Merge branch 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include <linux/pm.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
21 #include <linux/of.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
26
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
29
30 #define D40_NAME "dma40"
31
32 #define D40_PHY_CHAN -1
33
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
37
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
40
41 /* Milliseconds */
42 #define DMA40_AUTOSUSPEND_DELAY 100
43
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
46
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
50
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
53
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
56
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE          BIT(31)
59 #define D40_ALLOC_PHY           BIT(30)
60 #define D40_ALLOC_LOG_FREE      0
61
62 #define D40_MEMCPY_MAX_CHANS    8
63
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0  51
66 #define DB8500_DMA_MEMCPY_EV_1  56
67 #define DB8500_DMA_MEMCPY_EV_2  57
68 #define DB8500_DMA_MEMCPY_EV_3  58
69 #define DB8500_DMA_MEMCPY_EV_4  59
70 #define DB8500_DMA_MEMCPY_EV_5  60
71
72 static int dma40_memcpy_channels[] = {
73         DB8500_DMA_MEMCPY_EV_0,
74         DB8500_DMA_MEMCPY_EV_1,
75         DB8500_DMA_MEMCPY_EV_2,
76         DB8500_DMA_MEMCPY_EV_3,
77         DB8500_DMA_MEMCPY_EV_4,
78         DB8500_DMA_MEMCPY_EV_5,
79 };
80
81 /* Default configuration for physcial memcpy */
82 static struct stedma40_chan_cfg dma40_memcpy_conf_phy = {
83         .mode = STEDMA40_MODE_PHYSICAL,
84         .dir = DMA_MEM_TO_MEM,
85
86         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
87         .src_info.psize = STEDMA40_PSIZE_PHY_1,
88         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
89
90         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
91         .dst_info.psize = STEDMA40_PSIZE_PHY_1,
92         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
93 };
94
95 /* Default configuration for logical memcpy */
96 static struct stedma40_chan_cfg dma40_memcpy_conf_log = {
97         .mode = STEDMA40_MODE_LOGICAL,
98         .dir = DMA_MEM_TO_MEM,
99
100         .src_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
101         .src_info.psize = STEDMA40_PSIZE_LOG_1,
102         .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
103
104         .dst_info.data_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
105         .dst_info.psize = STEDMA40_PSIZE_LOG_1,
106         .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL,
107 };
108
109 /**
110  * enum 40_command - The different commands and/or statuses.
111  *
112  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
116  */
117 enum d40_command {
118         D40_DMA_STOP            = 0,
119         D40_DMA_RUN             = 1,
120         D40_DMA_SUSPEND_REQ     = 2,
121         D40_DMA_SUSPENDED       = 3
122 };
123
124 /*
125  * enum d40_events - The different Event Enables for the event lines.
126  *
127  * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128  * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129  * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130  * @D40_ROUND_EVENTLINE: Status check for event line.
131  */
132
133 enum d40_events {
134         D40_DEACTIVATE_EVENTLINE        = 0,
135         D40_ACTIVATE_EVENTLINE          = 1,
136         D40_SUSPEND_REQ_EVENTLINE       = 2,
137         D40_ROUND_EVENTLINE             = 3
138 };
139
140 /*
141  * These are the registers that has to be saved and later restored
142  * when the DMA hw is powered off.
143  * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
144  */
145 static u32 d40_backup_regs[] = {
146         D40_DREG_LCPA,
147         D40_DREG_LCLA,
148         D40_DREG_PRMSE,
149         D40_DREG_PRMSO,
150         D40_DREG_PRMOE,
151         D40_DREG_PRMOO,
152 };
153
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
155
156 /*
157  * since 9540 and 8540 has the same HW revision
158  * use v4a for 9540 or ealier
159  * use v4b for 8540 or later
160  * HW revision:
161  * DB8500ed has revision 0
162  * DB8500v1 has revision 2
163  * DB8500v2 has revision 3
164  * AP9540v1 has revision 4
165  * DB8540v1 has revision 4
166  * TODO: Check if all these registers have to be saved/restored on dma40 v4a
167  */
168 static u32 d40_backup_regs_v4a[] = {
169         D40_DREG_PSEG1,
170         D40_DREG_PSEG2,
171         D40_DREG_PSEG3,
172         D40_DREG_PSEG4,
173         D40_DREG_PCEG1,
174         D40_DREG_PCEG2,
175         D40_DREG_PCEG3,
176         D40_DREG_PCEG4,
177         D40_DREG_RSEG1,
178         D40_DREG_RSEG2,
179         D40_DREG_RSEG3,
180         D40_DREG_RSEG4,
181         D40_DREG_RCEG1,
182         D40_DREG_RCEG2,
183         D40_DREG_RCEG3,
184         D40_DREG_RCEG4,
185 };
186
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
188
189 static u32 d40_backup_regs_v4b[] = {
190         D40_DREG_CPSEG1,
191         D40_DREG_CPSEG2,
192         D40_DREG_CPSEG3,
193         D40_DREG_CPSEG4,
194         D40_DREG_CPSEG5,
195         D40_DREG_CPCEG1,
196         D40_DREG_CPCEG2,
197         D40_DREG_CPCEG3,
198         D40_DREG_CPCEG4,
199         D40_DREG_CPCEG5,
200         D40_DREG_CRSEG1,
201         D40_DREG_CRSEG2,
202         D40_DREG_CRSEG3,
203         D40_DREG_CRSEG4,
204         D40_DREG_CRSEG5,
205         D40_DREG_CRCEG1,
206         D40_DREG_CRCEG2,
207         D40_DREG_CRCEG3,
208         D40_DREG_CRCEG4,
209         D40_DREG_CRCEG5,
210 };
211
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
213
214 static u32 d40_backup_regs_chan[] = {
215         D40_CHAN_REG_SSCFG,
216         D40_CHAN_REG_SSELT,
217         D40_CHAN_REG_SSPTR,
218         D40_CHAN_REG_SSLNK,
219         D40_CHAN_REG_SDCFG,
220         D40_CHAN_REG_SDELT,
221         D40_CHAN_REG_SDPTR,
222         D40_CHAN_REG_SDLNK,
223 };
224
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226                              BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
227
228 /**
229  * struct d40_interrupt_lookup - lookup table for interrupt handler
230  *
231  * @src: Interrupt mask register.
232  * @clr: Interrupt clear register.
233  * @is_error: true if this is an error interrupt.
234  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
236  */
237 struct d40_interrupt_lookup {
238         u32 src;
239         u32 clr;
240         bool is_error;
241         int offset;
242 };
243
244
245 static struct d40_interrupt_lookup il_v4a[] = {
246         {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
247         {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
248         {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
249         {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
250         {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
251         {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
252         {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
253         {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
254         {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
255         {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
256 };
257
258 static struct d40_interrupt_lookup il_v4b[] = {
259         {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false,  0},
260         {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32},
261         {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64},
262         {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96},
263         {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128},
264         {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true,   0},
265         {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true,  32},
266         {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true,  64},
267         {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true,  96},
268         {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true,  128},
269         {D40_DREG_CPCTIS,  D40_DREG_CPCICR,  false, D40_PHY_CHAN},
270         {D40_DREG_CPCEIS,  D40_DREG_CPCICR,  true,  D40_PHY_CHAN},
271 };
272
273 /**
274  * struct d40_reg_val - simple lookup struct
275  *
276  * @reg: The register.
277  * @val: The value that belongs to the register in reg.
278  */
279 struct d40_reg_val {
280         unsigned int reg;
281         unsigned int val;
282 };
283
284 static __initdata struct d40_reg_val dma_init_reg_v4a[] = {
285         /* Clock every part of the DMA block from start */
286         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
287
288         /* Interrupts on all logical channels */
289         { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
290         { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
291         { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
292         { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
293         { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
294         { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
295         { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
296         { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
297         { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
298         { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
299         { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
300         { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
301 };
302 static __initdata struct d40_reg_val dma_init_reg_v4b[] = {
303         /* Clock every part of the DMA block from start */
304         { .reg = D40_DREG_GCC,    .val = D40_DREG_GCC_ENABLE_ALL},
305
306         /* Interrupts on all logical channels */
307         { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF},
308         { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF},
309         { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF},
310         { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF},
311         { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF},
312         { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF},
313         { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF},
314         { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF},
315         { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF},
316         { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF},
317         { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF},
318         { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF},
319         { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF},
320         { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF},
321         { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF}
322 };
323
324 /**
325  * struct d40_lli_pool - Structure for keeping LLIs in memory
326  *
327  * @base: Pointer to memory area when the pre_alloc_lli's are not large
328  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329  * pre_alloc_lli is used.
330  * @dma_addr: DMA address, if mapped
331  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333  * one buffer to one buffer.
334  */
335 struct d40_lli_pool {
336         void    *base;
337         int      size;
338         dma_addr_t      dma_addr;
339         /* Space for dst and src, plus an extra for padding */
340         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
341 };
342
343 /**
344  * struct d40_desc - A descriptor is one DMA job.
345  *
346  * @lli_phy: LLI settings for physical channel. Both src and dst=
347  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348  * lli_len equals one.
349  * @lli_log: Same as above but for logical channels.
350  * @lli_pool: The pool with two entries pre-allocated.
351  * @lli_len: Number of llis of current descriptor.
352  * @lli_current: Number of transferred llis.
353  * @lcla_alloc: Number of LCLA entries allocated.
354  * @txd: DMA engine struct. Used for among other things for communication
355  * during a transfer.
356  * @node: List entry.
357  * @is_in_client_list: true if the client owns this descriptor.
358  * @cyclic: true if this is a cyclic job
359  *
360  * This descriptor is used for both logical and physical transfers.
361  */
362 struct d40_desc {
363         /* LLI physical */
364         struct d40_phy_lli_bidir         lli_phy;
365         /* LLI logical */
366         struct d40_log_lli_bidir         lli_log;
367
368         struct d40_lli_pool              lli_pool;
369         int                              lli_len;
370         int                              lli_current;
371         int                              lcla_alloc;
372
373         struct dma_async_tx_descriptor   txd;
374         struct list_head                 node;
375
376         bool                             is_in_client_list;
377         bool                             cyclic;
378 };
379
380 /**
381  * struct d40_lcla_pool - LCLA pool settings and data.
382  *
383  * @base: The virtual address of LCLA. 18 bit aligned.
384  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385  * This pointer is only there for clean-up on error.
386  * @pages: The number of pages needed for all physical channels.
387  * Only used later for clean-up on error
388  * @lock: Lock to protect the content in this struct.
389  * @alloc_map: big map over which LCLA entry is own by which job.
390  */
391 struct d40_lcla_pool {
392         void            *base;
393         dma_addr_t      dma_addr;
394         void            *base_unaligned;
395         int              pages;
396         spinlock_t       lock;
397         struct d40_desc **alloc_map;
398 };
399
400 /**
401  * struct d40_phy_res - struct for handling eventlines mapped to physical
402  * channels.
403  *
404  * @lock: A lock protection this entity.
405  * @reserved: True if used by secure world or otherwise.
406  * @num: The physical channel number of this entity.
407  * @allocated_src: Bit mapped to show which src event line's are mapped to
408  * this physical channel. Can also be free or physically allocated.
409  * @allocated_dst: Same as for src but is dst.
410  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
411  * event line number.
412  * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
413  */
414 struct d40_phy_res {
415         spinlock_t lock;
416         bool       reserved;
417         int        num;
418         u32        allocated_src;
419         u32        allocated_dst;
420         bool       use_soft_lli;
421 };
422
423 struct d40_base;
424
425 /**
426  * struct d40_chan - Struct that describes a channel.
427  *
428  * @lock: A spinlock to protect this struct.
429  * @log_num: The logical number, if any of this channel.
430  * @pending_tx: The number of pending transfers. Used between interrupt handler
431  * and tasklet.
432  * @busy: Set to true when transfer is ongoing on this channel.
433  * @phy_chan: Pointer to physical channel which this instance runs on. If this
434  * point is NULL, then the channel is not allocated.
435  * @chan: DMA engine handle.
436  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437  * transfer and call client callback.
438  * @client: Cliented owned descriptor list.
439  * @pending_queue: Submitted jobs, to be issued by issue_pending()
440  * @active: Active descriptor.
441  * @done: Completed jobs
442  * @queue: Queued jobs.
443  * @prepare_queue: Prepared jobs.
444  * @dma_cfg: The client configuration of this dma channel.
445  * @configured: whether the dma_cfg configuration is valid
446  * @base: Pointer to the device instance struct.
447  * @src_def_cfg: Default cfg register setting for src.
448  * @dst_def_cfg: Default cfg register setting for dst.
449  * @log_def: Default logical channel settings.
450  * @lcpa: Pointer to dst and src lcpa settings.
451  * @runtime_addr: runtime configured address.
452  * @runtime_direction: runtime configured direction.
453  *
454  * This struct can either "be" a logical or a physical channel.
455  */
456 struct d40_chan {
457         spinlock_t                       lock;
458         int                              log_num;
459         int                              pending_tx;
460         bool                             busy;
461         struct d40_phy_res              *phy_chan;
462         struct dma_chan                  chan;
463         struct tasklet_struct            tasklet;
464         struct list_head                 client;
465         struct list_head                 pending_queue;
466         struct list_head                 active;
467         struct list_head                 done;
468         struct list_head                 queue;
469         struct list_head                 prepare_queue;
470         struct stedma40_chan_cfg         dma_cfg;
471         bool                             configured;
472         struct d40_base                 *base;
473         /* Default register configurations */
474         u32                              src_def_cfg;
475         u32                              dst_def_cfg;
476         struct d40_def_lcsp              log_def;
477         struct d40_log_lli_full         *lcpa;
478         /* Runtime reconfiguration */
479         dma_addr_t                      runtime_addr;
480         enum dma_transfer_direction     runtime_direction;
481 };
482
483 /**
484  * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
485  * controller
486  *
487  * @backup: the pointer to the registers address array for backup
488  * @backup_size: the size of the registers address array for backup
489  * @realtime_en: the realtime enable register
490  * @realtime_clear: the realtime clear register
491  * @high_prio_en: the high priority enable register
492  * @high_prio_clear: the high priority clear register
493  * @interrupt_en: the interrupt enable register
494  * @interrupt_clear: the interrupt clear register
495  * @il: the pointer to struct d40_interrupt_lookup
496  * @il_size: the size of d40_interrupt_lookup array
497  * @init_reg: the pointer to the struct d40_reg_val
498  * @init_reg_size: the size of d40_reg_val array
499  */
500 struct d40_gen_dmac {
501         u32                             *backup;
502         u32                              backup_size;
503         u32                              realtime_en;
504         u32                              realtime_clear;
505         u32                              high_prio_en;
506         u32                              high_prio_clear;
507         u32                              interrupt_en;
508         u32                              interrupt_clear;
509         struct d40_interrupt_lookup     *il;
510         u32                              il_size;
511         struct d40_reg_val              *init_reg;
512         u32                              init_reg_size;
513 };
514
515 /**
516  * struct d40_base - The big global struct, one for each probe'd instance.
