Merge branches 'arm/omap', 'arm/exynos', 'arm/smmu', 'arm/mediatek', 'arm/qcom',...
[sfrench/cifs-2.6.git] / drivers / edac / altera_edac.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 2017-2018, Intel Corporation. All rights reserved
4  *  Copyright Altera Corporation (C) 2014-2016. All rights reserved.
5  *  Copyright 2011-2012 Calxeda, Inc.
6  */
7
8 #include <asm/cacheflush.h>
9 #include <linux/ctype.h>
10 #include <linux/delay.h>
11 #include <linux/edac.h>
12 #include <linux/firmware/intel/stratix10-smc.h>
13 #include <linux/genalloc.h>
14 #include <linux/interrupt.h>
15 #include <linux/irqchip/chained_irq.h>
16 #include <linux/kernel.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/notifier.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_platform.h>
22 #include <linux/platform_device.h>
23 #include <linux/regmap.h>
24 #include <linux/types.h>
25 #include <linux/uaccess.h>
26
27 #include "altera_edac.h"
28 #include "edac_module.h"
29
30 #define EDAC_MOD_STR            "altera_edac"
31 #define EDAC_DEVICE             "Altera"
32
33 #ifdef CONFIG_EDAC_ALTERA_SDRAM
34 static const struct altr_sdram_prv_data c5_data = {
35         .ecc_ctrl_offset    = CV_CTLCFG_OFST,
36         .ecc_ctl_en_mask    = CV_CTLCFG_ECC_AUTO_EN,
37         .ecc_stat_offset    = CV_DRAMSTS_OFST,
38         .ecc_stat_ce_mask   = CV_DRAMSTS_SBEERR,
39         .ecc_stat_ue_mask   = CV_DRAMSTS_DBEERR,
40         .ecc_saddr_offset   = CV_ERRADDR_OFST,
41         .ecc_daddr_offset   = CV_ERRADDR_OFST,
42         .ecc_cecnt_offset   = CV_SBECOUNT_OFST,
43         .ecc_uecnt_offset   = CV_DBECOUNT_OFST,
44         .ecc_irq_en_offset  = CV_DRAMINTR_OFST,
45         .ecc_irq_en_mask    = CV_DRAMINTR_INTREN,
46         .ecc_irq_clr_offset = CV_DRAMINTR_OFST,
47         .ecc_irq_clr_mask   = (CV_DRAMINTR_INTRCLR | CV_DRAMINTR_INTREN),
48         .ecc_cnt_rst_offset = CV_DRAMINTR_OFST,
49         .ecc_cnt_rst_mask   = CV_DRAMINTR_INTRCLR,
50         .ce_ue_trgr_offset  = CV_CTLCFG_OFST,
51         .ce_set_mask        = CV_CTLCFG_GEN_SB_ERR,
52         .ue_set_mask        = CV_CTLCFG_GEN_DB_ERR,
53 };
54
55 static const struct altr_sdram_prv_data a10_data = {
56         .ecc_ctrl_offset    = A10_ECCCTRL1_OFST,
57         .ecc_ctl_en_mask    = A10_ECCCTRL1_ECC_EN,
58         .ecc_stat_offset    = A10_INTSTAT_OFST,
59         .ecc_stat_ce_mask   = A10_INTSTAT_SBEERR,
60         .ecc_stat_ue_mask   = A10_INTSTAT_DBEERR,
61         .ecc_saddr_offset   = A10_SERRADDR_OFST,
62         .ecc_daddr_offset   = A10_DERRADDR_OFST,
63         .ecc_irq_en_offset  = A10_ERRINTEN_OFST,
64         .ecc_irq_en_mask    = A10_ECC_IRQ_EN_MASK,
65         .ecc_irq_clr_offset = A10_INTSTAT_OFST,
66         .ecc_irq_clr_mask   = (A10_INTSTAT_SBEERR | A10_INTSTAT_DBEERR),
67         .ecc_cnt_rst_offset = A10_ECCCTRL1_OFST,
68         .ecc_cnt_rst_mask   = A10_ECC_CNT_RESET_MASK,
69         .ce_ue_trgr_offset  = A10_DIAGINTTEST_OFST,
70         .ce_set_mask        = A10_DIAGINT_TSERRA_MASK,
71         .ue_set_mask        = A10_DIAGINT_TDERRA_MASK,
72 };
73
74 /*********************** EDAC Memory Controller Functions ****************/
75
76 /* The SDRAM controller uses the EDAC Memory Controller framework.       */
77
78 static irqreturn_t altr_sdram_mc_err_handler(int irq, void *dev_id)
79 {
80         struct mem_ctl_info *mci = dev_id;
81         struct altr_sdram_mc_data *drvdata = mci->pvt_info;
82         const struct altr_sdram_prv_data *priv = drvdata->data;
83         u32 status, err_count = 1, err_addr;
84
85         regmap_read(drvdata->mc_vbase, priv->ecc_stat_offset, &status);
86
87         if (status & priv->ecc_stat_ue_mask) {
88                 regmap_read(drvdata->mc_vbase, priv->ecc_daddr_offset,
89                             &err_addr);
90                 if (priv->ecc_uecnt_offset)
91                         regmap_read(drvdata->mc_vbase, priv->ecc_uecnt_offset,
92                                     &err_count);
93                 panic("\nEDAC: [%d Uncorrectable errors @ 0x%08X]\n",
94                       err_count, err_addr);
95         }
96         if (status & priv->ecc_stat_ce_mask) {
97                 regmap_read(drvdata->mc_vbase, priv->ecc_saddr_offset,
98                             &err_addr);
99                 if (priv->ecc_uecnt_offset)
100                         regmap_read(drvdata->mc_vbase,  priv->ecc_cecnt_offset,
101                                     &err_count);
102                 edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, err_count,
103                                      err_addr >> PAGE_SHIFT,
104                                      err_addr & ~PAGE_MASK, 0,
105                                      0, 0, -1, mci->ctl_name, "");
106                 /* Clear IRQ to resume */
107                 regmap_write(drvdata->mc_vbase, priv->ecc_irq_clr_offset,
108                              priv->ecc_irq_clr_mask);
109
110                 return IRQ_HANDLED;
111         }
112         return IRQ_NONE;
113 }
114
115 static ssize_t altr_sdr_mc_err_inject_write(struct file *file,
116                                             const char __user *data,
117                                             size_t count, loff_t *ppos)
118 {
119         struct mem_ctl_info *mci = file->private_data;
120         struct altr_sdram_mc_data *drvdata = mci->pvt_info;
121         const struct altr_sdram_prv_data *priv = drvdata->data;
122         u32 *ptemp;
123         dma_addr_t dma_handle;
124         u32 reg, read_reg;
125
126         ptemp = dma_alloc_coherent(mci->pdev, 16, &dma_handle, GFP_KERNEL);
127         if (!ptemp) {
128                 dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
129                 edac_printk(KERN_ERR, EDAC_MC,
130                             "Inject: Buffer Allocation error\n");
131                 return -ENOMEM;
132         }
133
134         regmap_read(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
135                     &read_reg);
136         read_reg &= ~(priv->ce_set_mask | priv->ue_set_mask);
137
138         /* Error are injected by writing a word while the SBE or DBE
139          * bit in the CTLCFG register is set. Reading the word will
140          * trigger the SBE or DBE error and the corresponding IRQ.
141          */
142         if (count == 3) {
143                 edac_printk(KERN_ALERT, EDAC_MC,
144                             "Inject Double bit error\n");
145                 local_irq_disable();
146                 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
147                              (read_reg | priv->ue_set_mask));
148                 local_irq_enable();
149         } else {
150                 edac_printk(KERN_ALERT, EDAC_MC,
151                             "Inject Single bit error\n");
152                 local_irq_disable();
153                 regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset,
154                              (read_reg | priv->ce_set_mask));
155                 local_irq_enable();
156         }
157
158         ptemp[0] = 0x5A5A5A5A;
159         ptemp[1] = 0xA5A5A5A5;
160
161         /* Clear the error injection bits */
162         regmap_write(drvdata->mc_vbase, priv->ce_ue_trgr_offset, read_reg);
163         /* Ensure it has been written out */
164         wmb();
165
166         /*
167          * To trigger the error, we need to read the data back
168          * (the data was written with errors above).
169          * The READ_ONCE macros and printk are used to prevent the
170          * the compiler optimizing these reads out.
