Merge remote-tracking branches 'asoc/topic/ab8500', 'asoc/topic/arizona', 'asoc/topic...
[sfrench/cifs-2.6.git] / drivers / dma / cppi41.c
1 #include <linux/delay.h>
2 #include <linux/dmaengine.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/platform_device.h>
5 #include <linux/module.h>
6 #include <linux/of.h>
7 #include <linux/slab.h>
8 #include <linux/of_dma.h>
9 #include <linux/of_irq.h>
10 #include <linux/dmapool.h>
11 #include <linux/interrupt.h>
12 #include <linux/of_address.h>
13 #include <linux/pm_runtime.h>
14 #include "dmaengine.h"
15
16 #define DESC_TYPE       27
17 #define DESC_TYPE_HOST  0x10
18 #define DESC_TYPE_TEARD 0x13
19
20 #define TD_DESC_IS_RX   (1 << 16)
21 #define TD_DESC_DMA_NUM 10
22
23 #define DESC_LENGTH_BITS_NUM    21
24
25 #define DESC_TYPE_USB   (5 << 26)
26 #define DESC_PD_COMPLETE        (1 << 31)
27
28 /* DMA engine */
29 #define DMA_TDFDQ       4
30 #define DMA_TXGCR(x)    (0x800 + (x) * 0x20)
31 #define DMA_RXGCR(x)    (0x808 + (x) * 0x20)
32 #define RXHPCRA0                4
33
34 #define GCR_CHAN_ENABLE         (1 << 31)
35 #define GCR_TEARDOWN            (1 << 30)
36 #define GCR_STARV_RETRY         (1 << 24)
37 #define GCR_DESC_TYPE_HOST      (1 << 14)
38
39 /* DMA scheduler */
40 #define DMA_SCHED_CTRL          0
41 #define DMA_SCHED_CTRL_EN       (1 << 31)
42 #define DMA_SCHED_WORD(x)       ((x) * 4 + 0x800)
43
44 #define SCHED_ENTRY0_CHAN(x)    ((x) << 0)
45 #define SCHED_ENTRY0_IS_RX      (1 << 7)
46
47 #define SCHED_ENTRY1_CHAN(x)    ((x) << 8)
48 #define SCHED_ENTRY1_IS_RX      (1 << 15)
49
50 #define SCHED_ENTRY2_CHAN(x)    ((x) << 16)
51 #define SCHED_ENTRY2_IS_RX      (1 << 23)
52
53 #define SCHED_ENTRY3_CHAN(x)    ((x) << 24)
54 #define SCHED_ENTRY3_IS_RX      (1 << 31)
55
56 /* Queue manager */
57 /* 4 KiB of memory for descriptors, 2 for each endpoint */
58 #define ALLOC_DECS_NUM          128
59 #define DESCS_AREAS             1
60 #define TOTAL_DESCS_NUM         (ALLOC_DECS_NUM * DESCS_AREAS)
61 #define QMGR_SCRATCH_SIZE       (TOTAL_DESCS_NUM * 4)
62
63 #define QMGR_LRAM0_BASE         0x80
64 #define QMGR_LRAM_SIZE          0x84
65 #define QMGR_LRAM1_BASE         0x88
66 #define QMGR_MEMBASE(x)         (0x1000 + (x) * 0x10)
67 #define QMGR_MEMCTRL(x)         (0x1004 + (x) * 0x10)
68 #define QMGR_MEMCTRL_IDX_SH     16
69 #define QMGR_MEMCTRL_DESC_SH    8
70
71 #define QMGR_NUM_PEND   5
72 #define QMGR_PEND(x)    (0x90 + (x) * 4)
73
74 #define QMGR_PENDING_SLOT_Q(x)  (x / 32)
75 #define QMGR_PENDING_BIT_Q(x)   (x % 32)
76
77 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
78 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
79 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
80 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
81
82 /* Glue layer specific */
83 /* USBSS  / USB AM335x */
84 #define USBSS_IRQ_STATUS        0x28
85 #define USBSS_IRQ_ENABLER       0x2c
86 #define USBSS_IRQ_CLEARR        0x30
87
88 #define USBSS_IRQ_PD_COMP       (1 <<  2)
89
90 /* Packet Descriptor */
91 #define PD2_ZERO_LENGTH         (1 << 19)
92
93 struct cppi41_channel {
94         struct dma_chan chan;
95         struct dma_async_tx_descriptor txd;
96         struct cppi41_dd *cdd;
97         struct cppi41_desc *desc;
98         dma_addr_t desc_phys;
99         void __iomem *gcr_reg;
100         int is_tx;
101         u32 residue;
102
103         unsigned int q_num;
104         unsigned int q_comp_num;
105         unsigned int port_num;
106
107         unsigned td_retry;
108         unsigned td_queued:1;
109         unsigned td_seen:1;
110         unsigned td_desc_seen:1;
111
112         struct list_head node;          /* Node for pending list */
113 };
114
115 struct cppi41_desc {
116         u32 pd0;
117         u32 pd1;
118         u32 pd2;
119         u32 pd3;
120         u32 pd4;
121         u32 pd5;
122         u32 pd6;
123         u32 pd7;
124 } __aligned(32);
125
126 struct chan_queues {
127         u16 submit;
128         u16 complete;
129 };
130
131 struct cppi41_dd {
132         struct dma_device ddev;
133
134         void *qmgr_scratch;
135         dma_addr_t scratch_phys;
136
137         struct cppi41_desc *cd;
138         dma_addr_t descs_phys;
139         u32 first_td_desc;
140         struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
141
142         void __iomem *usbss_mem;
143         void __iomem *ctrl_mem;
144         void __iomem *sched_mem;
145         void __iomem *qmgr_mem;
