Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[sfrench/cifs-2.6.git] / drivers / crypto / n2_core.c
1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
2  *
3  * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
4  */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
27
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
30
31 #include "n2_core.h"
32
33 #define DRV_MODULE_NAME         "n2_crypto"
34 #define DRV_MODULE_VERSION      "0.2"
35 #define DRV_MODULE_RELDATE      "July 28, 2011"
36
37 static const char version[] =
38         DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
39
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION);
44
45 #define N2_CRA_PRIORITY         200
46
47 static DEFINE_MUTEX(spu_lock);
48
49 struct spu_queue {
50         cpumask_t               sharing;
51         unsigned long           qhandle;
52
53         spinlock_t              lock;
54         u8                      q_type;
55         void                    *q;
56         unsigned long           head;
57         unsigned long           tail;
58         struct list_head        jobs;
59
60         unsigned long           devino;
61
62         char                    irq_name[32];
63         unsigned int            irq;
64
65         struct list_head        list;
66 };
67
68 struct spu_qreg {
69         struct spu_queue        *queue;
70         unsigned long           type;
71 };
72
73 static struct spu_queue **cpu_to_cwq;
74 static struct spu_queue **cpu_to_mau;
75
76 static unsigned long spu_next_offset(struct spu_queue *q, unsigned long off)
77 {
78         if (q->q_type == HV_NCS_QTYPE_MAU) {
79                 off += MAU_ENTRY_SIZE;
80                 if (off == (MAU_ENTRY_SIZE * MAU_NUM_ENTRIES))
81                         off = 0;
82         } else {
83                 off += CWQ_ENTRY_SIZE;
84                 if (off == (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES))
85                         off = 0;
86         }
87         return off;
88 }
89
90 struct n2_request_common {
91         struct list_head        entry;
92         unsigned int            offset;
93 };
94 #define OFFSET_NOT_RUNNING      (~(unsigned int)0)
95
96 /* An async job request records the final tail value it used in
97  * n2_request_common->offset, test to see if that offset is in
98  * the range old_head, new_head, inclusive.
99  */
100 static inline bool job_finished(struct spu_queue *q, unsigned int offset,
101                                 unsigned long old_head, unsigned long new_head)
102 {
103         if (old_head <= new_head) {
104                 if (offset > old_head && offset <= new_head)
105                         return true;
106         } else {
107                 if (offset > old_head || offset <= new_head)
108                         return true;
109         }
110         return false;
111 }
112
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114  * a virtual device INO interrupt.  We should process the
115  * completed CWQ entries and adjust the HEAD marker to clear
116  * the IRQ.
117  */
118 static irqreturn_t cwq_intr(int irq, void *dev_id)
119 {
120         unsigned long off, new_head, hv_ret;
121         struct spu_queue *q = dev_id;
122
123         pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124                smp_processor_id(), q->qhandle);
125
126         spin_lock(&q->lock);
127
128         hv_ret = sun4v_ncs_gethead(q->qhandle, &new_head);
129
130         pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131                smp_processor_id(), new_head, hv_ret);
132
133         for (off = q->head; off != new_head; off = spu_next_offset(q, off)) {
134                 /* XXX ... XXX */
135         }
136
137         hv_ret = sun4v_ncs_sethead_marker(q->qhandle, new_head);
138         if (hv_ret == HV_EOK)
139                 q->head = new_head;
140
141         spin_unlock(&q->lock);
142
143         return IRQ_HANDLED;
144 }
145
146 static irqreturn_t mau_intr(int irq, void *dev_id)
147 {
148         struct spu_queue *q = dev_id;
149         unsigned long head, hv_ret;
150
151         spin_lock(&q->lock);
152
153         pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154                smp_processor_id(), q->qhandle);
155
156         hv_ret = sun4v_ncs_gethead(q->qhandle, &head);
157
158         pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159                smp_processor_id(), head, hv_ret);
160
161         sun4v_ncs_sethead_marker(q->qhandle, head);
162
163         spin_unlock(&q->lock);
164
165         return IRQ_HANDLED;
166 }
167
168 static void *spu_queue_next(struct spu_queue *q, void *cur)
169 {
170         return q->q + spu_next_offset(q, cur - q->q);
171 }
172
173 static int spu_queue_num_free(struct spu_queue *q)
174 {
175         unsigned long head = q->head;
176         unsigned long tail = q->tail;
177         unsigned long end = (CWQ_ENTRY_SIZE * CWQ_NUM_ENTRIES);
178         unsigned long diff;
179
180         if (head > tail)
181                 diff = head - tail;
182         else
183                 diff = (end - tail) + head;
184
185         return (diff / CWQ_ENTRY_SIZE) - 1;
186 }
187
188 static void *spu_queue_alloc(struct spu_queue *q, int num_entries)
189 {
190         int avail = spu_queue_num_free(q);
191
192         if (avail >= num_entries)
193                 return q->q + q->tail;
194
195         return NULL;
196 }
197
198 static unsigned long spu_queue_submit(struct spu_queue *q, void *last)
199 {
200         unsigned long hv_ret, new_tail;
201
202         new_tail = spu_next_offset(q, last - q->q);
203
204         hv_ret = sun4v_ncs_settail(q->qhandle, new_tail);
205         if (hv_ret == HV_EOK)
206                 q->tail = new_tail;
207         return hv_ret;
208 }
209
210 static u64 control_word_base(unsigned int len, unsigned int hmac_key_len,
211                              int enc_type, int auth_type,
212                              unsigned int hash_len,
213                              bool sfas, bool sob, bool eob, bool encrypt,
214                              int opcode)
215 {
216         u64 word = (len - 1) & CONTROL_LEN;
217
218         word |= ((u64) opcode << CONTROL_OPCODE_SHIFT);
219         word |= ((u64) enc_type << CONTROL_ENC_TYPE_SHIFT);
220         word |= ((u64) auth_type << CONTROL_AUTH_TYPE_SHIFT);
221         if (sfas)
222                 word |= CONTROL_STORE_FINAL_AUTH_STATE;
223         if (sob)
224                 word |= CONTROL_START_OF_BLOCK;
225         if (eob)
226                 word |= CONTROL_END_OF_BLOCK;
227         if (encrypt)
228                 word |= CONTROL_ENCRYPT;
229         if (hmac_key_len)
230                 word |= ((u64) (hmac_key_len - 1)) << CONTROL_HMAC_KEY_LEN_SHIFT;
231         if (hash_len)
232                 word |= ((u64) (hash_len - 1)) << CONTROL_HASH_LEN_SHIFT;
233
234         return word;
235 }
236
237 #if 0
238 static inline bool n2_should_run_async(struct spu_queue *qp, int this_len)
239 {
240         if (this_len >= 64 ||
241             qp->head != qp->tail)
242                 return true;
243         return false;
244 }
245 #endif
246
247 struct n2_ahash_alg {
248         struct list_head        entry;
249         const u8                *hash_zero;
250         const u32               *hash_init;
251         u8                      hw_op_hashsz;
252         u8                      digest_size;
253         u8                      auth_type;
254         u8                      hmac_type;
255         struct ahash_alg        alg;
256 };
257
258 static inline struct n2_ahash_alg *n2_ahash_alg(struct crypto_tfm *tfm)
259 {
260         struct crypto_alg *alg = tfm->__crt_alg;
261         struct ahash_alg *ahash_alg;
262
263         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
264
265         return container_of(ahash_alg, struct n2_ahash_alg, alg);
266 }
267
268 struct n2_hmac_alg {
269         const char              *child_alg;
270         struct n2_ahash_alg     derived;
271 };
272
273 static inline struct n2_hmac_alg *n2_hmac_alg(struct crypto_tfm *tfm)
274 {
275         struct crypto_alg *alg = tfm->__crt_alg;
276         struct ahash_alg *ahash_alg;
277
278         ahash_alg = container_of(alg, struct ahash_alg, halg.base);
279
280         return container_of(ahash_alg, struct n2_hmac_alg, derived.alg);
281 }
282
283 struct n2_hash_ctx {
284         struct crypto_ahash             *fallback_tfm;
285 };
286
287 #define N2_HASH_KEY_MAX                 32 /* HW limit for all HMAC requests */
288
289 struct n2_hmac_ctx {
290         struct n2_hash_ctx              base;
291
292         struct crypto_shash             *child_shash;
293
294         int                             hash_key_len;
295         unsigned char                   hash_key[N2_HASH_KEY_MAX];
296 };
297
298 struct n2_hash_req_ctx {
299         union {
300                 struct md5_state        md5;
301                 struct sha1_state       sha1;
302                 struct sha256_state     sha256;
303         } u;
304
305         struct ahash_request            fallback_req;
306 };
307
308 static int n2_hash_async_init(struct ahash_request *req)
309 {
310         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
311         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
312         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
313
314         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
315         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
316
317         return crypto_ahash_init(&rctx->fallback_req);
318 }
319
320 static int n2_hash_async_update(struct ahash_request *req)
321 {
322         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
323         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
324         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
325
326         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
327         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
328         rctx->fallback_req.nbytes = req->nbytes;
329         rctx->fallback_req.src = req->src;
330
331         return crypto_ahash_update(&rctx->fallback_req);
332 }
333
334 static int n2_hash_async_final(struct ahash_request *req)
335 {
336         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
337         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
338         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
339
340         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
341         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
342         rctx->fallback_req.result = req->result;
343
344         return crypto_ahash_final(&rctx->fallback_req);
345 }
346
347 static int n2_hash_async_finup(struct ahash_request *req)
348 {
349         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
350         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
351         struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
352
353         ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
354         rctx->fallback_req.base.flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
355         rctx->fallback_req.nbytes = req->nbytes;
356         rctx->fallback_req.src = req->src;
357         rctx->fallback_req.result = req->result;
358
359         return crypto_ahash_finup(&rctx->fallback_req);
360 }
361
362 static int n2_hash_cra_init(struct crypto_tfm *tfm)
363 {
364         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
365         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
366         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
367         struct crypto_ahash *fallback_tfm;
368         int err;
369
370         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
371                                           CRYPTO_ALG_NEED_FALLBACK);
372         if (IS_ERR(fallback_tfm)) {
