IB/mad: Fix race between cancel and receive completion
[sfrench/cifs-2.6.git] / drivers / edac / edac_mc.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4  * This file may be distributed under the terms of the
5  * GNU General Public License.
6  *
7  * Written by Thayne Harbaugh
8  * Based on work by Dan Hollis <goemon at anime dot net> and others.
9  *      http://www.anime.net/~goemon/linux-ecc/
10  *
11  * Modified by Dave Peterson and Doug Thompson
12  *
13  */
14
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/sysdev.h>
29 #include <linux/ctype.h>
30 #include <linux/kthread.h>
31 #include <asm/uaccess.h>
32 #include <asm/page.h>
33 #include <asm/edac.h>
34 #include "edac_mc.h"
35
36 #define EDAC_MC_VERSION "Ver: 2.0.1 " __DATE__
37
38
39 #ifdef CONFIG_EDAC_DEBUG
40 /* Values of 0 to 4 will generate output */
41 int edac_debug_level = 1;
42 EXPORT_SYMBOL_GPL(edac_debug_level);
43 #endif
44
45 /* EDAC Controls, setable by module parameter, and sysfs */
46 static int log_ue = 1;
47 static int log_ce = 1;
48 static int panic_on_ue;
49 static int poll_msec = 1000;
50
51 /* lock to memory controller's control array */
52 static DECLARE_MUTEX(mem_ctls_mutex);
53 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
54
55 static struct task_struct *edac_thread;
56
57 #ifdef CONFIG_PCI
58 static int check_pci_parity = 0;        /* default YES check PCI parity */
59 static int panic_on_pci_parity;         /* default no panic on PCI Parity */
60 static atomic_t pci_parity_count = ATOMIC_INIT(0);
61
62 static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
63 static struct completion edac_pci_kobj_complete;
64 #endif  /* CONFIG_PCI */
65
66 /*  START sysfs data and methods */
67
68
69 static const char *mem_types[] = {
70         [MEM_EMPTY] = "Empty",
71         [MEM_RESERVED] = "Reserved",
72         [MEM_UNKNOWN] = "Unknown",
73         [MEM_FPM] = "FPM",
74         [MEM_EDO] = "EDO",
75         [MEM_BEDO] = "BEDO",
76         [MEM_SDR] = "Unbuffered-SDR",
77         [MEM_RDR] = "Registered-SDR",
78         [MEM_DDR] = "Unbuffered-DDR",
79         [MEM_RDDR] = "Registered-DDR",
80         [MEM_RMBS] = "RMBS"
81 };
82
83 static const char *dev_types[] = {
84         [DEV_UNKNOWN] = "Unknown",
85         [DEV_X1] = "x1",
86         [DEV_X2] = "x2",
87         [DEV_X4] = "x4",
88         [DEV_X8] = "x8",
89         [DEV_X16] = "x16",
90         [DEV_X32] = "x32",
91         [DEV_X64] = "x64"
92 };
93
94 static const char *edac_caps[] = {
95         [EDAC_UNKNOWN] = "Unknown",
96         [EDAC_NONE] = "None",
97         [EDAC_RESERVED] = "Reserved",
98         [EDAC_PARITY] = "PARITY",
99         [EDAC_EC] = "EC",
100         [EDAC_SECDED] = "SECDED",
101         [EDAC_S2ECD2ED] = "S2ECD2ED",
102         [EDAC_S4ECD4ED] = "S4ECD4ED",
103         [EDAC_S8ECD8ED] = "S8ECD8ED",
104         [EDAC_S16ECD16ED] = "S16ECD16ED"
105 };
106
107 /* sysfs object: /sys/devices/system/edac */
108 static struct sysdev_class edac_class = {
109         set_kset_name("edac"),
110 };
111
112 /* sysfs object:
113  *      /sys/devices/system/edac/mc
114  */
115 static struct kobject edac_memctrl_kobj;
116
117 /* We use these to wait for the reference counts on edac_memctrl_kobj and
118  * edac_pci_kobj to reach 0.
119  */
120 static struct completion edac_memctrl_kobj_complete;
121
122 /*
123  * /sys/devices/system/edac/mc;
124  *      data structures and methods
125  */
126 static ssize_t memctrl_int_show(void *ptr, char *buffer)
127 {
128         int *value = (int*) ptr;
129         return sprintf(buffer, "%u\n", *value);
130 }
131
132 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
133 {
134         int *value = (int*) ptr;
135
136         if (isdigit(*buffer))
137                 *value = simple_strtoul(buffer, NULL, 0);
138
139         return count;
140 }
141
142 struct memctrl_dev_attribute {
143         struct attribute attr;
144         void *value;
145         ssize_t (*show)(void *,char *);
146         ssize_t (*store)(void *, const char *, size_t);
147 };
148
149 /* Set of show/store abstract level functions for memory control object */
150 static ssize_t memctrl_dev_show(struct kobject *kobj,
151                 struct attribute *attr, char *buffer)
152 {
153         struct memctrl_dev_attribute *memctrl_dev;
154         memctrl_dev = (struct memctrl_dev_attribute*)attr;
155
156         if (memctrl_dev->show)
157                 return memctrl_dev->show(memctrl_dev->value, buffer);
158
159         return -EIO;
160 }
161
162 static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
163                 const char *buffer, size_t count)
164 {
165         struct memctrl_dev_attribute *memctrl_dev;
166         memctrl_dev = (struct memctrl_dev_attribute*)attr;
167
168         if (memctrl_dev->store)
169                 return memctrl_dev->store(memctrl_dev->value, buffer, count);
170
171         return -EIO;
172 }
173
174 static struct sysfs_ops memctrlfs_ops = {
175         .show   = memctrl_dev_show,
176         .store  = memctrl_dev_store
177 };
178
179 #define MEMCTRL_ATTR(_name,_mode,_show,_store)                  \
180 struct memctrl_dev_attribute attr_##_name = {                   \
181         .attr = {.name = __stringify(_name), .mode = _mode },   \
182         .value  = &_name,                                       \
183         .show   = _show,                                        \
184         .store  = _store,                                       \
185 };
186
187 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store)     \
188 struct memctrl_dev_attribute attr_##_name = {                   \
189         .attr = {.name = __stringify(_name), .mode = _mode },   \
190         .value  = _data,                                        \
191         .show   = _show,                                        \
192         .store  = _store,                                       \
193 };
194
195 /* csrow<id> control files */
196 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
197 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
198 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
199 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
200
201 /* Base Attributes of the memory ECC object */
202 static struct memctrl_dev_attribute *memctrl_attr[] = {
203         &attr_panic_on_ue,
204         &attr_log_ue,
205         &attr_log_ce,
206         &attr_poll_msec,
207         NULL,
208 };
209
210 /* Main MC kobject release() function */
211 static void edac_memctrl_master_release(struct kobject *kobj)
212 {
213         debugf1("%s()\n", __func__);
214         complete(&edac_memctrl_kobj_complete);
215 }
216
217 static struct kobj_type ktype_memctrl = {
218         .release = edac_memctrl_master_release,
219         .sysfs_ops = &memctrlfs_ops,
220         .default_attrs = (struct attribute **) memctrl_attr,
221 };
222
223 /* Initialize the main sysfs entries for edac:
224  *   /sys/devices/system/edac
225  *
226  * and children
227  *
228  * Return:  0 SUCCESS
229  *         !0 FAILURE
230  */
231 static int edac_sysfs_memctrl_setup(void)
232 {
233         int err=0;
234
235         debugf1("%s()\n", __func__);
236
237         /* create the /sys/devices/system/edac directory */
238         err = sysdev_class_register(&edac_class);
239
240         if (!err) {
241                 /* Init the MC's kobject */
242                 memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
243                 edac_memctrl_kobj.parent = &edac_class.kset.kobj;
244                 edac_memctrl_kobj.ktype = &ktype_memctrl;
245
246                 /* generate sysfs "..../edac/mc"   */
247                 err = kobject_set_name(&edac_memctrl_kobj,"mc");
248
249                 if (!err) {
250                         /* FIXME: maybe new sysdev_create_subdir() */
251                         err = kobject_register(&edac_memctrl_kobj);
252
253                         if (err)
254                                 debugf1("Failed to register '.../edac/mc'\n");
255                         else
256                                 debugf1("Registered '.../edac/mc' kobject\n");
257                 }
258         } else
259                 debugf1("%s() error=%d\n", __func__, err);
260
261         return err;
262 }
263
264 /*
265  * MC teardown:
266  *      the '..../edac/mc' kobject followed by '..../edac' itself
267  */
268 static void edac_sysfs_memctrl_teardown(void)
269 {
270         debugf0("MC: " __FILE__ ": %s()\n", __func__);
271
272         /* Unregister the MC's kobject and wait for reference count to reach
273          * 0.