146         unsigned int irq;
147         const struct chan_queues *queues_rx;
148         const struct chan_queues *queues_tx;
149         struct chan_queues td_queue;
150
151         struct list_head pending;       /* Pending queued transfers */
152         spinlock_t lock;                /* Lock for pending list */
153
154         /* context for suspend/resume */
155         unsigned int dma_tdfdq;
156 };
157
158 #define FIST_COMPLETION_QUEUE   93
159 static struct chan_queues usb_queues_tx[] = {
160         /* USB0 ENDP 1 */
161         [ 0] = { .submit = 32, .complete =  93},
162         [ 1] = { .submit = 34, .complete =  94},
163         [ 2] = { .submit = 36, .complete =  95},
164         [ 3] = { .submit = 38, .complete =  96},
165         [ 4] = { .submit = 40, .complete =  97},
166         [ 5] = { .submit = 42, .complete =  98},
167         [ 6] = { .submit = 44, .complete =  99},
168         [ 7] = { .submit = 46, .complete = 100},
169         [ 8] = { .submit = 48, .complete = 101},
170         [ 9] = { .submit = 50, .complete = 102},
171         [10] = { .submit = 52, .complete = 103},
172         [11] = { .submit = 54, .complete = 104},
173         [12] = { .submit = 56, .complete = 105},
174         [13] = { .submit = 58, .complete = 106},
175         [14] = { .submit = 60, .complete = 107},
176
177         /* USB1 ENDP1 */
178         [15] = { .submit = 62, .complete = 125},
179         [16] = { .submit = 64, .complete = 126},
180         [17] = { .submit = 66, .complete = 127},
181         [18] = { .submit = 68, .complete = 128},
182         [19] = { .submit = 70, .complete = 129},
183         [20] = { .submit = 72, .complete = 130},
184         [21] = { .submit = 74, .complete = 131},
185         [22] = { .submit = 76, .complete = 132},
186         [23] = { .submit = 78, .complete = 133},
187         [24] = { .submit = 80, .complete = 134},
188         [25] = { .submit = 82, .complete = 135},
189         [26] = { .submit = 84, .complete = 136},
190         [27] = { .submit = 86, .complete = 137},
191         [28] = { .submit = 88, .complete = 138},
192         [29] = { .submit = 90, .complete = 139},
193 };
194
195 static const struct chan_queues usb_queues_rx[] = {
196         /* USB0 ENDP 1 */
197         [ 0] = { .submit =  1, .complete = 109},
198         [ 1] = { .submit =  2, .complete = 110},
199         [ 2] = { .submit =  3, .complete = 111},
200         [ 3] = { .submit =  4, .complete = 112},
201         [ 4] = { .submit =  5, .complete = 113},
202         [ 5] = { .submit =  6, .complete = 114},
203         [ 6] = { .submit =  7, .complete = 115},
204         [ 7] = { .submit =  8, .complete = 116},
205         [ 8] = { .submit =  9, .complete = 117},
206         [ 9] = { .submit = 10, .complete = 118},
207         [10] = { .submit = 11, .complete = 119},
208         [11] = { .submit = 12, .complete = 120},
209         [12] = { .submit = 13, .complete = 121},
210         [13] = { .submit = 14, .complete = 122},
211         [14] = { .submit = 15, .complete = 123},
212
213         /* USB1 ENDP 1 */
214         [15] = { .submit = 16, .complete = 141},
215         [16] = { .submit = 17, .complete = 142},
216         [17] = { .submit = 18, .complete = 143},
217         [18] = { .submit = 19, .complete = 144},
218         [19] = { .submit = 20, .complete = 145},
219         [20] = { .submit = 21, .complete = 146},
220         [21] = { .submit = 22, .complete = 147},
221         [22] = { .submit = 23, .complete = 148},
222         [23] = { .submit = 24, .complete = 149},
223         [24] = { .submit = 25, .complete = 150},
224         [25] = { .submit = 26, .complete = 151},
225         [26] = { .submit = 27, .complete = 152},
226         [27] = { .submit = 28, .complete = 153},
227         [28] = { .submit = 29, .complete = 154},
228         [29] = { .submit = 30, .complete = 155},
229 };
230
231 struct cppi_glue_infos {
232         irqreturn_t (*isr)(int irq, void *data);
233         const struct chan_queues *queues_rx;
234         const struct chan_queues *queues_tx;
235         struct chan_queues td_queue;
236 };
237
238 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
239 {
240         return container_of(c, struct cppi41_channel, chan);
241 }
242
243 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
244 {
245         struct cppi41_channel *c;
246         u32 descs_size;
247         u32 desc_num;
248
249         descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