171          */
172         reg = READ_ONCE(ptemp[0]);
173         read_reg = READ_ONCE(ptemp[1]);
174         /* Force Read */
175         rmb();
176
177         edac_printk(KERN_ALERT, EDAC_MC, "Read Data [0x%X, 0x%X]\n",
178                     reg, read_reg);
179
180         dma_free_coherent(mci->pdev, 16, ptemp, dma_handle);
181
182         return count;
183 }
184
185 static const struct file_operations altr_sdr_mc_debug_inject_fops = {
186         .open = simple_open,
187         .write = altr_sdr_mc_err_inject_write,
188         .llseek = generic_file_llseek,
189 };
190
191 static void altr_sdr_mc_create_debugfs_nodes(struct mem_ctl_info *mci)
192 {
193         if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
194                 return;
195
196         if (!mci->debugfs)
197                 return;
198
199         edac_debugfs_create_file("altr_trigger", S_IWUSR, mci->debugfs, mci,
200                                  &altr_sdr_mc_debug_inject_fops);
201 }
202
203 /* Get total memory size from Open Firmware DTB */
204 static unsigned long get_total_mem(void)
205 {
206         struct device_node *np = NULL;
207         struct resource res;
208         int ret;
209         unsigned long total_mem = 0;
210
211         for_each_node_by_type(np, "memory") {
212                 ret = of_address_to_resource(np, 0, &res);
213                 if (ret)
214                         continue;
215
216                 total_mem += resource_size(&res);
217         }
218         edac_dbg(0, "total_mem 0x%lx\n", total_mem);
219         return total_mem;
220 }
221
222 static const struct of_device_id altr_sdram_ctrl_of_match[] = {
223         { .compatible = "altr,sdram-edac", .data = &c5_data},
224         { .compatible = "altr,sdram-edac-a10", .data = &a10_data},
225         { .compatible = "altr,sdram-edac-s10", .data = &a10_data},
226         {},
227 };
228 MODULE_DEVICE_TABLE(of, altr_sdram_ctrl_of_match);
229
230 static int a10_init(struct regmap *mc_vbase)
231 {
232         if (regmap_update_bits(mc_vbase, A10_INTMODE_OFST,
233                                A10_INTMODE_SB_INT, A10_INTMODE_SB_INT)) {
234                 edac_printk(KERN_ERR, EDAC_MC,
235                             "Error setting SB IRQ mode\n");
236                 return -ENODEV;
237         }
238
239         if (regmap_write(mc_vbase, A10_SERRCNTREG_OFST, 1)) {
240                 edac_printk(KERN_ERR, EDAC_MC,
241                             "Error setting trigger count\n");
242                 return -ENODEV;
243         }
244
245         return 0;
246 }
247
248 static int a10_unmask_irq(struct platform_device *pdev, u32 mask)
249 {
250         void __iomem  *sm_base;
251         int  ret = 0;
252
253         if (!request_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32),
254                                 dev_name(&pdev->dev))) {
255                 edac_printk(KERN_ERR, EDAC_MC,
256                             "Unable to request mem region\n");
257                 return -EBUSY;
258         }
259
260         sm_base = ioremap(A10_SYMAN_INTMASK_CLR, sizeof(u32));
261         if (!sm_base) {
262                 edac_printk(KERN_ERR, EDAC_MC,
263                             "Unable to ioremap device\n");
264
265                 ret = -ENOMEM;
266                 goto release;
267         }
268
269         iowrite32(mask, sm_base);
270
271         iounmap(sm_base);
272
273 release:
274         release_mem_region(A10_SYMAN_INTMASK_CLR, sizeof(u32));
275
276         return ret;
277 }
278
279 static int socfpga_is_a10(void);
280 static int altr_sdram_probe(struct platform_device *pdev)
281 {
282         const struct of_device_id *id;
283         struct edac_mc_layer layers[2];
284         struct mem_ctl_info *mci;
285         struct altr_sdram_mc_data *drvdata;
286         const struct altr_sdram_prv_data *priv;
287         struct regmap *mc_vbase;
288         struct dimm_info *dimm;
289         u32 read_reg;
290         int irq, irq2, res = 0;
291         unsigned long mem_size, irqflags = 0;
292
293         id = of_match_device(altr_sdram_ctrl_of_match, &pdev->dev);
294         if (!id)
295                 return -ENODEV;
296
297         /* Grab the register range from the sdr controller in device tree */
298         mc_vbase = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
299                                                    "altr,sdr-syscon");
300         if (IS_ERR(mc_vbase)) {
301                 edac_printk(KERN_ERR, EDAC_MC,
302                             "regmap for altr,sdr-syscon lookup failed.\n");
303                 return -ENODEV;
304         }
305
306         /* Check specific dependencies for the module */
307         priv = of_match_node(altr_sdram_ctrl_of_match,
308                              pdev->dev.of_node)->data;
309
310         /* Validate the SDRAM controller has ECC enabled */
311         if (regmap_read(mc_vbase, priv->ecc_ctrl_offset, &read_reg) ||
312             ((read_reg & priv->ecc_ctl_en_mask) != priv->ecc_ctl_en_mask)) {
313                 edac_printk(KERN_ERR, EDAC_MC,
314                             "No ECC/ECC disabled [0x%08X]\n", read_reg);
315                 return -ENODEV;
316         }
317
318         /* Grab memory size from device tree. */
319         mem_size = get_total_mem();
320         if (!mem_size) {
321                 edac_printk(KERN_ERR, EDAC_MC, "Unable to calculate memory size\n");
322                 return -ENODEV;
323         }
324
325         /* Ensure the SDRAM Interrupt is disabled */
326         if (regmap_update_bits(mc_vbase, priv->ecc_irq_en_offset,
327                                priv->ecc_irq_en_mask, 0)) {
328                 edac_printk(KERN_ERR, EDAC_MC,
329                             "Error disabling SDRAM ECC IRQ\n");
330                 return -ENODEV;
331         }
332
333         /* Toggle to clear the SDRAM Error count */
334         if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
335                                priv->ecc_cnt_rst_mask,
336                                priv->ecc_cnt_rst_mask)) {
337                 edac_printk(KERN_ERR, EDAC_MC,
338                             "Error clearing SDRAM ECC count\n");
339                 return -ENODEV;
340         }
341
342         if (regmap_update_bits(mc_vbase, priv->ecc_cnt_rst_offset,
343                                priv->ecc_cnt_rst_mask, 0)) {
344                 edac_printk(KERN_ERR, EDAC_MC,
345                             "Error clearing SDRAM ECC count\n");
346                 return -ENODEV;
347         }
348
349         irq = platform_get_irq(pdev, 0);
350         if (irq < 0) {
351                 edac_printk(KERN_ERR, EDAC_MC,
352                             "No irq %d in DT\n", irq);
353                 return -ENODEV;
354         }
355
356         /* Arria10 has a 2nd IRQ */
357         irq2 = platform_get_irq(pdev, 1);
358
359         layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
360         layers[0].size = 1;
361         layers[0].is_virt_csrow = true;
362         layers[1].type = EDAC_MC_LAYER_CHANNEL;
363         layers[1].size = 1;
364         layers[1].is_virt_csrow = false;
365         mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers,
366                             sizeof(struct altr_sdram_mc_data));
367         if (!mci)
368                 return -ENOMEM;
369
370         mci->pdev = &pdev->dev;
371         drvdata = mci->pvt_info;
372         drvdata->mc_vbase = mc_vbase;
373         drvdata->data = priv;
374         platform_set_drvdata(pdev, mci);
375
376         if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
377                 edac_printk(KERN_ERR, EDAC_MC,
378                             "Unable to get managed device resource\n");
379                 res = -ENOMEM;
380                 goto free;
381         }
382
383         mci->mtype_cap = MEM_FLAG_DDR3;
384         mci->edac_ctl_cap = EDAC_FLAG_NONE | EDAC_FLAG_SECDED;
385         mci->edac_cap = EDAC_FLAG_SECDED;
386         mci->mod_name = EDAC_MOD_STR;
387         mci->ctl_name = dev_name(&pdev->dev);
388         mci->scrub_mode = SCRUB_SW_SRC;
389         mci->dev_name = dev_name(&pdev->dev);
390
391         dimm = *mci->dimms;
392         dimm->nr_pages = ((mem_size - 1) >> PAGE_SHIFT) + 1;
393         dimm->grain = 8;
394         dimm->dtype = DEV_X8;
395         dimm->mtype = MEM_DDR3;
396         dimm->edac_mode = EDAC_SECDED;
397
398         res = edac_mc_add_mc(mci);
399         if (res < 0)
400                 goto err;
401
402         /* Only the Arria10 has separate IRQs */
403         if (socfpga_is_a10()) {
404                 /* Arria10 specific initialization */
405                 res = a10_init(mc_vbase);
406                 if (res < 0)
407                         goto err2;
408
409                 res = devm_request_irq(&pdev->dev, irq2,
410                                        altr_sdram_mc_err_handler,
411                                        IRQF_SHARED, dev_name(&pdev->dev), mci);
412                 if (res < 0) {
413                         edac_mc_printk(mci, KERN_ERR,
414                                        "Unable to request irq %d\n", irq2);
415                         res = -ENODEV;
416                         goto err2;
417                 }
418
419                 res = a10_unmask_irq(pdev, A10_DDR0_IRQ_MASK);
420                 if (res < 0)
421                         goto err2;
422
423                 irqflags = IRQF_SHARED;
424         }
425
426         res = devm_request_irq(&pdev->dev, irq, altr_sdram_mc_err_handler,
427                                irqflags, dev_name(&pdev->dev), mci);
428         if (res < 0) {
429                 edac_mc_printk(mci, KERN_ERR,
430                                "Unable to request irq %d\n", irq);
431                 res = -ENODEV;
432                 goto err2;
433         }
434
435         /* Infrastructure ready - enable the IRQ */
436         if (regmap_update_bits(drvdata->mc_vbase, priv->ecc_irq_en_offset,
437                                priv->ecc_irq_en_mask, priv->ecc_irq_en_mask)) {
438                 edac_mc_printk(mci, KERN_ERR,
439                                "Error enabling SDRAM ECC IRQ\n");
440                 res = -ENODEV;
441                 goto err2;
442         }
443
444         altr_sdr_mc_create_debugfs_nodes(mci);
445
446         devres_close_group(&pdev->dev, NULL);
447
448         return 0;
449
450 err2:
451         edac_mc_del_mc(&pdev->dev);
452 err:
453         devres_release_group(&pdev->dev, NULL);
454 free:
455         edac_mc_free(mci);
456         edac_printk(KERN_ERR, EDAC_MC,
457                     "EDAC Probe Failed; Error %d\n", res);
458
459         return res;
460 }
461
462 static int altr_sdram_remove(struct platform_device *pdev)
463 {
464         struct mem_ctl_info *mci = platform_get_drvdata(pdev);
465
466         edac_mc_del_mc(&pdev->dev);
467         edac_mc_free(mci);
468         platform_set_drvdata(pdev, NULL);
469
470         return 0;
471 }
472
473 /*
474  * If you want to suspend, need to disable EDAC by removing it
475  * from the device tree or defconfig.
476  */
477 #ifdef CONFIG_PM
478 static int altr_sdram_prepare(struct device *dev)
479 {
480         pr_err("Suspend not allowed when EDAC is enabled.\n");
481
482         return -EPERM;
483 }
484
485 static const struct dev_pm_ops altr_sdram_pm_ops = {
486         .prepare = altr_sdram_prepare,
487 };
488 #endif
489
490 static struct platform_driver altr_sdram_edac_driver = {
491         .probe = altr_sdram_probe,
492         .remove = altr_sdram_remove,
493         .driver = {
494                 .name = "altr_sdram_edac",
495 #ifdef CONFIG_PM
496                 .pm = &altr_sdram_pm_ops,
497 #endif
498                 .of_match_table = altr_sdram_ctrl_of_match,
499         },
500 };
501
502 module_platform_driver(altr_sdram_edac_driver);
503
504 #endif  /* CONFIG_EDAC_ALTERA_SDRAM */
505
506 /**************** Stratix 10 EDAC Memory Controller Functions ************/
507
508 /**
509  * s10_protected_reg_write
510  * Write to a protected SMC register.
511  * @context: Not used.
512  * @reg: Address of register
513  * @value: Value to write
514  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
515  *         INTEL_SIP_SMC_REG_ERROR on error
516  *         INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
517  */
518 static int s10_protected_reg_write(void *context, unsigned int reg,
519                                    unsigned int val)
520 {
521         struct arm_smccc_res result;
522         unsigned long offset = (unsigned long)context;
523
524         arm_smccc_smc(INTEL_SIP_SMC_REG_WRITE, offset + reg, val, 0, 0,
525                       0, 0, 0, &result);
526
527         return (int)result.a0;
528 }
529
530 /**
531  * s10_protected_reg_read
532  * Read the status of a protected SMC register
533  * @context: Not used.
534  * @reg: Address of register
535  * @value: Value read.
536  * Return: INTEL_SIP_SMC_STATUS_OK (0) on success
537  *         INTEL_SIP_SMC_REG_ERROR on error
538  *         INTEL_SIP_SMC_RETURN_UNKNOWN_FUNCTION if not supported
539  */
540 static int s10_protected_reg_read(void *context, unsigned int reg,
541                                   unsigned int *val)
542 {
543         struct arm_smccc_res result;
544         unsigned long offset = (unsigned long)context;
545
546         arm_smccc_smc(INTEL_SIP_SMC_REG_READ, offset + reg, 0, 0, 0,
547                       0, 0, 0, &result);
548
549         *val = (unsigned int)result.a1;
550
551         return (int)result.a0;
552 }
553
554 static const struct regmap_config s10_sdram_regmap_cfg = {
555         .name = "s10_ddr",
556         .reg_bits = 32,
557         .reg_stride = 4,
558         .val_bits = 32,
559         .max_register = 0xffd12228,
560         .reg_read = s10_protected_reg_read,
561         .reg_write = s10_protected_reg_write,
562         .use_single_read = true,
563         .use_single_write = true,
564 };
565
566 /************** </Stratix10 EDAC Memory Controller Functions> ***********/
567
568 /************************* EDAC Parent Probe *************************/
569
570 static const struct of_device_id altr_edac_device_of_match[];
571
572 static const struct of_device_id altr_edac_of_match[] = {
573         { .compatible = "altr,socfpga-ecc-manager" },
574         {},
575 };
576 MODULE_DEVICE_TABLE(of, altr_edac_of_match);
577
578 static int altr_edac_probe(struct platform_device *pdev)
579 {
580         of_platform_populate(pdev->dev.of_node, altr_edac_device_of_match,
581                              NULL, &pdev->dev);
582         return 0;
583 }
584
585 static struct platform_driver altr_edac_driver = {
586         .probe =  altr_edac_probe,
587         .driver = {
588                 .name = "socfpga_ecc_manager",
589                 .of_match_table = altr_edac_of_match,
590         },
591 };
592 module_platform_driver(altr_edac_driver);
593
594 /************************* EDAC Device Functions *************************/
595
596 /*
597  * EDAC Device Functions (shared between various IPs).
