Merge tag 'stream_open-5.2' of https://lab.nexedi.com/kirr/linux
[sfrench/cifs-2.6.git] / drivers / crypto / ixp4xx_crypto.c
1 /*
2  * Intel IXP4xx NPE-C crypto driver
3  *
4  * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of version 2 of the GNU General Public License
8  * as published by the Free Software Foundation.
9  *
10  */
11
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/gfp.h>
21 #include <linux/module.h>
22
23 #include <crypto/ctr.h>
24 #include <crypto/des.h>
25 #include <crypto/aes.h>
26 #include <crypto/hmac.h>
27 #include <crypto/sha.h>
28 #include <crypto/algapi.h>
29 #include <crypto/internal/aead.h>
30 #include <crypto/authenc.h>
31 #include <crypto/scatterwalk.h>
32
33 #include <mach/npe.h>
34 #include <mach/qmgr.h>
35
36 #define MAX_KEYLEN 32
37
38 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
39 #define NPE_CTX_LEN 80
40 #define AES_BLOCK128 16
41
42 #define NPE_OP_HASH_VERIFY   0x01
43 #define NPE_OP_CCM_ENABLE    0x04
44 #define NPE_OP_CRYPT_ENABLE  0x08
45 #define NPE_OP_HASH_ENABLE   0x10
46 #define NPE_OP_NOT_IN_PLACE  0x20
47 #define NPE_OP_HMAC_DISABLE  0x40
48 #define NPE_OP_CRYPT_ENCRYPT 0x80
49
50 #define NPE_OP_CCM_GEN_MIC   0xcc
51 #define NPE_OP_HASH_GEN_ICV  0x50
52 #define NPE_OP_ENC_GEN_KEY   0xc9
53
54 #define MOD_ECB     0x0000
55 #define MOD_CTR     0x1000
56 #define MOD_CBC_ENC 0x2000
57 #define MOD_CBC_DEC 0x3000
58 #define MOD_CCM_ENC 0x4000
59 #define MOD_CCM_DEC 0x5000
60
61 #define KEYLEN_128  4
62 #define KEYLEN_192  6
63 #define KEYLEN_256  8
64
65 #define CIPH_DECR   0x0000
66 #define CIPH_ENCR   0x0400
67
68 #define MOD_DES     0x0000
69 #define MOD_TDEA2   0x0100
70 #define MOD_3DES   0x0200
71 #define MOD_AES     0x0800
72 #define MOD_AES128  (0x0800 | KEYLEN_128)
73 #define MOD_AES192  (0x0900 | KEYLEN_192)
74 #define MOD_AES256  (0x0a00 | KEYLEN_256)
75
76 #define MAX_IVLEN   16
77 #define NPE_ID      2  /* NPE C */
78 #define NPE_QLEN    16
79 /* Space for registering when the first
80  * NPE_QLEN crypt_ctl are busy */
81 #define NPE_QLEN_TOTAL 64
82
83 #define SEND_QID    29
84 #define RECV_QID    30
85
86 #define CTL_FLAG_UNUSED         0x0000
87 #define CTL_FLAG_USED           0x1000
88 #define CTL_FLAG_PERFORM_ABLK   0x0001
89 #define CTL_FLAG_GEN_ICV        0x0002
90 #define CTL_FLAG_GEN_REVAES     0x0004
91 #define CTL_FLAG_PERFORM_AEAD   0x0008
92 #define CTL_FLAG_MASK           0x000f
93
94 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
95
96 #define MD5_DIGEST_SIZE   16
97
98 struct buffer_desc {
99         u32 phys_next;
100 #ifdef __ARMEB__
101         u16 buf_len;
102         u16 pkt_len;
103 #else
104         u16 pkt_len;
105         u16 buf_len;
106 #endif
107         u32 phys_addr;
108         u32 __reserved[4];
109         struct buffer_desc *next;
110         enum dma_data_direction dir;
111 };
112
113 struct crypt_ctl {
114 #ifdef __ARMEB__
115         u8 mode;                /* NPE_OP_*  operation mode */
116         u8 init_len;
117         u16 reserved;
118 #else
119         u16 reserved;
120         u8 init_len;
121         u8 mode;                /* NPE_OP_*  operation mode */
122 #endif
123         u8 iv[MAX_IVLEN];       /* IV for CBC mode or CTR IV for CTR mode */
124         u32 icv_rev_aes;        /* icv or rev aes */
125         u32 src_buf;
126         u32 dst_buf;
127 #ifdef __ARMEB__
128         u16 auth_offs;          /* Authentication start offset */
129         u16 auth_len;           /* Authentication data length */
130         u16 crypt_offs;         /* Cryption start offset */
131         u16 crypt_len;          /* Cryption data length */
132 #else
133         u16 auth_len;           /* Authentication data length */
134         u16 auth_offs;          /* Authentication start offset */
135         u16 crypt_len;          /* Cryption data length */
136         u16 crypt_offs;         /* Cryption start offset */
137 #endif
138         u32 aadAddr;            /* Additional Auth Data Addr for CCM mode */
139         u32 crypto_ctx;         /* NPE Crypto Param structure address */
140
141         /* Used by Host: 4*4 bytes*/
142         unsigned ctl_flags;
143         union {
144                 struct ablkcipher_request *ablk_req;
145                 struct aead_request *aead_req;
146                 struct crypto_tfm *tfm;
147         } data;
148         struct buffer_desc *regist_buf;
149         u8 *regist_ptr;
150 };
151
152 struct ablk_ctx {
153         struct buffer_desc *src;
154         struct buffer_desc *dst;
155 };
156
157 struct aead_ctx {
158         struct buffer_desc *src;
159         struct buffer_desc *dst;
160         struct scatterlist ivlist;
161         /* used when the hmac is not on one sg entry */
162         u8 *hmac_virt;
163         int encrypt;
164 };
165
166 struct ix_hash_algo {
167         u32 cfgword;
168         unsigned char *icv;
169 };
170
171 struct ix_sa_dir {
172         unsigned char *npe_ctx;
173         dma_addr_t npe_ctx_phys;
174         int npe_ctx_idx;
175         u8 npe_mode;
176 };
177
178 struct ixp_ctx {
179         struct ix_sa_dir encrypt;
180         struct ix_sa_dir decrypt;
181         int authkey_len;
182         u8 authkey[MAX_KEYLEN];
183         int enckey_len;
184         u8 enckey[MAX_KEYLEN];
185         u8 salt[MAX_IVLEN];
186         u8 nonce[CTR_RFC3686_NONCE_SIZE];
187         unsigned salted;
188         atomic_t configuring;
189         struct completion completion;
190 };
191
192 struct ixp_alg {
193         struct crypto_alg crypto;
194         const struct ix_hash_algo *hash;
195         u32 cfg_enc;
196         u32 cfg_dec;
197
198         int registered;
199 };
200
201 struct ixp_aead_alg {
202         struct aead_alg crypto;
203         const struct ix_hash_algo *hash;
204         u32 cfg_enc;
205         u32 cfg_dec;
206
207         int registered;
208 };
209
210 static const struct ix_hash_algo hash_alg_md5 = {
211         .cfgword        = 0xAA010004,
212         .icv            = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
213                           "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
214 };
215 static const struct ix_hash_algo hash_alg_sha1 = {
216         .cfgword        = 0x00000005,
217         .icv            = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
218                           "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
219 };
220
221 static struct npe *npe_c;
222 static struct dma_pool *buffer_pool = NULL;
223 static struct dma_pool *ctx_pool = NULL;
224
225 static struct crypt_ctl *crypt_virt = NULL;
226 static dma_addr_t crypt_phys;
227
228 static int support_aes = 1;
229
230 #define DRIVER_NAME "ixp4xx_crypto"
231
232 static struct platform_device *pdev;
233
234 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
235 {
236         return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
237 }
238
239 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
240 {
241         return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
242 }
243
244 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
245 {
