Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[sfrench/cifs-2.6.git] / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20
21 #include <crypto/ctr.h>
22 #include <crypto/des.h>
23 #include <crypto/aes.h>
24 #include <crypto/sha.h>
25 #include <crypto/algapi.h>
26 #include <crypto/aead.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
29
30 #include <mach/npe.h>
31 #include <mach/qmgr.h>
32
33 #define MAX_KEYLEN 32
34
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
38
39 #define NPE_OP_HASH_VERIFY   0x01
40 #define NPE_OP_CCM_ENABLE    0x04
41 #define NPE_OP_CRYPT_ENABLE  0x08
42 #define NPE_OP_HASH_ENABLE   0x10
43 #define NPE_OP_NOT_IN_PLACE  0x20
44 #define NPE_OP_HMAC_DISABLE  0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
46
47 #define NPE_OP_CCM_GEN_MIC   0xcc
48 #define NPE_OP_HASH_GEN_ICV  0x50
49 #define NPE_OP_ENC_GEN_KEY   0xc9
50
51 #define MOD_ECB     0x0000
52 #define MOD_CTR     0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
57
58 #define KEYLEN_128  4
59 #define KEYLEN_192  6
60 #define KEYLEN_256  8
61
62 #define CIPH_DECR   0x0000
63 #define CIPH_ENCR   0x0400
64
65 #define MOD_DES     0x0000
66 #define MOD_TDEA2   0x0100
67 #define MOD_3DES   0x0200
68 #define MOD_AES     0x0800
69 #define MOD_AES128  (0x0800 | KEYLEN_128)
70 #define MOD_AES192  (0x0900 | KEYLEN_192)
71 #define MOD_AES256  (0x0a00 | KEYLEN_256)
72
73 #define MAX_IVLEN   16
74 #define NPE_ID      2  /* NPE C */
75 #define NPE_QLEN    16
76 /* Space for registering when the first
77  * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
79
80 #define SEND_QID    29
81 #define RECV_QID    30
82
83 #define CTL_FLAG_UNUSED         0x0000
84 #define CTL_FLAG_USED           0x1000
85 #define CTL_FLAG_PERFORM_ABLK   0x0001
86 #define CTL_FLAG_GEN_ICV        0x0002
87 #define CTL_FLAG_GEN_REVAES     0x0004
88 #define CTL_FLAG_PERFORM_AEAD   0x0008
89 #define CTL_FLAG_MASK           0x000f
90
91 #define HMAC_IPAD_VALUE   0x36
92 #define HMAC_OPAD_VALUE   0x5C
93 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
94
95 #define MD5_DIGEST_SIZE   16
96
97 struct buffer_desc {
98         u32 phys_next;
99         u16 buf_len;
100         u16 pkt_len;
101         u32 phys_addr;
102         u32 __reserved[4];
103         struct buffer_desc *next;
104 };
105
106 struct crypt_ctl {
107         u8 mode;                /* NPE_OP_*  operation mode */
108         u8 init_len;
109         u16 reserved;
110         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
111         u32 icv_rev_aes;        /* icv or rev aes */
112         u32 src_buf;
113         u32 dst_buf;
114         u16 auth_offs;          /* Authentication start offset */
115         u16 auth_len;           /* Authentication data length */
116         u16 crypt_offs;         /* Cryption start offset */
117         u16 crypt_len;          /* Cryption data length */
118         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
119         u32 crypto_ctx;         /* NPE Crypto Param structure address */
120
121         /* Used by Host: 4*4 bytes*/
122         unsigned ctl_flags;
123         union {
124                 struct ablkcipher_request *ablk_req;
125                 struct aead_request *aead_req;
126                 struct crypto_tfm *tfm;
127         } data;
128         struct buffer_desc *regist_buf;
129         u8 *regist_ptr;
130 };
131
132 struct ablk_ctx {
133         struct buffer_desc *src;
134         struct buffer_desc *dst;
135         unsigned src_nents;
136         unsigned dst_nents;
137 };
138
139 struct aead_ctx {
140         struct buffer_desc *buffer;
141         unsigned short assoc_nents;
142         unsigned short src_nents;
143         struct scatterlist ivlist;
144         /* used when the hmac is not on one sg entry */
145         u8 *hmac_virt;
146         int encrypt;
147 };
148
149 struct ix_hash_algo {
150         u32 cfgword;
151         unsigned char *icv;
152 };
153
154 struct ix_sa_dir {
155         unsigned char *npe_ctx;
156         dma_addr_t npe_ctx_phys;
157         int npe_ctx_idx;
158         u8 npe_mode;
159 };
160
161 struct ixp_ctx {
162         struct ix_sa_dir encrypt;
163         struct ix_sa_dir decrypt;
164         int authkey_len;
165         u8 authkey[MAX_KEYLEN];
166         int enckey_len;
167         u8 enckey[MAX_KEYLEN];
168         u8 salt[MAX_IVLEN];
169         u8 nonce[CTR_RFC3686_NONCE_SIZE];
170         unsigned salted;
171         atomic_t configuring;
172         struct completion completion;
173 };
174
175 struct ixp_alg {
176         struct crypto_alg crypto;
177         const struct ix_hash_algo *hash;
178         u32 cfg_enc;
179         u32 cfg_dec;
180
181         int registered;
182 };
183
184 static const struct ix_hash_algo hash_alg_md5 = {
185         .cfgword        = 0xAA010004,
186         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
187                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
188 };
189 static const struct ix_hash_algo hash_alg_sha1 = {
190         .cfgword        = 0x00000005,
191         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
192                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
193 };
194
195 static struct npe *npe_c;
196 static struct dma_pool *buffer_pool = NULL;
197 static struct dma_pool *ctx_pool = NULL;
198
199 static struct crypt_ctl *crypt_virt = NULL;
200 static dma_addr_t crypt_phys;
201
202 static int support_aes = 1;
203
204 static void dev_release(struct device *dev)
205 {
206         return;
207 }
208
209 #define DRIVER_NAME "ixp4xx_crypto"
210 static struct platform_device pseudo_dev = {
211         .name = DRIVER_NAME,
212         .id   = 0,
213         .num_resources = 0,
214         .dev  = {
215                 .coherent_dma_mask = DMA_32BIT_MASK,
216                 .release = dev_release,
217         }
218 };
219
220 static struct device *dev = &pseudo_dev.dev;
221
222 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
223 {
224         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
225 }
226
227 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
228 {
229         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
230 }
231
232 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
233 {
234         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
235 }
236
237 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
238 {
239         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
240 }
241
242 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
243 {
244         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
245 }
246
247 static int setup_crypt_desc(void)
248 {
249         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
250         crypt_virt = dma_alloc_coherent(dev,
251                         NPE_QLEN * sizeof(struct crypt_ctl),
252                         &crypt_phys, GFP_KERNEL);
253         if (!crypt_virt)
254                 return -ENOMEM;
255         memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
