treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 157
[sfrench/cifs-2.6.git] / drivers / crypto / hifn_795x.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
4  * All rights reserved.
5  */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/moduleparam.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/interrupt.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/scatterlist.h>
18 #include <linux/highmem.h>
19 #include <linux/crypto.h>
20 #include <linux/hw_random.h>
21 #include <linux/ktime.h>
22
23 #include <crypto/algapi.h>
24 #include <crypto/des.h>
25
26 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
27 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
28 MODULE_PARM_DESC(hifn_pll_ref,
29                  "PLL reference clock (pci[freq] or ext[freq], default ext)");
30
31 static atomic_t hifn_dev_number;
32
33 #define ACRYPTO_OP_DECRYPT      0
34 #define ACRYPTO_OP_ENCRYPT      1
35 #define ACRYPTO_OP_HMAC         2
36 #define ACRYPTO_OP_RNG          3
37
38 #define ACRYPTO_MODE_ECB                0
39 #define ACRYPTO_MODE_CBC                1
40 #define ACRYPTO_MODE_CFB                2
41 #define ACRYPTO_MODE_OFB                3
42
43 #define ACRYPTO_TYPE_AES_128    0
44 #define ACRYPTO_TYPE_AES_192    1
45 #define ACRYPTO_TYPE_AES_256    2
46 #define ACRYPTO_TYPE_3DES       3
47 #define ACRYPTO_TYPE_DES        4
48
49 #define PCI_VENDOR_ID_HIFN              0x13A3
50 #define PCI_DEVICE_ID_HIFN_7955         0x0020
51 #define PCI_DEVICE_ID_HIFN_7956         0x001d
52
53 /* I/O region sizes */
54
55 #define HIFN_BAR0_SIZE                  0x1000
56 #define HIFN_BAR1_SIZE                  0x2000
57 #define HIFN_BAR2_SIZE                  0x8000
58
59 /* DMA registres */
60
61 #define HIFN_DMA_CRA                    0x0C    /* DMA Command Ring Address */
62 #define HIFN_DMA_SDRA                   0x1C    /* DMA Source Data Ring Address */
63 #define HIFN_DMA_RRA                    0x2C    /* DMA Result Ring Address */
64 #define HIFN_DMA_DDRA                   0x3C    /* DMA Destination Data Ring Address */
65 #define HIFN_DMA_STCTL                  0x40    /* DMA Status and Control */
66 #define HIFN_DMA_INTREN                 0x44    /* DMA Interrupt Enable */
67 #define HIFN_DMA_CFG1                   0x48    /* DMA Configuration #1 */
68 #define HIFN_DMA_CFG2                   0x6C    /* DMA Configuration #2 */
69 #define HIFN_CHIP_ID                    0x98    /* Chip ID */
70
71 /*
72  * Processing Unit Registers (offset from BASEREG0)
73  */
74 #define HIFN_0_PUDATA           0x00    /* Processing Unit Data */
75 #define HIFN_0_PUCTRL           0x04    /* Processing Unit Control */
76 #define HIFN_0_PUISR            0x08    /* Processing Unit Interrupt Status */
77 #define HIFN_0_PUCNFG           0x0c    /* Processing Unit Configuration */
78 #define HIFN_0_PUIER            0x10    /* Processing Unit Interrupt Enable */
79 #define HIFN_0_PUSTAT           0x14    /* Processing Unit Status/Chip ID */
80 #define HIFN_0_FIFOSTAT         0x18    /* FIFO Status */
81 #define HIFN_0_FIFOCNFG         0x1c    /* FIFO Configuration */
82 #define HIFN_0_SPACESIZE        0x20    /* Register space size */
83
84 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
85 #define HIFN_PUCTRL_CLRSRCFIFO  0x0010  /* clear source fifo */
86 #define HIFN_PUCTRL_STOP        0x0008  /* stop pu */
87 #define HIFN_PUCTRL_LOCKRAM     0x0004  /* lock ram */
88 #define HIFN_PUCTRL_DMAENA      0x0002  /* enable dma */
89 #define HIFN_PUCTRL_RESET       0x0001  /* Reset processing unit */
90
91 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
92 #define HIFN_PUISR_CMDINVAL     0x8000  /* Invalid command interrupt */
93 #define HIFN_PUISR_DATAERR      0x4000  /* Data error interrupt */
94 #define HIFN_PUISR_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
95 #define HIFN_PUISR_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
96 #define HIFN_PUISR_DSTOVER      0x0200  /* Destination overrun interrupt */
97 #define HIFN_PUISR_SRCCMD       0x0080  /* Source command interrupt */
98 #define HIFN_PUISR_SRCCTX       0x0040  /* Source context interrupt */
99 #define HIFN_PUISR_SRCDATA      0x0020  /* Source data interrupt */
100 #define HIFN_PUISR_DSTDATA      0x0010  /* Destination data interrupt */
101 #define HIFN_PUISR_DSTRESULT    0x0004  /* Destination result interrupt */
102
103 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
104 #define HIFN_PUCNFG_DRAMMASK    0xe000  /* DRAM size mask */
105 #define HIFN_PUCNFG_DSZ_256K    0x0000  /* 256k dram */
106 #define HIFN_PUCNFG_DSZ_512K    0x2000  /* 512k dram */
107 #define HIFN_PUCNFG_DSZ_1M      0x4000  /* 1m dram */
108 #define HIFN_PUCNFG_DSZ_2M      0x6000  /* 2m dram */
109 #define HIFN_PUCNFG_DSZ_4M      0x8000  /* 4m dram */
110 #define HIFN_PUCNFG_DSZ_8M      0xa000  /* 8m dram */
111 #define HIFN_PUNCFG_DSZ_16M     0xc000  /* 16m dram */
112 #define HIFN_PUCNFG_DSZ_32M     0xe000  /* 32m dram */
113 #define HIFN_PUCNFG_DRAMREFRESH 0x1800  /* DRAM refresh rate mask */
114 #define HIFN_PUCNFG_DRFR_512    0x0000  /* 512 divisor of ECLK */
115 #define HIFN_PUCNFG_DRFR_256    0x0800  /* 256 divisor of ECLK */
116 #define HIFN_PUCNFG_DRFR_128    0x1000  /* 128 divisor of ECLK */
117 #define HIFN_PUCNFG_TCALLPHASES 0x0200  /* your guess is as good as mine... */
118 #define HIFN_PUCNFG_TCDRVTOTEM  0x0100  /* your guess is as good as mine... */
119 #define HIFN_PUCNFG_BIGENDIAN   0x0080  /* DMA big endian mode */
120 #define HIFN_PUCNFG_BUS32       0x0040  /* Bus width 32bits */
121 #define HIFN_PUCNFG_BUS16       0x0000  /* Bus width 16 bits */
122 #define HIFN_PUCNFG_CHIPID      0x0020  /* Allow chipid from PUSTAT */
123 #define HIFN_PUCNFG_DRAM        0x0010  /* Context RAM is DRAM */
124 #define HIFN_PUCNFG_SRAM        0x0000  /* Context RAM is SRAM */
125 #define HIFN_PUCNFG_COMPSING    0x0004  /* Enable single compression context */
126 #define HIFN_PUCNFG_ENCCNFG     0x0002  /* Encryption configuration */
127
128 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
129 #define HIFN_PUIER_CMDINVAL     0x8000  /* Invalid command interrupt */
130 #define HIFN_PUIER_DATAERR      0x4000  /* Data error interrupt */
131 #define HIFN_PUIER_SRCFIFO      0x2000  /* Source FIFO ready interrupt */
132 #define HIFN_PUIER_DSTFIFO      0x1000  /* Destination FIFO ready interrupt */
133 #define HIFN_PUIER_DSTOVER      0x0200  /* Destination overrun interrupt */
134 #define HIFN_PUIER_SRCCMD       0x0080  /* Source command interrupt */
135 #define HIFN_PUIER_SRCCTX       0x0040  /* Source context interrupt */
136 #define HIFN_PUIER_SRCDATA      0x0020  /* Source data interrupt */
137 #define HIFN_PUIER_DSTDATA      0x0010  /* Destination data interrupt */
138 #define HIFN_PUIER_DSTRESULT    0x0004  /* Destination result interrupt */
139
140 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
141 #define HIFN_PUSTAT_CMDINVAL    0x8000  /* Invalid command interrupt */
142 #define HIFN_PUSTAT_DATAERR     0x4000  /* Data error interrupt */
143 #define HIFN_PUSTAT_SRCFIFO     0x2000  /* Source FIFO ready interrupt */
144 #define HIFN_PUSTAT_DSTFIFO     0x1000  /* Destination FIFO ready interrupt */
145 #define HIFN_PUSTAT_DSTOVER     0x0200  /* Destination overrun interrupt */
146 #define HIFN_PUSTAT_SRCCMD      0x0080  /* Source command interrupt */
147 #define HIFN_PUSTAT_SRCCTX      0x0040  /* Source context interrupt */
148 #define HIFN_PUSTAT_SRCDATA     0x0020  /* Source data interrupt */
149 #define HIFN_PUSTAT_DSTDATA     0x0010  /* Destination data interrupt */
150 #define HIFN_PUSTAT_DSTRESULT   0x0004  /* Destination result interrupt */
151 #define HIFN_PUSTAT_CHIPREV     0x00ff  /* Chip revision mask */
152 #define HIFN_PUSTAT_CHIPENA     0xff00  /* Chip enabled mask */
153 #define HIFN_PUSTAT_ENA_2       0x1100  /* Level 2 enabled */
154 #define HIFN_PUSTAT_ENA_1       0x1000  /* Level 1 enabled */
155 #define HIFN_PUSTAT_ENA_0       0x3000  /* Level 0 enabled */
156 #define HIFN_PUSTAT_REV_2       0x0020  /* 7751 PT6/2 */
157 #define HIFN_PUSTAT_REV_3       0x0030  /* 7751 PT6/3 */
158
159 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
160 #define HIFN_FIFOSTAT_SRC       0x7f00  /* Source FIFO available */
161 #define HIFN_FIFOSTAT_DST       0x007f  /* Destination FIFO available */
162
163 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
164 #define HIFN_FIFOCNFG_THRESHOLD 0x0400  /* must be written as 1 */
165
166 /*
167  * DMA Interface Registers (offset from BASEREG1)
168  */
169 #define HIFN_1_DMA_CRAR         0x0c    /* DMA Command Ring Address */
170 #define HIFN_1_DMA_SRAR         0x1c    /* DMA Source Ring Address */
171 #define HIFN_1_DMA_RRAR         0x2c    /* DMA Result Ring Address */
172 #define HIFN_1_DMA_DRAR         0x3c    /* DMA Destination Ring Address */
173 #define HIFN_1_DMA_CSR          0x40    /* DMA Status and Control */
174 #define HIFN_1_DMA_IER          0x44    /* DMA Interrupt Enable */
175 #define HIFN_1_DMA_CNFG         0x48    /* DMA Configuration */
176 #define HIFN_1_PLL              0x4c    /* 795x: PLL config */
177 #define HIFN_1_7811_RNGENA      0x60    /* 7811: rng enable */
178 #define HIFN_1_7811_RNGCFG      0x64    /* 7811: rng config */
179 #define HIFN_1_7811_RNGDAT      0x68    /* 7811: rng data */
180 #define HIFN_1_7811_RNGSTS      0x6c    /* 7811: rng status */
181 #define HIFN_1_7811_MIPSRST     0x94    /* 7811: MIPS reset */
182 #define HIFN_1_REVID            0x98    /* Revision ID */
183 #define HIFN_1_UNLOCK_SECRET1   0xf4
184 #define HIFN_1_UNLOCK_SECRET2   0xfc
185 #define HIFN_1_PUB_RESET        0x204   /* Public/RNG Reset */
186 #define HIFN_1_PUB_BASE         0x300   /* Public Base Address */
187 #define HIFN_1_PUB_OPLEN        0x304   /* Public Operand Length */
188 #define HIFN_1_PUB_OP           0x308   /* Public Operand */
189 #define HIFN_1_PUB_STATUS       0x30c   /* Public Status */
190 #define HIFN_1_PUB_IEN          0x310   /* Public Interrupt enable */
191 #define HIFN_1_RNG_CONFIG       0x314   /* RNG config */
192 #define HIFN_1_RNG_DATA         0x318   /* RNG data */
193 #define HIFN_1_PUB_MEM          0x400   /* start of Public key memory */
194 #define HIFN_1_PUB_MEMEND       0xbff   /* end of Public key memory */
195
196 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
197 #define HIFN_DMACSR_D_CTRLMASK  0xc0000000      /* Destinition Ring Control */
198 #define HIFN_DMACSR_D_CTRL_NOP  0x00000000      /* Dest. Control: no-op */
199 #define HIFN_DMACSR_D_CTRL_DIS  0x40000000      /* Dest. Control: disable */
200 #define HIFN_DMACSR_D_CTRL_ENA  0x80000000      /* Dest. Control: enable */
201 #define HIFN_DMACSR_D_ABORT     0x20000000      /* Destinition Ring PCIAbort */
202 #define HIFN_DMACSR_D_DONE      0x10000000      /* Destinition Ring Done */
203 #define HIFN_DMACSR_D_LAST      0x08000000      /* Destinition Ring Last */
204 #define HIFN_DMACSR_D_WAIT      0x04000000      /* Destinition Ring Waiting */
