and
1990                  * program the corresponding register value.
1991                  */
1992                 scrub_interval = (unsigned long long)freq_dclk_mhz *
1993                         cache_line_size * 1000000;
1994                 do_div(scrub_interval, new_bw);
1995
1996                 if (!scrub_interval || scrub_interval > SCRUBINTERVAL_MASK)
1997                         return -EINVAL;
1998
1999                 dw_scrub = SCRUBINTERVAL_MASK & scrub_interval;
2000
2001                 /* Start the patrol scrub engine */
2002                 pci_write_config_dword(pdev, MC_SCRUB_CONTROL,
2003                                        STARTSCRUB | dw_scrub);
2004
2005                 /* Get current status of scrub rate and set bit to enable */
2006                 pci_read_config_dword(pdev, MC_SSRCONTROL, &dw_ssr);
2007                 dw_ssr &= ~SSR_MODE_MASK;
2008                 dw_ssr |= SSR_MODE_ENABLE;
2009         }
2010         /* Disable or enable scrubbing */
2011         pci_write_config_dword(pdev, MC_SSRCONTROL, dw_ssr);
2012
2013         return new_bw;
2014 }
2015
2016 /*
2017  * get_sdram_scrub_rate         This routine convert current scrub rate value
2018  *                              into byte/sec bandwidth according to
2019  *                              SCRUBINTERVAL formula found in datasheet.
2020  */
2021 static int get_sdram_scrub_rate(struct mem_ctl_info *mci)
2022 {
2023         struct i7core_pvt *pvt = mci->pvt_info;
2024         struct pci_dev *pdev;
2025         const u32 cache_line_size = 64;
2026         const u32 freq_dclk_mhz = pvt->dclk_freq;
2027         unsigned long long scrub_rate;
2028         u32 scrubval;
2029
2030         /* Get data from the MC register, function 2 */
2031         pdev = pvt->pci_mcr[2];
2032         if (!pdev)
2033                 return -ENODEV;
2034
2035         /* Get current scrub control data */
2036         pci_read_config_dword(pdev, MC_SCRUB_CONTROL, &scrubval);
2037
2038         /* Mask highest 8-bits to 0 */
2039         scrubval &=  SCRUBINTERVAL_MASK;
2040         if (!scrubval)
2041                 return 0;
2042
2043         /* Calculate scrub rate value into byte/sec bandwidth */
2044         scrub_rate =  (unsigned long long)freq_dclk_mhz *
2045                 1000000 * cache_line_size;
2046         do_div(scrub_rate, scrubval);
2047         return (int)scrub_rate;
2048 }
2049
2050 static void enable_sdram_scrub_setting(struct mem_ctl_info *mci)
2051 {
2052         struct i7core_pvt *pvt = mci->pvt_info;
2053         u32 pci_lock;
2054
2055         /* Unlock writes to pci registers */
2056         pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2057         pci_lock &= ~0x3;
2058         pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2059                                pci_lock | MC_CFG_UNLOCK);
2060
2061         mci->set_sdram_scrub_rate = set_sdram_scrub_rate;
2062         mci->get_sdram_scrub_rate = get_sdram_scrub_rate;
2063 }
2064
2065 static void disable_sdram_scrub_setting(struct mem_ctl_info *mci)
2066 {
2067         struct i7core_pvt *pvt = mci->pvt_info;
2068         u32 pci_lock;
2069
2070         /* Lock writes to pci registers */
2071         pci_read_config_dword(pvt->pci_noncore, MC_CFG_CONTROL, &pci_lock);
2072         pci_lock &= ~0x3;
2073         pci_write_config_dword(pvt->pci_noncore, MC_CFG_CONTROL,
2074                                pci_lock | MC_CFG_LOCK);
2075 }
2076
2077 static void i7core_pci_ctl_create(struct i7core_pvt *pvt)
2078 {
2079         pvt->i7core_pci = edac_pci_create_generic_ctl(
2080                                                 &pvt->i7core_dev->pdev[0]->dev,
2081                                                 EDAC_MOD_STR);
2082         if (unlikely(!pvt->i7core_pci))
2083                 i7core_printk(KERN_WARNING,
2084                               "Unable to setup PCI error report via EDAC\n");
2085 }
2086
2087 static void i7core_pci_ctl_release(struct i7core_pvt *pvt)
2088 {
2089         if (likely(pvt->i7core_pci))
2090                 edac_pci_release_generic_ctl(pvt->i7core_pci);
2091         else
2092                 i7core_printk(KERN_ERR,
2093                                 "Couldn't find mem_ctl_info for socket %d\n",
2094                                 pvt->i7core_dev->socket);
2095         pvt->i7core_pci = NULL;
2096 }
2097
2098 static void i7core_unregister_mci(struct i7core_dev *i7core_dev)
2099 {
2100         struct mem_ctl_info *mci = i7core_dev->mci;
2101         struct i7core_pvt *pvt;
2102
2103         if (unlikely(!mci || !mci->pvt_info)) {
2104                 edac_dbg(0, "MC: dev = %p\n", &i7core_dev->pdev[0]->dev);