274          */
275         init_completion(&edac_memctrl_kobj_complete);
276         kobject_unregister(&edac_memctrl_kobj);
277         wait_for_completion(&edac_memctrl_kobj_complete);
278
279         /* Unregister the 'edac' object */
280         sysdev_class_unregister(&edac_class);
281 }
282
283 #ifdef CONFIG_PCI
284 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
285 {
286         int *value = ptr;
287         return sprintf(buffer,"%d\n",*value);
288 }
289
290 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
291 {
292         int *value = ptr;
293
294         if (isdigit(*buffer))
295                 *value = simple_strtoul(buffer,NULL,0);
296
297         return count;
298 }
299
300 struct edac_pci_dev_attribute {
301         struct attribute attr;
302         void *value;
303         ssize_t (*show)(void *,char *);
304         ssize_t (*store)(void *, const char *,size_t);
305 };
306
307 /* Set of show/store abstract level functions for PCI Parity object */
308 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
309                 char *buffer)
310 {
311         struct edac_pci_dev_attribute *edac_pci_dev;
312         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
313
314         if (edac_pci_dev->show)
315                 return edac_pci_dev->show(edac_pci_dev->value, buffer);
316         return -EIO;
317 }
318
319 static ssize_t edac_pci_dev_store(struct kobject *kobj,
320                 struct attribute *attr, const char *buffer, size_t count)
321 {
322         struct edac_pci_dev_attribute *edac_pci_dev;
323         edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
324
325         if (edac_pci_dev->show)
326                 return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
327         return -EIO;
328 }
329
330 static struct sysfs_ops edac_pci_sysfs_ops = {
331         .show   = edac_pci_dev_show,
332         .store  = edac_pci_dev_store
333 };
334
335 #define EDAC_PCI_ATTR(_name,_mode,_show,_store)                 \
336 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
337         .attr = {.name = __stringify(_name), .mode = _mode },   \
338         .value  = &_name,                                       \
339         .show   = _show,                                        \
340         .store  = _store,                                       \
341 };
342
343 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store)    \
344 struct edac_pci_dev_attribute edac_pci_attr_##_name = {         \
345         .attr = {.name = __stringify(_name), .mode = _mode },   \
346         .value  = _data,                                        \
347         .show   = _show,                                        \
348         .store  = _store,                                       \
349 };
350
351 /* PCI Parity control files */
352 EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
353         edac_pci_int_store);
354 EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
355         edac_pci_int_store);
356 EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
357
358 /* Base Attributes of the memory ECC object */
359 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
360         &edac_pci_attr_check_pci_parity,
361         &edac_pci_attr_panic_on_pci_parity,
362         &edac_pci_attr_pci_parity_count,
363         NULL,
364 };
365
366 /* No memory to release */
367 static void edac_pci_release(struct kobject *kobj)
368 {
369         debugf1("%s()\n", __func__);
370         complete(&edac_pci_kobj_complete);
371 }
372
373 static struct kobj_type ktype_edac_pci = {
374         .release = edac_pci_release,
375         .sysfs_ops = &edac_pci_sysfs_ops,
376         .default_attrs = (struct attribute **) edac_pci_attr,
377 };
378
379 /**
380  * edac_sysfs_pci_setup()
381  *
382  */
383 static int edac_sysfs_pci_setup(void)
384 {
385         int err;
386
387         debugf1("%s()\n", __func__);
388
389         memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
390         edac_pci_kobj.parent = &edac_class.kset.kobj;
391         edac_pci_kobj.ktype = &ktype_edac_pci;
392         err = kobject_set_name(&edac_pci_kobj, "pci");
393
394         if (!err) {
395                 /* Instanstiate the csrow object */
396                 /* FIXME: maybe new sysdev_create_subdir() */
397                 err = kobject_register(&edac_pci_kobj);
398
399                 if (err)
400                         debugf1("Failed to register '.../edac/pci'\n");
401                 else
402                         debugf1("Registered '.../edac/pci' kobject\n");
403         }
404
405         return err;
406 }
407
408 static void edac_sysfs_pci_teardown(void)
409 {
410         debugf0("%s()\n", __func__);
411         init_completion(&edac_pci_kobj_complete);
412         kobject_unregister(&edac_pci_kobj);
413         wait_for_completion(&edac_pci_kobj_complete);
414 }
415
416
417 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
418 {
419         int where;
420         u16 status;
421
422         where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
423         pci_read_config_word(dev, where, &status);
424
425         /* If we get back 0xFFFF then we must suspect that the card has been
426          * pulled but the Linux PCI layer has not yet finished cleaning up.