373                 pr_warning("Fallback driver '%s' could not be loaded!\n",
374                            fallback_driver_name);
375                 err = PTR_ERR(fallback_tfm);
376                 goto out;
377         }
378
379         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
380                                          crypto_ahash_reqsize(fallback_tfm)));
381
382         ctx->fallback_tfm = fallback_tfm;
383         return 0;
384
385 out:
386         return err;
387 }
388
389 static void n2_hash_cra_exit(struct crypto_tfm *tfm)
390 {
391         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
392         struct n2_hash_ctx *ctx = crypto_ahash_ctx(ahash);
393
394         crypto_free_ahash(ctx->fallback_tfm);
395 }
396
397 static int n2_hmac_cra_init(struct crypto_tfm *tfm)
398 {
399         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
400         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
401         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
402         struct n2_hmac_alg *n2alg = n2_hmac_alg(tfm);
403         struct crypto_ahash *fallback_tfm;
404         struct crypto_shash *child_shash;
405         int err;
406
407         fallback_tfm = crypto_alloc_ahash(fallback_driver_name, 0,
408                                           CRYPTO_ALG_NEED_FALLBACK);
409         if (IS_ERR(fallback_tfm)) {
410                 pr_warning("Fallback driver '%s' could not be loaded!\n",
411                            fallback_driver_name);
412                 err = PTR_ERR(fallback_tfm);
413                 goto out;
414         }
415
416         child_shash = crypto_alloc_shash(n2alg->child_alg, 0, 0);
417         if (IS_ERR(child_shash)) {
418                 pr_warning("Child shash '%s' could not be loaded!\n",
419                            n2alg->child_alg);
420                 err = PTR_ERR(child_shash);
421                 goto out_free_fallback;
422         }
423
424         crypto_ahash_set_reqsize(ahash, (sizeof(struct n2_hash_req_ctx) +
425                                          crypto_ahash_reqsize(fallback_tfm)));
426
427         ctx->child_shash = child_shash;
428         ctx->base.fallback_tfm = fallback_tfm;
429         return 0;
430
431 out_free_fallback:
432         crypto_free_ahash(fallback_tfm);
433
434 out:
435         return err;
436 }
437
438 static void n2_hmac_cra_exit(struct crypto_tfm *tfm)
439 {
440         struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
441         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(ahash);
442
443         crypto_free_ahash(ctx->base.fallback_tfm);
444         crypto_free_shash(ctx->child_shash);
445 }
446
447 static int n2_hmac_async_setkey(struct crypto_ahash *tfm, const u8 *key,
448                                 unsigned int keylen)
449 {
450         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
451         struct crypto_shash *child_shash = ctx->child_shash;
452         struct crypto_ahash *fallback_tfm;
453         SHASH_DESC_ON_STACK(shash, child_shash);
454         int err, bs, ds;
455
456         fallback_tfm = ctx->base.fallback_tfm;
457         err = crypto_ahash_setkey(fallback_tfm, key, keylen);
458         if (err)
459                 return err;
460
461         shash->tfm = child_shash;
462         shash->flags = crypto_ahash_get_flags(tfm) &
463                 CRYPTO_TFM_REQ_MAY_SLEEP;
464
465         bs = crypto_shash_blocksize(child_shash);
466         ds = crypto_shash_digestsize(child_shash);
467         BUG_ON(ds > N2_HASH_KEY_MAX);
468         if (keylen > bs) {
469                 err = crypto_shash_digest(shash, key, keylen,
470                                           ctx->hash_key);
471                 if (err)
472                         return err;
473                 keylen = ds;
474         } else if (keylen <= N2_HASH_KEY_MAX)
475                 memcpy(ctx->hash_key, key, keylen);
476
477         ctx->hash_key_len = keylen;
478
479         return err;
480 }
481
482 static unsigned long wait_for_tail(struct spu_queue *qp)
483 {
484         unsigned long head, hv_ret;
485
486         do {
487                 hv_ret = sun4v_ncs_gethead(qp->qhandle, &head);
488                 if (hv_ret != HV_EOK) {
489                         pr_err("Hypervisor error on gethead\n");
490                         break;
491                 }
492                 if (head == qp->tail) {
493                         qp->head = head;
494                         break;
495                 }
496         } while (1);
497         return hv_ret;
498 }
499
500 static unsigned long submit_and_wait_for_tail(struct spu_queue *qp,
501                                               struct cwq_initial_entry *ent)
502 {
503         unsigned long hv_ret = spu_queue_submit(qp, ent);
504
505         if (hv_ret == HV_EOK)
506                 hv_ret = wait_for_tail(qp);
507
508         return hv_ret;
509 }
510
511 static int n2_do_async_digest(struct ahash_request *req,
512                               unsigned int auth_type, unsigned int digest_size,
513                               unsigned int result_size, void *hash_loc,
514                               unsigned long auth_key, unsigned int auth_key_len)
515 {
516         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
517         struct cwq_initial_entry *ent;
518         struct crypto_hash_walk walk;
519         struct spu_queue *qp;
520         unsigned long flags;
521         int err = -ENODEV;
522         int nbytes, cpu;
523
524         /* The total effective length of the operation may not
525          * exceed 2^16.
526          */
527         if (unlikely(req->nbytes > (1 << 16))) {
528                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
529                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
530
531                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
532                 rctx->fallback_req.base.flags =
533                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
534                 rctx->fallback_req.nbytes = req->nbytes;
535                 rctx->fallback_req.src = req->src;
536                 rctx->fallback_req.result = req->result;
537
538                 return crypto_ahash_digest(&rctx->fallback_req);
539         }
540
541         nbytes = crypto_hash_walk_first(req, &walk);
542
543         cpu = get_cpu();
544         qp = cpu_to_cwq[cpu];
545         if (!qp)
546                 goto out;
547
548         spin_lock_irqsave(&qp->lock, flags);
549
550         /* XXX can do better, improve this later by doing a by-hand scatterlist
551          * XXX walk, etc.
552          */
553         ent = qp->q + qp->tail;
554
555         ent->control = control_word_base(nbytes, auth_key_len, 0,
556                                          auth_type, digest_size,
557                                          false, true, false, false,
558                                          OPCODE_INPLACE_BIT |
559                                          OPCODE_AUTH_MAC);
560         ent->src_addr = __pa(walk.data);
561         ent->auth_key_addr = auth_key;
562         ent->auth_iv_addr = __pa(hash_loc);
563         ent->final_auth_state_addr = 0UL;
564         ent->enc_key_addr = 0UL;
565         ent->enc_iv_addr = 0UL;
566         ent->dest_addr = __pa(hash_loc);
567
568         nbytes = crypto_hash_walk_done(&walk, 0);
569         while (nbytes > 0) {
570                 ent = spu_queue_next(qp, ent);
571
572                 ent->control = (nbytes - 1);
573                 ent->src_addr = __pa(walk.data);
574                 ent->auth_key_addr = 0UL;
575                 ent->auth_iv_addr = 0UL;
576                 ent->final_auth_state_addr = 0UL;
577                 ent->enc_key_addr = 0UL;
578                 ent->enc_iv_addr = 0UL;
579                 ent->dest_addr = 0UL;
580
581                 nbytes = crypto_hash_walk_done(&walk, 0);
582         }
583         ent->control |= CONTROL_END_OF_BLOCK;
584
585         if (submit_and_wait_for_tail(qp, ent) != HV_EOK)
586                 err = -EINVAL;
587         else
588                 err = 0;
589
590         spin_unlock_irqrestore(&qp->lock, flags);
591
592         if (!err)
593                 memcpy(req->result, hash_loc, result_size);
594 out:
595         put_cpu();
596
597         return err;
598 }
599
600 static int n2_hash_async_digest(struct ahash_request *req)
601 {
602         struct n2_ahash_alg *n2alg = n2_ahash_alg(req->base.tfm);
603         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
604         int ds;
605
606         ds = n2alg->digest_size;
607         if (unlikely(req->nbytes == 0)) {
608                 memcpy(req->result, n2alg->hash_zero, ds);
609                 return 0;
610         }
611         memcpy(&rctx->u, n2alg->hash_init, n2alg->hw_op_hashsz);
612
613         return n2_do_async_digest(req, n2alg->auth_type,
614                                   n2alg->hw_op_hashsz, ds,
615                                   &rctx->u, 0UL, 0);
616 }
617
618 static int n2_hmac_async_digest(struct ahash_request *req)
619 {
620         struct n2_hmac_alg *n2alg = n2_hmac_alg(req->base.tfm);
621         struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
622         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
623         struct n2_hmac_ctx *ctx = crypto_ahash_ctx(tfm);
624         int ds;
625
626         ds = n2alg->derived.digest_size;
627         if (unlikely(req->nbytes == 0) ||
628             unlikely(ctx->hash_key_len > N2_HASH_KEY_MAX)) {
629                 struct n2_hash_req_ctx *rctx = ahash_request_ctx(req);
630                 struct n2_hash_ctx *ctx = crypto_ahash_ctx(tfm);
631
632                 ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
633                 rctx->fallback_req.base.flags =
634                         req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP;
635                 rctx->fallback_req.nbytes = req->nbytes;
636                 rctx->fallback_req.src = req->src;
637                 rctx->fallback_req.result = req->result;
638
639                 return crypto_ahash_digest(&rctx->fallback_req);
640         }
641         memcpy(&rctx->u, n2alg->derived.hash_init,
642                n2alg->derived.hw_op_hashsz);
643
644         return n2_do_async_digest(req, n2alg->derived.hmac_type,
645                                   n2alg->derived.hw_op_hashsz, ds,
646                                   &rctx->u,
647                                   __pa(&ctx->hash_key),
648                                   ctx->hash_key_len);
649 }
650
651 struct n2_cipher_context {
652         int                     key_len;
653         int                     enc_type;
654         union {
655                 u8              aes[AES_MAX_KEY_SIZE];
656                 u8              des[DES_KEY_SIZE];
657                 u8              des3[3 * DES_KEY_SIZE];
658                 u8              arc4[258]; /* S-box, X, Y */
659         } key;
660 };
661
662 #define N2_CHUNK_ARR_LEN        16
663
664 struct n2_crypto_chunk {
665         struct list_head        entry;
666         unsigned long           iv_paddr : 44;
667         unsigned long           arr_len : 20;
668         unsigned long           dest_paddr;
669         unsigned long           dest_final;
670         struct {
671                 unsigned long   src_paddr : 44;
672                 unsigned long   src_len : 20;
673         } arr[N2_CHUNK_ARR_LEN];
674 };
675
676 struct n2_request_context {
677         struct ablkcipher_walk  walk;
678         struct list_head        chunk_list;
679         struct n2_crypto_chunk  chunk;
680         u8                      temp_iv[16];
681 };
682
683 /* The SPU allows some level of flexibility for partial cipher blocks
684  * being specified in a descriptor.