250
251         if (!((desc >= cdd->descs_phys) &&
252                         (desc < (cdd->descs_phys + descs_size)))) {
253                 return NULL;
254         }
255
256         desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
257         BUG_ON(desc_num >= ALLOC_DECS_NUM);
258         c = cdd->chan_busy[desc_num];
259         cdd->chan_busy[desc_num] = NULL;
260         return c;
261 }
262
263 static void cppi_writel(u32 val, void *__iomem *mem)
264 {
265         __raw_writel(val, mem);
266 }
267
268 static u32 cppi_readl(void *__iomem *mem)
269 {
270         return __raw_readl(mem);
271 }
272
273 static u32 pd_trans_len(u32 val)
274 {
275         return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
276 }
277
278 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
279 {
280         u32 desc;
281
282         desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
283         desc &= ~0x1f;
284         return desc;
285 }
286
287 static irqreturn_t cppi41_irq(int irq, void *data)
288 {
289         struct cppi41_dd *cdd = data;
290         struct cppi41_channel *c;
291         u32 status;
292         int i;
293
294         status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
295         if (!(status & USBSS_IRQ_PD_COMP))
296                 return IRQ_NONE;
297         cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
298
299         for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
300                         i++) {
301                 u32 val;
302                 u32 q_num;
303
304                 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
305                 if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
306                         u32 mask;
307                         /* set corresponding bit for completetion Q 93 */
308                         mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
309                         /* not set all bits for queues less than Q 93 */
310                         mask--;
311                         /* now invert and keep only Q 93+ set */
312                         val &= ~mask;
313                 }
314
315                 if (val)
316                         __iormb();
317
318                 while (val) {
319                         u32 desc, len;
320                         int error;
321
322                         error = pm_runtime_get(cdd->ddev.dev);
323                         if (error < 0)
324                                 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
325                                         __func__, error);
326
327                         q_num = __fls(val);
328                         val &= ~(1 << q_num);
329                         q_num += 32 * i;
330                         desc = cppi41_pop_desc(cdd, q_num);
331                         c = desc_to_chan(cdd, desc);
332                         if (WARN_ON(!c)) {
333                                 pr_err("%s() q %d desc %08x\n", __func__,
334                                                 q_num, desc);
335                                 continue;
336                         }
337
338                         if (c->desc->pd2 & PD2_ZERO_LENGTH)
339                                 len = 0;
340                         else
341                                 len = pd_trans_len(c->desc->pd0);
342
343                         c->residue = pd_trans_len(c->desc->pd6) - len;
344                         dma_cookie_complete(&c->txd);
345                         dmaengine_desc_get_callback_invoke(&c->txd, NULL);
346
347                         pm_runtime_mark_last_busy(cdd->ddev.dev);
348                         pm_runtime_put_autosuspend(cdd->ddev.dev);
349                 }
350         }
351         return IRQ_HANDLED;
352 }
353
354 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
355 {
356         dma_cookie_t cookie;
357
358         cookie = dma_cookie_assign(tx);
359
360         return cookie;
361 }
362
363 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
364 {
365         struct cppi41_channel *c = to_cpp41_chan(chan);
366         struct cppi41_dd *cdd = c->cdd;
367         int error;
368
369         error = pm_runtime_get_sync(cdd->ddev.dev);
370         if (error < 0) {
371                 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
372                         __func__, error);
373                 pm_runtime_put_noidle(cdd->ddev.dev);
374
