HSI: cmt_speech: fix error return code
[sfrench/cifs-2.6.git] / drivers / dma / intel_mid_dma.c
1 /*
2  *  intel_mid_dma.c - Intel Langwell DMA Drivers
3  *
4  *  Copyright (C) 2008-10 Intel Corp
5  *  Author: Vinod Koul <vinod.koul@intel.com>
6  *  The driver design is based on dw_dmac driver
7  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
8  *
9  *  This program is free software; you can redistribute it and/or modify
10  *  it under the terms of the GNU General Public License as published by
11  *  the Free Software Foundation; version 2 of the License.
12  *
13  *  This program is distributed in the hope that it will be useful, but
14  *  WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  *  General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License along
19  *  with this program; if not, write to the Free Software Foundation, Inc.,
20  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  *
25  */
26 #include <linux/pci.h>
27 #include <linux/interrupt.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/intel_mid_dma.h>
30 #include <linux/module.h>
31
32 #include "dmaengine.h"
33
34 #define MAX_CHAN        4 /*max ch across controllers*/
35 #include "intel_mid_dma_regs.h"
36
37 #define INTEL_MID_DMAC1_ID              0x0814
38 #define INTEL_MID_DMAC2_ID              0x0813
39 #define INTEL_MID_GP_DMAC2_ID           0x0827
40 #define INTEL_MFLD_DMAC1_ID             0x0830
41 #define LNW_PERIPHRAL_MASK_BASE         0xFFAE8008
42 #define LNW_PERIPHRAL_MASK_SIZE         0x10
43 #define LNW_PERIPHRAL_STATUS            0x0
44 #define LNW_PERIPHRAL_MASK              0x8
45
46 struct intel_mid_dma_probe_info {
47         u8 max_chan;
48         u8 ch_base;
49         u16 block_size;
50         u32 pimr_mask;
51 };
52
53 #define INFO(_max_chan, _ch_base, _block_size, _pimr_mask) \
54         ((kernel_ulong_t)&(struct intel_mid_dma_probe_info) {   \
55                 .max_chan = (_max_chan),                        \
56                 .ch_base = (_ch_base),                          \
57                 .block_size = (_block_size),                    \
58                 .pimr_mask = (_pimr_mask),                      \
59         })
60
61 /*****************************************************************************
62 Utility Functions*/
63 /**
64  * get_ch_index -       convert status to channel
65  * @status: status mask
66  * @base: dma ch base value
67  *
68  * Modify the status mask and return the channel index needing
69  * attention (or -1 if neither)
70  */
71 static int get_ch_index(int *status, unsigned int base)
72 {
73         int i;
74         for (i = 0; i < MAX_CHAN; i++) {
75                 if (*status & (1 << (i + base))) {
76                         *status = *status & ~(1 << (i + base));
77                         pr_debug("MDMA: index %d New status %x\n", i, *status);
78                         return i;
79                 }
80         }
81         return -1;
82 }
83
84 /**
85  * get_block_ts -       calculates dma transaction length
86  * @len: dma transfer length
87  * @tx_width: dma transfer src width
88  * @block_size: dma controller max block size
89  *
90  * Based on src width calculate the DMA trsaction length in data items
91  * return data items or FFFF if exceeds max length for block
92  */
93 static int get_block_ts(int len, int tx_width, int block_size)
94 {
95         int byte_width = 0, block_ts = 0;
96
97         switch (tx_width) {
98         case DMA_SLAVE_BUSWIDTH_1_BYTE:
99                 byte_width = 1;
100                 break;
101         case DMA_SLAVE_BUSWIDTH_2_BYTES:
102                 byte_width = 2;
103                 break;
104         case DMA_SLAVE_BUSWIDTH_4_BYTES:
105         default:
106                 byte_width = 4;
107                 break;
108         }
109
110         block_ts = len/byte_width;
111         if (block_ts > block_size)
112                 block_ts = 0xFFFF;
113         return block_ts;
114 }
115
116 /*****************************************************************************
117 DMAC1 interrupt Functions*/
118
119 /**
120  * dmac1_mask_periphral_intr -  mask the periphral interrupt
121  * @mid: dma device for which masking is required
122  *
123  * Masks the DMA periphral interrupt
124  * this is valid for DMAC1 family controllers only
125  * This controller should have periphral mask registers already mapped
126  */
127 static void dmac1_mask_periphral_intr(struct middma_device *mid)
128 {
129         u32 pimr;
130
131         if (mid->pimr_mask) {
132                 pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
133                 pimr |= mid->pimr_mask;
134                 writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
135         }
136         return;
137 }
138
139 /**
140  * dmac1_unmask_periphral_intr -        unmask the periphral interrupt
141  * @midc: dma channel for which masking is required
142  *
143  * UnMasks the DMA periphral interrupt,
144  * this is valid for DMAC1 family controllers only
145  * This controller should have periphral mask registers already mapped
146  */
147 static void dmac1_unmask_periphral_intr(struct intel_mid_dma_chan *midc)
148 {
149         u32 pimr;
150         struct middma_device *mid = to_middma_device(midc->chan.device);
151
152         if (mid->pimr_mask) {
153                 pimr = readl(mid->mask_reg + LNW_PERIPHRAL_MASK);
154                 pimr &= ~mid->pimr_mask;
155                 writel(pimr, mid->mask_reg + LNW_PERIPHRAL_MASK);
156         }
157         return;
158 }
159
160 /**
161  * enable_dma_interrupt -       enable the periphral interrupt
162  * @midc: dma channel for which enable interrupt is required
163  *
164  * Enable the DMA periphral interrupt,
165  * this is valid for DMAC1 family controllers only
166  * This controller should have periphral mask registers already mapped
167  */
168 static void enable_dma_interrupt(struct intel_mid_dma_chan *midc)
169 {
170         dmac1_unmask_periphral_intr(midc);
171
172         /*en ch interrupts*/
173         iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
174         iowrite32(UNMASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
175         return;
176 }
177
178 /**
179  * disable_dma_interrupt -      disable the periphral interrupt
180  * @midc: dma channel for which disable interrupt is required
181  *
182  * Disable the DMA periphral interrupt,
183  * this is valid for DMAC1 family controllers only
184  * This controller should have periphral mask registers already mapped
185  */
186 static void disable_dma_interrupt(struct intel_mid_dma_chan *midc)
187 {
188         /*Check LPE PISR, make sure fwd is disabled*/
189         iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_BLOCK);
190         iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_TFR);
191         iowrite32(MASK_INTR_REG(midc->ch_id), midc->dma_base + MASK_ERR);
192         return;
193 }
194
195 /*****************************************************************************
196 DMA channel helper Functions*/
197 /**
198  * mid_desc_get         -       get a descriptor
199  * @midc: dma channel for which descriptor is required
200  *
201  * Obtain a descriptor for the channel. Returns NULL if none are free.