2105
2106                 i7core_printk(KERN_ERR, "Couldn't find mci handler\n");
2107                 return;
2108         }
2109
2110         pvt = mci->pvt_info;
2111
2112         edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2113
2114         /* Disable scrubrate setting */
2115         if (pvt->enable_scrub)
2116                 disable_sdram_scrub_setting(mci);
2117
2118         /* Disable EDAC polling */
2119         i7core_pci_ctl_release(pvt);
2120
2121         /* Remove MC sysfs nodes */
2122         i7core_delete_sysfs_devices(mci);
2123         edac_mc_del_mc(mci->pdev);
2124
2125         edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
2126         kfree(mci->ctl_name);
2127         edac_mc_free(mci);
2128         i7core_dev->mci = NULL;
2129 }
2130
2131 static int i7core_register_mci(struct i7core_dev *i7core_dev)
2132 {
2133         struct mem_ctl_info *mci;
2134         struct i7core_pvt *pvt;
2135         int rc;
2136         struct edac_mc_layer layers[2];
2137
2138         /* allocate a new MC control structure */
2139
2140         layers[0].type = EDAC_MC_LAYER_CHANNEL;
2141         layers[0].size = NUM_CHANS;
2142         layers[0].is_virt_csrow = false;
2143         layers[1].type = EDAC_MC_LAYER_SLOT;
2144         layers[1].size = MAX_DIMMS;
2145         layers[1].is_virt_csrow = true;
2146         mci = edac_mc_alloc(i7core_dev->socket, ARRAY_SIZE(layers), layers,
2147                             sizeof(*pvt));
2148         if (unlikely(!mci))
2149                 return -ENOMEM;
2150
2151         edac_dbg(0, "MC: mci = %p, dev = %p\n", mci, &i7core_dev->pdev[0]->dev);
2152
2153         pvt = mci->pvt_info;
2154         memset(pvt, 0, sizeof(*pvt));
2155
2156         /* Associates i7core_dev and mci for future usage */
2157         pvt->i7core_dev = i7core_dev;
2158         i7core_dev->mci = mci;
2159
2160         /*
2161          * FIXME: how to handle RDDR3 at MCI level? It is possible to have
2162          * Mixed RDDR3/UDDR3 with Nehalem, provided that they are on different
2163          * memory channels
2164          */
2165         mci->mtype_cap = MEM_FLAG_DDR3;
2166         mci->edac_ctl_cap = EDAC_FLAG_NONE;
2167         mci->edac_cap = EDAC_FLAG_NONE;
2168         mci->mod_name = "i7core_edac.c";
2169
2170         mci->ctl_name = kasprintf(GFP_KERNEL, "i7 core #%d", i7core_dev->socket);
2171         if (!mci->ctl_name) {
2172                 rc = -ENOMEM;
2173                 goto fail1;
2174         }
2175
2176         mci->dev_name = pci_name(i7core_dev->pdev[0]);
2177         mci->ctl_page_to_phys = NULL;
2178
2179         /* Store pci devices at mci for faster access */
2180         rc = mci_bind_devs(mci, i7core_dev);
2181         if (unlikely(rc < 0))
2182                 goto fail0;
2183
2184
2185         /* Get dimm basic config */
2186         get_dimm_config(mci);
2187         /* record ptr to the generic device */
2188         mci->pdev = &i7core_dev->pdev[0]->dev;
2189
2190         /* Enable scrubrate setting */
2191         if (pvt->enable_scrub)
2192                 enable_sdram_scrub_setting(mci);
2193
2194         /* add this new MC control structure to EDAC's list of MCs */
2195         if (unlikely(edac_mc_add_mc_with_groups(mci, i7core_dev_groups))) {
2196                 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
2197                 /* FIXME: perhaps some code should go here that disables error
2198                  * reporting if we just enabled it
2199                  */
2200
2201                 rc = -EINVAL;
2202                 goto fail0;
2203         }
2204         if (i7core_create_sysfs_devices(mci)) {
2205                 edac_dbg(0, "MC: failed to create sysfs nodes\n");
2206                 edac_mc_del_mc(mci->pdev);
2207                 rc = -EINVAL;
2208                 goto fail0;
2209         }
2210
2211         /* Default error mask is any memory */
2212         pvt->inject.channel = 0;
2213         pvt->inject.dimm = -1;
2214         pvt->inject.rank = -1;
2215         pvt->inject.bank = -1;
2216         pvt->inject.page = -1;
2217         pvt->inject.col = -1;
2218
2219         /* allocating generic PCI control info */
2220         i7core_pci_ctl_create(pvt);
2221
2222         /* DCLK for scrub rate setting */
2223         pvt->dclk_freq = get_dclk_freq();
2224
2225         return 0;
2226
2227 fail0:
2228         kfree(mci->ctl_name);
2229
2230 fail1:
2231         edac_mc_free(mci);
2232         i7core_dev->mci = NULL;
2233         return rc;
2234 }
2235
2236 /*
2237  *      i7core_probe    Probe for ONE instance of device to see if it is
2238  *                      present.