598  * The discrete memories use the EDAC Device framework. The probe
599  * and error handling functions are very similar between memories
600  * so they are shared. The memory allocation and freeing for EDAC
601  * trigger testing are different for each memory.
602  */
603
604 static const struct edac_device_prv_data ocramecc_data;
605 static const struct edac_device_prv_data l2ecc_data;
606 static const struct edac_device_prv_data a10_ocramecc_data;
607 static const struct edac_device_prv_data a10_l2ecc_data;
608
609 static irqreturn_t altr_edac_device_handler(int irq, void *dev_id)
610 {
611         irqreturn_t ret_value = IRQ_NONE;
612         struct edac_device_ctl_info *dci = dev_id;
613         struct altr_edac_device_dev *drvdata = dci->pvt_info;
614         const struct edac_device_prv_data *priv = drvdata->data;
615
616         if (irq == drvdata->sb_irq) {
617                 if (priv->ce_clear_mask)
618                         writel(priv->ce_clear_mask, drvdata->base);
619                 edac_device_handle_ce(dci, 0, 0, drvdata->edac_dev_name);
620                 ret_value = IRQ_HANDLED;
621         } else if (irq == drvdata->db_irq) {
622                 if (priv->ue_clear_mask)
623                         writel(priv->ue_clear_mask, drvdata->base);
624                 edac_device_handle_ue(dci, 0, 0, drvdata->edac_dev_name);
625                 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
626                 ret_value = IRQ_HANDLED;
627         } else {
628                 WARN_ON(1);
629         }
630
631         return ret_value;
632 }
633
634 static ssize_t altr_edac_device_trig(struct file *file,
635                                      const char __user *user_buf,
636                                      size_t count, loff_t *ppos)
637
638 {
639         u32 *ptemp, i, error_mask;
640         int result = 0;
641         u8 trig_type;
642         unsigned long flags;
643         struct edac_device_ctl_info *edac_dci = file->private_data;
644         struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
645         const struct edac_device_prv_data *priv = drvdata->data;
646         void *generic_ptr = edac_dci->dev;
647
648         if (!user_buf || get_user(trig_type, user_buf))
649                 return -EFAULT;
650
651         if (!priv->alloc_mem)
652                 return -ENOMEM;
653
654         /*
655          * Note that generic_ptr is initialized to the device * but in
656          * some alloc_functions, this is overridden and returns data.
657          */
658         ptemp = priv->alloc_mem(priv->trig_alloc_sz, &generic_ptr);
659         if (!ptemp) {
660                 edac_printk(KERN_ERR, EDAC_DEVICE,
661                             "Inject: Buffer Allocation error\n");
662                 return -ENOMEM;
663         }
664
665         if (trig_type == ALTR_UE_TRIGGER_CHAR)
666                 error_mask = priv->ue_set_mask;
667         else
668                 error_mask = priv->ce_set_mask;
669
670         edac_printk(KERN_ALERT, EDAC_DEVICE,
671                     "Trigger Error Mask (0x%X)\n", error_mask);
672
673         local_irq_save(flags);
674         /* write ECC corrupted data out. */
675         for (i = 0; i < (priv->trig_alloc_sz / sizeof(*ptemp)); i++) {
676                 /* Read data so we're in the correct state */
677                 rmb();
678                 if (READ_ONCE(ptemp[i]))
679                         result = -1;
680                 /* Toggle Error bit (it is latched), leave ECC enabled */
681                 writel(error_mask, (drvdata->base + priv->set_err_ofst));
682                 writel(priv->ecc_enable_mask, (drvdata->base +
683                                                priv->set_err_ofst));
684                 ptemp[i] = i;
685         }
686         /* Ensure it has been written out */
687         wmb();
688         local_irq_restore(flags);
689
690         if (result)
691                 edac_printk(KERN_ERR, EDAC_DEVICE, "Mem Not Cleared\n");
692
693         /* Read out written data. ECC error caused here */
694         for (i = 0; i < ALTR_TRIGGER_READ_WRD_CNT; i++)
695                 if (READ_ONCE(ptemp[i]) != i)
696                         edac_printk(KERN_ERR, EDAC_DEVICE,
697                                     "Read doesn't match written data\n");
698
699         if (priv->free_mem)
700                 priv->free_mem(ptemp, priv->trig_alloc_sz, generic_ptr);
701
702         return count;
703 }
704
705 static const struct file_operations altr_edac_device_inject_fops = {
706         .open = simple_open,
707         .write = altr_edac_device_trig,
708         .llseek = generic_file_llseek,
709 };
710
711 static ssize_t altr_edac_a10_device_trig(struct file *file,
712                                          const char __user *user_buf,
713                                          size_t count, loff_t *ppos);
714
715 static const struct file_operations altr_edac_a10_device_inject_fops = {
716         .open = simple_open,
717         .write = altr_edac_a10_device_trig,
718         .llseek = generic_file_llseek,
719 };
720
721 static ssize_t altr_edac_a10_device_trig2(struct file *file,
722                                           const char __user *user_buf,
723                                           size_t count, loff_t *ppos);
724
725 static const struct file_operations altr_edac_a10_device_inject2_fops = {
726         .open = simple_open,
727         .write = altr_edac_a10_device_trig2,
728         .llseek = generic_file_llseek,
729 };
730
731 static void altr_create_edacdev_dbgfs(struct edac_device_ctl_info *edac_dci,
732                                       const struct edac_device_prv_data *priv)
733 {
734         struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
735
736         if (!IS_ENABLED(CONFIG_EDAC_DEBUG))
737                 return;
738
739         drvdata->debugfs_dir = edac_debugfs_create_dir(drvdata->edac_dev_name);
740         if (!drvdata->debugfs_dir)
741                 return;
742
743         if (!edac_debugfs_create_file("altr_trigger", S_IWUSR,
744                                       drvdata->debugfs_dir, edac_dci,
745                                       priv->inject_fops))
746                 debugfs_remove_recursive(drvdata->debugfs_dir);
747 }
748
749 static const struct of_device_id altr_edac_device_of_match[] = {
750 #ifdef CONFIG_EDAC_ALTERA_L2C
751         { .compatible = "altr,socfpga-l2-ecc", .data = &l2ecc_data },
752 #endif
753 #ifdef CONFIG_EDAC_ALTERA_OCRAM
754         { .compatible = "altr,socfpga-ocram-ecc", .data = &ocramecc_data },
755 #endif
756         {},
757 };
758 MODULE_DEVICE_TABLE(of, altr_edac_device_of_match);
759
760 /*
761  * altr_edac_device_probe()
762  *      This is a generic EDAC device driver that will support
763  *      various Altera memory devices such as the L2 cache ECC and
764  *      OCRAM ECC as well as the memories for other peripherals.
765  *      Module specific initialization is done by passing the
766  *      function index in the device tree.
767  */
768 static int altr_edac_device_probe(struct platform_device *pdev)
769 {
770         struct edac_device_ctl_info *dci;
771         struct altr_edac_device_dev *drvdata;
772         struct resource *r;
773         int res = 0;
774         struct device_node *np = pdev->dev.of_node;
775         char *ecc_name = (char *)np->name;
776         static int dev_instance;
777
778         if (!devres_open_group(&pdev->dev, NULL, GFP_KERNEL)) {
779                 edac_printk(KERN_ERR, EDAC_DEVICE,
780                             "Unable to open devm\n");
781                 return -ENOMEM;
782         }
783
784         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
785         if (!r) {
786                 edac_printk(KERN_ERR, EDAC_DEVICE,
787                             "Unable to get mem resource\n");
788                 res = -ENODEV;
789                 goto fail;
790         }
791
792         if (!devm_request_mem_region(&pdev->dev, r->start, resource_size(r),
793                                      dev_name(&pdev->dev))) {
794                 edac_printk(KERN_ERR, EDAC_DEVICE,
795                             "%s:Error requesting mem region\n", ecc_name);
796                 res = -EBUSY;
797                 goto fail;
798         }
799
800         dci = edac_device_alloc_ctl_info(sizeof(*drvdata), ecc_name,
801                                          1, ecc_name, 1, 0, NULL, 0,
802                                          dev_instance++);
803
804         if (!dci) {
805                 edac_printk(KERN_ERR, EDAC_DEVICE,
806                             "%s: Unable to allocate EDAC device\n", ecc_name);
807                 res = -ENOMEM;
808                 goto fail;
809         }
810
811         drvdata = dci->pvt_info;
812         dci->dev = &pdev->dev;
813         platform_set_drvdata(pdev, dci);
814         drvdata->edac_dev_name = ecc_name;
815
816         drvdata->base = devm_ioremap(&pdev->dev, r->start, resource_size(r));
817         if (!drvdata->base) {
818                 res = -ENOMEM;
819                 goto fail1;
820         }
821
822         /* Get driver specific data for this EDAC device */
823         drvdata->data = of_match_node(altr_edac_device_of_match, np)->data;
824
825         /* Check specific dependencies for the module */
826         if (drvdata->data->setup) {
827                 res = drvdata->data->setup(drvdata);
828                 if (res)
829                         goto fail1;
830         }
831
832         drvdata->sb_irq = platform_get_irq(pdev, 0);
833         res = devm_request_irq(&pdev->dev, drvdata->sb_irq,
834                                altr_edac_device_handler,
835                                0, dev_name(&pdev->dev), dci);
836         if (res)
837                 goto fail1;
838
839         drvdata->db_irq = platform_get_irq(pdev, 1);
840         res = devm_request_irq(&pdev->dev, drvdata->db_irq,
841                                altr_edac_device_handler,
842                                0, dev_name(&pdev->dev), dci);
843         if (res)
844                 goto fail1;
845
846         dci->mod_name = "Altera ECC Manager";
847         dci->dev_name = drvdata->edac_dev_name;
848
849         res = edac_device_add_device(dci);
850         if (res)
851                 goto fail1;
852
853         altr_create_edacdev_dbgfs(dci, drvdata->data);
854
855         devres_close_group(&pdev->dev, NULL);
856
857         return 0;
858
859 fail1:
860         edac_device_free_ctl_info(dci);
861 fail:
862         devres_release_group(&pdev->dev, NULL);
863         edac_printk(KERN_ERR, EDAC_DEVICE,
864                     "%s:Error setting up EDAC device: %d\n", ecc_name, res);
865
866         return res;
867 }
868
869 static int altr_edac_device_remove(struct platform_device *pdev)
870 {
871         struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
872         struct altr_edac_device_dev *drvdata = dci->pvt_info;
873
874         debugfs_remove_recursive(drvdata->debugfs_dir);
875         edac_device_del_device(&pdev->dev);
876         edac_device_free_ctl_info(dci);
877
878         return 0;
879 }
880
881 static struct platform_driver altr_edac_device_driver = {
882         .probe =  altr_edac_device_probe,
883         .remove = altr_edac_device_remove,
884         .driver = {
885                 .name = "altr_edac_device",
886                 .of_match_table = altr_edac_device_of_match,
887         },
888 };
889 module_platform_driver(altr_edac_device_driver);
890
891 /******************* Arria10 Device ECC Shared Functions *****************/
892
893 /*
894  *  Test for memory's ECC dependencies upon entry because platform specific
895  *  startup should have initialized the memory and enabled the ECC.