246         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
247 }
248
249 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
250 {
251         return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
252 }
253
254 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
255 {
256         return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
257 }
258
259 static int setup_crypt_desc(void)
260 {
261         struct device *dev = &pdev->dev;
262         BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
263         crypt_virt = dma_alloc_coherent(dev,
264                                         NPE_QLEN * sizeof(struct crypt_ctl),
265                                         &crypt_phys, GFP_ATOMIC);
266         if (!crypt_virt)
267                 return -ENOMEM;
268         return 0;
269 }
270
271 static spinlock_t desc_lock;
272 static struct crypt_ctl *get_crypt_desc(void)
273 {
274         int i;
275         static int idx = 0;
276         unsigned long flags;
277
278         spin_lock_irqsave(&desc_lock, flags);
279
280         if (unlikely(!crypt_virt))
281                 setup_crypt_desc();
282         if (unlikely(!crypt_virt)) {
283                 spin_unlock_irqrestore(&desc_lock, flags);
284                 return NULL;
285         }
286         i = idx;
287         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
288                 if (++idx >= NPE_QLEN)
289                         idx = 0;
290                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
291                 spin_unlock_irqrestore(&desc_lock, flags);
292                 return crypt_virt +i;
293         } else {
294                 spin_unlock_irqrestore(&desc_lock, flags);
295                 return NULL;
296         }
297 }
298
299 static spinlock_t emerg_lock;
300 static struct crypt_ctl *get_crypt_desc_emerg(void)
301 {
302         int i;
303         static int idx = NPE_QLEN;
304         struct crypt_ctl *desc;
305         unsigned long flags;
306
307         desc = get_crypt_desc();
308         if (desc)
309                 return desc;
310         if (unlikely(!crypt_virt))
311                 return NULL;
312
313         spin_lock_irqsave(&emerg_lock, flags);
314         i = idx;
315         if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
316                 if (++idx >= NPE_QLEN_TOTAL)
317                         idx = NPE_QLEN;
318                 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
319                 spin_unlock_irqrestore(&emerg_lock, flags);
320                 return crypt_virt +i;
321         } else {
322                 spin_unlock_irqrestore(&emerg_lock, flags);
323                 return NULL;
324         }
325 }
326
327 static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys)
328 {
329         while (buf) {
330                 struct buffer_desc *buf1;
331                 u32 phys1;
332
333                 buf1 = buf->next;
334                 phys1 = buf->phys_next;
335                 dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir);
336                 dma_pool_free(buffer_pool, buf, phys);
337                 buf = buf1;
338                 phys = phys1;
339         }
340 }
341
342 static struct tasklet_struct crypto_done_tasklet;
343
344 static void finish_scattered_hmac(struct crypt_ctl *crypt)
345 {
346         struct aead_request *req = crypt->data.aead_req;
347         struct aead_ctx *req_ctx = aead_request_ctx(req);
348         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
349         int authsize = crypto_aead_authsize(tfm);
350         int decryptlen = req->assoclen + req->cryptlen - authsize;
351
352         if (req_ctx->encrypt) {
353                 scatterwalk_map_and_copy(req_ctx->hmac_virt,
354                         req->dst, decryptlen, authsize, 1);
355         }
356         dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
357 }
358
359 static void one_packet(dma_addr_t phys)
360 {
361         struct device *dev = &pdev->dev;
362         struct crypt_ctl *crypt;
363         struct ixp_ctx *ctx;
364         int failed;
365
366         failed = phys & 0x1 ? -EBADMSG : 0;
367         phys &= ~0x3;
368         crypt = crypt_phys2virt(phys);
369
370         switch (crypt->ctl_flags & CTL_FLAG_MASK) {
371         case CTL_FLAG_PERFORM_AEAD: {
372                 struct aead_request *req = crypt->data.aead_req;
373                 struct aead_ctx *req_ctx = aead_request_ctx(req);
374
375                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
376                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
377                 if (req_ctx->hmac_virt) {
378                         finish_scattered_hmac(crypt);
379                 }
380                 req->base.complete(&req->base, failed);
381                 break;
382         }
383         case CTL_FLAG_PERFORM_ABLK: {
384                 struct ablkcipher_request *req = crypt->data.ablk_req;
385                 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
386
387                 if (req_ctx->dst) {
388                         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
389                 }
390                 free_buf_chain(dev, req_ctx->src, crypt->src_buf);
391                 req->base.complete(&req->base, failed);
392                 break;
393         }
394         case CTL_FLAG_GEN_ICV:
395                 ctx = crypto_tfm_ctx(crypt->data.tfm);
396                 dma_pool_free(ctx_pool, crypt->regist_ptr,
397                                 crypt->regist_buf->phys_addr);
398                 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
399                 if (atomic_dec_and_test(&ctx->configuring))
400                         complete(&ctx->completion);
401                 break;
402         case CTL_FLAG_GEN_REVAES:
403                 ctx = crypto_tfm_ctx(crypt->data.tfm);
404                 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
405                 if (atomic_dec_and_test(&ctx->configuring))
406                         complete(&ctx->completion);
407                 break;
408         default:
409                 BUG();
410         }
411         crypt->ctl_flags = CTL_FLAG_UNUSED;
412 }
413
414 static void irqhandler(void *_unused)
415 {
416         tasklet_schedule(&crypto_done_tasklet);
417 }
418
419 static void crypto_done_action(unsigned long arg)
420 {
421         int i;
422
423         for(i=0; i<4; i++) {
424                 dma_addr_t phys = qmgr_get_entry(RECV_QID);
425                 if (!phys)
426                         return;
427                 one_packet(phys);
428         }
429         tasklet_schedule(&crypto_done_tasklet);
430 }
431
432 static int init_ixp_crypto(struct device *dev)
433 {
434         int ret = -ENODEV;
435         u32 msg[2] = { 0, 0 };
436
437         if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
438                                 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
439                 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
440                 return ret;
441         }