427          * We don't want to report on such devices
428          */
429
430         if (status == 0xFFFF) {
431                 u32 sanity;
432
433                 pci_read_config_dword(dev, 0, &sanity);
434
435                 if (sanity == 0xFFFFFFFF)
436                         return 0;
437         }
438
439         status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
440                 PCI_STATUS_PARITY;
441
442         if (status)
443                 /* reset only the bits we are interested in */
444                 pci_write_config_word(dev, where, status);
445
446         return status;
447 }
448
449 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
450
451 /* Clear any PCI parity errors logged by this device. */
452 static void edac_pci_dev_parity_clear(struct pci_dev *dev)
453 {
454         u8 header_type;
455
456         get_pci_parity_status(dev, 0);
457
458         /* read the device TYPE, looking for bridges */
459         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
460
461         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
462                 get_pci_parity_status(dev, 1);
463 }
464
465 /*
466  *  PCI Parity polling
467  *
468  */
469 static void edac_pci_dev_parity_test(struct pci_dev *dev)
470 {
471         u16 status;
472         u8  header_type;
473
474         /* read the STATUS register on this device
475          */
476         status = get_pci_parity_status(dev, 0);
477
478         debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
479
480         /* check the status reg for errors */
481         if (status) {
482                 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
483                         edac_printk(KERN_CRIT, EDAC_PCI,
484                                 "Signaled System Error on %s\n",
485                                 pci_name(dev));
486
487                 if (status & (PCI_STATUS_PARITY)) {
488                         edac_printk(KERN_CRIT, EDAC_PCI,
489                                 "Master Data Parity Error on %s\n",
490                                 pci_name(dev));
491
492                         atomic_inc(&pci_parity_count);
493                 }
494
495                 if (status & (PCI_STATUS_DETECTED_PARITY)) {
496                         edac_printk(KERN_CRIT, EDAC_PCI,
497                                 "Detected Parity Error on %s\n",
498                                 pci_name(dev));
499
500                         atomic_inc(&pci_parity_count);
501                 }
502         }
503
504         /* read the device TYPE, looking for bridges */
505         pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
506
507         debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
508
509         if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
510                 /* On bridges, need to examine secondary status register  */
511                 status = get_pci_parity_status(dev, 1);
512
513                 debugf2("PCI SEC_STATUS= 0x%04x %s\n",
514                                 status, dev->dev.bus_id );
515
516                 /* check the secondary status reg for errors */
517                 if (status) {
518                         if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
519                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
520                                         "Signaled System Error on %s\n",
521                                         pci_name(dev));
522
523                         if (status & (PCI_STATUS_PARITY)) {
524                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
525                                         "Master Data Parity Error on "
526                                         "%s\n", pci_name(dev));
527
528                                 atomic_inc(&pci_parity_count);
529                         }
530
531                         if (status & (PCI_STATUS_DETECTED_PARITY)) {
532                                 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
533                                         "Detected Parity Error on %s\n",
534                                         pci_name(dev));
535
536                                 atomic_inc(&pci_parity_count);
537                         }
538                 }
539         }
540 }
541
542 /*
543  * pci_dev parity list iterator
544  *      Scan the PCI device list for one iteration, looking for SERRORs
545  *      Master Parity ERRORS or Parity ERRORs on primary or secondary devices
546  */
547 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
548 {
549         struct pci_dev *dev = NULL;
550
551         /* request for kernel access to the next PCI device, if any,
552          * and while we are looking at it have its reference count
553          * bumped until we are done with it
554          */
555         while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
556                 fn(dev);
557         }
558 }
559
560 static void do_pci_parity_check(void)
561 {
562         unsigned long flags;
563         int before_count;
564
565         debugf3("%s()\n", __func__);
566
567         if (!check_pci_parity)
568                 return;
569
570         before_count = atomic_read(&pci_parity_count);
571
572         /* scan all PCI devices looking for a Parity Error on devices and
573          * bridges
574          */
575         local_irq_save(flags);
576         edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
577         local_irq_restore(flags);
578
579         /* Only if operator has selected panic on PCI Error */
580         if (panic_on_pci_parity) {
581                 /* If the count is different 'after' from 'before' */
582                 if (before_count != atomic_read(&pci_parity_count))
583                         panic("EDAC: PCI Parity Error");
584         }
585 }
586
587 static inline void clear_pci_parity_errors(void)
588 {
589         /* Clear any PCI bus parity errors that devices initially have logged
590          * in their registers.
591          */
592         edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
593 }
594
595 #else   /* CONFIG_PCI */
596
597 /* pre-process these away */
598 #define do_pci_parity_check()
599 #define clear_pci_parity_errors()
600 #define edac_sysfs_pci_teardown()
601 #define edac_sysfs_pci_setup()  (0)
602
603 #endif  /* CONFIG_PCI */
604
605 /* EDAC sysfs CSROW data structures and methods
606  */
607
608 /* Set of more default csrow<id> attribute show/store functions */
609 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data, int private)
610 {
611         return sprintf(data,"%u\n", csrow->ue_count);
612 }
613
614 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data, int private)
615 {
616         return sprintf(data,"%u\n", csrow->ce_count);
617 }
618
619 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data, int private)
620 {
621         return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
622 }
623
624 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data, int private)
625 {
626         return sprintf(data,"%s\n", mem_types[csrow->mtype]);
627 }
628
629 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data, int private)
630 {
631         return sprintf(data,"%s\n", dev_types[csrow->dtype]);
632 }
633
634 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data, int private)
635 {
636         return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
637 }
638
639 /* show/store functions for DIMM Label attributes */
640 static ssize_t channel_dimm_label_show(struct csrow_info *csrow,
641                 char *data, int channel)
642 {
643         return snprintf(data, EDAC_MC_LABEL_LEN,"%s",
644                         csrow->channels[channel].label);
645 }
646
647 static ssize_t channel_dimm_label_store(struct csrow_info *csrow,
648                                 const char *data,
649                                 size_t count,
650                                 int channel)
651 {
652         ssize_t max_size = 0;
653
654         max_size = min((ssize_t)count,(ssize_t)EDAC_MC_LABEL_LEN-1);
655         strncpy(csrow->channels[channel].label, data, max_size);
656         csrow->channels[channel].label[max_size] = '\0';
657
658         return max_size;
659 }
660
661 /* show function for dynamic chX_ce_count attribute */
662 static ssize_t channel_ce_count_show(struct csrow_info *csrow,
663                                 char *data,
664                                 int channel)
665 {
666         return sprintf(data, "%u\n", csrow->channels[channel].ce_count);
667 }
668
669 /* csrow specific attribute structure */
670 struct csrowdev_attribute {
671         struct attribute attr;
672         ssize_t (*show)(struct csrow_info *,char *,int);
673         ssize_t (*store)(struct csrow_info *, const char *,size_t,int);
674         int    private;
675 };
676
677 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
678 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
679
680 /* Set of show/store higher level functions for default csrow attributes */
681 static ssize_t csrowdev_show(struct kobject *kobj,
682                         struct attribute *attr,
683                         char *buffer)
684 {
685         struct csrow_info *csrow = to_csrow(kobj);
686         struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
687