896  *  Can't turn on ECC here because accessing un-initialized memory will
897  *  cause CE/UE errors possibly causing an ABORT.
898  */
899 static int __maybe_unused
900 altr_check_ecc_deps(struct altr_edac_device_dev *device)
901 {
902         void __iomem  *base = device->base;
903         const struct edac_device_prv_data *prv = device->data;
904
905         if (readl(base + prv->ecc_en_ofst) & prv->ecc_enable_mask)
906                 return 0;
907
908         edac_printk(KERN_ERR, EDAC_DEVICE,
909                     "%s: No ECC present or ECC disabled.\n",
910                     device->edac_dev_name);
911         return -ENODEV;
912 }
913
914 static irqreturn_t __maybe_unused altr_edac_a10_ecc_irq(int irq, void *dev_id)
915 {
916         struct altr_edac_device_dev *dci = dev_id;
917         void __iomem  *base = dci->base;
918
919         if (irq == dci->sb_irq) {
920                 writel(ALTR_A10_ECC_SERRPENA,
921                        base + ALTR_A10_ECC_INTSTAT_OFST);
922                 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
923
924                 return IRQ_HANDLED;
925         } else if (irq == dci->db_irq) {
926                 writel(ALTR_A10_ECC_DERRPENA,
927                        base + ALTR_A10_ECC_INTSTAT_OFST);
928                 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
929                 if (dci->data->panic)
930                         panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
931
932                 return IRQ_HANDLED;
933         }
934
935         WARN_ON(1);
936
937         return IRQ_NONE;
938 }
939
940 /******************* Arria10 Memory Buffer Functions *********************/
941
942 static inline int a10_get_irq_mask(struct device_node *np)
943 {
944         int irq;
945         const u32 *handle = of_get_property(np, "interrupts", NULL);
946
947         if (!handle)
948                 return -ENODEV;
949         irq = be32_to_cpup(handle);
950         return irq;
951 }
952
953 static inline void ecc_set_bits(u32 bit_mask, void __iomem *ioaddr)
954 {
955         u32 value = readl(ioaddr);
956
957         value |= bit_mask;
958         writel(value, ioaddr);
959 }
960
961 static inline void ecc_clear_bits(u32 bit_mask, void __iomem *ioaddr)
962 {
963         u32 value = readl(ioaddr);
964
965         value &= ~bit_mask;
966         writel(value, ioaddr);
967 }
968
969 static inline int ecc_test_bits(u32 bit_mask, void __iomem *ioaddr)
970 {
971         u32 value = readl(ioaddr);
972
973         return (value & bit_mask) ? 1 : 0;
974 }
975
976 /*
977  * This function uses the memory initialization block in the Arria10 ECC
978  * controller to initialize/clear the entire memory data and ECC data.
979  */
980 static int __maybe_unused altr_init_memory_port(void __iomem *ioaddr, int port)
981 {
982         int limit = ALTR_A10_ECC_INIT_WATCHDOG_10US;
983         u32 init_mask, stat_mask, clear_mask;
984         int ret = 0;
985
986         if (port) {
987                 init_mask = ALTR_A10_ECC_INITB;
988                 stat_mask = ALTR_A10_ECC_INITCOMPLETEB;
989                 clear_mask = ALTR_A10_ECC_ERRPENB_MASK;
990         } else {
991                 init_mask = ALTR_A10_ECC_INITA;
992                 stat_mask = ALTR_A10_ECC_INITCOMPLETEA;
993                 clear_mask = ALTR_A10_ECC_ERRPENA_MASK;
994         }
995
996         ecc_set_bits(init_mask, (ioaddr + ALTR_A10_ECC_CTRL_OFST));
997         while (limit--) {
998                 if (ecc_test_bits(stat_mask,
999                                   (ioaddr + ALTR_A10_ECC_INITSTAT_OFST)))
1000                         break;
1001                 udelay(1);
1002         }
1003         if (limit < 0)
1004                 ret = -EBUSY;
1005
1006         /* Clear any pending ECC interrupts */
1007         writel(clear_mask, (ioaddr + ALTR_A10_ECC_INTSTAT_OFST));
1008
1009         return ret;
1010 }
1011
1012 static int socfpga_is_a10(void)
1013 {
1014         return of_machine_is_compatible("altr,socfpga-arria10");
1015 }
1016
1017 static int socfpga_is_s10(void)
1018 {
1019         return of_machine_is_compatible("altr,socfpga-stratix10");
1020 }
1021
1022 static __init int __maybe_unused
1023 altr_init_a10_ecc_block(struct device_node *np, u32 irq_mask,
1024                         u32 ecc_ctrl_en_mask, bool dual_port)
1025 {
1026         int ret = 0;
1027         void __iomem *ecc_block_base;
1028         struct regmap *ecc_mgr_map;
1029         char *ecc_name;
1030         struct device_node *np_eccmgr;
1031
1032         ecc_name = (char *)np->name;
1033
1034         /* Get the ECC Manager - parent of the device EDACs */
1035         np_eccmgr = of_get_parent(np);
1036
1037         if (socfpga_is_a10()) {
1038                 ecc_mgr_map = syscon_regmap_lookup_by_phandle(np_eccmgr,
1039                                                               "altr,sysmgr-syscon");
1040         } else {
1041                 struct device_node *sysmgr_np;
1042                 struct resource res;
1043                 uintptr_t base;
1044
1045                 sysmgr_np = of_parse_phandle(np_eccmgr,
1046                                              "altr,sysmgr-syscon", 0);
1047                 if (!sysmgr_np) {
1048                         edac_printk(KERN_ERR, EDAC_DEVICE,
1049                                     "Unable to find altr,sysmgr-syscon\n");
1050                         return -ENODEV;
1051                 }
1052
1053                 if (of_address_to_resource(sysmgr_np, 0, &res)) {
1054                         of_node_put(sysmgr_np);
1055                         return -ENOMEM;
1056                 }
1057
1058                 /* Need physical address for SMCC call */
1059                 base = res.start;
1060
1061                 ecc_mgr_map = regmap_init(NULL, NULL, (void *)base,
1062                                           &s10_sdram_regmap_cfg);
1063                 of_node_put(sysmgr_np);
1064         }
1065         of_node_put(np_eccmgr);
1066         if (IS_ERR(ecc_mgr_map)) {
1067                 edac_printk(KERN_ERR, EDAC_DEVICE,
1068                             "Unable to get syscon altr,sysmgr-syscon\n");
1069                 return -ENODEV;
1070         }
1071
1072         /* Map the ECC Block */
1073         ecc_block_base = of_iomap(np, 0);
1074         if (!ecc_block_base) {
1075                 edac_printk(KERN_ERR, EDAC_DEVICE,
1076                             "Unable to map %s ECC block\n", ecc_name);
1077                 return -ENODEV;
1078         }
1079
1080         /* Disable ECC */
1081         regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST, irq_mask);
1082         writel(ALTR_A10_ECC_SERRINTEN,
1083                (ecc_block_base + ALTR_A10_ECC_ERRINTENR_OFST));
1084         ecc_clear_bits(ecc_ctrl_en_mask,
1085                        (ecc_block_base + ALTR_A10_ECC_CTRL_OFST));
1086         /* Ensure all writes complete */
1087         wmb();
1088         /* Use HW initialization block to initialize memory for ECC */
1089         ret = altr_init_memory_port(ecc_block_base, 0);
1090         if (ret) {
1091                 edac_printk(KERN_ERR, EDAC_DEVICE,
1092                             "ECC: cannot init %s PORTA memory\n", ecc_name);
1093                 goto out;
1094         }
1095
1096         if (dual_port) {
1097                 ret = altr_init_memory_port(ecc_block_base, 1);
1098                 if (ret) {
1099                         edac_printk(KERN_ERR, EDAC_DEVICE,
1100                                     "ECC: cannot init %s PORTB memory\n",
1101                                     ecc_name);
1102                         goto out;
1103                 }
1104         }
1105
1106         /* Interrupt mode set to every SBERR */
1107         regmap_write(ecc_mgr_map, ALTR_A10_ECC_INTMODE_OFST,
1108                      ALTR_A10_ECC_INTMODE);
1109         /* Enable ECC */
1110         ecc_set_bits(ecc_ctrl_en_mask, (ecc_block_base +
1111                                         ALTR_A10_ECC_CTRL_OFST));
1112         writel(ALTR_A10_ECC_SERRINTEN,
1113                (ecc_block_base + ALTR_A10_ECC_ERRINTENS_OFST));
1114         regmap_write(ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST, irq_mask);
1115         /* Ensure all writes complete */
1116         wmb();
1117 out:
1118         iounmap(ecc_block_base);
1119         return ret;
1120 }
1121
1122 static int validate_parent_available(struct device_node *np);
1123 static const struct of_device_id altr_edac_a10_device_of_match[];
1124 static int __init __maybe_unused altr_init_a10_ecc_device_type(char *compat)
1125 {
1126         int irq;
1127         struct device_node *child, *np;
1128
1129         if (!socfpga_is_a10() && !socfpga_is_s10())
1130                 return -ENODEV;
1131
1132         np = of_find_compatible_node(NULL, NULL,
1133                                      "altr,socfpga-a10-ecc-manager");
1134         if (!np) {
1135                 edac_printk(KERN_ERR, EDAC_DEVICE, "ECC Manager not found\n");
1136                 return -ENODEV;
1137         }
1138
1139         for_each_child_of_node(np, child) {
1140                 const struct of_device_id *pdev_id;
1141                 const struct edac_device_prv_data *prv;
1142
1143                 if (!of_device_is_available(child))
1144                         continue;
1145                 if (!of_device_is_compatible(child, compat))
1146                         continue;
1147
1148                 if (validate_parent_available(child))
1149                         continue;
1150
1151                 irq = a10_get_irq_mask(child);
1152                 if (irq < 0)
1153                         continue;
1154
1155                 /* Get matching node and check for valid result */
1156                 pdev_id = of_match_node(altr_edac_a10_device_of_match, child);
1157                 if (IS_ERR_OR_NULL(pdev_id))
1158                         continue;
1159
1160                 /* Validate private data pointer before dereferencing */
1161                 prv = pdev_id->data;
1162                 if (!prv)
1163                         continue;
1164
1165                 altr_init_a10_ecc_block(child, BIT(irq),
1166                                         prv->ecc_enable_mask, 0);
1167         }
1168
1169         of_node_put(np);
1170         return 0;
1171 }
1172
1173 /*********************** OCRAM EDAC Device Functions *********************/
1174
1175 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1176
1177 static void *ocram_alloc_mem(size_t size, void **other)
1178 {
1179         struct device_node *np;
1180         struct gen_pool *gp;
1181         void *sram_addr;
1182
1183         np = of_find_compatible_node(NULL, NULL, "altr,socfpga-ocram-ecc");
1184         if (!np)
1185                 return NULL;
1186
1187         gp = of_gen_pool_get(np, "iram", 0);
1188         of_node_put(np);
1189         if (!gp)
1190                 return NULL;
1191
1192         sram_addr = (void *)gen_pool_alloc(gp, size);
1193         if (!sram_addr)
1194                 return NULL;
1195
1196         memset(sram_addr, 0, size);
1197         /* Ensure data is written out */
1198         wmb();
1199
1200         /* Remember this handle for freeing  later */
1201         *other = gp;
1202
1203         return sram_addr;
1204 }
1205