375                 return error;
376         }
377
378         dma_cookie_init(chan);
379         dma_async_tx_descriptor_init(&c->txd, chan);
380         c->txd.tx_submit = cppi41_tx_submit;
381
382         if (!c->is_tx)
383                 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
384
385         pm_runtime_mark_last_busy(cdd->ddev.dev);
386         pm_runtime_put_autosuspend(cdd->ddev.dev);
387
388         return 0;
389 }
390
391 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
392 {
393         struct cppi41_channel *c = to_cpp41_chan(chan);
394         struct cppi41_dd *cdd = c->cdd;
395         int error;
396
397         error = pm_runtime_get_sync(cdd->ddev.dev);
398         if (error < 0) {
399                 pm_runtime_put_noidle(cdd->ddev.dev);
400
401                 return;
402         }
403
404         WARN_ON(!list_empty(&cdd->pending));
405
406         pm_runtime_mark_last_busy(cdd->ddev.dev);
407         pm_runtime_put_autosuspend(cdd->ddev.dev);
408 }
409
410 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
411         dma_cookie_t cookie, struct dma_tx_state *txstate)
412 {
413         struct cppi41_channel *c = to_cpp41_chan(chan);
414         enum dma_status ret;
415
416         /* lock */
417         ret = dma_cookie_status(chan, cookie, txstate);
418         if (txstate && ret == DMA_COMPLETE)
419                 txstate->residue = c->residue;
420         /* unlock */
421
422         return ret;
423 }
424
425 static void push_desc_queue(struct cppi41_channel *c)
426 {
427         struct cppi41_dd *cdd = c->cdd;
428         u32 desc_num;
429         u32 desc_phys;
430         u32 reg;
431
432         c->residue = 0;
433
434         reg = GCR_CHAN_ENABLE;
435         if (!c->is_tx) {
436                 reg |= GCR_STARV_RETRY;
437                 reg |= GCR_DESC_TYPE_HOST;
438                 reg |= c->q_comp_num;
439         }
440
441         cppi_writel(reg, c->gcr_reg);
442
443         /*
444          * We don't use writel() but __raw_writel() so we have to make sure
445          * that the DMA descriptor in coherent memory made to the main memory
446          * before starting the dma engine.
447          */
448         __iowmb();
449
450         desc_phys = lower_32_bits(c->desc_phys);
451         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
452         WARN_ON(cdd->chan_busy[desc_num]);
453         cdd->chan_busy[desc_num] = c;
454
455         reg = (sizeof(struct cppi41_desc) - 24) / 4;
456         reg |= desc_phys;
457         cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
458 }
459
460 static void pending_desc(struct cppi41_channel *c)
461 {
462         struct cppi41_dd *cdd = c->cdd;
463         unsigned long flags;
464
465         spin_lock_irqsave(&cdd->lock, flags);
466         list_add_tail(&c->node, &cdd->pending);
467         spin_unlock_irqrestore(&cdd->lock, flags);
468 }
469
470 static void cppi41_dma_issue_pending(struct dma_chan *chan)
471 {
472         struct cppi41_channel *c = to_cpp41_chan(chan);
473         struct cppi41_dd *cdd = c->cdd;
474         int error;
475
476         error = pm_runtime_get(cdd->ddev.dev);
477         if ((error != -EINPROGRESS) && error < 0) {
478                 pm_runtime_put_noidle(cdd->ddev.dev);
479                 dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
480                         error);
481
482                 return;
483         }
484
485         if (likely(pm_runtime_active(cdd->ddev.dev)))
486                 push_desc_queue(c);
487         else
488                 pending_desc(c);
489
490         pm_runtime_mark_last_busy(cdd->ddev.dev);
491         pm_runtime_put_autosuspend(cdd->ddev.dev);
492 }
493
494 static u32 get_host_pd0(u32 length)
495 {
496         u32 reg;
497
498         reg = DESC_TYPE_HOST << DESC_TYPE;
499         reg |= length;
500
501         return reg;
502 }
503
504 static u32 get_host_pd1(struct cppi41_channel *c)
505 {
506         u32 reg;
507
508         reg = 0;
509
510         return reg;
511 }
512
513 static u32 get_host_pd2(struct cppi41_channel *c)
514 {
515         u32 reg;
516
517         reg = DESC_TYPE_USB;
518         reg |= c->q_comp_num;
519
520         return reg;
521 }
522
523 static u32 get_host_pd3(u32 length)
524 {
525         u32 reg;
526
527         /* PD3 = packet size */
528         reg = length;
529
530         return reg;
531 }
532
533 static u32 get_host_pd6(u32 length)
534 {
535         u32 reg;
536