205 #define HIFN_DMACSR_D_OVER      0x02000000      /* Destinition Ring Overflow */
206 #define HIFN_DMACSR_R_CTRL      0x00c00000      /* Result Ring Control */
207 #define HIFN_DMACSR_R_CTRL_NOP  0x00000000      /* Result Control: no-op */
208 #define HIFN_DMACSR_R_CTRL_DIS  0x00400000      /* Result Control: disable */
209 #define HIFN_DMACSR_R_CTRL_ENA  0x00800000      /* Result Control: enable */
210 #define HIFN_DMACSR_R_ABORT     0x00200000      /* Result Ring PCI Abort */
211 #define HIFN_DMACSR_R_DONE      0x00100000      /* Result Ring Done */
212 #define HIFN_DMACSR_R_LAST      0x00080000      /* Result Ring Last */
213 #define HIFN_DMACSR_R_WAIT      0x00040000      /* Result Ring Waiting */
214 #define HIFN_DMACSR_R_OVER      0x00020000      /* Result Ring Overflow */
215 #define HIFN_DMACSR_S_CTRL      0x0000c000      /* Source Ring Control */
216 #define HIFN_DMACSR_S_CTRL_NOP  0x00000000      /* Source Control: no-op */
217 #define HIFN_DMACSR_S_CTRL_DIS  0x00004000      /* Source Control: disable */
218 #define HIFN_DMACSR_S_CTRL_ENA  0x00008000      /* Source Control: enable */
219 #define HIFN_DMACSR_S_ABORT     0x00002000      /* Source Ring PCI Abort */
220 #define HIFN_DMACSR_S_DONE      0x00001000      /* Source Ring Done */
221 #define HIFN_DMACSR_S_LAST      0x00000800      /* Source Ring Last */
222 #define HIFN_DMACSR_S_WAIT      0x00000400      /* Source Ring Waiting */
223 #define HIFN_DMACSR_ILLW        0x00000200      /* Illegal write (7811 only) */
224 #define HIFN_DMACSR_ILLR        0x00000100      /* Illegal read (7811 only) */
225 #define HIFN_DMACSR_C_CTRL      0x000000c0      /* Command Ring Control */
226 #define HIFN_DMACSR_C_CTRL_NOP  0x00000000      /* Command Control: no-op */
227 #define HIFN_DMACSR_C_CTRL_DIS  0x00000040      /* Command Control: disable */
228 #define HIFN_DMACSR_C_CTRL_ENA  0x00000080      /* Command Control: enable */
229 #define HIFN_DMACSR_C_ABORT     0x00000020      /* Command Ring PCI Abort */
230 #define HIFN_DMACSR_C_DONE      0x00000010      /* Command Ring Done */
231 #define HIFN_DMACSR_C_LAST      0x00000008      /* Command Ring Last */
232 #define HIFN_DMACSR_C_WAIT      0x00000004      /* Command Ring Waiting */
233 #define HIFN_DMACSR_PUBDONE     0x00000002      /* Public op done (7951 only) */
234 #define HIFN_DMACSR_ENGINE      0x00000001      /* Command Ring Engine IRQ */
235
236 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
237 #define HIFN_DMAIER_D_ABORT     0x20000000      /* Destination Ring PCIAbort */
238 #define HIFN_DMAIER_D_DONE      0x10000000      /* Destination Ring Done */
239 #define HIFN_DMAIER_D_LAST      0x08000000      /* Destination Ring Last */
240 #define HIFN_DMAIER_D_WAIT      0x04000000      /* Destination Ring Waiting */
241 #define HIFN_DMAIER_D_OVER      0x02000000      /* Destination Ring Overflow */
242 #define HIFN_DMAIER_R_ABORT     0x00200000      /* Result Ring PCI Abort */
243 #define HIFN_DMAIER_R_DONE      0x00100000      /* Result Ring Done */
244 #define HIFN_DMAIER_R_LAST      0x00080000      /* Result Ring Last */
245 #define HIFN_DMAIER_R_WAIT      0x00040000      /* Result Ring Waiting */
246 #define HIFN_DMAIER_R_OVER      0x00020000      /* Result Ring Overflow */
247 #define HIFN_DMAIER_S_ABORT     0x00002000      /* Source Ring PCI Abort */
248 #define HIFN_DMAIER_S_DONE      0x00001000      /* Source Ring Done */
249 #define HIFN_DMAIER_S_LAST      0x00000800      /* Source Ring Last */
250 #define HIFN_DMAIER_S_WAIT      0x00000400      /* Source Ring Waiting */
251 #define HIFN_DMAIER_ILLW        0x00000200      /* Illegal write (7811 only) */
252 #define HIFN_DMAIER_ILLR        0x00000100      /* Illegal read (7811 only) */
253 #define HIFN_DMAIER_C_ABORT     0x00000020      /* Command Ring PCI Abort */
254 #define HIFN_DMAIER_C_DONE      0x00000010      /* Command Ring Done */
255 #define HIFN_DMAIER_C_LAST      0x00000008      /* Command Ring Last */
256 #define HIFN_DMAIER_C_WAIT      0x00000004      /* Command Ring Waiting */
257 #define HIFN_DMAIER_PUBDONE     0x00000002      /* public op done (7951 only) */
258 #define HIFN_DMAIER_ENGINE      0x00000001      /* Engine IRQ */
259
260 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
261 #define HIFN_DMACNFG_BIGENDIAN  0x10000000      /* big endian mode */
262 #define HIFN_DMACNFG_POLLFREQ   0x00ff0000      /* Poll frequency mask */
263 #define HIFN_DMACNFG_UNLOCK     0x00000800
264 #define HIFN_DMACNFG_POLLINVAL  0x00000700      /* Invalid Poll Scalar */
265 #define HIFN_DMACNFG_LAST       0x00000010      /* Host control LAST bit */
266 #define HIFN_DMACNFG_MODE       0x00000004      /* DMA mode */
267 #define HIFN_DMACNFG_DMARESET   0x00000002      /* DMA Reset # */
268 #define HIFN_DMACNFG_MSTRESET   0x00000001      /* Master Reset # */
269
270 /* PLL configuration register */
271 #define HIFN_PLL_REF_CLK_HBI    0x00000000      /* HBI reference clock */
272 #define HIFN_PLL_REF_CLK_PLL    0x00000001      /* PLL reference clock */
273 #define HIFN_PLL_BP             0x00000002      /* Reference clock bypass */
274 #define HIFN_PLL_PK_CLK_HBI     0x00000000      /* PK engine HBI clock */
275 #define HIFN_PLL_PK_CLK_PLL     0x00000008      /* PK engine PLL clock */
276 #define HIFN_PLL_PE_CLK_HBI     0x00000000      /* PE engine HBI clock */
277 #define HIFN_PLL_PE_CLK_PLL     0x00000010      /* PE engine PLL clock */
278 #define HIFN_PLL_RESERVED_1     0x00000400      /* Reserved bit, must be 1 */
279 #define HIFN_PLL_ND_SHIFT       11              /* Clock multiplier shift */
280 #define HIFN_PLL_ND_MULT_2      0x00000000      /* PLL clock multiplier 2 */
281 #define HIFN_PLL_ND_MULT_4      0x00000800      /* PLL clock multiplier 4 */
282 #define HIFN_PLL_ND_MULT_6      0x00001000      /* PLL clock multiplier 6 */
283 #define HIFN_PLL_ND_MULT_8      0x00001800      /* PLL clock multiplier 8 */
284 #define HIFN_PLL_ND_MULT_10     0x00002000      /* PLL clock multiplier 10 */
285 #define HIFN_PLL_ND_MULT_12     0x00002800      /* PLL clock multiplier 12 */
286 #define HIFN_PLL_IS_1_8         0x00000000      /* charge pump (mult. 1-8) */
287 #define HIFN_PLL_IS_9_12        0x00010000      /* charge pump (mult. 9-12) */
288
289 #define HIFN_PLL_FCK_MAX        266             /* Maximum PLL frequency */
290
291 /* Public key reset register (HIFN_1_PUB_RESET) */
292 #define HIFN_PUBRST_RESET       0x00000001      /* reset public/rng unit */
293
294 /* Public base address register (HIFN_1_PUB_BASE) */
295 #define HIFN_PUBBASE_ADDR       0x00003fff      /* base address */
296
297 /* Public operand length register (HIFN_1_PUB_OPLEN) */
298 #define HIFN_PUBOPLEN_MOD_M     0x0000007f      /* modulus length mask */
299 #define HIFN_PUBOPLEN_MOD_S     0               /* modulus length shift */
300 #define HIFN_PUBOPLEN_EXP_M     0x0003ff80      /* exponent length mask */
301 #define HIFN_PUBOPLEN_EXP_S     7               /* exponent length shift */
302 #define HIFN_PUBOPLEN_RED_M     0x003c0000      /* reducend length mask */
303 #define HIFN_PUBOPLEN_RED_S     18              /* reducend length shift */
304
305 /* Public operation register (HIFN_1_PUB_OP) */
306 #define HIFN_PUBOP_AOFFSET_M    0x0000007f      /* A offset mask */
307 #define HIFN_PUBOP_AOFFSET_S    0               /* A offset shift */
308 #define HIFN_PUBOP_BOFFSET_M    0x00000f80      /* B offset mask */
309 #define HIFN_PUBOP_BOFFSET_S    7               /* B offset shift */
310 #define HIFN_PUBOP_MOFFSET_M    0x0003f000      /* M offset mask */
311 #define HIFN_PUBOP_MOFFSET_S    12              /* M offset shift */
312 #define HIFN_PUBOP_OP_MASK      0x003c0000      /* Opcode: */
313 #define HIFN_PUBOP_OP_NOP       0x00000000      /*  NOP */
314 #define HIFN_PUBOP_OP_ADD       0x00040000      /*  ADD */
315 #define HIFN_PUBOP_OP_ADDC      0x00080000      /*  ADD w/carry */
316 #define HIFN_PUBOP_OP_SUB       0x000c0000      /*  SUB */
317 #define HIFN_PUBOP_OP_SUBC      0x00100000      /*  SUB w/carry */
318 #define HIFN_PUBOP_OP_MODADD    0x00140000      /*  Modular ADD */
319 #define HIFN_PUBOP_OP_MODSUB    0x00180000      /*  Modular SUB */
320 #define HIFN_PUBOP_OP_INCA      0x001c0000      /*  INC A */
321 #define HIFN_PUBOP_OP_DECA      0x00200000      /*  DEC A */
322 #define HIFN_PUBOP_OP_MULT      0x00240000      /*  MULT */
323 #define HIFN_PUBOP_OP_MODMULT   0x00280000      /*  Modular MULT */
324 #define HIFN_PUBOP_OP_MODRED    0x002c0000      /*  Modular RED */
325 #define HIFN_PUBOP_OP_MODEXP    0x00300000      /*  Modular EXP */
326
327 /* Public status register (HIFN_1_PUB_STATUS) */
328 #define HIFN_PUBSTS_DONE        0x00000001      /* operation done */
329 #define HIFN_PUBSTS_CARRY       0x00000002      /* carry */
330
331 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
332 #define HIFN_PUBIEN_DONE        0x00000001      /* operation done interrupt */
333
334 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
335 #define HIFN_RNGCFG_ENA         0x00000001      /* enable rng */
336
337 #define HIFN_NAMESIZE                   32
338 #define HIFN_MAX_RESULT_ORDER           5
339
340 #define HIFN_D_CMD_RSIZE                (24 * 1)
341 #define HIFN_D_SRC_RSIZE                (80 * 1)
342 #define HIFN_D_DST_RSIZE                (80 * 1)
343 #define HIFN_D_RES_RSIZE                (24 * 1)
344
345 #define HIFN_D_DST_DALIGN               4
346
347 #define HIFN_QUEUE_LENGTH               (HIFN_D_CMD_RSIZE - 1)
348
349 #define AES_MIN_KEY_SIZE                16
350 #define AES_MAX_KEY_SIZE                32
351
352 #define HIFN_DES_KEY_LENGTH             8
353 #define HIFN_3DES_KEY_LENGTH            24
354 #define HIFN_MAX_CRYPT_KEY_LENGTH       AES_MAX_KEY_SIZE
355 #define HIFN_IV_LENGTH                  8
356 #define HIFN_AES_IV_LENGTH              16
357 #define HIFN_MAX_IV_LENGTH              HIFN_AES_IV_LENGTH
358
359 #define HIFN_MAC_KEY_LENGTH             64
360 #define HIFN_MD5_LENGTH                 16
361 #define HIFN_SHA1_LENGTH                20
362 #define HIFN_MAC_TRUNC_LENGTH           12
363
364 #define HIFN_MAX_COMMAND                (8 + 8 + 8 + 64 + 260)
365 #define HIFN_MAX_RESULT                 (8 + 4 + 4 + 20 + 4)
366 #define HIFN_USED_RESULT                12
367
368 struct hifn_desc {
369         volatile __le32         l;
370         volatile __le32         p;
371 };
372
373 struct hifn_dma {
374         struct hifn_desc        cmdr[HIFN_D_CMD_RSIZE + 1];
375         struct hifn_desc        srcr[HIFN_D_SRC_RSIZE + 1];
376         struct hifn_desc        dstr[HIFN_D_DST_RSIZE + 1];
377         struct hifn_desc        resr[HIFN_D_RES_RSIZE + 1];
378
379         u8                      command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
380         u8                      result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
381
382         /*
383          *  Our current positions for insertion and removal from the descriptor
384          *  rings.