202  * Once the descriptor is returned it is private until put on another
203  * list or freed
204  */
205 static struct intel_mid_dma_desc *midc_desc_get(struct intel_mid_dma_chan *midc)
206 {
207         struct intel_mid_dma_desc *desc, *_desc;
208         struct intel_mid_dma_desc *ret = NULL;
209
210         spin_lock_bh(&midc->lock);
211         list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
212                 if (async_tx_test_ack(&desc->txd)) {
213                         list_del(&desc->desc_node);
214                         ret = desc;
215                         break;
216                 }
217         }
218         spin_unlock_bh(&midc->lock);
219         return ret;
220 }
221
222 /**
223  * mid_desc_put         -       put a descriptor
224  * @midc: dma channel for which descriptor is required
225  * @desc: descriptor to put
226  *
227  * Return a descriptor from lwn_desc_get back to the free pool
228  */
229 static void midc_desc_put(struct intel_mid_dma_chan *midc,
230                         struct intel_mid_dma_desc *desc)
231 {
232         if (desc) {
233                 spin_lock_bh(&midc->lock);
234                 list_add_tail(&desc->desc_node, &midc->free_list);
235                 spin_unlock_bh(&midc->lock);
236         }
237 }
238 /**
239  * midc_dostart         -               begin a DMA transaction
240  * @midc: channel for which txn is to be started
241  * @first: first descriptor of series
242  *
243  * Load a transaction into the engine. This must be called with midc->lock
244  * held and bh disabled.
245  */
246 static void midc_dostart(struct intel_mid_dma_chan *midc,
247                         struct intel_mid_dma_desc *first)
248 {
249         struct middma_device *mid = to_middma_device(midc->chan.device);
250
251         /*  channel is idle */
252         if (midc->busy && test_ch_en(midc->dma_base, midc->ch_id)) {
253                 /*error*/
254                 pr_err("ERR_MDMA: channel is busy in start\n");
255                 /* The tasklet will hopefully advance the queue... */
256                 return;
257         }
258         midc->busy = true;
259         /*write registers and en*/
260         iowrite32(first->sar, midc->ch_regs + SAR);
261         iowrite32(first->dar, midc->ch_regs + DAR);
262         iowrite32(first->lli_phys, midc->ch_regs + LLP);
263         iowrite32(first->cfg_hi, midc->ch_regs + CFG_HIGH);
264         iowrite32(first->cfg_lo, midc->ch_regs + CFG_LOW);
265         iowrite32(first->ctl_lo, midc->ch_regs + CTL_LOW);
266         iowrite32(first->ctl_hi, midc->ch_regs + CTL_HIGH);
267         pr_debug("MDMA:TX SAR %x,DAR %x,CFGL %x,CFGH %x,CTLH %x, CTLL %x\n",
268                 (int)first->sar, (int)first->dar, first->cfg_hi,
269                 first->cfg_lo, first->ctl_hi, first->ctl_lo);
270         first->status = DMA_IN_PROGRESS;
271
272         iowrite32(ENABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
273 }
274
275 /**
276  * midc_descriptor_complete     -       process completed descriptor
277  * @midc: channel owning the descriptor
278  * @desc: the descriptor itself
279  *
280  * Process a completed descriptor and perform any callbacks upon
281  * the completion. The completion handling drops the lock during the
282  * callbacks but must be called with the lock held.
283  */
284 static void midc_descriptor_complete(struct intel_mid_dma_chan *midc,
285                 struct intel_mid_dma_desc *desc)
286                 __releases(&midc->lock) __acquires(&midc->lock)
287 {
288         struct dma_async_tx_descriptor  *txd = &desc->txd;
289         dma_async_tx_callback callback_txd = NULL;
290         struct intel_mid_dma_lli        *llitem;
291         void *param_txd = NULL;
292
293         dma_cookie_complete(txd);
294         callback_txd = txd->callback;
295         param_txd = txd->callback_param;
296
297         if (desc->lli != NULL) {
298                 /*clear the DONE bit of completed LLI in memory*/
299                 llitem = desc->lli + desc->current_lli;
300                 llitem->ctl_hi &= CLEAR_DONE;
301                 if (desc->current_lli < desc->lli_length-1)
302                         (desc->current_lli)++;
303                 else
304                         desc->current_lli = 0;
305         }
306         spin_unlock_bh(&midc->lock);
307         if (callback_txd) {
308                 pr_debug("MDMA: TXD callback set ... calling\n");
309                 callback_txd(param_txd);
310         }
311         if (midc->raw_tfr) {
312                 desc->status = DMA_COMPLETE;
313                 if (desc->lli != NULL) {
314                         pci_pool_free(desc->lli_pool, desc->lli,
315                                                 desc->lli_phys);
316                         pci_pool_destroy(desc->lli_pool);
317                         desc->lli = NULL;
318                 }
319                 list_move(&desc->desc_node, &midc->free_list);
320                 midc->busy = false;
321         }
322         spin_lock_bh(&midc->lock);
323
324 }
325 /**
326  * midc_scan_descriptors -              check the descriptors in channel
327  *                                      mark completed when tx is completete
328  * @mid: device
329  * @midc: channel to scan
330  *
331  * Walk the descriptor chain for the device and process any entries
332  * that are complete.
333  */
334 static void midc_scan_descriptors(struct middma_device *mid,
335                                 struct intel_mid_dma_chan *midc)
336 {
337         struct intel_mid_dma_desc *desc = NULL, *_desc = NULL;
338
339         /*tx is complete*/
340         list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
341                 if (desc->status == DMA_IN_PROGRESS)
342                         midc_descriptor_complete(midc, desc);
343         }
344         return;
345         }
346 /**
347  * midc_lli_fill_sg -           Helper function to convert
348  *                              SG list to Linked List Items.
349  *@midc: Channel
350  *@desc: DMA descriptor
351  *@sglist: Pointer to SG list
352  *@sglen: SG list length
353  *@flags: DMA transaction flags
354  *
355  * Walk through the SG list and convert the SG list into Linked
356  * List Items (LLI).