688         if (csrowdev_attr->show)
689                 return csrowdev_attr->show(csrow,
690                                         buffer,
691                                         csrowdev_attr->private);
692         return -EIO;
693 }
694
695 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
696                 const char *buffer, size_t count)
697 {
698         struct csrow_info *csrow = to_csrow(kobj);
699         struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
700
701         if (csrowdev_attr->store)
702                 return csrowdev_attr->store(csrow,
703                                         buffer,
704                                         count,
705                                         csrowdev_attr->private);
706         return -EIO;
707 }
708
709 static struct sysfs_ops csrowfs_ops = {
710         .show   = csrowdev_show,
711         .store  = csrowdev_store
712 };
713
714 #define CSROWDEV_ATTR(_name,_mode,_show,_store,_private)        \
715 struct csrowdev_attribute attr_##_name = {                      \
716         .attr = {.name = __stringify(_name), .mode = _mode },   \
717         .show   = _show,                                        \
718         .store  = _store,                                       \
719         .private = _private,                                    \
720 };
721
722 /* default cwrow<id>/attribute files */
723 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL,0);
724 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL,0);
725 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL,0);
726 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL,0);
727 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL,0);
728 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL,0);
729
730 /* default attributes of the CSROW<id> object */
731 static struct csrowdev_attribute *default_csrow_attr[] = {
732         &attr_dev_type,
733         &attr_mem_type,
734         &attr_edac_mode,
735         &attr_size_mb,
736         &attr_ue_count,
737         &attr_ce_count,
738         NULL,
739 };
740
741
742 /* possible dynamic channel DIMM Label attribute files */
743 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
744                 channel_dimm_label_show,
745                 channel_dimm_label_store,
746                 0 );
747 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
748                 channel_dimm_label_show,
749                 channel_dimm_label_store,
750                 1 );
751 CSROWDEV_ATTR(ch2_dimm_label,S_IRUGO|S_IWUSR,
752                 channel_dimm_label_show,
753                 channel_dimm_label_store,
754                 2 );
755 CSROWDEV_ATTR(ch3_dimm_label,S_IRUGO|S_IWUSR,
756                 channel_dimm_label_show,
757                 channel_dimm_label_store,
758                 3 );
759 CSROWDEV_ATTR(ch4_dimm_label,S_IRUGO|S_IWUSR,
760                 channel_dimm_label_show,
761                 channel_dimm_label_store,
762                 4 );
763 CSROWDEV_ATTR(ch5_dimm_label,S_IRUGO|S_IWUSR,
764                 channel_dimm_label_show,
765                 channel_dimm_label_store,
766                 5 );
767
768 /* Total possible dynamic DIMM Label attribute file table */
769 static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = {
770                 &attr_ch0_dimm_label,
771                 &attr_ch1_dimm_label,
772                 &attr_ch2_dimm_label,
773                 &attr_ch3_dimm_label,
774                 &attr_ch4_dimm_label,
775                 &attr_ch5_dimm_label
776 };
777
778 /* possible dynamic channel ce_count attribute files */
779 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO|S_IWUSR,
780                 channel_ce_count_show,
781                 NULL,
782                 0 );
783 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO|S_IWUSR,
784                 channel_ce_count_show,
785                 NULL,
786                 1 );
787 CSROWDEV_ATTR(ch2_ce_count,S_IRUGO|S_IWUSR,
788                 channel_ce_count_show,
789                 NULL,
790                 2 );
791 CSROWDEV_ATTR(ch3_ce_count,S_IRUGO|S_IWUSR,
792                 channel_ce_count_show,
793                 NULL,
794                 3 );
795 CSROWDEV_ATTR(ch4_ce_count,S_IRUGO|S_IWUSR,
796                 channel_ce_count_show,
797                 NULL,
798                 4 );
799 CSROWDEV_ATTR(ch5_ce_count,S_IRUGO|S_IWUSR,
800                 channel_ce_count_show,
801                 NULL,
802                 5 );
803
804 /* Total possible dynamic ce_count attribute file table */
805 static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = {
806                 &attr_ch0_ce_count,
807                 &attr_ch1_ce_count,
808                 &attr_ch2_ce_count,
809                 &attr_ch3_ce_count,
810                 &attr_ch4_ce_count,
811                 &attr_ch5_ce_count
812 };
813
814
815 #define EDAC_NR_CHANNELS        6
816
817 /* Create dynamic CHANNEL files, indexed by 'chan',  under specifed CSROW */
818 static int edac_create_channel_files(struct kobject *kobj, int chan)
819 {
820         int err=-ENODEV;
821
822         if (chan >= EDAC_NR_CHANNELS)
823                 return err;
824
825         /* create the DIMM label attribute file */
826         err = sysfs_create_file(kobj,
827                         (struct attribute *) dynamic_csrow_dimm_attr[chan]);
828
829         if (!err) {
830                 /* create the CE Count attribute file */
831                 err = sysfs_create_file(kobj,
832                         (struct attribute *) dynamic_csrow_ce_count_attr[chan]);
833         } else {
834                 debugf1("%s()  dimm labels and ce_count files created", __func__);
835         }
836
837         return err;
838 }
839
840 /* No memory to release for this kobj */
841 static void edac_csrow_instance_release(struct kobject *kobj)
842 {
843         struct csrow_info *cs;
844
845         cs = container_of(kobj, struct csrow_info, kobj);
846         complete(&cs->kobj_complete);
847 }
848
849 /* the kobj_type instance for a CSROW */
850 static struct kobj_type ktype_csrow = {
851         .release = edac_csrow_instance_release,
852         .sysfs_ops = &csrowfs_ops,
853         .default_attrs = (struct attribute **) default_csrow_attr,
854 };
855
856 /* Create a CSROW object under specifed edac_mc_device */
857 static int edac_create_csrow_object(
858                 struct kobject *edac_mci_kobj,
859                 struct csrow_info *csrow,
860                 int index)
861 {
862         int err = 0;
863         int chan;
864
865         memset(&csrow->kobj, 0, sizeof(csrow->kobj));
866
867         /* generate ..../edac/mc/mc<id>/csrow<index>   */
868
869         csrow->kobj.parent = edac_mci_kobj;
870         csrow->kobj.ktype = &ktype_csrow;
871
872         /* name this instance of csrow<id> */
873         err = kobject_set_name(&csrow->kobj,"csrow%d",index);
874         if (err)
875                 goto error_exit;
876
877         /* Instanstiate the csrow object */
878         err = kobject_register(&csrow->kobj);
879         if (!err) {
880                 /* Create the dyanmic attribute files on this csrow,
881                  * namely, the DIMM labels and the channel ce_count
882                  */
883                 for (chan = 0; chan < csrow->nr_channels; chan++) {
884                         err = edac_create_channel_files(&csrow->kobj,chan);
885                         if (err)
886                                 break;
887                 }
888         }
889
890 error_exit:
891         return err;
892 }
893
894 /* default sysfs methods and data structures for the main MCI kobject */
895
896 static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
897                 const char *data, size_t count)
898 {
899         int row, chan;
900
901         mci->ue_noinfo_count = 0;
902         mci->ce_noinfo_count = 0;
903         mci->ue_count = 0;
904         mci->ce_count = 0;
905
906         for (row = 0; row < mci->nr_csrows; row++) {
907                 struct csrow_info *ri = &mci->csrows[row];
908
909                 ri->ue_count = 0;
910                 ri->ce_count = 0;
911
912                 for (chan = 0; chan < ri->nr_channels; chan++)
913                         ri->channels[chan].ce_count = 0;
914         }
915
916         mci->start_time = jiffies;
917         return count;
918 }
919
920 /* default attribute files for the MCI object */
921 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
922 {
923         return sprintf(data,"%d\n", mci->ue_count);
924 }
925
926 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
927 {
928         return sprintf(data,"%d\n", mci->ce_count);
929 }
930
931 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
932 {
933         return sprintf(data,"%d\n", mci->ce_noinfo_count);
934 }
935
936 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
937 {
938         return sprintf(data,"%d\n", mci->ue_noinfo_count);
939 }
940
941 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
942 {
943         return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
944 }
945
946 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
947 {
948         return sprintf(data,"%s\n", mci->ctl_name);
949 }
950
951 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
952 {