537         /* PD6 buffer size */
538         reg = DESC_PD_COMPLETE;
539         reg |= length;
540
541         return reg;
542 }
543
544 static u32 get_host_pd4_or_7(u32 addr)
545 {
546         u32 reg;
547
548         reg = addr;
549
550         return reg;
551 }
552
553 static u32 get_host_pd5(void)
554 {
555         u32 reg;
556
557         reg = 0;
558
559         return reg;
560 }
561
562 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
563         struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
564         enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
565 {
566         struct cppi41_channel *c = to_cpp41_chan(chan);
567         struct cppi41_desc *d;
568         struct scatterlist *sg;
569         unsigned int i;
570
571         d = c->desc;
572         for_each_sg(sgl, sg, sg_len, i) {
573                 u32 addr;
574                 u32 len;
575
576                 /* We need to use more than one desc once musb supports sg */
577                 addr = lower_32_bits(sg_dma_address(sg));
578                 len = sg_dma_len(sg);
579
580                 d->pd0 = get_host_pd0(len);
581                 d->pd1 = get_host_pd1(c);
582                 d->pd2 = get_host_pd2(c);
583                 d->pd3 = get_host_pd3(len);
584                 d->pd4 = get_host_pd4_or_7(addr);
585                 d->pd5 = get_host_pd5();
586                 d->pd6 = get_host_pd6(len);
587                 d->pd7 = get_host_pd4_or_7(addr);
588
589                 d++;
590         }
591
592         return &c->txd;
593 }
594
595 static void cppi41_compute_td_desc(struct cppi41_desc *d)
596 {
597         d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
598 }
599
600 static int cppi41_tear_down_chan(struct cppi41_channel *c)
601 {
602         struct cppi41_dd *cdd = c->cdd;
603         struct cppi41_desc *td;
604         u32 reg;
605         u32 desc_phys;
606         u32 td_desc_phys;
607
608         td = cdd->cd;
609         td += cdd->first_td_desc;
610
611         td_desc_phys = cdd->descs_phys;
612         td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
613
614         if (!c->td_queued) {
615                 cppi41_compute_td_desc(td);
616                 __iowmb();
617
618                 reg = (sizeof(struct cppi41_desc) - 24) / 4;
619                 reg |= td_desc_phys;
620                 cppi_writel(reg, cdd->qmgr_mem +
621                                 QMGR_QUEUE_D(cdd->td_queue.submit));
622
623                 reg = GCR_CHAN_ENABLE;
624                 if (!c->is_tx) {
625                         reg |= GCR_STARV_RETRY;
626                         reg |= GCR_DESC_TYPE_HOST;
627                         reg |= c->q_comp_num;
628                 }
629                 reg |= GCR_TEARDOWN;
630                 cppi_writel(reg, c->gcr_reg);
631                 c->td_queued = 1;
632                 c->td_retry = 500;
633         }
634
635         if (!c->td_seen || !c->td_desc_seen) {
636
637                 desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
638                 if (!desc_phys)
639                         desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
640
641                 if (desc_phys == c->desc_phys) {
642                         c->td_desc_seen = 1;
643
644                 } else if (desc_phys == td_desc_phys) {
645                         u32 pd0;
646
647                         __iormb();
648                         pd0 = td->pd0;
649                         WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
650                         WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
651                         WARN_ON((pd0 & 0x1f) != c->port_num);
652                         c->td_seen = 1;
653                 } else if (desc_phys) {
654                         WARN_ON_ONCE(1);
655                 }
656         }
657         c->td_retry--;
658         /*
659          * If the TX descriptor / channel is in use, the caller needs to poke
660          * his TD bit multiple times. After that he hardware releases the
661          * transfer descriptor followed by TD descriptor. Waiting seems not to
662          * cause any difference.
663          * RX seems to be thrown out right away. However once the TearDown
664          * descriptor gets through we are done. If we have seens the transfer
665          * descriptor before the TD we fetch it from enqueue, it has to be
666          * there waiting for us.