442         npe_c = npe_request(NPE_ID);
443         if (!npe_c)
444                 return ret;
445
446         if (!npe_running(npe_c)) {
447                 ret = npe_load_firmware(npe_c, npe_name(npe_c), dev);
448                 if (ret)
449                         goto npe_release;
450                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
451                         goto npe_error;
452         } else {
453                 if (npe_send_message(npe_c, msg, "STATUS_MSG"))
454                         goto npe_error;
455
456                 if (npe_recv_message(npe_c, msg, "STATUS_MSG"))
457                         goto npe_error;
458         }
459
460         switch ((msg[1]>>16) & 0xff) {
461         case 3:
462                 printk(KERN_WARNING "Firmware of %s lacks AES support\n",
463                                 npe_name(npe_c));
464                 support_aes = 0;
465                 break;
466         case 4:
467         case 5:
468                 support_aes = 1;
469                 break;
470         default:
471                 printk(KERN_ERR "Firmware of %s lacks crypto support\n",
472                         npe_name(npe_c));
473                 ret = -ENODEV;
474                 goto npe_release;
475         }
476         /* buffer_pool will also be used to sometimes store the hmac,
477          * so assure it is large enough
478          */
479         BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
480         buffer_pool = dma_pool_create("buffer", dev,
481                         sizeof(struct buffer_desc), 32, 0);
482         ret = -ENOMEM;
483         if (!buffer_pool) {
484                 goto err;
485         }
486         ctx_pool = dma_pool_create("context", dev,
487                         NPE_CTX_LEN, 16, 0);
488         if (!ctx_pool) {
489                 goto err;
490         }
491         ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0,
492                                  "ixp_crypto:out", NULL);
493         if (ret)
494                 goto err;
495         ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0,
496                                  "ixp_crypto:in", NULL);
497         if (ret) {
498                 qmgr_release_queue(SEND_QID);
499                 goto err;
500         }
501         qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
502         tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
503
504         qmgr_enable_irq(RECV_QID);
505         return 0;
506
507 npe_error:
508         printk(KERN_ERR "%s not responding\n", npe_name(npe_c));
509         ret = -EIO;
510 err:
511         dma_pool_destroy(ctx_pool);
512         dma_pool_destroy(buffer_pool);
513 npe_release:
514         npe_release(npe_c);
515         return ret;
516 }
517
518 static void release_ixp_crypto(struct device *dev)
519 {
520         qmgr_disable_irq(RECV_QID);
521         tasklet_kill(&crypto_done_tasklet);
522
523         qmgr_release_queue(SEND_QID);
524         qmgr_release_queue(RECV_QID);
525
526         dma_pool_destroy(ctx_pool);
527         dma_pool_destroy(buffer_pool);
528
529         npe_release(npe_c);
530
531         if (crypt_virt) {
532                 dma_free_coherent(dev,
533                         NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
534                         crypt_virt, crypt_phys);
535         }
536 }
537
538 static void reset_sa_dir(struct ix_sa_dir *dir)
539 {
540         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
541         dir->npe_ctx_idx = 0;
542         dir->npe_mode = 0;
543 }
544
545 static int init_sa_dir(struct ix_sa_dir *dir)
546 {
547         dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
548         if (!dir->npe_ctx) {
549                 return -ENOMEM;
550         }
551         reset_sa_dir(dir);
552         return 0;
553 }
554
555 static void free_sa_dir(struct ix_sa_dir *dir)
556 {
557         memset(dir->npe_ctx, 0, NPE_CTX_LEN);
558         dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
559 }
560
561 static int init_tfm(struct crypto_tfm *tfm)
562 {
563         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
564         int ret;
565
566         atomic_set(&ctx->configuring, 0);
567         ret = init_sa_dir(&ctx->encrypt);
568         if (ret)
569                 return ret;
570         ret = init_sa_dir(&ctx->decrypt);
571         if (ret) {
572                 free_sa_dir(&ctx->encrypt);
573         }
574         return ret;
575 }
576
577 static int init_tfm_ablk(struct crypto_tfm *tfm)
578 {
579         tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
580         return init_tfm(tfm);
581 }
582
583 static int init_tfm_aead(struct crypto_aead *tfm)
584 {
585         crypto_aead_set_reqsize(tfm, sizeof(struct aead_ctx));
586         return init_tfm(crypto_aead_tfm(tfm));
587 }
588
589 static void exit_tfm(struct crypto_tfm *tfm)
590 {
591         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
592         free_sa_dir(&ctx->encrypt);
593         free_sa_dir(&ctx->decrypt);
594 }
595
596 static void exit_tfm_aead(struct crypto_aead *tfm)
597 {
598         exit_tfm(crypto_aead_tfm(tfm));
599 }
600
601 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
602                 int init_len, u32 ctx_addr, const u8 *key, int key_len)
603 {
604         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
605         struct crypt_ctl *crypt;
606         struct buffer_desc *buf;
607         int i;
608         u8 *pad;
609         u32 pad_phys, buf_phys;
610
611         BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
612         pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
613         if (!pad)
614                 return -ENOMEM;
615         buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
616         if (!buf) {
617                 dma_pool_free(ctx_pool, pad, pad_phys);
618                 return -ENOMEM;
619         }
620         crypt = get_crypt_desc_emerg();
621         if (!crypt) {
622                 dma_pool_free(ctx_pool, pad, pad_phys);
623                 dma_pool_free(buffer_pool, buf, buf_phys);
624                 return -EAGAIN;
625         }
626
627         memcpy(pad, key, key_len);
628         memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
629         for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
630                 pad[i] ^= xpad;
631         }
632
633         crypt->data.tfm = tfm;
634         crypt->regist_ptr = pad;
635         crypt->regist_buf = buf;
636
637         crypt->auth_offs = 0;
638         crypt->auth_len = HMAC_PAD_BLOCKLEN;
639         crypt->crypto_ctx = ctx_addr;
640         crypt->src_buf = buf_phys;
641         crypt->icv_rev_aes = target;
642         crypt->mode = NPE_OP_HASH_GEN_ICV;
643         crypt->init_len = init_len;
644         crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
645
646         buf->next = 0;
647         buf->buf_len = HMAC_PAD_BLOCKLEN;
648         buf->pkt_len = 0;
649         buf->phys_addr = pad_phys;
650
651         atomic_inc(&ctx->configuring);
652         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