2239  *      return:
2240  *              0 for FOUND a device
2241  *              < 0 for error code
2242  */
2243
2244 static int i7core_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2245 {
2246         int rc, count = 0;
2247         struct i7core_dev *i7core_dev;
2248
2249         /* get the pci devices we want to reserve for our use */
2250         mutex_lock(&i7core_edac_lock);
2251
2252         /*
2253          * All memory controllers are allocated at the first pass.
2254          */
2255         if (unlikely(probed >= 1)) {
2256                 mutex_unlock(&i7core_edac_lock);
2257                 return -ENODEV;
2258         }
2259         probed++;
2260
2261         rc = i7core_get_all_devices();
2262         if (unlikely(rc < 0))
2263                 goto fail0;
2264
2265         list_for_each_entry(i7core_dev, &i7core_edac_list, list) {
2266                 count++;
2267                 rc = i7core_register_mci(i7core_dev);
2268                 if (unlikely(rc < 0))
2269                         goto fail1;
2270         }
2271
2272         /*
2273          * Nehalem-EX uses a different memory controller. However, as the
2274          * memory controller is not visible on some Nehalem/Nehalem-EP, we
2275          * need to indirectly probe via a X58 PCI device. The same devices
2276          * are found on (some) Nehalem-EX. So, on those machines, the
2277          * probe routine needs to return -ENODEV, as the actual Memory
2278          * Controller registers won't be detected.
2279          */
2280         if (!count) {
2281                 rc = -ENODEV;
2282                 goto fail1;
2283         }
2284
2285         i7core_printk(KERN_INFO,
2286                       "Driver loaded, %d memory controller(s) found.\n",
2287                       count);
2288
2289         mutex_unlock(&i7core_edac_lock);
2290         return 0;
2291
2292 fail1:
2293         list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2294                 i7core_unregister_mci(i7core_dev);
2295
2296         i7core_put_all_devices();
2297 fail0:
2298         mutex_unlock(&i7core_edac_lock);
2299         return rc;
2300 }
2301
2302 /*
2303  *      i7core_remove   destructor for one instance of device
2304  *
2305  */
2306 static void i7core_remove(struct pci_dev *pdev)
2307 {
2308         struct i7core_dev *i7core_dev;
2309
2310         edac_dbg(0, "\n");
2311
2312         /*
2313          * we have a trouble here: pdev value for removal will be wrong, since
2314          * it will point to the X58 register used to detect that the machine
2315          * is a Nehalem or upper design. However, due to the way several PCI
2316          * devices are grouped together to provide MC functionality, we need
2317          * to use a different method for releasing the devices
2318          */
2319
2320         mutex_lock(&i7core_edac_lock);
2321
2322         if (unlikely(!probed)) {
2323                 mutex_unlock(&i7core_edac_lock);
2324                 return;
2325         }
2326
2327         list_for_each_entry(i7core_dev, &i7core_edac_list, list)
2328                 i7core_unregister_mci(i7core_dev);
2329
2330         /* Release PCI resources */
2331         i7core_put_all_devices();
2332
2333         probed--;
2334
2335         mutex_unlock(&i7core_edac_lock);
2336 }
2337
2338 MODULE_DEVICE_TABLE(pci, i7core_pci_tbl);
2339
2340 /*
2341  *      i7core_driver   pci_driver structure for this module
2342  *
2343  */
2344 static struct pci_driver i7core_driver = {
2345         .name     = "i7core_edac",
2346         .probe    = i7core_probe,
2347         .remove   = i7core_remove,
2348         .id_table = i7core_pci_tbl,
2349 };
2350
2351 /*
2352  *      i7core_init             Module entry function
2353  *                      Try to initialize this module for its devices
2354  */
2355 static int __init i7core_init(void)
2356 {
2357         int pci_rc;
2358
2359         edac_dbg(2, "\n");
2360
2361         /* Ensure that the OPSTATE is set correctly for POLL or NMI */
2362         opstate_init();
2363
2364         if (use_pci_fixup)
2365                 i7core_xeon_pci_fixup(pci_dev_table);
2366
2367         pci_rc = pci_register_driver(&i7core_driver);
2368
2369         if (pci_rc >= 0) {
2370                 mce_register_decode_chain(&i7_mce_dec);
2371                 return 0;
2372         }
2373
2374         i7core_printk(KERN_ERR, "Failed to register device with error %d.\n",
2375                       pci_rc);
2376
2377         return pci_rc;
2378 }
2379
2380 /*
2381  *      i7core_exit()   Module exit function
2382  *                      Unregister the driver
2383  */
2384 static void __exit i7core_exit(void)
2385 {
2386         edac_dbg(2, "\n");
2387         pci_unregister_driver(&i7core_driver);
2388         mce_unregister_decode_chain(&i7_mce_dec);
2389 }
2390
2391 module_init(i7core_init);
2392 module_exit(i7core_exit);
2393
2394 MODULE_LICENSE("GPL");
2395 MODULE_AUTHOR("Mauro Carvalho Chehab");
2396 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
2397 MODULE_DESCRIPTION("MC Driver for Intel i7 Core memory controllers - "
2398                    I7CORE_REVISION);
2399
2400 module_param(edac_op_state, int, 0444);
2401 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");