517  *
518  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519  * @execmd_lock: Lock for execute command usage since several channels share
520  * the same physical register.
521  * @dev: The device structure.
522  * @virtbase: The virtual base address of the DMA's register.
523  * @rev: silicon revision detected.
524  * @clk: Pointer to the DMA clock structure.
525  * @phy_start: Physical memory start of the DMA registers.
526  * @phy_size: Size of the DMA register map.
527  * @irq: The IRQ number.
528  * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
529  * transfers).
530  * @num_phy_chans: The number of physical channels. Read from HW. This
531  * is the number of available channels for this driver, not counting "Secure
532  * mode" allocated physical channels.
533  * @num_log_chans: The number of logical channels. Calculated from
534  * num_phy_chans.
535  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536  * @dma_slave: dma_device channels that can do only do slave transfers.
537  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538  * @phy_chans: Room for all possible physical channels in system.
539  * @log_chans: Room for all possible logical channels in system.
540  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541  * to log_chans entries.
542  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543  * to phy_chans entries.
544  * @plat_data: Pointer to provided platform_data which is the driver
545  * configuration.
546  * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547  * @phy_res: Vector containing all physical channels.
548  * @lcla_pool: lcla pool settings and data.
549  * @lcpa_base: The virtual mapped address of LCPA.
550  * @phy_lcpa: The physical address of the LCPA.
551  * @lcpa_size: The size of the LCPA area.
552  * @desc_slab: cache for descriptors.
553  * @reg_val_backup: Here the values of some hardware registers are stored
554  * before the DMA is powered off. They are restored when the power is back on.
555  * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
556  * later
557  * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558  * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559  * @initialized: true if the dma has been initialized
560  * @gen_dmac: the struct for generic registers values to represent u8500/8540
561  * DMA controller
562  */
563 struct d40_base {
564         spinlock_t                       interrupt_lock;
565         spinlock_t                       execmd_lock;
566         struct device                    *dev;
567         void __iomem                     *virtbase;
568         u8                                rev:4;
569         struct clk                       *clk;
570         phys_addr_t                       phy_start;
571         resource_size_t                   phy_size;
572         int                               irq;
573         int                               num_memcpy_chans;
574         int                               num_phy_chans;
575         int                               num_log_chans;
576         struct device_dma_parameters      dma_parms;
577         struct dma_device                 dma_both;
578         struct dma_device                 dma_slave;
579         struct dma_device                 dma_memcpy;
580         struct d40_chan                  *phy_chans;
581         struct d40_chan                  *log_chans;
582         struct d40_chan                 **lookup_log_chans;
583         struct d40_chan                 **lookup_phy_chans;
584         struct stedma40_platform_data    *plat_data;
585         struct regulator                 *lcpa_regulator;
586         /* Physical half channels */
587         struct d40_phy_res               *phy_res;
588         struct d40_lcla_pool              lcla_pool;
589         void                             *lcpa_base;
590         dma_addr_t                        phy_lcpa;
591         resource_size_t                   lcpa_size;
592         struct kmem_cache                *desc_slab;
593         u32                               reg_val_backup[BACKUP_REGS_SZ];
594         u32                               reg_val_backup_v4[BACKUP_REGS_SZ_MAX];
595         u32                              *reg_val_backup_chan;
596         u16                               gcc_pwr_off_mask;
597         bool                              initialized;
598         struct d40_gen_dmac               gen_dmac;
599 };
600
601 static struct device *chan2dev(struct d40_chan *d40c)
602 {
603         return &d40c->chan.dev->device;
604 }
605
606 static bool chan_is_physical(struct d40_chan *chan)
607 {
608         return chan->log_num == D40_PHY_CHAN;
609 }
610
611 static bool chan_is_logical(struct d40_chan *chan)
612 {
613         return !chan_is_physical(chan);
614 }
615
616 static void __iomem *chan_base(struct d40_chan *chan)
617 {
618         return chan->base->virtbase + D40_DREG_PCBASE +
619                chan->phy_chan->num * D40_DREG_PCDELTA;
620 }
621
622 #define d40_err(dev, format, arg...)            \
623         dev_err(dev, "[%s] " format, __func__, ## arg)
624
625 #define chan_err(d40c, format, arg...)          \
626         d40_err(chan2dev(d40c), format, ## arg)
627
628 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
629                               int lli_len)
630 {
631         bool is_log = chan_is_logical(d40c);
632         u32 align;
633         void *base;
634
635         if (is_log)
636                 align = sizeof(struct d40_log_lli);
637         else
638                 align = sizeof(struct d40_phy_lli);
639
640         if (lli_len == 1) {
641                 base = d40d->lli_pool.pre_alloc_lli;
642                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
643                 d40d->lli_pool.base = NULL;
644         } else {
645                 d40d->lli_pool.size = lli_len * 2 * align;
646
647                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
648                 d40d->lli_pool.base = base;
649
650                 if (d40d->lli_pool.base == NULL)
651                         return -ENOMEM;
652         }
653
654         if (is_log) {
655                 d40d->lli_log.src = PTR_ALIGN(base, align);
656                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
657
658                 d40d->lli_pool.dma_addr = 0;
659         } else {
660                 d40d->lli_phy.src = PTR_ALIGN(base, align);
661                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
662
663                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
664                                                          d40d->lli_phy.src,
665                                                          d40d->lli_pool.size,
666                                                          DMA_TO_DEVICE);
667
668                 if (dma_mapping_error(d40c->base->dev,
669                                       d40d->lli_pool.dma_addr)) {
670                         kfree(d40d->lli_pool.base);
671                         d40d->lli_pool.base = NULL;
672                         d40d->lli_pool.dma_addr = 0;
673                         return -ENOMEM;
674                 }
675         }
676
677         return 0;
678 }
679
680 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
681 {
682         if (d40d->lli_pool.dma_addr)
683                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
684                                  d40d->lli_pool.size, DMA_TO_DEVICE);
685
686         kfree(d40d->lli_pool.base);
687         d40d->lli_pool.base = NULL;
688         d40d->lli_pool.size = 0;
689         d40d->lli_log.src = NULL;
690         d40d->lli_log.dst = NULL;
691         d40d->lli_phy.src = NULL;
692         d40d->lli_phy.dst = NULL;
693 }
694
695 static int d40_lcla_alloc_one(struct d40_chan *d40c,
696                               struct d40_desc *d40d)
697 {
698         unsigned long flags;
699         int i;
700         int ret = -EINVAL;
701
702         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
703
704         /*
705          * Allocate both src and dst at the same time, therefore the half
706          * start on 1 since 0 can't be used since zero is used as end marker.
707          */
708         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
709                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
710
711                 if (!d40c->base->lcla_pool.alloc_map[idx]) {
712                         d40c->base->lcla_pool.alloc_map[idx] = d40d;
713                         d40d->lcla_alloc++;
714                         ret = i;
715                         break;
716                 }
717         }
718
719         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
720
721         return ret;
722 }
723
724 static int d40_lcla_free_all(struct d40_chan *d40c,
725                              struct d40_desc *d40d)
726 {
727         unsigned long flags;
728         int i;
729         int ret = -EINVAL;
730
731         if (chan_is_physical(d40c))
732                 return 0;
733
734         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
735
736         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
737                 int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i;
738
739                 if (d40c->base->lcla_pool.alloc_map[idx] == d40d) {
740                         d40c->base->lcla_pool.alloc_map[idx] = NULL;
741                         d40d->lcla_alloc--;
742                         if (d40d->lcla_alloc == 0) {
743                                 ret = 0;
744                                 break;
745                         }
746                 }
747         }
748
749         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
750
751         return ret;
752
753 }
754
755 static void d40_desc_remove(struct d40_desc *d40d)
756 {
757         list_del(&d40d->node);
758 }
759
760 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
761 {
762         struct d40_desc *desc = NULL;
763
764         if (!list_empty(&d40c->client)) {
765                 struct d40_desc *d;
766                 struct d40_desc *_d;
767
768                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
769                         if (async_tx_test_ack(&d->txd)) {
770                                 d40_desc_remove(d);
771                                 desc = d;
772                                 memset(desc, 0, sizeof(*desc));
773                                 break;
774                         }
775                 }
776         }
777
778         if (!desc)
779                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
780
781         if (desc)
782                 INIT_LIST_HEAD(&desc->node);
783
784         return desc;
785 }
786
787 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
788 {
789
790         d40_pool_lli_free(d40c, d40d);
791         d40_lcla_free_all(d40c, d40d);
792         kmem_cache_free(d40c->base->desc_slab, d40d);
793 }
794
795 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
796 {
797         list_add_tail(&desc->node, &d40c->active);
798 }
799
800 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
801 {
802         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
803         struct d40_phy_lli *lli_src = desc->lli_phy.src;
804         void __iomem *base = chan_base(chan);
805
806         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
807         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
808         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
809         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
810
811         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
812         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
813         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
814         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
815 }
816
817 static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc)
818 {
819         list_add_tail(&desc->node, &d40c->done);
820 }
821
822 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
823 {
824         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
825         struct d40_log_lli_bidir *lli = &desc->lli_log;
826         int lli_current = desc->lli_current;
827         int lli_len = desc->lli_len;
828         bool cyclic = desc->cyclic;
829         int curr_lcla = -EINVAL;
830         int first_lcla = 0;
831         bool use_esram_lcla = chan->base->plat_data->use_esram_lcla;
832         bool linkback;
833
834         /*
835          * We may have partially running cyclic transfers, in case we did't get
836          * enough LCLA entries.
837          */
838         linkback = cyclic && lli_current == 0;
839
840         /*
841          * For linkback, we need one LCLA even with only one link, because we
842          * can't link back to the one in LCPA space
843          */
844         if (linkback || (lli_len - lli_current > 1)) {
845                 /*
846                  * If the channel is expected to use only soft_lli don't
847                  * allocate a lcla. This is to avoid a HW issue that exists
848                  * in some controller during a peripheral to memory transfer
849                  * that uses linked lists.
850                  */
851                 if (!(chan->phy_chan->use_soft_lli &&
852                         chan->dma_cfg.dir == DMA_DEV_TO_MEM))
853                         curr_lcla = d40_lcla_alloc_one(chan, desc);
854
855                 first_lcla = curr_lcla;
856         }
857
858         /*
859          * For linkback, we normally load the LCPA in the loop since we need to
860          * link it to the second LCLA and not the first.  However, if we
861          * couldn't even get a first LCLA, then we have to run in LCPA and
862          * reload manually.
863          */
864         if (!linkback || curr_lcla == -EINVAL) {
865                 unsigned int flags = 0;
866
867                 if (curr_lcla == -EINVAL)
868                         flags |= LLI_TERM_INT;
869
870                 d40_log_lli_lcpa_write(chan->lcpa,
871                                        &lli->dst[lli_current],
872                                        &lli->src[lli_current],
873                                        curr_lcla,
874                                        flags);
875                 lli_current++;
876         }
877
878         if (curr_lcla < 0)
879                 goto out;
880
881         for (; lli_current < lli_len; lli_current++) {
882                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
883                                            8 * curr_lcla * 2;
884                 struct d40_log_lli *lcla = pool->base + lcla_offset;
885                 unsigned int flags = 0;
886                 int next_lcla;
887
888                 if (lli_current + 1 < lli_len)
889                         next_lcla = d40_lcla_alloc_one(chan, desc);
890                 else
891                         next_lcla = linkback ? first_lcla : -EINVAL;
892
893                 if (cyclic || next_lcla == -EINVAL)
894                         flags |= LLI_TERM_INT;
895
896                 if (linkback && curr_lcla == first_lcla) {
897                         /* First link goes in both LCPA and LCLA */
898                         d40_log_lli_lcpa_write(chan->lcpa,
899                                                &lli->dst[lli_current],
900                                                &lli->src[lli_current],
901                                                next_lcla, flags);
902                 }
903
904                 /*
905                  * One unused LCLA in the cyclic case if the very first
906                  * next_lcla fails...
907                  */
908                 d40_log_lli_lcla_write(lcla,
909                                        &lli->dst[lli_current],
910                                        &lli->src[lli_current],
911                                        next_lcla, flags);
912
913                 /*
914                  * Cache maintenance is not needed if lcla is
915                  * mapped in esram
916                  */
917                 if (!use_esram_lcla) {
918                         dma_sync_single_range_for_device(chan->base->dev,
919                                                 pool->dma_addr, lcla_offset,
920                                                 2 * sizeof(struct d40_log_lli),
921                                                 DMA_TO_DEVICE);
922                 }
923                 curr_lcla = next_lcla;
924
925                 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
926                         lli_current++;
927                         break;
928                 }
929         }
930
931 out:
932         desc->lli_current = lli_current;
933 }
934
935 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
936 {
937         if (chan_is_physical(d40c)) {
938                 d40_phy_lli_load(d40c, d40d);
939                 d40d->lli_current = d40d->lli_len;
940         } else
941                 d40_log_lli_to_lcxa(d40c, d40d);
942 }
943
944 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
945 {
946         struct d40_desc *d;
947
948         if (list_empty(&d40c->active))
949                 return NULL;
950
951         d = list_first_entry(&d40c->active,
952                              struct d40_desc,
953                              node);
954         return d;
955 }
956
957 /* remove desc from current queue and add it to the pending_queue */
958 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
959 {
960         d40_desc_remove(desc);
961         desc->is_in_client_list = false;
962         list_add_tail(&desc->node, &d40c->pending_queue);
963 }
964
965 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
966 {
967         struct d40_desc *d;
968
969         if (list_empty(&d40c->pending_queue))
970                 return NULL;
971
972         d = list_first_entry(&d40c->pending_queue,
973                              struct d40_desc,
974                              node);
975         return d;
976 }
977
978 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
979 {
980         struct d40_desc *d;
981
982         if (list_empty(&d40c->queue))
983                 return NULL;
984
985         d = list_first_entry(&d40c->queue,
986                              struct d40_desc,
987                              node);
988         return d;
989 }
990
991 static struct d40_desc *d40_first_done(struct d40_chan *d40c)
992 {
993         if (list_empty(&d40c->done))
994                 return NULL;
995
996         return list_first_entry(&d40c->done, struct d40_desc, node);
997 }
998
999 static int d40_psize_2_burst_size(bool is_log, int psize)
1000 {
1001         if (is_log) {
1002                 if (psize == STEDMA40_PSIZE_LOG_1)
1003                         return 1;
1004         } else {
1005                 if (psize == STEDMA40_PSIZE_PHY_1)
1006                         return 1;
1007         }
1008
1009         return 2 << psize;
1010 }
1011
1012 /*
1013  * The dma only supports transmitting packages up to
1014  * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1015  *
1016  * Calculate the total number of dma elements required to send the entire sg list.