685  *
686  * It merely requires that every descriptor's length field is at least
687  * as large as the cipher block size.  This means that a cipher block
688  * can span at most 2 descriptors.  However, this does not allow a
689  * partial block to span into the final descriptor as that would
690  * violate the rule (since every descriptor's length must be at lest
691  * the block size).  So, for example, assuming an 8 byte block size:
692  *
693  *      0xe --> 0xa --> 0x8
694  *
695  * is a valid length sequence, whereas:
696  *
697  *      0xe --> 0xb --> 0x7
698  *
699  * is not a valid sequence.
700  */
701
702 struct n2_cipher_alg {
703         struct list_head        entry;
704         u8                      enc_type;
705         struct crypto_alg       alg;
706 };
707
708 static inline struct n2_cipher_alg *n2_cipher_alg(struct crypto_tfm *tfm)
709 {
710         struct crypto_alg *alg = tfm->__crt_alg;
711
712         return container_of(alg, struct n2_cipher_alg, alg);
713 }
714
715 struct n2_cipher_request_context {
716         struct ablkcipher_walk  walk;
717 };
718
719 static int n2_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
720                          unsigned int keylen)
721 {
722         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
723         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
724         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
725
726         ctx->enc_type = (n2alg->enc_type & ENC_TYPE_CHAINING_MASK);
727
728         switch (keylen) {
729         case AES_KEYSIZE_128:
730                 ctx->enc_type |= ENC_TYPE_ALG_AES128;
731                 break;
732         case AES_KEYSIZE_192:
733                 ctx->enc_type |= ENC_TYPE_ALG_AES192;
734                 break;
735         case AES_KEYSIZE_256:
736                 ctx->enc_type |= ENC_TYPE_ALG_AES256;
737                 break;
738         default:
739                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
740                 return -EINVAL;
741         }
742
743         ctx->key_len = keylen;
744         memcpy(ctx->key.aes, key, keylen);
745         return 0;
746 }
747
748 static int n2_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
749                          unsigned int keylen)
750 {
751         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
752         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
753         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
754         u32 tmp[DES_EXPKEY_WORDS];
755         int err;
756
757         ctx->enc_type = n2alg->enc_type;
758
759         if (keylen != DES_KEY_SIZE) {
760                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
761                 return -EINVAL;
762         }
763
764         err = des_ekey(tmp, key);
765         if (err == 0 && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
766                 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
767                 return -EINVAL;
768         }
769
770         ctx->key_len = keylen;
771         memcpy(ctx->key.des, key, keylen);
772         return 0;
773 }
774
775 static int n2_3des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
776                           unsigned int keylen)
777 {
778         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
779         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
780         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
781
782         ctx->enc_type = n2alg->enc_type;
783
784         if (keylen != (3 * DES_KEY_SIZE)) {
785                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
786                 return -EINVAL;
787         }
788         ctx->key_len = keylen;
789         memcpy(ctx->key.des3, key, keylen);
790         return 0;
791 }
792
793 static int n2_arc4_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
794                           unsigned int keylen)
795 {
796         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
797         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
798         struct n2_cipher_alg *n2alg = n2_cipher_alg(tfm);
799         u8 *s = ctx->key.arc4;
800         u8 *x = s + 256;
801         u8 *y = x + 1;
802         int i, j, k;
803
804         ctx->enc_type = n2alg->enc_type;
805
806         j = k = 0;
807         *x = 0;
808         *y = 0;
809         for (i = 0; i < 256; i++)
810                 s[i] = i;
811         for (i = 0; i < 256; i++) {
812                 u8 a = s[i];
813                 j = (j + key[k] + a) & 0xff;
814                 s[i] = s[j];
815                 s[j] = a;
816                 if (++k >= keylen)
817                         k = 0;
818         }
819
820         return 0;
821 }
822
823 static inline int cipher_descriptor_len(int nbytes, unsigned int block_size)
824 {
825         int this_len = nbytes;
826
827         this_len -= (nbytes & (block_size - 1));
828         return this_len > (1 << 16) ? (1 << 16) : this_len;
829 }
830
831 static int __n2_crypt_chunk(struct crypto_tfm *tfm, struct n2_crypto_chunk *cp,
832                             struct spu_queue *qp, bool encrypt)
833 {
834         struct n2_cipher_context *ctx = crypto_tfm_ctx(tfm);
835         struct cwq_initial_entry *ent;
836         bool in_place;
837         int i;
838
839         ent = spu_queue_alloc(qp, cp->arr_len);
840         if (!ent) {
841                 pr_info("queue_alloc() of %d fails\n",
842                         cp->arr_len);
843                 return -EBUSY;
844         }
845
846         in_place = (cp->dest_paddr == cp->arr[0].src_paddr);
847
848         ent->control = control_word_base(cp->arr[0].src_len,
849                                          0, ctx->enc_type, 0, 0,
850                                          false, true, false, encrypt,
851                                          OPCODE_ENCRYPT |
852                                          (in_place ? OPCODE_INPLACE_BIT : 0));
853         ent->src_addr = cp->arr[0].src_paddr;
854         ent->auth_key_addr = 0UL;
855         ent->auth_iv_addr = 0UL;
856         ent->final_auth_state_addr = 0UL;
857         ent->enc_key_addr = __pa(&ctx->key);
858         ent->enc_iv_addr = cp->iv_paddr;
859         ent->dest_addr = (in_place ? 0UL : cp->dest_paddr);
860
861         for (i = 1; i < cp->arr_len; i++) {
862                 ent = spu_queue_next(qp, ent);
863
864                 ent->control = cp->arr[i].src_len - 1;
865                 ent->src_addr = cp->arr[i].src_paddr;
866                 ent->auth_key_addr = 0UL;
867                 ent->auth_iv_addr = 0UL;
868                 ent->final_auth_state_addr = 0UL;
869                 ent->enc_key_addr = 0UL;
870                 ent->enc_iv_addr = 0UL;
871                 ent->dest_addr = 0UL;
872         }
873         ent->control |= CONTROL_END_OF_BLOCK;
874
875         return (spu_queue_submit(qp, ent) != HV_EOK) ? -EINVAL : 0;
876 }
877
878 static int n2_compute_chunks(struct ablkcipher_request *req)
879 {
880         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
881         struct ablkcipher_walk *walk = &rctx->walk;
882         struct n2_crypto_chunk *chunk;
883         unsigned long dest_prev;
884         unsigned int tot_len;
885         bool prev_in_place;
886         int err, nbytes;
887
888         ablkcipher_walk_init(walk, req->dst, req->src, req->nbytes);
889         err = ablkcipher_walk_phys(req, walk);
890         if (err)
891                 return err;
892
893         INIT_LIST_HEAD(&rctx->chunk_list);
894
895         chunk = &rctx->chunk;
896         INIT_LIST_HEAD(&chunk->entry);
897
898         chunk->iv_paddr = 0UL;
899         chunk->arr_len = 0;
900         chunk->dest_paddr = 0UL;
901
902         prev_in_place = false;
903         dest_prev = ~0UL;
904         tot_len = 0;
905
906         while ((nbytes = walk->nbytes) != 0) {
907                 unsigned long dest_paddr, src_paddr;
908                 bool in_place;
909                 int this_len;
910
911                 src_paddr = (page_to_phys(walk->src.page) +
912                              walk->src.offset);
913                 dest_paddr = (page_to_phys(walk->dst.page) +
914                               walk->dst.offset);
915                 in_place = (src_paddr == dest_paddr);
916                 this_len = cipher_descriptor_len(nbytes, walk->blocksize);
917
918                 if (chunk->arr_len != 0) {
919                         if (in_place != prev_in_place ||
920                             (!prev_in_place &&
921                              dest_paddr != dest_prev) ||
922                             chunk->arr_len == N2_CHUNK_ARR_LEN ||
923                             tot_len + this_len > (1 << 16)) {
924                                 chunk->dest_final = dest_prev;
925                                 list_add_tail(&chunk->entry,
926                                               &rctx->chunk_list);
927                                 chunk = kzalloc(sizeof(*chunk), GFP_ATOMIC);
928                                 if (!chunk) {
929                                         err = -ENOMEM;
930                                         break;
931                                 }
932                                 INIT_LIST_HEAD(&chunk->entry);
933                         }
934                 }
935                 if (chunk->arr_len == 0) {
936                         chunk->dest_paddr = dest_paddr;
937                         tot_len = 0;
938                 }
939                 chunk->arr[chunk->arr_len].src_paddr = src_paddr;
940                 chunk->arr[chunk->arr_len].src_len = this_len;
941                 chunk->arr_len++;
942
943                 dest_prev = dest_paddr + this_len;
944                 prev_in_place = in_place;
945                 tot_len += this_len;
946
947                 err = ablkcipher_walk_done(req, walk, nbytes - this_len);
948                 if (err)
949                         break;
950         }
951         if (!err && chunk->arr_len != 0) {
952                 chunk->dest_final = dest_prev;