256         return 0;
257 }
258
259 static spinlock_t desc_lock;
260 static struct crypt_ctl *get_crypt_desc(void)
261 {
262         int i;
263         static int idx = 0;
264         unsigned long flags;
265
266         spin_lock_irqsave(&desc_lock, flags);
267
268         if (unlikely(!crypt_virt))
269                 setup_crypt_desc();
270         if (unlikely(!crypt_virt)) {
271                 spin_unlock_irqrestore(&desc_lock, flags);
272                 return NULL;
273         }
274         i = idx;
275         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
276                 if (++idx >= NPE_QLEN)
277                         idx = 0;
278                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
279                 spin_unlock_irqrestore(&desc_lock, flags);
280                 return crypt_virt +i;
281         } else {
282                 spin_unlock_irqrestore(&desc_lock, flags);
283                 return NULL;
284         }
285 }
286
287 static spinlock_t emerg_lock;
288 static struct crypt_ctl *get_crypt_desc_emerg(void)
289 {
290         int i;
291         static int idx = NPE_QLEN;
292         struct crypt_ctl *desc;
293         unsigned long flags;
294
295         desc = get_crypt_desc();
296         if (desc)
297                 return desc;
298         if (unlikely(!crypt_virt))
299                 return NULL;
300
301         spin_lock_irqsave(&emerg_lock, flags);
302         i = idx;
303         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
304                 if (++idx >= NPE_QLEN_TOTAL)
305                         idx = NPE_QLEN;
306                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
307                 spin_unlock_irqrestore(&emerg_lock, flags);
308                 return crypt_virt +i;
309         } else {
310                 spin_unlock_irqrestore(&emerg_lock, flags);
311                 return NULL;
312         }
313 }
314
315 static void free_buf_chain(struct buffer_desc *buf, u32 phys)
316 {
317         while (buf) {
318                 struct buffer_desc *buf1;
319                 u32 phys1;
320
321                 buf1 = buf->next;
322                 phys1 = buf->phys_next;
323                 dma_pool_free(buffer_pool, buf, phys);
324                 buf = buf1;
325                 phys = phys1;
326         }
327 }
328
329 static struct tasklet_struct crypto_done_tasklet;
330
331 static void finish_scattered_hmac(struct crypt_ctl *crypt)
332 {
333         struct aead_request *req = crypt->data.aead_req;
334         struct aead_ctx *req_ctx = aead_request_ctx(req);
335         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
336         int authsize = crypto_aead_authsize(tfm);
337         int decryptlen = req->cryptlen - authsize;
338
339         if (req_ctx->encrypt) {
340                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
341                         req->src, decryptlen, authsize, 1);
342         }
343         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
344 }
345
346 static void one_packet(dma_addr_t phys)
347 {
348         struct crypt_ctl *crypt;
349         struct ixp_ctx *ctx;
350         int failed;
351         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
352
353         failed = phys & 0x1 ? -EBADMSG : 0;
354         phys &= ~0x3;
355         crypt = crypt_phys2virt(phys);
356
357         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
358         case CTL_FLAG_PERFORM_AEAD: {
359                 struct aead_request *req = crypt->data.aead_req;
360                 struct aead_ctx *req_ctx = aead_request_ctx(req);
361                 dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents,
362                                 DMA_TO_DEVICE);
363                 dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
364                 dma_unmap_sg(dev, req->src, req_ctx->src_nents,
365                                 DMA_BIDIRECTIONAL);
366
367                 free_buf_chain(req_ctx->buffer, crypt->src_buf);
368                 if (req_ctx->hmac_virt) {
369                         finish_scattered_hmac(crypt);
370                 }
371                 req->base.complete(&req->base, failed);
372                 break;
373         }
374         case CTL_FLAG_PERFORM_ABLK: {
375                 struct ablkcipher_request *req = crypt->data.ablk_req;
376                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
377                 int nents;
378                 if (req_ctx->dst) {
379                         nents = req_ctx->dst_nents;
380                         dma_unmap_sg(dev, req->dst, nents, DMA_FROM_DEVICE);
381                         free_buf_chain(req_ctx->dst, crypt->dst_buf);
382                         src_direction = DMA_TO_DEVICE;
383                 }
384                 nents = req_ctx->src_nents;
385                 dma_unmap_sg(dev, req->src, nents, src_direction);
386                 free_buf_chain(req_ctx->src, crypt->src_buf);
387                 req->base.complete(&req->base, failed);
388                 break;
389         }
390         case CTL_FLAG_GEN_ICV:
391                 ctx = crypto_tfm_ctx(crypt->data.tfm);
392                 dma_pool_free(ctx_pool, crypt->regist_ptr,
393                                 crypt->regist_buf->phys_addr);
394                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
395                 if (atomic_dec_and_test(&ctx->configuring))
396                         complete(&ctx->completion);
397                 break;
398         case CTL_FLAG_GEN_REVAES:
399                 ctx = crypto_tfm_ctx(crypt->data.tfm);
400                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
401                 if (atomic_dec_and_test(&ctx->configuring))
402                         complete(&ctx->completion);
403                 break;
404         default:
405                 BUG();
406         }
407         crypt->ctl_flags = CTL_FLAG_UNUSED;
408 }
409
410 static void irqhandler(void *_unused)
411 {
412         tasklet_schedule(&crypto_done_tasklet);
413 }
414
415 static void crypto_done_action(unsigned long arg)
416 {
417         int i;
418
419         for(i=0; i<4; i++) {
420                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
421                 if (!phys)
422                         return;
423                 one_packet(phys);
424         }
425         tasklet_schedule(&crypto_done_tasklet);
426 }
427
428 static int init_ixp_crypto(void)
429 {
430         int ret = -ENODEV;
431
432         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
433                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
434                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
435                 return ret;
436         }
437         npe_c = npe_request(NPE_ID);
438         if (!npe_c)
439                 return ret;
440
441         if (!npe_running(npe_c)) {
442                 npe_load_firmware(npe_c, npe_name(npe_c), dev);
443         }
444
445         /* buffer_pool will also be used to sometimes store the hmac,