653         BUG_ON(qmgr_stat_overflow(SEND_QID));
654         return 0;
655 }
656
657 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
658                 const u8 *key, int key_len, unsigned digest_len)
659 {
660         u32 itarget, otarget, npe_ctx_addr;
661         unsigned char *cinfo;
662         int init_len, ret = 0;
663         u32 cfgword;
664         struct ix_sa_dir *dir;
665         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
666         const struct ix_hash_algo *algo;
667
668         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
669         cinfo = dir->npe_ctx + dir->npe_ctx_idx;
670         algo = ix_hash(tfm);
671
672         /* write cfg word to cryptinfo */
673         cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
674 #ifndef __ARMEB__
675         cfgword ^= 0xAA000000; /* change the "byte swap" flags */
676 #endif
677         *(u32*)cinfo = cpu_to_be32(cfgword);
678         cinfo += sizeof(cfgword);
679
680         /* write ICV to cryptinfo */
681         memcpy(cinfo, algo->icv, digest_len);
682         cinfo += digest_len;
683
684         itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
685                                 + sizeof(algo->cfgword);
686         otarget = itarget + digest_len;
687         init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
688         npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
689
690         dir->npe_ctx_idx += init_len;
691         dir->npe_mode |= NPE_OP_HASH_ENABLE;
692
693         if (!encrypt)
694                 dir->npe_mode |= NPE_OP_HASH_VERIFY;
695
696         ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
697                         init_len, npe_ctx_addr, key, key_len);
698         if (ret)
699                 return ret;
700         return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
701                         init_len, npe_ctx_addr, key, key_len);
702 }
703
704 static int gen_rev_aes_key(struct crypto_tfm *tfm)
705 {
706         struct crypt_ctl *crypt;
707         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
708         struct ix_sa_dir *dir = &ctx->decrypt;
709
710         crypt = get_crypt_desc_emerg();
711         if (!crypt) {
712                 return -EAGAIN;
713         }
714         *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
715
716         crypt->data.tfm = tfm;
717         crypt->crypt_offs = 0;
718         crypt->crypt_len = AES_BLOCK128;
719         crypt->src_buf = 0;
720         crypt->crypto_ctx = dir->npe_ctx_phys;
721         crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
722         crypt->mode = NPE_OP_ENC_GEN_KEY;
723         crypt->init_len = dir->npe_ctx_idx;
724         crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
725
726         atomic_inc(&ctx->configuring);
727         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
728         BUG_ON(qmgr_stat_overflow(SEND_QID));
729         return 0;
730 }
731
732 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
733                 const u8 *key, int key_len)
734 {
735         u8 *cinfo;
736         u32 cipher_cfg;
737         u32 keylen_cfg = 0;
738         struct ix_sa_dir *dir;
739         struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
740         u32 *flags = &tfm->crt_flags;
741
742         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
743         cinfo = dir->npe_ctx;
744
745         if (encrypt) {
746                 cipher_cfg = cipher_cfg_enc(tfm);
747                 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
748         } else {
749                 cipher_cfg = cipher_cfg_dec(tfm);
750         }
751         if (cipher_cfg & MOD_AES) {
752                 switch (key_len) {
753                 case 16: keylen_cfg = MOD_AES128; break;
754                 case 24: keylen_cfg = MOD_AES192; break;
755                 case 32: keylen_cfg = MOD_AES256; break;
756                 default:
757                         *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
758                         return -EINVAL;
759                 }
760                 cipher_cfg |= keylen_cfg;
761         } else {
762                 u32 tmp[DES_EXPKEY_WORDS];
763                 if (des_ekey(tmp, key) == 0) {
764                         *flags |= CRYPTO_TFM_RES_WEAK_KEY;
765                 }
766         }
767         /* write cfg word to cryptinfo */
768         *(u32*)cinfo = cpu_to_be32(cipher_cfg);
769         cinfo += sizeof(cipher_cfg);
770
771         /* write cipher key to cryptinfo */
772         memcpy(cinfo, key, key_len);
773         /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
774         if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
775                 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
776                 key_len = DES3_EDE_KEY_SIZE;
777         }
778         dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
779         dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
780         if ((cipher_cfg & MOD_AES) && !encrypt) {
781                 return gen_rev_aes_key(tfm);
782         }
783         return 0;
784 }
785
786 static struct buffer_desc *chainup_buffers(struct device *dev,
787                 struct scatterlist *sg, unsigned nbytes,
788                 struct buffer_desc *buf, gfp_t flags,
789                 enum dma_data_direction dir)
790 {
791         for (; nbytes > 0; sg = sg_next(sg)) {
792                 unsigned len = min(nbytes, sg->length);
793                 struct buffer_desc *next_buf;
794                 u32 next_buf_phys;
795                 void *ptr;
796
797                 nbytes -= len;
798                 ptr = sg_virt(sg);
799                 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
800                 if (!next_buf) {
801                         buf = NULL;
802                         break;
803                 }
804                 sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir);
805                 buf->next = next_buf;
806                 buf->phys_next = next_buf_phys;
807                 buf = next_buf;
808
809                 buf->phys_addr = sg_dma_address(sg);
810                 buf->buf_len = len;
811                 buf->dir = dir;
812         }
813         buf->next = NULL;
814         buf->phys_next = 0;
815         return buf;
816 }
817
818 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
819                         unsigned int key_len)
820 {
821         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
822         u32 *flags = &tfm->base.crt_flags;
823         int ret;
824
825         init_completion(&ctx->completion);
826         atomic_inc(&ctx->configuring);
827
828         reset_sa_dir(&ctx->encrypt);
829         reset_sa_dir(&ctx->decrypt);
830
831         ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
832         ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
833
834         ret = setup_cipher(&tfm->base, 0, key, key_len);
835         if (ret)
836                 goto out;
837         ret = setup_cipher(&tfm->base, 1, key, key_len);