953                 list_add_tail(&chunk->entry, &rctx->chunk_list);
954         }
955
956         return err;
957 }
958
959 static void n2_chunk_complete(struct ablkcipher_request *req, void *final_iv)
960 {
961         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
962         struct n2_crypto_chunk *c, *tmp;
963
964         if (final_iv)
965                 memcpy(rctx->walk.iv, final_iv, rctx->walk.blocksize);
966
967         ablkcipher_walk_complete(&rctx->walk);
968         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
969                 list_del(&c->entry);
970                 if (unlikely(c != &rctx->chunk))
971                         kfree(c);
972         }
973
974 }
975
976 static int n2_do_ecb(struct ablkcipher_request *req, bool encrypt)
977 {
978         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
979         struct crypto_tfm *tfm = req->base.tfm;
980         int err = n2_compute_chunks(req);
981         struct n2_crypto_chunk *c, *tmp;
982         unsigned long flags, hv_ret;
983         struct spu_queue *qp;
984
985         if (err)
986                 return err;
987
988         qp = cpu_to_cwq[get_cpu()];
989         err = -ENODEV;
990         if (!qp)
991                 goto out;
992
993         spin_lock_irqsave(&qp->lock, flags);
994
995         list_for_each_entry_safe(c, tmp, &rctx->chunk_list, entry) {
996                 err = __n2_crypt_chunk(tfm, c, qp, encrypt);
997                 if (err)
998                         break;
999                 list_del(&c->entry);
1000                 if (unlikely(c != &rctx->chunk))
1001                         kfree(c);
1002         }
1003         if (!err) {
1004                 hv_ret = wait_for_tail(qp);
1005                 if (hv_ret != HV_EOK)
1006                         err = -EINVAL;
1007         }
1008
1009         spin_unlock_irqrestore(&qp->lock, flags);
1010
1011 out:
1012         put_cpu();
1013
1014         n2_chunk_complete(req, NULL);
1015         return err;
1016 }
1017
1018 static int n2_encrypt_ecb(struct ablkcipher_request *req)
1019 {
1020         return n2_do_ecb(req, true);
1021 }
1022
1023 static int n2_decrypt_ecb(struct ablkcipher_request *req)
1024 {
1025         return n2_do_ecb(req, false);
1026 }
1027
1028 static int n2_do_chaining(struct ablkcipher_request *req, bool encrypt)
1029 {
1030         struct n2_request_context *rctx = ablkcipher_request_ctx(req);
1031         struct crypto_tfm *tfm = req->base.tfm;
1032         unsigned long flags, hv_ret, iv_paddr;
1033         int err = n2_compute_chunks(req);
1034         struct n2_crypto_chunk *c, *tmp;
1035         struct spu_queue *qp;
1036         void *final_iv_addr;
1037
1038         final_iv_addr = NULL;
1039
1040         if (err)
1041                 return err;
1042
1043         qp = cpu_to_cwq[get_cpu()];
1044         err = -ENODEV;
1045         if (!qp)
1046                 goto out;
1047
1048         spin_lock_irqsave(&qp->lock, flags);
1049
1050         if (encrypt) {
1051                 iv_paddr = __pa(rctx->walk.iv);
1052                 list_for_each_entry_safe(c, tmp, &rctx->chunk_list,
1053                                          entry) {
1054                         c->iv_paddr = iv_paddr;
1055                         err = __n2_crypt_chunk(tfm, c, qp, true);
1056                         if (err)
1057                                 break;
1058                         iv_paddr = c->dest_final - rctx->walk.blocksize;
1059                         list_del(&c->entry);
1060                         if (unlikely(c != &rctx->chunk))
1061                                 kfree(c);
1062                 }
1063                 final_iv_addr = __va(iv_paddr);
1064         } else {
1065                 list_for_each_entry_safe_reverse(c, tmp, &rctx->chunk_list,
1066                                                  entry) {
1067                         if (c == &rctx->chunk) {
1068                                 iv_paddr = __pa(rctx->walk.iv);
1069                         } else {
1070                                 iv_paddr = (tmp->arr[tmp->arr_len-1].src_paddr +
1071                                             tmp->arr[tmp->arr_len-1].src_len -
1072                                             rctx->walk.blocksize);
1073                         }
1074                         if (!final_iv_addr) {
1075                                 unsigned long pa;
1076
1077                                 pa = (c->arr[c->arr_len-1].src_paddr +
1078                                       c->arr[c->arr_len-1].src_len -
1079                                       rctx->walk.blocksize);
1080                                 final_iv_addr = rctx->temp_iv;
1081                                 memcpy(rctx->temp_iv, __va(pa),
1082                                        rctx->walk.blocksize);
1083                         }
1084                         c->iv_paddr = iv_paddr;
1085                         err = __n2_crypt_chunk(tfm, c, qp, false);
1086                         if (err)
1087                                 break;
1088                         list_del(&c->entry);
1089                         if (unlikely(c != &rctx->chunk))
1090                                 kfree(c);
1091                 }
1092         }
1093         if (!err) {
1094                 hv_ret = wait_for_tail(qp);
1095                 if (hv_ret != HV_EOK)
1096                         err = -EINVAL;
1097         }
1098
1099         spin_unlock_irqrestore(&qp->lock, flags);
1100
1101 out:
1102         put_cpu();
1103
1104         n2_chunk_complete(req, err ? NULL : final_iv_addr);
1105         return err;
1106 }
1107
1108 static int n2_encrypt_chaining(struct ablkcipher_request *req)
1109 {
1110         return n2_do_chaining(req, true);
1111 }
1112
1113 static int n2_decrypt_chaining(struct ablkcipher_request *req)
1114 {
1115         return n2_do_chaining(req, false);
1116 }
1117
1118 struct n2_cipher_tmpl {
1119         const char              *name;
1120         const char              *drv_name;
1121         u8                      block_size;
1122         u8                      enc_type;
1123         struct ablkcipher_alg   ablkcipher;
1124 };
1125
1126 static const struct n2_cipher_tmpl cipher_tmpls[] = {
1127         /* ARC4: only ECB is supported (chaining bits ignored) */
1128         {       .name           = "ecb(arc4)",
1129                 .drv_name       = "ecb-arc4",
1130                 .block_size     = 1,
1131                 .enc_type       = (ENC_TYPE_ALG_RC4_STREAM |
1132                                    ENC_TYPE_CHAINING_ECB),
1133                 .ablkcipher     = {
1134                         .min_keysize    = 1,
1135                         .max_keysize    = 256,
1136                         .setkey         = n2_arc4_setkey,
1137                         .encrypt        = n2_encrypt_ecb,
1138                         .decrypt        = n2_decrypt_ecb,
1139                 },
1140         },
1141
1142         /* DES: ECB CBC and CFB are supported */
1143         {       .name           = "ecb(des)",
1144                 .drv_name       = "ecb-des",
1145                 .block_size     = DES_BLOCK_SIZE,
1146                 .enc_type       = (ENC_TYPE_ALG_DES |
1147                                    ENC_TYPE_CHAINING_ECB),
1148                 .ablkcipher     = {
1149                         .min_keysize    = DES_KEY_SIZE,
1150                         .max_keysize    = DES_KEY_SIZE,
1151                         .setkey         = n2_des_setkey,
1152                         .encrypt        = n2_encrypt_ecb,
1153                         .decrypt        = n2_decrypt_ecb,
1154                 },
1155         },
1156         {       .name           = "cbc(des)",
1157                 .drv_name       = "cbc-des",
1158                 .block_size     = DES_BLOCK_SIZE,
1159                 .enc_type       = (ENC_TYPE_ALG_DES |
1160                                    ENC_TYPE_CHAINING_CBC),
1161                 .ablkcipher     = {
1162                         .ivsize         = DES_BLOCK_SIZE,
1163                         .min_keysize    = DES_KEY_SIZE,
1164                         .max_keysize    = DES_KEY_SIZE,
1165                         .setkey         = n2_des_setkey,
1166                         .encrypt        = n2_encrypt_chaining,
1167                         .decrypt        = n2_decrypt_chaining,
1168                 },
1169         },
1170         {       .name           = "cfb(des)",
1171                 .drv_name       = "cfb-des",
1172                 .block_size     = DES_BLOCK_SIZE,
1173                 .enc_type       = (ENC_TYPE_ALG_DES |
1174                                    ENC_TYPE_CHAINING_CFB),
1175                 .ablkcipher     = {
1176                         .min_keysize    = DES_KEY_SIZE,
1177                         .max_keysize    = DES_KEY_SIZE,
1178                         .setkey         = n2_des_setkey,
1179                         .encrypt        = n2_encrypt_chaining,
1180                         .decrypt        = n2_decrypt_chaining,
1181                 },
1182         },
1183
1184         /* 3DES: ECB CBC and CFB are supported */
1185         {       .name           = "ecb(des3_ede)",
1186                 .drv_name       = "ecb-3des",
1187                 .block_size     = DES_BLOCK_SIZE,
1188                 .enc_type       = (ENC_TYPE_ALG_3DES |
1189                                    ENC_TYPE_CHAINING_ECB),
1190                 .ablkcipher     = {
1191                         .min_keysize    = 3 * DES_KEY_SIZE,
1192                         .max_keysize    = 3 * DES_KEY_SIZE,
1193                         .setkey         = n2_3des_setkey,
1194                         .encrypt        = n2_encrypt_ecb,
1195                         .decrypt        = n2_decrypt_ecb,
1196                 },
1197         },
1198         {       .name           = "cbc(des3_ede)",
1199                 .drv_name       = "cbc-3des",
1200                 .block_size     = DES_BLOCK_SIZE,
1201                 .enc_type       = (ENC_TYPE_ALG_3DES |
1202                                    ENC_TYPE_CHAINING_CBC),