1017  */
1018 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
1019 {
1020         int dmalen;
1021         u32 max_w = max(data_width1, data_width2);
1022         u32 min_w = min(data_width1, data_width2);
1023         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE * min_w, max_w);
1024
1025         if (seg_max > STEDMA40_MAX_SEG_SIZE)
1026                 seg_max -= max_w;
1027
1028         if (!IS_ALIGNED(size, max_w))
1029                 return -EINVAL;
1030
1031         if (size <= seg_max)
1032                 dmalen = 1;
1033         else {
1034                 dmalen = size / seg_max;
1035                 if (dmalen * seg_max < size)
1036                         dmalen++;
1037         }
1038         return dmalen;
1039 }
1040
1041 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
1042                            u32 data_width1, u32 data_width2)
1043 {
1044         struct scatterlist *sg;
1045         int i;
1046         int len = 0;
1047         int ret;
1048
1049         for_each_sg(sgl, sg, sg_len, i) {
1050                 ret = d40_size_2_dmalen(sg_dma_len(sg),
1051                                         data_width1, data_width2);
1052                 if (ret < 0)
1053                         return ret;
1054                 len += ret;
1055         }
1056         return len;
1057 }
1058
1059
1060 #ifdef CONFIG_PM
1061 static void dma40_backup(void __iomem *baseaddr, u32 *backup,
1062                          u32 *regaddr, int num, bool save)
1063 {
1064         int i;
1065
1066         for (i = 0; i < num; i++) {
1067                 void __iomem *addr = baseaddr + regaddr[i];
1068
1069                 if (save)
1070                         backup[i] = readl_relaxed(addr);
1071                 else
1072                         writel_relaxed(backup[i], addr);
1073         }
1074 }
1075
1076 static void d40_save_restore_registers(struct d40_base *base, bool save)
1077 {
1078         int i;
1079
1080         /* Save/Restore channel specific registers */
1081         for (i = 0; i < base->num_phy_chans; i++) {
1082                 void __iomem *addr;
1083                 int idx;
1084
1085                 if (base->phy_res[i].reserved)
1086                         continue;
1087
1088                 addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA;
1089                 idx = i * ARRAY_SIZE(d40_backup_regs_chan);
1090
1091                 dma40_backup(addr, &base->reg_val_backup_chan[idx],
1092                              d40_backup_regs_chan,
1093                              ARRAY_SIZE(d40_backup_regs_chan),
1094                              save);
1095         }
1096
1097         /* Save/Restore global registers */
1098         dma40_backup(base->virtbase, base->reg_val_backup,
1099                      d40_backup_regs, ARRAY_SIZE(d40_backup_regs),
1100                      save);
1101
1102         /* Save/Restore registers only existing on dma40 v3 and later */
1103         if (base->gen_dmac.backup)
1104                 dma40_backup(base->virtbase, base->reg_val_backup_v4,
1105                              base->gen_dmac.backup,
1106                         base->gen_dmac.backup_size,
1107                         save);
1108 }
1109 #else
1110 static void d40_save_restore_registers(struct d40_base *base, bool save)
1111 {
1112 }
1113 #endif
1114
1115 static int __d40_execute_command_phy(struct d40_chan *d40c,
1116                                      enum d40_command command)
1117 {
1118         u32 status;
1119         int i;
1120         void __iomem *active_reg;
1121         int ret = 0;
1122         unsigned long flags;
1123         u32 wmask;
1124
1125         if (command == D40_DMA_STOP) {
1126                 ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ);
1127                 if (ret)
1128                         return ret;
1129         }
1130
1131         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
1132
1133         if (d40c->phy_chan->num % 2 == 0)
1134                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1135         else
1136                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1137
1138         if (command == D40_DMA_SUSPEND_REQ) {
1139                 status = (readl(active_reg) &
1140                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1141                         D40_CHAN_POS(d40c->phy_chan->num);
1142
1143                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1144                         goto done;
1145         }
1146
1147         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
1148         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
1149                active_reg);
1150
1151         if (command == D40_DMA_SUSPEND_REQ) {
1152
1153                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
1154                         status = (readl(active_reg) &
1155                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1156                                 D40_CHAN_POS(d40c->phy_chan->num);
1157
1158                         cpu_relax();
1159                         /*
1160                          * Reduce the number of bus accesses while
1161                          * waiting for the DMA to suspend.
1162                          */
1163                         udelay(3);
1164
1165                         if (status == D40_DMA_STOP ||
1166                             status == D40_DMA_SUSPENDED)
1167                                 break;
1168                 }
1169
1170                 if (i == D40_SUSPEND_MAX_IT) {
1171                         chan_err(d40c,
1172                                 "unable to suspend the chl %d (log: %d) status %x\n",
1173                                 d40c->phy_chan->num, d40c->log_num,
1174                                 status);
1175                         dump_stack();
1176                         ret = -EBUSY;
1177                 }
1178
1179         }
1180 done:
1181         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
1182         return ret;
1183 }
1184
1185 static void d40_term_all(struct d40_chan *d40c)
1186 {
1187         struct d40_desc *d40d;
1188         struct d40_desc *_d;
1189
1190         /* Release completed descriptors */
1191         while ((d40d = d40_first_done(d40c))) {
1192                 d40_desc_remove(d40d);
1193                 d40_desc_free(d40c, d40d);
1194         }
1195
1196         /* Release active descriptors */
1197         while ((d40d = d40_first_active_get(d40c))) {
1198                 d40_desc_remove(d40d);
1199                 d40_desc_free(d40c, d40d);
1200         }
1201
1202         /* Release queued descriptors waiting for transfer */
1203         while ((d40d = d40_first_queued(d40c))) {
1204                 d40_desc_remove(d40d);
1205                 d40_desc_free(d40c, d40d);
1206         }
1207
1208         /* Release pending descriptors */
1209         while ((d40d = d40_first_pending(d40c))) {
1210                 d40_desc_remove(d40d);
1211                 d40_desc_free(d40c, d40d);
1212         }
1213
1214         /* Release client owned descriptors */
1215         if (!list_empty(&d40c->client))
1216                 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
1217                         d40_desc_remove(d40d);
1218                         d40_desc_free(d40c, d40d);
1219                 }
1220
1221         /* Release descriptors in prepare queue */
1222         if (!list_empty(&d40c->prepare_queue))
1223                 list_for_each_entry_safe(d40d, _d,
1224                                          &d40c->prepare_queue, node) {
1225                         d40_desc_remove(d40d);
1226                         d40_desc_free(d40c, d40d);
1227                 }
1228
1229         d40c->pending_tx = 0;
1230 }
1231
1232 static void __d40_config_set_event(struct d40_chan *d40c,
1233                                    enum d40_events event_type, u32 event,
1234                                    int reg)
1235 {
1236         void __iomem *addr = chan_base(d40c) + reg;
1237         int tries;
1238         u32 status;
1239
1240         switch (event_type) {
1241
1242         case D40_DEACTIVATE_EVENTLINE:
1243
1244                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
1245                        | ~D40_EVENTLINE_MASK(event), addr);
1246                 break;
1247
1248         case D40_SUSPEND_REQ_EVENTLINE:
1249                 status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1250                           D40_EVENTLINE_POS(event);
1251
1252                 if (status == D40_DEACTIVATE_EVENTLINE ||
1253                     status == D40_SUSPEND_REQ_EVENTLINE)
1254                         break;
1255
1256                 writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event))
1257                        | ~D40_EVENTLINE_MASK(event), addr);
1258
1259                 for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) {
1260
1261                         status = (readl(addr) & D40_EVENTLINE_MASK(event)) >>
1262                                   D40_EVENTLINE_POS(event);
1263
1264                         cpu_relax();
1265                         /*
1266                          * Reduce the number of bus accesses while
1267                          * waiting for the DMA to suspend.
1268                          */
1269                         udelay(3);
1270
1271                         if (status == D40_DEACTIVATE_EVENTLINE)
1272                                 break;
1273                 }
1274
1275                 if (tries == D40_SUSPEND_MAX_IT) {
1276                         chan_err(d40c,
1277                                 "unable to stop the event_line chl %d (log: %d)"
1278                                 "status %x\n", d40c->phy_chan->num,
1279                                  d40c->log_num, status);
1280                 }
1281                 break;
1282
1283         case D40_ACTIVATE_EVENTLINE:
1284         /*
1285          * The hardware sometimes doesn't register the enable when src and dst
1286          * event lines are active on the same logical channel.  Retry to ensure
1287          * it does.  Usually only one retry is sufficient.
1288          */
1289                 tries = 100;
1290                 while (--tries) {
1291                         writel((D40_ACTIVATE_EVENTLINE <<
1292                                 D40_EVENTLINE_POS(event)) |
1293                                 ~D40_EVENTLINE_MASK(event), addr);
1294
1295                         if (readl(addr) & D40_EVENTLINE_MASK(event))
1296                                 break;
1297                 }
1298
1299                 if (tries != 99)
1300                         dev_dbg(chan2dev(d40c),
1301                                 "[%s] workaround enable S%cLNK (%d tries)\n",
1302                                 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
1303                                 100 - tries);
1304
1305                 WARN_ON(!tries);
1306                 break;
1307
1308         case D40_ROUND_EVENTLINE:
1309                 BUG();
1310                 break;
1311
1312         }
1313 }
1314
1315 static void d40_config_set_event(struct d40_chan *d40c,
1316                                  enum d40_events event_type)
1317 {
1318         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
1319
1320         /* Enable event line connected to device (or memcpy) */
1321         if ((d40c->dma_cfg.dir == DMA_DEV_TO_MEM) ||
1322             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
1323                 __d40_config_set_event(d40c, event_type, event,
1324                                        D40_CHAN_REG_SSLNK);
1325
1326         if (d40c->dma_cfg.dir !=  DMA_DEV_TO_MEM)
1327                 __d40_config_set_event(d40c, event_type, event,
1328                                        D40_CHAN_REG_SDLNK);
1329 }
1330
1331 static u32 d40_chan_has_events(struct d40_chan *d40c)
1332 {
1333         void __iomem *chanbase = chan_base(d40c);
1334         u32 val;
1335
1336         val = readl(chanbase + D40_CHAN_REG_SSLNK);
1337         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
1338
1339         return val;
1340 }
1341
1342 static int
1343 __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command)
1344 {
1345         unsigned long flags;
1346         int ret = 0;
1347         u32 active_status;
1348         void __iomem *active_reg;
1349
1350         if (d40c->phy_chan->num % 2 == 0)
1351                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1352         else
1353                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1354
1355
1356         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
1357
1358         switch (command) {
1359         case D40_DMA_STOP:
1360         case D40_DMA_SUSPEND_REQ:
1361
1362                 active_status = (readl(active_reg) &
1363                                  D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1364                                  D40_CHAN_POS(d40c->phy_chan->num);
1365
1366                 if (active_status == D40_DMA_RUN)
1367                         d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE);
1368                 else
1369                         d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE);
1370
1371                 if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP))
1372                         ret = __d40_execute_command_phy(d40c, command);
1373
1374                 break;
1375
1376         case D40_DMA_RUN:
1377
1378                 d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE);
1379                 ret = __d40_execute_command_phy(d40c, command);
1380                 break;
1381
1382         case D40_DMA_SUSPENDED:
1383                 BUG();
1384                 break;
1385         }
1386
1387         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
1388         return ret;
1389 }
1390
1391 static int d40_channel_execute_command(struct d40_chan *d40c,
1392                                        enum d40_command command)
1393 {
1394         if (chan_is_logical(d40c))
1395                 return __d40_execute_command_log(d40c, command);
1396         else
1397                 return __d40_execute_command_phy(d40c, command);
1398 }
1399
1400 static u32 d40_get_prmo(struct d40_chan *d40c)
1401 {
1402         static const unsigned int phy_map[] = {
1403                 [STEDMA40_PCHAN_BASIC_MODE]
1404                         = D40_DREG_PRMO_PCHAN_BASIC,
1405                 [STEDMA40_PCHAN_MODULO_MODE]
1406                         = D40_DREG_PRMO_PCHAN_MODULO,
1407                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
1408                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
1409         };
1410         static const unsigned int log_map[] = {
1411                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
1412                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
1413                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
1414                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
1415                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
1416                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
1417         };
1418
1419         if (chan_is_physical(d40c))
1420                 return phy_map[d40c->dma_cfg.mode_opt];
1421         else
1422                 return log_map[d40c->dma_cfg.mode_opt];
1423 }
1424
1425 static void d40_config_write(struct d40_chan *d40c)
1426 {
1427         u32 addr_base;
1428         u32 var;
1429
1430         /* Odd addresses are even addresses + 4 */
1431         addr_base = (d40c->phy_chan->num % 2) * 4;
1432         /* Setup channel mode to logical or physical */
1433         var = ((u32)(chan_is_logical(d40c)) + 1) <<
1434                 D40_CHAN_POS(d40c->phy_chan->num);
1435         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
1436
1437         /* Setup operational mode option register */
1438         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
1439
1440         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
1441
1442         if (chan_is_logical(d40c)) {
1443                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
1444                            & D40_SREG_ELEM_LOG_LIDX_MASK;
1445                 void __iomem *chanbase = chan_base(d40c);
1446
1447                 /* Set default config for CFG reg */
1448                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
1449                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
1450
1451                 /* Set LIDX for lcla */
1452                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
1453                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
1454
1455                 /* Clear LNK which will be used by d40_chan_has_events() */
1456                 writel(0, chanbase + D40_CHAN_REG_SSLNK);
1457                 writel(0, chanbase + D40_CHAN_REG_SDLNK);
1458         }
1459 }
1460
1461 static u32 d40_residue(struct d40_chan *d40c)
1462 {
1463         u32 num_elt;
1464
1465         if (chan_is_logical(d40c))
1466                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
1467                         >> D40_MEM_LCSP2_ECNT_POS;
1468         else {
1469                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
1470                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
1471                           >> D40_SREG_ELEM_PHY_ECNT_POS;
1472         }
1473
1474         return num_elt * d40c->dma_cfg.dst_info.data_width;
1475 }
1476
1477 static bool d40_tx_is_linked(struct d40_chan *d40c)
1478 {
1479         bool is_link;
1480
1481         if (chan_is_logical(d40c))
1482                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
1483         else
1484                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1485                           & D40_SREG_LNK_PHYS_LNK_MASK;
1486
1487         return is_link;
1488 }
1489
1490 static int d40_pause(struct d40_chan *d40c)
1491 {
1492         int res = 0;
1493         unsigned long flags;
1494
1495         if (!d40c->busy)
1496                 return 0;
1497
1498         pm_runtime_get_sync(d40c->base->dev);
1499         spin_lock_irqsave(&d40c->lock, flags);
1500
1501         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1502
1503         pm_runtime_mark_last_busy(d40c->base->dev);
1504         pm_runtime_put_autosuspend(d40c->base->dev);
1505         spin_unlock_irqrestore(&d40c->lock, flags);
1506         return res;
1507 }
1508
1509 static int d40_resume(struct d40_chan *d40c)
1510 {
1511         int res = 0;
1512         unsigned long flags;
1513
1514         if (!d40c->busy)
1515                 return 0;
1516
1517         spin_lock_irqsave(&d40c->lock, flags);
1518         pm_runtime_get_sync(d40c->base->dev);
1519
1520         /* If bytes left to transfer or linked tx resume job */
1521         if (d40_residue(d40c) || d40_tx_is_linked(d40c))
1522                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1523
1524         pm_runtime_mark_last_busy(d40c->base->dev);
1525         pm_runtime_put_autosuspend(d40c->base->dev);
1526         spin_unlock_irqrestore(&d40c->lock, flags);
1527         return res;
1528 }
1529
1530 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1531 {
1532         struct d40_chan *d40c = container_of(tx->chan,
1533                                              struct d40_chan,
1534                                              chan);
1535         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1536         unsigned long flags;
1537         dma_cookie_t cookie;
1538
1539         spin_lock_irqsave(&d40c->lock, flags);
1540         cookie = dma_cookie_assign(tx);
1541         d40_desc_queue(d40c, d40d);
1542         spin_unlock_irqrestore(&d40c->lock, flags);
1543
1544         return cookie;
1545 }
1546
1547 static int d40_start(struct d40_chan *d40c)
1548 {
1549         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1550 }
1551
1552 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1553 {
1554         struct d40_desc *d40d;
1555         int err;
1556
1557         /* Start queued jobs, if any */
1558         d40d = d40_first_queued(d40c);
1559
1560         if (d40d != NULL) {
1561                 if (!d40c->busy) {
1562                         d40c->busy = true;
1563                         pm_runtime_get_sync(d40c->base->dev);
1564                 }
1565
1566                 /* Remove from queue */
1567                 d40_desc_remove(d40d);
1568
1569                 /* Add to active queue */
1570                 d40_desc_submit(d40c, d40d);
1571
1572                 /* Initiate DMA job */
1573                 d40_desc_load(d40c, d40d);
1574
1575                 /* Start dma job */
1576                 err = d40_start(d40c);
1577
1578                 if (err)
1579                         return NULL;
1580         }
1581
1582         return d40d;
1583 }
1584
1585 /* called from interrupt context */
1586 static void dma_tc_handle(struct d40_chan *d40c)
1587 {
1588         struct d40_desc *d40d;
1589
1590         /* Get first active entry from list */
1591         d40d = d40_first_active_get(d40c);
1592
1593         if (d40d == NULL)
1594                 return;
1595
1596         if (d40d->cyclic) {
1597                 /*
1598                  * If this was a paritially loaded list, we need to reloaded
1599                  * it, and only when the list is completed.  We need to check
1600                  * for done because the interrupt will hit for every link, and
1601                  * not just the last one.