953         int total_pages, csrow_idx;
954
955         for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
956                         csrow_idx++) {
957                 struct csrow_info *csrow = &mci->csrows[csrow_idx];
958
959                 if (!csrow->nr_pages)
960                         continue;
961
962                 total_pages += csrow->nr_pages;
963         }
964
965         return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
966 }
967
968 struct mcidev_attribute {
969         struct attribute attr;
970         ssize_t (*show)(struct mem_ctl_info *,char *);
971         ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
972 };
973
974 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
975 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
976
977 /* MCI show/store functions for top most object */
978 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
979                 char *buffer)
980 {
981         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
982         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
983
984         if (mcidev_attr->show)
985                 return mcidev_attr->show(mem_ctl_info, buffer);
986
987         return -EIO;
988 }
989
990 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
991                 const char *buffer, size_t count)
992 {
993         struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
994         struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
995
996         if (mcidev_attr->store)
997                 return mcidev_attr->store(mem_ctl_info, buffer, count);
998
999         return -EIO;
1000 }
1001
1002 static struct sysfs_ops mci_ops = {
1003         .show = mcidev_show,
1004         .store = mcidev_store
1005 };
1006
1007 #define MCIDEV_ATTR(_name,_mode,_show,_store)                   \
1008 struct mcidev_attribute mci_attr_##_name = {                    \
1009         .attr = {.name = __stringify(_name), .mode = _mode },   \
1010         .show   = _show,                                        \
1011         .store  = _store,                                       \
1012 };
1013
1014 /* default Control file */
1015 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1016
1017 /* default Attribute files */
1018 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1019 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1020 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1021 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1022 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1023 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1024 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1025
1026 static struct mcidev_attribute *mci_attr[] = {
1027         &mci_attr_reset_counters,
1028         &mci_attr_mc_name,
1029         &mci_attr_size_mb,
1030         &mci_attr_seconds_since_reset,
1031         &mci_attr_ue_noinfo_count,
1032         &mci_attr_ce_noinfo_count,
1033         &mci_attr_ue_count,
1034         &mci_attr_ce_count,
1035         NULL
1036 };
1037
1038 /*
1039  * Release of a MC controlling instance
1040  */
1041 static void edac_mci_instance_release(struct kobject *kobj)
1042 {
1043         struct mem_ctl_info *mci;
1044
1045         mci = to_mci(kobj);
1046         debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1047         complete(&mci->kobj_complete);
1048 }
1049
1050 static struct kobj_type ktype_mci = {
1051         .release = edac_mci_instance_release,
1052         .sysfs_ops = &mci_ops,
1053         .default_attrs = (struct attribute **) mci_attr,
1054 };
1055
1056
1057 #define EDAC_DEVICE_SYMLINK     "device"
1058
1059 /*
1060  * Create a new Memory Controller kobject instance,
1061  *      mc<id> under the 'mc' directory
1062  *
1063  * Return:
1064  *      0       Success
1065  *      !0      Failure
1066  */
1067 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1068 {
1069         int i;
1070         int err;
1071         struct csrow_info *csrow;
1072         struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1073
1074         debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1075         memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1076
1077         /* set the name of the mc<id> object */
1078         err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1079         if (err)
1080                 return err;
1081
1082         /* link to our parent the '..../edac/mc' object */
1083         edac_mci_kobj->parent = &edac_memctrl_kobj;
1084         edac_mci_kobj->ktype = &ktype_mci;
1085
1086         /* register the mc<id> kobject */
1087         err = kobject_register(edac_mci_kobj);
1088         if (err)
1089                 return err;
1090
1091         /* create a symlink for the device */
1092         err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
1093                                 EDAC_DEVICE_SYMLINK);
1094         if (err)
1095                 goto fail0;
1096
1097         /* Make directories for each CSROW object
1098          * under the mc<id> kobject
1099          */
1100         for (i = 0; i < mci->nr_csrows; i++) {
1101                 csrow = &mci->csrows[i];
1102
1103                 /* Only expose populated CSROWs */
1104                 if (csrow->nr_pages > 0) {
1105                         err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1106                         if (err)
1107                                 goto fail1;
1108                 }
1109         }
1110
1111         return 0;
1112
1113         /* CSROW error: backout what has already been registered,  */
1114 fail1:
1115         for ( i--; i >= 0; i--) {
1116                 if (csrow->nr_pages > 0) {
1117                         init_completion(&csrow->kobj_complete);
1118                         kobject_unregister(&mci->csrows[i].kobj);
1119                         wait_for_completion(&csrow->kobj_complete);
1120                 }
1121         }
1122
1123 fail0:
1124         init_completion(&mci->kobj_complete);
1125         kobject_unregister(edac_mci_kobj);
1126         wait_for_completion(&mci->kobj_complete);
1127         return err;
1128 }
1129
1130 /*
1131  * remove a Memory Controller instance
1132  */
1133 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1134 {
1135         int i;
1136
1137         debugf0("%s()\n", __func__);
1138
1139         /* remove all csrow kobjects */
1140         for (i = 0; i < mci->nr_csrows; i++) {
1141                 if (mci->csrows[i].nr_pages > 0) {
1142                         init_completion(&mci->csrows[i].kobj_complete);
1143                         kobject_unregister(&mci->csrows[i].kobj);
1144                         wait_for_completion(&mci->csrows[i].kobj_complete);
1145                 }
1146         }
1147
1148         sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1149         init_completion(&mci->kobj_complete);
1150         kobject_unregister(&mci->edac_mci_kobj);
1151         wait_for_completion(&mci->kobj_complete);
1152 }
1153
1154 /* END OF sysfs data and methods */
1155
1156 #ifdef CONFIG_EDAC_DEBUG
1157
1158 void edac_mc_dump_channel(struct channel_info *chan)
1159 {
1160         debugf4("\tchannel = %p\n", chan);
1161         debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1162         debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1163         debugf4("\tchannel->label = '%s'\n", chan->label);
1164         debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1165 }
1166 EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
1167
1168 void edac_mc_dump_csrow(struct csrow_info *csrow)
1169 {
1170         debugf4("\tcsrow = %p\n", csrow);
1171         debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1172         debugf4("\tcsrow->first_page = 0x%lx\n",
1173                 csrow->first_page);
1174         debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1175         debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1176         debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1177         debugf4("\tcsrow->nr_channels = %d\n",
1178                 csrow->nr_channels);
1179         debugf4("\tcsrow->channels = %p\n", csrow->channels);
1180         debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1181 }
1182 EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
1183
1184 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1185 {
1186         debugf3("\tmci = %p\n", mci);
1187         debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1188         debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1189         debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1190         debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1191         debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1192                 mci->nr_csrows, mci->csrows);
1193         debugf3("\tdev = %p\n", mci->dev);
1194         debugf3("\tmod_name:ctl_name = %s:%s\n",
1195                 mci->mod_name, mci->ctl_name);
1196         debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1197 }
1198 EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
1199
1200 #endif  /* CONFIG_EDAC_DEBUG */
1201
1202 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1203  * Adjust 'ptr' so that its alignment is at least as stringent as what the
1204  * compiler would provide for X and return the aligned result.