385          */
386         volatile int            cmdi, srci, dsti, resi;
387         volatile int            cmdu, srcu, dstu, resu;
388         int                     cmdk, srck, dstk, resk;
389 };
390
391 #define HIFN_FLAG_CMD_BUSY      (1 << 0)
392 #define HIFN_FLAG_SRC_BUSY      (1 << 1)
393 #define HIFN_FLAG_DST_BUSY      (1 << 2)
394 #define HIFN_FLAG_RES_BUSY      (1 << 3)
395 #define HIFN_FLAG_OLD_KEY       (1 << 4)
396
397 #define HIFN_DEFAULT_ACTIVE_NUM 5
398
399 struct hifn_device {
400         char                    name[HIFN_NAMESIZE];
401
402         int                     irq;
403
404         struct pci_dev          *pdev;
405         void __iomem            *bar[3];
406
407         void                    *desc_virt;
408         dma_addr_t              desc_dma;
409
410         u32                     dmareg;
411
412         void                    *sa[HIFN_D_RES_RSIZE];
413
414         spinlock_t              lock;
415
416         u32                     flags;
417         int                     active, started;
418         struct delayed_work     work;
419         unsigned long           reset;
420         unsigned long           success;
421         unsigned long           prev_success;
422
423         u8                      snum;
424
425         struct tasklet_struct   tasklet;
426
427         struct crypto_queue     queue;
428         struct list_head        alg_list;
429
430         unsigned int            pk_clk_freq;
431
432 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
433         unsigned int            rng_wait_time;
434         ktime_t                 rngtime;
435         struct hwrng            rng;
436 #endif
437 };
438
439 #define HIFN_D_LENGTH                   0x0000ffff
440 #define HIFN_D_NOINVALID                0x01000000
441 #define HIFN_D_MASKDONEIRQ              0x02000000
442 #define HIFN_D_DESTOVER                 0x04000000
443 #define HIFN_D_OVER                     0x08000000
444 #define HIFN_D_LAST                     0x20000000
445 #define HIFN_D_JUMP                     0x40000000
446 #define HIFN_D_VALID                    0x80000000
447
448 struct hifn_base_command {
449         volatile __le16         masks;
450         volatile __le16         session_num;
451         volatile __le16         total_source_count;
452         volatile __le16         total_dest_count;
453 };
454
455 #define HIFN_BASE_CMD_COMP              0x0100  /* enable compression engine */
456 #define HIFN_BASE_CMD_PAD               0x0200  /* enable padding engine */
457 #define HIFN_BASE_CMD_MAC               0x0400  /* enable MAC engine */
458 #define HIFN_BASE_CMD_CRYPT             0x0800  /* enable crypt engine */
459 #define HIFN_BASE_CMD_DECODE            0x2000
460 #define HIFN_BASE_CMD_SRCLEN_M          0xc000
461 #define HIFN_BASE_CMD_SRCLEN_S          14
462 #define HIFN_BASE_CMD_DSTLEN_M          0x3000
463 #define HIFN_BASE_CMD_DSTLEN_S          12
464 #define HIFN_BASE_CMD_LENMASK_HI        0x30000
465 #define HIFN_BASE_CMD_LENMASK_LO        0x0ffff
466
467 /*
468  * Structure to help build up the command data structure.
469  */
470 struct hifn_crypt_command {
471         volatile __le16         masks;
472         volatile __le16         header_skip;
473         volatile __le16         source_count;
474         volatile __le16         reserved;
475 };
476
477 #define HIFN_CRYPT_CMD_ALG_MASK         0x0003          /* algorithm: */
478 #define HIFN_CRYPT_CMD_ALG_DES          0x0000          /*   DES */
479 #define HIFN_CRYPT_CMD_ALG_3DES         0x0001          /*   3DES */
480 #define HIFN_CRYPT_CMD_ALG_RC4          0x0002          /*   RC4 */
481 #define HIFN_CRYPT_CMD_ALG_AES          0x0003          /*   AES */
482 #define HIFN_CRYPT_CMD_MODE_MASK        0x0018          /* Encrypt mode: */
483 #define HIFN_CRYPT_CMD_MODE_ECB         0x0000          /*   ECB */
484 #define HIFN_CRYPT_CMD_MODE_CBC         0x0008          /*   CBC */
485 #define HIFN_CRYPT_CMD_MODE_CFB         0x0010          /*   CFB */
486 #define HIFN_CRYPT_CMD_MODE_OFB         0x0018          /*   OFB */
487 #define HIFN_CRYPT_CMD_CLR_CTX          0x0040          /* clear context */
488 #define HIFN_CRYPT_CMD_KSZ_MASK         0x0600          /* AES key size: */
489 #define HIFN_CRYPT_CMD_KSZ_128          0x0000          /*  128 bit */
490 #define HIFN_CRYPT_CMD_KSZ_192          0x0200          /*  192 bit */
491 #define HIFN_CRYPT_CMD_KSZ_256          0x0400          /*  256 bit */
492 #define HIFN_CRYPT_CMD_NEW_KEY          0x0800          /* expect new key */
493 #define HIFN_CRYPT_CMD_NEW_IV           0x1000          /* expect new iv */
494 #define HIFN_CRYPT_CMD_SRCLEN_M         0xc000
495 #define HIFN_CRYPT_CMD_SRCLEN_S         14
496
497 /*
498  * Structure to help build up the command data structure.
499  */
500 struct hifn_mac_command {
501         volatile __le16 masks;
502         volatile __le16 header_skip;
503         volatile __le16 source_count;
504         volatile __le16 reserved;
505 };
506
507 #define HIFN_MAC_CMD_ALG_MASK           0x0001
508 #define HIFN_MAC_CMD_ALG_SHA1           0x0000
509 #define HIFN_MAC_CMD_ALG_MD5            0x0001
510 #define HIFN_MAC_CMD_MODE_MASK          0x000c
511 #define HIFN_MAC_CMD_MODE_HMAC          0x0000
512 #define HIFN_MAC_CMD_MODE_SSL_MAC       0x0004
513 #define HIFN_MAC_CMD_MODE_HASH          0x0008
514 #define HIFN_MAC_CMD_MODE_FULL          0x0004
515 #define HIFN_MAC_CMD_TRUNC              0x0010
516 #define HIFN_MAC_CMD_RESULT             0x0020
517 #define HIFN_MAC_CMD_APPEND             0x0040
518 #define HIFN_MAC_CMD_SRCLEN_M           0xc000
519 #define HIFN_MAC_CMD_SRCLEN_S           14
520
521 /*
522  * MAC POS IPsec initiates authentication after encryption on encodes
523  * and before decryption on decodes.
524  */
525 #define HIFN_MAC_CMD_POS_IPSEC          0x0200
526 #define HIFN_MAC_CMD_NEW_KEY            0x0800
527
528 struct hifn_comp_command {
529         volatile __le16         masks;
530         volatile __le16         header_skip;
531         volatile __le16         source_count;
532         volatile __le16         reserved;
533 };
534
535 #define HIFN_COMP_CMD_SRCLEN_M          0xc000
536 #define HIFN_COMP_CMD_SRCLEN_S          14
537 #define HIFN_COMP_CMD_ONE               0x0100  /* must be one */
538 #define HIFN_COMP_CMD_CLEARHIST         0x0010  /* clear history */
539 #define HIFN_COMP_CMD_UPDATEHIST        0x0008  /* update history */
540 #define HIFN_COMP_CMD_LZS_STRIP0        0x0004  /* LZS: strip zero */
541 #define HIFN_COMP_CMD_MPPC_RESTART      0x0004  /* MPPC: restart */
542 #define HIFN_COMP_CMD_ALG_MASK          0x0001  /* compression mode: */
543 #define HIFN_COMP_CMD_ALG_MPPC          0x0001  /*   MPPC */
544 #define HIFN_COMP_CMD_ALG_LZS           0x0000  /*   LZS */
545
546 struct hifn_base_result {
547         volatile __le16         flags;
548         volatile __le16         session;
549         volatile __le16         src_cnt;                /* 15:0 of source count */
550         volatile __le16         dst_cnt;                /* 15:0 of dest count */
551 };
552
553 #define HIFN_BASE_RES_DSTOVERRUN        0x0200  /* destination overrun */
554 #define HIFN_BASE_RES_SRCLEN_M          0xc000  /* 17:16 of source count */
555 #define HIFN_BASE_RES_SRCLEN_S          14
556 #define HIFN_BASE_RES_DSTLEN_M          0x3000  /* 17:16 of dest count */
557 #define HIFN_BASE_RES_DSTLEN_S          12
558
559 struct hifn_comp_result {
560         volatile __le16         flags;
561         volatile __le16         crc;
562 };
563
564 #define HIFN_COMP_RES_LCB_M             0xff00  /* longitudinal check byte */
565 #define HIFN_COMP_RES_LCB_S             8
566 #define HIFN_COMP_RES_RESTART           0x0004  /* MPPC: restart */
567 #define HIFN_COMP_RES_ENDMARKER         0x0002  /* LZS: end marker seen */
568 #define HIFN_COMP_RES_SRC_NOTZERO       0x0001  /* source expired */
569
570 struct hifn_mac_result {
571         volatile __le16         flags;
572         volatile __le16         reserved;
573         /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
574 };
575
576 #define HIFN_MAC_RES_MISCOMPARE         0x0002  /* compare failed */
577 #define HIFN_MAC_RES_SRC_NOTZERO        0x0001  /* source expired */
578
579 struct hifn_crypt_result {
580         volatile __le16         flags;
581         volatile __le16         reserved;
582 };
583
584 #define HIFN_CRYPT_RES_SRC_NOTZERO      0x0001  /* source expired */
585
586 #ifndef HIFN_POLL_FREQUENCY
587 #define HIFN_POLL_FREQUENCY     0x1
588 #endif
589
590 #ifndef HIFN_POLL_SCALAR
591 #define HIFN_POLL_SCALAR        0x0
592 #endif
593
594 #define HIFN_MAX_SEGLEN         0xffff          /* maximum dma segment len */
595 #define HIFN_MAX_DMALEN         0x3ffff         /* maximum dma length */
596
597 struct hifn_crypto_alg {
598         struct list_head        entry;
599         struct crypto_alg       alg;
600         struct hifn_device      *dev;
601 };
602
603 #define ASYNC_SCATTERLIST_CACHE 16
604
605 #define ASYNC_FLAGS_MISALIGNED  (1 << 0)
606
607 struct hifn_cipher_walk {
608         struct scatterlist      cache[ASYNC_SCATTERLIST_CACHE];
609         u32                     flags;
610         int                     num;
611 };
612
613 struct hifn_context {
614         u8                      key[HIFN_MAX_CRYPT_KEY_LENGTH];
615         struct hifn_device      *dev;
616         unsigned int            keysize;
617 };
618
619 struct hifn_request_context {
620         u8                      *iv;
621         unsigned int            ivsize;
622         u8                      op, type, mode, unused;
623         struct hifn_cipher_walk walk;
624 };
625
626 #define crypto_alg_to_hifn(a)   container_of(a, struct hifn_crypto_alg, alg)
627
628 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
629 {
630         return readl(dev->bar[0] + reg);
631 }
632
633 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
634 {
635         return readl(dev->bar[1] + reg);
636 }
637
638 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
639 {
640         writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
641 }
642
643 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
644 {
645         writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
646 }
647
648 static void hifn_wait_puc(struct hifn_device *dev)
649 {
650         int i;
651         u32 ret;
652
653         for (i = 10000; i > 0; --i) {
654                 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
655                 if (!(ret & HIFN_PUCTRL_RESET))
656                         break;
657
658                 udelay(1);
659         }
660
661         if (!i)
662                 dev_err(&dev->pdev->dev, "Failed to reset PUC unit.\n");
663 }
664
665 static void hifn_reset_puc(struct hifn_device *dev)
666 {
667         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
668         hifn_wait_puc(dev);
669 }
670
671 static void hifn_stop_device(struct hifn_device *dev)
672 {
673         hifn_write_1(dev, HIFN_1_DMA_CSR,
674                 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
675                 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
676         hifn_write_0(dev, HIFN_0_PUIER, 0);
677         hifn_write_1(dev, HIFN_1_DMA_IER, 0);
678 }
679
680 static void hifn_reset_dma(struct hifn_device *dev, int full)
681 {
682         hifn_stop_device(dev);
683
684         /*
685          * Setting poll frequency and others to 0.