1203                 .ablkcipher     = {
1204                         .ivsize         = DES_BLOCK_SIZE,
1205                         .min_keysize    = 3 * DES_KEY_SIZE,
1206                         .max_keysize    = 3 * DES_KEY_SIZE,
1207                         .setkey         = n2_3des_setkey,
1208                         .encrypt        = n2_encrypt_chaining,
1209                         .decrypt        = n2_decrypt_chaining,
1210                 },
1211         },
1212         {       .name           = "cfb(des3_ede)",
1213                 .drv_name       = "cfb-3des",
1214                 .block_size     = DES_BLOCK_SIZE,
1215                 .enc_type       = (ENC_TYPE_ALG_3DES |
1216                                    ENC_TYPE_CHAINING_CFB),
1217                 .ablkcipher     = {
1218                         .min_keysize    = 3 * DES_KEY_SIZE,
1219                         .max_keysize    = 3 * DES_KEY_SIZE,
1220                         .setkey         = n2_3des_setkey,
1221                         .encrypt        = n2_encrypt_chaining,
1222                         .decrypt        = n2_decrypt_chaining,
1223                 },
1224         },
1225         /* AES: ECB CBC and CTR are supported */
1226         {       .name           = "ecb(aes)",
1227                 .drv_name       = "ecb-aes",
1228                 .block_size     = AES_BLOCK_SIZE,
1229                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1230                                    ENC_TYPE_CHAINING_ECB),
1231                 .ablkcipher     = {
1232                         .min_keysize    = AES_MIN_KEY_SIZE,
1233                         .max_keysize    = AES_MAX_KEY_SIZE,
1234                         .setkey         = n2_aes_setkey,
1235                         .encrypt        = n2_encrypt_ecb,
1236                         .decrypt        = n2_decrypt_ecb,
1237                 },
1238         },
1239         {       .name           = "cbc(aes)",
1240                 .drv_name       = "cbc-aes",
1241                 .block_size     = AES_BLOCK_SIZE,
1242                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1243                                    ENC_TYPE_CHAINING_CBC),
1244                 .ablkcipher     = {
1245                         .ivsize         = AES_BLOCK_SIZE,
1246                         .min_keysize    = AES_MIN_KEY_SIZE,
1247                         .max_keysize    = AES_MAX_KEY_SIZE,
1248                         .setkey         = n2_aes_setkey,
1249                         .encrypt        = n2_encrypt_chaining,
1250                         .decrypt        = n2_decrypt_chaining,
1251                 },
1252         },
1253         {       .name           = "ctr(aes)",
1254                 .drv_name       = "ctr-aes",
1255                 .block_size     = AES_BLOCK_SIZE,
1256                 .enc_type       = (ENC_TYPE_ALG_AES128 |
1257                                    ENC_TYPE_CHAINING_COUNTER),
1258                 .ablkcipher     = {
1259                         .ivsize         = AES_BLOCK_SIZE,
1260                         .min_keysize    = AES_MIN_KEY_SIZE,
1261                         .max_keysize    = AES_MAX_KEY_SIZE,
1262                         .setkey         = n2_aes_setkey,
1263                         .encrypt        = n2_encrypt_chaining,
1264                         .decrypt        = n2_encrypt_chaining,
1265                 },
1266         },
1267
1268 };
1269 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1270
1271 static LIST_HEAD(cipher_algs);
1272
1273 struct n2_hash_tmpl {
1274         const char      *name;
1275         const u8        *hash_zero;
1276         const u32       *hash_init;
1277         u8              hw_op_hashsz;
1278         u8              digest_size;
1279         u8              block_size;
1280         u8              auth_type;
1281         u8              hmac_type;
1282 };
1283
1284 static const u32 md5_init[MD5_HASH_WORDS] = {
1285         cpu_to_le32(MD5_H0),
1286         cpu_to_le32(MD5_H1),
1287         cpu_to_le32(MD5_H2),
1288         cpu_to_le32(MD5_H3),
1289 };
1290 static const u32 sha1_init[SHA1_DIGEST_SIZE / 4] = {
1291         SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4,
1292 };
1293 static const u32 sha256_init[SHA256_DIGEST_SIZE / 4] = {
1294         SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
1295         SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7,
1296 };
1297 static const u32 sha224_init[SHA256_DIGEST_SIZE / 4] = {
1298         SHA224_H0, SHA224_H1, SHA224_H2, SHA224_H3,
1299         SHA224_H4, SHA224_H5, SHA224_H6, SHA224_H7,
1300 };
1301
1302 static const struct n2_hash_tmpl hash_tmpls[] = {
1303         { .name         = "md5",
1304           .hash_zero    = md5_zero_message_hash,
1305           .hash_init    = md5_init,
1306           .auth_type    = AUTH_TYPE_MD5,
1307           .hmac_type    = AUTH_TYPE_HMAC_MD5,
1308           .hw_op_hashsz = MD5_DIGEST_SIZE,
1309           .digest_size  = MD5_DIGEST_SIZE,
1310           .block_size   = MD5_HMAC_BLOCK_SIZE },
1311         { .name         = "sha1",
1312           .hash_zero    = sha1_zero_message_hash,
1313           .hash_init    = sha1_init,
1314           .auth_type    = AUTH_TYPE_SHA1,
1315           .hmac_type    = AUTH_TYPE_HMAC_SHA1,
1316           .hw_op_hashsz = SHA1_DIGEST_SIZE,
1317           .digest_size  = SHA1_DIGEST_SIZE,
1318           .block_size   = SHA1_BLOCK_SIZE },
1319         { .name         = "sha256",
1320           .hash_zero    = sha256_zero_message_hash,
1321           .hash_init    = sha256_init,
1322           .auth_type    = AUTH_TYPE_SHA256,
1323           .hmac_type    = AUTH_TYPE_HMAC_SHA256,
1324           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1325           .digest_size  = SHA256_DIGEST_SIZE,
1326           .block_size   = SHA256_BLOCK_SIZE },
1327         { .name         = "sha224",
1328           .hash_zero    = sha224_zero_message_hash,
1329           .hash_init    = sha224_init,
1330           .auth_type    = AUTH_TYPE_SHA256,
1331           .hmac_type    = AUTH_TYPE_RESERVED,
1332           .hw_op_hashsz = SHA256_DIGEST_SIZE,
1333           .digest_size  = SHA224_DIGEST_SIZE,
1334           .block_size   = SHA224_BLOCK_SIZE },
1335 };
1336 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1337
1338 static LIST_HEAD(ahash_algs);
1339 static LIST_HEAD(hmac_algs);
1340
1341 static int algs_registered;
1342
1343 static void __n2_unregister_algs(void)
1344 {
1345         struct n2_cipher_alg *cipher, *cipher_tmp;
1346         struct n2_ahash_alg *alg, *alg_tmp;
1347         struct n2_hmac_alg *hmac, *hmac_tmp;
1348
1349         list_for_each_entry_safe(cipher, cipher_tmp, &cipher_algs, entry) {
1350                 crypto_unregister_alg(&cipher->alg);
1351                 list_del(&cipher->entry);
1352                 kfree(cipher);
1353         }
1354         list_for_each_entry_safe(hmac, hmac_tmp, &hmac_algs, derived.entry) {
1355                 crypto_unregister_ahash(&hmac->derived.alg);
1356                 list_del(&hmac->derived.entry);
1357                 kfree(hmac);
1358         }
1359         list_for_each_entry_safe(alg, alg_tmp, &ahash_algs, entry) {
1360                 crypto_unregister_ahash(&alg->alg);
1361                 list_del(&alg->entry);
1362                 kfree(alg);
1363         }
1364 }
1365
1366 static int n2_cipher_cra_init(struct crypto_tfm *tfm)
1367 {
1368         tfm->crt_ablkcipher.reqsize = sizeof(struct n2_request_context);
1369         return 0;
1370 }
1371
1372 static int __n2_register_one_cipher(const struct n2_cipher_tmpl *tmpl)
1373 {
1374         struct n2_cipher_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1375         struct crypto_alg *alg;
1376         int err;
1377
1378         if (!p)
1379                 return -ENOMEM;
1380
1381         alg = &p->alg;
1382
1383         snprintf(alg->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1384         snprintf(alg->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->drv_name);
1385         alg->cra_priority = N2_CRA_PRIORITY;
1386         alg->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1387                          CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
1388         alg->cra_blocksize = tmpl->block_size;
1389         p->enc_type = tmpl->enc_type;
1390         alg->cra_ctxsize = sizeof(struct n2_cipher_context);
1391         alg->cra_type = &crypto_ablkcipher_type;
1392         alg->cra_u.ablkcipher = tmpl->ablkcipher;
1393         alg->cra_init = n2_cipher_cra_init;
1394         alg->cra_module = THIS_MODULE;
1395
1396         list_add(&p->entry, &cipher_algs);
1397         err = crypto_register_alg(alg);
1398         if (err) {
1399                 pr_err("%s alg registration failed\n", alg->cra_name);
1400                 list_del(&p->entry);
1401                 kfree(p);
1402         } else {
1403                 pr_info("%s alg registered\n", alg->cra_name);
1404         }
1405         return err;
1406 }
1407
1408 static int __n2_register_one_hmac(struct n2_ahash_alg *n2ahash)
1409 {
1410         struct n2_hmac_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1411         struct ahash_alg *ahash;
1412         struct crypto_alg *base;
1413         int err;
1414
1415         if (!p)
1416                 return -ENOMEM;
1417
1418         p->child_alg = n2ahash->alg.halg.base.cra_name;
1419         memcpy(&p->derived, n2ahash, sizeof(struct n2_ahash_alg));
1420         INIT_LIST_HEAD(&p->derived.entry);
1421
1422         ahash = &p->derived.alg;
1423         ahash->digest = n2_hmac_async_digest;
1424         ahash->setkey = n2_hmac_async_setkey;
1425
1426         base = &ahash->halg.base;
1427         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", p->child_alg);
1428         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "hmac-%s-n2", p->child_alg);
1429
1430         base->cra_ctxsize = sizeof(struct n2_hmac_ctx);
1431         base->cra_init = n2_hmac_cra_init;
1432         base->cra_exit = n2_hmac_cra_exit;