1205  *
1206  * If 'size' is a constant, the compiler will optimize this whole function
1207  * down to either a no-op or the addition of a constant to the value of 'ptr'.
1208  */
1209 static inline char * align_ptr(void *ptr, unsigned size)
1210 {
1211         unsigned align, r;
1212
1213         /* Here we assume that the alignment of a "long long" is the most
1214          * stringent alignment that the compiler will ever provide by default.
1215          * As far as I know, this is a reasonable assumption.
1216          */
1217         if (size > sizeof(long))
1218                 align = sizeof(long long);
1219         else if (size > sizeof(int))
1220                 align = sizeof(long);
1221         else if (size > sizeof(short))
1222                 align = sizeof(int);
1223         else if (size > sizeof(char))
1224                 align = sizeof(short);
1225         else
1226                 return (char *) ptr;
1227
1228         r = size % align;
1229
1230         if (r == 0)
1231                 return (char *) ptr;
1232
1233         return (char *) (((unsigned long) ptr) + align - r);
1234 }
1235
1236 /**
1237  * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1238  * @size_pvt:   size of private storage needed
1239  * @nr_csrows:  Number of CWROWS needed for this MC
1240  * @nr_chans:   Number of channels for the MC
1241  *
1242  * Everything is kmalloc'ed as one big chunk - more efficient.
1243  * Only can be used if all structures have the same lifetime - otherwise
1244  * you have to allocate and initialize your own structures.
1245  *
1246  * Use edac_mc_free() to free mc structures allocated by this function.
1247  *
1248  * Returns:
1249  *      NULL allocation failed
1250  *      struct mem_ctl_info pointer
1251  */
1252 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1253                 unsigned nr_chans)
1254 {
1255         struct mem_ctl_info *mci;
1256         struct csrow_info *csi, *csrow;
1257         struct channel_info *chi, *chp, *chan;
1258         void *pvt;
1259         unsigned size;
1260         int row, chn;
1261
1262         /* Figure out the offsets of the various items from the start of an mc
1263          * structure.  We want the alignment of each item to be at least as
1264          * stringent as what the compiler would provide if we could simply
1265          * hardcode everything into a single struct.
1266          */
1267         mci = (struct mem_ctl_info *) 0;
1268         csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1269         chi = (struct channel_info *)
1270                         align_ptr(&csi[nr_csrows], sizeof(*chi));
1271         pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1272         size = ((unsigned long) pvt) + sz_pvt;
1273
1274         if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1275                 return NULL;
1276
1277         /* Adjust pointers so they point within the memory we just allocated
1278          * rather than an imaginary chunk of memory located at address 0.
1279          */
1280         csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1281         chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1282         pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1283
1284         memset(mci, 0, size);  /* clear all fields */
1285         mci->csrows = csi;
1286         mci->pvt_info = pvt;
1287         mci->nr_csrows = nr_csrows;
1288
1289         for (row = 0; row < nr_csrows; row++) {
1290                 csrow = &csi[row];
1291                 csrow->csrow_idx = row;
1292                 csrow->mci = mci;
1293                 csrow->nr_channels = nr_chans;
1294                 chp = &chi[row * nr_chans];
1295                 csrow->channels = chp;
1296
1297                 for (chn = 0; chn < nr_chans; chn++) {
1298                         chan = &chp[chn];
1299                         chan->chan_idx = chn;
1300                         chan->csrow = csrow;
1301                 }
1302         }
1303
1304         return mci;
1305 }
1306 EXPORT_SYMBOL_GPL(edac_mc_alloc);
1307
1308 /**
1309  * edac_mc_free:  Free a previously allocated 'mci' structure
1310  * @mci: pointer to a struct mem_ctl_info structure
1311  */
1312 void edac_mc_free(struct mem_ctl_info *mci)
1313 {
1314         kfree(mci);
1315 }
1316 EXPORT_SYMBOL_GPL(edac_mc_free);
1317
1318 static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
1319 {
1320         struct mem_ctl_info *mci;
1321         struct list_head *item;
1322
1323         debugf3("%s()\n", __func__);
1324
1325         list_for_each(item, &mc_devices) {
1326                 mci = list_entry(item, struct mem_ctl_info, link);
1327
1328                 if (mci->dev == dev)
1329                         return mci;
1330         }
1331
1332         return NULL;
1333 }
1334
1335 /* Return 0 on success, 1 on failure.
1336  * Before calling this function, caller must
1337  * assign a unique value to mci->mc_idx.