1602                  */
1603                 if (d40d->lli_current < d40d->lli_len
1604                     && !d40_tx_is_linked(d40c)
1605                     && !d40_residue(d40c)) {
1606                         d40_lcla_free_all(d40c, d40d);
1607                         d40_desc_load(d40c, d40d);
1608                         (void) d40_start(d40c);
1609
1610                         if (d40d->lli_current == d40d->lli_len)
1611                                 d40d->lli_current = 0;
1612                 }
1613         } else {
1614                 d40_lcla_free_all(d40c, d40d);
1615
1616                 if (d40d->lli_current < d40d->lli_len) {
1617                         d40_desc_load(d40c, d40d);
1618                         /* Start dma job */
1619                         (void) d40_start(d40c);
1620                         return;
1621                 }
1622
1623                 if (d40_queue_start(d40c) == NULL) {
1624                         d40c->busy = false;
1625
1626                         pm_runtime_mark_last_busy(d40c->base->dev);
1627                         pm_runtime_put_autosuspend(d40c->base->dev);
1628                 }
1629
1630                 d40_desc_remove(d40d);
1631                 d40_desc_done(d40c, d40d);
1632         }
1633
1634         d40c->pending_tx++;
1635         tasklet_schedule(&d40c->tasklet);
1636
1637 }
1638
1639 static void dma_tasklet(unsigned long data)
1640 {
1641         struct d40_chan *d40c = (struct d40_chan *) data;
1642         struct d40_desc *d40d;
1643         unsigned long flags;
1644         bool callback_active;
1645         dma_async_tx_callback callback;
1646         void *callback_param;
1647
1648         spin_lock_irqsave(&d40c->lock, flags);
1649
1650         /* Get first entry from the done list */
1651         d40d = d40_first_done(d40c);
1652         if (d40d == NULL) {
1653                 /* Check if we have reached here for cyclic job */
1654                 d40d = d40_first_active_get(d40c);
1655                 if (d40d == NULL || !d40d->cyclic)
1656                         goto err;
1657         }
1658
1659         if (!d40d->cyclic)
1660                 dma_cookie_complete(&d40d->txd);
1661
1662         /*
1663          * If terminating a channel pending_tx is set to zero.
1664          * This prevents any finished active jobs to return to the client.
1665          */
1666         if (d40c->pending_tx == 0) {
1667                 spin_unlock_irqrestore(&d40c->lock, flags);
1668                 return;
1669         }
1670
1671         /* Callback to client */
1672         callback_active = !!(d40d->txd.flags & DMA_PREP_INTERRUPT);
1673         callback = d40d->txd.callback;
1674         callback_param = d40d->txd.callback_param;
1675
1676         if (!d40d->cyclic) {
1677                 if (async_tx_test_ack(&d40d->txd)) {
1678                         d40_desc_remove(d40d);
1679                         d40_desc_free(d40c, d40d);
1680                 } else if (!d40d->is_in_client_list) {
1681                         d40_desc_remove(d40d);
1682                         d40_lcla_free_all(d40c, d40d);
1683                         list_add_tail(&d40d->node, &d40c->client);
1684                         d40d->is_in_client_list = true;
1685                 }
1686         }
1687
1688         d40c->pending_tx--;
1689
1690         if (d40c->pending_tx)
1691                 tasklet_schedule(&d40c->tasklet);
1692
1693         spin_unlock_irqrestore(&d40c->lock, flags);
1694
1695         if (callback_active && callback)
1696                 callback(callback_param);
1697
1698         return;
1699
1700 err:
1701         /* Rescue manouver if receiving double interrupts */
1702         if (d40c->pending_tx > 0)
1703                 d40c->pending_tx--;
1704         spin_unlock_irqrestore(&d40c->lock, flags);
1705 }
1706
1707 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1708 {
1709         int i;
1710         u32 idx;
1711         u32 row;
1712         long chan = -1;
1713         struct d40_chan *d40c;
1714         unsigned long flags;
1715         struct d40_base *base = data;
1716         u32 regs[base->gen_dmac.il_size];
1717         struct d40_interrupt_lookup *il = base->gen_dmac.il;
1718         u32 il_size = base->gen_dmac.il_size;
1719
1720         spin_lock_irqsave(&base->interrupt_lock, flags);
1721
1722         /* Read interrupt status of both logical and physical channels */
1723         for (i = 0; i < il_size; i++)
1724                 regs[i] = readl(base->virtbase + il[i].src);
1725
1726         for (;;) {
1727
1728                 chan = find_next_bit((unsigned long *)regs,
1729                                      BITS_PER_LONG * il_size, chan + 1);
1730
1731                 /* No more set bits found? */
1732                 if (chan == BITS_PER_LONG * il_size)
1733                         break;
1734
1735                 row = chan / BITS_PER_LONG;
1736                 idx = chan & (BITS_PER_LONG - 1);
1737
1738                 if (il[row].offset == D40_PHY_CHAN)
1739                         d40c = base->lookup_phy_chans[idx];
1740                 else
1741                         d40c = base->lookup_log_chans[il[row].offset + idx];
1742
1743                 if (!d40c) {
1744                         /*
1745                          * No error because this can happen if something else
1746                          * in the system is using the channel.
1747                          */
1748                         continue;
1749                 }
1750
1751                 /* ACK interrupt */
1752                 writel(BIT(idx), base->virtbase + il[row].clr);
1753
1754                 spin_lock(&d40c->lock);
1755
1756                 if (!il[row].is_error)
1757                         dma_tc_handle(d40c);
1758                 else
1759                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1760                                 chan, il[row].offset, idx);
1761
1762                 spin_unlock(&d40c->lock);
1763         }
1764
1765         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1766
1767         return IRQ_HANDLED;
1768 }
1769
1770 static int d40_validate_conf(struct d40_chan *d40c,
1771                              struct stedma40_chan_cfg *conf)
1772 {
1773         int res = 0;
1774         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1775
1776         if (!conf->dir) {
1777                 chan_err(d40c, "Invalid direction.\n");
1778                 res = -EINVAL;
1779         }
1780
1781         if ((is_log && conf->dev_type > d40c->base->num_log_chans)  ||
1782             (!is_log && conf->dev_type > d40c->base->num_phy_chans) ||
1783             (conf->dev_type < 0)) {
1784                 chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type);
1785                 res = -EINVAL;
1786         }
1787
1788         if (conf->dir == DMA_DEV_TO_DEV) {
1789                 /*
1790                  * DMAC HW supports it. Will be added to this driver,
1791                  * in case any dma client requires it.
1792                  */
1793                 chan_err(d40c, "periph to periph not supported\n");
1794                 res = -EINVAL;
1795         }
1796
1797         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1798             conf->src_info.data_width !=
1799             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1800             conf->dst_info.data_width) {
1801                 /*
1802                  * The DMAC hardware only supports
1803                  * src (burst x width) == dst (burst x width)
1804                  */
1805
1806                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1807                 res = -EINVAL;
1808         }
1809
1810         return res;
1811 }
1812
1813 static bool d40_alloc_mask_set(struct d40_phy_res *phy,
1814                                bool is_src, int log_event_line, bool is_log,
1815                                bool *first_user)
1816 {
1817         unsigned long flags;
1818         spin_lock_irqsave(&phy->lock, flags);
1819
1820         *first_user = ((phy->allocated_src | phy->allocated_dst)
1821                         == D40_ALLOC_FREE);
1822
1823         if (!is_log) {
1824                 /* Physical interrupts are masked per physical full channel */
1825                 if (phy->allocated_src == D40_ALLOC_FREE &&
1826                     phy->allocated_dst == D40_ALLOC_FREE) {
1827                         phy->allocated_dst = D40_ALLOC_PHY;
1828                         phy->allocated_src = D40_ALLOC_PHY;
1829                         goto found;
1830                 } else
1831                         goto not_found;
1832         }
1833
1834         /* Logical channel */
1835         if (is_src) {
1836                 if (phy->allocated_src == D40_ALLOC_PHY)
1837                         goto not_found;
1838
1839                 if (phy->allocated_src == D40_ALLOC_FREE)
1840                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1841
1842                 if (!(phy->allocated_src & BIT(log_event_line))) {
1843                         phy->allocated_src |= BIT(log_event_line);
1844                         goto found;
1845                 } else
1846                         goto not_found;
1847         } else {
1848                 if (phy->allocated_dst == D40_ALLOC_PHY)
1849                         goto not_found;
1850
1851                 if (phy->allocated_dst == D40_ALLOC_FREE)
1852                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1853
1854                 if (!(phy->allocated_dst & BIT(log_event_line))) {
1855                         phy->allocated_dst |= BIT(log_event_line);
1856                         goto found;
1857                 } else
1858                         goto not_found;
1859         }
1860
1861 not_found:
1862         spin_unlock_irqrestore(&phy->lock, flags);
1863         return false;
1864 found:
1865         spin_unlock_irqrestore(&phy->lock, flags);
1866         return true;
1867 }
1868
1869 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1870                                int log_event_line)
1871 {
1872         unsigned long flags;
1873         bool is_free = false;
1874
1875         spin_lock_irqsave(&phy->lock, flags);
1876         if (!log_event_line) {
1877                 phy->allocated_dst = D40_ALLOC_FREE;
1878                 phy->allocated_src = D40_ALLOC_FREE;
1879                 is_free = true;
1880                 goto out;
1881         }
1882
1883         /* Logical channel */
1884         if (is_src) {
1885                 phy->allocated_src &= ~BIT(log_event_line);
1886                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1887                         phy->allocated_src = D40_ALLOC_FREE;
1888         } else {
1889                 phy->allocated_dst &= ~BIT(log_event_line);
1890                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1891                         phy->allocated_dst = D40_ALLOC_FREE;
1892         }
1893
1894         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1895                    D40_ALLOC_FREE);
1896
1897 out:
1898         spin_unlock_irqrestore(&phy->lock, flags);
1899
1900         return is_free;
1901 }
1902
1903 static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user)
1904 {
1905         int dev_type = d40c->dma_cfg.dev_type;
1906         int event_group;
1907         int event_line;
1908         struct d40_phy_res *phys;
1909         int i;
1910         int j;
1911         int log_num;
1912         int num_phy_chans;
1913         bool is_src;
1914         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1915
1916         phys = d40c->base->phy_res;
1917         num_phy_chans = d40c->base->num_phy_chans;
1918
1919         if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
1920                 log_num = 2 * dev_type;
1921                 is_src = true;
1922         } else if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
1923                    d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1924                 /* dst event lines are used for logical memcpy */
1925                 log_num = 2 * dev_type + 1;
1926                 is_src = false;
1927         } else
1928                 return -EINVAL;
1929
1930         event_group = D40_TYPE_TO_GROUP(dev_type);
1931         event_line = D40_TYPE_TO_EVENT(dev_type);
1932
1933         if (!is_log) {
1934                 if (d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
1935                         /* Find physical half channel */
1936                         if (d40c->dma_cfg.use_fixed_channel) {
1937                                 i = d40c->dma_cfg.phy_channel;
1938                                 if (d40_alloc_mask_set(&phys[i], is_src,
1939                                                        0, is_log,
1940                                                        first_phy_user))
1941                                         goto found_phy;
1942                         } else {
1943                                 for (i = 0; i < num_phy_chans; i++) {
1944                                         if (d40_alloc_mask_set(&phys[i], is_src,
1945                                                        0, is_log,
1946                                                        first_phy_user))
1947                                                 goto found_phy;
1948                                 }
1949                         }
1950                 } else
1951                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1952                                 int phy_num = j  + event_group * 2;
1953                                 for (i = phy_num; i < phy_num + 2; i++) {
1954                                         if (d40_alloc_mask_set(&phys[i],
1955                                                                is_src,
1956                                                                0,
1957                                                                is_log,
1958                                                                first_phy_user))
1959                                                 goto found_phy;
1960                                 }
1961                         }
1962                 return -EINVAL;
1963 found_phy:
1964                 d40c->phy_chan = &phys[i];
1965                 d40c->log_num = D40_PHY_CHAN;
1966                 goto out;
1967         }
1968         if (dev_type == -1)
1969                 return -EINVAL;
1970
1971         /* Find logical channel */
1972         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1973                 int phy_num = j + event_group * 2;
1974
1975                 if (d40c->dma_cfg.use_fixed_channel) {
1976                         i = d40c->dma_cfg.phy_channel;
1977
1978                         if ((i != phy_num) && (i != phy_num + 1)) {
1979                                 dev_err(chan2dev(d40c),
1980                                         "invalid fixed phy channel %d\n", i);
1981                                 return -EINVAL;
1982                         }
1983
1984                         if (d40_alloc_mask_set(&phys[i], is_src, event_line,
1985                                                is_log, first_phy_user))
1986                                 goto found_log;
1987
1988                         dev_err(chan2dev(d40c),
1989                                 "could not allocate fixed phy channel %d\n", i);
1990                         return -EINVAL;
1991                 }
1992
1993                 /*
1994                  * Spread logical channels across all available physical rather
1995                  * than pack every logical channel at the first available phy
1996                  * channels.