357  */
358 static int midc_lli_fill_sg(struct intel_mid_dma_chan *midc,
359                                 struct intel_mid_dma_desc *desc,
360                                 struct scatterlist *sglist,
361                                 unsigned int sglen,
362                                 unsigned int flags)
363 {
364         struct intel_mid_dma_slave *mids;
365         struct scatterlist  *sg;
366         dma_addr_t lli_next, sg_phy_addr;
367         struct intel_mid_dma_lli *lli_bloc_desc;
368         union intel_mid_dma_ctl_lo ctl_lo;
369         union intel_mid_dma_ctl_hi ctl_hi;
370         int i;
371
372         pr_debug("MDMA: Entered midc_lli_fill_sg\n");
373         mids = midc->mid_slave;
374
375         lli_bloc_desc = desc->lli;
376         lli_next = desc->lli_phys;
377
378         ctl_lo.ctl_lo = desc->ctl_lo;
379         ctl_hi.ctl_hi = desc->ctl_hi;
380         for_each_sg(sglist, sg, sglen, i) {
381                 /*Populate CTL_LOW and LLI values*/
382                 if (i != sglen - 1) {
383                         lli_next = lli_next +
384                                 sizeof(struct intel_mid_dma_lli);
385                 } else {
386                 /*Check for circular list, otherwise terminate LLI to ZERO*/
387                         if (flags & DMA_PREP_CIRCULAR_LIST) {
388                                 pr_debug("MDMA: LLI is configured in circular mode\n");
389                                 lli_next = desc->lli_phys;
390                         } else {
391                                 lli_next = 0;
392                                 ctl_lo.ctlx.llp_dst_en = 0;
393                                 ctl_lo.ctlx.llp_src_en = 0;
394                         }
395                 }
396                 /*Populate CTL_HI values*/
397                 ctl_hi.ctlx.block_ts = get_block_ts(sg_dma_len(sg),
398                                                         desc->width,
399                                                         midc->dma->block_size);
400                 /*Populate SAR and DAR values*/
401                 sg_phy_addr = sg_dma_address(sg);
402                 if (desc->dirn ==  DMA_MEM_TO_DEV) {
403                         lli_bloc_desc->sar  = sg_phy_addr;
404                         lli_bloc_desc->dar  = mids->dma_slave.dst_addr;
405                 } else if (desc->dirn ==  DMA_DEV_TO_MEM) {
406                         lli_bloc_desc->sar  = mids->dma_slave.src_addr;
407                         lli_bloc_desc->dar  = sg_phy_addr;
408                 }
409                 /*Copy values into block descriptor in system memroy*/
410                 lli_bloc_desc->llp = lli_next;
411                 lli_bloc_desc->ctl_lo = ctl_lo.ctl_lo;
412                 lli_bloc_desc->ctl_hi = ctl_hi.ctl_hi;
413
414                 lli_bloc_desc++;
415         }
416         /*Copy very first LLI values to descriptor*/
417         desc->ctl_lo = desc->lli->ctl_lo;
418         desc->ctl_hi = desc->lli->ctl_hi;
419         desc->sar = desc->lli->sar;
420         desc->dar = desc->lli->dar;
421
422         return 0;
423 }
424 /*****************************************************************************
425 DMA engine callback Functions*/
426 /**
427  * intel_mid_dma_tx_submit -    callback to submit DMA transaction
428  * @tx: dma engine descriptor
429  *
430  * Submit the DMA transaction for this descriptor, start if ch idle
431  */
432 static dma_cookie_t intel_mid_dma_tx_submit(struct dma_async_tx_descriptor *tx)
433 {
434         struct intel_mid_dma_desc       *desc = to_intel_mid_dma_desc(tx);
435         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(tx->chan);
436         dma_cookie_t            cookie;
437
438         spin_lock_bh(&midc->lock);
439         cookie = dma_cookie_assign(tx);
440
441         if (list_empty(&midc->active_list))
442                 list_add_tail(&desc->desc_node, &midc->active_list);
443         else
444                 list_add_tail(&desc->desc_node, &midc->queue);
445
446         midc_dostart(midc, desc);
447         spin_unlock_bh(&midc->lock);
448
449         return cookie;
450 }
451
452 /**
453  * intel_mid_dma_issue_pending -        callback to issue pending txn
454  * @chan: chan where pending trascation needs to be checked and submitted
455  *
456  * Call for scan to issue pending descriptors
457  */
458 static void intel_mid_dma_issue_pending(struct dma_chan *chan)
459 {
460         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
461
462         spin_lock_bh(&midc->lock);
463         if (!list_empty(&midc->queue))
464                 midc_scan_descriptors(to_middma_device(chan->device), midc);
465         spin_unlock_bh(&midc->lock);
466 }
467
468 /**
469  * intel_mid_dma_tx_status -    Return status of txn
470  * @chan: chan for where status needs to be checked
471  * @cookie: cookie for txn
472  * @txstate: DMA txn state
473  *
474  * Return status of DMA txn
475  */
476 static enum dma_status intel_mid_dma_tx_status(struct dma_chan *chan,
477                                                 dma_cookie_t cookie,
478                                                 struct dma_tx_state *txstate)
479 {
480         struct intel_mid_dma_chan *midc = to_intel_mid_dma_chan(chan);
481         enum dma_status ret;
482
483         ret = dma_cookie_status(chan, cookie, txstate);
484         if (ret != DMA_COMPLETE) {
485                 spin_lock_bh(&midc->lock);
486                 midc_scan_descriptors(to_middma_device(chan->device), midc);
487                 spin_unlock_bh(&midc->lock);
488
489                 ret = dma_cookie_status(chan, cookie, txstate);
490         }
491
492         return ret;
493 }
494
495 static int intel_mid_dma_config(struct dma_chan *chan,
496                                 struct dma_slave_config *slave)
497 {
498         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
499         struct intel_mid_dma_slave *mid_slave;
500
501         BUG_ON(!midc);
502         BUG_ON(!slave);
503         pr_debug("MDMA: slave control called\n");
504
505         mid_slave = to_intel_mid_dma_slave(slave);
506
507         BUG_ON(!mid_slave);
508
509         midc->mid_slave = mid_slave;
510         return 0;
511 }
512
513 static int intel_mid_dma_terminate_all(struct dma_chan *chan)
514 {
515         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
516         struct middma_device    *mid = to_middma_device(chan->device);
517         struct intel_mid_dma_desc       *desc, *_desc;
518         union intel_mid_dma_cfg_lo cfg_lo;
519
520         spin_lock_bh(&midc->lock);
521         if (midc->busy == false) {
522                 spin_unlock_bh(&midc->lock);
523                 return 0;
524         }
525         /*Suspend and disable the channel*/
526         cfg_lo.cfg_lo = ioread32(midc->ch_regs + CFG_LOW);
527         cfg_lo.cfgx.ch_susp = 1;
528         iowrite32(cfg_lo.cfg_lo, midc->ch_regs + CFG_LOW);
529         iowrite32(DISABLE_CHANNEL(midc->ch_id), mid->dma_base + DMA_CHAN_EN);
530         midc->busy = false;
531         /* Disable interrupts */