1338  */
1339 static int add_mc_to_global_list (struct mem_ctl_info *mci)
1340 {
1341         struct list_head *item, *insert_before;
1342         struct mem_ctl_info *p;
1343
1344         insert_before = &mc_devices;
1345
1346         if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
1347                 goto fail0;
1348
1349         list_for_each(item, &mc_devices) {
1350                 p = list_entry(item, struct mem_ctl_info, link);
1351
1352                 if (p->mc_idx >= mci->mc_idx) {
1353                         if (unlikely(p->mc_idx == mci->mc_idx))
1354                                 goto fail1;
1355
1356                         insert_before = item;
1357                         break;
1358                 }
1359         }
1360
1361         list_add_tail_rcu(&mci->link, insert_before);
1362         return 0;
1363
1364 fail0:
1365         edac_printk(KERN_WARNING, EDAC_MC,
1366                     "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
1367                     dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
1368         return 1;
1369
1370 fail1:
1371         edac_printk(KERN_WARNING, EDAC_MC,
1372                     "bug in low-level driver: attempt to assign\n"
1373                     "    duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
1374         return 1;
1375 }
1376
1377 static void complete_mc_list_del(struct rcu_head *head)
1378 {
1379         struct mem_ctl_info *mci;
1380
1381         mci = container_of(head, struct mem_ctl_info, rcu);
1382         INIT_LIST_HEAD(&mci->link);
1383         complete(&mci->complete);
1384 }
1385
1386 static void del_mc_from_global_list(struct mem_ctl_info *mci)
1387 {
1388         list_del_rcu(&mci->link);
1389         init_completion(&mci->complete);
1390         call_rcu(&mci->rcu, complete_mc_list_del);
1391         wait_for_completion(&mci->complete);
1392 }
1393
1394 /**
1395  * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1396  *                 create sysfs entries associated with mci structure
1397  * @mci: pointer to the mci structure to be added to the list
1398  * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
1399  *
1400  * Return:
1401  *      0       Success
1402  *      !0      Failure
1403  */
1404
1405 /* FIXME - should a warning be printed if no error detection? correction? */
1406 int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
1407 {
1408         debugf0("%s()\n", __func__);
1409         mci->mc_idx = mc_idx;
1410 #ifdef CONFIG_EDAC_DEBUG
1411         if (edac_debug_level >= 3)
1412                 edac_mc_dump_mci(mci);
1413
1414         if (edac_debug_level >= 4) {
1415                 int i;
1416
1417                 for (i = 0; i < mci->nr_csrows; i++) {
1418                         int j;
1419
1420                         edac_mc_dump_csrow(&mci->csrows[i]);
1421                         for (j = 0; j < mci->csrows[i].nr_channels; j++)
1422                                 edac_mc_dump_channel(
1423                                         &mci->csrows[i].channels[j]);
1424                 }
1425         }
1426 #endif
1427         down(&mem_ctls_mutex);
1428
1429         if (add_mc_to_global_list(mci))
1430                 goto fail0;
1431
1432         /* set load time so that error rate can be tracked */
1433         mci->start_time = jiffies;
1434
1435         if (edac_create_sysfs_mci_device(mci)) {
1436                 edac_mc_printk(mci, KERN_WARNING,
1437                         "failed to create sysfs device\n");
1438                 goto fail1;
1439         }
1440
1441         /* Report action taken */
1442         edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
1443                 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1444
1445         up(&mem_ctls_mutex);
1446         return 0;
1447
1448 fail1:
1449         del_mc_from_global_list(mci);
1450
1451 fail0:
1452         up(&mem_ctls_mutex);
1453         return 1;
1454 }
1455 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
1456
1457 /**
1458  * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1459  *                 remove mci structure from global list
1460  * @pdev: Pointer to 'struct device' representing mci structure to remove.
1461  *
1462  * Return pointer to removed mci structure, or NULL if device not found.
1463  */
1464 struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
1465 {
1466         struct mem_ctl_info *mci;
1467
1468         debugf0("MC: %s()\n", __func__);
1469         down(&mem_ctls_mutex);
1470
1471         if ((mci = find_mci_by_dev(dev)) == NULL) {
1472                 up(&mem_ctls_mutex);
1473                 return NULL;
1474         }
1475
1476         edac_remove_sysfs_mci_device(mci);
1477         del_mc_from_global_list(mci);
1478         up(&mem_ctls_mutex);
1479         edac_printk(KERN_INFO, EDAC_MC,
1480                 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
1481                 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1482         return mci;
1483 }
1484 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
1485
1486 void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1487 {
1488         struct page *pg;
1489         void *virt_addr;
1490         unsigned long flags = 0;
1491
1492         debugf3("%s()\n", __func__);
1493
1494         /* ECC error page was not in our memory. Ignore it. */
1495         if(!pfn_valid(page))
1496                 return;
1497
1498         /* Find the actual page structure then map it and fix */
1499         pg = pfn_to_page(page);
1500
1501         if (PageHighMem(pg))
1502                 local_irq_save(flags);
1503
1504         virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1505
1506         /* Perform architecture specific atomic scrub operation */
1507         atomic_scrub(virt_addr + offset, size);
1508
1509         /* Unmap and complete */
1510         kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1511
1512         if (PageHighMem(pg))
1513                 local_irq_restore(flags);
1514 }
1515 EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
1516
1517 /* FIXME - should return -1 */
1518 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1519 {
1520         struct csrow_info *csrows = mci->csrows;
1521         int row, i;
1522
1523         debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1524         row = -1;
1525
1526         for (i = 0; i < mci->nr_csrows; i++) {
1527                 struct csrow_info *csrow = &csrows[i];
1528
1529                 if (csrow->nr_pages == 0)
1530                         continue;
1531
1532                 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1533                         "mask(0x%lx)\n", mci->mc_idx, __func__,
1534                         csrow->first_page, page, csrow->last_page,
1535                         csrow->page_mask);
1536
1537                 if ((page >= csrow->first_page) &&
1538                     (page <= csrow->last_page) &&
1539                     ((page & csrow->page_mask) ==
1540                      (csrow->first_page & csrow->page_mask))) {
1541                         row = i;
1542                         break;
1543                 }
1544         }
1545
1546         if (row == -1)
1547                 edac_mc_printk(mci, KERN_ERR,
1548                         "could not look up page error address %lx\n",
1549                         (unsigned long) page);
1550
1551         return row;
1552 }
1553 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
1554
1555 /* FIXME - setable log (warning/emerg) levels */
1556 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1557 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1558                 unsigned long page_frame_number, unsigned long offset_in_page,
1559                 unsigned long syndrome, int row, int channel, const char *msg)
1560 {
1561         unsigned long remapped_page;
1562
1563         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1564
1565         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1566         if (row >= mci->nr_csrows || row < 0) {
1567                 /* something is wrong */
1568                 edac_mc_printk(mci, KERN_ERR,
1569                         "INTERNAL ERROR: row out of range "
1570                         "(%d >= %d)\n", row, mci->nr_csrows);
1571                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1572                 return;
1573         }
1574
1575         if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1576                 /* something is wrong */
1577                 edac_mc_printk(mci, KERN_ERR,
1578                         "INTERNAL ERROR: channel out of range "
1579                         "(%d >= %d)\n", channel,
1580                         mci->csrows[row].nr_channels);
1581                 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1582                 return;
1583         }
1584
1585         if (log_ce)
1586                 /* FIXME - put in DIMM location */
1587                 edac_mc_printk(mci, KERN_WARNING,
1588                         "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1589                         "0x%lx, row %d, channel %d, label \"%s\": %s\n",
1590                         page_frame_number, offset_in_page,
1591                         mci->csrows[row].grain, syndrome, row, channel,
1592                         mci->csrows[row].channels[channel].label, msg);
1593
1594         mci->ce_count++;
1595         mci->csrows[row].ce_count++;
1596         mci->csrows[row].channels[channel].ce_count++;
1597
1598         if (mci->scrub_mode & SCRUB_SW_SRC) {
1599                 /*
1600                  * Some MC's can remap memory so that it is still available
1601                  * at a different address when PCI devices map into memory.
1602                  * MC's that can't do this lose the memory where PCI devices
1603                  * are mapped.  This mapping is MC dependant and so we call
1604                  * back into the MC driver for it to map the MC page to
1605                  * a physical (CPU) page which can then be mapped to a virtual
1606                  * page - which can then be scrubbed.