1206 static void ocram_free_mem(void *p, size_t size, void *other)
1207 {
1208         gen_pool_free((struct gen_pool *)other, (unsigned long)p, size);
1209 }
1210
1211 static const struct edac_device_prv_data ocramecc_data = {
1212         .setup = altr_check_ecc_deps,
1213         .ce_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_SERR),
1214         .ue_clear_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_DERR),
1215         .alloc_mem = ocram_alloc_mem,
1216         .free_mem = ocram_free_mem,
1217         .ecc_enable_mask = ALTR_OCR_ECC_EN,
1218         .ecc_en_ofst = ALTR_OCR_ECC_REG_OFFSET,
1219         .ce_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJS),
1220         .ue_set_mask = (ALTR_OCR_ECC_EN | ALTR_OCR_ECC_INJD),
1221         .set_err_ofst = ALTR_OCR_ECC_REG_OFFSET,
1222         .trig_alloc_sz = ALTR_TRIG_OCRAM_BYTE_SIZE,
1223         .inject_fops = &altr_edac_device_inject_fops,
1224 };
1225
1226 static int __maybe_unused
1227 altr_check_ocram_deps_init(struct altr_edac_device_dev *device)
1228 {
1229         void __iomem  *base = device->base;
1230         int ret;
1231
1232         ret = altr_check_ecc_deps(device);
1233         if (ret)
1234                 return ret;
1235
1236         /* Verify OCRAM has been initialized */
1237         if (!ecc_test_bits(ALTR_A10_ECC_INITCOMPLETEA,
1238                            (base + ALTR_A10_ECC_INITSTAT_OFST)))
1239                 return -ENODEV;
1240
1241         /* Enable IRQ on Single Bit Error */
1242         writel(ALTR_A10_ECC_SERRINTEN, (base + ALTR_A10_ECC_ERRINTENS_OFST));
1243         /* Ensure all writes complete */
1244         wmb();
1245
1246         return 0;
1247 }
1248
1249 static const struct edac_device_prv_data a10_ocramecc_data = {
1250         .setup = altr_check_ocram_deps_init,
1251         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1252         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1253         .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_OCRAM,
1254         .ecc_enable_mask = ALTR_A10_OCRAM_ECC_EN_CTL,
1255         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1256         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1257         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1258         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1259         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1260         .inject_fops = &altr_edac_a10_device_inject2_fops,
1261         /*
1262          * OCRAM panic on uncorrectable error because sleep/resume
1263          * functions and FPGA contents are stored in OCRAM. Prefer
1264          * a kernel panic over executing/loading corrupted data.
1265          */
1266         .panic = true,
1267 };
1268
1269 #endif  /* CONFIG_EDAC_ALTERA_OCRAM */
1270
1271 /********************* L2 Cache EDAC Device Functions ********************/
1272
1273 #ifdef CONFIG_EDAC_ALTERA_L2C
1274
1275 static void *l2_alloc_mem(size_t size, void **other)
1276 {
1277         struct device *dev = *other;
1278         void *ptemp = devm_kzalloc(dev, size, GFP_KERNEL);
1279
1280         if (!ptemp)
1281                 return NULL;
1282
1283         /* Make sure everything is written out */
1284         wmb();
1285
1286         /*
1287          * Clean all cache levels up to LoC (includes L2)
1288          * This ensures the corrupted data is written into
1289          * L2 cache for readback test (which causes ECC error).
1290          */
1291         flush_cache_all();
1292
1293         return ptemp;
1294 }
1295
1296 static void l2_free_mem(void *p, size_t size, void *other)
1297 {
1298         struct device *dev = other;
1299
1300         if (dev && p)
1301                 devm_kfree(dev, p);
1302 }
1303
1304 /*
1305  * altr_l2_check_deps()
1306  *      Test for L2 cache ECC dependencies upon entry because
1307  *      platform specific startup should have initialized the L2
1308  *      memory and enabled the ECC.
1309  *      Bail if ECC is not enabled.
1310  *      Note that L2 Cache Enable is forced at build time.
1311  */
1312 static int altr_l2_check_deps(struct altr_edac_device_dev *device)
1313 {
1314         void __iomem *base = device->base;
1315         const struct edac_device_prv_data *prv = device->data;
1316
1317         if ((readl(base) & prv->ecc_enable_mask) ==
1318              prv->ecc_enable_mask)
1319                 return 0;
1320
1321         edac_printk(KERN_ERR, EDAC_DEVICE,
1322                     "L2: No ECC present, or ECC disabled\n");
1323         return -ENODEV;
1324 }
1325
1326 static irqreturn_t altr_edac_a10_l2_irq(int irq, void *dev_id)
1327 {
1328         struct altr_edac_device_dev *dci = dev_id;
1329
1330         if (irq == dci->sb_irq) {
1331                 regmap_write(dci->edac->ecc_mgr_map,
1332                              A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1333                              A10_SYSGMR_MPU_CLEAR_L2_ECC_SB);
1334                 edac_device_handle_ce(dci->edac_dev, 0, 0, dci->edac_dev_name);
1335
1336                 return IRQ_HANDLED;
1337         } else if (irq == dci->db_irq) {
1338                 regmap_write(dci->edac->ecc_mgr_map,
1339                              A10_SYSGMR_MPU_CLEAR_L2_ECC_OFST,
1340                              A10_SYSGMR_MPU_CLEAR_L2_ECC_MB);
1341                 edac_device_handle_ue(dci->edac_dev, 0, 0, dci->edac_dev_name);
1342                 panic("\nEDAC:ECC_DEVICE[Uncorrectable errors]\n");
1343
1344                 return IRQ_HANDLED;
1345         }
1346
1347         WARN_ON(1);
1348
1349         return IRQ_NONE;
1350 }
1351
1352 static const struct edac_device_prv_data l2ecc_data = {
1353         .setup = altr_l2_check_deps,
1354         .ce_clear_mask = 0,
1355         .ue_clear_mask = 0,
1356         .alloc_mem = l2_alloc_mem,
1357         .free_mem = l2_free_mem,
1358         .ecc_enable_mask = ALTR_L2_ECC_EN,
1359         .ce_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJS),
1360         .ue_set_mask = (ALTR_L2_ECC_EN | ALTR_L2_ECC_INJD),
1361         .set_err_ofst = ALTR_L2_ECC_REG_OFFSET,
1362         .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1363         .inject_fops = &altr_edac_device_inject_fops,
1364 };
1365
1366 static const struct edac_device_prv_data a10_l2ecc_data = {
1367         .setup = altr_l2_check_deps,
1368         .ce_clear_mask = ALTR_A10_L2_ECC_SERR_CLR,
1369         .ue_clear_mask = ALTR_A10_L2_ECC_MERR_CLR,
1370         .irq_status_mask = A10_SYSMGR_ECC_INTSTAT_L2,
1371         .alloc_mem = l2_alloc_mem,
1372         .free_mem = l2_free_mem,
1373         .ecc_enable_mask = ALTR_A10_L2_ECC_EN_CTL,
1374         .ce_set_mask = ALTR_A10_L2_ECC_CE_INJ_MASK,
1375         .ue_set_mask = ALTR_A10_L2_ECC_UE_INJ_MASK,
1376         .set_err_ofst = ALTR_A10_L2_ECC_INJ_OFST,
1377         .ecc_irq_handler = altr_edac_a10_l2_irq,
1378         .trig_alloc_sz = ALTR_TRIG_L2C_BYTE_SIZE,
1379         .inject_fops = &altr_edac_device_inject_fops,
1380 };
1381
1382 #endif  /* CONFIG_EDAC_ALTERA_L2C */
1383
1384 /********************* Ethernet Device Functions ********************/
1385
1386 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1387
1388 static int __init socfpga_init_ethernet_ecc(struct altr_edac_device_dev *dev)
1389 {
1390         int ret;
1391
1392         ret = altr_init_a10_ecc_device_type("altr,socfpga-eth-mac-ecc");
1393         if (ret)
1394                 return ret;
1395
1396         return altr_check_ecc_deps(dev);
1397 }
1398
1399 static const struct edac_device_prv_data a10_enetecc_data = {
1400         .setup = socfpga_init_ethernet_ecc,
1401         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1402         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1403         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1404         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1405         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1406         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1407         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1408         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1409         .inject_fops = &altr_edac_a10_device_inject2_fops,
1410 };
1411
1412 #endif  /* CONFIG_EDAC_ALTERA_ETHERNET */
1413
1414 /********************** NAND Device Functions **********************/
1415
1416 #ifdef CONFIG_EDAC_ALTERA_NAND
1417
1418 static int __init socfpga_init_nand_ecc(struct altr_edac_device_dev *device)
1419 {
1420         int ret;
1421
1422         ret = altr_init_a10_ecc_device_type("altr,socfpga-nand-ecc");
1423         if (ret)
1424                 return ret;
1425
1426         return altr_check_ecc_deps(device);
1427 }
1428
1429 static const struct edac_device_prv_data a10_nandecc_data = {
1430         .setup = socfpga_init_nand_ecc,
1431         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1432         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1433         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1434         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1435         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1436         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1437         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1438         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1439         .inject_fops = &altr_edac_a10_device_inject_fops,
1440 };
1441
1442 #endif  /* CONFIG_EDAC_ALTERA_NAND */
1443
1444 /********************** DMA Device Functions **********************/
1445
1446 #ifdef CONFIG_EDAC_ALTERA_DMA
1447
1448 static int __init socfpga_init_dma_ecc(struct altr_edac_device_dev *device)
1449 {
1450         int ret;
1451
1452         ret = altr_init_a10_ecc_device_type("altr,socfpga-dma-ecc");
1453         if (ret)
1454                 return ret;
1455
1456         return altr_check_ecc_deps(device);
1457 }
1458
1459 static const struct edac_device_prv_data a10_dmaecc_data = {
1460         .setup = socfpga_init_dma_ecc,
1461         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1462         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1463         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1464         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1465         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1466         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1467         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1468         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1469         .inject_fops = &altr_edac_a10_device_inject_fops,
1470 };
1471
1472 #endif  /* CONFIG_EDAC_ALTERA_DMA */
1473
1474 /********************** USB Device Functions **********************/
1475
1476 #ifdef CONFIG_EDAC_ALTERA_USB
1477
1478 static int __init socfpga_init_usb_ecc(struct altr_edac_device_dev *device)
1479 {
1480         int ret;
1481
1482         ret = altr_init_a10_ecc_device_type("altr,socfpga-usb-ecc");
1483         if (ret)
1484                 return ret;
1485
1486         return altr_check_ecc_deps(device);
1487 }
1488
1489 static const struct edac_device_prv_data a10_usbecc_data = {
1490         .setup = socfpga_init_usb_ecc,