532         disable_dma_interrupt(midc);
533         midc->descs_allocated = 0;
534
535         spin_unlock_bh(&midc->lock);
536         list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
537                 if (desc->lli != NULL) {
538                         pci_pool_free(desc->lli_pool, desc->lli,
539                                                 desc->lli_phys);
540                         pci_pool_destroy(desc->lli_pool);
541                         desc->lli = NULL;
542                 }
543                 list_move(&desc->desc_node, &midc->free_list);
544         }
545         return 0;
546 }
547
548
549 /**
550  * intel_mid_dma_prep_memcpy -  Prep memcpy txn
551  * @chan: chan for DMA transfer
552  * @dest: destn address
553  * @src: src address
554  * @len: DMA transfer len
555  * @flags: DMA flags
556  *
557  * Perform a DMA memcpy. Note we support slave periphral DMA transfers only
558  * The periphral txn details should be filled in slave structure properly
559  * Returns the descriptor for this txn
560  */
561 static struct dma_async_tx_descriptor *intel_mid_dma_prep_memcpy(
562                         struct dma_chan *chan, dma_addr_t dest,
563                         dma_addr_t src, size_t len, unsigned long flags)
564 {
565         struct intel_mid_dma_chan *midc;
566         struct intel_mid_dma_desc *desc = NULL;
567         struct intel_mid_dma_slave *mids;
568         union intel_mid_dma_ctl_lo ctl_lo;
569         union intel_mid_dma_ctl_hi ctl_hi;
570         union intel_mid_dma_cfg_lo cfg_lo;
571         union intel_mid_dma_cfg_hi cfg_hi;
572         enum dma_slave_buswidth width;
573
574         pr_debug("MDMA: Prep for memcpy\n");
575         BUG_ON(!chan);
576         if (!len)
577                 return NULL;
578
579         midc = to_intel_mid_dma_chan(chan);
580         BUG_ON(!midc);
581
582         mids = midc->mid_slave;
583         BUG_ON(!mids);
584
585         pr_debug("MDMA:called for DMA %x CH %d Length %zu\n",
586                                 midc->dma->pci_id, midc->ch_id, len);
587         pr_debug("MDMA:Cfg passed Mode %x, Dirn %x, HS %x, Width %x\n",
588                         mids->cfg_mode, mids->dma_slave.direction,
589                         mids->hs_mode, mids->dma_slave.src_addr_width);
590
591         /*calculate CFG_LO*/
592         if (mids->hs_mode == LNW_DMA_SW_HS) {
593                 cfg_lo.cfg_lo = 0;
594                 cfg_lo.cfgx.hs_sel_dst = 1;
595                 cfg_lo.cfgx.hs_sel_src = 1;
596         } else if (mids->hs_mode == LNW_DMA_HW_HS)
597                 cfg_lo.cfg_lo = 0x00000;
598
599         /*calculate CFG_HI*/
600         if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
601                 /*SW HS only*/
602                 cfg_hi.cfg_hi = 0;
603         } else {
604                 cfg_hi.cfg_hi = 0;
605                 if (midc->dma->pimr_mask) {
606                         cfg_hi.cfgx.protctl = 0x0; /*default value*/
607                         cfg_hi.cfgx.fifo_mode = 1;
608                         if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
609                                 cfg_hi.cfgx.src_per = 0;
610                                 if (mids->device_instance == 0)
611                                         cfg_hi.cfgx.dst_per = 3;
612                                 if (mids->device_instance == 1)
613                                         cfg_hi.cfgx.dst_per = 1;
614                         } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
615                                 if (mids->device_instance == 0)
616                                         cfg_hi.cfgx.src_per = 2;
617                                 if (mids->device_instance == 1)
618                                         cfg_hi.cfgx.src_per = 0;
619                                 cfg_hi.cfgx.dst_per = 0;
620                         }
621                 } else {
622                         cfg_hi.cfgx.protctl = 0x1; /*default value*/
623                         cfg_hi.cfgx.src_per = cfg_hi.cfgx.dst_per =
624                                         midc->ch_id - midc->dma->chan_base;
625                 }
626         }
627
628         /*calculate CTL_HI*/
629         ctl_hi.ctlx.reser = 0;
630         ctl_hi.ctlx.done  = 0;
631         width = mids->dma_slave.src_addr_width;
632
633         ctl_hi.ctlx.block_ts = get_block_ts(len, width, midc->dma->block_size);
634         pr_debug("MDMA:calc len %d for block size %d\n",
635                                 ctl_hi.ctlx.block_ts, midc->dma->block_size);
636         /*calculate CTL_LO*/
637         ctl_lo.ctl_lo = 0;
638         ctl_lo.ctlx.int_en = 1;
639         ctl_lo.ctlx.dst_msize = mids->dma_slave.src_maxburst;
640         ctl_lo.ctlx.src_msize = mids->dma_slave.dst_maxburst;
641
642         /*
643          * Here we need some translation from "enum dma_slave_buswidth"
644          * to the format for our dma controller
645          *              standard        intel_mid_dmac's format
646          *               1 Byte                 0b000
647          *               2 Bytes                0b001
648          *               4 Bytes                0b010
649          */
650         ctl_lo.ctlx.dst_tr_width = mids->dma_slave.dst_addr_width / 2;
651         ctl_lo.ctlx.src_tr_width = mids->dma_slave.src_addr_width / 2;
652
653         if (mids->cfg_mode == LNW_DMA_MEM_TO_MEM) {
654                 ctl_lo.ctlx.tt_fc = 0;
655                 ctl_lo.ctlx.sinc = 0;
656                 ctl_lo.ctlx.dinc = 0;
657         } else {
658                 if (mids->dma_slave.direction == DMA_MEM_TO_DEV) {
659                         ctl_lo.ctlx.sinc = 0;
660                         ctl_lo.ctlx.dinc = 2;
661                         ctl_lo.ctlx.tt_fc = 1;
662                 } else if (mids->dma_slave.direction == DMA_DEV_TO_MEM) {
663                         ctl_lo.ctlx.sinc = 2;
664                         ctl_lo.ctlx.dinc = 0;
665                         ctl_lo.ctlx.tt_fc = 2;
666                 }
667         }
668
669         pr_debug("MDMA:Calc CTL LO %x, CTL HI %x, CFG LO %x, CFG HI %x\n",
670                 ctl_lo.ctl_lo, ctl_hi.ctl_hi, cfg_lo.cfg_lo, cfg_hi.cfg_hi);
671
672         enable_dma_interrupt(midc);
673
674         desc = midc_desc_get(midc);
675         if (desc == NULL)
676                 goto err_desc_get;
677         desc->sar = src;
678         desc->dar = dest ;
679         desc->len = len;
680         desc->cfg_hi = cfg_hi.cfg_hi;
681         desc->cfg_lo = cfg_lo.cfg_lo;
682         desc->ctl_lo = ctl_lo.ctl_lo;
683         desc->ctl_hi = ctl_hi.ctl_hi;
684         desc->width = width;
685         desc->dirn = mids->dma_slave.direction;
686         desc->lli_phys = 0;
687         desc->lli = NULL;
688         desc->lli_pool = NULL;
689         return &desc->txd;
690
691 err_desc_get:
692         pr_err("ERR_MDMA: Failed to get desc\n");
693         midc_desc_put(midc, desc);
694         return NULL;
695 }
696 /**
697  * intel_mid_dma_prep_slave_sg -        Prep slave sg txn
698  * @chan: chan for DMA transfer
699  * @sgl: scatter gather list