686          */
687         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
688                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
689         mdelay(1);
690
691         /*
692          * Reset DMA.
693          */
694         if (full) {
695                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
696                 mdelay(1);
697         } else {
698                 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
699                                 HIFN_DMACNFG_MSTRESET);
700                 hifn_reset_puc(dev);
701         }
702
703         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
704                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
705
706         hifn_reset_puc(dev);
707 }
708
709 static u32 hifn_next_signature(u32 a, u_int cnt)
710 {
711         int i;
712         u32 v;
713
714         for (i = 0; i < cnt; i++) {
715                 /* get the parity */
716                 v = a & 0x80080125;
717                 v ^= v >> 16;
718                 v ^= v >> 8;
719                 v ^= v >> 4;
720                 v ^= v >> 2;
721                 v ^= v >> 1;
722
723                 a = (v & 1) ^ (a << 1);
724         }
725
726         return a;
727 }
728
729 static struct pci2id {
730         u_short         pci_vendor;
731         u_short         pci_prod;
732         char            card_id[13];
733 } pci2id[] = {
734         {
735                 PCI_VENDOR_ID_HIFN,
736                 PCI_DEVICE_ID_HIFN_7955,
737                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
738                   0x00, 0x00, 0x00, 0x00, 0x00 }
739         },
740         {
741                 PCI_VENDOR_ID_HIFN,
742                 PCI_DEVICE_ID_HIFN_7956,
743                 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
744                   0x00, 0x00, 0x00, 0x00, 0x00 }
745         }
746 };
747
748 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
749 static int hifn_rng_data_present(struct hwrng *rng, int wait)
750 {
751         struct hifn_device *dev = (struct hifn_device *)rng->priv;
752         s64 nsec;
753
754         nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
755         nsec -= dev->rng_wait_time;
756         if (nsec <= 0)
757                 return 1;
758         if (!wait)
759                 return 0;
760         ndelay(nsec);
761         return 1;
762 }
763
764 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
765 {
766         struct hifn_device *dev = (struct hifn_device *)rng->priv;
767
768         *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
769         dev->rngtime = ktime_get();
770         return 4;
771 }
772
773 static int hifn_register_rng(struct hifn_device *dev)
774 {
775         /*
776          * We must wait at least 256 Pk_clk cycles between two reads of the rng.
777          */
778         dev->rng_wait_time      = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
779                                                    dev->pk_clk_freq) * 256;
780
781         dev->rng.name           = dev->name;
782         dev->rng.data_present   = hifn_rng_data_present,
783         dev->rng.data_read      = hifn_rng_data_read,
784         dev->rng.priv           = (unsigned long)dev;
785
786         return hwrng_register(&dev->rng);
787 }
788
789 static void hifn_unregister_rng(struct hifn_device *dev)
790 {
791         hwrng_unregister(&dev->rng);
792 }
793 #else
794 #define hifn_register_rng(dev)          0
795 #define hifn_unregister_rng(dev)
796 #endif
797
798 static int hifn_init_pubrng(struct hifn_device *dev)
799 {
800         int i;
801
802         hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
803                         HIFN_PUBRST_RESET);
804
805         for (i = 100; i > 0; --i) {
806                 mdelay(1);
807
808                 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
809                         break;
810         }
811
812         if (!i) {
813                 dev_err(&dev->pdev->dev, "Failed to initialise public key engine.\n");
814         } else {
815                 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
816                 dev->dmareg |= HIFN_DMAIER_PUBDONE;
817                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
818
819                 dev_dbg(&dev->pdev->dev, "Public key engine has been successfully initialised.\n");
820         }
821
822         /* Enable RNG engine. */
823
824         hifn_write_1(dev, HIFN_1_RNG_CONFIG,
825                         hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
826         dev_dbg(&dev->pdev->dev, "RNG engine has been successfully initialised.\n");
827
828 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
829         /* First value must be discarded */
830         hifn_read_1(dev, HIFN_1_RNG_DATA);
831         dev->rngtime = ktime_get();
832 #endif
833         return 0;
834 }
835
836 static int hifn_enable_crypto(struct hifn_device *dev)
837 {
838         u32 dmacfg, addr;
839         char *offtbl = NULL;
840         int i;
841
842         for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
843                 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
844                                 pci2id[i].pci_prod == dev->pdev->device) {
845                         offtbl = pci2id[i].card_id;
846                         break;
847                 }
848         }
849
850         if (!offtbl) {
851                 dev_err(&dev->pdev->dev, "Unknown card!\n");
852                 return -ENODEV;
853         }
854
855         dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
856
857         hifn_write_1(dev, HIFN_1_DMA_CNFG,
858                         HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
859                         HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
860         mdelay(1);
861         addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
862         mdelay(1);
863         hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
864         mdelay(1);
865
866         for (i = 0; i < 12; ++i) {
867                 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
868                 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
869
870                 mdelay(1);
871         }
872         hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
873
874         dev_dbg(&dev->pdev->dev, "%s %s.\n", dev->name, pci_name(dev->pdev));
875
876         return 0;
877 }
878
879 static void hifn_init_dma(struct hifn_device *dev)
880 {
881         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
882         u32 dptr = dev->desc_dma;
883         int i;
884
885         for (i = 0; i < HIFN_D_CMD_RSIZE; ++i)
886                 dma->cmdr[i].p = __cpu_to_le32(dptr +
887                                 offsetof(struct hifn_dma, command_bufs[i][0]));
888         for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
889                 dma->resr[i].p = __cpu_to_le32(dptr +
890                                 offsetof(struct hifn_dma, result_bufs[i][0]));
891
892         /* Setup LAST descriptors. */
893         dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
894                         offsetof(struct hifn_dma, cmdr[0]));
895         dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
896                         offsetof(struct hifn_dma, srcr[0]));
897         dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
898                         offsetof(struct hifn_dma, dstr[0]));
899         dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
900                         offsetof(struct hifn_dma, resr[0]));
901
902         dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
903         dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
904         dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
905 }
906
907 /*
908  * Initialize the PLL. We need to know the frequency of the reference clock
909  * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
910  * allows us to operate without the risk of overclocking the chip. If it
911  * actually uses 33MHz, the chip will operate at half the speed, this can be
912  * overridden by specifying the frequency as module parameter (pci33).
913  *
914  * Unfortunately the PCI clock is not very suitable since the HIFN needs a
915  * stable clock and the PCI clock frequency may vary, so the default is the
916  * external clock. There is no way to find out its frequency, we default to
917  * 66MHz since according to Mike Ham of HiFn, almost every board in existence
918  * has an external crystal populated at 66MHz.
919  */
920 static void hifn_init_pll(struct hifn_device *dev)
921 {
922         unsigned int freq, m;
923         u32 pllcfg;
924
925         pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
926
927         if (strncmp(hifn_pll_ref, "ext", 3) == 0)
928                 pllcfg |= HIFN_PLL_REF_CLK_PLL;
929         else
930                 pllcfg |= HIFN_PLL_REF_CLK_HBI;
931
932         if (hifn_pll_ref[3] != '\0')
933                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
934         else {
935                 freq = 66;
936                 dev_info(&dev->pdev->dev, "assuming %uMHz clock speed, override with hifn_pll_ref=%.3s<frequency>\n",
937                          freq, hifn_pll_ref);
938         }
939
940         m = HIFN_PLL_FCK_MAX / freq;
941
942         pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
943         if (m <= 8)
944                 pllcfg |= HIFN_PLL_IS_1_8;
945         else
946                 pllcfg |= HIFN_PLL_IS_9_12;
947
948         /* Select clock source and enable clock bypass */
949         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
950                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
951
952         /* Let the chip lock to the input clock */
953         mdelay(10);
954
955         /* Disable clock bypass */
956         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
957                      HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
958
959         /* Switch the engines to the PLL */
960         hifn_write_1(dev, HIFN_1_PLL, pllcfg |
961                      HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
962
963         /*
964          * The Fpk_clk runs at half the total speed. Its frequency is needed to
965          * calculate the minimum time between two reads of the rng. Since 33MHz
966          * is actually 33.333... we overestimate the frequency here, resulting
967          * in slightly larger intervals.