838         if (ret)
839                 goto out;
840
841         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
842                 if (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
843                         ret = -EINVAL;
844                 } else {
845                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
846                 }
847         }
848 out:
849         if (!atomic_dec_and_test(&ctx->configuring))
850                 wait_for_completion(&ctx->completion);
851         return ret;
852 }
853
854 static int ablk_des3_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
855                             unsigned int key_len)
856 {
857         u32 flags = crypto_ablkcipher_get_flags(tfm);
858         int err;
859
860         err = __des3_verify_key(&flags, key);
861         if (unlikely(err))
862                 crypto_ablkcipher_set_flags(tfm, flags);
863
864         return ablk_setkey(tfm, key, key_len);
865 }
866
867 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
868                 unsigned int key_len)
869 {
870         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
871
872         /* the nonce is stored in bytes at end of key */
873         if (key_len < CTR_RFC3686_NONCE_SIZE)
874                 return -EINVAL;
875
876         memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
877                         CTR_RFC3686_NONCE_SIZE);
878
879         key_len -= CTR_RFC3686_NONCE_SIZE;
880         return ablk_setkey(tfm, key, key_len);
881 }
882
883 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
884 {
885         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
886         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
887         unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
888         struct ix_sa_dir *dir;
889         struct crypt_ctl *crypt;
890         unsigned int nbytes = req->nbytes;
891         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
892         struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
893         struct buffer_desc src_hook;
894         struct device *dev = &pdev->dev;
895         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
896                                 GFP_KERNEL : GFP_ATOMIC;
897
898         if (qmgr_stat_full(SEND_QID))
899                 return -EAGAIN;
900         if (atomic_read(&ctx->configuring))
901                 return -EAGAIN;
902
903         dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
904
905         crypt = get_crypt_desc();
906         if (!crypt)
907                 return -ENOMEM;
908
909         crypt->data.ablk_req = req;
910         crypt->crypto_ctx = dir->npe_ctx_phys;
911         crypt->mode = dir->npe_mode;
912         crypt->init_len = dir->npe_ctx_idx;
913
914         crypt->crypt_offs = 0;
915         crypt->crypt_len = nbytes;
916
917         BUG_ON(ivsize && !req->info);
918         memcpy(crypt->iv, req->info, ivsize);
919         if (req->src != req->dst) {
920                 struct buffer_desc dst_hook;
921                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
922                 /* This was never tested by Intel
923                  * for more than one dst buffer, I think. */
924                 req_ctx->dst = NULL;
925                 if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook,
926                                         flags, DMA_FROM_DEVICE))
927                         goto free_buf_dest;
928                 src_direction = DMA_TO_DEVICE;
929                 req_ctx->dst = dst_hook.next;
930                 crypt->dst_buf = dst_hook.phys_next;
931         } else {
932                 req_ctx->dst = NULL;
933         }
934         req_ctx->src = NULL;
935         if (!chainup_buffers(dev, req->src, nbytes, &src_hook,
936                                 flags, src_direction))
937                 goto free_buf_src;
938
939         req_ctx->src = src_hook.next;
940         crypt->src_buf = src_hook.phys_next;
941         crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
942         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
943         BUG_ON(qmgr_stat_overflow(SEND_QID));
944         return -EINPROGRESS;
945
946 free_buf_src:
947         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
948 free_buf_dest:
949         if (req->src != req->dst) {
950                 free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
951         }
952         crypt->ctl_flags = CTL_FLAG_UNUSED;
953         return -ENOMEM;
954 }
955
956 static int ablk_encrypt(struct ablkcipher_request *req)
957 {
958         return ablk_perform(req, 1);
959 }
960
961 static int ablk_decrypt(struct ablkcipher_request *req)
962 {
963         return ablk_perform(req, 0);
964 }
965
966 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
967 {
968         struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
969         struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
970         u8 iv[CTR_RFC3686_BLOCK_SIZE];
971         u8 *info = req->info;
972         int ret;
973
974         /* set up counter block */
975         memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
976         memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
977
978         /* initialize counter portion of counter block */
979         *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
980                 cpu_to_be32(1);
981
982         req->info = iv;
983         ret = ablk_perform(req, 1);
984         req->info = info;
985         return ret;
986 }
987
988 static int aead_perform(struct aead_request *req, int encrypt,
989                 int cryptoffset, int eff_cryptlen, u8 *iv)
990 {
991         struct crypto_aead *tfm = crypto_aead_reqtfm(req);
992         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
993         unsigned ivsize = crypto_aead_ivsize(tfm);
994         unsigned authsize = crypto_aead_authsize(tfm);
995         struct ix_sa_dir *dir;
996         struct crypt_ctl *crypt;
997         unsigned int cryptlen;
998         struct buffer_desc *buf, src_hook;
999         struct aead_ctx *req_ctx = aead_request_ctx(req);
1000         struct device *dev = &pdev->dev;
1001         gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1002                                 GFP_KERNEL : GFP_ATOMIC;
1003         enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
1004         unsigned int lastlen;
1005
1006         if (qmgr_stat_full(SEND_QID))
1007                 return -EAGAIN;
1008         if (atomic_read(&ctx->configuring))
1009                 return -EAGAIN;
1010
1011         if (encrypt) {
1012                 dir = &ctx->encrypt;
1013                 cryptlen = req->cryptlen;
1014         } else {
1015                 dir = &ctx->decrypt;
1016                 /* req->cryptlen includes the authsize when decrypting */
1017                 cryptlen = req->cryptlen -authsize;
1018                 eff_cryptlen -= authsize;
1019         }
1020         crypt = get_crypt_desc();
1021         if (!crypt)
1022                 return -ENOMEM;