1491         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1492         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1493         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1494         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1495         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1496         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1497         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1498         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1499         .inject_fops = &altr_edac_a10_device_inject2_fops,
1500 };
1501
1502 #endif  /* CONFIG_EDAC_ALTERA_USB */
1503
1504 /********************** QSPI Device Functions **********************/
1505
1506 #ifdef CONFIG_EDAC_ALTERA_QSPI
1507
1508 static int __init socfpga_init_qspi_ecc(struct altr_edac_device_dev *device)
1509 {
1510         int ret;
1511
1512         ret = altr_init_a10_ecc_device_type("altr,socfpga-qspi-ecc");
1513         if (ret)
1514                 return ret;
1515
1516         return altr_check_ecc_deps(device);
1517 }
1518
1519 static const struct edac_device_prv_data a10_qspiecc_data = {
1520         .setup = socfpga_init_qspi_ecc,
1521         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1522         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1523         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1524         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1525         .ce_set_mask = ALTR_A10_ECC_TSERRA,
1526         .ue_set_mask = ALTR_A10_ECC_TDERRA,
1527         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1528         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1529         .inject_fops = &altr_edac_a10_device_inject_fops,
1530 };
1531
1532 #endif  /* CONFIG_EDAC_ALTERA_QSPI */
1533
1534 /********************* SDMMC Device Functions **********************/
1535
1536 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1537
1538 static const struct edac_device_prv_data a10_sdmmceccb_data;
1539 static int altr_portb_setup(struct altr_edac_device_dev *device)
1540 {
1541         struct edac_device_ctl_info *dci;
1542         struct altr_edac_device_dev *altdev;
1543         char *ecc_name = "sdmmcb-ecc";
1544         int edac_idx, rc;
1545         struct device_node *np;
1546         const struct edac_device_prv_data *prv = &a10_sdmmceccb_data;
1547
1548         rc = altr_check_ecc_deps(device);
1549         if (rc)
1550                 return rc;
1551
1552         np = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1553         if (!np) {
1554                 edac_printk(KERN_WARNING, EDAC_DEVICE, "SDMMC node not found\n");
1555                 return -ENODEV;
1556         }
1557
1558         /* Create the PortB EDAC device */
1559         edac_idx = edac_device_alloc_index();
1560         dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name, 1,
1561                                          ecc_name, 1, 0, NULL, 0, edac_idx);
1562         if (!dci) {
1563                 edac_printk(KERN_ERR, EDAC_DEVICE,
1564                             "%s: Unable to allocate PortB EDAC device\n",
1565                             ecc_name);
1566                 return -ENOMEM;
1567         }
1568
1569         /* Initialize the PortB EDAC device structure from PortA structure */
1570         altdev = dci->pvt_info;
1571         *altdev = *device;
1572
1573         if (!devres_open_group(&altdev->ddev, altr_portb_setup, GFP_KERNEL))
1574                 return -ENOMEM;
1575
1576         /* Update PortB specific values */
1577         altdev->edac_dev_name = ecc_name;
1578         altdev->edac_idx = edac_idx;
1579         altdev->edac_dev = dci;
1580         altdev->data = prv;
1581         dci->dev = &altdev->ddev;
1582         dci->ctl_name = "Altera ECC Manager";
1583         dci->mod_name = ecc_name;
1584         dci->dev_name = ecc_name;
1585
1586         /* Update the PortB IRQs - A10 has 4, S10 has 2, Index accordingly */
1587 #ifdef CONFIG_ARCH_STRATIX10
1588         altdev->sb_irq = irq_of_parse_and_map(np, 1);
1589 #else
1590         altdev->sb_irq = irq_of_parse_and_map(np, 2);
1591 #endif
1592         if (!altdev->sb_irq) {
1593                 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB SBIRQ alloc\n");
1594                 rc = -ENODEV;
1595                 goto err_release_group_1;
1596         }
1597         rc = devm_request_irq(&altdev->ddev, altdev->sb_irq,
1598                               prv->ecc_irq_handler,
1599                               IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1600                               ecc_name, altdev);
1601         if (rc) {
1602                 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB SBERR IRQ error\n");
1603                 goto err_release_group_1;
1604         }
1605
1606 #ifdef CONFIG_ARCH_STRATIX10
1607         /* Use IRQ to determine SError origin instead of assigning IRQ */
1608         rc = of_property_read_u32_index(np, "interrupts", 1, &altdev->db_irq);
1609         if (rc) {
1610                 edac_printk(KERN_ERR, EDAC_DEVICE,
1611                             "Error PortB DBIRQ alloc\n");
1612                 goto err_release_group_1;
1613         }
1614 #else
1615         altdev->db_irq = irq_of_parse_and_map(np, 3);
1616         if (!altdev->db_irq) {
1617                 edac_printk(KERN_ERR, EDAC_DEVICE, "Error PortB DBIRQ alloc\n");
1618                 rc = -ENODEV;
1619                 goto err_release_group_1;
1620         }
1621         rc = devm_request_irq(&altdev->ddev, altdev->db_irq,
1622                               prv->ecc_irq_handler,
1623                               IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1624                               ecc_name, altdev);
1625         if (rc) {
1626                 edac_printk(KERN_ERR, EDAC_DEVICE, "PortB DBERR IRQ error\n");
1627                 goto err_release_group_1;
1628         }
1629 #endif
1630
1631         rc = edac_device_add_device(dci);
1632         if (rc) {
1633                 edac_printk(KERN_ERR, EDAC_DEVICE,
1634                             "edac_device_add_device portB failed\n");
1635                 rc = -ENOMEM;
1636                 goto err_release_group_1;
1637         }
1638         altr_create_edacdev_dbgfs(dci, prv);
1639
1640         list_add(&altdev->next, &altdev->edac->a10_ecc_devices);
1641
1642         devres_remove_group(&altdev->ddev, altr_portb_setup);
1643
1644         return 0;
1645
1646 err_release_group_1:
1647         edac_device_free_ctl_info(dci);
1648         devres_release_group(&altdev->ddev, altr_portb_setup);
1649         edac_printk(KERN_ERR, EDAC_DEVICE,
1650                     "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
1651         return rc;
1652 }
1653
1654 static int __init socfpga_init_sdmmc_ecc(struct altr_edac_device_dev *device)
1655 {
1656         int rc = -ENODEV;
1657         struct device_node *child;
1658
1659         child = of_find_compatible_node(NULL, NULL, "altr,socfpga-sdmmc-ecc");
1660         if (!child)
1661                 return -ENODEV;
1662
1663         if (!of_device_is_available(child))
1664                 goto exit;
1665
1666         if (validate_parent_available(child))
1667                 goto exit;
1668
1669         /* Init portB */
1670         rc = altr_init_a10_ecc_block(child, ALTR_A10_SDMMC_IRQ_MASK,
1671                                      a10_sdmmceccb_data.ecc_enable_mask, 1);
1672         if (rc)
1673                 goto exit;
1674
1675         /* Setup portB */
1676         return altr_portb_setup(device);
1677
1678 exit:
1679         of_node_put(child);
1680         return rc;
1681 }
1682
1683 static irqreturn_t altr_edac_a10_ecc_irq_portb(int irq, void *dev_id)
1684 {
1685         struct altr_edac_device_dev *ad = dev_id;
1686         void __iomem  *base = ad->base;
1687         const struct edac_device_prv_data *priv = ad->data;
1688
1689         if (irq == ad->sb_irq) {
1690                 writel(priv->ce_clear_mask,
1691                        base + ALTR_A10_ECC_INTSTAT_OFST);
1692                 edac_device_handle_ce(ad->edac_dev, 0, 0, ad->edac_dev_name);
1693                 return IRQ_HANDLED;
1694         } else if (irq == ad->db_irq) {
1695                 writel(priv->ue_clear_mask,
1696                        base + ALTR_A10_ECC_INTSTAT_OFST);
1697                 edac_device_handle_ue(ad->edac_dev, 0, 0, ad->edac_dev_name);
1698                 return IRQ_HANDLED;
1699         }
1700
1701         WARN_ONCE(1, "Unhandled IRQ%d on Port B.", irq);
1702
1703         return IRQ_NONE;
1704 }
1705
1706 static const struct edac_device_prv_data a10_sdmmcecca_data = {
1707         .setup = socfpga_init_sdmmc_ecc,
1708         .ce_clear_mask = ALTR_A10_ECC_SERRPENA,
1709         .ue_clear_mask = ALTR_A10_ECC_DERRPENA,
1710         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1711         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1712         .ce_set_mask = ALTR_A10_ECC_SERRPENA,
1713         .ue_set_mask = ALTR_A10_ECC_DERRPENA,
1714         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1715         .ecc_irq_handler = altr_edac_a10_ecc_irq,
1716         .inject_fops = &altr_edac_a10_device_inject_fops,
1717 };
1718
1719 static const struct edac_device_prv_data a10_sdmmceccb_data = {
1720         .setup = socfpga_init_sdmmc_ecc,
1721         .ce_clear_mask = ALTR_A10_ECC_SERRPENB,
1722         .ue_clear_mask = ALTR_A10_ECC_DERRPENB,
1723         .ecc_enable_mask = ALTR_A10_COMMON_ECC_EN_CTL,
1724         .ecc_en_ofst = ALTR_A10_ECC_CTRL_OFST,
1725         .ce_set_mask = ALTR_A10_ECC_TSERRB,
1726         .ue_set_mask = ALTR_A10_ECC_TDERRB,
1727         .set_err_ofst = ALTR_A10_ECC_INTTEST_OFST,
1728         .ecc_irq_handler = altr_edac_a10_ecc_irq_portb,
1729         .inject_fops = &altr_edac_a10_device_inject_fops,
1730 };
1731
1732 #endif  /* CONFIG_EDAC_ALTERA_SDMMC */
1733
1734 /********************* Arria10 EDAC Device Functions *************************/
1735 static const struct of_device_id altr_edac_a10_device_of_match[] = {
1736 #ifdef CONFIG_EDAC_ALTERA_L2C
1737         { .compatible = "altr,socfpga-a10-l2-ecc", .data = &a10_l2ecc_data },
1738 #endif
1739 #ifdef CONFIG_EDAC_ALTERA_OCRAM
1740         { .compatible = "altr,socfpga-a10-ocram-ecc",
1741           .data = &a10_ocramecc_data },
1742 #endif
1743 #ifdef CONFIG_EDAC_ALTERA_ETHERNET
1744         { .compatible = "altr,socfpga-eth-mac-ecc",
1745           .data = &a10_enetecc_data },
1746 #endif
1747 #ifdef CONFIG_EDAC_ALTERA_NAND
1748         { .compatible = "altr,socfpga-nand-ecc", .data = &a10_nandecc_data },
1749 #endif
1750 #ifdef CONFIG_EDAC_ALTERA_DMA
1751         { .compatible = "altr,socfpga-dma-ecc", .data = &a10_dmaecc_data },
1752 #endif
1753 #ifdef CONFIG_EDAC_ALTERA_USB
1754         { .compatible = "altr,socfpga-usb-ecc", .data = &a10_usbecc_data },
1755 #endif
1756 #ifdef CONFIG_EDAC_ALTERA_QSPI
1757         { .compatible = "altr,socfpga-qspi-ecc", .data = &a10_qspiecc_data },
1758 #endif
1759 #ifdef CONFIG_EDAC_ALTERA_SDMMC
1760         { .compatible = "altr,socfpga-sdmmc-ecc", .data = &a10_sdmmcecca_data },
1761 #endif
1762         {},
1763 };
1764 MODULE_DEVICE_TABLE(of, altr_edac_a10_device_of_match);
1765
1766 /*
1767  * The Arria10 EDAC Device Functions differ from the Cyclone5/Arria5
1768  * because 2 IRQs are shared among the all ECC peripherals. The ECC
1769  * manager manages the IRQs and the children.