446          * so assure it is large enough
447          */
448         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
449         buffer_pool = dma_pool_create("buffer", dev,
450                         sizeof(struct buffer_desc), 32, 0);
451         ret = -ENOMEM;
452         if (!buffer_pool) {
453                 goto err;
454         }
455         ctx_pool = dma_pool_create("context", dev,
456                         NPE_CTX_LEN, 16, 0);
457         if (!ctx_pool) {
458                 goto err;
459         }
460         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
461                                  "ixp_crypto:out", NULL);
462         if (ret)
463                 goto err;
464         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
465                                  "ixp_crypto:in", NULL);
466         if (ret) {
467                 qmgr_release_queue(SEND_QID);
468                 goto err;
469         }
470         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
471         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
472
473         qmgr_enable_irq(RECV_QID);
474         return 0;
475 err:
476         if (ctx_pool)
477                 dma_pool_destroy(ctx_pool);
478         if (buffer_pool)
479                 dma_pool_destroy(buffer_pool);
480         npe_release(npe_c);
481         return ret;
482 }
483
484 static void release_ixp_crypto(void)
485 {
486         qmgr_disable_irq(RECV_QID);
487         tasklet_kill(&crypto_done_tasklet);
488
489         qmgr_release_queue(SEND_QID);
490         qmgr_release_queue(RECV_QID);
491
492         dma_pool_destroy(ctx_pool);
493         dma_pool_destroy(buffer_pool);
494
495         npe_release(npe_c);
496
497         if (crypt_virt) {
498                 dma_free_coherent(dev,
499                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
500                         crypt_virt, crypt_phys);
501         }
502         return;
503 }
504
505 static void reset_sa_dir(struct ix_sa_dir *dir)
506 {
507         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
508         dir->npe_ctx_idx = 0;
509         dir->npe_mode = 0;
510 }
511
512 static int init_sa_dir(struct ix_sa_dir *dir)
513 {
514         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
515         if (!dir->npe_ctx) {
516                 return -ENOMEM;
517         }
518         reset_sa_dir(dir);
519         return 0;
520 }
521
522 static void free_sa_dir(struct ix_sa_dir *dir)
523 {
524         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
525         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
526 }
527
528 static int init_tfm(struct crypto_tfm *tfm)
529 {
530         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
531         int ret;
532
533         atomic_set(&ctx->configuring, 0);
534         ret = init_sa_dir(&ctx->encrypt);
535         if (ret)
536                 return ret;
537         ret = init_sa_dir(&ctx->decrypt);
538         if (ret) {
539                 free_sa_dir(&ctx->encrypt);
540         }
541         return ret;
542 }
543
544 static int init_tfm_ablk(struct crypto_tfm *tfm)
545 {
546         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
547         return init_tfm(tfm);
548 }
549
550 static int init_tfm_aead(struct crypto_tfm *tfm)
551 {
552         tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
553         return init_tfm(tfm);
554 }
555
556 static void exit_tfm(struct crypto_tfm *tfm)
557 {
558         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
559         free_sa_dir(&ctx->encrypt);
560         free_sa_dir(&ctx->decrypt);
561 }
562
563 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
564                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
565 {
566         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
567         struct crypt_ctl *crypt;
568         struct buffer_desc *buf;
569         int i;
570         u8 *pad;
571         u32 pad_phys, buf_phys;
572
573         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
574         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
575         if (!pad)
576                 return -ENOMEM;
577         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
578         if (!buf) {
579                 dma_pool_free(ctx_pool, pad, pad_phys);
580                 return -ENOMEM;
581         }
582         crypt = get_crypt_desc_emerg();
583         if (!crypt) {
584                 dma_pool_free(ctx_pool, pad, pad_phys);
585                 dma_pool_free(buffer_pool, buf, buf_phys);
586                 return -EAGAIN;
587         }
588
589         memcpy(pad, key, key_len);
590         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
591         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
592                 pad[i] ^= xpad;
593         }
594
595         crypt->data.tfm = tfm;
596         crypt->regist_ptr = pad;
597         crypt->regist_buf = buf;
598
599         crypt->auth_offs = 0;
600         crypt->auth_len = HMAC_PAD_BLOCKLEN;
601         crypt->crypto_ctx = ctx_addr;
602         crypt->src_buf = buf_phys;
603         crypt->icv_rev_aes = target;
604         crypt->mode = NPE_OP_HASH_GEN_ICV;
605         crypt->init_len = init_len;
606         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
607
608         buf->next = 0;
609         buf->buf_len = HMAC_PAD_BLOCKLEN;
610         buf->pkt_len = 0;
611         buf->phys_addr = pad_phys;
612
613         atomic_inc(&ctx->configuring);
614         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
615         BUG_ON(qmgr_stat_overflow(SEND_QID));
616         return 0;
617 }
618
619 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
620                 const u8 *key, int key_len, unsigned digest_len)
621 {
622         u32 itarget, otarget, npe_ctx_addr;
623         unsigned char *cinfo;
624         int init_len, ret = 0;
625         u32 cfgword;
626         struct ix_sa_dir *dir;
627         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
628         const struct ix_hash_algo *algo;
629
630         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
631         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
632         algo = ix_hash(tfm);
633
634         /* write cfg word to cryptinfo */
635         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
636         *(u32*)cinfo = cpu_to_be32(cfgword);
637         cinfo += sizeof(cfgword);
638
639         /* write ICV to cryptinfo */
640         memcpy(cinfo, algo->icv, digest_len);
641         cinfo += digest_len;
642
643         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
644                                 + sizeof(algo->cfgword);
645         otarget = itarget + digest_len;
646         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
647         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
648
649         dir->npe_ctx_idx += init_len;
650         dir->npe_mode |= NPE_OP_HASH_ENABLE;
651