1023
1024         crypt->data.aead_req = req;
1025         crypt->crypto_ctx = dir->npe_ctx_phys;
1026         crypt->mode = dir->npe_mode;
1027         crypt->init_len = dir->npe_ctx_idx;
1028
1029         crypt->crypt_offs = cryptoffset;
1030         crypt->crypt_len = eff_cryptlen;
1031
1032         crypt->auth_offs = 0;
1033         crypt->auth_len = req->assoclen + cryptlen;
1034         BUG_ON(ivsize && !req->iv);
1035         memcpy(crypt->iv, req->iv, ivsize);
1036
1037         buf = chainup_buffers(dev, req->src, crypt->auth_len,
1038                               &src_hook, flags, src_direction);
1039         req_ctx->src = src_hook.next;
1040         crypt->src_buf = src_hook.phys_next;
1041         if (!buf)
1042                 goto free_buf_src;
1043
1044         lastlen = buf->buf_len;
1045         if (lastlen >= authsize)
1046                 crypt->icv_rev_aes = buf->phys_addr +
1047                                      buf->buf_len - authsize;
1048
1049         req_ctx->dst = NULL;
1050
1051         if (req->src != req->dst) {
1052                 struct buffer_desc dst_hook;
1053
1054                 crypt->mode |= NPE_OP_NOT_IN_PLACE;
1055                 src_direction = DMA_TO_DEVICE;
1056
1057                 buf = chainup_buffers(dev, req->dst, crypt->auth_len,
1058                                       &dst_hook, flags, DMA_FROM_DEVICE);
1059                 req_ctx->dst = dst_hook.next;
1060                 crypt->dst_buf = dst_hook.phys_next;
1061
1062                 if (!buf)
1063                         goto free_buf_dst;
1064
1065                 if (encrypt) {
1066                         lastlen = buf->buf_len;
1067                         if (lastlen >= authsize)
1068                                 crypt->icv_rev_aes = buf->phys_addr +
1069                                                      buf->buf_len - authsize;
1070                 }
1071         }
1072
1073         if (unlikely(lastlen < authsize)) {
1074                 /* The 12 hmac bytes are scattered,
1075                  * we need to copy them into a safe buffer */
1076                 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1077                                 &crypt->icv_rev_aes);
1078                 if (unlikely(!req_ctx->hmac_virt))
1079                         goto free_buf_dst;
1080                 if (!encrypt) {
1081                         scatterwalk_map_and_copy(req_ctx->hmac_virt,
1082                                 req->src, cryptlen, authsize, 0);
1083                 }
1084                 req_ctx->encrypt = encrypt;
1085         } else {
1086                 req_ctx->hmac_virt = NULL;
1087         }
1088
1089         crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1090         qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1091         BUG_ON(qmgr_stat_overflow(SEND_QID));
1092         return -EINPROGRESS;
1093
1094 free_buf_dst:
1095         free_buf_chain(dev, req_ctx->dst, crypt->dst_buf);
1096 free_buf_src:
1097         free_buf_chain(dev, req_ctx->src, crypt->src_buf);
1098         crypt->ctl_flags = CTL_FLAG_UNUSED;
1099         return -ENOMEM;
1100 }
1101
1102 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1103 {
1104         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1105         u32 *flags = &tfm->base.crt_flags;
1106         unsigned digest_len = crypto_aead_maxauthsize(tfm);
1107         int ret;
1108
1109         if (!ctx->enckey_len && !ctx->authkey_len)
1110                 return 0;
1111         init_completion(&ctx->completion);
1112         atomic_inc(&ctx->configuring);
1113
1114         reset_sa_dir(&ctx->encrypt);
1115         reset_sa_dir(&ctx->decrypt);
1116
1117         ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1118         if (ret)
1119                 goto out;
1120         ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1121         if (ret)
1122                 goto out;
1123         ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1124                         ctx->authkey_len, digest_len);
1125         if (ret)
1126                 goto out;
1127         ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey,
1128                         ctx->authkey_len, digest_len);
1129         if (ret)
1130                 goto out;
1131
1132         if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1133                 if (*flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS) {
1134                         ret = -EINVAL;
1135                         goto out;
1136                 } else {
1137                         *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1138                 }
1139         }
1140 out:
1141         if (!atomic_dec_and_test(&ctx->configuring))
1142                 wait_for_completion(&ctx->completion);
1143         return ret;
1144 }
1145
1146 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1147 {
1148         int max = crypto_aead_maxauthsize(tfm) >> 2;
1149
1150         if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1151                 return -EINVAL;
1152         return aead_setup(tfm, authsize);
1153 }
1154
1155 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1156                         unsigned int keylen)
1157 {
1158         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1159         struct crypto_authenc_keys keys;
1160
1161         if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
1162                 goto badkey;
1163
1164         if (keys.authkeylen > sizeof(ctx->authkey))
1165                 goto badkey;
1166
1167         if (keys.enckeylen > sizeof(ctx->enckey))
1168                 goto badkey;
1169
1170         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1171         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1172         ctx->authkey_len = keys.authkeylen;
1173         ctx->enckey_len = keys.enckeylen;
1174
1175         memzero_explicit(&keys, sizeof(keys));
1176         return aead_setup(tfm, crypto_aead_authsize(tfm));
1177 badkey:
1178         crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1179         memzero_explicit(&keys, sizeof(keys));
1180         return -EINVAL;
1181 }
1182
1183 static int des3_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1184                             unsigned int keylen)
1185 {
1186         struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1187         u32 flags = CRYPTO_TFM_RES_BAD_KEY_LEN;
1188         struct crypto_authenc_keys keys;
1189         int err;
1190
1191         err = crypto_authenc_extractkeys(&keys, key, keylen);
1192         if (unlikely(err))
1193                 goto badkey;
1194
1195         err = -EINVAL;
1196         if (keys.authkeylen > sizeof(ctx->authkey))
1197                 goto badkey;
1198
1199         if (keys.enckeylen != DES3_EDE_KEY_SIZE)
1200                 goto badkey;
1201
1202         flags = crypto_aead_get_flags(tfm);
1203         err = __des3_verify_key(&flags, keys.enckey);
1204         if (unlikely(err))
1205                 goto badkey;
1206