968          */
969         dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
970 }
971
972 static void hifn_init_registers(struct hifn_device *dev)
973 {
974         u32 dptr = dev->desc_dma;
975
976         /* Initialization magic... */
977         hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
978         hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
979         hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
980
981         /* write all 4 ring address registers */
982         hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
983                                 offsetof(struct hifn_dma, cmdr[0]));
984         hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
985                                 offsetof(struct hifn_dma, srcr[0]));
986         hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
987                                 offsetof(struct hifn_dma, dstr[0]));
988         hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
989                                 offsetof(struct hifn_dma, resr[0]));
990
991         mdelay(2);
992 #if 0
993         hifn_write_1(dev, HIFN_1_DMA_CSR,
994             HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
995             HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
996             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
997             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
998             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
999             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1000             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1001             HIFN_DMACSR_S_WAIT |
1002             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1003             HIFN_DMACSR_C_WAIT |
1004             HIFN_DMACSR_ENGINE |
1005             HIFN_DMACSR_PUBDONE);
1006 #else
1007         hifn_write_1(dev, HIFN_1_DMA_CSR,
1008             HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1009             HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1010             HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1011             HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1012             HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1013             HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1014             HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1015             HIFN_DMACSR_S_WAIT |
1016             HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1017             HIFN_DMACSR_C_WAIT |
1018             HIFN_DMACSR_ENGINE |
1019             HIFN_DMACSR_PUBDONE);
1020 #endif
1021         hifn_read_1(dev, HIFN_1_DMA_CSR);
1022
1023         dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1024             HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1025             HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1026             HIFN_DMAIER_ENGINE;
1027         dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1028
1029         hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1030         hifn_read_1(dev, HIFN_1_DMA_IER);
1031 #if 0
1032         hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1033                     HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1034                     HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1035                     HIFN_PUCNFG_DRAM);
1036 #else
1037         hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1038 #endif
1039         hifn_init_pll(dev);
1040
1041         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1042         hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1043             HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1044             ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1045             ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1046 }
1047
1048 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1049                 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1050 {
1051         struct hifn_base_command *base_cmd;
1052         u8 *buf_pos = buf;
1053
1054         base_cmd = (struct hifn_base_command *)buf_pos;
1055         base_cmd->masks = __cpu_to_le16(mask);
1056         base_cmd->total_source_count =
1057                 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1058         base_cmd->total_dest_count =
1059                 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1060
1061         dlen >>= 16;
1062         slen >>= 16;
1063         base_cmd->session_num = __cpu_to_le16(snum |
1064             ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1065             ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1066
1067         return sizeof(struct hifn_base_command);
1068 }
1069
1070 static int hifn_setup_crypto_command(struct hifn_device *dev,
1071                 u8 *buf, unsigned dlen, unsigned slen,
1072                 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1073 {
1074         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1075         struct hifn_crypt_command *cry_cmd;
1076         u8 *buf_pos = buf;
1077         u16 cmd_len;
1078
1079         cry_cmd = (struct hifn_crypt_command *)buf_pos;
1080
1081         cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1082         dlen >>= 16;
1083         cry_cmd->masks = __cpu_to_le16(mode |
1084                         ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1085                          HIFN_CRYPT_CMD_SRCLEN_M));
1086         cry_cmd->header_skip = 0;
1087         cry_cmd->reserved = 0;
1088
1089         buf_pos += sizeof(struct hifn_crypt_command);
1090
1091         dma->cmdu++;
1092         if (dma->cmdu > 1) {
1093                 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1094                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1095         }
1096
1097         if (keylen) {
1098                 memcpy(buf_pos, key, keylen);
1099                 buf_pos += keylen;
1100         }
1101         if (ivsize) {
1102                 memcpy(buf_pos, iv, ivsize);
1103                 buf_pos += ivsize;
1104         }
1105
1106         cmd_len = buf_pos - buf;
1107
1108         return cmd_len;
1109 }
1110
1111 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1112                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1113                 void *priv, unsigned int nbytes)
1114 {
1115         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1116         int cmd_len, sa_idx;
1117         u8 *buf, *buf_pos;
1118         u16 mask;
1119
1120         sa_idx = dma->cmdi;
1121         buf_pos = buf = dma->command_bufs[dma->cmdi];
1122
1123         mask = 0;
1124         switch (rctx->op) {
1125         case ACRYPTO_OP_DECRYPT:
1126                 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1127                 break;
1128         case ACRYPTO_OP_ENCRYPT:
1129                 mask = HIFN_BASE_CMD_CRYPT;
1130                 break;
1131         case ACRYPTO_OP_HMAC:
1132                 mask = HIFN_BASE_CMD_MAC;
1133                 break;
1134         default:
1135                 goto err_out;
1136         }
1137
1138         buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1139                         nbytes, mask, dev->snum);
1140
1141         if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1142                 u16 md = 0;
1143
1144                 if (ctx->keysize)
1145                         md |= HIFN_CRYPT_CMD_NEW_KEY;
1146                 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1147                         md |= HIFN_CRYPT_CMD_NEW_IV;
1148
1149                 switch (rctx->mode) {
1150                 case ACRYPTO_MODE_ECB:
1151                         md |= HIFN_CRYPT_CMD_MODE_ECB;
1152                         break;
1153                 case ACRYPTO_MODE_CBC:
1154                         md |= HIFN_CRYPT_CMD_MODE_CBC;
1155                         break;
1156                 case ACRYPTO_MODE_CFB:
1157                         md |= HIFN_CRYPT_CMD_MODE_CFB;
1158                         break;
1159                 case ACRYPTO_MODE_OFB:
1160                         md |= HIFN_CRYPT_CMD_MODE_OFB;
1161                         break;
1162                 default:
1163                         goto err_out;
1164                 }
1165
1166                 switch (rctx->type) {
1167                 case ACRYPTO_TYPE_AES_128:
1168                         if (ctx->keysize != 16)
1169                                 goto err_out;
1170                         md |= HIFN_CRYPT_CMD_KSZ_128 |
1171                                 HIFN_CRYPT_CMD_ALG_AES;
1172                         break;
1173                 case ACRYPTO_TYPE_AES_192:
1174                         if (ctx->keysize != 24)
1175                                 goto err_out;
1176                         md |= HIFN_CRYPT_CMD_KSZ_192 |
1177                                 HIFN_CRYPT_CMD_ALG_AES;
1178                         break;
1179                 case ACRYPTO_TYPE_AES_256:
1180                         if (ctx->keysize != 32)
1181                                 goto err_out;
1182                         md |= HIFN_CRYPT_CMD_KSZ_256 |
1183                                 HIFN_CRYPT_CMD_ALG_AES;
1184                         break;
1185                 case ACRYPTO_TYPE_3DES:
1186                         if (ctx->keysize != 24)
1187                                 goto err_out;
1188                         md |= HIFN_CRYPT_CMD_ALG_3DES;
1189                         break;
1190                 case ACRYPTO_TYPE_DES:
1191                         if (ctx->keysize != 8)
1192                                 goto err_out;
1193                         md |= HIFN_CRYPT_CMD_ALG_DES;
1194                         break;
1195                 default:
1196                         goto err_out;
1197                 }
1198
1199                 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1200                                 nbytes, nbytes, ctx->key, ctx->keysize,
1201                                 rctx->iv, rctx->ivsize, md);
1202         }
1203
1204         dev->sa[sa_idx] = priv;
1205         dev->started++;
1206
1207         cmd_len = buf_pos - buf;
1208         dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1209                         HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1210
1211         if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1212                 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1213                         HIFN_D_VALID | HIFN_D_LAST |
1214                         HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1215                 dma->cmdi = 0;
1216         } else {
1217                 dma->cmdr[dma->cmdi - 1].l |= __cpu_to_le32(HIFN_D_VALID);
1218         }
1219
1220         if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1221                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1222                 dev->flags |= HIFN_FLAG_CMD_BUSY;
1223         }
1224         return 0;
1225
1226 err_out:
1227         return -EINVAL;
1228 }
1229
1230 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1231                 unsigned int offset, unsigned int size, int last)
1232 {
1233         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1234         int idx;
1235         dma_addr_t addr;
1236
1237         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1238
1239         idx = dma->srci;
1240
1241         dma->srcr[idx].p = __cpu_to_le32(addr);
1242         dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1243                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1244
1245         if (++idx == HIFN_D_SRC_RSIZE) {
1246                 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1247                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1248                                 (last ? HIFN_D_LAST : 0));
1249                 idx = 0;
1250         }
1251
1252         dma->srci = idx;
1253         dma->srcu++;
1254
1255         if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1256                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1257                 dev->flags |= HIFN_FLAG_SRC_BUSY;
1258         }
1259
1260         return size;
1261 }
1262
1263 static void hifn_setup_res_desc(struct hifn_device *dev)
1264 {
1265         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1266
1267         dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1268                         HIFN_D_VALID | HIFN_D_LAST);
1269         /*
1270          * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1271          *                                      HIFN_D_LAST);
1272          */
1273
1274         if (++dma->resi == HIFN_D_RES_RSIZE) {
1275                 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1276                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1277                 dma->resi = 0;
1278         }
1279
1280         dma->resu++;
1281
1282         if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1283                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1284                 dev->flags |= HIFN_FLAG_RES_BUSY;
1285         }
1286 }
1287
1288 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1289                 unsigned offset, unsigned size, int last)
1290 {
1291         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1292         int idx;
1293         dma_addr_t addr;
1294
1295         addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1296
1297         idx = dma->dsti;
1298         dma->dstr[idx].p = __cpu_to_le32(addr);
1299         dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1300                         HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1301
1302         if (++idx == HIFN_D_DST_RSIZE) {
1303                 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1304                                 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1305                                 (last ? HIFN_D_LAST : 0));
1306                 idx = 0;
1307         }
1308         dma->dsti = idx;
1309         dma->dstu++;
1310
1311         if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1312                 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1313                 dev->flags |= HIFN_FLAG_DST_BUSY;
1314         }
1315 }
1316
1317 static int hifn_setup_dma(struct hifn_device *dev,
1318                 struct hifn_context *ctx, struct hifn_request_context *rctx,
1319                 struct scatterlist *src, struct scatterlist *dst,
1320                 unsigned int nbytes, void *priv)
1321 {
1322         struct scatterlist *t;
1323         struct page *spage, *dpage;
1324         unsigned int soff, doff;
1325         unsigned int n, len;
1326
1327         n = nbytes;
1328         while (n) {
1329                 spage = sg_page(src);
1330                 soff = src->offset;
1331                 len = min(src->length, n);
1332
1333                 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1334
1335                 src++;
1336                 n -= len;
1337         }
1338
1339         t = &rctx->walk.cache[0];
1340         n = nbytes;
1341         while (n) {
1342                 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1343                         BUG_ON(!sg_page(t));
1344                         dpage = sg_page(t);
1345                         doff = 0;
1346                         len = t->length;
1347                 } else {
1348                         BUG_ON(!sg_page(dst));
1349                         dpage = sg_page(dst);
1350                         doff = dst->offset;
1351                         len = dst->length;
1352                 }
1353                 len = min(len, n);
1354
1355                 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1356
1357                 dst++;
1358                 t++;
1359                 n -= len;
1360         }
1361
1362         hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1363         hifn_setup_res_desc(dev);
1364         return 0;
1365 }
1366
1367 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1368                 int num, gfp_t gfp_flags)
1369 {
1370         int i;
1371
1372         num = min(ASYNC_SCATTERLIST_CACHE, num);
1373         sg_init_table(w->cache, num);
1374
1375         w->num = 0;
1376         for (i = 0; i < num; ++i) {
1377                 struct page *page = alloc_page(gfp_flags);
1378                 struct scatterlist *s;
1379
1380                 if (!page)
1381                         break;
1382
1383                 s = &w->cache[i];
1384
1385                 sg_set_page(s, page, PAGE_SIZE, 0);
1386                 w->num++;
1387         }
1388
1389         return i;
1390 }
1391
1392 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1393 {
1394         int i;
1395
1396         for (i = 0; i < w->num; ++i) {
1397                 struct scatterlist *s = &w->cache[i];
1398
1399                 __free_page(sg_page(s));
1400
1401                 s->length = 0;
1402         }
1403
1404         w->num = 0;
1405 }
1406
1407 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1408                 unsigned int size, unsigned int *nbytesp)
1409 {
1410         unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1411         int idx = 0;
1412
1413         if (drest < size || size > nbytes)
1414                 return -EINVAL;
1415
1416         while (size) {
1417                 copy = min3(drest, size, dst->length);
1418
1419                 size -= copy;
1420                 drest -= copy;
1421                 nbytes -= copy;
1422
1423                 pr_debug("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1424                          __func__, copy, size, drest, nbytes);
1425
1426                 dst++;
1427                 idx++;
1428         }
1429
1430         *nbytesp = nbytes;
1431         *drestp = drest;
1432
1433         return idx;
1434 }
1435
1436 static int hifn_cipher_walk(struct ablkcipher_request *req,
1437                 struct hifn_cipher_walk *w)
1438 {
1439         struct scatterlist *dst, *t;
1440         unsigned int nbytes = req->nbytes, offset, copy, diff;
1441         int idx, tidx, err;
1442
1443         tidx = idx = 0;
1444         offset = 0;
1445         while (nbytes) {
1446                 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1447                         return -EINVAL;
1448
1449                 dst = &req->dst[idx];
1450
1451                 pr_debug("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1452                          __func__, dst->length, dst->offset, offset, nbytes);
1453
1454                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1455                     !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1456                     offset) {
1457                         unsigned slen = min(dst->length - offset, nbytes);
1458                         unsigned dlen = PAGE_SIZE;
1459
1460                         t = &w->cache[idx];
1461
1462                         err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1463                         if (err < 0)
1464                                 return err;
1465
1466                         idx += err;
1467
1468                         copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1469                         diff = slen & (HIFN_D_DST_DALIGN - 1);
1470
1471                         if (dlen < nbytes) {
1472                                 /*
1473                                  * Destination page does not have enough space
1474                                  * to put there additional blocksized chunk,
1475                                  * so we mark that page as containing only
1476                                  * blocksize aligned chunks:
1477                                  *      t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1478                                  * and increase number of bytes to be processed
1479                                  * in next chunk:
1480                                  *      nbytes += diff;
1481                                  */
1482                                 nbytes += diff;
1483
1484                                 /*
1485                                  * Temporary of course...