1770  * Based on xgene_edac.c peripheral code.
1771  */
1772
1773 static ssize_t altr_edac_a10_device_trig(struct file *file,
1774                                          const char __user *user_buf,
1775                                          size_t count, loff_t *ppos)
1776 {
1777         struct edac_device_ctl_info *edac_dci = file->private_data;
1778         struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1779         const struct edac_device_prv_data *priv = drvdata->data;
1780         void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1781         unsigned long flags;
1782         u8 trig_type;
1783
1784         if (!user_buf || get_user(trig_type, user_buf))
1785                 return -EFAULT;
1786
1787         local_irq_save(flags);
1788         if (trig_type == ALTR_UE_TRIGGER_CHAR)
1789                 writel(priv->ue_set_mask, set_addr);
1790         else
1791                 writel(priv->ce_set_mask, set_addr);
1792
1793         /* Ensure the interrupt test bits are set */
1794         wmb();
1795         local_irq_restore(flags);
1796
1797         return count;
1798 }
1799
1800 /*
1801  * The Stratix10 EDAC Error Injection Functions differ from Arria10
1802  * slightly. A few Arria10 peripherals can use this injection function.
1803  * Inject the error into the memory and then readback to trigger the IRQ.
1804  */
1805 static ssize_t altr_edac_a10_device_trig2(struct file *file,
1806                                           const char __user *user_buf,
1807                                           size_t count, loff_t *ppos)
1808 {
1809         struct edac_device_ctl_info *edac_dci = file->private_data;
1810         struct altr_edac_device_dev *drvdata = edac_dci->pvt_info;
1811         const struct edac_device_prv_data *priv = drvdata->data;
1812         void __iomem *set_addr = (drvdata->base + priv->set_err_ofst);
1813         unsigned long flags;
1814         u8 trig_type;
1815
1816         if (!user_buf || get_user(trig_type, user_buf))
1817                 return -EFAULT;
1818
1819         local_irq_save(flags);
1820         if (trig_type == ALTR_UE_TRIGGER_CHAR) {
1821                 writel(priv->ue_set_mask, set_addr);
1822         } else {
1823                 /* Setup read/write of 4 bytes */
1824                 writel(ECC_WORD_WRITE, drvdata->base + ECC_BLK_DBYTECTRL_OFST);
1825                 /* Setup Address to 0 */
1826                 writel(0, drvdata->base + ECC_BLK_ADDRESS_OFST);
1827                 /* Setup accctrl to read & ecc & data override */
1828                 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1829                 /* Kick it. */
1830                 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1831                 /* Setup write for single bit change */
1832                 writel(readl(drvdata->base + ECC_BLK_RDATA0_OFST) ^ 0x1,
1833                        drvdata->base + ECC_BLK_WDATA0_OFST);
1834                 writel(readl(drvdata->base + ECC_BLK_RDATA1_OFST),
1835                        drvdata->base + ECC_BLK_WDATA1_OFST);
1836                 writel(readl(drvdata->base + ECC_BLK_RDATA2_OFST),
1837                        drvdata->base + ECC_BLK_WDATA2_OFST);
1838                 writel(readl(drvdata->base + ECC_BLK_RDATA3_OFST),
1839                        drvdata->base + ECC_BLK_WDATA3_OFST);
1840
1841                 /* Copy Read ECC to Write ECC */
1842                 writel(readl(drvdata->base + ECC_BLK_RECC0_OFST),
1843                        drvdata->base + ECC_BLK_WECC0_OFST);
1844                 writel(readl(drvdata->base + ECC_BLK_RECC1_OFST),
1845                        drvdata->base + ECC_BLK_WECC1_OFST);
1846                 /* Setup accctrl to write & ecc override & data override */
1847                 writel(ECC_WRITE_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1848                 /* Kick it. */
1849                 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1850                 /* Setup accctrl to read & ecc overwrite & data overwrite */
1851                 writel(ECC_READ_EDOVR, drvdata->base + ECC_BLK_ACCCTRL_OFST);
1852                 /* Kick it. */
1853                 writel(ECC_XACT_KICK, drvdata->base + ECC_BLK_STARTACC_OFST);
1854         }
1855
1856         /* Ensure the interrupt test bits are set */
1857         wmb();
1858         local_irq_restore(flags);
1859
1860         return count;
1861 }
1862
1863 static void altr_edac_a10_irq_handler(struct irq_desc *desc)
1864 {
1865         int dberr, bit, sm_offset, irq_status;
1866         struct altr_arria10_edac *edac = irq_desc_get_handler_data(desc);
1867         struct irq_chip *chip = irq_desc_get_chip(desc);
1868         int irq = irq_desc_get_irq(desc);
1869
1870         dberr = (irq == edac->db_irq) ? 1 : 0;
1871         sm_offset = dberr ? A10_SYSMGR_ECC_INTSTAT_DERR_OFST :
1872                             A10_SYSMGR_ECC_INTSTAT_SERR_OFST;
1873
1874         chained_irq_enter(chip, desc);
1875
1876         regmap_read(edac->ecc_mgr_map, sm_offset, &irq_status);
1877
1878         for_each_set_bit(bit, (unsigned long *)&irq_status, 32) {
1879                 irq = irq_linear_revmap(edac->domain, dberr * 32 + bit);
1880                 if (irq)
1881                         generic_handle_irq(irq);
1882         }
1883
1884         chained_irq_exit(chip, desc);
1885 }
1886
1887 static int validate_parent_available(struct device_node *np)
1888 {
1889         struct device_node *parent;
1890         int ret = 0;
1891
1892         /* Ensure parent device is enabled if parent node exists */
1893         parent = of_parse_phandle(np, "altr,ecc-parent", 0);
1894         if (parent && !of_device_is_available(parent))
1895                 ret = -ENODEV;
1896
1897         of_node_put(parent);
1898         return ret;
1899 }
1900
1901 static int altr_edac_a10_device_add(struct altr_arria10_edac *edac,
1902                                     struct device_node *np)
1903 {
1904         struct edac_device_ctl_info *dci;
1905         struct altr_edac_device_dev *altdev;
1906         char *ecc_name = (char *)np->name;
1907         struct resource res;
1908         int edac_idx;
1909         int rc = 0;
1910         const struct edac_device_prv_data *prv;
1911         /* Get matching node and check for valid result */
1912         const struct of_device_id *pdev_id =
1913                 of_match_node(altr_edac_a10_device_of_match, np);
1914         if (IS_ERR_OR_NULL(pdev_id))
1915                 return -ENODEV;
1916
1917         /* Get driver specific data for this EDAC device */
1918         prv = pdev_id->data;
1919         if (IS_ERR_OR_NULL(prv))
1920                 return -ENODEV;
1921
1922         if (validate_parent_available(np))
1923                 return -ENODEV;
1924
1925         if (!devres_open_group(edac->dev, altr_edac_a10_device_add, GFP_KERNEL))
1926                 return -ENOMEM;
1927
1928         rc = of_address_to_resource(np, 0, &res);
1929         if (rc < 0) {
1930                 edac_printk(KERN_ERR, EDAC_DEVICE,
1931                             "%s: no resource address\n", ecc_name);
1932                 goto err_release_group;
1933         }
1934
1935         edac_idx = edac_device_alloc_index();
1936         dci = edac_device_alloc_ctl_info(sizeof(*altdev), ecc_name,
1937                                          1, ecc_name, 1, 0, NULL, 0,
1938                                          edac_idx);
1939
1940         if (!dci) {
1941                 edac_printk(KERN_ERR, EDAC_DEVICE,
1942                             "%s: Unable to allocate EDAC device\n", ecc_name);
1943                 rc = -ENOMEM;
1944                 goto err_release_group;
1945         }
1946
1947         altdev = dci->pvt_info;
1948         dci->dev = edac->dev;
1949         altdev->edac_dev_name = ecc_name;
1950         altdev->edac_idx = edac_idx;
1951         altdev->edac = edac;
1952         altdev->edac_dev = dci;
1953         altdev->data = prv;
1954         altdev->ddev = *edac->dev;
1955         dci->dev = &altdev->ddev;
1956         dci->ctl_name = "Altera ECC Manager";
1957         dci->mod_name = ecc_name;
1958         dci->dev_name = ecc_name;
1959
1960         altdev->base = devm_ioremap_resource(edac->dev, &res);
1961         if (IS_ERR(altdev->base)) {
1962                 rc = PTR_ERR(altdev->base);
1963                 goto err_release_group1;
1964         }
1965
1966         /* Check specific dependencies for the module */
1967         if (altdev->data->setup) {
1968                 rc = altdev->data->setup(altdev);
1969                 if (rc)
1970                         goto err_release_group1;
1971         }
1972
1973         altdev->sb_irq = irq_of_parse_and_map(np, 0);
1974         if (!altdev->sb_irq) {
1975                 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating SBIRQ\n");
1976                 rc = -ENODEV;
1977                 goto err_release_group1;
1978         }
1979         rc = devm_request_irq(edac->dev, altdev->sb_irq, prv->ecc_irq_handler,
1980                               IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
1981                               ecc_name, altdev);
1982         if (rc) {
1983                 edac_printk(KERN_ERR, EDAC_DEVICE, "No SBERR IRQ resource\n");
1984                 goto err_release_group1;
1985         }
1986
1987 #ifdef CONFIG_ARCH_STRATIX10
1988         /* Use IRQ to determine SError origin instead of assigning IRQ */
1989         rc = of_property_read_u32_index(np, "interrupts", 0, &altdev->db_irq);
1990         if (rc) {
1991                 edac_printk(KERN_ERR, EDAC_DEVICE,
1992                             "Unable to parse DB IRQ index\n");
1993                 goto err_release_group1;
1994         }
1995 #else
1996         altdev->db_irq = irq_of_parse_and_map(np, 1);
1997         if (!altdev->db_irq) {
1998                 edac_printk(KERN_ERR, EDAC_DEVICE, "Error allocating DBIRQ\n");
1999                 rc = -ENODEV;
2000                 goto err_release_group1;
2001         }
2002         rc = devm_request_irq(edac->dev, altdev->db_irq, prv->ecc_irq_handler,
2003                               IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
2004                               ecc_name, altdev);
2005         if (rc) {
2006                 edac_printk(KERN_ERR, EDAC_DEVICE, "No DBERR IRQ resource\n");
2007                 goto err_release_group1;
2008         }
2009 #endif
2010
2011         rc = edac_device_add_device(dci);
2012         if (rc) {
2013                 dev_err(edac->dev, "edac_device_add_device failed\n");
2014                 rc = -ENOMEM;
2015                 goto err_release_group1;
2016         }
2017
2018         altr_create_edacdev_dbgfs(dci, prv);
2019
2020         list_add(&altdev->next, &edac->a10_ecc_devices);
2021
2022         devres_remove_group(edac->dev, altr_edac_a10_device_add);
2023
2024         return 0;
2025
2026 err_release_group1:
2027         edac_device_free_ctl_info(dci);
2028 err_release_group:
2029         devres_release_group(edac->dev, NULL);
2030         edac_printk(KERN_ERR, EDAC_DEVICE,
2031                     "%s:Error setting up EDAC device: %d\n", ecc_name, rc);
2032
2033         return rc;
2034 }
2035
2036 static void a10_eccmgr_irq_mask(struct irq_data *d)
2037 {
2038         struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2039
2040         regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_SET_OFST,
2041                      BIT(d->hwirq));
2042 }
2043
2044 static void a10_eccmgr_irq_unmask(struct irq_data *d)
2045 {
2046         struct altr_arria10_edac *edac = irq_data_get_irq_chip_data(d);
2047
2048         regmap_write(edac->ecc_mgr_map, A10_SYSMGR_ECC_INTMASK_CLR_OFST,
2049                      BIT(d->hwirq));
2050 }
2051
2052 static int a10_eccmgr_irqdomain_map(struct irq_domain *d, unsigned int irq,
2053                                     irq_hw_number_t hwirq)
2054 {
2055         struct altr_arria10_edac *edac = d->host_data;
2056
2057         irq_set_chip_and_handler(irq, &edac->irq_chip, handle_simple_irq);
2058         irq_set_chip_data(irq, edac);
2059         irq_set_noprobe(irq);
2060
2061         return 0;
2062 }
2063
2064 static const struct irq_domain_ops a10_eccmgr_ic_ops = {
2065         .map = a10_eccmgr_irqdomain_map,
2066         .xlate = irq_domain_xlate_twocell,
2067 };
2068
2069 /************** Stratix 10 EDAC Double Bit Error Handler ************/
2070 #define to_a10edac(p, m) container_of(p, struct altr_arria10_edac, m)
2071
2072 #ifdef CONFIG_ARCH_STRATIX10
2073 /* panic routine issues reboot on non-zero panic_timeout */
2074 extern int panic_timeout;
2075
2076 /*
2077  * The double bit error is handled through SError which is fatal. This is
2078  * called as a panic notifier to printout ECC error info as part of the panic.