667          */
668         if (!c->td_seen && c->td_retry) {
669                 udelay(1);
670                 return -EAGAIN;
671         }
672         WARN_ON(!c->td_retry);
673
674         if (!c->td_desc_seen) {
675                 desc_phys = cppi41_pop_desc(cdd, c->q_num);
676                 if (!desc_phys)
677                         desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
678                 WARN_ON(!desc_phys);
679         }
680
681         c->td_queued = 0;
682         c->td_seen = 0;
683         c->td_desc_seen = 0;
684         cppi_writel(0, c->gcr_reg);
685         return 0;
686 }
687
688 static int cppi41_stop_chan(struct dma_chan *chan)
689 {
690         struct cppi41_channel *c = to_cpp41_chan(chan);
691         struct cppi41_dd *cdd = c->cdd;
692         u32 desc_num;
693         u32 desc_phys;
694         int ret;
695
696         desc_phys = lower_32_bits(c->desc_phys);
697         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
698         if (!cdd->chan_busy[desc_num])
699                 return 0;
700
701         ret = cppi41_tear_down_chan(c);
702         if (ret)
703                 return ret;
704
705         WARN_ON(!cdd->chan_busy[desc_num]);
706         cdd->chan_busy[desc_num] = NULL;
707
708         return 0;
709 }
710
711 static void cleanup_chans(struct cppi41_dd *cdd)
712 {
713         while (!list_empty(&cdd->ddev.channels)) {
714                 struct cppi41_channel *cchan;
715
716                 cchan = list_first_entry(&cdd->ddev.channels,
717                                 struct cppi41_channel, chan.device_node);
718                 list_del(&cchan->chan.device_node);
719                 kfree(cchan);
720         }
721 }
722
723 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
724 {
725         struct cppi41_channel *cchan;
726         int i;
727         int ret;
728         u32 n_chans;
729
730         ret = of_property_read_u32(dev->of_node, "#dma-channels",
731                         &n_chans);
732         if (ret)
733                 return ret;
734         /*
735          * The channels can only be used as TX or as RX. So we add twice
736          * that much dma channels because USB can only do RX or TX.
737          */
738         n_chans *= 2;
739
740         for (i = 0; i < n_chans; i++) {
741                 cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
742                 if (!cchan)
743                         goto err;
744
745                 cchan->cdd = cdd;
746                 if (i & 1) {
747                         cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
748                         cchan->is_tx = 1;
749                 } else {
750                         cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
751                         cchan->is_tx = 0;
752                 }
753                 cchan->port_num = i >> 1;
754                 cchan->desc = &cdd->cd[i];
755                 cchan->desc_phys = cdd->descs_phys;
756                 cchan->desc_phys += i * sizeof(struct cppi41_desc);
757                 cchan->chan.device = &cdd->ddev;
758                 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
759         }
760         cdd->first_td_desc = n_chans;
761
762         return 0;
763 err:
764         cleanup_chans(cdd);
765         return -ENOMEM;
766 }
767
768 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
769 {
770         unsigned int mem_decs;
771         int i;
772
773         mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
774
775         for (i = 0; i < DESCS_AREAS; i++) {
776
777                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
778                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
779
780                 dma_free_coherent(dev, mem_decs, cdd->cd,
781                                 cdd->descs_phys);
782         }
783 }
784
785 static void disable_sched(struct cppi41_dd *cdd)
786 {
787         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
788 }
789
790 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
791 {
792         disable_sched(cdd);
793
794         purge_descs(dev, cdd);
795
796         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
797         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
798         dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
799                         cdd->scratch_phys);
800 }
801
802 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
803 {
804         unsigned int desc_size;
805         unsigned int mem_decs;
806         int i;
807         u32 reg;
808         u32 idx;
809
810         BUILD_BUG_ON(sizeof(struct cppi41_desc) &
811                         (sizeof(struct cppi41_desc) - 1));
812         BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
813         BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
814
815         desc_size = sizeof(struct cppi41_desc);
816         mem_decs = ALLOC_DECS_NUM * desc_size;
817
818         idx = 0;
819         for (i = 0; i < DESCS_AREAS; i++) {
820
821                 reg = idx << QMGR_MEMCTRL_IDX_SH;
822                 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
823                 reg |= ilog2(ALLOC_DECS_NUM) - 5;
824
825                 BUILD_BUG_ON(DESCS_AREAS != 1);
826                 cdd->cd = dma_alloc_coherent(dev, mem_decs,
827                                 &cdd->descs_phys, GFP_KERNEL);
828                 if (!cdd->cd)
829                         return -ENOMEM;
830
831                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
832                 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
833
834                 idx += ALLOC_DECS_NUM;
835         }
836         return 0;
837 }
838
839 static void init_sched(struct cppi41_dd *cdd)
840 {
841         unsigned ch;
842         unsigned word;
843         u32 reg;
844
845         word = 0;
846         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
847         for (ch = 0; ch < 15 * 2; ch += 2) {
848
849                 reg = SCHED_ENTRY0_CHAN(ch);