1997                  */
1998                 if (is_src) {
1999                         for (i = phy_num; i < phy_num + 2; i++) {
2000                                 if (d40_alloc_mask_set(&phys[i], is_src,
2001                                                        event_line, is_log,
2002                                                        first_phy_user))
2003                                         goto found_log;
2004                         }
2005                 } else {
2006                         for (i = phy_num + 1; i >= phy_num; i--) {
2007                                 if (d40_alloc_mask_set(&phys[i], is_src,
2008                                                        event_line, is_log,
2009                                                        first_phy_user))
2010                                         goto found_log;
2011                         }
2012                 }
2013         }
2014         return -EINVAL;
2015
2016 found_log:
2017         d40c->phy_chan = &phys[i];
2018         d40c->log_num = log_num;
2019 out:
2020
2021         if (is_log)
2022                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
2023         else
2024                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
2025
2026         return 0;
2027
2028 }
2029
2030 static int d40_config_memcpy(struct d40_chan *d40c)
2031 {
2032         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
2033
2034         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
2035                 d40c->dma_cfg = dma40_memcpy_conf_log;
2036                 d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id];
2037
2038                 d40_log_cfg(&d40c->dma_cfg,
2039                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2040
2041         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
2042                    dma_has_cap(DMA_SLAVE, cap)) {
2043                 d40c->dma_cfg = dma40_memcpy_conf_phy;
2044
2045                 /* Generate interrrupt at end of transfer or relink. */
2046                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_TIM_POS);
2047
2048                 /* Generate interrupt on error. */
2049                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2050                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_EIM_POS);
2051
2052         } else {
2053                 chan_err(d40c, "No memcpy\n");
2054                 return -EINVAL;
2055         }
2056
2057         return 0;
2058 }
2059
2060 static int d40_free_dma(struct d40_chan *d40c)
2061 {
2062
2063         int res = 0;
2064         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2065         struct d40_phy_res *phy = d40c->phy_chan;
2066         bool is_src;
2067
2068         /* Terminate all queued and active transfers */
2069         d40_term_all(d40c);
2070
2071         if (phy == NULL) {
2072                 chan_err(d40c, "phy == null\n");
2073                 return -EINVAL;
2074         }
2075
2076         if (phy->allocated_src == D40_ALLOC_FREE &&
2077             phy->allocated_dst == D40_ALLOC_FREE) {
2078                 chan_err(d40c, "channel already free\n");
2079                 return -EINVAL;
2080         }
2081
2082         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2083             d40c->dma_cfg.dir == DMA_MEM_TO_MEM)
2084                 is_src = false;
2085         else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2086                 is_src = true;
2087         else {
2088                 chan_err(d40c, "Unknown direction\n");
2089                 return -EINVAL;
2090         }
2091
2092         pm_runtime_get_sync(d40c->base->dev);
2093         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
2094         if (res) {
2095                 chan_err(d40c, "stop failed\n");
2096                 goto out;
2097         }
2098
2099         d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0);
2100
2101         if (chan_is_logical(d40c))
2102                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
2103         else
2104                 d40c->base->lookup_phy_chans[phy->num] = NULL;
2105
2106         if (d40c->busy) {
2107                 pm_runtime_mark_last_busy(d40c->base->dev);
2108                 pm_runtime_put_autosuspend(d40c->base->dev);
2109         }
2110
2111         d40c->busy = false;
2112         d40c->phy_chan = NULL;
2113         d40c->configured = false;
2114 out:
2115
2116         pm_runtime_mark_last_busy(d40c->base->dev);
2117         pm_runtime_put_autosuspend(d40c->base->dev);
2118         return res;
2119 }
2120
2121 static bool d40_is_paused(struct d40_chan *d40c)
2122 {
2123         void __iomem *chanbase = chan_base(d40c);
2124         bool is_paused = false;
2125         unsigned long flags;
2126         void __iomem *active_reg;
2127         u32 status;
2128         u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type);
2129
2130         spin_lock_irqsave(&d40c->lock, flags);
2131
2132         if (chan_is_physical(d40c)) {
2133                 if (d40c->phy_chan->num % 2 == 0)
2134                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
2135                 else
2136                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
2137
2138                 status = (readl(active_reg) &
2139                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
2140                         D40_CHAN_POS(d40c->phy_chan->num);
2141                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
2142                         is_paused = true;
2143
2144                 goto _exit;
2145         }
2146
2147         if (d40c->dma_cfg.dir == DMA_MEM_TO_DEV ||
2148             d40c->dma_cfg.dir == DMA_MEM_TO_MEM) {
2149                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
2150         } else if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM) {
2151                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
2152         } else {
2153                 chan_err(d40c, "Unknown direction\n");
2154                 goto _exit;
2155         }
2156
2157         status = (status & D40_EVENTLINE_MASK(event)) >>
2158                 D40_EVENTLINE_POS(event);
2159
2160         if (status != D40_DMA_RUN)
2161                 is_paused = true;
2162 _exit:
2163         spin_unlock_irqrestore(&d40c->lock, flags);
2164         return is_paused;
2165
2166 }
2167
2168 static u32 stedma40_residue(struct dma_chan *chan)
2169 {
2170         struct d40_chan *d40c =
2171                 container_of(chan, struct d40_chan, chan);
2172         u32 bytes_left;
2173         unsigned long flags;
2174
2175         spin_lock_irqsave(&d40c->lock, flags);
2176         bytes_left = d40_residue(d40c);
2177         spin_unlock_irqrestore(&d40c->lock, flags);
2178
2179         return bytes_left;
2180 }
2181
2182 static int
2183 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
2184                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2185                 unsigned int sg_len, dma_addr_t src_dev_addr,
2186                 dma_addr_t dst_dev_addr)
2187 {
2188         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2189         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2190         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2191         int ret;
2192
2193         ret = d40_log_sg_to_lli(sg_src, sg_len,
2194                                 src_dev_addr,
2195                                 desc->lli_log.src,
2196                                 chan->log_def.lcsp1,
2197                                 src_info->data_width,
2198                                 dst_info->data_width);
2199
2200         ret = d40_log_sg_to_lli(sg_dst, sg_len,
2201                                 dst_dev_addr,
2202                                 desc->lli_log.dst,
2203                                 chan->log_def.lcsp3,
2204                                 dst_info->data_width,
2205                                 src_info->data_width);
2206
2207         return ret < 0 ? ret : 0;
2208 }
2209
2210 static int
2211 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
2212                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
2213                 unsigned int sg_len, dma_addr_t src_dev_addr,
2214                 dma_addr_t dst_dev_addr)
2215 {
2216         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2217         struct stedma40_half_channel_info *src_info = &cfg->src_info;
2218         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
2219         unsigned long flags = 0;
2220         int ret;
2221
2222         if (desc->cyclic)
2223                 flags |= LLI_CYCLIC | LLI_TERM_INT;
2224
2225         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
2226                                 desc->lli_phy.src,
2227                                 virt_to_phys(desc->lli_phy.src),
2228                                 chan->src_def_cfg,
2229                                 src_info, dst_info, flags);
2230
2231         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
2232                                 desc->lli_phy.dst,
2233                                 virt_to_phys(desc->lli_phy.dst),
2234                                 chan->dst_def_cfg,
2235                                 dst_info, src_info, flags);
2236
2237         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
2238                                    desc->lli_pool.size, DMA_TO_DEVICE);
2239
2240         return ret < 0 ? ret : 0;
2241 }
2242
2243 static struct d40_desc *
2244 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
2245               unsigned int sg_len, unsigned long dma_flags)
2246 {
2247         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
2248         struct d40_desc *desc;
2249         int ret;
2250
2251         desc = d40_desc_get(chan);
2252         if (!desc)
2253                 return NULL;
2254
2255         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
2256                                         cfg->dst_info.data_width);
2257         if (desc->lli_len < 0) {
2258                 chan_err(chan, "Unaligned size\n");
2259                 goto err;
2260         }
2261
2262         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
2263         if (ret < 0) {
2264                 chan_err(chan, "Could not allocate lli\n");
2265                 goto err;
2266         }
2267
2268         desc->lli_current = 0;
2269         desc->txd.flags = dma_flags;
2270         desc->txd.tx_submit = d40_tx_submit;
2271
2272         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
2273
2274         return desc;
2275
2276 err:
2277         d40_desc_free(chan, desc);
2278         return NULL;
2279 }
2280
2281 static struct dma_async_tx_descriptor *
2282 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
2283             struct scatterlist *sg_dst, unsigned int sg_len,
2284             enum dma_transfer_direction direction, unsigned long dma_flags)
2285 {
2286         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
2287         dma_addr_t src_dev_addr = 0;
2288         dma_addr_t dst_dev_addr = 0;
2289         struct d40_desc *desc;
2290         unsigned long flags;
2291         int ret;
2292
2293         if (!chan->phy_chan) {
2294                 chan_err(chan, "Cannot prepare unallocated channel\n");
2295                 return NULL;
2296         }
2297
2298         spin_lock_irqsave(&chan->lock, flags);
2299
2300         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
2301         if (desc == NULL)
2302                 goto err;
2303
2304         if (sg_next(&sg_src[sg_len - 1]) == sg_src)
2305                 desc->cyclic = true;
2306
2307         if (direction == DMA_DEV_TO_MEM)
2308                 src_dev_addr = chan->runtime_addr;
2309         else if (direction == DMA_MEM_TO_DEV)
2310                 dst_dev_addr = chan->runtime_addr;
2311
2312         if (chan_is_logical(chan))
2313                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
2314                                       sg_len, src_dev_addr, dst_dev_addr);
2315         else
2316                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
2317                                       sg_len, src_dev_addr, dst_dev_addr);
2318
2319         if (ret) {
2320                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
2321                          chan_is_logical(chan) ? "log" : "phy", ret);
2322                 goto err;
2323         }
2324
2325         /*
2326          * add descriptor to the prepare queue in order to be able
2327          * to free them later in terminate_all
2328          */
2329         list_add_tail(&desc->node, &chan->prepare_queue);
2330
2331         spin_unlock_irqrestore(&chan->lock, flags);
2332
2333         return &desc->txd;
2334
2335 err:
2336         if (desc)
2337                 d40_desc_free(chan, desc);
2338         spin_unlock_irqrestore(&chan->lock, flags);
2339         return NULL;
2340 }
2341
2342 bool stedma40_filter(struct dma_chan *chan, void *data)
2343 {
2344         struct stedma40_chan_cfg *info = data;
2345         struct d40_chan *d40c =
2346                 container_of(chan, struct d40_chan, chan);
2347         int err;
2348
2349         if (data) {
2350                 err = d40_validate_conf(d40c, info);
2351                 if (!err)
2352                         d40c->dma_cfg = *info;
2353         } else
2354                 err = d40_config_memcpy(d40c);
2355
2356         if (!err)
2357                 d40c->configured = true;
2358
2359         return err == 0;
2360 }
2361 EXPORT_SYMBOL(stedma40_filter);
2362
2363 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
2364 {
2365         bool realtime = d40c->dma_cfg.realtime;
2366         bool highprio = d40c->dma_cfg.high_priority;
2367         u32 rtreg;
2368         u32 event = D40_TYPE_TO_EVENT(dev_type);
2369         u32 group = D40_TYPE_TO_GROUP(dev_type);
2370         u32 bit = BIT(event);
2371         u32 prioreg;
2372         struct d40_gen_dmac *dmac = &d40c->base->gen_dmac;
2373
2374         rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear;
2375         /*
2376          * Due to a hardware bug, in some cases a logical channel triggered by
2377          * a high priority destination event line can generate extra packet
2378          * transactions.
2379          *
2380          * The workaround is to not set the high priority level for the
2381          * destination event lines that trigger logical channels.
2382          */
2383         if (!src && chan_is_logical(d40c))
2384                 highprio = false;
2385
2386         prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear;
2387
2388         /* Destination event lines are stored in the upper halfword */
2389         if (!src)
2390                 bit <<= 16;
2391
2392         writel(bit, d40c->base->virtbase + prioreg + group * 4);
2393         writel(bit, d40c->base->virtbase + rtreg + group * 4);
2394 }
2395
2396 static void d40_set_prio_realtime(struct d40_chan *d40c)
2397 {
2398         if (d40c->base->rev < 3)
2399                 return;
2400
2401         if ((d40c->dma_cfg.dir ==  DMA_DEV_TO_MEM) ||
2402             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2403                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true);
2404
2405         if ((d40c->dma_cfg.dir ==  DMA_MEM_TO_DEV) ||
2406             (d40c->dma_cfg.dir == DMA_DEV_TO_DEV))
2407                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false);
2408 }
2409
2410 #define D40_DT_FLAGS_MODE(flags)       ((flags >> 0) & 0x1)
2411 #define D40_DT_FLAGS_DIR(flags)        ((flags >> 1) & 0x1)
2412 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2413 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2414 #define D40_DT_FLAGS_HIGH_PRIO(flags)  ((flags >> 4) & 0x1)
2415
2416 static struct dma_chan *d40_xlate(struct of_phandle_args *dma_spec,
2417                                   struct of_dma *ofdma)
2418 {
2419         struct stedma40_chan_cfg cfg;
2420         dma_cap_mask_t cap;
2421         u32 flags;
2422
2423         memset(&cfg, 0, sizeof(struct stedma40_chan_cfg));
2424
2425         dma_cap_zero(cap);
2426         dma_cap_set(DMA_SLAVE, cap);
2427
2428         cfg.dev_type = dma_spec->args[0];
2429         flags = dma_spec->args[2];
2430
2431         switch (D40_DT_FLAGS_MODE(flags)) {
2432         case 0: cfg.mode = STEDMA40_MODE_LOGICAL; break;
2433         case 1: cfg.mode = STEDMA40_MODE_PHYSICAL; break;
2434         }
2435
2436         switch (D40_DT_FLAGS_DIR(flags)) {
2437         case 0:
2438                 cfg.dir = DMA_MEM_TO_DEV;
2439                 cfg.dst_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2440                 break;
2441         case 1:
2442                 cfg.dir = DMA_DEV_TO_MEM;
2443                 cfg.src_info.big_endian = D40_DT_FLAGS_BIG_ENDIAN(flags);
2444                 break;
2445         }
2446
2447         if (D40_DT_FLAGS_FIXED_CHAN(flags)) {
2448                 cfg.phy_channel = dma_spec->args[1];
2449                 cfg.use_fixed_channel = true;
2450         }
2451
2452         if (D40_DT_FLAGS_HIGH_PRIO(flags))
2453                 cfg.high_priority = true;
2454
2455         return dma_request_channel(cap, stedma40_filter, &cfg);
2456 }
2457
2458 /* DMA ENGINE functions */
2459 static int d40_alloc_chan_resources(struct dma_chan *chan)
2460 {
2461         int err;
2462         unsigned long flags;
2463         struct d40_chan *d40c =
2464                 container_of(chan, struct d40_chan, chan);
2465         bool is_free_phy;
2466         spin_lock_irqsave(&d40c->lock, flags);
2467
2468         dma_cookie_init(chan);
2469
2470         /* If no dma configuration is set use default configuration (memcpy) */
2471         if (!d40c->configured) {
2472                 err = d40_config_memcpy(d40c);
2473                 if (err) {
2474                         chan_err(d40c, "Failed to configure memcpy channel\n");
2475                         goto fail;
2476                 }
2477         }
2478
2479         err = d40_allocate_channel(d40c, &is_free_phy);
2480         if (err) {
2481                 chan_err(d40c, "Failed to allocate channel\n");
2482                 d40c->configured = false;
2483                 goto fail;
2484         }
2485
2486         pm_runtime_get_sync(d40c->base->dev);
2487
2488         d40_set_prio_realtime(d40c);
2489
2490         if (chan_is_logical(d40c)) {
2491                 if (d40c->dma_cfg.dir == DMA_DEV_TO_MEM)
2492                         d40c->lcpa = d40c->base->lcpa_base +
2493                                 d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE;
2494                 else
2495                         d40c->lcpa = d40c->base->lcpa_base +
2496                                 d40c->dma_cfg.dev_type *
2497                                 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2498
2499                 /* Unmask the Global Interrupt Mask. */
2500                 d40c->src_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2501                 d40c->dst_def_cfg |= BIT(D40_SREG_CFG_LOG_GIM_POS);
2502         }
2503
2504         dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n",
2505                  chan_is_logical(d40c) ? "logical" : "physical",
2506                  d40c->phy_chan->num,
2507                  d40c->dma_cfg.use_fixed_channel ? ", fixed" : "");
2508
2509
2510         /*
2511          * Only write channel configuration to the DMA if the physical
2512          * resource is free. In case of multiple logical channels
2513          * on the same physical resource, only the first write is necessary.