2079  */
2080 static int s10_edac_dberr_handler(struct notifier_block *this,
2081                                   unsigned long event, void *ptr)
2082 {
2083         struct altr_arria10_edac *edac = to_a10edac(this, panic_notifier);
2084         int err_addr, dberror;
2085
2086         regmap_read(edac->ecc_mgr_map, S10_SYSMGR_ECC_INTSTAT_DERR_OFST,
2087                     &dberror);
2088         regmap_write(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST, dberror);
2089         if (dberror & S10_DBE_IRQ_MASK) {
2090                 struct list_head *position;
2091                 struct altr_edac_device_dev *ed;
2092                 struct arm_smccc_res result;
2093
2094                 /* Find the matching DBE in the list of devices */
2095                 list_for_each(position, &edac->a10_ecc_devices) {
2096                         ed = list_entry(position, struct altr_edac_device_dev,
2097                                         next);
2098                         if (!(BIT(ed->db_irq) & dberror))
2099                                 continue;
2100
2101                         writel(ALTR_A10_ECC_DERRPENA,
2102                                ed->base + ALTR_A10_ECC_INTSTAT_OFST);
2103                         err_addr = readl(ed->base + ALTR_S10_DERR_ADDRA_OFST);
2104                         regmap_write(edac->ecc_mgr_map,
2105                                      S10_SYSMGR_UE_ADDR_OFST, err_addr);
2106                         edac_printk(KERN_ERR, EDAC_DEVICE,
2107                                     "EDAC: [Fatal DBE on %s @ 0x%08X]\n",
2108                                     ed->edac_dev_name, err_addr);
2109                         break;
2110                 }
2111                 /* Notify the System through SMC. Reboot delay = 1 second */
2112                 panic_timeout = 1;
2113                 arm_smccc_smc(INTEL_SIP_SMC_ECC_DBE, dberror, 0, 0, 0, 0,
2114                               0, 0, &result);
2115         }
2116
2117         return NOTIFY_DONE;
2118 }
2119 #endif
2120
2121 /****************** Arria 10 EDAC Probe Function *********************/
2122 static int altr_edac_a10_probe(struct platform_device *pdev)
2123 {
2124         struct altr_arria10_edac *edac;
2125         struct device_node *child;
2126
2127         edac = devm_kzalloc(&pdev->dev, sizeof(*edac), GFP_KERNEL);
2128         if (!edac)
2129                 return -ENOMEM;
2130
2131         edac->dev = &pdev->dev;
2132         platform_set_drvdata(pdev, edac);
2133         INIT_LIST_HEAD(&edac->a10_ecc_devices);
2134
2135         if (socfpga_is_a10()) {
2136                 edac->ecc_mgr_map =
2137                         syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
2138                                                         "altr,sysmgr-syscon");
2139         } else {
2140                 struct device_node *sysmgr_np;
2141                 struct resource res;
2142                 uintptr_t base;
2143
2144                 sysmgr_np = of_parse_phandle(pdev->dev.of_node,
2145                                              "altr,sysmgr-syscon", 0);
2146                 if (!sysmgr_np) {
2147                         edac_printk(KERN_ERR, EDAC_DEVICE,
2148                                     "Unable to find altr,sysmgr-syscon\n");
2149                         return -ENODEV;
2150                 }
2151
2152                 if (of_address_to_resource(sysmgr_np, 0, &res))
2153                         return -ENOMEM;
2154
2155                 /* Need physical address for SMCC call */
2156                 base = res.start;
2157
2158                 edac->ecc_mgr_map = devm_regmap_init(&pdev->dev, NULL,
2159                                                      (void *)base,
2160                                                      &s10_sdram_regmap_cfg);
2161         }
2162
2163         if (IS_ERR(edac->ecc_mgr_map)) {
2164                 edac_printk(KERN_ERR, EDAC_DEVICE,
2165                             "Unable to get syscon altr,sysmgr-syscon\n");
2166                 return PTR_ERR(edac->ecc_mgr_map);
2167         }
2168
2169         edac->irq_chip.name = pdev->dev.of_node->name;
2170         edac->irq_chip.irq_mask = a10_eccmgr_irq_mask;
2171         edac->irq_chip.irq_unmask = a10_eccmgr_irq_unmask;
2172         edac->domain = irq_domain_add_linear(pdev->dev.of_node, 64,
2173                                              &a10_eccmgr_ic_ops, edac);
2174         if (!edac->domain) {
2175                 dev_err(&pdev->dev, "Error adding IRQ domain\n");
2176                 return -ENOMEM;
2177         }
2178
2179         edac->sb_irq = platform_get_irq(pdev, 0);
2180         if (edac->sb_irq < 0) {
2181                 dev_err(&pdev->dev, "No SBERR IRQ resource\n");
2182                 return edac->sb_irq;
2183         }
2184
2185         irq_set_chained_handler_and_data(edac->sb_irq,
2186                                          altr_edac_a10_irq_handler,
2187                                          edac);
2188
2189 #ifdef CONFIG_ARCH_STRATIX10
2190         {
2191                 int dberror, err_addr;
2192
2193                 edac->panic_notifier.notifier_call = s10_edac_dberr_handler;
2194                 atomic_notifier_chain_register(&panic_notifier_list,
2195                                                &edac->panic_notifier);
2196
2197                 /* Printout a message if uncorrectable error previously. */
2198                 regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_VAL_OFST,
2199                             &dberror);
2200                 if (dberror) {
2201                         regmap_read(edac->ecc_mgr_map, S10_SYSMGR_UE_ADDR_OFST,
2202                                     &err_addr);
2203                         edac_printk(KERN_ERR, EDAC_DEVICE,
2204                                     "Previous Boot UE detected[0x%X] @ 0x%X\n",
2205                                     dberror, err_addr);
2206                         /* Reset the sticky registers */
2207                         regmap_write(edac->ecc_mgr_map,
2208                                      S10_SYSMGR_UE_VAL_OFST, 0);
2209                         regmap_write(edac->ecc_mgr_map,
2210                                      S10_SYSMGR_UE_ADDR_OFST, 0);
2211                 }
2212         }
2213 #else
2214         edac->db_irq = platform_get_irq(pdev, 1);
2215         if (edac->db_irq < 0) {
2216                 dev_err(&pdev->dev, "No DBERR IRQ resource\n");
2217                 return edac->db_irq;
2218         }
2219         irq_set_chained_handler_and_data(edac->db_irq,
2220                                          altr_edac_a10_irq_handler, edac);
2221 #endif
2222
2223         for_each_child_of_node(pdev->dev.of_node, child) {
2224                 if (!of_device_is_available(child))
2225                         continue;
2226
2227                 if (of_device_is_compatible(child, "altr,socfpga-a10-l2-ecc") || 
2228                     of_device_is_compatible(child, "altr,socfpga-a10-ocram-ecc") ||
2229                     of_device_is_compatible(child, "altr,socfpga-eth-mac-ecc") ||
2230                     of_device_is_compatible(child, "altr,socfpga-nand-ecc") ||
2231                     of_device_is_compatible(child, "altr,socfpga-dma-ecc") ||
2232                     of_device_is_compatible(child, "altr,socfpga-usb-ecc") ||
2233                     of_device_is_compatible(child, "altr,socfpga-qspi-ecc") ||
2234                     of_device_is_compatible(child, "altr,socfpga-sdmmc-ecc"))
2235
2236                         altr_edac_a10_device_add(edac, child);
2237
2238 #ifdef CONFIG_EDAC_ALTERA_SDRAM
2239                 else if ((of_device_is_compatible(child, "altr,sdram-edac-a10")) ||
2240                          (of_device_is_compatible(child, "altr,sdram-edac-s10")))
2241                         of_platform_populate(pdev->dev.of_node,
2242                                              altr_sdram_ctrl_of_match,
2243                                              NULL, &pdev->dev);
2244 #endif
2245         }
2246
2247         return 0;
2248 }
2249
2250 static const struct of_device_id altr_edac_a10_of_match[] = {
2251         { .compatible = "altr,socfpga-a10-ecc-manager" },
2252         { .compatible = "altr,socfpga-s10-ecc-manager" },
2253         {},
2254 };
2255 MODULE_DEVICE_TABLE(of, altr_edac_a10_of_match);
2256
2257 static struct platform_driver altr_edac_a10_driver = {
2258         .probe =  altr_edac_a10_probe,
2259         .driver = {
2260                 .name = "socfpga_a10_ecc_manager",
2261                 .of_match_table = altr_edac_a10_of_match,
2262         },
2263 };
2264 module_platform_driver(altr_edac_a10_driver);
2265
2266 MODULE_LICENSE("GPL v2");
2267 MODULE_AUTHOR("Thor Thayer");
2268 MODULE_DESCRIPTION("EDAC Driver for Altera Memories");