652         if (!encrypt)
653                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
654
655         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
656                         init_len, npe_ctx_addr, key, key_len);
657         if (ret)
658                 return ret;
659         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
660                         init_len, npe_ctx_addr, key, key_len);
661 }
662
663 static int gen_rev_aes_key(struct crypto_tfm *tfm)
664 {
665         struct crypt_ctl *crypt;
666         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
667         struct ix_sa_dir *dir = &ctx->decrypt;
668
669         crypt = get_crypt_desc_emerg();
670         if (!crypt) {
671                 return -EAGAIN;
672         }
673         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
674
675         crypt->data.tfm = tfm;
676         crypt->crypt_offs = 0;
677         crypt->crypt_len = AES_BLOCK128;
678         crypt->src_buf = 0;
679         crypt->crypto_ctx = dir->npe_ctx_phys;
680         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
681         crypt->mode = NPE_OP_ENC_GEN_KEY;
682         crypt->init_len = dir->npe_ctx_idx;
683         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
684
685         atomic_inc(&ctx->configuring);
686         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
687         BUG_ON(qmgr_stat_overflow(SEND_QID));
688         return 0;
689 }
690
691 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
692                 const u8 *key, int key_len)
693 {
694         u8 *cinfo;
695         u32 cipher_cfg;
696         u32 keylen_cfg = 0;
697         struct ix_sa_dir *dir;
698         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
699         u32 *flags = &tfm->crt_flags;
700
701         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
702         cinfo = dir->npe_ctx;
703
704         if (encrypt) {
705                 cipher_cfg = cipher_cfg_enc(tfm);
706                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
707         } else {
708                 cipher_cfg = cipher_cfg_dec(tfm);
709         }
710         if (cipher_cfg & MOD_AES) {
711                 switch (key_len) {
712                         case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
713                         case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
714                         case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
715                         default:
716                                 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
717                                 return -EINVAL;
718                 }
719                 cipher_cfg |= keylen_cfg;
720         } else if (cipher_cfg & MOD_3DES) {
721                 const u32 *K = (const u32 *)key;
722                 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
723                              !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
724                 {
725                         *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
726                         return -EINVAL;
727                 }
728         } else {
729                 u32 tmp[DES_EXPKEY_WORDS];
730                 if (des_ekey(tmp, key) == 0) {
731                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
732                 }
733         }
734         /* write cfg word to cryptinfo */
735         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
736         cinfo += sizeof(cipher_cfg);
737
738         /* write cipher key to cryptinfo */
739         memcpy(cinfo, key, key_len);
740         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
741         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
742                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
743                 key_len = DES3_EDE_KEY_SIZE;
744         }
745         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
746         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
747         if ((cipher_cfg & MOD_AES) && !encrypt) {
748                 return gen_rev_aes_key(tfm);
749         }
750         return 0;
751 }
752
753 static int count_sg(struct scatterlist *sg, int nbytes)
754 {
755         int i;
756         for (i = 0; nbytes > 0; i++, sg = sg_next(sg))
757                 nbytes -= sg->length;
758         return i;
759 }
760
761 static struct buffer_desc *chainup_buffers(struct scatterlist *sg,
762                         unsigned nbytes, struct buffer_desc *buf, gfp_t flags)
763 {
764         int nents = 0;
765
766         while (nbytes > 0) {
767                 struct buffer_desc *next_buf;
768                 u32 next_buf_phys;
769                 unsigned len = min(nbytes, sg_dma_len(sg));
770
771                 nents++;
772                 nbytes -= len;
773                 if (!buf->phys_addr) {
774                         buf->phys_addr = sg_dma_address(sg);
775                         buf->buf_len = len;
776                         buf->next = NULL;
777                         buf->phys_next = 0;
778                         goto next;
779                 }
780                 /* Two consecutive chunks on one page may be handled by the old
781                  * buffer descriptor, increased by the length of the new one
782                  */
783                 if (sg_dma_address(sg) == buf->phys_addr + buf->buf_len) {
784                         buf->buf_len += len;
785                         goto next;
786                 }
787                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
788                 if (!next_buf)
789                         return NULL;
790                 buf->next = next_buf;
791                 buf->phys_next = next_buf_phys;
792
793                 buf = next_buf;
794                 buf->next = NULL;
795                 buf->phys_next = 0;
796                 buf->phys_addr = sg_dma_address(sg);
797                 buf->buf_len = len;
798 next:
799                 if (nbytes > 0) {
800                         sg = sg_next(sg);
801                 }
802         }
803         return buf;
804 }
805
806 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
807                         unsigned int key_len)
808 {
809         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
810         u32 *flags = &tfm->base.crt_flags;
811         int ret;
812
813         init_completion(&ctx->completion);
814         atomic_inc(&ctx->configuring);
815
816         reset_sa_dir(&ctx->encrypt);
817         reset_sa_dir(&ctx->decrypt);
818
819         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
820         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
821
822         ret = setup_cipher(&tfm->base, 0, key, key_len);
823         if (ret)
824                 goto out;
825         ret = setup_cipher(&tfm->base, 1, key, key_len);
826         if (ret)
827                 goto out;
828
829         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