2514          */
2515         if (is_free_phy)
2516                 d40_config_write(d40c);
2517 fail:
2518         pm_runtime_mark_last_busy(d40c->base->dev);
2519         pm_runtime_put_autosuspend(d40c->base->dev);
2520         spin_unlock_irqrestore(&d40c->lock, flags);
2521         return err;
2522 }
2523
2524 static void d40_free_chan_resources(struct dma_chan *chan)
2525 {
2526         struct d40_chan *d40c =
2527                 container_of(chan, struct d40_chan, chan);
2528         int err;
2529         unsigned long flags;
2530
2531         if (d40c->phy_chan == NULL) {
2532                 chan_err(d40c, "Cannot free unallocated channel\n");
2533                 return;
2534         }
2535
2536         spin_lock_irqsave(&d40c->lock, flags);
2537
2538         err = d40_free_dma(d40c);
2539
2540         if (err)
2541                 chan_err(d40c, "Failed to free channel\n");
2542         spin_unlock_irqrestore(&d40c->lock, flags);
2543 }
2544
2545 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2546                                                        dma_addr_t dst,
2547                                                        dma_addr_t src,
2548                                                        size_t size,
2549                                                        unsigned long dma_flags)
2550 {
2551         struct scatterlist dst_sg;
2552         struct scatterlist src_sg;
2553
2554         sg_init_table(&dst_sg, 1);
2555         sg_init_table(&src_sg, 1);
2556
2557         sg_dma_address(&dst_sg) = dst;
2558         sg_dma_address(&src_sg) = src;
2559
2560         sg_dma_len(&dst_sg) = size;
2561         sg_dma_len(&src_sg) = size;
2562
2563         return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2564 }
2565
2566 static struct dma_async_tx_descriptor *
2567 d40_prep_memcpy_sg(struct dma_chan *chan,
2568                    struct scatterlist *dst_sg, unsigned int dst_nents,
2569                    struct scatterlist *src_sg, unsigned int src_nents,
2570                    unsigned long dma_flags)
2571 {
2572         if (dst_nents != src_nents)
2573                 return NULL;
2574
2575         return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2576 }
2577
2578 static struct dma_async_tx_descriptor *
2579 d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2580                   unsigned int sg_len, enum dma_transfer_direction direction,
2581                   unsigned long dma_flags, void *context)
2582 {
2583         if (!is_slave_direction(direction))
2584                 return NULL;
2585
2586         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2587 }
2588
2589 static struct dma_async_tx_descriptor *
2590 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2591                      size_t buf_len, size_t period_len,
2592                      enum dma_transfer_direction direction, unsigned long flags,
2593                      void *context)
2594 {
2595         unsigned int periods = buf_len / period_len;
2596         struct dma_async_tx_descriptor *txd;
2597         struct scatterlist *sg;
2598         int i;
2599
2600         sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2601         if (!sg)
2602                 return NULL;
2603
2604         for (i = 0; i < periods; i++) {
2605                 sg_dma_address(&sg[i]) = dma_addr;
2606                 sg_dma_len(&sg[i]) = period_len;
2607                 dma_addr += period_len;
2608         }
2609
2610         sg[periods].offset = 0;
2611         sg_dma_len(&sg[periods]) = 0;
2612         sg[periods].page_link =
2613                 ((unsigned long)sg | 0x01) & ~0x02;
2614
2615         txd = d40_prep_sg(chan, sg, sg, periods, direction,
2616                           DMA_PREP_INTERRUPT);
2617
2618         kfree(sg);
2619
2620         return txd;
2621 }
2622
2623 static enum dma_status d40_tx_status(struct dma_chan *chan,
2624                                      dma_cookie_t cookie,
2625                                      struct dma_tx_state *txstate)
2626 {
2627         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2628         enum dma_status ret;
2629
2630         if (d40c->phy_chan == NULL) {
2631                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2632                 return -EINVAL;
2633         }
2634
2635         ret = dma_cookie_status(chan, cookie, txstate);
2636         if (ret != DMA_COMPLETE)
2637                 dma_set_residue(txstate, stedma40_residue(chan));
2638
2639         if (d40_is_paused(d40c))
2640                 ret = DMA_PAUSED;
2641
2642         return ret;
2643 }
2644
2645 static void d40_issue_pending(struct dma_chan *chan)
2646 {
2647         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2648         unsigned long flags;
2649
2650         if (d40c->phy_chan == NULL) {
2651                 chan_err(d40c, "Channel is not allocated!\n");
2652                 return;
2653         }
2654
2655         spin_lock_irqsave(&d40c->lock, flags);
2656
2657         list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2658
2659         /* Busy means that queued jobs are already being processed */
2660         if (!d40c->busy)
2661                 (void) d40_queue_start(d40c);
2662
2663         spin_unlock_irqrestore(&d40c->lock, flags);
2664 }
2665
2666 static void d40_terminate_all(struct dma_chan *chan)
2667 {
2668         unsigned long flags;
2669         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2670         int ret;
2671
2672         spin_lock_irqsave(&d40c->lock, flags);
2673
2674         pm_runtime_get_sync(d40c->base->dev);
2675         ret = d40_channel_execute_command(d40c, D40_DMA_STOP);
2676         if (ret)
2677                 chan_err(d40c, "Failed to stop channel\n");
2678
2679         d40_term_all(d40c);
2680         pm_runtime_mark_last_busy(d40c->base->dev);
2681         pm_runtime_put_autosuspend(d40c->base->dev);
2682         if (d40c->busy) {
2683                 pm_runtime_mark_last_busy(d40c->base->dev);
2684                 pm_runtime_put_autosuspend(d40c->base->dev);
2685         }
2686         d40c->busy = false;
2687
2688         spin_unlock_irqrestore(&d40c->lock, flags);
2689 }
2690
2691 static int
2692 dma40_config_to_halfchannel(struct d40_chan *d40c,
2693                             struct stedma40_half_channel_info *info,
2694                             u32 maxburst)
2695 {
2696         int psize;
2697
2698         if (chan_is_logical(d40c)) {
2699                 if (maxburst >= 16)
2700                         psize = STEDMA40_PSIZE_LOG_16;
2701                 else if (maxburst >= 8)
2702                         psize = STEDMA40_PSIZE_LOG_8;
2703                 else if (maxburst >= 4)
2704                         psize = STEDMA40_PSIZE_LOG_4;
2705                 else
2706                         psize = STEDMA40_PSIZE_LOG_1;
2707         } else {
2708                 if (maxburst >= 16)
2709                         psize = STEDMA40_PSIZE_PHY_16;
2710                 else if (maxburst >= 8)
2711                         psize = STEDMA40_PSIZE_PHY_8;
2712                 else if (maxburst >= 4)
2713                         psize = STEDMA40_PSIZE_PHY_4;
2714                 else
2715                         psize = STEDMA40_PSIZE_PHY_1;
2716         }
2717
2718         info->psize = psize;
2719         info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2720
2721         return 0;
2722 }
2723
2724 /* Runtime reconfiguration extension */
2725 static int d40_set_runtime_config(struct dma_chan *chan,
2726                                   struct dma_slave_config *config)
2727 {
2728         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2729         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2730         enum dma_slave_buswidth src_addr_width, dst_addr_width;
2731         dma_addr_t config_addr;
2732         u32 src_maxburst, dst_maxburst;
2733         int ret;
2734
2735         src_addr_width = config->src_addr_width;
2736         src_maxburst = config->src_maxburst;
2737         dst_addr_width = config->dst_addr_width;
2738         dst_maxburst = config->dst_maxburst;
2739
2740         if (config->direction == DMA_DEV_TO_MEM) {
2741                 config_addr = config->src_addr;
2742
2743                 if (cfg->dir != DMA_DEV_TO_MEM)
2744                         dev_dbg(d40c->base->dev,
2745                                 "channel was not configured for peripheral "
2746                                 "to memory transfer (%d) overriding\n",
2747                                 cfg->dir);
2748                 cfg->dir = DMA_DEV_TO_MEM;
2749
2750                 /* Configure the memory side */
2751                 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2752                         dst_addr_width = src_addr_width;
2753                 if (dst_maxburst == 0)
2754                         dst_maxburst = src_maxburst;
2755
2756         } else if (config->direction == DMA_MEM_TO_DEV) {
2757                 config_addr = config->dst_addr;
2758
2759                 if (cfg->dir != DMA_MEM_TO_DEV)
2760                         dev_dbg(d40c->base->dev,
2761                                 "channel was not configured for memory "
2762                                 "to peripheral transfer (%d) overriding\n",
2763                                 cfg->dir);
2764                 cfg->dir = DMA_MEM_TO_DEV;
2765
2766                 /* Configure the memory side */
2767                 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2768                         src_addr_width = dst_addr_width;
2769                 if (src_maxburst == 0)
2770                         src_maxburst = dst_maxburst;
2771         } else {
2772                 dev_err(d40c->base->dev,
2773                         "unrecognized channel direction %d\n",
2774                         config->direction);
2775                 return -EINVAL;
2776         }
2777
2778         if (config_addr <= 0) {
2779                 dev_err(d40c->base->dev, "no address supplied\n");
2780                 return -EINVAL;
2781         }
2782
2783         if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2784                 dev_err(d40c->base->dev,
2785                         "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2786                         src_maxburst,
2787                         src_addr_width,
2788                         dst_maxburst,
2789                         dst_addr_width);
2790                 return -EINVAL;
2791         }
2792
2793         if (src_maxburst > 16) {
2794                 src_maxburst = 16;
2795                 dst_maxburst = src_maxburst * src_addr_width / dst_addr_width;
2796         } else if (dst_maxburst > 16) {
2797                 dst_maxburst = 16;
2798                 src_maxburst = dst_maxburst * dst_addr_width / src_addr_width;
2799         }
2800
2801         /* Only valid widths are; 1, 2, 4 and 8. */
2802         if (src_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2803             src_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2804             dst_addr_width <= DMA_SLAVE_BUSWIDTH_UNDEFINED ||
2805             dst_addr_width >  DMA_SLAVE_BUSWIDTH_8_BYTES   ||
2806             !is_power_of_2(src_addr_width) ||
2807             !is_power_of_2(dst_addr_width))
2808                 return -EINVAL;
2809
2810         cfg->src_info.data_width = src_addr_width;
2811         cfg->dst_info.data_width = dst_addr_width;
2812
2813         ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2814                                           src_maxburst);
2815         if (ret)
2816                 return ret;
2817
2818         ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2819                                           dst_maxburst);
2820         if (ret)
2821                 return ret;
2822
2823         /* Fill in register values */
2824         if (chan_is_logical(d40c))
2825                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2826         else
2827                 d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg);
2828
2829         /* These settings will take precedence later */
2830         d40c->runtime_addr = config_addr;
2831         d40c->runtime_direction = config->direction;
2832         dev_dbg(d40c->base->dev,
2833                 "configured channel %s for %s, data width %d/%d, "
2834                 "maxburst %d/%d elements, LE, no flow control\n",
2835                 dma_chan_name(chan),
2836                 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
2837                 src_addr_width, dst_addr_width,
2838                 src_maxburst, dst_maxburst);
2839
2840         return 0;
2841 }
2842
2843 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2844                        unsigned long arg)
2845 {
2846         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2847
2848         if (d40c->phy_chan == NULL) {
2849                 chan_err(d40c, "Channel is not allocated!\n");
2850                 return -EINVAL;
2851         }
2852
2853         switch (cmd) {
2854         case DMA_TERMINATE_ALL:
2855                 d40_terminate_all(chan);
2856                 return 0;
2857         case DMA_PAUSE:
2858                 return d40_pause(d40c);
2859         case DMA_RESUME:
2860                 return d40_resume(d40c);
2861         case DMA_SLAVE_CONFIG:
2862                 return d40_set_runtime_config(chan,
2863                         (struct dma_slave_config *) arg);
2864         default:
2865                 break;
2866         }
2867
2868         /* Other commands are unimplemented */
2869         return -ENXIO;
2870 }
2871
2872 /* Initialization functions */
2873
2874 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2875                                  struct d40_chan *chans, int offset,
2876                                  int num_chans)
2877 {
2878         int i = 0;
2879         struct d40_chan *d40c;
2880
2881         INIT_LIST_HEAD(&dma->channels);
2882
2883         for (i = offset; i < offset + num_chans; i++) {
2884                 d40c = &chans[i];
2885                 d40c->base = base;
2886                 d40c->chan.device = dma;
2887
2888                 spin_lock_init(&d40c->lock);
2889
2890                 d40c->log_num = D40_PHY_CHAN;
2891
2892                 INIT_LIST_HEAD(&d40c->done);
2893                 INIT_LIST_HEAD(&d40c->active);
2894                 INIT_LIST_HEAD(&d40c->queue);
2895                 INIT_LIST_HEAD(&d40c->pending_queue);
2896                 INIT_LIST_HEAD(&d40c->client);
2897                 INIT_LIST_HEAD(&d40c->prepare_queue);
2898
2899                 tasklet_init(&d40c->tasklet, dma_tasklet,
2900                              (unsigned long) d40c);
2901
2902                 list_add_tail(&d40c->chan.device_node,
2903                               &dma->channels);
2904         }
2905 }
2906
2907 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2908 {
2909         if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2910                 dev->device_prep_slave_sg = d40_prep_slave_sg;
2911
2912         if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2913                 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2914
2915                 /*
2916                  * This controller can only access address at even
2917                  * 32bit boundaries, i.e. 2^2
2918                  */
2919                 dev->copy_align = 2;
2920         }
2921
2922         if (dma_has_cap(DMA_SG, dev->cap_mask))
2923                 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2924
2925         if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2926                 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2927
2928         dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2929         dev->device_free_chan_resources = d40_free_chan_resources;
2930         dev->device_issue_pending = d40_issue_pending;
2931         dev->device_tx_status = d40_tx_status;
2932         dev->device_control = d40_control;
2933         dev->dev = base->dev;
2934 }
2935
2936 static int __init d40_dmaengine_init(struct d40_base *base,
2937                                      int num_reserved_chans)
2938 {
2939         int err ;
2940
2941         d40_chan_init(base, &base->dma_slave, base->log_chans,
2942                       0, base->num_log_chans);
2943
2944         dma_cap_zero(base->dma_slave.cap_mask);
2945         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2946         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2947
2948         d40_ops_init(base, &base->dma_slave);
2949
2950         err = dma_async_device_register(&base->dma_slave);
2951
2952         if (err) {
2953                 d40_err(base->dev, "Failed to register slave channels\n");
2954                 goto failure1;
2955         }
2956
2957         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2958                       base->num_log_chans, base->num_memcpy_chans);
2959
2960         dma_cap_zero(base->dma_memcpy.cap_mask);
2961         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2962         dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2963
2964         d40_ops_init(base, &base->dma_memcpy);
2965
2966         err = dma_async_device_register(&base->dma_memcpy);
2967
2968         if (err) {
2969                 d40_err(base->dev,
2970                         "Failed to regsiter memcpy only channels\n");
2971                 goto failure2;
2972         }
2973
2974         d40_chan_init(base, &base->dma_both, base->phy_chans,
2975                       0, num_reserved_chans);
2976
2977         dma_cap_zero(base->dma_both.cap_mask);
2978         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2979         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2980         dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2981         dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2982