700  * @sg_len: length of sg txn
701  * @direction: DMA transfer dirtn
702  * @flags: DMA flags
703  * @context: transfer context (ignored)
704  *
705  * Prepares LLI based periphral transfer
706  */
707 static struct dma_async_tx_descriptor *intel_mid_dma_prep_slave_sg(
708                         struct dma_chan *chan, struct scatterlist *sgl,
709                         unsigned int sg_len, enum dma_transfer_direction direction,
710                         unsigned long flags, void *context)
711 {
712         struct intel_mid_dma_chan *midc = NULL;
713         struct intel_mid_dma_slave *mids = NULL;
714         struct intel_mid_dma_desc *desc = NULL;
715         struct dma_async_tx_descriptor *txd = NULL;
716         union intel_mid_dma_ctl_lo ctl_lo;
717
718         pr_debug("MDMA: Prep for slave SG\n");
719
720         if (!sg_len) {
721                 pr_err("MDMA: Invalid SG length\n");
722                 return NULL;
723         }
724         midc = to_intel_mid_dma_chan(chan);
725         BUG_ON(!midc);
726
727         mids = midc->mid_slave;
728         BUG_ON(!mids);
729
730         if (!midc->dma->pimr_mask) {
731                 /* We can still handle sg list with only one item */
732                 if (sg_len == 1) {
733                         txd = intel_mid_dma_prep_memcpy(chan,
734                                                 mids->dma_slave.dst_addr,
735                                                 mids->dma_slave.src_addr,
736                                                 sg_dma_len(sgl),
737                                                 flags);
738                         return txd;
739                 } else {
740                         pr_warn("MDMA: SG list is not supported by this controller\n");
741                         return  NULL;
742                 }
743         }
744
745         pr_debug("MDMA: SG Length = %d, direction = %d, Flags = %#lx\n",
746                         sg_len, direction, flags);
747
748         txd = intel_mid_dma_prep_memcpy(chan, 0, 0, sg_dma_len(sgl), flags);
749         if (NULL == txd) {
750                 pr_err("MDMA: Prep memcpy failed\n");
751                 return NULL;
752         }
753
754         desc = to_intel_mid_dma_desc(txd);
755         desc->dirn = direction;
756         ctl_lo.ctl_lo = desc->ctl_lo;
757         ctl_lo.ctlx.llp_dst_en = 1;
758         ctl_lo.ctlx.llp_src_en = 1;
759         desc->ctl_lo = ctl_lo.ctl_lo;
760         desc->lli_length = sg_len;
761         desc->current_lli = 0;
762         /* DMA coherent memory pool for LLI descriptors*/
763         desc->lli_pool = pci_pool_create("intel_mid_dma_lli_pool",
764                                 midc->dma->pdev,
765                                 (sizeof(struct intel_mid_dma_lli)*sg_len),
766                                 32, 0);
767         if (NULL == desc->lli_pool) {
768                 pr_err("MID_DMA:LLI pool create failed\n");
769                 return NULL;
770         }
771
772         desc->lli = pci_pool_alloc(desc->lli_pool, GFP_KERNEL, &desc->lli_phys);
773         if (!desc->lli) {
774                 pr_err("MID_DMA: LLI alloc failed\n");
775                 pci_pool_destroy(desc->lli_pool);
776                 return NULL;
777         }
778
779         midc_lli_fill_sg(midc, desc, sgl, sg_len, flags);
780         if (flags & DMA_PREP_INTERRUPT) {
781                 iowrite32(UNMASK_INTR_REG(midc->ch_id),
782                                 midc->dma_base + MASK_BLOCK);
783                 pr_debug("MDMA:Enabled Block interrupt\n");
784         }
785         return &desc->txd;
786 }
787
788 /**
789  * intel_mid_dma_free_chan_resources -  Frees dma resources
790  * @chan: chan requiring attention
791  *
792  * Frees the allocated resources on this DMA chan
793  */
794 static void intel_mid_dma_free_chan_resources(struct dma_chan *chan)
795 {
796         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
797         struct middma_device    *mid = to_middma_device(chan->device);
798         struct intel_mid_dma_desc       *desc, *_desc;
799
800         if (true == midc->busy) {
801                 /*trying to free ch in use!!!!!*/
802                 pr_err("ERR_MDMA: trying to free ch in use\n");
803         }
804         spin_lock_bh(&midc->lock);
805         midc->descs_allocated = 0;
806         list_for_each_entry_safe(desc, _desc, &midc->active_list, desc_node) {
807                 list_del(&desc->desc_node);
808                 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
809         }
810         list_for_each_entry_safe(desc, _desc, &midc->free_list, desc_node) {
811                 list_del(&desc->desc_node);
812                 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
813         }
814         list_for_each_entry_safe(desc, _desc, &midc->queue, desc_node) {
815                 list_del(&desc->desc_node);
816                 pci_pool_free(mid->dma_pool, desc, desc->txd.phys);
817         }
818         spin_unlock_bh(&midc->lock);
819         midc->in_use = false;
820         midc->busy = false;
821         /* Disable CH interrupts */
822         iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_BLOCK);
823         iowrite32(MASK_INTR_REG(midc->ch_id), mid->dma_base + MASK_ERR);
824         pm_runtime_put(&mid->pdev->dev);
825 }
826
827 /**
828  * intel_mid_dma_alloc_chan_resources - Allocate dma resources
829  * @chan: chan requiring attention
830  *
831  * Allocates DMA resources on this chan
832  * Return the descriptors allocated
833  */
834 static int intel_mid_dma_alloc_chan_resources(struct dma_chan *chan)
835 {
836         struct intel_mid_dma_chan       *midc = to_intel_mid_dma_chan(chan);
837         struct middma_device    *mid = to_middma_device(chan->device);
838         struct intel_mid_dma_desc       *desc;
839         dma_addr_t              phys;
840         int     i = 0;
841
842         pm_runtime_get_sync(&mid->pdev->dev);
843
844         if (mid->state == SUSPENDED) {
845                 if (dma_resume(&mid->pdev->dev)) {
846                         pr_err("ERR_MDMA: resume failed");
847                         return -EFAULT;
848                 }
849         }
850
851         /* ASSERT:  channel is idle */
852         if (test_ch_en(mid->dma_base, midc->ch_id)) {
853                 /*ch is not idle*/
854                 pr_err("ERR_MDMA: ch not idle\n");
855                 pm_runtime_put(&mid->pdev->dev);
856                 return -EIO;
857         }
858         dma_cookie_init(chan);
859
860         spin_lock_bh(&midc->lock);
861         while (midc->descs_allocated < DESCS_PER_CHANNEL) {
862                 spin_unlock_bh(&midc->lock);
863                 desc = pci_pool_alloc(mid->dma_pool, GFP_KERNEL, &phys);
864                 if (!desc) {
865                         pr_err("ERR_MDMA: desc failed\n");
866                         pm_runtime_put(&mid->pdev->dev);
867                         return -ENOMEM;
868                         /*check*/
869                 }
870                 dma_async_tx_descriptor_init(&desc->txd, chan);