830                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
831                         ret = -EINVAL;
832                 } else {
833                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
834                 }
835         }
836 out:
837         if (!atomic_dec_and_test(&ctx->configuring))
838                 wait_for_completion(&ctx->completion);
839         return ret;
840 }
841
842 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
843                 unsigned int key_len)
844 {
845         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
846
847         /* the nonce is stored in bytes at end of key */
848         if (key_len < CTR_RFC3686_NONCE_SIZE)
849                 return -EINVAL;
850
851         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
852                         CTR_RFC3686_NONCE_SIZE);
853
854         key_len -= CTR_RFC3686_NONCE_SIZE;
855         return ablk_setkey(tfm, key, key_len);
856 }
857
858 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
859 {
860         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
861         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
862         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
863         int ret = -ENOMEM;
864         struct ix_sa_dir *dir;
865         struct crypt_ctl *crypt;
866         unsigned int nbytes = req->nbytes, nents;
867         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
868         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
869         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
870                                 GFP_KERNEL : GFP_ATOMIC;
871
872         if (qmgr_stat_full(SEND_QID))
873                 return -EAGAIN;
874         if (atomic_read(&ctx->configuring))
875                 return -EAGAIN;
876
877         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
878
879         crypt = get_crypt_desc();
880         if (!crypt)
881                 return ret;
882
883         crypt->data.ablk_req = req;
884         crypt->crypto_ctx = dir->npe_ctx_phys;
885         crypt->mode = dir->npe_mode;
886         crypt->init_len = dir->npe_ctx_idx;
887
888         crypt->crypt_offs = 0;
889         crypt->crypt_len = nbytes;
890
891         BUG_ON(ivsize && !req->info);
892         memcpy(crypt->iv, req->info, ivsize);
893         if (req->src != req->dst) {
894                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
895                 nents = count_sg(req->dst, nbytes);
896                 /* This was never tested by Intel
897                  * for more than one dst buffer, I think. */
898                 BUG_ON(nents != 1);
899                 req_ctx->dst_nents = nents;
900                 dma_map_sg(dev, req->dst, nents, DMA_FROM_DEVICE);
901                 req_ctx->dst = dma_pool_alloc(buffer_pool, flags,&crypt->dst_buf);
902                 if (!req_ctx->dst)
903                         goto unmap_sg_dest;
904                 req_ctx->dst->phys_addr = 0;
905                 if (!chainup_buffers(req->dst, nbytes, req_ctx->dst, flags))
906                         goto free_buf_dest;
907                 src_direction = DMA_TO_DEVICE;
908         } else {
909                 req_ctx->dst = NULL;
910                 req_ctx->dst_nents = 0;
911         }
912         nents = count_sg(req->src, nbytes);
913         req_ctx->src_nents = nents;
914         dma_map_sg(dev, req->src, nents, src_direction);
915
916         req_ctx->src = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf);
917         if (!req_ctx->src)
918                 goto unmap_sg_src;
919         req_ctx->src->phys_addr = 0;
920         if (!chainup_buffers(req->src, nbytes, req_ctx->src, flags))
921                 goto free_buf_src;
922
923         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
924         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
925         BUG_ON(qmgr_stat_overflow(SEND_QID));
926         return -EINPROGRESS;
927
928 free_buf_src:
929         free_buf_chain(req_ctx->src, crypt->src_buf);
930 unmap_sg_src:
931         dma_unmap_sg(dev, req->src, req_ctx->src_nents, src_direction);
932 free_buf_dest:
933         if (req->src != req->dst) {
934                 free_buf_chain(req_ctx->dst, crypt->dst_buf);
935 unmap_sg_dest:
936                 dma_unmap_sg(dev, req->src, req_ctx->dst_nents,
937                         DMA_FROM_DEVICE);
938         }
939         crypt->ctl_flags = CTL_FLAG_UNUSED;
940         return ret;
941 }
942
943 static int ablk_encrypt(struct ablkcipher_request *req)
944 {
945         return ablk_perform(req, 1);
946 }
947
948 static int ablk_decrypt(struct ablkcipher_request *req)
949 {
950         return ablk_perform(req, 0);
951 }
952
953 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
954 {
955         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
956         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
957         u8 iv[CTR_RFC3686_BLOCK_SIZE];
958         u8 *info = req->info;
959         int ret;
960
961         /* set up counter block */
962         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
963         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
964
965         /* initialize counter portion of counter block */
966         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
967                 cpu_to_be32(1);
968
969         req->info = iv;
970         ret = ablk_perform(req, 1);
971         req->info = info;
972         return ret;
973 }
974
975 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
976                 unsigned int nbytes)
977 {
978         int offset = 0;
979
980         if (!nbytes)
981                 return 0;
982
983         for (;;) {
984                 if (start < offset + sg->length)
985                         break;
986
987                 offset += sg->length;
988                 sg = sg_next(sg);
989         }
990         return (start + nbytes > offset + sg->length);
991 }
992
993 static int aead_perform(struct aead_request *req, int encrypt,
994                 int cryptoffset, int eff_cryptlen, u8 *iv)
995 {
996         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
997         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
998         unsigned ivsize = crypto_aead_ivsize(tfm);
999         unsigned authsize = crypto_aead_authsize(tfm);
1000         int ret = -ENOMEM;
1001         struct ix_sa_dir *dir;
1002         struct crypt_ctl *crypt;
1003         unsigned int cryptlen, nents;
1004         struct buffer_desc *buf;
1005         struct aead_ctx *req_ctx = aead_request_ctx(req);
1006         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1007                                 GFP_KERNEL : GFP_ATOMIC;
1008
1009         if (qmgr_stat_full(SEND_QID))
1010                 return -EAGAIN;
1011         if (atomic_read(&ctx->configuring))
1012                 return -EAGAIN;
1013
1014         if (encrypt) {
1015                 dir = &ctx->encrypt;
1016                 cryptlen = req->cryptlen;