2983         d40_ops_init(base, &base->dma_both);
2984         err = dma_async_device_register(&base->dma_both);
2985
2986         if (err) {
2987                 d40_err(base->dev,
2988                         "Failed to register logical and physical capable channels\n");
2989                 goto failure3;
2990         }
2991         return 0;
2992 failure3:
2993         dma_async_device_unregister(&base->dma_memcpy);
2994 failure2:
2995         dma_async_device_unregister(&base->dma_slave);
2996 failure1:
2997         return err;
2998 }
2999
3000 /* Suspend resume functionality */
3001 #ifdef CONFIG_PM
3002 static int dma40_pm_suspend(struct device *dev)
3003 {
3004         struct platform_device *pdev = to_platform_device(dev);
3005         struct d40_base *base = platform_get_drvdata(pdev);
3006         int ret = 0;
3007
3008         if (base->lcpa_regulator)
3009                 ret = regulator_disable(base->lcpa_regulator);
3010         return ret;
3011 }
3012
3013 static int dma40_runtime_suspend(struct device *dev)
3014 {
3015         struct platform_device *pdev = to_platform_device(dev);
3016         struct d40_base *base = platform_get_drvdata(pdev);
3017
3018         d40_save_restore_registers(base, true);
3019
3020         /* Don't disable/enable clocks for v1 due to HW bugs */
3021         if (base->rev != 1)
3022                 writel_relaxed(base->gcc_pwr_off_mask,
3023                                base->virtbase + D40_DREG_GCC);
3024
3025         return 0;
3026 }
3027
3028 static int dma40_runtime_resume(struct device *dev)
3029 {
3030         struct platform_device *pdev = to_platform_device(dev);
3031         struct d40_base *base = platform_get_drvdata(pdev);
3032
3033         if (base->initialized)
3034                 d40_save_restore_registers(base, false);
3035
3036         writel_relaxed(D40_DREG_GCC_ENABLE_ALL,
3037                        base->virtbase + D40_DREG_GCC);
3038         return 0;
3039 }
3040
3041 static int dma40_resume(struct device *dev)
3042 {
3043         struct platform_device *pdev = to_platform_device(dev);
3044         struct d40_base *base = platform_get_drvdata(pdev);
3045         int ret = 0;
3046
3047         if (base->lcpa_regulator)
3048                 ret = regulator_enable(base->lcpa_regulator);
3049
3050         return ret;
3051 }
3052
3053 static const struct dev_pm_ops dma40_pm_ops = {
3054         .suspend                = dma40_pm_suspend,
3055         .runtime_suspend        = dma40_runtime_suspend,
3056         .runtime_resume         = dma40_runtime_resume,
3057         .resume                 = dma40_resume,
3058 };
3059 #define DMA40_PM_OPS    (&dma40_pm_ops)
3060 #else
3061 #define DMA40_PM_OPS    NULL
3062 #endif
3063
3064 /* Initialization functions. */
3065
3066 static int __init d40_phy_res_init(struct d40_base *base)
3067 {
3068         int i;
3069         int num_phy_chans_avail = 0;
3070         u32 val[2];
3071         int odd_even_bit = -2;
3072         int gcc = D40_DREG_GCC_ENA;
3073
3074         val[0] = readl(base->virtbase + D40_DREG_PRSME);
3075         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
3076
3077         for (i = 0; i < base->num_phy_chans; i++) {
3078                 base->phy_res[i].num = i;
3079                 odd_even_bit += 2 * ((i % 2) == 0);
3080                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
3081                         /* Mark security only channels as occupied */
3082                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
3083                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
3084                         base->phy_res[i].reserved = true;
3085                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3086                                                        D40_DREG_GCC_SRC);
3087                         gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i),
3088                                                        D40_DREG_GCC_DST);
3089
3090
3091                 } else {
3092                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
3093                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
3094                         base->phy_res[i].reserved = false;
3095                         num_phy_chans_avail++;
3096                 }
3097                 spin_lock_init(&base->phy_res[i].lock);
3098         }
3099
3100         /* Mark disabled channels as occupied */
3101         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
3102                 int chan = base->plat_data->disabled_channels[i];
3103
3104                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
3105                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
3106                 base->phy_res[chan].reserved = true;
3107                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3108                                                D40_DREG_GCC_SRC);
3109                 gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan),
3110                                                D40_DREG_GCC_DST);
3111                 num_phy_chans_avail--;
3112         }
3113
3114         /* Mark soft_lli channels */
3115         for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) {
3116                 int chan = base->plat_data->soft_lli_chans[i];
3117
3118                 base->phy_res[chan].use_soft_lli = true;
3119         }
3120
3121         dev_info(base->dev, "%d of %d physical DMA channels available\n",
3122                  num_phy_chans_avail, base->num_phy_chans);
3123
3124         /* Verify settings extended vs standard */
3125         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
3126
3127         for (i = 0; i < base->num_phy_chans; i++) {
3128
3129                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
3130                     (val[0] & 0x3) != 1)
3131                         dev_info(base->dev,
3132                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
3133                                  __func__, i, val[0] & 0x3);
3134
3135                 val[0] = val[0] >> 2;
3136         }
3137
3138         /*
3139          * To keep things simple, Enable all clocks initially.
3140          * The clocks will get managed later post channel allocation.
3141          * The clocks for the event lines on which reserved channels exists
3142          * are not managed here.
3143          */
3144         writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC);
3145         base->gcc_pwr_off_mask = gcc;
3146
3147         return num_phy_chans_avail;
3148 }
3149
3150 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
3151 {
3152         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3153         struct clk *clk = NULL;
3154         void __iomem *virtbase = NULL;
3155         struct resource *res = NULL;
3156         struct d40_base *base = NULL;
3157         int num_log_chans = 0;
3158         int num_phy_chans;
3159         int num_memcpy_chans;
3160         int clk_ret = -EINVAL;
3161         int i;
3162         u32 pid;
3163         u32 cid;
3164         u8 rev;
3165
3166         clk = clk_get(&pdev->dev, NULL);
3167         if (IS_ERR(clk)) {
3168                 d40_err(&pdev->dev, "No matching clock found\n");
3169                 goto failure;
3170         }
3171
3172         clk_ret = clk_prepare_enable(clk);
3173         if (clk_ret) {
3174                 d40_err(&pdev->dev, "Failed to prepare/enable clock\n");
3175                 goto failure;
3176         }
3177
3178         /* Get IO for DMAC base address */
3179         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
3180         if (!res)
3181                 goto failure;
3182
3183         if (request_mem_region(res->start, resource_size(res),
3184                                D40_NAME " I/O base") == NULL)
3185                 goto failure;
3186
3187         virtbase = ioremap(res->start, resource_size(res));
3188         if (!virtbase)
3189                 goto failure;
3190
3191         /* This is just a regular AMBA PrimeCell ID actually */
3192         for (pid = 0, i = 0; i < 4; i++)
3193                 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
3194                         & 255) << (i * 8);
3195         for (cid = 0, i = 0; i < 4; i++)
3196                 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
3197                         & 255) << (i * 8);
3198
3199         if (cid != AMBA_CID) {
3200                 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
3201                 goto failure;
3202         }
3203         if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
3204                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
3205                         AMBA_MANF_BITS(pid),
3206                         AMBA_VENDOR_ST);
3207                 goto failure;
3208         }
3209         /*
3210          * HW revision:
3211          * DB8500ed has revision 0
3212          * ? has revision 1
3213          * DB8500v1 has revision 2
3214          * DB8500v2 has revision 3
3215          * AP9540v1 has revision 4
3216          * DB8540v1 has revision 4
3217          */
3218         rev = AMBA_REV_BITS(pid);
3219         if (rev < 2) {
3220                 d40_err(&pdev->dev, "hardware revision: %d is not supported", rev);
3221                 goto failure;
3222         }
3223
3224         /* The number of physical channels on this HW */
3225         if (plat_data->num_of_phy_chans)
3226                 num_phy_chans = plat_data->num_of_phy_chans;
3227         else
3228                 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
3229
3230         /* The number of channels used for memcpy */
3231         if (plat_data->num_of_memcpy_chans)
3232                 num_memcpy_chans = plat_data->num_of_memcpy_chans;
3233         else
3234                 num_memcpy_chans = ARRAY_SIZE(dma40_memcpy_channels);
3235
3236         num_log_chans = num_phy_chans * D40_MAX_LOG_CHAN_PER_PHY;
3237
3238         dev_info(&pdev->dev,
3239                  "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3240                  rev, &res->start, num_phy_chans, num_log_chans);
3241
3242         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
3243                        (num_phy_chans + num_log_chans + num_memcpy_chans) *
3244                        sizeof(struct d40_chan), GFP_KERNEL);
3245
3246         if (base == NULL) {
3247                 d40_err(&pdev->dev, "Out of memory\n");
3248                 goto failure;
3249         }
3250
3251         base->rev = rev;
3252         base->clk = clk;
3253         base->num_memcpy_chans = num_memcpy_chans;
3254         base->num_phy_chans = num_phy_chans;
3255         base->num_log_chans = num_log_chans;
3256         base->phy_start = res->start;
3257         base->phy_size = resource_size(res);
3258         base->virtbase = virtbase;
3259         base->plat_data = plat_data;
3260         base->dev = &pdev->dev;
3261         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
3262         base->log_chans = &base->phy_chans[num_phy_chans];
3263
3264         if (base->plat_data->num_of_phy_chans == 14) {
3265                 base->gen_dmac.backup = d40_backup_regs_v4b;
3266                 base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B;
3267                 base->gen_dmac.interrupt_en = D40_DREG_CPCMIS;
3268                 base->gen_dmac.interrupt_clear = D40_DREG_CPCICR;
3269                 base->gen_dmac.realtime_en = D40_DREG_CRSEG1;
3270                 base->gen_dmac.realtime_clear = D40_DREG_CRCEG1;
3271                 base->gen_dmac.high_prio_en = D40_DREG_CPSEG1;
3272                 base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1;
3273                 base->gen_dmac.il = il_v4b;
3274                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4b);
3275                 base->gen_dmac.init_reg = dma_init_reg_v4b;
3276                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b);
3277         } else {
3278                 if (base->rev >= 3) {
3279                         base->gen_dmac.backup = d40_backup_regs_v4a;
3280                         base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A;
3281                 }
3282                 base->gen_dmac.interrupt_en = D40_DREG_PCMIS;
3283                 base->gen_dmac.interrupt_clear = D40_DREG_PCICR;
3284                 base->gen_dmac.realtime_en = D40_DREG_RSEG1;
3285                 base->gen_dmac.realtime_clear = D40_DREG_RCEG1;
3286                 base->gen_dmac.high_prio_en = D40_DREG_PSEG1;
3287                 base->gen_dmac.high_prio_clear = D40_DREG_PCEG1;
3288                 base->gen_dmac.il = il_v4a;
3289                 base->gen_dmac.il_size = ARRAY_SIZE(il_v4a);
3290                 base->gen_dmac.init_reg = dma_init_reg_v4a;
3291                 base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a);
3292         }
3293
3294         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
3295                                 GFP_KERNEL);
3296         if (!base->phy_res)
3297                 goto failure;
3298
3299         base->lookup_phy_chans = kzalloc(num_phy_chans *
3300                                          sizeof(struct d40_chan *),
3301                                          GFP_KERNEL);
3302         if (!base->lookup_phy_chans)
3303                 goto failure;
3304
3305         base->lookup_log_chans = kzalloc(num_log_chans *
3306                                          sizeof(struct d40_chan *),
3307                                          GFP_KERNEL);
3308         if (!base->lookup_log_chans)
3309                 goto failure;
3310
3311         base->reg_val_backup_chan = kmalloc(base->num_phy_chans *
3312                                             sizeof(d40_backup_regs_chan),
3313                                             GFP_KERNEL);
3314         if (!base->reg_val_backup_chan)
3315                 goto failure;
3316
3317         base->lcla_pool.alloc_map =
3318                 kzalloc(num_phy_chans * sizeof(struct d40_desc *)
3319                         * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL);
3320         if (!base->lcla_pool.alloc_map)
3321                 goto failure;
3322
3323         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
3324                                             0, SLAB_HWCACHE_ALIGN,
3325                                             NULL);
3326         if (base->desc_slab == NULL)
3327                 goto failure;
3328
3329         return base;
3330
3331 failure:
3332         if (!clk_ret)
3333                 clk_disable_unprepare(clk);
3334         if (!IS_ERR(clk))
3335                 clk_put(clk);
3336         if (virtbase)
3337                 iounmap(virtbase);
3338         if (res)
3339                 release_mem_region(res->start,
3340                                    resource_size(res));
3341         if (virtbase)
3342                 iounmap(virtbase);
3343
3344         if (base) {
3345                 kfree(base->lcla_pool.alloc_map);
3346                 kfree(base->reg_val_backup_chan);
3347                 kfree(base->lookup_log_chans);
3348                 kfree(base->lookup_phy_chans);
3349                 kfree(base->phy_res);
3350                 kfree(base);
3351         }
3352
3353         return NULL;
3354 }
3355
3356 static void __init d40_hw_init(struct d40_base *base)
3357 {
3358
3359         int i;
3360         u32 prmseo[2] = {0, 0};
3361         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3362         u32 pcmis = 0;
3363         u32 pcicr = 0;
3364         struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg;
3365         u32 reg_size = base->gen_dmac.init_reg_size;
3366
3367         for (i = 0; i < reg_size; i++)
3368                 writel(dma_init_reg[i].val,
3369                        base->virtbase + dma_init_reg[i].reg);
3370
3371         /* Configure all our dma channels to default settings */
3372         for (i = 0; i < base->num_phy_chans; i++) {
3373
3374                 activeo[i % 2] = activeo[i % 2] << 2;
3375
3376                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
3377                     == D40_ALLOC_PHY) {
3378                         activeo[i % 2] |= 3;
3379                         continue;
3380                 }
3381
3382                 /* Enable interrupt # */
3383                 pcmis = (pcmis << 1) | 1;
3384
3385                 /* Clear interrupt # */
3386                 pcicr = (pcicr << 1) | 1;
3387
3388                 /* Set channel to physical mode */
3389                 prmseo[i % 2] = prmseo[i % 2] << 2;
3390                 prmseo[i % 2] |= 1;
3391
3392         }
3393
3394         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
3395         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
3396         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
3397         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
3398
3399         /* Write which interrupt to enable */
3400         writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en);
3401
3402         /* Write which interrupt to clear */
3403         writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear);
3404
3405         /* These are __initdata and cannot be accessed after init */
3406         base->gen_dmac.init_reg = NULL;
3407         base->gen_dmac.init_reg_size = 0;
3408 }
3409
3410 static int __init d40_lcla_allocate(struct d40_base *base)
3411 {
3412         struct d40_lcla_pool *pool = &base->lcla_pool;
3413         unsigned long *page_list;
3414         int i, j;
3415         int ret = 0;
3416
3417         /*
3418          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3419          * To full fill this hardware requirement without wasting 256 kb
3420          * we allocate pages until we get an aligned one.