1207         memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
1208         memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
1209         ctx->authkey_len = keys.authkeylen;
1210         ctx->enckey_len = keys.enckeylen;
1211
1212         memzero_explicit(&keys, sizeof(keys));
1213         return aead_setup(tfm, crypto_aead_authsize(tfm));
1214 badkey:
1215         crypto_aead_set_flags(tfm, flags);
1216         memzero_explicit(&keys, sizeof(keys));
1217         return err;
1218 }
1219
1220 static int aead_encrypt(struct aead_request *req)
1221 {
1222         return aead_perform(req, 1, req->assoclen, req->cryptlen, req->iv);
1223 }
1224
1225 static int aead_decrypt(struct aead_request *req)
1226 {
1227         return aead_perform(req, 0, req->assoclen, req->cryptlen, req->iv);
1228 }
1229
1230 static struct ixp_alg ixp4xx_algos[] = {
1231 {
1232         .crypto = {
1233                 .cra_name       = "cbc(des)",
1234                 .cra_blocksize  = DES_BLOCK_SIZE,
1235                 .cra_u          = { .ablkcipher = {
1236                         .min_keysize    = DES_KEY_SIZE,
1237                         .max_keysize    = DES_KEY_SIZE,
1238                         .ivsize         = DES_BLOCK_SIZE,
1239                         }
1240                 }
1241         },
1242         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1243         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1244
1245 }, {
1246         .crypto = {
1247                 .cra_name       = "ecb(des)",
1248                 .cra_blocksize  = DES_BLOCK_SIZE,
1249                 .cra_u          = { .ablkcipher = {
1250                         .min_keysize    = DES_KEY_SIZE,
1251                         .max_keysize    = DES_KEY_SIZE,
1252                         }
1253                 }
1254         },
1255         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1256         .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1257 }, {
1258         .crypto = {
1259                 .cra_name       = "cbc(des3_ede)",
1260                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1261                 .cra_u          = { .ablkcipher = {
1262                         .min_keysize    = DES3_EDE_KEY_SIZE,
1263                         .max_keysize    = DES3_EDE_KEY_SIZE,
1264                         .ivsize         = DES3_EDE_BLOCK_SIZE,
1265                         .setkey         = ablk_des3_setkey,
1266                         }
1267                 }
1268         },
1269         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1270         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1271 }, {
1272         .crypto = {
1273                 .cra_name       = "ecb(des3_ede)",
1274                 .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1275                 .cra_u          = { .ablkcipher = {
1276                         .min_keysize    = DES3_EDE_KEY_SIZE,
1277                         .max_keysize    = DES3_EDE_KEY_SIZE,
1278                         .setkey         = ablk_des3_setkey,
1279                         }
1280                 }
1281         },
1282         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1283         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1284 }, {
1285         .crypto = {
1286                 .cra_name       = "cbc(aes)",
1287                 .cra_blocksize  = AES_BLOCK_SIZE,
1288                 .cra_u          = { .ablkcipher = {
1289                         .min_keysize    = AES_MIN_KEY_SIZE,
1290                         .max_keysize    = AES_MAX_KEY_SIZE,
1291                         .ivsize         = AES_BLOCK_SIZE,
1292                         }
1293                 }
1294         },
1295         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1296         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1297 }, {
1298         .crypto = {
1299                 .cra_name       = "ecb(aes)",
1300                 .cra_blocksize  = AES_BLOCK_SIZE,
1301                 .cra_u          = { .ablkcipher = {
1302                         .min_keysize    = AES_MIN_KEY_SIZE,
1303                         .max_keysize    = AES_MAX_KEY_SIZE,
1304                         }
1305                 }
1306         },
1307         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1308         .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1309 }, {
1310         .crypto = {
1311                 .cra_name       = "ctr(aes)",
1312                 .cra_blocksize  = AES_BLOCK_SIZE,
1313                 .cra_u          = { .ablkcipher = {
1314                         .min_keysize    = AES_MIN_KEY_SIZE,
1315                         .max_keysize    = AES_MAX_KEY_SIZE,
1316                         .ivsize         = AES_BLOCK_SIZE,
1317                         }
1318                 }
1319         },
1320         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1321         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1322 }, {
1323         .crypto = {
1324                 .cra_name       = "rfc3686(ctr(aes))",
1325                 .cra_blocksize  = AES_BLOCK_SIZE,
1326                 .cra_u          = { .ablkcipher = {
1327                         .min_keysize    = AES_MIN_KEY_SIZE,
1328                         .max_keysize    = AES_MAX_KEY_SIZE,
1329                         .ivsize         = AES_BLOCK_SIZE,
1330                         .setkey         = ablk_rfc3686_setkey,
1331                         .encrypt        = ablk_rfc3686_crypt,
1332                         .decrypt        = ablk_rfc3686_crypt }
1333                 }
1334         },
1335         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1336         .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1337 } };
1338
1339 static struct ixp_aead_alg ixp4xx_aeads[] = {
1340 {
1341         .crypto = {
1342                 .base = {
1343                         .cra_name       = "authenc(hmac(md5),cbc(des))",
1344                         .cra_blocksize  = DES_BLOCK_SIZE,
1345                 },
1346                 .ivsize         = DES_BLOCK_SIZE,
1347                 .maxauthsize    = MD5_DIGEST_SIZE,
1348         },
1349         .hash = &hash_alg_md5,
1350         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1351         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1352 }, {
1353         .crypto = {
1354                 .base = {
1355                         .cra_name       = "authenc(hmac(md5),cbc(des3_ede))",
1356                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1357                 },
1358                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1359                 .maxauthsize    = MD5_DIGEST_SIZE,
1360                 .setkey         = des3_aead_setkey,
1361         },
1362         .hash = &hash_alg_md5,
1363         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1364         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1365 }, {
1366         .crypto = {
1367                 .base = {
1368                         .cra_name       = "authenc(hmac(sha1),cbc(des))",