1486                                  * Kick author if you will catch this one.
1487                                  */
1488                                 pr_err("%s: dlen: %u, nbytes: %u, slen: %u, offset: %u.\n",
1489                                        __func__, dlen, nbytes, slen, offset);
1490                                 pr_err("%s: please contact author to fix this "
1491                                        "issue, generally you should not catch "
1492                                        "this path under any condition but who "
1493                                        "knows how did you use crypto code.\n"
1494                                        "Thank you.\n",  __func__);
1495                                 BUG();
1496                         } else {
1497                                 copy += diff + nbytes;
1498
1499                                 dst = &req->dst[idx];
1500
1501                                 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1502                                 if (err < 0)
1503                                         return err;
1504
1505                                 idx += err;
1506                         }
1507
1508                         t->length = copy;
1509                         t->offset = offset;
1510                 } else {
1511                         nbytes -= min(dst->length, nbytes);
1512                         idx++;
1513                 }
1514
1515                 tidx++;
1516         }
1517
1518         return tidx;
1519 }
1520
1521 static int hifn_setup_session(struct ablkcipher_request *req)
1522 {
1523         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1524         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1525         struct hifn_device *dev = ctx->dev;
1526         unsigned long dlen, flags;
1527         unsigned int nbytes = req->nbytes, idx = 0;
1528         int err = -EINVAL, sg_num;
1529         struct scatterlist *dst;
1530
1531         if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1532                 goto err_out_exit;
1533
1534         rctx->walk.flags = 0;
1535
1536         while (nbytes) {
1537                 dst = &req->dst[idx];
1538                 dlen = min(dst->length, nbytes);
1539
1540                 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1541                     !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1542                         rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1543
1544                 nbytes -= dlen;
1545                 idx++;
1546         }
1547
1548         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1549                 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1550                 if (err < 0)
1551                         return err;
1552         }
1553
1554         sg_num = hifn_cipher_walk(req, &rctx->walk);
1555         if (sg_num < 0) {
1556                 err = sg_num;
1557                 goto err_out_exit;
1558         }
1559
1560         spin_lock_irqsave(&dev->lock, flags);
1561         if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1562                 err = -EAGAIN;
1563                 goto err_out;
1564         }
1565
1566         err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1567         if (err)
1568                 goto err_out;
1569
1570         dev->snum++;
1571
1572         dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1573         spin_unlock_irqrestore(&dev->lock, flags);
1574
1575         return 0;
1576
1577 err_out:
1578         spin_unlock_irqrestore(&dev->lock, flags);
1579 err_out_exit:
1580         if (err) {
1581                 dev_info(&dev->pdev->dev, "iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1582                          "type: %u, err: %d.\n",
1583                          rctx->iv, rctx->ivsize,
1584                          ctx->key, ctx->keysize,
1585                          rctx->mode, rctx->op, rctx->type, err);
1586         }
1587
1588         return err;
1589 }
1590
1591 static int hifn_start_device(struct hifn_device *dev)
1592 {
1593         int err;
1594
1595         dev->started = dev->active = 0;
1596         hifn_reset_dma(dev, 1);
1597
1598         err = hifn_enable_crypto(dev);
1599         if (err)
1600                 return err;
1601
1602         hifn_reset_puc(dev);
1603
1604         hifn_init_dma(dev);
1605
1606         hifn_init_registers(dev);
1607
1608         hifn_init_pubrng(dev);
1609
1610         return 0;
1611 }
1612
1613 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1614                 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1615 {
1616         unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1617         void *daddr;
1618         int idx = 0;
1619
1620         if (srest < size || size > nbytes)
1621                 return -EINVAL;
1622
1623         while (size) {
1624                 copy = min3(srest, dst->length, size);
1625
1626                 daddr = kmap_atomic(sg_page(dst));
1627                 memcpy(daddr + dst->offset + offset, saddr, copy);
1628                 kunmap_atomic(daddr);
1629
1630                 nbytes -= copy;
1631                 size -= copy;
1632                 srest -= copy;
1633                 saddr += copy;
1634                 offset = 0;
1635
1636                 pr_debug("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1637                          __func__, copy, size, srest, nbytes);
1638
1639                 dst++;
1640                 idx++;
1641         }
1642
1643         *nbytesp = nbytes;
1644         *srestp = srest;
1645
1646         return idx;
1647 }
1648
1649 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1650 {
1651         unsigned long flags;
1652
1653         spin_lock_irqsave(&dev->lock, flags);
1654         dev->sa[i] = NULL;
1655         dev->started--;
1656         if (dev->started < 0)
1657                 dev_info(&dev->pdev->dev, "%s: started: %d.\n", __func__,
1658                          dev->started);
1659         spin_unlock_irqrestore(&dev->lock, flags);
1660         BUG_ON(dev->started < 0);
1661 }
1662
1663 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1664 {
1665         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1666
1667         if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1668                 unsigned int nbytes = req->nbytes;
1669                 int idx = 0, err;
1670                 struct scatterlist *dst, *t;
1671                 void *saddr;
1672
1673                 while (nbytes) {
1674                         t = &rctx->walk.cache[idx];
1675                         dst = &req->dst[idx];
1676
1677                         pr_debug("\n%s: sg_page(t): %p, t->length: %u, "
1678                                 "sg_page(dst): %p, dst->length: %u, "
1679                                 "nbytes: %u.\n",
1680                                 __func__, sg_page(t), t->length,
1681                                 sg_page(dst), dst->length, nbytes);
1682
1683                         if (!t->length) {
1684                                 nbytes -= min(dst->length, nbytes);
1685                                 idx++;
1686                                 continue;
1687                         }
1688
1689                         saddr = kmap_atomic(sg_page(t));
1690
1691                         err = ablkcipher_get(saddr, &t->length, t->offset,
1692                                         dst, nbytes, &nbytes);
1693                         if (err < 0) {
1694                                 kunmap_atomic(saddr);
1695                                 break;
1696                         }
1697
1698                         idx += err;
1699                         kunmap_atomic(saddr);
1700                 }
1701
1702                 hifn_cipher_walk_exit(&rctx->walk);
1703         }
1704
1705         req->base.complete(&req->base, error);
1706 }
1707
1708 static void hifn_clear_rings(struct hifn_device *dev, int error)
1709 {
1710         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1711         int i, u;
1712
1713         dev_dbg(&dev->pdev->dev, "ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1714                         "k: %d.%d.%d.%d.\n",
1715                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1716                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1717                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1718
1719         i = dma->resk; u = dma->resu;
1720         while (u != 0) {
1721                 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1722                         break;
1723
1724                 if (dev->sa[i]) {
1725                         dev->success++;
1726                         dev->reset = 0;
1727                         hifn_process_ready(dev->sa[i], error);
1728                         hifn_complete_sa(dev, i);
1729                 }
1730
1731                 if (++i == HIFN_D_RES_RSIZE)
1732                         i = 0;
1733                 u--;
1734         }
1735         dma->resk = i; dma->resu = u;
1736
1737         i = dma->srck; u = dma->srcu;
1738         while (u != 0) {
1739                 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1740                         break;
1741                 if (++i == HIFN_D_SRC_RSIZE)
1742                         i = 0;
1743                 u--;
1744         }
1745         dma->srck = i; dma->srcu = u;
1746
1747         i = dma->cmdk; u = dma->cmdu;
1748         while (u != 0) {
1749                 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1750                         break;
1751                 if (++i == HIFN_D_CMD_RSIZE)
1752                         i = 0;
1753                 u--;
1754         }
1755         dma->cmdk = i; dma->cmdu = u;
1756
1757         i = dma->dstk; u = dma->dstu;
1758         while (u != 0) {
1759                 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1760                         break;
1761                 if (++i == HIFN_D_DST_RSIZE)
1762                         i = 0;
1763                 u--;
1764         }
1765         dma->dstk = i; dma->dstu = u;
1766
1767         dev_dbg(&dev->pdev->dev, "ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1768                         "k: %d.%d.%d.%d.\n",
1769                         dma->cmdi, dma->srci, dma->dsti, dma->resi,
1770                         dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1771                         dma->cmdk, dma->srck, dma->dstk, dma->resk);
1772 }
1773
1774 static void hifn_work(struct work_struct *work)
1775 {
1776         struct delayed_work *dw = to_delayed_work(work);
1777         struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1778         unsigned long flags;
1779         int reset = 0;
1780         u32 r = 0;
1781
1782         spin_lock_irqsave(&dev->lock, flags);
1783         if (dev->active == 0) {
1784                 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1785
1786                 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1787                         dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1788                         r |= HIFN_DMACSR_C_CTRL_DIS;
1789                 }
1790                 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1791                         dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1792                         r |= HIFN_DMACSR_S_CTRL_DIS;
1793                 }
1794                 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1795                         dev->flags &= ~HIFN_FLAG_DST_BUSY;
1796                         r |= HIFN_DMACSR_D_CTRL_DIS;
1797                 }
1798                 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1799                         dev->flags &= ~HIFN_FLAG_RES_BUSY;
1800                         r |= HIFN_DMACSR_R_CTRL_DIS;
1801                 }
1802                 if (r)
1803                         hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1804         } else
1805                 dev->active--;
1806
1807         if ((dev->prev_success == dev->success) && dev->started)
1808                 reset = 1;
1809         dev->prev_success = dev->success;
1810         spin_unlock_irqrestore(&dev->lock, flags);
1811
1812         if (reset) {
1813                 if (++dev->reset >= 5) {
1814                         int i;
1815                         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1816
1817                         dev_info(&dev->pdev->dev,
1818                                  "r: %08x, active: %d, started: %d, "
1819                                  "success: %lu: qlen: %u/%u, reset: %d.\n",
1820                                  r, dev->active, dev->started,
1821                                  dev->success, dev->queue.qlen, dev->queue.max_qlen,
1822                                  reset);
1823
1824                         dev_info(&dev->pdev->dev, "%s: res: ", __func__);
1825                         for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1826                                 pr_info("%x.%p ", dma->resr[i].l, dev->sa[i]);
1827                                 if (dev->sa[i]) {
1828                                         hifn_process_ready(dev->sa[i], -ENODEV);
1829                                         hifn_complete_sa(dev, i);
1830                                 }
1831                         }
1832                         pr_info("\n");
1833
1834                         hifn_reset_dma(dev, 1);
1835                         hifn_stop_device(dev);
1836                         hifn_start_device(dev);
1837                         dev->reset = 0;
1838                 }
1839
1840                 tasklet_schedule(&dev->tasklet);
1841         }
1842
1843         schedule_delayed_work(&dev->work, HZ);
1844 }
1845
1846 static irqreturn_t hifn_interrupt(int irq, void *data)
1847 {
1848         struct hifn_device *dev = (struct hifn_device *)data;
1849         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1850         u32 dmacsr, restart;
1851
1852         dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1853
1854         dev_dbg(&dev->pdev->dev, "1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1855                         "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1856                 dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1857                 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1858                 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1859
1860         if ((dmacsr & dev->dmareg) == 0)
1861                 return IRQ_NONE;
1862
1863         hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1864
1865         if (dmacsr & HIFN_DMACSR_ENGINE)
1866                 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1867         if (dmacsr & HIFN_DMACSR_PUBDONE)
1868                 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1869                         hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1870
1871         restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1872         if (restart) {
1873                 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1874
1875                 dev_warn(&dev->pdev->dev, "overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1876                          !!(dmacsr & HIFN_DMACSR_R_OVER),
1877                          !!(dmacsr & HIFN_DMACSR_D_OVER),
1878                         puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1879                 if (!!(puisr & HIFN_PUISR_DSTOVER))
1880                         hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1881                 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1882                                         HIFN_DMACSR_D_OVER));
1883         }
1884
1885         restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1886                         HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1887         if (restart) {
1888                 dev_warn(&dev->pdev->dev, "abort: c: %d, s: %d, d: %d, r: %d.\n",
1889                          !!(dmacsr & HIFN_DMACSR_C_ABORT),
1890                          !!(dmacsr & HIFN_DMACSR_S_ABORT),
1891                          !!(dmacsr & HIFN_DMACSR_D_ABORT),
1892                          !!(dmacsr & HIFN_DMACSR_R_ABORT));
1893                 hifn_reset_dma(dev, 1);
1894                 hifn_init_dma(dev);
1895                 hifn_init_registers(dev);
1896         }
1897
1898         if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
1899                 dev_dbg(&dev->pdev->dev, "wait on command.\n");
1900                 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
1901                 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1902         }
1903
1904         tasklet_schedule(&dev->tasklet);
1905
1906         return IRQ_HANDLED;
1907 }
1908
1909 static void hifn_flush(struct hifn_device *dev)