1433
1434         list_add(&p->derived.entry, &hmac_algs);
1435         err = crypto_register_ahash(ahash);
1436         if (err) {
1437                 pr_err("%s alg registration failed\n", base->cra_name);
1438                 list_del(&p->derived.entry);
1439                 kfree(p);
1440         } else {
1441                 pr_info("%s alg registered\n", base->cra_name);
1442         }
1443         return err;
1444 }
1445
1446 static int __n2_register_one_ahash(const struct n2_hash_tmpl *tmpl)
1447 {
1448         struct n2_ahash_alg *p = kzalloc(sizeof(*p), GFP_KERNEL);
1449         struct hash_alg_common *halg;
1450         struct crypto_alg *base;
1451         struct ahash_alg *ahash;
1452         int err;
1453
1454         if (!p)
1455                 return -ENOMEM;
1456
1457         p->hash_zero = tmpl->hash_zero;
1458         p->hash_init = tmpl->hash_init;
1459         p->auth_type = tmpl->auth_type;
1460         p->hmac_type = tmpl->hmac_type;
1461         p->hw_op_hashsz = tmpl->hw_op_hashsz;
1462         p->digest_size = tmpl->digest_size;
1463
1464         ahash = &p->alg;
1465         ahash->init = n2_hash_async_init;
1466         ahash->update = n2_hash_async_update;
1467         ahash->final = n2_hash_async_final;
1468         ahash->finup = n2_hash_async_finup;
1469         ahash->digest = n2_hash_async_digest;
1470
1471         halg = &ahash->halg;
1472         halg->digestsize = tmpl->digest_size;
1473
1474         base = &halg->base;
1475         snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", tmpl->name);
1476         snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-n2", tmpl->name);
1477         base->cra_priority = N2_CRA_PRIORITY;
1478         base->cra_flags = CRYPTO_ALG_TYPE_AHASH |
1479                           CRYPTO_ALG_KERN_DRIVER_ONLY |
1480                           CRYPTO_ALG_NEED_FALLBACK;
1481         base->cra_blocksize = tmpl->block_size;
1482         base->cra_ctxsize = sizeof(struct n2_hash_ctx);
1483         base->cra_module = THIS_MODULE;
1484         base->cra_init = n2_hash_cra_init;
1485         base->cra_exit = n2_hash_cra_exit;
1486
1487         list_add(&p->entry, &ahash_algs);
1488         err = crypto_register_ahash(ahash);
1489         if (err) {
1490                 pr_err("%s alg registration failed\n", base->cra_name);
1491                 list_del(&p->entry);
1492                 kfree(p);
1493         } else {
1494                 pr_info("%s alg registered\n", base->cra_name);
1495         }
1496         if (!err && p->hmac_type != AUTH_TYPE_RESERVED)
1497                 err = __n2_register_one_hmac(p);
1498         return err;
1499 }
1500
1501 static int n2_register_algs(void)
1502 {
1503         int i, err = 0;
1504
1505         mutex_lock(&spu_lock);
1506         if (algs_registered++)
1507                 goto out;
1508
1509         for (i = 0; i < NUM_HASH_TMPLS; i++) {
1510                 err = __n2_register_one_ahash(&hash_tmpls[i]);
1511                 if (err) {
1512                         __n2_unregister_algs();
1513                         goto out;
1514                 }
1515         }
1516         for (i = 0; i < NUM_CIPHER_TMPLS; i++) {
1517                 err = __n2_register_one_cipher(&cipher_tmpls[i]);
1518                 if (err) {
1519                         __n2_unregister_algs();
1520                         goto out;
1521                 }
1522         }
1523
1524 out:
1525         mutex_unlock(&spu_lock);
1526         return err;
1527 }
1528
1529 static void n2_unregister_algs(void)
1530 {
1531         mutex_lock(&spu_lock);
1532         if (!--algs_registered)
1533                 __n2_unregister_algs();
1534         mutex_unlock(&spu_lock);
1535 }
1536
1537 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1538  * a devino.  This isn't very useful to us because all of the
1539  * interrupts listed in the device_node have been translated to
1540  * Linux virtual IRQ cookie numbers.
1541  *
1542  * So we have to back-translate, going through the 'intr' and 'ino'
1543  * property tables of the n2cp MDESC node, matching it with the OF
1544  * 'interrupts' property entries, in order to to figure out which
1545  * devino goes to which already-translated IRQ.
1546  */
1547 static int find_devino_index(struct platform_device *dev, struct spu_mdesc_info *ip,
1548                              unsigned long dev_ino)
1549 {
1550         const unsigned int *dev_intrs;
1551         unsigned int intr;
1552         int i;
1553
1554         for (i = 0; i < ip->num_intrs; i++) {
1555                 if (ip->ino_table[i].ino == dev_ino)
1556                         break;
1557         }
1558         if (i == ip->num_intrs)
1559                 return -ENODEV;
1560
1561         intr = ip->ino_table[i].intr;
1562
1563         dev_intrs = of_get_property(dev->dev.of_node, "interrupts", NULL);
1564         if (!dev_intrs)
1565                 return -ENODEV;
1566
1567         for (i = 0; i < dev->archdata.num_irqs; i++) {
1568                 if (dev_intrs[i] == intr)
1569                         return i;
1570         }
1571
1572         return -ENODEV;
1573 }
1574
1575 static int spu_map_ino(struct platform_device *dev, struct spu_mdesc_info *ip,
1576                        const char *irq_name, struct spu_queue *p,
1577                        irq_handler_t handler)
1578 {
1579         unsigned long herr;
1580         int index;
1581
1582         herr = sun4v_ncs_qhandle_to_devino(p->qhandle, &p->devino);
1583         if (herr)
1584                 return -EINVAL;
1585
1586         index = find_devino_index(dev, ip, p->devino);
1587         if (index < 0)
1588                 return index;
1589
1590         p->irq = dev->archdata.irqs[index];
1591
1592         sprintf(p->irq_name, "%s-%d", irq_name, index);
1593
1594         return request_irq(p->irq, handler, 0, p->irq_name, p);
1595 }
1596
1597 static struct kmem_cache *queue_cache[2];
1598
1599 static void *new_queue(unsigned long q_type)
1600 {
1601         return kmem_cache_zalloc(queue_cache[q_type - 1], GFP_KERNEL);
1602 }
1603
1604 static void free_queue(void *p, unsigned long q_type)
1605 {
1606         kmem_cache_free(queue_cache[q_type - 1], p);
1607 }
1608
1609 static int queue_cache_init(void)
1610 {
1611         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1612                 queue_cache[HV_NCS_QTYPE_MAU - 1] =
1613                         kmem_cache_create("mau_queue",
1614                                           (MAU_NUM_ENTRIES *
1615                                            MAU_ENTRY_SIZE),
1616                                           MAU_ENTRY_SIZE, 0, NULL);
1617         if (!queue_cache[HV_NCS_QTYPE_MAU - 1])
1618                 return -ENOMEM;
1619
1620         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1])
1621                 queue_cache[HV_NCS_QTYPE_CWQ - 1] =
1622                         kmem_cache_create("cwq_queue",
1623                                           (CWQ_NUM_ENTRIES *
1624                                            CWQ_ENTRY_SIZE),
1625                                           CWQ_ENTRY_SIZE, 0, NULL);
1626         if (!queue_cache[HV_NCS_QTYPE_CWQ - 1]) {
1627                 kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1628                 queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1629                 return -ENOMEM;
1630         }
1631         return 0;
1632 }
1633
1634 static void queue_cache_destroy(void)
1635 {
1636         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_MAU - 1]);
1637         kmem_cache_destroy(queue_cache[HV_NCS_QTYPE_CWQ - 1]);
1638         queue_cache[HV_NCS_QTYPE_MAU - 1] = NULL;
1639         queue_cache[HV_NCS_QTYPE_CWQ - 1] = NULL;
1640 }
1641
1642 static long spu_queue_register_workfn(void *arg)
1643 {
1644         struct spu_qreg *qr = arg;
1645         struct spu_queue *p = qr->queue;
1646         unsigned long q_type = qr->type;
1647         unsigned long hv_ret;
1648
1649         hv_ret = sun4v_ncs_qconf(q_type, __pa(p->q),
1650                                  CWQ_NUM_ENTRIES, &p->qhandle);
1651         if (!hv_ret)
1652                 sun4v_ncs_sethead_marker(p->qhandle, 0);
1653
1654         return hv_ret ? -EINVAL : 0;
1655 }
1656
1657 static int spu_queue_register(struct spu_queue *p, unsigned long q_type)
1658 {
1659         int cpu = cpumask_any_and(&p->sharing, cpu_online_mask);
1660         struct spu_qreg qr = { .queue = p, .type = q_type };
1661
1662         return work_on_cpu_safe(cpu, spu_queue_register_workfn, &qr);
1663 }
1664
1665 static int spu_queue_setup(struct spu_queue *p)
1666 {
1667         int err;
1668
1669         p->q = new_queue(p->q_type);
1670         if (!p->q)
1671                 return -ENOMEM;
1672
1673         err = spu_queue_register(p, p->q_type);
1674         if (err) {
1675                 free_queue(p->q, p->q_type);
1676                 p->q = NULL;
1677         }
1678
1679         return err;
1680 }
1681
1682 static void spu_queue_destroy(struct spu_queue *p)
1683 {
1684         unsigned long hv_ret;
1685
1686         if (!p->q)
1687                 return;
1688
1689         hv_ret = sun4v_ncs_qconf(p->q_type, p->qhandle, 0, &p->qhandle);
1690
1691         if (!hv_ret)
1692                 free_queue(p->q, p->q_type);
1693 }
1694
1695 static void spu_list_destroy(struct list_head *list)
1696 {
1697         struct spu_queue *p, *n;
1698
1699         list_for_each_entry_safe(p, n, list, list) {
1700                 int i;
1701
1702                 for (i = 0; i < NR_CPUS; i++) {
1703                         if (cpu_to_cwq[i] == p)
1704                                 cpu_to_cwq[i] = NULL;
1705                 }
1706
1707                 if (p->irq) {
1708                         free_irq(p->irq, p);
1709                         p->irq = 0;
1710                 }
1711                 spu_queue_destroy(p);
1712                 list_del(&p->list);
1713                 kfree(p);
1714         }
1715 }
1716
1717 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1718  * gathering cpu membership information.