1607                  */
1608                 remapped_page = mci->ctl_page_to_phys ?
1609                     mci->ctl_page_to_phys(mci, page_frame_number) :
1610                     page_frame_number;
1611
1612                 edac_mc_scrub_block(remapped_page, offset_in_page,
1613                                         mci->csrows[row].grain);
1614         }
1615 }
1616 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1617
1618 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1619 {
1620         if (log_ce)
1621                 edac_mc_printk(mci, KERN_WARNING,
1622                         "CE - no information available: %s\n", msg);
1623
1624         mci->ce_noinfo_count++;
1625         mci->ce_count++;
1626 }
1627 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
1628
1629 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1630                 unsigned long page_frame_number, unsigned long offset_in_page,
1631                 int row, const char *msg)
1632 {
1633         int len = EDAC_MC_LABEL_LEN * 4;
1634         char labels[len + 1];
1635         char *pos = labels;
1636         int chan;
1637         int chars;
1638
1639         debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1640
1641         /* FIXME - maybe make panic on INTERNAL ERROR an option */
1642         if (row >= mci->nr_csrows || row < 0) {
1643                 /* something is wrong */
1644                 edac_mc_printk(mci, KERN_ERR,
1645                         "INTERNAL ERROR: row out of range "
1646                         "(%d >= %d)\n", row, mci->nr_csrows);
1647                 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1648                 return;
1649         }
1650
1651         chars = snprintf(pos, len + 1, "%s",
1652                         mci->csrows[row].channels[0].label);
1653         len -= chars;
1654         pos += chars;
1655
1656         for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1657              chan++) {
1658                 chars = snprintf(pos, len + 1, ":%s",
1659                                 mci->csrows[row].channels[chan].label);
1660                 len -= chars;
1661                 pos += chars;
1662         }
1663
1664         if (log_ue)
1665                 edac_mc_printk(mci, KERN_EMERG,
1666                         "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1667                         "labels \"%s\": %s\n", page_frame_number,
1668                         offset_in_page, mci->csrows[row].grain, row, labels,
1669                         msg);
1670
1671         if (panic_on_ue)
1672                 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1673                         "row %d, labels \"%s\": %s\n", mci->mc_idx,
1674                         page_frame_number, offset_in_page,
1675                         mci->csrows[row].grain, row, labels, msg);
1676
1677         mci->ue_count++;
1678         mci->csrows[row].ue_count++;
1679 }
1680 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1681
1682 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1683 {
1684         if (panic_on_ue)
1685                 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1686
1687         if (log_ue)
1688                 edac_mc_printk(mci, KERN_WARNING,
1689                         "UE - no information available: %s\n", msg);
1690         mci->ue_noinfo_count++;
1691         mci->ue_count++;
1692 }
1693 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
1694
1695
1696 /*
1697  * Iterate over all MC instances and check for ECC, et al, errors
1698  */
1699 static inline void check_mc_devices(void)
1700 {
1701         struct list_head *item;
1702         struct mem_ctl_info *mci;
1703
1704         debugf3("%s()\n", __func__);
1705         down(&mem_ctls_mutex);
1706
1707         list_for_each(item, &mc_devices) {
1708                 mci = list_entry(item, struct mem_ctl_info, link);
1709
1710                 if (mci->edac_check != NULL)
1711                         mci->edac_check(mci);
1712         }
1713
1714         up(&mem_ctls_mutex);
1715 }
1716
1717 /*
1718  * Check MC status every poll_msec.
1719  * Check PCI status every poll_msec as well.
1720  *
1721  * This where the work gets done for edac.
1722  *
1723  * SMP safe, doesn't use NMI, and auto-rate-limits.
1724  */
1725 static void do_edac_check(void)
1726 {
1727         debugf3("%s()\n", __func__);
1728         check_mc_devices();
1729         do_pci_parity_check();
1730 }
1731
1732 static int edac_kernel_thread(void *arg)
1733 {
1734         while (!kthread_should_stop()) {
1735                 do_edac_check();
1736
1737                 /* goto sleep for the interval */
1738                 schedule_timeout_interruptible((HZ * poll_msec) / 1000);
1739                 try_to_freeze();
1740         }
1741
1742         return 0;
1743 }
1744
1745 /*
1746  * edac_mc_init
1747  *      module initialization entry point
1748  */
1749 static int __init edac_mc_init(void)
1750 {
1751         edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
1752
1753         /*
1754          * Harvest and clear any boot/initialization PCI parity errors
1755          *
1756          * FIXME: This only clears errors logged by devices present at time of
1757          *      module initialization.  We should also do an initial clear
1758          *      of each newly hotplugged device.
1759          */
1760         clear_pci_parity_errors();
1761
1762         /* Create the MC sysfs entries */
1763         if (edac_sysfs_memctrl_setup()) {
1764                 edac_printk(KERN_ERR, EDAC_MC,
1765                         "Error initializing sysfs code\n");
1766                 return -ENODEV;
1767         }
1768
1769         /* Create the PCI parity sysfs entries */
1770         if (edac_sysfs_pci_setup()) {
1771                 edac_sysfs_memctrl_teardown();
1772                 edac_printk(KERN_ERR, EDAC_MC,
1773                         "EDAC PCI: Error initializing sysfs code\n");
1774                 return -ENODEV;
1775         }
1776
1777         /* create our kernel thread */
1778         edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
1779
1780         if (IS_ERR(edac_thread)) {
1781                 /* remove the sysfs entries */
1782                 edac_sysfs_memctrl_teardown();
1783                 edac_sysfs_pci_teardown();
1784                 return PTR_ERR(edac_thread);
1785         }
1786
1787         return 0;
1788 }
1789
1790 /*
1791  * edac_mc_exit()
1792  *      module exit/termination functioni
1793  */
1794 static void __exit edac_mc_exit(void)
1795 {
1796         debugf0("%s()\n", __func__);
1797         kthread_stop(edac_thread);
1798
1799         /* tear down the sysfs device */
1800         edac_sysfs_memctrl_teardown();
1801         edac_sysfs_pci_teardown();
1802 }
1803
1804 module_init(edac_mc_init);
1805 module_exit(edac_mc_exit);
1806
1807 MODULE_LICENSE("GPL");
1808 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
1809         "Based on work by Dan Hollis et al");
1810 MODULE_DESCRIPTION("Core library routines for MC reporting");
1811
1812 module_param(panic_on_ue, int, 0644);
1813 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
1814 #ifdef CONFIG_PCI
1815 module_param(check_pci_parity, int, 0644);
1816 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
1817 module_param(panic_on_pci_parity, int, 0644);
1818 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
1819 #endif
1820 module_param(log_ue, int, 0644);
1821 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
1822 module_param(log_ce, int, 0644);
1823 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
1824 module_param(poll_msec, int, 0644);
1825 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
1826 #ifdef CONFIG_EDAC_DEBUG
1827 module_param(edac_debug_level, int, 0644);
1828 MODULE_PARM_DESC(edac_debug_level, "Debug level");
1829 #endif