850                 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
851
852                 reg |= SCHED_ENTRY2_CHAN(ch + 1);
853                 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
854                 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
855                 word++;
856         }
857         reg = 15 * 2 * 2 - 1;
858         reg |= DMA_SCHED_CTRL_EN;
859         cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
860 }
861
862 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
863 {
864         int ret;
865
866         BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
867         cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
868                         &cdd->scratch_phys, GFP_KERNEL);
869         if (!cdd->qmgr_scratch)
870                 return -ENOMEM;
871
872         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
873         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
874         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
875
876         ret = init_descs(dev, cdd);
877         if (ret)
878                 goto err_td;
879
880         cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
881         init_sched(cdd);
882         return 0;
883 err_td:
884         deinit_cppi41(dev, cdd);
885         return ret;
886 }
887
888 static struct platform_driver cpp41_dma_driver;
889 /*
890  * The param format is:
891  * X Y
892  * X: Port
893  * Y: 0 = RX else TX
894  */
895 #define INFO_PORT       0
896 #define INFO_IS_TX      1
897
898 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
899 {
900         struct cppi41_channel *cchan;
901         struct cppi41_dd *cdd;
902         const struct chan_queues *queues;
903         u32 *num = param;
904
905         if (chan->device->dev->driver != &cpp41_dma_driver.driver)
906                 return false;
907
908         cchan = to_cpp41_chan(chan);
909
910         if (cchan->port_num != num[INFO_PORT])
911                 return false;
912
913         if (cchan->is_tx && !num[INFO_IS_TX])
914                 return false;
915         cdd = cchan->cdd;
916         if (cchan->is_tx)
917                 queues = cdd->queues_tx;
918         else
919                 queues = cdd->queues_rx;
920
921         BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
922         if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
923                 return false;
924
925         cchan->q_num = queues[cchan->port_num].submit;
926         cchan->q_comp_num = queues[cchan->port_num].complete;
927         return true;
928 }
929
930 static struct of_dma_filter_info cpp41_dma_info = {
931         .filter_fn = cpp41_dma_filter_fn,
932 };
933
934 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
935                 struct of_dma *ofdma)
936 {
937         int count = dma_spec->args_count;
938         struct of_dma_filter_info *info = ofdma->of_dma_data;
939
940         if (!info || !info->filter_fn)
941                 return NULL;
942
943         if (count != 2)
944                 return NULL;
945
946         return dma_request_channel(info->dma_cap, info->filter_fn,
947                         &dma_spec->args[0]);
948 }
949
950 static const struct cppi_glue_infos usb_infos = {
951         .isr = cppi41_irq,
952         .queues_rx = usb_queues_rx,
953         .queues_tx = usb_queues_tx,
954         .td_queue = { .submit = 31, .complete = 0 },
955 };
956
957 static const struct of_device_id cppi41_dma_ids[] = {
958         { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
959         {},
960 };
961 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
962
963 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
964 {
965         const struct of_device_id *of_id;
966
967         of_id = of_match_node(cppi41_dma_ids, dev->of_node);
968         if (!of_id)
969                 return NULL;
970         return of_id->data;
971 }
972
973 #define CPPI41_DMA_BUSWIDTHS    (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
974                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
975                                 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
976                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
977
978 static int cppi41_dma_probe(struct platform_device *pdev)
979 {
980         struct cppi41_dd *cdd;
981         struct device *dev = &pdev->dev;
982         const struct cppi_glue_infos *glue_info;
983         int irq;
984         int ret;
985
986         glue_info = get_glue_info(dev);
987         if (!glue_info)
988                 return -EINVAL;
989
990         cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
991         if (!cdd)
992                 return -ENOMEM;
993
994         dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
995         cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
996         cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
997         cdd->ddev.device_tx_status = cppi41_dma_tx_status;
998         cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
999         cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
1000         cdd->ddev.device_terminate_all = cppi41_stop_chan;
1001         cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1002         cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
1003         cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
1004         cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1005         cdd->ddev.dev = dev;
1006         INIT_LIST_HEAD(&cdd->ddev.channels);
1007         cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
1008
1009         cdd->usbss_mem = of_iomap(dev->of_node, 0);
1010         cdd->ctrl_mem = of_iomap(dev->of_node, 1);
1011         cdd->sched_mem = of_iomap(dev->of_node, 2);
1012         cdd->qmgr_mem = of_iomap(dev->of_node, 3);
1013         spin_lock_init(&cdd->lock);
1014         INIT_LIST_HEAD(&cdd->pending);
1015
1016         platform_set_drvdata(pdev, cdd);
1017
1018         if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