1719  */
1720 static int spu_mdesc_walk_arcs(struct mdesc_handle *mdesc,
1721                                struct platform_device *dev,
1722                                u64 node, struct spu_queue *p,
1723                                struct spu_queue **table)
1724 {
1725         u64 arc;
1726
1727         mdesc_for_each_arc(arc, mdesc, node, MDESC_ARC_TYPE_BACK) {
1728                 u64 tgt = mdesc_arc_target(mdesc, arc);
1729                 const char *name = mdesc_node_name(mdesc, tgt);
1730                 const u64 *id;
1731
1732                 if (strcmp(name, "cpu"))
1733                         continue;
1734                 id = mdesc_get_property(mdesc, tgt, "id", NULL);
1735                 if (table[*id] != NULL) {
1736                         dev_err(&dev->dev, "%pOF: SPU cpu slot already set.\n",
1737                                 dev->dev.of_node);
1738                         return -EINVAL;
1739                 }
1740                 cpumask_set_cpu(*id, &p->sharing);
1741                 table[*id] = p;
1742         }
1743         return 0;
1744 }
1745
1746 /* Process an 'exec-unit' MDESC node of type 'cwq'.  */
1747 static int handle_exec_unit(struct spu_mdesc_info *ip, struct list_head *list,
1748                             struct platform_device *dev, struct mdesc_handle *mdesc,
1749                             u64 node, const char *iname, unsigned long q_type,
1750                             irq_handler_t handler, struct spu_queue **table)
1751 {
1752         struct spu_queue *p;
1753         int err;
1754
1755         p = kzalloc(sizeof(struct spu_queue), GFP_KERNEL);
1756         if (!p) {
1757                 dev_err(&dev->dev, "%pOF: Could not allocate SPU queue.\n",
1758                         dev->dev.of_node);
1759                 return -ENOMEM;
1760         }
1761
1762         cpumask_clear(&p->sharing);
1763         spin_lock_init(&p->lock);
1764         p->q_type = q_type;
1765         INIT_LIST_HEAD(&p->jobs);
1766         list_add(&p->list, list);
1767
1768         err = spu_mdesc_walk_arcs(mdesc, dev, node, p, table);
1769         if (err)
1770                 return err;
1771
1772         err = spu_queue_setup(p);
1773         if (err)
1774                 return err;
1775
1776         return spu_map_ino(dev, ip, iname, p, handler);
1777 }
1778
1779 static int spu_mdesc_scan(struct mdesc_handle *mdesc, struct platform_device *dev,
1780                           struct spu_mdesc_info *ip, struct list_head *list,
1781                           const char *exec_name, unsigned long q_type,
1782                           irq_handler_t handler, struct spu_queue **table)
1783 {
1784         int err = 0;
1785         u64 node;
1786
1787         mdesc_for_each_node_by_name(mdesc, node, "exec-unit") {
1788                 const char *type;
1789
1790                 type = mdesc_get_property(mdesc, node, "type", NULL);
1791                 if (!type || strcmp(type, exec_name))
1792                         continue;
1793
1794                 err = handle_exec_unit(ip, list, dev, mdesc, node,
1795                                        exec_name, q_type, handler, table);
1796                 if (err) {
1797                         spu_list_destroy(list);
1798                         break;
1799                 }
1800         }
1801
1802         return err;
1803 }
1804
1805 static int get_irq_props(struct mdesc_handle *mdesc, u64 node,
1806                          struct spu_mdesc_info *ip)
1807 {
1808         const u64 *ino;
1809         int ino_len;
1810         int i;
1811
1812         ino = mdesc_get_property(mdesc, node, "ino", &ino_len);
1813         if (!ino) {
1814                 printk("NO 'ino'\n");
1815                 return -ENODEV;
1816         }
1817
1818         ip->num_intrs = ino_len / sizeof(u64);
1819         ip->ino_table = kzalloc((sizeof(struct ino_blob) *
1820                                  ip->num_intrs),
1821                                 GFP_KERNEL);
1822         if (!ip->ino_table)
1823                 return -ENOMEM;
1824
1825         for (i = 0; i < ip->num_intrs; i++) {
1826                 struct ino_blob *b = &ip->ino_table[i];
1827                 b->intr = i + 1;
1828                 b->ino = ino[i];
1829         }
1830
1831         return 0;
1832 }
1833
1834 static int grab_mdesc_irq_props(struct mdesc_handle *mdesc,
1835                                 struct platform_device *dev,
1836                                 struct spu_mdesc_info *ip,
1837                                 const char *node_name)
1838 {
1839         const unsigned int *reg;
1840         u64 node;
1841
1842         reg = of_get_property(dev->dev.of_node, "reg", NULL);
1843         if (!reg)
1844                 return -ENODEV;
1845
1846         mdesc_for_each_node_by_name(mdesc, node, "virtual-device") {
1847                 const char *name;
1848                 const u64 *chdl;
1849
1850                 name = mdesc_get_property(mdesc, node, "name", NULL);
1851                 if (!name || strcmp(name, node_name))
1852                         continue;
1853                 chdl = mdesc_get_property(mdesc, node, "cfg-handle", NULL);
1854                 if (!chdl || (*chdl != *reg))
1855                         continue;
1856                 ip->cfg_handle = *chdl;
1857                 return get_irq_props(mdesc, node, ip);
1858         }
1859
1860         return -ENODEV;
1861 }
1862
1863 static unsigned long n2_spu_hvapi_major;
1864 static unsigned long n2_spu_hvapi_minor;
1865
1866 static int n2_spu_hvapi_register(void)
1867 {
1868         int err;
1869
1870         n2_spu_hvapi_major = 2;
1871         n2_spu_hvapi_minor = 0;
1872
1873         err = sun4v_hvapi_register(HV_GRP_NCS,
1874                                    n2_spu_hvapi_major,
1875                                    &n2_spu_hvapi_minor);
1876
1877         if (!err)
1878                 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1879                         n2_spu_hvapi_major,
1880                         n2_spu_hvapi_minor);
1881
1882         return err;
1883 }
1884
1885 static void n2_spu_hvapi_unregister(void)
1886 {
1887         sun4v_hvapi_unregister(HV_GRP_NCS);
1888 }
1889
1890 static int global_ref;
1891
1892 static int grab_global_resources(void)
1893 {
1894         int err = 0;
1895
1896         mutex_lock(&spu_lock);
1897
1898         if (global_ref++)
1899                 goto out;
1900
1901         err = n2_spu_hvapi_register();
1902         if (err)
1903                 goto out;
1904
1905         err = queue_cache_init();
1906         if (err)
1907                 goto out_hvapi_release;
1908
1909         err = -ENOMEM;
1910         cpu_to_cwq = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1911                              GFP_KERNEL);
1912         if (!cpu_to_cwq)
1913                 goto out_queue_cache_destroy;
1914
1915         cpu_to_mau = kzalloc(sizeof(struct spu_queue *) * NR_CPUS,
1916                              GFP_KERNEL);
1917         if (!cpu_to_mau)
1918                 goto out_free_cwq_table;
1919
1920         err = 0;
1921
1922 out:
1923         if (err)
1924                 global_ref--;
1925         mutex_unlock(&spu_lock);
1926         return err;
1927
1928 out_free_cwq_table:
1929         kfree(cpu_to_cwq);
1930         cpu_to_cwq = NULL;
1931
1932 out_queue_cache_destroy:
1933         queue_cache_destroy();
1934
1935 out_hvapi_release:
1936         n2_spu_hvapi_unregister();
1937         goto out;
1938 }
1939
1940 static void release_global_resources(void)
1941 {
1942         mutex_lock(&spu_lock);
1943         if (!--global_ref) {
1944                 kfree(cpu_to_cwq);
1945                 cpu_to_cwq = NULL;
1946
1947                 kfree(cpu_to_mau);
1948                 cpu_to_mau = NULL;
1949
1950                 queue_cache_destroy();
1951                 n2_spu_hvapi_unregister();
1952         }
1953         mutex_unlock(&spu_lock);
1954 }
1955
1956 static struct n2_crypto *alloc_n2cp(void)
1957 {
1958         struct n2_crypto *np = kzalloc(sizeof(struct n2_crypto), GFP_KERNEL);