1910 {
1911         unsigned long flags;
1912         struct crypto_async_request *async_req;
1913         struct ablkcipher_request *req;
1914         struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1915         int i;
1916
1917         for (i = 0; i < HIFN_D_RES_RSIZE; ++i) {
1918                 struct hifn_desc *d = &dma->resr[i];
1919
1920                 if (dev->sa[i]) {
1921                         hifn_process_ready(dev->sa[i],
1922                                 (d->l & __cpu_to_le32(HIFN_D_VALID)) ? -ENODEV : 0);
1923                         hifn_complete_sa(dev, i);
1924                 }
1925         }
1926
1927         spin_lock_irqsave(&dev->lock, flags);
1928         while ((async_req = crypto_dequeue_request(&dev->queue))) {
1929                 req = ablkcipher_request_cast(async_req);
1930                 spin_unlock_irqrestore(&dev->lock, flags);
1931
1932                 hifn_process_ready(req, -ENODEV);
1933
1934                 spin_lock_irqsave(&dev->lock, flags);
1935         }
1936         spin_unlock_irqrestore(&dev->lock, flags);
1937 }
1938
1939 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1940                 unsigned int len)
1941 {
1942         struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1943         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
1944         struct hifn_device *dev = ctx->dev;
1945
1946         if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
1947                 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
1948                 return -1;
1949         }
1950
1951         if (len == HIFN_DES_KEY_LENGTH) {
1952                 u32 tmp[DES_EXPKEY_WORDS];
1953                 int ret = des_ekey(tmp, key);
1954
1955                 if (unlikely(ret == 0) &&
1956                     (tfm->crt_flags & CRYPTO_TFM_REQ_FORBID_WEAK_KEYS)) {
1957                         tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
1958                         return -EINVAL;
1959                 }
1960         }
1961
1962         dev->flags &= ~HIFN_FLAG_OLD_KEY;
1963
1964         memcpy(ctx->key, key, len);
1965         ctx->keysize = len;
1966
1967         return 0;
1968 }
1969
1970 static int hifn_des3_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
1971                             unsigned int len)
1972 {
1973         struct hifn_context *ctx = crypto_ablkcipher_ctx(cipher);
1974         struct hifn_device *dev = ctx->dev;
1975         u32 flags;
1976         int err;
1977
1978         flags = crypto_ablkcipher_get_flags(cipher);
1979         err = __des3_verify_key(&flags, key);
1980         if (unlikely(err)) {
1981                 crypto_ablkcipher_set_flags(cipher, flags);
1982                 return err;
1983         }
1984
1985         dev->flags &= ~HIFN_FLAG_OLD_KEY;
1986
1987         memcpy(ctx->key, key, len);
1988         ctx->keysize = len;
1989
1990         return 0;
1991 }
1992
1993 static int hifn_handle_req(struct ablkcipher_request *req)
1994 {
1995         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1996         struct hifn_device *dev = ctx->dev;
1997         int err = -EAGAIN;
1998
1999         if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2000                 err = hifn_setup_session(req);
2001
2002         if (err == -EAGAIN) {
2003                 unsigned long flags;
2004
2005                 spin_lock_irqsave(&dev->lock, flags);
2006                 err = ablkcipher_enqueue_request(&dev->queue, req);
2007                 spin_unlock_irqrestore(&dev->lock, flags);
2008         }
2009
2010         return err;
2011 }
2012
2013 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2014                 u8 type, u8 mode)
2015 {
2016         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2017         struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2018         unsigned ivsize;
2019
2020         ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2021
2022         if (req->info && mode != ACRYPTO_MODE_ECB) {
2023                 if (type == ACRYPTO_TYPE_AES_128)
2024                         ivsize = HIFN_AES_IV_LENGTH;
2025                 else if (type == ACRYPTO_TYPE_DES)
2026                         ivsize = HIFN_DES_KEY_LENGTH;
2027                 else if (type == ACRYPTO_TYPE_3DES)
2028                         ivsize = HIFN_3DES_KEY_LENGTH;
2029         }
2030
2031         if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2032                 if (ctx->keysize == 24)
2033                         type = ACRYPTO_TYPE_AES_192;
2034                 else if (ctx->keysize == 32)
2035                         type = ACRYPTO_TYPE_AES_256;
2036         }
2037
2038         rctx->op = op;
2039         rctx->mode = mode;
2040         rctx->type = type;
2041         rctx->iv = req->info;
2042         rctx->ivsize = ivsize;
2043
2044         /*
2045          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2046          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2047          * HEAVY TODO: needs to kick Herbert XU to write documentation.
2048          */
2049
2050         return hifn_handle_req(req);
2051 }
2052
2053 static int hifn_process_queue(struct hifn_device *dev)
2054 {
2055         struct crypto_async_request *async_req, *backlog;
2056         struct ablkcipher_request *req;
2057         unsigned long flags;
2058         int err = 0;
2059
2060         while (dev->started < HIFN_QUEUE_LENGTH) {
2061                 spin_lock_irqsave(&dev->lock, flags);
2062                 backlog = crypto_get_backlog(&dev->queue);
2063                 async_req = crypto_dequeue_request(&dev->queue);
2064                 spin_unlock_irqrestore(&dev->lock, flags);
2065
2066                 if (!async_req)
2067                         break;
2068
2069                 if (backlog)
2070                         backlog->complete(backlog, -EINPROGRESS);
2071
2072                 req = ablkcipher_request_cast(async_req);
2073
2074                 err = hifn_handle_req(req);
2075                 if (err)
2076                         break;
2077         }
2078
2079         return err;
2080 }
2081
2082 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2083                 u8 type, u8 mode)
2084 {
2085         int err;
2086         struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2087         struct hifn_device *dev = ctx->dev;
2088
2089         err = hifn_setup_crypto_req(req, op, type, mode);
2090         if (err)
2091                 return err;
2092
2093         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2094                 hifn_process_queue(dev);
2095
2096         return -EINPROGRESS;
2097 }
2098
2099 /*
2100  * AES ecryption functions.
2101  */
2102 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2103 {
2104         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2105                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2106 }
2107 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2108 {
2109         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2110                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2111 }
2112 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2113 {
2114         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2115                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2116 }
2117 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2118 {
2119         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2120                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2121 }
2122
2123 /*
2124  * AES decryption functions.
2125  */
2126 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2127 {
2128         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2129                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2130 }
2131 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2132 {
2133         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2134                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2135 }
2136 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2137 {
2138         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2139                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2140 }
2141 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2142 {
2143         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2144                         ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2145 }
2146
2147 /*
2148  * DES ecryption functions.
2149  */
2150 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2151 {
2152         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2153                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2154 }
2155 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2156 {
2157         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2158                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2159 }
2160 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2161 {
2162         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2163                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2164 }
2165 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2166 {
2167         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2168                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2169 }
2170
2171 /*
2172  * DES decryption functions.
2173  */
2174 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2175 {
2176         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2177                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2178 }
2179 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2180 {
2181         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2182                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2183 }
2184 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2185 {
2186         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2187                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2188 }
2189 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2190 {
2191         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2192                         ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2193 }
2194
2195 /*
2196  * 3DES ecryption functions.
2197  */
2198 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2199 {
2200         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2201                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2202 }
2203 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2204 {
2205         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2206                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2207 }
2208 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2209 {
2210         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2211                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2212 }
2213 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2214 {
2215         return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2216                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2217 }
2218
2219 /* 3DES decryption functions. */
2220 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2221 {
2222         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2223                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2224 }
2225 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2226 {
2227         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2228                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2229 }
2230 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2231 {
2232         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2233                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2234 }
2235 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2236 {
2237         return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2238                         ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2239 }
2240
2241 struct hifn_alg_template {
2242         char name[CRYPTO_MAX_ALG_NAME];
2243         char drv_name[CRYPTO_MAX_ALG_NAME];
2244         unsigned int bsize;
2245         struct ablkcipher_alg ablkcipher;
2246 };
2247
2248 static struct hifn_alg_template hifn_alg_templates[] = {
2249         /*
2250          * 3DES ECB, CBC, CFB and OFB modes.
2251          */
2252         {
2253                 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2254                 .ablkcipher = {
2255                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2256                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2257                         .setkey         =       hifn_des3_setkey,
2258                         .encrypt        =       hifn_encrypt_3des_cfb,
2259                         .decrypt        =       hifn_decrypt_3des_cfb,
2260                 },
2261         },
2262         {
2263                 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2264                 .ablkcipher = {
2265                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2266                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2267                         .setkey         =       hifn_des3_setkey,
2268                         .encrypt        =       hifn_encrypt_3des_ofb,
2269                         .decrypt        =       hifn_decrypt_3des_ofb,
2270                 },
2271         },
2272         {
2273                 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2274                 .ablkcipher = {
2275                         .ivsize         =       HIFN_IV_LENGTH,
2276                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2277                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2278                         .setkey         =       hifn_des3_setkey,
2279                         .encrypt        =       hifn_encrypt_3des_cbc,
2280                         .decrypt        =       hifn_decrypt_3des_cbc,
2281                 },
2282         },
2283         {
2284                 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2285                 .ablkcipher = {
2286                         .min_keysize    =       HIFN_3DES_KEY_LENGTH,
2287                         .max_keysize    =       HIFN_3DES_KEY_LENGTH,
2288                         .setkey         =       hifn_des3_setkey,
2289                         .encrypt        =       hifn_encrypt_3des_ecb,
2290                         .decrypt        =       hifn_decrypt_3des_ecb,
2291                 },
2292         },
2293
2294         /*
2295          * DES ECB, CBC, CFB and OFB modes.
2296          */
2297         {
2298                 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2299                 .ablkcipher = {
2300                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2301                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2302                         .setkey         =       hifn_setkey,
2303                         .encrypt        =       hifn_encrypt_des_cfb,
2304                         .decrypt        =       hifn_decrypt_des_cfb,
2305                 },
2306         },
2307         {
2308                 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2309                 .ablkcipher = {
2310                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2311                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2312                         .setkey         =       hifn_setkey,
2313                         .encrypt        =       hifn_encrypt_des_ofb,
2314                         .decrypt        =       hifn_decrypt_des_ofb,
2315                 },
2316         },
2317         {
2318                 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2319                 .ablkcipher = {
2320                         .ivsize         =       HIFN_IV_LENGTH,
2321                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2322                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2323                         .setkey         =       hifn_setkey,
2324                         .encrypt        =       hifn_encrypt_des_cbc,
2325                         .decrypt        =       hifn_decrypt_des_cbc,
2326                 },
2327         },
2328         {
2329                 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2330                 .ablkcipher = {
2331                         .min_keysize    =       HIFN_DES_KEY_LENGTH,
2332                         .max_keysize    =       HIFN_DES_KEY_LENGTH,
2333                         .setkey         =       hifn_setkey,
2334                         .encrypt        =       hifn_encrypt_des_ecb,
2335                         .decrypt        =       hifn_decrypt_des_ecb,
2336                 },
2337         },
2338
2339         /*
2340          * AES ECB, CBC, CFB and OFB modes.