1019                         !cdd->qmgr_mem)
1020                 return -ENXIO;
1021
1022         pm_runtime_enable(dev);
1023         pm_runtime_set_autosuspend_delay(dev, 100);
1024         pm_runtime_use_autosuspend(dev);
1025         ret = pm_runtime_get_sync(dev);
1026         if (ret < 0)
1027                 goto err_get_sync;
1028
1029         cdd->queues_rx = glue_info->queues_rx;
1030         cdd->queues_tx = glue_info->queues_tx;
1031         cdd->td_queue = glue_info->td_queue;
1032
1033         ret = init_cppi41(dev, cdd);
1034         if (ret)
1035                 goto err_init_cppi;
1036
1037         ret = cppi41_add_chans(dev, cdd);
1038         if (ret)
1039                 goto err_chans;
1040
1041         irq = irq_of_parse_and_map(dev->of_node, 0);
1042         if (!irq) {
1043                 ret = -EINVAL;
1044                 goto err_irq;
1045         }
1046
1047         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1048
1049         ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
1050                         dev_name(dev), cdd);
1051         if (ret)
1052                 goto err_irq;
1053         cdd->irq = irq;
1054
1055         ret = dma_async_device_register(&cdd->ddev);
1056         if (ret)
1057                 goto err_dma_reg;
1058
1059         ret = of_dma_controller_register(dev->of_node,
1060                         cppi41_dma_xlate, &cpp41_dma_info);
1061         if (ret)
1062                 goto err_of;
1063
1064         pm_runtime_mark_last_busy(dev);
1065         pm_runtime_put_autosuspend(dev);
1066
1067         return 0;
1068 err_of:
1069         dma_async_device_unregister(&cdd->ddev);
1070 err_dma_reg:
1071 err_irq:
1072         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1073         cleanup_chans(cdd);
1074 err_chans:
1075         deinit_cppi41(dev, cdd);
1076 err_init_cppi:
1077         pm_runtime_dont_use_autosuspend(dev);
1078 err_get_sync:
1079         pm_runtime_put_sync(dev);
1080         pm_runtime_disable(dev);
1081         iounmap(cdd->usbss_mem);
1082         iounmap(cdd->ctrl_mem);
1083         iounmap(cdd->sched_mem);
1084         iounmap(cdd->qmgr_mem);
1085         return ret;
1086 }
1087
1088 static int cppi41_dma_remove(struct platform_device *pdev)
1089 {
1090         struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1091         int error;
1092
1093         error = pm_runtime_get_sync(&pdev->dev);
1094         if (error < 0)
1095                 dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
1096                         __func__, error);
1097         of_dma_controller_free(pdev->dev.of_node);
1098         dma_async_device_unregister(&cdd->ddev);
1099
1100         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1101         devm_free_irq(&pdev->dev, cdd->irq, cdd);
1102         cleanup_chans(cdd);
1103         deinit_cppi41(&pdev->dev, cdd);
1104         iounmap(cdd->usbss_mem);
1105         iounmap(cdd->ctrl_mem);
1106         iounmap(cdd->sched_mem);
1107         iounmap(cdd->qmgr_mem);
1108         pm_runtime_dont_use_autosuspend(&pdev->dev);
1109         pm_runtime_put_sync(&pdev->dev);
1110         pm_runtime_disable(&pdev->dev);
1111         return 0;
1112 }
1113
1114 static int __maybe_unused cppi41_suspend(struct device *dev)
1115 {
1116         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1117
1118         cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1119         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1120         disable_sched(cdd);
1121
1122         return 0;
1123 }
1124
1125 static int __maybe_unused cppi41_resume(struct device *dev)
1126 {
1127         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1128         struct cppi41_channel *c;
1129         int i;
1130
1131         for (i = 0; i < DESCS_AREAS; i++)
1132                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1133
1134         list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1135                 if (!c->is_tx)
1136                         cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1137
1138         init_sched(cdd);
1139
1140         cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1141         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1142         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1143         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1144
1145         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1146
1147         return 0;
1148 }
1149
1150 static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
1151 {
1152         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1153
1154         WARN_ON(!list_empty(&cdd->pending));
1155
1156         return 0;
1157 }
1158
1159 static int __maybe_unused cppi41_runtime_resume(struct device *dev)
1160 {
1161         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1162         struct cppi41_channel *c, *_c;
1163         unsigned long flags;
1164
1165         spin_lock_irqsave(&cdd->lock, flags);
1166         list_for_each_entry_safe(c, _c, &cdd->pending, node) {
1167                 push_desc_queue(c);
1168                 list_del(&c->node);
1169         }
1170         spin_unlock_irqrestore(&cdd->lock, flags);
1171
1172         return 0;
1173 }
1174
1175 static const struct dev_pm_ops cppi41_pm_ops = {
1176         SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
1177         SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
1178                            cppi41_runtime_resume,
1179                            NULL)
1180 };
1181
1182 static struct platform_driver cpp41_dma_driver = {
1183         .probe  = cppi41_dma_probe,
1184         .remove = cppi41_dma_remove,
1185         .driver = {
1186                 .name = "cppi41-dma-engine",
1187                 .pm = &cppi41_pm_ops,
1188                 .of_match_table = of_match_ptr(cppi41_dma_ids),
1189         },
1190 };
1191
1192 module_platform_driver(cpp41_dma_driver);
1193 MODULE_LICENSE("GPL");
1194 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");