1017         } else {
1018                 dir = &ctx->decrypt;
1019                 /* req->cryptlen includes the authsize when decrypting */
1020                 cryptlen = req->cryptlen -authsize;
1021                 eff_cryptlen -= authsize;
1022         }
1023         crypt = get_crypt_desc();
1024         if (!crypt)
1025                 return ret;
1026
1027         crypt->data.aead_req = req;
1028         crypt->crypto_ctx = dir->npe_ctx_phys;
1029         crypt->mode = dir->npe_mode;
1030         crypt->init_len = dir->npe_ctx_idx;
1031
1032         crypt->crypt_offs = cryptoffset;
1033         crypt->crypt_len = eff_cryptlen;
1034
1035         crypt->auth_offs = 0;
1036         crypt->auth_len = req->assoclen + ivsize + cryptlen;
1037         BUG_ON(ivsize && !req->iv);
1038         memcpy(crypt->iv, req->iv, ivsize);
1039
1040         if (req->src != req->dst) {
1041                 BUG(); /* -ENOTSUP because of my lazyness */
1042         }
1043
1044         req_ctx->buffer = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf);
1045         if (!req_ctx->buffer)
1046                 goto out;
1047         req_ctx->buffer->phys_addr = 0;
1048         /* ASSOC data */
1049         nents = count_sg(req->assoc, req->assoclen);
1050         req_ctx->assoc_nents = nents;
1051         dma_map_sg(dev, req->assoc, nents, DMA_TO_DEVICE);
1052         buf = chainup_buffers(req->assoc, req->assoclen, req_ctx->buffer,flags);
1053         if (!buf)
1054                 goto unmap_sg_assoc;
1055         /* IV */
1056         sg_init_table(&req_ctx->ivlist, 1);
1057         sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1058         dma_map_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
1059         buf = chainup_buffers(&req_ctx->ivlist, ivsize, buf, flags);
1060         if (!buf)
1061                 goto unmap_sg_iv;
1062         if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1063                 /* The 12 hmac bytes are scattered,
1064                  * we need to copy them into a safe buffer */
1065                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1066                                 &crypt->icv_rev_aes);
1067                 if (unlikely(!req_ctx->hmac_virt))
1068                         goto unmap_sg_iv;
1069                 if (!encrypt) {
1070                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1071                                 req->src, cryptlen, authsize, 0);
1072                 }
1073                 req_ctx->encrypt = encrypt;
1074         } else {
1075                 req_ctx->hmac_virt = NULL;
1076         }
1077         /* Crypt */
1078         nents = count_sg(req->src, cryptlen + authsize);
1079         req_ctx->src_nents = nents;
1080         dma_map_sg(dev, req->src, nents, DMA_BIDIRECTIONAL);
1081         buf = chainup_buffers(req->src, cryptlen + authsize, buf, flags);
1082         if (!buf)
1083                 goto unmap_sg_src;
1084         if (!req_ctx->hmac_virt) {
1085                 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1086         }
1087         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1088         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1089         BUG_ON(qmgr_stat_overflow(SEND_QID));
1090         return -EINPROGRESS;
1091 unmap_sg_src:
1092         dma_unmap_sg(dev, req->src, req_ctx->src_nents, DMA_BIDIRECTIONAL);
1093         if (req_ctx->hmac_virt) {
1094                 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1095                                 crypt->icv_rev_aes);
1096         }
1097 unmap_sg_iv:
1098         dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
1099 unmap_sg_assoc:
1100         dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents, DMA_TO_DEVICE);
1101         free_buf_chain(req_ctx->buffer, crypt->src_buf);
1102 out:
1103         crypt->ctl_flags = CTL_FLAG_UNUSED;
1104         return ret;
1105 }
1106
1107 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1108 {
1109         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1110         u32 *flags = &tfm->base.crt_flags;
1111         unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1112         int ret;
1113
1114         if (!ctx->enckey_len && !ctx->authkey_len)
1115                 return 0;
1116         init_completion(&ctx->completion);
1117         atomic_inc(&ctx->configuring);
1118
1119         reset_sa_dir(&ctx->encrypt);
1120         reset_sa_dir(&ctx->decrypt);
1121
1122         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1123         if (ret)
1124                 goto out;
1125         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1126         if (ret)
1127                 goto out;
1128         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1129                         ctx->authkey_len, digest_len);
1130         if (ret)
1131                 goto out;
1132         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1133                         ctx->authkey_len, digest_len);
1134         if (ret)
1135                 goto out;
1136
1137         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1138                 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1139                         ret = -EINVAL;
1140                         goto out;
1141                 } else {
1142                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1143                 }
1144         }
1145 out:
1146         if (!atomic_dec_and_test(&ctx->configuring))
1147                 wait_for_completion(&ctx->completion);
1148         return ret;
1149 }
1150
1151 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1152 {
1153         int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1154
1155         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1156                 return -EINVAL;
1157         return aead_setup(tfm, authsize);
1158 }
1159
1160 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1161                         unsigned int keylen)
1162 {
1163         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1164         struct rtattr *rta = (struct rtattr *)key;
1165         struct crypto_authenc_key_param *param;
1166
1167         if (!RTA_OK(rta, keylen))
1168                 goto badkey;
1169         if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1170                 goto badkey;
1171         if (RTA_PAYLOAD(rta) < sizeof(*param))
1172                 goto badkey;
1173
1174         param = RTA_DATA(rta);
1175         ctx->enckey_len = be32_to_cpu(param->enckeylen);
1176
1177         key += RTA_ALIGN(rta->rta_len);
1178         keylen -= RTA_ALIGN(rta->rta_len);
1179
1180         if (keylen < ctx->enckey_len)
1181                 goto badkey;
1182
1183         ctx->authkey_len = keylen - ctx->enckey_len;
1184         memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1185         memcpy(ctx->authkey, key, ctx->authkey_len);
1186
1187         return aead_setup(tfm, crypto_aead_authsize(tfm));
1188 badkey:
1189         ctx->enckey_len = 0;
1190         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1191         return -EINVAL;
1192 }
1193
1194 static int aead_encrypt(struct aead_request *req)
1195 {
1196         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1197         return aead_perform(req, 1, req->assoclen + ivsize,
1198                         req->cryptlen, req->iv);
1199 }
1200
1201 static int aead_decrypt(struct aead_request *req)
1202 {
1203         unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1204         return aead_perform(req, 0, req->assoclen + ivsize,
1205                         req->cryptlen, req->iv);
1206 }
1207
1208 static int aead_givencrypt(struct aead_givcrypt_request *req)
1209 {
1210         struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1211         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1212         unsigned len, ivsize = crypto_aead_ivsize(tfm);
1213         __be64 seq;
1214
1215         /* copied from eseqiv.c */
1216         if (!ctx->salted) {
1217                 get_random_bytes(ctx->salt, ivsize);
1218                 ctx->salted = 1;
1219         }
1220         memcpy(req->areq.iv, ctx->salt, ivsize);
1221         len = ivsize;
1222         if (ivsize > sizeof(u64)) {
1223                 memset(req->giv, 0, ivsize - sizeof(u64));
1224                 len = sizeof(u64);
1225         }
1226         seq = cpu_to_be64(req->seq);
1227         memcpy(req->giv + ivsize - len, &seq, len);
1228         return aead_perform(&req->areq, 1, req->areq.assoclen,
1229                         req->areq.cryptlen +ivsize, req->giv);
1230 }
1231
1232 static struct ixp_alg ixp4xx_algos[] = {
1233 {
1234         .crypto = {
1235                 .cra_name       = "cbc(des)",
1236                 .cra_blocksize  = DES_BLOCK_SIZE,
1237                 .cra_u          = { .ablkcipher = {
1238                         .min_keysize    = DES_KEY_SIZE,
1239                         .max_keysize    = DES_KEY_SIZE,
1240                         .ivsize         = DES_BLOCK_SIZE,
1241                         .geniv          = "eseqiv",
1242                         }
1243                 }
1244         },
1245         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1246         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1247
1248 }, {
1249         .crypto = {
1250                 .cra_name       = "ecb(des)",
1251                 .cra_blocksize  = DES_BLOCK_SIZE,
1252                 .cra_u          = { .ablkcipher = {
1253                         .min_keysize    = DES_KEY_SIZE,
1254                         .max_keysize    = DES_KEY_SIZE,
1255                         }
1256                 }
1257         },
1258         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1259         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1260 }, {
1261         .crypto = {
1262                 .cra_name       = "cbc(des3_ede)",
1263                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1264                 .cra_u          = { .ablkcipher = {
1265                         .min_keysize    = DES3_EDE_KEY_SIZE,
1266                         .max_keysize    = DES3_EDE_KEY_SIZE,
1267                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1268                         .geniv          = "eseqiv",
1269                         }
1270                 }
1271         },
1272         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1273         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1274 }, {
1275         .crypto = {
1276                 .cra_name       = "ecb(des3_ede)",
1277                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1278                 .cra_u          = { .ablkcipher = {
1279                         .min_keysize    = DES3_EDE_KEY_SIZE,
1280                         .max_keysize    = DES3_EDE_KEY_SIZE,
1281                         }
1282                 }
1283         },
1284         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1285         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1286 }, {
1287         .crypto = {
1288                 .cra_name       = "cbc(aes)",
1289                 .cra_blocksize  = AES_BLOCK_SIZE,
1290                 .cra_u          = { .ablkcipher = {
1291                         .min_keysize    = AES_MIN_KEY_SIZE,
1292                         .max_keysize    = AES_MAX_KEY_SIZE,
1293                         .ivsize         = AES_BLOCK_SIZE,
1294                         .geniv          = "eseqiv",
1295                         }
1296                 }
1297         },
1298         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1299         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1300 }, {
1301         .crypto = {
1302                 .cra_name       = "ecb(aes)",
1303                 .cra_blocksize  = AES_BLOCK_SIZE,
1304                 .cra_u          = { .ablkcipher = {
1305                         .min_keysize    = AES_MIN_KEY_SIZE,
1306                         .max_keysize    = AES_MAX_KEY_SIZE,
1307                         }
1308                 }
1309         },
1310         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1311         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1312 }, {
1313         .crypto = {
1314                 .cra_name       = "ctr(aes)",
1315                 .cra_blocksize  = AES_BLOCK_SIZE,
1316                 .cra_u          = { .ablkcipher = {
1317                         .min_keysize    = AES_MIN_KEY_SIZE,
1318                         .max_keysize    = AES_MAX_KEY_SIZE,
1319                         .ivsize         = AES_BLOCK_SIZE,
1320                         .geniv          = "eseqiv",
1321                         }
1322                 }
1323         },
1324         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1325         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1326 }, {
1327         .crypto = {
1328                 .cra_name       = "rfc3686(ctr(aes))",
1329                 .cra_blocksize  = AES_BLOCK_SIZE,
1330                 .cra_u          = { .ablkcipher = {
1331                         .min_keysize    = AES_MIN_KEY_SIZE,
1332                         .max_keysize    = AES_MAX_KEY_SIZE,
1333                         .ivsize         = AES_BLOCK_SIZE,
1334                         .geniv          = "eseqiv",
1335                         .setkey         = ablk_rfc3686_setkey,
1336                         .encrypt        = ablk_rfc3686_crypt,
1337                         .decrypt        = ablk_rfc3686_crypt }
1338                 }
1339         },
1340         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1341         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1342 }, {
1343         .crypto = {
1344                 .cra_name       = "authenc(hmac(md5),cbc(des))",
1345                 .cra_blocksize  = DES_BLOCK_SIZE,
1346                 .cra_u          = { .aead = {
1347                         .ivsize         = DES_BLOCK_SIZE,