871                 desc->txd.tx_submit = intel_mid_dma_tx_submit;
872                 desc->txd.flags = DMA_CTRL_ACK;
873                 desc->txd.phys = phys;
874                 spin_lock_bh(&midc->lock);
875                 i = ++midc->descs_allocated;
876                 list_add_tail(&desc->desc_node, &midc->free_list);
877         }
878         spin_unlock_bh(&midc->lock);
879         midc->in_use = true;
880         midc->busy = false;
881         pr_debug("MID_DMA: Desc alloc done ret: %d desc\n", i);
882         return i;
883 }
884
885 /**
886  * midc_handle_error -  Handle DMA txn error
887  * @mid: controller where error occurred
888  * @midc: chan where error occurred
889  *
890  * Scan the descriptor for error
891  */
892 static void midc_handle_error(struct middma_device *mid,
893                 struct intel_mid_dma_chan *midc)
894 {
895         midc_scan_descriptors(mid, midc);
896 }
897
898 /**
899  * dma_tasklet -        DMA interrupt tasklet
900  * @data: tasklet arg (the controller structure)
901  *
902  * Scan the controller for interrupts for completion/error
903  * Clear the interrupt and call for handling completion/error
904  */
905 static void dma_tasklet(unsigned long data)
906 {
907         struct middma_device *mid = NULL;
908         struct intel_mid_dma_chan *midc = NULL;
909         u32 status, raw_tfr, raw_block;
910         int i;
911
912         mid = (struct middma_device *)data;
913         if (mid == NULL) {
914                 pr_err("ERR_MDMA: tasklet Null param\n");
915                 return;
916         }
917         pr_debug("MDMA: in tasklet for device %x\n", mid->pci_id);
918         raw_tfr = ioread32(mid->dma_base + RAW_TFR);
919         raw_block = ioread32(mid->dma_base + RAW_BLOCK);
920         status = raw_tfr | raw_block;
921         status &= mid->intr_mask;
922         while (status) {
923                 /*txn interrupt*/
924                 i = get_ch_index(&status, mid->chan_base);
925                 if (i < 0) {
926                         pr_err("ERR_MDMA:Invalid ch index %x\n", i);
927                         return;
928                 }
929                 midc = &mid->ch[i];
930                 if (midc == NULL) {
931                         pr_err("ERR_MDMA:Null param midc\n");
932                         return;
933                 }
934                 pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
935                                 status, midc->ch_id, i);
936                 midc->raw_tfr = raw_tfr;
937                 midc->raw_block = raw_block;
938                 spin_lock_bh(&midc->lock);
939                 /*clearing this interrupts first*/
940                 iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_TFR);
941                 if (raw_block) {
942                         iowrite32((1 << midc->ch_id),
943                                 mid->dma_base + CLEAR_BLOCK);
944                 }
945                 midc_scan_descriptors(mid, midc);
946                 pr_debug("MDMA:Scan of desc... complete, unmasking\n");
947                 iowrite32(UNMASK_INTR_REG(midc->ch_id),
948                                 mid->dma_base + MASK_TFR);
949                 if (raw_block) {
950                         iowrite32(UNMASK_INTR_REG(midc->ch_id),
951                                 mid->dma_base + MASK_BLOCK);
952                 }
953                 spin_unlock_bh(&midc->lock);
954         }
955
956         status = ioread32(mid->dma_base + RAW_ERR);
957         status &= mid->intr_mask;
958         while (status) {
959                 /*err interrupt*/
960                 i = get_ch_index(&status, mid->chan_base);
961                 if (i < 0) {
962                         pr_err("ERR_MDMA:Invalid ch index %x\n", i);
963                         return;
964                 }
965                 midc = &mid->ch[i];
966                 if (midc == NULL) {
967                         pr_err("ERR_MDMA:Null param midc\n");
968                         return;
969                 }
970                 pr_debug("MDMA:Tx complete interrupt %x, Ch No %d Index %d\n",
971                                 status, midc->ch_id, i);
972
973                 iowrite32((1 << midc->ch_id), mid->dma_base + CLEAR_ERR);
974                 spin_lock_bh(&midc->lock);
975                 midc_handle_error(mid, midc);
976                 iowrite32(UNMASK_INTR_REG(midc->ch_id),
977                                 mid->dma_base + MASK_ERR);
978                 spin_unlock_bh(&midc->lock);
979         }
980         pr_debug("MDMA:Exiting takslet...\n");
981         return;
982 }
983
984 static void dma_tasklet1(unsigned long data)
985 {
986         pr_debug("MDMA:in takslet1...\n");
987         return dma_tasklet(data);
988 }
989
990 static void dma_tasklet2(unsigned long data)
991 {
992         pr_debug("MDMA:in takslet2...\n");
993         return dma_tasklet(data);
994 }
995
996 /**
997  * intel_mid_dma_interrupt -    DMA ISR
998  * @irq: IRQ where interrupt occurred
999  * @data: ISR cllback data (the controller structure)
1000  *
1001  * See if this is our interrupt if so then schedule the tasklet
1002  * otherwise ignore
1003  */
1004 static irqreturn_t intel_mid_dma_interrupt(int irq, void *data)
1005 {
1006         struct middma_device *mid = data;
1007         u32 tfr_status, err_status;
1008         int call_tasklet = 0;
1009
1010         tfr_status = ioread32(mid->dma_base + RAW_TFR);
1011         err_status = ioread32(mid->dma_base + RAW_ERR);
1012         if (!tfr_status && !err_status)
1013                 return IRQ_NONE;
1014
1015         /*DMA Interrupt*/
1016         pr_debug("MDMA:Got an interrupt on irq %d\n", irq);
1017         pr_debug("MDMA: Status %x, Mask %x\n", tfr_status, mid->intr_mask);
1018         tfr_status &= mid->intr_mask;
1019         if (tfr_status) {
1020                 /*need to disable intr*/
1021                 iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_TFR);
1022                 iowrite32((tfr_status << INT_MASK_WE), mid->dma_base + MASK_BLOCK);
1023                 pr_debug("MDMA: Calling tasklet %x\n", tfr_status);
1024                 call_tasklet = 1;
1025         }
1026         err_status &= mid->intr_mask;
1027         if (err_status) {
1028                 iowrite32((err_status << INT_MASK_WE),
1029                           mid->dma_base + MASK_ERR);
1030                 call_tasklet = 1;
1031         }
1032         if (call_tasklet)
1033                 tasklet_schedule(&mid->tasklet);
1034
1035         return IRQ_HANDLED;
1036 }
1037
1038 static irqreturn_t intel_mid_dma_interrupt1(int irq, void *data)
1039 {
1040         return intel_mid_dma_interrupt(irq, data);
1041 }
1042
1043 static irqreturn_t intel_mid_dma_interrupt2(int irq, void *data)
1044 {
1045         return intel_mid_dma_interrupt(irq, data);
1046 }
1047
1048 /**
1049  * mid_setup_dma -      Setup the DMA controller
1050  * @pdev: Controller PCI device structure
1051  *
1052  * Initialize the DMA controller, channels, registers with DMA engine,
1053  * ISR. Initialize DMA controller channels.