3421          */
3422         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
3423                             GFP_KERNEL);
3424
3425         if (!page_list) {
3426                 ret = -ENOMEM;
3427                 goto failure;
3428         }
3429
3430         /* Calculating how many pages that are required */
3431         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
3432
3433         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
3434                 page_list[i] = __get_free_pages(GFP_KERNEL,
3435                                                 base->lcla_pool.pages);
3436                 if (!page_list[i]) {
3437
3438                         d40_err(base->dev, "Failed to allocate %d pages.\n",
3439                                 base->lcla_pool.pages);
3440
3441                         for (j = 0; j < i; j++)
3442                                 free_pages(page_list[j], base->lcla_pool.pages);
3443                         goto failure;
3444                 }
3445
3446                 if ((virt_to_phys((void *)page_list[i]) &
3447                      (LCLA_ALIGNMENT - 1)) == 0)
3448                         break;
3449         }
3450
3451         for (j = 0; j < i; j++)
3452                 free_pages(page_list[j], base->lcla_pool.pages);
3453
3454         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
3455                 base->lcla_pool.base = (void *)page_list[i];
3456         } else {
3457                 /*
3458                  * After many attempts and no succees with finding the correct
3459                  * alignment, try with allocating a big buffer.
3460                  */
3461                 dev_warn(base->dev,
3462                          "[%s] Failed to get %d pages @ 18 bit align.\n",
3463                          __func__, base->lcla_pool.pages);
3464                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
3465                                                          base->num_phy_chans +
3466                                                          LCLA_ALIGNMENT,
3467                                                          GFP_KERNEL);
3468                 if (!base->lcla_pool.base_unaligned) {
3469                         ret = -ENOMEM;
3470                         goto failure;
3471                 }
3472
3473                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
3474                                                  LCLA_ALIGNMENT);
3475         }
3476
3477         pool->dma_addr = dma_map_single(base->dev, pool->base,
3478                                         SZ_1K * base->num_phy_chans,
3479                                         DMA_TO_DEVICE);
3480         if (dma_mapping_error(base->dev, pool->dma_addr)) {
3481                 pool->dma_addr = 0;
3482                 ret = -ENOMEM;
3483                 goto failure;
3484         }
3485
3486         writel(virt_to_phys(base->lcla_pool.base),
3487                base->virtbase + D40_DREG_LCLA);
3488 failure:
3489         kfree(page_list);
3490         return ret;
3491 }
3492
3493 static int __init d40_of_probe(struct platform_device *pdev,
3494                                struct device_node *np)
3495 {
3496         struct stedma40_platform_data *pdata;
3497         int num_phy = 0, num_memcpy = 0, num_disabled = 0;
3498         const __be32 *list;
3499
3500         pdata = devm_kzalloc(&pdev->dev,
3501                              sizeof(struct stedma40_platform_data),
3502                              GFP_KERNEL);
3503         if (!pdata)
3504                 return -ENOMEM;
3505
3506         /* If absent this value will be obtained from h/w. */
3507         of_property_read_u32(np, "dma-channels", &num_phy);
3508         if (num_phy > 0)
3509                 pdata->num_of_phy_chans = num_phy;
3510
3511         list = of_get_property(np, "memcpy-channels", &num_memcpy);
3512         num_memcpy /= sizeof(*list);
3513
3514         if (num_memcpy > D40_MEMCPY_MAX_CHANS || num_memcpy <= 0) {
3515                 d40_err(&pdev->dev,
3516                         "Invalid number of memcpy channels specified (%d)\n",
3517                         num_memcpy);
3518                 return -EINVAL;
3519         }
3520         pdata->num_of_memcpy_chans = num_memcpy;
3521
3522         of_property_read_u32_array(np, "memcpy-channels",
3523                                    dma40_memcpy_channels,
3524                                    num_memcpy);
3525
3526         list = of_get_property(np, "disabled-channels", &num_disabled);
3527         num_disabled /= sizeof(*list);
3528
3529         if (num_disabled >= STEDMA40_MAX_PHYS || num_disabled < 0) {
3530                 d40_err(&pdev->dev,
3531                         "Invalid number of disabled channels specified (%d)\n",
3532                         num_disabled);
3533                 return -EINVAL;
3534         }
3535
3536         of_property_read_u32_array(np, "disabled-channels",
3537                                    pdata->disabled_channels,
3538                                    num_disabled);
3539         pdata->disabled_channels[num_disabled] = -1;
3540
3541         pdev->dev.platform_data = pdata;
3542
3543         return 0;
3544 }
3545
3546 static int __init d40_probe(struct platform_device *pdev)
3547 {
3548         struct stedma40_platform_data *plat_data = dev_get_platdata(&pdev->dev);
3549         struct device_node *np = pdev->dev.of_node;
3550         int ret = -ENOENT;
3551         struct d40_base *base = NULL;
3552         struct resource *res = NULL;
3553         int num_reserved_chans;
3554         u32 val;
3555
3556         if (!plat_data) {
3557                 if (np) {
3558                         if(d40_of_probe(pdev, np)) {
3559                                 ret = -ENOMEM;
3560                                 goto failure;
3561                         }
3562                 } else {
3563                         d40_err(&pdev->dev, "No pdata or Device Tree provided\n");
3564                         goto failure;
3565                 }
3566         }
3567
3568         base = d40_hw_detect_init(pdev);
3569         if (!base)
3570                 goto failure;
3571
3572         num_reserved_chans = d40_phy_res_init(base);
3573
3574         platform_set_drvdata(pdev, base);
3575
3576         spin_lock_init(&base->interrupt_lock);
3577         spin_lock_init(&base->execmd_lock);
3578
3579         /* Get IO for logical channel parameter address */
3580         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
3581         if (!res) {
3582                 ret = -ENOENT;
3583                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
3584                 goto failure;
3585         }
3586         base->lcpa_size = resource_size(res);
3587         base->phy_lcpa = res->start;
3588
3589         if (request_mem_region(res->start, resource_size(res),
3590                                D40_NAME " I/O lcpa") == NULL) {
3591                 ret = -EBUSY;
3592                 d40_err(&pdev->dev, "Failed to request LCPA region %pR\n", res);
3593                 goto failure;
3594         }
3595
3596         /* We make use of ESRAM memory for this. */
3597         val = readl(base->virtbase + D40_DREG_LCPA);
3598         if (res->start != val && val != 0) {
3599                 dev_warn(&pdev->dev,
3600                          "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3601                          __func__, val, &res->start);
3602         } else
3603                 writel(res->start, base->virtbase + D40_DREG_LCPA);
3604
3605         base->lcpa_base = ioremap(res->start, resource_size(res));
3606         if (!base->lcpa_base) {
3607                 ret = -ENOMEM;
3608                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
3609                 goto failure;
3610         }
3611         /* If lcla has to be located in ESRAM we don't need to allocate */
3612         if (base->plat_data->use_esram_lcla) {
3613                 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
3614                                                         "lcla_esram");
3615                 if (!res) {
3616                         ret = -ENOENT;
3617                         d40_err(&pdev->dev,
3618                                 "No \"lcla_esram\" memory resource\n");
3619                         goto failure;
3620                 }
3621                 base->lcla_pool.base = ioremap(res->start,
3622                                                 resource_size(res));
3623                 if (!base->lcla_pool.base) {
3624                         ret = -ENOMEM;
3625                         d40_err(&pdev->dev, "Failed to ioremap LCLA region\n");
3626                         goto failure;
3627                 }
3628                 writel(res->start, base->virtbase + D40_DREG_LCLA);
3629
3630         } else {
3631                 ret = d40_lcla_allocate(base);
3632                 if (ret) {
3633                         d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
3634                         goto failure;
3635                 }
3636         }
3637
3638         spin_lock_init(&base->lcla_pool.lock);
3639
3640         base->irq = platform_get_irq(pdev, 0);
3641
3642         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
3643         if (ret) {
3644                 d40_err(&pdev->dev, "No IRQ defined\n");
3645                 goto failure;
3646         }
3647
3648         pm_runtime_irq_safe(base->dev);
3649         pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY);
3650         pm_runtime_use_autosuspend(base->dev);
3651         pm_runtime_enable(base->dev);
3652         pm_runtime_resume(base->dev);
3653
3654         if (base->plat_data->use_esram_lcla) {
3655
3656                 base->lcpa_regulator = regulator_get(base->dev, "lcla_esram");
3657                 if (IS_ERR(base->lcpa_regulator)) {
3658                         d40_err(&pdev->dev, "Failed to get lcpa_regulator\n");
3659                         ret = PTR_ERR(base->lcpa_regulator);
3660                         base->lcpa_regulator = NULL;
3661                         goto failure;
3662                 }
3663
3664                 ret = regulator_enable(base->lcpa_regulator);
3665                 if (ret) {
3666                         d40_err(&pdev->dev,
3667                                 "Failed to enable lcpa_regulator\n");
3668                         regulator_put(base->lcpa_regulator);
3669                         base->lcpa_regulator = NULL;
3670                         goto failure;
3671                 }
3672         }
3673
3674         base->initialized = true;
3675         ret = d40_dmaengine_init(base, num_reserved_chans);
3676         if (ret)
3677                 goto failure;
3678
3679         base->dev->dma_parms = &base->dma_parms;
3680         ret = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE);
3681         if (ret) {
3682                 d40_err(&pdev->dev, "Failed to set dma max seg size\n");
3683                 goto failure;
3684         }
3685
3686         d40_hw_init(base);
3687
3688         if (np) {
3689                 ret = of_dma_controller_register(np, d40_xlate, NULL);
3690                 if (ret)
3691                         dev_err(&pdev->dev,
3692                                 "could not register of_dma_controller\n");
3693         }
3694
3695         dev_info(base->dev, "initialized\n");
3696         return 0;
3697
3698 failure:
3699         if (base) {
3700                 if (base->desc_slab)
3701                         kmem_cache_destroy(base->desc_slab);
3702                 if (base->virtbase)
3703                         iounmap(base->virtbase);
3704
3705                 if (base->lcla_pool.base && base->plat_data->use_esram_lcla) {
3706                         iounmap(base->lcla_pool.base);
3707                         base->lcla_pool.base = NULL;
3708                 }
3709
3710                 if (base->lcla_pool.dma_addr)
3711                         dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
3712                                          SZ_1K * base->num_phy_chans,
3713                                          DMA_TO_DEVICE);
3714
3715                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
3716                         free_pages((unsigned long)base->lcla_pool.base,
3717                                    base->lcla_pool.pages);
3718
3719                 kfree(base->lcla_pool.base_unaligned);
3720
3721                 if (base->phy_lcpa)
3722                         release_mem_region(base->phy_lcpa,
3723                                            base->lcpa_size);
3724                 if (base->phy_start)
3725                         release_mem_region(base->phy_start,
3726                                            base->phy_size);
3727                 if (base->clk) {
3728                         clk_disable_unprepare(base->clk);
3729                         clk_put(base->clk);
3730                 }
3731
3732                 if (base->lcpa_regulator) {
3733                         regulator_disable(base->lcpa_regulator);
3734                         regulator_put(base->lcpa_regulator);
3735                 }
3736
3737                 kfree(base->lcla_pool.alloc_map);
3738                 kfree(base->lookup_log_chans);
3739                 kfree(base->lookup_phy_chans);
3740                 kfree(base->phy_res);
3741                 kfree(base);
3742         }
3743
3744         d40_err(&pdev->dev, "probe failed\n");
3745         return ret;
3746 }
3747
3748 static const struct of_device_id d40_match[] = {
3749         { .compatible = "stericsson,dma40", },
3750         {}
3751 };
3752
3753 static struct platform_driver d40_driver = {
3754         .driver = {
3755                 .owner = THIS_MODULE,
3756                 .name  = D40_NAME,
3757                 .pm = DMA40_PM_OPS,
3758                 .of_match_table = d40_match,
3759         },
3760 };
3761
3762 static int __init stedma40_init(void)
3763 {
3764         return platform_driver_probe(&d40_driver, d40_probe);
3765 }
3766 subsys_initcall(stedma40_init);