1348                         .maxauthsize    = MD5_DIGEST_SIZE,
1349                         }
1350                 }
1351         },
1352         .hash = &hash_alg_md5,
1353         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1354         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1355 }, {
1356         .crypto = {
1357                 .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1358                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1359                 .cra_u          = { .aead = {
1360                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1361                         .maxauthsize    = MD5_DIGEST_SIZE,
1362                         }
1363                 }
1364         },
1365         .hash = &hash_alg_md5,
1366         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1367         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1368 }, {
1369         .crypto = {
1370                 .cra_name       = "authenc(hmac(sha1),cbc(des))",
1371                 .cra_blocksize  = DES_BLOCK_SIZE,
1372                 .cra_u          = { .aead = {
1373                         .ivsize         = DES_BLOCK_SIZE,
1374                         .maxauthsize    = SHA1_DIGEST_SIZE,
1375                         }
1376                 }
1377         },
1378         .hash = &hash_alg_sha1,
1379         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1380         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1381 }, {
1382         .crypto = {
1383                 .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1384                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1385                 .cra_u          = { .aead = {
1386                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1387                         .maxauthsize    = SHA1_DIGEST_SIZE,
1388                         }
1389                 }
1390         },
1391         .hash = &hash_alg_sha1,
1392         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1393         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1394 }, {
1395         .crypto = {
1396                 .cra_name       = "authenc(hmac(md5),cbc(aes))",
1397                 .cra_blocksize  = AES_BLOCK_SIZE,
1398                 .cra_u          = { .aead = {
1399                         .ivsize         = AES_BLOCK_SIZE,
1400                         .maxauthsize    = MD5_DIGEST_SIZE,
1401                         }
1402                 }
1403         },
1404         .hash = &hash_alg_md5,
1405         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1406         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1407 }, {
1408         .crypto = {
1409                 .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1410                 .cra_blocksize  = AES_BLOCK_SIZE,
1411                 .cra_u          = { .aead = {
1412                         .ivsize         = AES_BLOCK_SIZE,
1413                         .maxauthsize    = SHA1_DIGEST_SIZE,
1414                         }
1415                 }
1416         },
1417         .hash = &hash_alg_sha1,
1418         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1419         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1420 } };
1421
1422 #define IXP_POSTFIX "-ixp4xx"
1423 static int __init ixp_module_init(void)
1424 {
1425         int num = ARRAY_SIZE(ixp4xx_algos);
1426         int i,err ;
1427
1428         if (platform_device_register(&pseudo_dev))
1429                 return -ENODEV;
1430
1431         spin_lock_init(&desc_lock);
1432         spin_lock_init(&emerg_lock);
1433
1434         err = init_ixp_crypto();
1435         if (err) {
1436                 platform_device_unregister(&pseudo_dev);
1437                 return err;
1438         }
1439         for (i=0; i< num; i++) {
1440                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1441
1442                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1443                         "%s"IXP_POSTFIX, cra->cra_name) >=
1444                         CRYPTO_MAX_ALG_NAME)
1445                 {
1446                         continue;
1447                 }
1448                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1449                         continue;
1450                 }
1451                 if (!ixp4xx_algos[i].hash) {
1452                         /* block ciphers */
1453                         cra->cra_type = &crypto_ablkcipher_type;
1454                         cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1455                                          CRYPTO_ALG_ASYNC;
1456                         if (!cra->cra_ablkcipher.setkey)
1457                                 cra->cra_ablkcipher.setkey = ablk_setkey;
1458                         if (!cra->cra_ablkcipher.encrypt)
1459                                 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1460                         if (!cra->cra_ablkcipher.decrypt)
1461                                 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1462                         cra->cra_init = init_tfm_ablk;
1463                 } else {
1464                         /* authenc */
1465                         cra->cra_type = &crypto_aead_type;
1466                         cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1467                                          CRYPTO_ALG_ASYNC;
1468                         cra->cra_aead.setkey = aead_setkey;
1469                         cra->cra_aead.setauthsize = aead_setauthsize;
1470                         cra->cra_aead.encrypt = aead_encrypt;
1471                         cra->cra_aead.decrypt = aead_decrypt;
1472                         cra->cra_aead.givencrypt = aead_givencrypt;
1473                         cra->cra_init = init_tfm_aead;
1474                 }
1475                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1476                 cra->cra_module = THIS_MODULE;
1477                 cra->cra_alignmask = 3;
1478                 cra->cra_priority = 300;
1479                 cra->cra_exit = exit_tfm;
1480                 if (crypto_register_alg(cra))
1481                         printk(KERN_ERR "Failed to register '%s'\n",
1482                                 cra->cra_name);
1483                 else
1484                         ixp4xx_algos[i].registered = 1;
1485         }
1486         return 0;
1487 }
1488
1489 static void __exit ixp_module_exit(void)
1490 {
1491         int num = ARRAY_SIZE(ixp4xx_algos);
1492         int i;
1493
1494         for (i=0; i< num; i++) {
1495                 if (ixp4xx_algos[i].registered)
1496                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1497         }
1498         release_ixp_crypto();
1499         platform_device_unregister(&pseudo_dev);
1500 }
1501
1502 module_init(ixp_module_init);
1503 module_exit(ixp_module_exit);
1504
1505 MODULE_LICENSE("GPL");
1506 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1507 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1508