2341          */
2342         {
2343                 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2344                 .ablkcipher = {
2345                         .min_keysize    =       AES_MIN_KEY_SIZE,
2346                         .max_keysize    =       AES_MAX_KEY_SIZE,
2347                         .setkey         =       hifn_setkey,
2348                         .encrypt        =       hifn_encrypt_aes_ecb,
2349                         .decrypt        =       hifn_decrypt_aes_ecb,
2350                 },
2351         },
2352         {
2353                 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2354                 .ablkcipher = {
2355                         .ivsize         =       HIFN_AES_IV_LENGTH,
2356                         .min_keysize    =       AES_MIN_KEY_SIZE,
2357                         .max_keysize    =       AES_MAX_KEY_SIZE,
2358                         .setkey         =       hifn_setkey,
2359                         .encrypt        =       hifn_encrypt_aes_cbc,
2360                         .decrypt        =       hifn_decrypt_aes_cbc,
2361                 },
2362         },
2363         {
2364                 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2365                 .ablkcipher = {
2366                         .min_keysize    =       AES_MIN_KEY_SIZE,
2367                         .max_keysize    =       AES_MAX_KEY_SIZE,
2368                         .setkey         =       hifn_setkey,
2369                         .encrypt        =       hifn_encrypt_aes_cfb,
2370                         .decrypt        =       hifn_decrypt_aes_cfb,
2371                 },
2372         },
2373         {
2374                 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2375                 .ablkcipher = {
2376                         .min_keysize    =       AES_MIN_KEY_SIZE,
2377                         .max_keysize    =       AES_MAX_KEY_SIZE,
2378                         .setkey         =       hifn_setkey,
2379                         .encrypt        =       hifn_encrypt_aes_ofb,
2380                         .decrypt        =       hifn_decrypt_aes_ofb,
2381                 },
2382         },
2383 };
2384
2385 static int hifn_cra_init(struct crypto_tfm *tfm)
2386 {
2387         struct crypto_alg *alg = tfm->__crt_alg;
2388         struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2389         struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2390
2391         ctx->dev = ha->dev;
2392         tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2393         return 0;
2394 }
2395
2396 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2397 {
2398         struct hifn_crypto_alg *alg;
2399         int err;
2400
2401         alg = kzalloc(sizeof(*alg), GFP_KERNEL);
2402         if (!alg)
2403                 return -ENOMEM;
2404
2405         snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2406         snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2407                  t->drv_name, dev->name);
2408
2409         alg->alg.cra_priority = 300;
2410         alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2411                                 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2412         alg->alg.cra_blocksize = t->bsize;
2413         alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2414         alg->alg.cra_alignmask = 0;
2415         alg->alg.cra_type = &crypto_ablkcipher_type;
2416         alg->alg.cra_module = THIS_MODULE;
2417         alg->alg.cra_u.ablkcipher = t->ablkcipher;
2418         alg->alg.cra_init = hifn_cra_init;
2419
2420         alg->dev = dev;
2421
2422         list_add_tail(&alg->entry, &dev->alg_list);
2423
2424         err = crypto_register_alg(&alg->alg);
2425         if (err) {
2426                 list_del(&alg->entry);
2427                 kfree(alg);
2428         }
2429
2430         return err;
2431 }
2432
2433 static void hifn_unregister_alg(struct hifn_device *dev)
2434 {
2435         struct hifn_crypto_alg *a, *n;
2436
2437         list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2438                 list_del(&a->entry);
2439                 crypto_unregister_alg(&a->alg);
2440                 kfree(a);
2441         }
2442 }
2443
2444 static int hifn_register_alg(struct hifn_device *dev)
2445 {
2446         int i, err;
2447
2448         for (i = 0; i < ARRAY_SIZE(hifn_alg_templates); ++i) {
2449                 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2450                 if (err)
2451                         goto err_out_exit;
2452         }
2453
2454         return 0;
2455
2456 err_out_exit:
2457         hifn_unregister_alg(dev);
2458         return err;
2459 }
2460
2461 static void hifn_tasklet_callback(unsigned long data)
2462 {
2463         struct hifn_device *dev = (struct hifn_device *)data;
2464
2465         /*
2466          * This is ok to call this without lock being held,
2467          * althogh it modifies some parameters used in parallel,
2468          * (like dev->success), but they are used in process
2469          * context or update is atomic (like setting dev->sa[i] to NULL).
2470          */
2471         hifn_clear_rings(dev, 0);
2472
2473         if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2474                 hifn_process_queue(dev);
2475 }
2476
2477 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2478 {
2479         int err, i;
2480         struct hifn_device *dev;
2481         char name[8];
2482
2483         err = pci_enable_device(pdev);
2484         if (err)
2485                 return err;
2486         pci_set_master(pdev);
2487
2488         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2489         if (err)
2490                 goto err_out_disable_pci_device;
2491
2492         snprintf(name, sizeof(name), "hifn%d",
2493                         atomic_inc_return(&hifn_dev_number) - 1);
2494
2495         err = pci_request_regions(pdev, name);
2496         if (err)
2497                 goto err_out_disable_pci_device;
2498
2499         if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2500             pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2501             pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2502                 dev_err(&pdev->dev, "Broken hardware - I/O regions are too small.\n");
2503                 err = -ENODEV;
2504                 goto err_out_free_regions;
2505         }
2506
2507         dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2508                         GFP_KERNEL);
2509         if (!dev) {
2510                 err = -ENOMEM;
2511                 goto err_out_free_regions;
2512         }
2513
2514         INIT_LIST_HEAD(&dev->alg_list);
2515
2516         snprintf(dev->name, sizeof(dev->name), "%s", name);
2517         spin_lock_init(&dev->lock);
2518
2519         for (i = 0; i < 3; ++i) {
2520                 unsigned long addr, size;
2521
2522                 addr = pci_resource_start(pdev, i);
2523                 size = pci_resource_len(pdev, i);
2524
2525                 dev->bar[i] = ioremap_nocache(addr, size);
2526                 if (!dev->bar[i]) {
2527                         err = -ENOMEM;
2528                         goto err_out_unmap_bars;
2529                 }
2530         }
2531
2532         dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2533                                                &dev->desc_dma);
2534         if (!dev->desc_virt) {
2535                 dev_err(&pdev->dev, "Failed to allocate descriptor rings.\n");
2536                 err = -ENOMEM;
2537                 goto err_out_unmap_bars;
2538         }
2539
2540         dev->pdev = pdev;
2541         dev->irq = pdev->irq;
2542
2543         for (i = 0; i < HIFN_D_RES_RSIZE; ++i)
2544                 dev->sa[i] = NULL;
2545
2546         pci_set_drvdata(pdev, dev);
2547
2548         tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2549
2550         crypto_init_queue(&dev->queue, 1);
2551
2552         err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2553         if (err) {
2554                 dev_err(&pdev->dev, "Failed to request IRQ%d: err: %d.\n",
2555                         dev->irq, err);
2556                 dev->irq = 0;
2557                 goto err_out_free_desc;
2558         }
2559
2560         err = hifn_start_device(dev);
2561         if (err)
2562                 goto err_out_free_irq;
2563
2564         err = hifn_register_rng(dev);
2565         if (err)
2566                 goto err_out_stop_device;
2567
2568         err = hifn_register_alg(dev);
2569         if (err)
2570                 goto err_out_unregister_rng;
2571
2572         INIT_DELAYED_WORK(&dev->work, hifn_work);
2573         schedule_delayed_work(&dev->work, HZ);
2574
2575         dev_dbg(&pdev->dev, "HIFN crypto accelerator card at %s has been "
2576                 "successfully registered as %s.\n",
2577                 pci_name(pdev), dev->name);
2578
2579         return 0;
2580
2581 err_out_unregister_rng:
2582         hifn_unregister_rng(dev);
2583 err_out_stop_device:
2584         hifn_reset_dma(dev, 1);
2585         hifn_stop_device(dev);
2586 err_out_free_irq:
2587         free_irq(dev->irq, dev);
2588         tasklet_kill(&dev->tasklet);
2589 err_out_free_desc:
2590         pci_free_consistent(pdev, sizeof(struct hifn_dma),
2591                         dev->desc_virt, dev->desc_dma);
2592
2593 err_out_unmap_bars:
2594         for (i = 0; i < 3; ++i)
2595                 if (dev->bar[i])
2596                         iounmap(dev->bar[i]);
2597         kfree(dev);
2598
2599 err_out_free_regions:
2600         pci_release_regions(pdev);
2601
2602 err_out_disable_pci_device:
2603         pci_disable_device(pdev);
2604
2605         return err;
2606 }
2607
2608 static void hifn_remove(struct pci_dev *pdev)
2609 {
2610         int i;
2611         struct hifn_device *dev;
2612
2613         dev = pci_get_drvdata(pdev);
2614
2615         if (dev) {
2616                 cancel_delayed_work_sync(&dev->work);
2617
2618                 hifn_unregister_rng(dev);
2619                 hifn_unregister_alg(dev);
2620                 hifn_reset_dma(dev, 1);
2621                 hifn_stop_device(dev);
2622
2623                 free_irq(dev->irq, dev);
2624                 tasklet_kill(&dev->tasklet);
2625
2626                 hifn_flush(dev);
2627
2628                 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2629                                 dev->desc_virt, dev->desc_dma);
2630                 for (i = 0; i < 3; ++i)
2631                         if (dev->bar[i])
2632                                 iounmap(dev->bar[i]);
2633
2634                 kfree(dev);
2635         }
2636
2637         pci_release_regions(pdev);
2638         pci_disable_device(pdev);
2639 }
2640
2641 static struct pci_device_id hifn_pci_tbl[] = {
2642         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2643         { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2644         { 0 }
2645 };
2646 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2647
2648 static struct pci_driver hifn_pci_driver = {
2649         .name     = "hifn795x",
2650         .id_table = hifn_pci_tbl,
2651         .probe    = hifn_probe,
2652         .remove   = hifn_remove,
2653 };
2654
2655 static int __init hifn_init(void)
2656 {
2657         unsigned int freq;
2658         int err;
2659
2660         /* HIFN supports only 32-bit addresses */
2661         BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2662
2663         if (strncmp(hifn_pll_ref, "ext", 3) &&
2664             strncmp(hifn_pll_ref, "pci", 3)) {
2665                 pr_err("hifn795x: invalid hifn_pll_ref clock, must be pci or ext");
2666                 return -EINVAL;
2667         }
2668
2669         /*
2670          * For the 7955/7956 the reference clock frequency must be in the
2671          * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2672          * but this chip is currently not supported.
2673          */
2674         if (hifn_pll_ref[3] != '\0') {
2675                 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2676                 if (freq < 20 || freq > 100) {
2677                         pr_err("hifn795x: invalid hifn_pll_ref frequency, must"
2678                                "be in the range of 20-100");
2679                         return -EINVAL;
2680                 }
2681         }
2682
2683         err = pci_register_driver(&hifn_pci_driver);
2684         if (err < 0) {
2685                 pr_err("Failed to register PCI driver for %s device.\n",
2686                        hifn_pci_driver.name);
2687                 return -ENODEV;
2688         }
2689
2690         pr_info("Driver for HIFN 795x crypto accelerator chip "
2691                 "has been successfully registered.\n");
2692
2693         return 0;
2694 }
2695
2696 static void __exit hifn_fini(void)
2697 {
2698         pci_unregister_driver(&hifn_pci_driver);
2699
2700         pr_info("Driver for HIFN 795x crypto accelerator chip "
2701                 "has been successfully unregistered.\n");
2702 }
2703
2704 module_init(hifn_init);
2705 module_exit(hifn_fini);
2706
2707 MODULE_LICENSE("GPL");
2708 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2709 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");