1054  */
1055 static int mid_setup_dma(struct pci_dev *pdev)
1056 {
1057         struct middma_device *dma = pci_get_drvdata(pdev);
1058         int err, i;
1059
1060         /* DMA coherent memory pool for DMA descriptor allocations */
1061         dma->dma_pool = pci_pool_create("intel_mid_dma_desc_pool", pdev,
1062                                         sizeof(struct intel_mid_dma_desc),
1063                                         32, 0);
1064         if (NULL == dma->dma_pool) {
1065                 pr_err("ERR_MDMA:pci_pool_create failed\n");
1066                 err = -ENOMEM;
1067                 goto err_dma_pool;
1068         }
1069
1070         INIT_LIST_HEAD(&dma->common.channels);
1071         dma->pci_id = pdev->device;
1072         if (dma->pimr_mask) {
1073                 dma->mask_reg = ioremap(LNW_PERIPHRAL_MASK_BASE,
1074                                         LNW_PERIPHRAL_MASK_SIZE);
1075                 if (dma->mask_reg == NULL) {
1076                         pr_err("ERR_MDMA:Can't map periphral intr space !!\n");
1077                         err = -ENOMEM;
1078                         goto err_ioremap;
1079                 }
1080         } else
1081                 dma->mask_reg = NULL;
1082
1083         pr_debug("MDMA:Adding %d channel for this controller\n", dma->max_chan);
1084         /*init CH structures*/
1085         dma->intr_mask = 0;
1086         dma->state = RUNNING;
1087         for (i = 0; i < dma->max_chan; i++) {
1088                 struct intel_mid_dma_chan *midch = &dma->ch[i];
1089
1090                 midch->chan.device = &dma->common;
1091                 dma_cookie_init(&midch->chan);
1092                 midch->ch_id = dma->chan_base + i;
1093                 pr_debug("MDMA:Init CH %d, ID %d\n", i, midch->ch_id);
1094
1095                 midch->dma_base = dma->dma_base;
1096                 midch->ch_regs = dma->dma_base + DMA_CH_SIZE * midch->ch_id;
1097                 midch->dma = dma;
1098                 dma->intr_mask |= 1 << (dma->chan_base + i);
1099                 spin_lock_init(&midch->lock);
1100
1101                 INIT_LIST_HEAD(&midch->active_list);
1102                 INIT_LIST_HEAD(&midch->queue);
1103                 INIT_LIST_HEAD(&midch->free_list);
1104                 /*mask interrupts*/
1105                 iowrite32(MASK_INTR_REG(midch->ch_id),
1106                         dma->dma_base + MASK_BLOCK);
1107                 iowrite32(MASK_INTR_REG(midch->ch_id),
1108                         dma->dma_base + MASK_SRC_TRAN);
1109                 iowrite32(MASK_INTR_REG(midch->ch_id),
1110                         dma->dma_base + MASK_DST_TRAN);
1111                 iowrite32(MASK_INTR_REG(midch->ch_id),
1112                         dma->dma_base + MASK_ERR);
1113                 iowrite32(MASK_INTR_REG(midch->ch_id),
1114                         dma->dma_base + MASK_TFR);
1115
1116                 disable_dma_interrupt(midch);
1117                 list_add_tail(&midch->chan.device_node, &dma->common.channels);
1118         }
1119         pr_debug("MDMA: Calc Mask as %x for this controller\n", dma->intr_mask);
1120
1121         /*init dma structure*/
1122         dma_cap_zero(dma->common.cap_mask);
1123         dma_cap_set(DMA_MEMCPY, dma->common.cap_mask);
1124         dma_cap_set(DMA_SLAVE, dma->common.cap_mask);
1125         dma_cap_set(DMA_PRIVATE, dma->common.cap_mask);
1126         dma->common.dev = &pdev->dev;
1127
1128         dma->common.device_alloc_chan_resources =
1129                                         intel_mid_dma_alloc_chan_resources;
1130         dma->common.device_free_chan_resources =
1131                                         intel_mid_dma_free_chan_resources;
1132
1133         dma->common.device_tx_status = intel_mid_dma_tx_status;
1134         dma->common.device_prep_dma_memcpy = intel_mid_dma_prep_memcpy;
1135         dma->common.device_issue_pending = intel_mid_dma_issue_pending;
1136         dma->common.device_prep_slave_sg = intel_mid_dma_prep_slave_sg;
1137         dma->common.device_config = intel_mid_dma_config;
1138         dma->common.device_terminate_all = intel_mid_dma_terminate_all;
1139
1140         /*enable dma cntrl*/
1141         iowrite32(REG_BIT0, dma->dma_base + DMA_CFG);
1142
1143         /*register irq */
1144         if (dma->pimr_mask) {
1145                 pr_debug("MDMA:Requesting irq shared for DMAC1\n");
1146                 err = request_irq(pdev->irq, intel_mid_dma_interrupt1,
1147                         IRQF_SHARED, "INTEL_MID_DMAC1", dma);
1148                 if (0 != err)
1149                         goto err_irq;
1150         } else {
1151                 dma->intr_mask = 0x03;
1152                 pr_debug("MDMA:Requesting irq for DMAC2\n");
1153                 err = request_irq(pdev->irq, intel_mid_dma_interrupt2,
1154                         IRQF_SHARED, "INTEL_MID_DMAC2", dma);
1155                 if (0 != err)
1156                         goto err_irq;
1157         }
1158         /*register device w/ engine*/
1159         err = dma_async_device_register(&dma->common);
1160         if (0 != err) {
1161                 pr_err("ERR_MDMA:device_register failed: %d\n", err);
1162                 goto err_engine;
1163         }
1164         if (dma->pimr_mask) {
1165                 pr_debug("setting up tasklet1 for DMAC1\n");
1166                 tasklet_init(&dma->tasklet, dma_tasklet1, (unsigned long)dma);
1167         } else {
1168                 pr_debug("setting up tasklet2 for DMAC2\n");
1169                 tasklet_init(&dma->tasklet, dma_tasklet2, (unsigned long)dma);
1170         }
1171         return 0;
1172
1173 err_engine:
1174         free_irq(pdev->irq, dma);
1175 err_irq:
1176         if (dma->mask_reg)
1177                 iounmap(dma->mask_reg);
1178 err_ioremap:
1179         pci_pool_destroy(dma->dma_pool);
1180 err_dma_pool:
1181         pr_err("ERR_MDMA:setup_dma failed: %d\n", err);
1182         return err;
1183
1184 }
1185
1186 /**
1187  * middma_shutdown -    Shutdown the DMA controller
1188  * @pdev: Controller PCI device structure
1189  *
1190  * Called by remove
1191  * Unregister DMa controller, clear all structures and free interrupt
1192  */
1193 static void middma_shutdown(struct pci_dev *pdev)
1194 {
1195         struct middma_device *device = pci_get_drvdata(pdev);
1196
1197         dma_async_device_unregister(&device->common);
1198         pci_pool_destroy(device->dma_pool);
1199         if (device->mask_reg)
1200                 iounmap(device->mask_reg);
1201         if (device->dma_base)
1202                 iounmap(device->dma_base);
1203         free_irq(pdev->irq, device);
1204         return;
1205 }
1206
1207 /**
1208  * intel_mid_dma_probe -        PCI Probe
1209  * @pdev: Controller PCI device structure
1210  * @id: pci device id structure
1211  *
1212  * Initialize the PCI device, map BARs, query driver data.