1959
1960         if (np)
1961                 INIT_LIST_HEAD(&np->cwq_list);
1962
1963         return np;
1964 }
1965
1966 static void free_n2cp(struct n2_crypto *np)
1967 {
1968         kfree(np->cwq_info.ino_table);
1969         np->cwq_info.ino_table = NULL;
1970
1971         kfree(np);
1972 }
1973
1974 static void n2_spu_driver_version(void)
1975 {
1976         static int n2_spu_version_printed;
1977
1978         if (n2_spu_version_printed++ == 0)
1979                 pr_info("%s", version);
1980 }
1981
1982 static int n2_crypto_probe(struct platform_device *dev)
1983 {
1984         struct mdesc_handle *mdesc;
1985         struct n2_crypto *np;
1986         int err;
1987
1988         n2_spu_driver_version();
1989
1990         pr_info("Found N2CP at %pOF\n", dev->dev.of_node);
1991
1992         np = alloc_n2cp();
1993         if (!np) {
1994                 dev_err(&dev->dev, "%pOF: Unable to allocate n2cp.\n",
1995                         dev->dev.of_node);
1996                 return -ENOMEM;
1997         }
1998
1999         err = grab_global_resources();
2000         if (err) {
2001                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2002                         dev->dev.of_node);
2003                 goto out_free_n2cp;
2004         }
2005
2006         mdesc = mdesc_grab();
2007
2008         if (!mdesc) {
2009                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2010                         dev->dev.of_node);
2011                 err = -ENODEV;
2012                 goto out_free_global;
2013         }
2014         err = grab_mdesc_irq_props(mdesc, dev, &np->cwq_info, "n2cp");
2015         if (err) {
2016                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2017                         dev->dev.of_node);
2018                 mdesc_release(mdesc);
2019                 goto out_free_global;
2020         }
2021
2022         err = spu_mdesc_scan(mdesc, dev, &np->cwq_info, &np->cwq_list,
2023                              "cwq", HV_NCS_QTYPE_CWQ, cwq_intr,
2024                              cpu_to_cwq);
2025         mdesc_release(mdesc);
2026
2027         if (err) {
2028                 dev_err(&dev->dev, "%pOF: CWQ MDESC scan failed.\n",
2029                         dev->dev.of_node);
2030                 goto out_free_global;
2031         }
2032
2033         err = n2_register_algs();
2034         if (err) {
2035                 dev_err(&dev->dev, "%pOF: Unable to register algorithms.\n",
2036                         dev->dev.of_node);
2037                 goto out_free_spu_list;
2038         }
2039
2040         dev_set_drvdata(&dev->dev, np);
2041
2042         return 0;
2043
2044 out_free_spu_list:
2045         spu_list_destroy(&np->cwq_list);
2046
2047 out_free_global:
2048         release_global_resources();
2049
2050 out_free_n2cp:
2051         free_n2cp(np);
2052
2053         return err;
2054 }
2055
2056 static int n2_crypto_remove(struct platform_device *dev)
2057 {
2058         struct n2_crypto *np = dev_get_drvdata(&dev->dev);
2059
2060         n2_unregister_algs();
2061
2062         spu_list_destroy(&np->cwq_list);
2063
2064         release_global_resources();
2065
2066         free_n2cp(np);
2067
2068         return 0;
2069 }
2070
2071 static struct n2_mau *alloc_ncp(void)
2072 {
2073         struct n2_mau *mp = kzalloc(sizeof(struct n2_mau), GFP_KERNEL);
2074
2075         if (mp)
2076                 INIT_LIST_HEAD(&mp->mau_list);
2077
2078         return mp;
2079 }
2080
2081 static void free_ncp(struct n2_mau *mp)
2082 {
2083         kfree(mp->mau_info.ino_table);
2084         mp->mau_info.ino_table = NULL;
2085
2086         kfree(mp);
2087 }
2088
2089 static int n2_mau_probe(struct platform_device *dev)
2090 {
2091         struct mdesc_handle *mdesc;
2092         struct n2_mau *mp;
2093         int err;
2094
2095         n2_spu_driver_version();
2096
2097         pr_info("Found NCP at %pOF\n", dev->dev.of_node);
2098
2099         mp = alloc_ncp();
2100         if (!mp) {
2101                 dev_err(&dev->dev, "%pOF: Unable to allocate ncp.\n",
2102                         dev->dev.of_node);
2103                 return -ENOMEM;
2104         }
2105
2106         err = grab_global_resources();
2107         if (err) {
2108                 dev_err(&dev->dev, "%pOF: Unable to grab global resources.\n",
2109                         dev->dev.of_node);
2110                 goto out_free_ncp;
2111         }
2112
2113         mdesc = mdesc_grab();
2114
2115         if (!mdesc) {
2116                 dev_err(&dev->dev, "%pOF: Unable to grab MDESC.\n",
2117                         dev->dev.of_node);
2118                 err = -ENODEV;
2119                 goto out_free_global;
2120         }
2121
2122         err = grab_mdesc_irq_props(mdesc, dev, &mp->mau_info, "ncp");
2123         if (err) {
2124                 dev_err(&dev->dev, "%pOF: Unable to grab IRQ props.\n",
2125                         dev->dev.of_node);
2126                 mdesc_release(mdesc);
2127                 goto out_free_global;
2128         }
2129
2130         err = spu_mdesc_scan(mdesc, dev, &mp->mau_info, &mp->mau_list,
2131                              "mau", HV_NCS_QTYPE_MAU, mau_intr,
2132                              cpu_to_mau);
2133         mdesc_release(mdesc);
2134
2135         if (err) {
2136                 dev_err(&dev->dev, "%pOF: MAU MDESC scan failed.\n",
2137                         dev->dev.of_node);
2138                 goto out_free_global;
2139         }
2140
2141         dev_set_drvdata(&dev->dev, mp);
2142
2143         return 0;
2144
2145 out_free_global:
2146         release_global_resources();
2147
2148 out_free_ncp:
2149         free_ncp(mp);
2150
2151         return err;
2152 }
2153
2154 static int n2_mau_remove(struct platform_device *dev)
2155 {
2156         struct n2_mau *mp = dev_get_drvdata(&dev->dev);
2157
2158         spu_list_destroy(&mp->mau_list);
2159
2160         release_global_resources();
2161
2162         free_ncp(mp);
2163
2164         return 0;
2165 }
2166
2167 static const struct of_device_id n2_crypto_match[] = {
2168         {
2169                 .name = "n2cp",
2170                 .compatible = "SUNW,n2-cwq",
2171         },
2172         {
2173                 .name = "n2cp",
2174                 .compatible = "SUNW,vf-cwq",
2175         },
2176         {
2177                 .name = "n2cp",
2178                 .compatible = "SUNW,kt-cwq",
2179         },
2180         {},
2181 };
2182
2183 MODULE_DEVICE_TABLE(of, n2_crypto_match);
2184
2185 static struct platform_driver n2_crypto_driver = {
2186         .driver = {
2187                 .name           =       "n2cp",
2188                 .of_match_table =       n2_crypto_match,
2189         },
2190         .probe          =       n2_crypto_probe,
2191         .remove         =       n2_crypto_remove,
2192 };
2193
2194 static const struct of_device_id n2_mau_match[] = {
2195         {
2196                 .name = "ncp",
2197                 .compatible = "SUNW,n2-mau",
2198         },
2199         {
2200                 .name = "ncp",
2201                 .compatible = "SUNW,vf-mau",
2202         },
2203         {
2204                 .name = "ncp",
2205                 .compatible = "SUNW,kt-mau",
2206         },
2207         {},
2208 };
2209
2210 MODULE_DEVICE_TABLE(of, n2_mau_match);
2211
2212 static struct platform_driver n2_mau_driver = {
2213         .driver = {
2214                 .name           =       "ncp",
2215                 .of_match_table =       n2_mau_match,
2216         },
2217         .probe          =       n2_mau_probe,
2218         .remove         =       n2_mau_remove,
2219 };
2220
2221 static struct platform_driver * const drivers[] = {
2222         &n2_crypto_driver,
2223         &n2_mau_driver,
2224 };
2225
2226 static int __init n2_init(void)
2227 {
2228         return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2229 }
2230
2231 static void __exit n2_exit(void)
2232 {
2233         platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2234 }
2235
2236 module_init(n2_init);
2237 module_exit(n2_exit);