1369                         .cra_blocksize  = DES_BLOCK_SIZE,
1370                 },
1371                         .ivsize         = DES_BLOCK_SIZE,
1372                         .maxauthsize    = SHA1_DIGEST_SIZE,
1373         },
1374         .hash = &hash_alg_sha1,
1375         .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1376         .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1377 }, {
1378         .crypto = {
1379                 .base = {
1380                         .cra_name       = "authenc(hmac(sha1),cbc(des3_ede))",
1381                         .cra_blocksize  = DES3_EDE_BLOCK_SIZE,
1382                 },
1383                 .ivsize         = DES3_EDE_BLOCK_SIZE,
1384                 .maxauthsize    = SHA1_DIGEST_SIZE,
1385                 .setkey         = des3_aead_setkey,
1386         },
1387         .hash = &hash_alg_sha1,
1388         .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1389         .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1390 }, {
1391         .crypto = {
1392                 .base = {
1393                         .cra_name       = "authenc(hmac(md5),cbc(aes))",
1394                         .cra_blocksize  = AES_BLOCK_SIZE,
1395                 },
1396                 .ivsize         = AES_BLOCK_SIZE,
1397                 .maxauthsize    = MD5_DIGEST_SIZE,
1398         },
1399         .hash = &hash_alg_md5,
1400         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1401         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1402 }, {
1403         .crypto = {
1404                 .base = {
1405                         .cra_name       = "authenc(hmac(sha1),cbc(aes))",
1406                         .cra_blocksize  = AES_BLOCK_SIZE,
1407                 },
1408                 .ivsize         = AES_BLOCK_SIZE,
1409                 .maxauthsize    = SHA1_DIGEST_SIZE,
1410         },
1411         .hash = &hash_alg_sha1,
1412         .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1413         .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1414 } };
1415
1416 #define IXP_POSTFIX "-ixp4xx"
1417
1418 static const struct platform_device_info ixp_dev_info __initdata = {
1419         .name           = DRIVER_NAME,
1420         .id             = 0,
1421         .dma_mask       = DMA_BIT_MASK(32),
1422 };
1423
1424 static int __init ixp_module_init(void)
1425 {
1426         int num = ARRAY_SIZE(ixp4xx_algos);
1427         int i, err;
1428
1429         pdev = platform_device_register_full(&ixp_dev_info);
1430         if (IS_ERR(pdev))
1431                 return PTR_ERR(pdev);
1432
1433         spin_lock_init(&desc_lock);
1434         spin_lock_init(&emerg_lock);
1435
1436         err = init_ixp_crypto(&pdev->dev);
1437         if (err) {
1438                 platform_device_unregister(pdev);
1439                 return err;
1440         }
1441         for (i=0; i< num; i++) {
1442                 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1443
1444                 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1445                         "%s"IXP_POSTFIX, cra->cra_name) >=
1446                         CRYPTO_MAX_ALG_NAME)
1447                 {
1448                         continue;
1449                 }
1450                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1451                         continue;
1452                 }
1453
1454                 /* block ciphers */
1455                 cra->cra_type = &crypto_ablkcipher_type;
1456                 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1457                                  CRYPTO_ALG_KERN_DRIVER_ONLY |
1458                                  CRYPTO_ALG_ASYNC;
1459                 if (!cra->cra_ablkcipher.setkey)
1460                         cra->cra_ablkcipher.setkey = ablk_setkey;
1461                 if (!cra->cra_ablkcipher.encrypt)
1462                         cra->cra_ablkcipher.encrypt = ablk_encrypt;
1463                 if (!cra->cra_ablkcipher.decrypt)
1464                         cra->cra_ablkcipher.decrypt = ablk_decrypt;
1465                 cra->cra_init = init_tfm_ablk;
1466
1467                 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1468                 cra->cra_module = THIS_MODULE;
1469                 cra->cra_alignmask = 3;
1470                 cra->cra_priority = 300;
1471                 cra->cra_exit = exit_tfm;
1472                 if (crypto_register_alg(cra))
1473                         printk(KERN_ERR "Failed to register '%s'\n",
1474                                 cra->cra_name);
1475                 else
1476                         ixp4xx_algos[i].registered = 1;
1477         }
1478
1479         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1480                 struct aead_alg *cra = &ixp4xx_aeads[i].crypto;
1481
1482                 if (snprintf(cra->base.cra_driver_name, CRYPTO_MAX_ALG_NAME,
1483                              "%s"IXP_POSTFIX, cra->base.cra_name) >=
1484                     CRYPTO_MAX_ALG_NAME)
1485                         continue;
1486                 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES))
1487                         continue;
1488
1489                 /* authenc */
1490                 cra->base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1491                                       CRYPTO_ALG_ASYNC;
1492                 cra->setkey = cra->setkey ?: aead_setkey;
1493                 cra->setauthsize = aead_setauthsize;
1494                 cra->encrypt = aead_encrypt;
1495                 cra->decrypt = aead_decrypt;
1496                 cra->init = init_tfm_aead;
1497                 cra->exit = exit_tfm_aead;
1498
1499                 cra->base.cra_ctxsize = sizeof(struct ixp_ctx);
1500                 cra->base.cra_module = THIS_MODULE;
1501                 cra->base.cra_alignmask = 3;
1502                 cra->base.cra_priority = 300;
1503
1504                 if (crypto_register_aead(cra))
1505                         printk(KERN_ERR "Failed to register '%s'\n",
1506                                 cra->base.cra_driver_name);
1507                 else
1508                         ixp4xx_aeads[i].registered = 1;
1509         }
1510         return 0;
1511 }
1512
1513 static void __exit ixp_module_exit(void)
1514 {
1515         int num = ARRAY_SIZE(ixp4xx_algos);
1516         int i;
1517
1518         for (i = 0; i < ARRAY_SIZE(ixp4xx_aeads); i++) {
1519                 if (ixp4xx_aeads[i].registered)
1520                         crypto_unregister_aead(&ixp4xx_aeads[i].crypto);
1521         }
1522
1523         for (i=0; i< num; i++) {
1524                 if (ixp4xx_algos[i].registered)
1525                         crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1526         }
1527         release_ixp_crypto(&pdev->dev);
1528         platform_device_unregister(pdev);
1529 }
1530
1531 module_init(ixp_module_init);
1532 module_exit(ixp_module_exit);
1533
1534 MODULE_LICENSE("GPL");
1535 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1536 MODULE_DESCRIPTION("IXP4xx hardware crypto");
1537