1213  * Call setup_dma to complete contoller and chan initilzation
1214  */
1215 static int intel_mid_dma_probe(struct pci_dev *pdev,
1216                                         const struct pci_device_id *id)
1217 {
1218         struct middma_device *device;
1219         u32 base_addr, bar_size;
1220         struct intel_mid_dma_probe_info *info;
1221         int err;
1222
1223         pr_debug("MDMA: probe for %x\n", pdev->device);
1224         info = (void *)id->driver_data;
1225         pr_debug("MDMA: CH %d, base %d, block len %d, Periphral mask %x\n",
1226                                 info->max_chan, info->ch_base,
1227                                 info->block_size, info->pimr_mask);
1228
1229         err = pci_enable_device(pdev);
1230         if (err)
1231                 goto err_enable_device;
1232
1233         err = pci_request_regions(pdev, "intel_mid_dmac");
1234         if (err)
1235                 goto err_request_regions;
1236
1237         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1238         if (err)
1239                 goto err_set_dma_mask;
1240
1241         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1242         if (err)
1243                 goto err_set_dma_mask;
1244
1245         device = kzalloc(sizeof(*device), GFP_KERNEL);
1246         if (!device) {
1247                 pr_err("ERR_MDMA:kzalloc failed probe\n");
1248                 err = -ENOMEM;
1249                 goto err_kzalloc;
1250         }
1251         device->pdev = pci_dev_get(pdev);
1252
1253         base_addr = pci_resource_start(pdev, 0);
1254         bar_size  = pci_resource_len(pdev, 0);
1255         device->dma_base = ioremap_nocache(base_addr, DMA_REG_SIZE);
1256         if (!device->dma_base) {
1257                 pr_err("ERR_MDMA:ioremap failed\n");
1258                 err = -ENOMEM;
1259                 goto err_ioremap;
1260         }
1261         pci_set_drvdata(pdev, device);
1262         pci_set_master(pdev);
1263         device->max_chan = info->max_chan;
1264         device->chan_base = info->ch_base;
1265         device->block_size = info->block_size;
1266         device->pimr_mask = info->pimr_mask;
1267
1268         err = mid_setup_dma(pdev);
1269         if (err)
1270                 goto err_dma;
1271
1272         pm_runtime_put_noidle(&pdev->dev);
1273         pm_runtime_allow(&pdev->dev);
1274         return 0;
1275
1276 err_dma:
1277         iounmap(device->dma_base);
1278 err_ioremap:
1279         pci_dev_put(pdev);
1280         kfree(device);
1281 err_kzalloc:
1282 err_set_dma_mask:
1283         pci_release_regions(pdev);
1284         pci_disable_device(pdev);
1285 err_request_regions:
1286 err_enable_device:
1287         pr_err("ERR_MDMA:Probe failed %d\n", err);
1288         return err;
1289 }
1290
1291 /**
1292  * intel_mid_dma_remove -       PCI remove
1293  * @pdev: Controller PCI device structure
1294  *
1295  * Free up all resources and data
1296  * Call shutdown_dma to complete contoller and chan cleanup
1297  */
1298 static void intel_mid_dma_remove(struct pci_dev *pdev)
1299 {
1300         struct middma_device *device = pci_get_drvdata(pdev);
1301
1302         pm_runtime_get_noresume(&pdev->dev);
1303         pm_runtime_forbid(&pdev->dev);
1304         middma_shutdown(pdev);
1305         pci_dev_put(pdev);
1306         kfree(device);
1307         pci_release_regions(pdev);
1308         pci_disable_device(pdev);
1309 }
1310
1311 /* Power Management */
1312 /*
1313 * dma_suspend - PCI suspend function
1314 *
1315 * @pci: PCI device structure
1316 * @state: PM message
1317 *
1318 * This function is called by OS when a power event occurs
1319 */
1320 static int dma_suspend(struct device *dev)
1321 {
1322         struct pci_dev *pci = to_pci_dev(dev);
1323         int i;
1324         struct middma_device *device = pci_get_drvdata(pci);
1325         pr_debug("MDMA: dma_suspend called\n");
1326
1327         for (i = 0; i < device->max_chan; i++) {
1328                 if (device->ch[i].in_use)
1329                         return -EAGAIN;
1330         }
1331         dmac1_mask_periphral_intr(device);
1332         device->state = SUSPENDED;
1333         pci_save_state(pci);
1334         pci_disable_device(pci);
1335         pci_set_power_state(pci, PCI_D3hot);
1336         return 0;
1337 }
1338
1339 /**
1340 * dma_resume - PCI resume function
1341 *
1342 * @pci: PCI device structure
1343 *
1344 * This function is called by OS when a power event occurs
1345 */
1346 int dma_resume(struct device *dev)
1347 {
1348         struct pci_dev *pci = to_pci_dev(dev);
1349         int ret;
1350         struct middma_device *device = pci_get_drvdata(pci);
1351
1352         pr_debug("MDMA: dma_resume called\n");
1353         pci_set_power_state(pci, PCI_D0);
1354         pci_restore_state(pci);
1355         ret = pci_enable_device(pci);
1356         if (ret) {
1357                 pr_err("MDMA: device can't be enabled for %x\n", pci->device);
1358                 return ret;
1359         }
1360         device->state = RUNNING;
1361         iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1362         return 0;
1363 }
1364
1365 static int dma_runtime_suspend(struct device *dev)
1366 {
1367         struct pci_dev *pci_dev = to_pci_dev(dev);
1368         struct middma_device *device = pci_get_drvdata(pci_dev);
1369
1370         device->state = SUSPENDED;
1371         return 0;
1372 }
1373
1374 static int dma_runtime_resume(struct device *dev)
1375 {
1376         struct pci_dev *pci_dev = to_pci_dev(dev);
1377         struct middma_device *device = pci_get_drvdata(pci_dev);
1378
1379         device->state = RUNNING;
1380         iowrite32(REG_BIT0, device->dma_base + DMA_CFG);
1381         return 0;
1382 }
1383
1384 static int dma_runtime_idle(struct device *dev)
1385 {
1386         struct pci_dev *pdev = to_pci_dev(dev);
1387         struct middma_device *device = pci_get_drvdata(pdev);
1388         int i;
1389
1390         for (i = 0; i < device->max_chan; i++) {
1391                 if (device->ch[i].in_use)
1392                         return -EAGAIN;
1393         }
1394
1395         return 0;
1396 }
1397
1398 /******************************************************************************
1399 * PCI stuff
1400 */
1401 static struct pci_device_id intel_mid_dma_ids[] = {
1402         { PCI_VDEVICE(INTEL, INTEL_MID_DMAC1_ID),       INFO(2, 6, 4095, 0x200020)},
1403         { PCI_VDEVICE(INTEL, INTEL_MID_DMAC2_ID),       INFO(2, 0, 2047, 0)},
1404         { PCI_VDEVICE(INTEL, INTEL_MID_GP_DMAC2_ID),    INFO(2, 0, 2047, 0)},
1405         { PCI_VDEVICE(INTEL, INTEL_MFLD_DMAC1_ID),      INFO(4, 0, 4095, 0x400040)},
1406         { 0, }
1407 };
1408 MODULE_DEVICE_TABLE(pci, intel_mid_dma_ids);
1409
1410 static const struct dev_pm_ops intel_mid_dma_pm = {
1411         .runtime_suspend = dma_runtime_suspend,
1412         .runtime_resume = dma_runtime_resume,
1413         .runtime_idle = dma_runtime_idle,
1414         .suspend = dma_suspend,
1415         .resume = dma_resume,
1416 };
1417
1418 static struct pci_driver intel_mid_dma_pci_driver = {
1419         .name           =       "Intel MID DMA",
1420         .id_table       =       intel_mid_dma_ids,
1421         .probe          =       intel_mid_dma_probe,
1422         .remove         =       intel_mid_dma_remove,
1423 #ifdef CONFIG_PM
1424         .driver = {
1425                 .pm = &intel_mid_dma_pm,
1426         },
1427 #endif
1428 };
1429
1430 static int __init intel_mid_dma_init(void)
1431 {
1432         pr_debug("INFO_MDMA: LNW DMA Driver Version %s\n",
1433                         INTEL_MID_DMA_DRIVER_VERSION);
1434         return pci_register_driver(&intel_mid_dma_pci_driver);
1435 }
1436 fs_initcall(intel_mid_dma_init);
1437
1438 static void __exit intel_mid_dma_exit(void)
1439 {
1440         pci_unregister_driver(&intel_mid_dma_pci_driver);
1441 }
1442 module_exit(intel_mid_dma_exit);
1443
1444 MODULE_AUTHOR("Vinod Koul <vinod.koul@intel.com>");
1445 MODULE_DESCRIPTION("Intel (R) MID DMAC Driver");
1446 MODULE_LICENSE("GPL v2");
1447 MODULE_VERSION(INTEL_MID_DMA_DRIVER_VERSION);